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Abstract

We study the distance of an eigenvector of a diagonalizable matrix A to the
Krylov subspace generated from A and a given starting vector v. This distance
is involved in studies of the convergence of the Arnoldi method for computing
eigenvalues. Contrary to the previous studies on this problem, we provide closed-
form expressions for this distance in terms of the eigenvalues and eigenvectors
of A as well as the components of v in the eigenvector basis. The formulas
simplify when the matrix A is normal. For A non-normal we derive upper and
lower bounds that are simpler than the exact expressions. We also show how to
generate starting vectors such that the distance to the Krylov subspace is equal
to the worst possible case.

Keywords: Krylov subspace, Arnoldi method, Ritz values, eigenvalues,
eigenvectors, diagonalizable matrices, normal matrices

1. Introduction

Some of the most important tools to compute approximate eigenvalues and
eigenvectors of large sparse matrices A use projection techniques on Krylov
subspaces. A well-known and widely used technique of this type is the Arnoldi
method [1] developed by Saad [13]. It is an orthogonal projection method. The
convergence of this kind of methods has been analyzed in detail in the Hermitian
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case, but the analysis is much more difficult in the general non symmetric case
and so there are not many results available in the literature; see [14] [15], [8],
[3]. Most analyses involve the distance of an eigenvector of the matrix A to the
Krylov subspace generated from A and a given starting vector v. Usually some
upper bounds are derived for this distance to obtain some insights about the
convergence behavior of the numerical method. In this paper we consider this
problem from another view point. We derive closed-form expressions for this
distance when the matrix A is diagonalizable. The distance is given in terms
of the eigenvalues and eigenvectors of A as well as the components of v in the
eigenvector basis. In particular, this yields bounds for the norm of the residual
given by an exact eigenpair of A for the approximate problem generated by
the Arnoldi method; see [3]. We hope that these new exact results can help
obtaining more insights into the convergence of the Arnoldi method.

The contents of the paper are as follows. In section 2 we recall results about
the Arnoldi method and its convergence. Section 3 studies the minimum dis-
tance of a given vector to a subspace of CN . In section 4 we consider the distance
of a given eigenvector of A to a Krylov subspace of dimension k generated from
a diagonalizable matrix A and a vector v. We obtain a closed-form expression
in terms of the eigenvalues, the eigenvectors and the components of the starting
vector in the eigenvector basis. The formulas simplify when the matrix A is
normal. Bounds that are simpler than the exact formula are also given in the
non-normal case. In section 5 we study whether we can find starting vectors v
such that the distance of the eigenvector to the Krylov subspace is equal to 1
at a given step of the Arnoldi method. Finally, we give some conclusions.

Exact arithmetic is assumed throughout the paper. The conjugate trans-
poses of a vector x or a matrix A are denoted by x∗ and A∗. The Euclidean
norm of a vector v is denoted by ‖v‖, so ‖v‖ =

√
(v∗v). For a matrix A, ‖A‖

denotes the 2-norm. We denote by I the identity matrix of appropriate order
and by ek its kth column.

In this paper we will make use of the following hypothesis on the matrix A
of order N and the Arnoldi starting vector v,

Hypothesis H: Let k < N . The matrix A is diagonalizable as A = XΛX−1

where X is the matrix of the normalized eigenvectors and Λ is the diagonal
matrix of the eigenvalues denoted as λi, i = 1, . . . , N . We assume that there
are at least k + 1 distinct eigenvalues (which we number from 1 to k + 1) and
that the first k + 1 components of α = X−1v are different from zero.

2. The eigenvalue problem

Let A be a square real or complex matrix of order N . Consider the eigenvalue
problem: find λ belonging to C and x belonging to CN such that

Ax = λx. (1)

For a given vector v ∈ CN of unit norm, the Krylov subspace Kk(A, v) is defined
by

Kk(A, v) = span{v,A v, . . . , Ak−1v}. (2)
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We denote by Kk the Krylov matrix whose columns are the natural basis vectors
of Kk(A, v) that is, Ajv, j = 0, . . . , k − 1. We assume that k < N and that,
according to hypothesis H, the matrix Kk is of full rank k. Throughout the
paper we will denote by Mk the Gram matrix K∗kKk.

2.1. The Arnoldi method

The Arnoldi method computes approximate eigenpairs λ(k), x(k) with x(k) ∈
Kk(A, v) by enforcing the Galerkin condition

(Ax(k) − λ(k) x(k) , Aiv) = 0 for i = 0, . . . , k − 1. (3)

Relation (3) means that the residual of the approximate eigenpair is orthogonal
to the Krylov subspace of dimension k. The standard way of extracting the
approximate eigenpairs from the above conditions is to use the Arnoldi process
[1] which generates an orthonormal basis v1, . . . , vk of Kk(A, v) with which the
relations (3) are expressed. The outputs of the algorithm at iteration k are a
unitary matrix Vk = [v1, v2, . . . , vk] and an unreduced upper Hessenberg matrix
Hk whose entries are the scalars hi,j generated by the procedure. In addition,
the following relations are satisfied:

- AVk = VkHk + hk+1,kvk+1ek
T ,

- Hk = V ∗k AVk.

The approximate eigenvalue problem can now be written as

V ∗k AVk y
(k) = Hky

(k) = λ(k) y(k), (4)

which is equivalent to
V ∗k (A− λ(k)I)Vky

(k) = 0.

Approximate eigenvalues (the so-called Ritz values) are the eigenvalues of Hk

and the associated approximate eigenvectors are x(k) = Vky
(k).

2.2. Convergence

The simplest analysis of the Arnoldi method uses the distance of a given
eigenvector of A to the Krylov subspace. It is based on the viewpoint described
below; see [15]. Let Pk be the orthogonal projector onto Kk(A, v). It can be
written as Kk(K∗kKk)−1K∗k or VkV

∗
k depending on the basis we consider. Then,

the approximate eigenvalue problem amounts to solving

Pk(Ax− λx) = 0, x ∈ Kk(A, v),

or in operator form
PkAPkx = λx.

Let us define, Ak ≡ PkAPk. Note that Ak = VkHkV
∗
k . The following theorem

is proved in [15].
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Theorem 1. Let x be an eigenvector of A associated with the eigenvalue λ and
γk = ‖PkA(I − Pk)‖. Then the residual norms of the pairs (λ,Pkx) and (λ, x)
for the linear operator Ak satisfy,

‖(Ak − λI)Pkx‖ ≤ γk‖(I − Pk)x‖, (5)

‖(Ak − λI)x‖ ≤
√
|λ|2 + γ2k ‖(I − Pk)x‖. (6)

Note that γk ≤ ‖A‖. Therefore, the coefficients on the right-hand sides of
these inequalities are at most of the order of ‖(I − Pk)x‖. Theorem 1 states
how accurate the exact eigenpair is with respect to the approximate problem.
This is stated in terms of the distance of the exact eigenvector x to the Krylov
subspace. The remaining issue is to compute or to estimate ‖(I −Pk)x‖. Note
that I −Pk is the projector onto the orthogonal complement of the Krylov sub-
space. Upper bounds for the norm have been obtained in [3] using several tools:
the eigenvectors, the Schur vectors and an approximation theory viewpoint. We
remark that ‖(I − Pk)x‖ is also involved in the analysis of convergence of har-
monic Ritz values and harmonic and refined Ritz vectors; see [9], [4], [10], [11].
In the following we will obtain closed-form expressions for ‖(I −Pk)x‖ when A
satisfies hypothesis H.

3. The minimum distance to a subspace

In this section we analyze the minimum distance minx∈X ‖w−x‖ of a vector
w to X which is an arbitrary subspace of dimension k. We begin by showing
some simple results. First, observe that given any matrix W whose columns
give a basis of the subspace X , x ∈ X can be written as Wy, where y ∈ Ck.
Hence,

‖w − x‖2 = ‖w −Wy‖2 = w∗w − w∗Wy − y∗W ∗w + y∗W ∗Wy.

The above expression is of the form

‖w − x‖2 =

(
1

−y

)∗(
w∗w w∗W
W ∗w W ∗W

)
︸ ︷︷ ︸

≡C

(
1

−y

)
. (7)

Note that minimizing ‖w− x‖ over X is equivalent to minimizing ‖w+ x‖ over
the same subspace, so the signs of the y’s in the expression above can be changed
when seeking the minimum distance. In the end,

min
x∈X

‖w − x‖2 = min
y∈Ck

‖w −Wy‖2 = min
y∈Ck

(
1

y

)∗
C

(
1

y

)
, (8)

where C is defined in relation (7). Note that if we assume that w 6∈ X the
matrix C is non singular since C = [w,W ]∗[w,W ]. Then we can characterize
the distance of a vector to its orthogonal projection.
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Lemma 2. Let X be an arbitrary subspace of dimension k in CN with a basis
W = [w1, · · · , wk] and let w /∈ X . Let P be the orthogonal projector onto X .
Then, we have

‖(I − P)w‖2 =
1

eT1 C
−1e1

where

C =

(
w∗w w∗W
W ∗w W ∗W

)
.

Proof. Given an arbitrary vector w ∈ CN , observe that

‖(I − P)w‖2 = w∗(I − P)(I − P)w = w∗(I − P)w = w∗w − w∗Pw,

with P = W (W ∗W )−1W ∗. It follows that

‖(I − P)w‖2 = w∗w − w∗Pw = w∗w − w∗W (W ∗W )−1W ∗w. (9)

The right-hand side of relation (9) is the Schur complement of the (1,1) entry
of C which, as is well-known, is the inverse of the (1,1) entry of C−1.

4. The minimum distance of an eigenvector to a Krylov subspace

Let A be a diagonalizable matrix satisfying hypothesis H. We study the
convergence to a given simple eigenvalue which is indexed by 1, that is, we
consider x1, the first column of X corresponding to λ1. We have assumed that
[X−1v]1 6= 0 and ‖xj‖ = 1 for all j. Note that the distance ‖(I − Pk)x1‖ is
nothing but the sine of the angle ∠(x1,Kk). Bounds for the distance were given
in [15] and in [8] in the case where A is not diagonalizable but non-derogatory.

In the first subsection below we will obtain explicit expressions for the min-
imum distance of the eigenvector x1 to a Krylov subspace when the matrix
is diagonalizable and satisfies hypothesis H. These exact expressions are quite
intricate, particularly when A is non-normal. Therefore, in the second subsec-
tion we will derive lower and upper bounds for the minimum distance in the
non-normal case. These bounds are simpler than the exact results and almost
similar to what we have in the normal case.

4.1. An exact expression for the minimum distance

An explicit formula for ‖(I −Pk)x1‖ is obtained immediately as a corollary
of Lemma 2.

Corollary 3. Let A be a general square matrix, x1 6∈ Kk(A, v) be an eigenvector
of A and Lk+1 be the rectangular matrix of CN×(k+1),

Lk+1 =
(
α1 x1, v, A v, . . . , Ak−1 v

)
.

We assume that α ∈ C, α1 6= 0 and Lk+1 is of rank k + 1. Then

‖(I − Pk)α1 x1‖2 =
1

eT1 (L∗k+1Lk+1)
−1
e1
. (10)
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Proof. The result follows by applying Lemma 2 with w = α1 x1, and W =
[v,Av, · · · , Ak−1v].

The reason for introducing the factor α1 in the first column will be given
in the proof of the next theorem. Note that the result in Corollary 3 is valid
whatever the matrix A and the complex number α1 6= 0 as long as the matrix
Lk+1 is of rank k + 1. In the following theorem we consider a matrix satisfying
hypothesis H.

Theorem 4. Let A be a diagonalizable matrix satisfying hypothesis H, α a vec-
tor of Ck with components αj such that the starting vector is v = Xα and the
two matrices

Dα =


α1 0 . . . 0

0 α2
. . .

...
...

. . .
. . . 0

0 . . . 0 αN

 and Wk+1 =



1 1 λ1 . . . λk−11

0 1 λ2 . . . λk−12
...

...
... . . .

...

0 1 λi . . . λk−1i
...

...
... . . .

...

0 1 λN . . . λk−1N


. (11)

Let Pk be the orthogonal projector onto Kk(A, v) and M̃k+1 = L∗k+1 Lk+1, where
Lk+1 is defined in Corollary 3. Then,

‖(I − Pk)α1 x1‖2 =
1

(M̃−1k+1)1,1
=

1

eT1 (W ∗k+1D
∗
α(X∗X)DαWk+1)

−1
e1
. (12)

When A is normal the preceding formula simplifies to

‖(I − Pk)α1 x1‖2 =
1

eT1 (W ∗k+1D
∗
αDαWk+1)

−1
e1
. (13)

Proof. We consider a factorization of the matrix Lk+1 when A is satisfies hy-
pothesis H. Using the definition of α, we obtain Ajv = X Λjα for j = 0, . . . , k−1.
Note that we have assumed that α1 6= 0. Then, we have

Lk+1 = [α1x1, v, A v, . . . , A
k−1 v]

= X [α1 e1, α,Λα, . . . ,Λ
k−1 α]

= XDαWk+1,

With hypothesis H the matrix Lk+1 is of rank k + 1. Note that α1 was
introduced as a factor of the first column of Lk+1 to obtain the matrix Dα in
the factorization. As a result it yields,

M̃k+1 = W ∗k+1D
∗
α (X∗X)DαWk+1, (14)

which is a non singular matrix. We remark that if the matrix A is normal the
term within parenthesis is equal to the identity matrix. With Corollary 3, we
obtain the formulas (12) and (13).
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Our next goal is to express the (1, 1) entry of the inverse of M̃k+1 which
appears in relation (12) in terms of the eigenvalues, the eigenvectors of A and
the components of α. To achieve this we use the same techniques as in [5] and
[12] that is, Cramer’s rule and the Cauchy-Binet formula for determinants; see
[7]. Then

(M̃−1k+1)1,1 =
det(M̂k+1)

det(M̃k+1)
,

where M̂k+1 is equal to M̃k+1 except for the first column which is replaced by
the first column of the identity matrix. Of course, the determinant of M̂k+1 is
equal to the determinant of its submatrix with rows [2, . . . , k + 1] and columns
[2, . . . , k + 1] which can be written as (M̃k+1)[2:k+1],[2:k+1]. It yields

(M̃k+1)[2:k+1],[2:k+1] =

0
...
0

Ik

 M̃k+1

(
0 · · · 0

Ik

)
,

=

0
...
0

Ik

W ∗k+1D
∗
α(X∗X)DαWk+1

(
0 · · · 0

Ik

)
,

= V∗k D∗α(X∗X)DαVk,

where

Vk =


1 λ1 · · · λk−11

1 λ2 · · · λk−12
...

...
...

1 λN · · · λk−1N

 ,

is a rectangular Vandermonde matrix. The matrix

(M̃k+1)[2:k+1],[2:k+1] = V∗k D∗α(X∗X)DαVk

is equal to the Gram matrix Mk = K∗kKk. A closed-form expression for its
determinant was already given in [6].

Lemma 5 ([6]). Let A be a diagonalizable matrix with a spectral decomposition
A = XΛX−1 and let Kk be the Krylov matrix based on A and v. Then, the
determinant of Mk = K∗kKk is

det(Mk) =
∑
Ik

∣∣∣∣∣∣∣∣
∑
Jk

det(XIk,Jk)αj1 · · ·αjk
∏

j1≤jp<jq≤jk
jp,jq∈Jk

(λjq − λjp)

∣∣∣∣∣∣∣∣
2

,

where the summations are over all sets of indices Ik and Jk defined as I` to
be a set of ` indices

(
i1, i2, . . . , i`

)
such that 1 ≤ i1 < · · · < i` ≤ N and
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J` is similar with i replaced by j, XI`,J` is the submatrix of X whose row and
column indices of entries are defined respectively by I` and J` and α = X−1v.
The product is on all pairs of indices that belong to Jk (the product being equal
to 1 if k = 1).

If the matrix A is normal then

det(Mk) =
∑
Ik

 k∏
j=1

|αij |2
 ∏
i1≤ip<iq≤ik
ip,iq∈Ik

|λiq − λip |2,

with α = X∗v.

Now we consider the determinant of M̃k+1 = W ∗k+1D
∗
α(X∗X)DαWk+1.

Lemma 6. Let A be a diagonalizable matrix with a spectral decomposition A =
XΛX−1. Then, the determinant of M̃k = L∗k+1 Lk+1 is

det(M̃k) = |α1|2
∑
Ik+1

∣∣∣∣∣∣∣∣∣
∑
Ĵk+1

det(XIk+1,Ĵk+1
)αj2 · · ·αjk+1

∏
1<j2≤jp<jq≤jk+1

jp,jq∈Ĵk+1

(λjq − λjp)

∣∣∣∣∣∣∣∣∣
2

,

where Ik+1 is defined as in Lemma 5 and the summation with Ĵk+1 is over all
sets of indices {1, j2, . . . , jk+1} such that 1 < j2 < · · · < jk+1 ≤ N .

If the matrix A is normal then

det(M̃k) = |α1|2
∑
Îk+1

k+1∏
j=2

|αij |2
 ∏

1<i2≤ip<iq≤ik+1

ip,iq∈Îk+1

|λiq − λip |2,

and the summation with Îk+1 is over all sets of indices {i2, . . . , ik+1} such that
1 < i2 < · · · < ik+1 ≤ N .

Proof. Let G = XDαWk+1, then M̃k+1 = G∗G is the product of two rectangu-
lar matrices. To compute the determinant we apply the Cauchy-Binet formula;
see [7]. It yields

det(M̃k) =
∑
Ik+1

|det(GIk+1,:)|2,

where Ik+1 is defined as in Lemma 5 and GIk+1,: is the submatrix of G whose row
indices are in Ik+1. The matrix G itself is the product of two matrices, XDα

and Wk+1. For the determinant of GIk+1,: we apply again the Cauchy-Binet
formula and we obtain

det(GIk+1,:) =
∑
Jk+1

det(XIk+1,Jk+1
)αj1 · · ·αjk+1

det(W(j1, . . . , jk+1)),
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whereW(j1, . . . , jk+1) is obtained from the rows j1, . . . , jk+1 of Wk+1. From the
structure of the first column of Wk+1 it is clear that det(W(j1, . . . , jk+1)) = 0
if 1 /∈ {j1, j2, . . . , jk+1}. But the indices in Jk+1 are strictly ordered, so the
determinant is different from zero only if j1 = 1. The sum over the sets Jk+1

reduces to a sum over sets of indices Ĵk+1 which are {1, j2, . . . , jk+1} with 1 <
j2 < · · · < jk+1 ≤ N . Clearly for these sets of indices we have

det(W(1, j2, . . . , jk+1)) = det


1 λj2 · · · λk−1j2

1 λj3 · · · λk−1j3
...

...
...

1 λjk+1
· · · λk−1jk+1

 =
∏

1<j2≤jp<jq≤jk+1

(λjq−λjp).

The indices jp, jq have to belong to the set {j2, j3, . . . , jk+1}. It yields the

formula for det(M̃k)
When A is normal, G = DαWk+1 and we do not have to apply the Cauchy-

Binet formula a second time to obtain det(M̃k).

From Lemmas 5 and 6 we obtain the following closed-form expression for the
distance of an eigenvector to its orthogonal projection on the Krylov subspace.

Theorem 7. Let A be a diagonalizable matrix satisfying hypothesis H. The dis-
tance of the eigenvector x1 to the Krylov subspace Kk(A, v) is given by

‖(I − Pk)x1‖2 =
N

D
, (15)

with

N =
∑
Ik+1

∣∣∣∣∣∣∣∣∣
∑
Ĵk+1

det(XIk+1,Ĵk+1
)αj2 · · ·αjk+1

∏
1<j2≤jp<jq≤jk+1

jp,jq∈Ĵk+1

(λjq − λjp)

∣∣∣∣∣∣∣∣∣
2

,

D =
∑
Ik

∣∣∣∣∣∣∣∣
∑
Jk

det(XIk,Jk)αj1 · · ·αjk
∏

j1≤jp<jq≤jk
jp,jq∈Jk

(λjq − λjp)

∣∣∣∣∣∣∣∣
2

,

where the summation sets of indices are defined in Lemmas 5 and 6 and α =
X−1v.

If, in addition, A is normal we have

N =
∑
Îk+1

k+1∏
j=2

|αij |2
 ∏

1<i2≤ip<iq≤ik+1

ip,iq∈Îk+1

|λiq − λip |2,

9



D =
∑
Ik

 k∏
j=1

|αij |2
 ∏
i1≤ip<iq≤ik
ip,iq∈Ik

|λiq − λip |2,

with α = X∗v.

Formula (15) is difficult to interpret in the non-normal case since there is
a strong dependence on the eigenvectors through determinants of submatrices
of X. The normal case is easier since the distance depends on the eigenvectors
only through the components of X∗v.

The results of Theorem 7 for normal matrices can be written in a different
way. The summation in the denominator D is over all sets of k indices Ik =
{i1, i2, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ N . Such sets can be split into two
disjoint sets

Ik = I1 ∪ Ik, I1 = {1, i2, . . . , ik}, Ik = {i1, i2, . . . , ik, | i1 > 1}.

Let us denote the sums over these two sets of indices by SI1 and SIk . We have

SI1 = |α1|2
∑

{i2,...,ik}
i2>1

 k∏
j=2

|αij |2
 ∏

1≤ip<iq≤ik
ip,iq∈{1,i2,...,ik}

|λiq − λip |2, (16)

SIk =
∑
Ik

 k∏
j=1

|αij |2
 ∏

1<i1≤ip<iq≤ik
ip,iq∈Ik

|λiq − λip |2.

Even though the notation is different, SIk is equal to the numerator N . There-
fore we can write

N

D
=

SIk
SI1 + SIk

=
1

1 +
SI1

SIk

, (17)

as long as SIk 6= 0. The eigenvalue of interest λ1 does not appear in SIk . We
see that the distance of x1 to the Krylov subspace is equal to 1 if and only if
SI1 = 0. It is small if SI1/SIk is large. Of course, this happens if SI1 is large
or if SIk is small or both. Unfortunately, we cannot do the same manipulation
for the non-normal case because of the term det(XIk,Jk).

Let us give a small example to clarify all this and to show what kind of
insights one can obtain from the previous formulas. We consider a normal
matrix A of order 4 with eigenvalues λ1, λ2, λ3, λ4 and k = 2. The sets of
indices in I3 are (1, 2, 3), (1, 2, 4), (1, 3, 4). Therefore, the sets of indices in Î3
are (2, 3), (2, 4), (3, 4). The sets of indices in I2 are

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).
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The three first pairs are the pairs in I1 and the four last ones are in I2. We see
that I2 is identical to Î3. Let βi = |αi|2. We have

SI1 = β1
[
β2|λ2 − λ1|2 + β3|λ3 − λ1|2 + β4|λ4 − λ1|2

]
,

SI2 = β2β3|λ3 − λ2|2 + β2β4|λ4 − λ2|2 + β3β4|λ4 − λ3|2.

The term SI1 will be large if at least one of the other eigenvalue is “far” from
λ1 and the projection of v on the corresponding eigenvector is not too small.
The other term SIk is small if the products of the pairwise distances between
the other eigenvalues with the moduli of the projections of v are small. If only
one of the terms in the sum is not small, SIk cannot be small.

Let us first assume that we have a cluster of three distinct eigenvalues
λ2, λ3, λ4 whose small pairwise distances are of order ε and another complex
eigenvalue λ1 whose pairwise distances to the three other ones are of order 1.
Assume also that all the βi’s are non zero and that no one is very small. Then
SI2 = cε2 where c� ε and the ratio N/D is equal to

1

1 +
SI1

cε2

=
cε2

cε2 + SI1
= O(ε2),

since SI1 is of order 1. We see that with this distribution of eigenvalues ‖(I −
P2)x1‖ is small of order ε.

Let us now assume that A is real. Then the eigenvalues arise as real numbers
or complex conjugate pairs. Let λ1 be a complex eigenvalue with λ2 = λ1.
Assume that λ3 and λ4 are complex conjugate or real with |λ4 − λ3| = ε and
the distances to λ1 and λ2 are of order 1. Then, SI2 is not small unless β2 is
small. Generally, the ratio N/D is not small. We see that even though we have
a tight cluster in both situations, the outcome may not be the same when A is
real or complex. But, of course, the number of eigenvalues in the cluster is not
the same.

To illustrate this we consider two small numerical examples. The first normal
matrix is

A =


1.968 + 0.9696i −0.1049− 0.1038i 0.1235 + 0.1279i −0.05698− 0.04881i

−0.1049− 0.1038i 1.646 + 0.6459i 0.4355 + 0.4361i −0.1671− 0.1665i
0.1235 + 0.1279i 0.4355 + 0.4361i 1.461 + 0.4628i 0.204 + 0.205i

−0.05698− 0.04881i −0.1671− 0.1665i 0.204 + 0.205i 1.926 + 0.9217i

 ,

and the starting vector is

v =


−0.04974
0.5969
0.5646
0.5679

 .

The eigenvalues of A are(
1, 1.99− i, 2.01− i, 2− i

)
.

11



It means that we are in the first case since we have a complex matrix with a
cluster of three eigenvalues and the first eigenvalue is far from the cluster. The
first eigenvector of A and its projection on the Krylov subspace of dimension 2
(computed as P2 = V2V

∗
2 ) are

x1 =


−0.1745
−0.5951
0.7329
−0.2798

 , P2x1 =


−0.2157 + 0.04192i
−0.5967 + 0.003796i
0.7205 + 0.009379i
−0.2692− 0.009643i

 .

It yields ‖x1 − P2x1‖2 = 3.9202 10−3. The two sums are

SI1 = 1.6624 10−2, SI2 = 6.5426 10−5

and we can check that

SI2
SI1 + SI2

= 3.9202 10−3.

The two Ritz values at Arnoldi iteration 2 are(
1.99984 + i, 1.00392 + 0.00392028i

)
.

One is close to the eigenvalue 1 and the other is close to the cluster. We can also
check the bounds of Theorem 1. Considering the bound (5) for the eigenvalue
λ1 = 1, we have

‖(A2 − I)P2x1‖ = 5.5566 10−3, γ2 = 8.8749 10−2, ‖x1 − P2x1‖ = 6.2611 10−2,

γ2 ‖x1 − P2x1‖ = 5.5567 10−3.

The bound is quite sharp. For the other bound we have,

‖(A2 − I)x1‖ = 6.2857207 10−2,
√

1 + γ22 = 1.0039,√
1 + γ22 ‖x1 − P2x1‖ = 6.2857211 10−2.

This is also a very good bound.
We now consider a real normal matrix,

A =


1.894 0.09975 −0.2124 −0.3811
0.4172 1.137 0.3024 0.8461
0.1531 −0.7204 1.649 −0.1911
0.05344 −0.6726 −0.6651 1.32

 ,

and the starting vector,

v =


−0.3019
−0.2286
−0.8316
0.4063

 .
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The eigenvalues of A are(
1 + i, 1− i, 2− 0.01i, 2 + 0.01i

)
.

We have a cluster of two eigenvalues near 2 and a pair of complex conjugate
eigenvalues far from this cluster. The first eigenvector of A corresponding to
λ1 = 1 + i and its projection on the Krylov subspace of dimension 2 are

x1 =


−0.1967 + 0.119i

0.657 + 0i
0.1591 + 0.3876i
−0.06602 + 0.5793i

 , P2x1 =


0.07054 + 0.01742i
0.09665 + 0.1865i
0.2707 + 0.3541i
0.04567 + 0.5402i

 .

The distance is ‖x1 − P2x1‖2 = 0.67682. The two sums are

SI1 = 0.15514, SI2 = 0.13115.

SI1 is not large and SI2 is not small. Consequently, the distance between x1
and its projection cannot be small. The two Ritz values at iteration 2 are real,
being (1.8123, 1.1039). They are not close to any eigenvalue of A. Concerning
the bounds, we have

‖(A2 − (1 + i)I)P2x1‖ = 0.67421, γ2 = 0.99644, ‖x1 − P2x1‖ = 0.67682,

γ2 ‖x1 − P2x1‖ = 0.67441,

and

‖(A2 − (1 + i)I)x1‖ = 1.1708,
√

1 + γ22 = 1.7300,√
1 + γ22 ‖x1 − P2x1‖ = 1.1709.

Again the two bounds are close to the values of the residual norms.

4.2. Bounds for the minimum distance

The formula of Theorem 7 is quite intricate when the matrix is non-normal.
Let us now consider bounds for ‖(I−Pk)x1‖2 for this case. Bellalij, Jbilou and
Sadok [2] proved the following result.

Lemma 8. Let E and F be two matrices of sizes N × (k + 1) and N × N
respectively, k ≤ N − 1. If the matrix E is of full rank then

σmin(F )2

eT1 (E∗E)−1e1
≤ 1

eT1 (E∗(F ∗F )E)−1e1
≤ σmax(F )2

eT1 (E∗E)−1e1
, (18)

where σmin,max(F ) are the smallest and largest singular values of F .

Lemma 8 can be used straightforwardly (using E = X and F = DαWk+1)
together with Corollary 3 to obtain bounds as follows.
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Theorem 9. Let A be a diagonalizable matrix satisfying hypothesis H. The dis-
tance of the eigenvector x1 to its orthogonal projection on the Krylov subspace
Kk(A, v) is bounded by

σmin(X)2
Nb
Db
≤ ‖(I − Pk)x1‖2 ≤ ‖X‖2

Nb
Db

, (19)

where

Nb =
∑
Îk+1

k+1∏
j=2

|αij |2
 ∏

1<i2≤ip<iq≤ik+1

ip,iq∈Îk+1

|λiq − λip |2,

Db =
∑
Ik

 k∏
j=1

|αij |2
 ∏
i1≤ip<iq≤ik
ip,iq∈Ik

|λiq − λip |2,

where the summation sets of indices are defined in Lemmas 5 and 6 and α =
X−1v.

The bounds of Theorem 9 are simpler than what we had in Theorem 7 since
we have only one summation in the numerator and denominator like in the
normal case. Moreover, the interest of these bounds is that when σmin(X) is
not too much different from σmax(X), the distance ‖(I−Pk)x1‖ is close to what
we would have for a normal matrix. However, the norm of X must be larger
than one and therefore the upper bound may be larger than one.

5. Study of the worst case

Obviously, we have
‖(I − Pk)x1‖ ≤ 1.

We are interested in knowing if, for a given matrix A, we can find starting
vectors v such that ‖(I − Pk)x1‖ = 1, where Pk is the orthogonal projector
onto the Krylov subspace Kk(A, v).

We first remark that ‖(I − Pk)x1‖2 is a decreasing function of k. This can
be seen by using the orthonormal basis v1, . . . , vk of the Krylov subspace. Let
ωj = v∗jx1. Then

‖(I − Pk)x1‖2 = 1−
k∑
j=1

|ωj |2. (20)

Therefore, if we find a vector v = v1 such that ‖(I − Pk)x1‖ = 1 then, ‖(I −
Pj)x1‖ = 1 for all 1 ≤ j ≤ k because |ωj | = 0 for j ≤ k.

We first answer to the question above when A is normal.
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5.1. A normal

Relation (17) showed that,

‖(I − Pk)x1‖2 =
SIk

SI1 + SIk
=

1

1 +
SI1

SIk

,

the last equality occurring if SIk 6= 0. The sum SI1 was defined in relation (16).
Having SI1 = 0 is a necessary and sufficient condition to have ‖(I−Pk)x1‖ = 1.
We have a factor |α1|2 in SI1 . Therefore SI1 = 0 if |α1| = 0; but this case has
been excluded in Corollary 3. Nevertheless, we can take |α1|2 = ε and let ε→ 0.
Then, since SIk is not small,

‖(I − Pk)x1‖2 =
1

1 + O(ε)
SIk

,

can be as close to 1 as we wish. If α1 6= 0 then all the other terms in the sum
SI1 have to be zero. This means that for each term either the coefficient βi is
zero or the product of the distances between eigenvalues is zero.

To illustrate this, let us consider the first example of section 4. We now
choose a starting vector v such that

X∗v =


5.774 10−5

0.5774
0.5774
0.5774

 .

It yields
SI1 = 6.6669 10−9, SI2 = 6.6667 10−5,

and the distance is
‖(I − P2)x1‖ = 0.99995.

At iteration 2 the two Ritz values are 2.0081+0.99995i, 1.9918+0.99995i. They
are close to the cluster of eigenvalues, but not to the eigenvalue 1.

5.2. A non normal but satisfying hypothesis H

The case k = 1 is trivial. From relation (20) we need to have ω1 = v∗x1 = 0.
Therefore we just have to find a vector orthogonal to the eigenvector x1. This
can be done by taking any vector and orthogonalizing it against x1.

When k > 1, we need to have x1 orthogonal to the subspace generated by
v1, . . . , vk that is, the Krylov subspace Kk(A, v). We can express this condition
using the natural basis v,Av, . . . , Ak−1v. It yields,

x∗1A
jv = 0, j = 0, . . . , k − 1.

Using A = XΛX−1 and v = Xα, we obtain

x∗1XΛjα = 0, j = 0, . . . , k − 1. (21)
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This gives k linear equations for N unknowns which are the components of α.
We have assumed in hypothesis H that A has at least k distinct eigenvalues
(including λ1) denoted as λ1, . . . , λk. Then, we can choose arbitrarily the com-
ponents αk+1, . . . , αN . The other ones are obtained by solving a linear system

V̂Tk D∗kα̂ = −ṼTN−kD∗N−kα̃,

where α̂ = (α1, · · · , αk)T , α̃ = (αk+1, · · · , αN )T , Dk (resp. DN−k) is a diagonal
matrix whose diagonal entries are the components 1 to k (resp. k + 1 to N) of
y = X∗x1 and we have the Vandermonde matrices

V̂k =


1 λ1 · · · λk−11

1 λ2 · · · λk−12
...

...
...

1 λk · · · λk−1k

 , ṼN−k =


1 λk+1 · · · λk−1k+1

1 λk+2 · · · λk−1k+2
...

...
...

1 λN · · · λk−1N

 .

If we assume that the first k components of y are different from zero, the matrix
of the linear system is non singular. Then α = (α̂, α̃)T that we can eventually
normalize and v = Xα. This will give ‖(I −Pj)x1‖ = 1, j ≤ k. Unfortunately,
this technique yields starting vectors whose components are complex numbers
even when the matrix A is real. Of course, the problem is that to construct
such starting vectors we have to know the eigenvalues and eigenvectors of A.
Therefore, this construction has just a theoretical interest. Note that when A
is normal we have y = e1, the Vandermonde matrix on the left-hand side is
singular and we find α1 = 0.

Let us consider a small example with a non-normal matrix,

A =


0.5377 0.3188 3.578 0.7254
1.834 −1.308 2.769 −0.06305
−2.259 −0.4336 −1.35 0.7147
0.8622 0.3426 3.035 −0.205

 .

The eigenvalues are(
0.05302 + 2.337i, 0.05302− 2.337i, −1.215 + 0.1047i, −1.215− 0.1047i

)
.

The vector y = X∗x1 is

y =


1

0.6969− 0.07591i
0.2454− 0.2571i
0.279 + 0.09219i

 .

Let us choose arbitrarily α3 = 1, α4 = 1. The linear system to solve for α1, α2

has a matrix (
1 0.6969 + 0.07591i

0.05302 + 2.337i 0.2144− 1.625i

)
,
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and a right-hand side

−
(

0.2454 + 0.2571i 0.279− 0.09219i
−0.3252− 0.2868i −0.3488 + 0.08284i

)(
1
1

)
.

The solution is (
α1

α2

)
=

(
−0.2167− 0.2326i
−0.4259 + 0.1435i

)
.

It yields an unnormalized starting vector

v =


0.2568− 0.05427i
−1.573− 0.02843i
−0.16 + 0.09976i
0.8892− 0.03279i

 .

Running the Arnoldi algorithm and computing the projection matrix we find
that ‖(I − P2)x1‖ = 1 as requested.

6. Conclusion

In this paper we derived closed-form expressions for the distance of an eigen-
vector of a diagonalizable matrix A to the Krylov subspace generated from A
and a given starting vector v. This distance was given in terms of the eigen-
values and eigenvectors of A as well as the components of v in the eigenvector
basis. Unfortunately, the formulas are quite intricate and deserve further study
to fully understand how the distance decreases with the number of iterations in
the Arnoldi method. Nevertheless, our results provide bounds for the norm of
the residual of an exact eigenpair of A in the approximate problems generated
by the Arnoldi method. They can also be used in a more general setting for the
study of convergence of the harmonic Ritz values; see [8], [9], [10], [11]. One can
extend these results to the non-diagonalizable case using the Jordan canonical
form A = SJS−1 where J is made of Jordan blocks and S is the matrix of
eigenvectors and principal vectors. However, in that case determinants appear
which are not known analytically (at least up to our knowledge) and not Van-
dermonde determinants as in the diagonalizable case. This makes the study
much more difficult.
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