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We consider the eigenvalue problem

A x = λx

The Krylov subspace and matrix are defined as

Kk(A, v) = span{v ,A v , . . . ,Ak−1v}

Kk =
(
v Av . . . Ak−1v

)



The Arnoldi algorithm
The residual vectors are orthogonal to the Krylov subspace

(A x (k) − λ(k) x (k) ,Aiv) = 0 for i = 0, . . . , k − 1

The orthonormal basis of Kk(A, v) is computed using

- AVk = VkHk + hk+1,kvk+1ek
T , v1 = v/‖v‖

- Hk = V ∗k AVk

The approximate eigenvalue problem can now be written as

V ∗k AVk y (k) = Hky (k) = λ(k) y (k)

which is equivalent to

V ∗k (A− λ(k)I )Vky (k) = 0

Approximate eigenvalues (the so-called Ritz values) are the
eigenvalues of Hk which is upper Hessenberg



Let Pk be the orthogonal projector onto Kk(A, v)

It can be written as Kk(K ∗k Kk)−1K ∗k or VkV ∗k depending on the
basis we consider
Then, the approximate eigenvalue problem amounts to solving

Pk(Ax − λx) = 0, x ∈ Kk(A, v)

or in operator form
PkAPkx = λx

Let us define Ak ≡ PkAPk . Note that Ak = VkHkV ∗k



Convergence analysis

Theorem
Let x be an eigenvector of A associated with the eigenvalue λ and
γk = ‖PkA(I − Pk)‖
Then the residual norms of the pairs (λ,Pkx) and (λ, x) for the
linear operator Ak satisfy

‖(Ak − λI )Pkx‖ ≤ γk‖(I − Pk)x‖

‖(Ak − λI )x‖ ≤
√
|λ|2 + γ2k ‖(I − Pk)x‖

Y. Saad, Numerical methods for large eigenvalue problems,
Halstead Press, (1992). Revised edition, SIAM (2011)



Note that γk ≤ ‖A‖
Therefore, the coefficients on the right-hand sides of these
inequalities are at most of the order of ‖(I − Pk)x‖

The Theorem states how accurate the exact eigenpair is with
respect to the approximate problem. This is stated in terms of the
distance of the exact eigenvector x to the Krylov subspace.

The remaining issue is to compute or to estimate ‖(I − Pk)x‖



Upper bounds for the norm have been obtained in

M. Bellalij, Y. Saad and H. Sadok, Further analysis of the Arnoldi
process for eigenvalue problems, SIAM J. Numer. Anal., v 48 n 2
(2010), pp. 393–407

using several tools: the eigenvectors, the Schur vectors and an
approximation theory viewpoint

We remark that ‖(I − Pk)x‖ is also involved in the analysis of
convergence of harmonic Ritz values and harmonic and refined Ritz
vectors



The minimum distance to a subspace

We consider the minimum distance minx ∈X ‖w − x‖ of a vector w
to X which is an arbitrary subspace of dimension k (w /∈ X )

Given any matrix W whose columns give a basis of the subspace
X , x ∈ X can be written as Wy , where y ∈ Ck . Hence,

‖w − x‖2 = ‖w −Wy‖2 = w∗w − w∗Wy − y∗W ∗w + y∗W ∗Wy

‖w − x‖2 =

(
1

−y

)∗(
w∗w w∗W
W ∗w W ∗W

)
︸ ︷︷ ︸

≡C

(
1

−y

)

min
x ∈X

‖w − x‖2 = min
y ∈Ck

‖w −Wy‖2 = min
y ∈Ck

(
1

y

)∗
C

(
1

y

)



Lemma
Let X be an arbitrary subspace of dimension k in CN with a basis
W = [w1, · · · ,wk ] and let w /∈ X . Let P be the orthogonal
projector onto X . Then,

‖(I − P)w‖2 =
1

eT1 C−1e1

where

C =

(
w∗w w∗W
W ∗w W ∗W

)

We have

‖(I − P)w‖2 = w∗w − w∗Pw = w∗w − w∗W (W ∗W )−1W ∗w

The right-hand side is the Schur complement of the (1,1) entry of
C which is the inverse of the (1,1) entry of C−1



The minimum distance of an eigenvector to a Krylov
subspace

Hypothesis H:

Let k < N. The matrix A is diagonalizable as A = X ΛX−1 where
X is the matrix of the normalized eigenvectors and Λ is the
diagonal matrix of the eigenvalues denoted as λi , i = 1, . . . ,N

We assume that there are at least k + 1 distinct eigenvalues (which
we number from 1 to k + 1) and that the first k + 1 components
of α = X−1v are different from zero

We are interested in the convergence to a given simple eigenvalue
which is indexed by 1, that is, we consider x1, the first column of
X corresponding to λ1. We have assumed that [X−1v ]1 6= 0 and
‖xj‖ = 1 for all j

We would like to compute ‖(I − Pk)x1‖ where Pk is the
orthogonal projector onto Kk(A, v)



Noting that C = [w ,W ]∗[w ,W ] and applying the previous lemma
we obtain

Corollary

Let A be a general square matrix, x1 6∈ Kk(A, v) be an eigenvector
of A and Lk+1 be the rectangular matrix of CN×(k+1)

Lk+1 =
(
α1 x1, v , A v , . . . , Ak−1 v

)
We assume that α ∈ C, α1 6= 0 and Lk+1 is of rank k + 1. Then

‖(I − Pk)α1 x1‖2 =
1

eT1 (L∗k+1Lk+1)−1 e1



Theorem
Let A be a diagonalizable matrix satisfying hypothesis H, α a
vector of Ck with components αj such that the starting vector is
v = Xα and Dα be a diagonal matrix with (Dα)i ,i = αi and

Wk+1 =



1 1 λ1 . . . λk−1
1

0 1 λ2 . . . λk−1
2

.

.

.

.

.

.

.

.

. . . .

.

.

.

0 1 λi . . . λk−1
i

.

.

.

.

.

.

.

.

. . . .

.

.

.

0 1 λN . . . λk−1
N



Let M̃k+1 = L∗k+1 Lk+1. Then

‖(I−Pk)α1 x1‖2 =
1

(M̃−1k+1)1,1
=

1

eT1 (W ∗
k+1 D∗α(X ∗X )DαWk+1)−1 e1

When A is normal the preceding formula simplifies to

‖(I − Pk)α1 x1‖2 =
1

eT1 (W ∗
k+1 D∗αDαWk+1)−1 e1



The proof is obtained by factoring Lk+1

Lk+1 = [α1x1, v ,A v , . . . ,Ak−1 v ]

= X [α1 e1, α,Λα, . . . ,Λ
k−1 α]

= X Dα Wk+1

Now, using Cramer’s rule, we have

(M̃−1k+1)1,1 =
det(M̂k+1)

det(M̃k+1)

where M̂k+1 is equal to M̃k+1 except for the first column which is
replaced by the first column of the identity matrix



Obviously det(M̃k+1) = det((M̃k+1)[2:k+1],[2:k+1]) and

(M̃k+1)[2:k+1],[2:k+1] =

0
...
0

Ik

 M̃k+1

(
0 · · · 0

Ik

)

=

0
...
0

Ik

W ∗
k+1 D∗α(X ∗X )DαWk+1

(
0
Ik

)
= V∗k D∗α(X ∗X )DαVk

with

Vk =


1 λ1 · · · λk−11

1 λ2 · · · λk−12
...

...
...

1 λN · · · λk−1N


But

V∗k D∗α(X ∗X )DαVk = Mk ≡ K ∗k Kk



Lemma (J. Duintjer Tebbens and G.M.)
Let A be a diagonalizable matrix with a spectral decomposition
A = X ΛX−1 Then

det(Mk) =
∑
Ik

∣∣∣∣∣∣∣∣
∑
Jk

det(XIk ,Jk )αj1 · · ·αjk

∏
j1≤jp<jq≤jk

jp,jq∈Jk

(λjq − λjp )

∣∣∣∣∣∣∣∣
2

where the summations are over all sets of indices Ik and Jk
defined as I` to be a set of ` indices

(
i1, i2, . . . , i`

)
such that

1 ≤ i1 < · · · < i` ≤ N and J` is similar with i replaced by j, XI`,J`

is the submatrix of X whose row and column indices of entries are
defined respectively by I` and J` and α = X−1v. The product is on
all pairs of indices that belong to Jk (the product being equal to 1
if k = 1)
If the matrix A is normal then with α = X ∗v

det(Mk) =
∑
Ik

 k∏
j=1

|αij |2
 ∏

i1≤ip<iq≤ik
ip,iq∈Ik

|λiq − λip |2



Lemma
Let A be a diagonalizable matrix with a spectral decomposition
A = X ΛX−1. Then

det(M̃k+1) = |α1|2
∑
Ik+1

∣∣∣∣∣∣∣∣∣
∑
Ĵk+1

det(XIk+1,Ĵk+1
)αj2 · · ·αjk+1

∏
1<j2≤jp<jq≤jk+1

jp,jq∈Ĵk+1

(λjq − λjp )

∣∣∣∣∣∣∣∣∣
2

where the summation with Ĵk+1 is over all sets of indices
{1, j2, . . . , jk+1} such that 1 < j2 < · · · < jk+1 ≤ N
If the matrix A is normal then

det(M̃k+1) = |α1|2
∑
Îk+1

k+1∏
j=2

|αij |2
 ∏

1<i2≤ip<iq≤ik+1

ip,iq∈Îk+1

|λiq − λip |2

and the summation with Îk+1 is over all sets of indices
{i2, . . . , ik+1} such that 1 < i2 < · · · < ik+1 ≤ N



Let G = XDαWk+1, then

M̃k+1 = G ∗G

We use the Cauchy-Binet formula

det(M̃k+1) =
∑
Ik+1

| det(GIk+1,:)|
2

It yields

det(GIk+1,:) =
∑
Jk+1

det(XIk+1,Jk+1
)αj1 · · ·αjk+1

det(W(j1, . . . , jk+1))

where W(j1, . . . , jk+1) is obtained from the rows j1, . . . , jk+1 of
Wk+1



det(W(j1, . . . , jk+1)) = 0 if 1 /∈ {j1, j2, . . . , jk+1}
But the indices in Jk+1 are strictly ordered, so the determinant is
different from zero only if j1 = 1

The sum over the sets Jk+1 reduces to a sum over sets of indices
Ĵk+1 which are {1, j2, . . . , jk+1} with 1 < j2 < · · · < jk+1 ≤ N

det(W(1, j2, . . . , jk+1)) = det


1 λj2 · · · λk−1j2

1 λj3 · · · λk−1j3
...

...
...

1 λjk+1
· · · λk−1jk+1


It yields ∏

1<j2≤jp<jq≤jk+1

(λjq − λjp)

where the indices jp, jq have to belong to the set {j2, j3, . . . , jk+1}



Main result
Let A be a diagonalizable matrix satisfying hypothesis H. The
distance of the eigenvector x1 to the Krylov subspace Kk(A, v) is
given by

‖(I − Pk) x1‖2 =
N

D

with

N =
∑
Ik+1

∣∣∣∣∣∣∣∣∣
∑
Ĵk+1

det(XIk+1,Ĵk+1
)αj2 · · ·αjk+1

∏
1<j2≤jp<jq≤jk+1

jp ,jq∈Ĵk+1

(λjq − λjp)

∣∣∣∣∣∣∣∣∣
2

D =
∑
Ik

∣∣∣∣∣∣∣∣
∑
Jk

det(XIk ,Jk )αj1 · · ·αjk

∏
j1≤jp<jq≤jk

jp ,jq∈Jk

(λjq − λjp)

∣∣∣∣∣∣∣∣
2

with α = X−1v



If, in addition, A is normal we have

N =
∑
Îk+1

k+1∏
j=2

|αij |
2

 ∏
1<i2≤ip<iq≤ik+1

ip ,iq∈Îk+1

|λiq − λip |2

D =
∑
Ik

 k∏
j=1

|αij |
2

 ∏
i1≤ip<iq≤ik

ip ,iq∈Ik

|λiq − λip |2

with α = X ∗v



The formula for the non-normal case is difficult to interpret since
there is a strong dependence on the eigenvectors through
determinants of submatrices of X

The result for normal matrices can be written in a different way.
Let

Ik = I1 ∪ Ik , I1 = {1, i2, . . . , ik}, Ik = {i1, i2, . . . , ik , | i1 > 1}.

Let us denote the sums over these two sets of indices by SI1 and
SIk

SI1 = |α1|2
∑
{i2,...,ik}
i2>1

 k∏
j=2

|αij |
2

 ∏
1≤ip<iq≤ik

ip ,iq∈{1,i2,...,ik}

|λiq − λip |2

SIk =
∑
Ik

 k∏
j=1

|αij |
2

 ∏
1<i1≤ip<iq≤ik

ip ,iq∈Ik

|λiq − λip |2



SIk is equal to the numerator N

N

D
=

SIk
SI1 + SIk

=
1

1 +
SI1
SIk

as long as SIk 6= 0

The eigenvalue of interest λ1 does not appear in SIk

We see that the distance of x1 to the Krylov subspace is equal to 1
if and only if SI1 = 0

It is small if SI1/SIk is large



A small example

We consider a normal matrix A of order 4 with eigenvalues
λ1, λ2, λ3, λ4 and k = 2

The sets of indices in I3 are (1, 2, 3), (1, 2, 4), (1, 3, 4)

Therefore, the sets of indices in Î3 are (2, 3), (2, 4), (3, 4). The
sets of indices in I2 are

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

The three first pairs are in I1 and the four last ones are in I2
We see that I2 is identical to Î3



Let βi = |αi |2. We have

SI1 = β1
[
β2|λ2 − λ1|2 + β3|λ3 − λ1|2 + β4|λ4 − λ1|2

]
SI2 = β2β3|λ3 − λ2|2 + β2β4|λ4 − λ2|2 + β3β4|λ4 − λ3|2

The term SI1 will be large if at least one of the other eigenvalues is
“far” from λ1 and the projection of v on the corresponding
eigenvector is not too small

The other term SI2 is small if the products of the pairwise
distances between the other eigenvalues with the moduli of the
projections of v are small

If only one of the terms in the sum is not small, SI2 cannot be
small



Let us assume that we have a cluster of three distinct eigenvalues
λ2, λ3, λ4 whose small pairwise distances are of order ε and
another complex eigenvalue λ1 whose pairwise distances to the
three other ones are of order 1

Assume also that all the βi ’s are non zero and that no one is very
small

Then SI2 = cε2 where c � ε and the ratio N/D is equal to

1

1 +
SI1
cε2

=
cε2

cε2 + SI1
= O(ε2)

since SI1 is of order 1

We see that with this distribution of eigenvalues ‖(I − P2) x1‖ is
small of order ε



Let us now assume that A is real. Then the eigenvalues arise as
real numbers or complex conjugate pairs

Let λ1 be a complex eigenvalue with λ2 = λ1

Assume that λ3 and λ4 are complex conjugate or real with
|λ4 − λ3| = ε and the distances to λ1 and λ2 are of order 1

Then, SI2 is not small unless β2 is small. Generally, the ratio N/D
is not small



Let us consider the normal matrix

A =


1.894 0.09975 −0.2124 −0.3811

0.4172 1.137 0.3024 0.8461
0.1531 −0.7204 1.649 −0.1911

0.05344 −0.6726 −0.6651 1.32


and

v =


−0.3019
−0.2286
−0.8316
0.4063





The eigenvalues of A are(
1 + i , 1− i , 2− 0.01i , 2 + 0.01i

)

The distance is ‖x1 − P2x1‖ = 0.67682

The two sums are

SI1 = 0.15514, SI2 = 0.13115

SI1 is not large and SI2 is not small

The two Ritz values at iteration 2 are real, being (1.8123, 1.1039)



‖(A2−(1+i)I )P2x1‖ = 0.67421, γ2 = 0.99644, ‖x1−P2x1‖ = 0.67682

γ2 ‖x1 − P2x1‖ = 0.67441

and

‖(A2 − (1 + i)I )x1‖ = 1.1708,
√

1 + γ22 = 1.7300√
1 + γ22 ‖x1 − P2x1‖ = 1.1709

The two bounds are close to the values of the residual norms



Conclusion

- We exhibited an exact expression for the distance of an
eigenvector to a Krylov subspace

- It depends in an intricate way on the eigenvalues, the
eigenvectors and the starting vector

- The expression is simpler when the matrix is normal

- This gives some bounds for residual norms in the Arnoldi
algorithm

Finally, let us remember the happy days. . .



Marrakech, 2011
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