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Abstract
The conjugate gradient (CG) algorithm is the most frequently used iterative method
for solving linear systems Ax = b with a symmetric positive definite (SPD) matrix.
In this paper we construct real symmetric positive definite matrices A of order n

and real right-hand sides b for which the CG algorithm has a prescribed residual
norm convergence curve. We also consider prescribing as well the A-norms of the
error. We completely characterize the tridiagonal matrices constructed by the Lanczos
algorithm and their inverses in terms of the CG residual norms and A-norms of the
error. This also gives expressions and lower bounds for the �2 norm of the error.
Finally, we study the problem of prescribing both the CG residual norms and the
eigenvalues of A. We show that this is not always possible. Our constructions are
illustrated by numerical examples.
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1 Introduction

The conjugate gradient (CG) algorithm of Hestenes and Stiefel [11] is the algorithm
of choice for solving iteratively linear systems Ax = b with a symmetric positive
definite (SPD) matrix. In this paper we are interested in studying different ways of
constructing real SPD matrices A of order n and real right-hand sides b for which the
CG algorithm has a prescribed residual norm convergence curve as well as prescribed
A-norms of the error. This means that we can construct linear systems with a fast
convergence of the residual norm and a slow convergence for the A-norm of the
error or vice-versa. These constructions are done using the relations of CG with the
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Lanczos algorithm [14] and with the Full Orthogonalization method (FOM) [22, 23].
Then, we completely characterize the inverses of the tridiagonal matrices constructed
by the Lanczos algorithm in terms of the CG residual norms and A-norms of the error.
We also obtain expressions and lower bounds for the �2 norm of the error. Finally, we
consider the problem of prescribing both the CG residual norms and the eigenvalues
of A. We will show that this is not always possible. This does not come as a surprise
since CG convergence depends on the eigenvalue distribution.

The well-known CG algorithm is the following,

For a summary of CG mathematical properties and its behavior in finite precision
arithmetic, see [18, 19] and the references therein. The problem of prescribing the
residual norms was already considered by Hestenes and Stiefel [11] in their seminal
paper in 1952. Their Theorem 18.3 states that

There is no restriction whatever on the positive constants ai , bi (our γi and δi+1)
in the cg-process, that is, given two sequences of positive numbers a0, . . . , an−1 and
b0, . . . , bn−1, there is a symmetric positive definite matrix A and a vector r0 such
that the cg-algorithm applied to A, r0 yield the given numbers . . .

and they added,
Furthermore, the formula

bi = ‖ri+1‖2

‖ri‖2

shows that there is no restriction at all on the behavior of the length of the residual
vector during the cg-process.

However, given the coefficients, they did not discuss practical ways of construct-
ing such a linear system. In this paper we show how to construct such matrices.
Moreover, we also consider prescribing as well the A-norms of the error εk = x −xk ,
defined as

‖εk‖A = (A(x − xk), x − xk)
1
2 ,

which are minimized in the CG algorithm. This implies that there exist linear sys-
tems for which the residual norm is converging fast and the A-norm of the error is
converging slowly or the opposite.
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From the definition of the CG algorithm it is clear that if we prescribe the residual
norms we know the CG coefficients δk . In our notation, Hestenes and Stiefel [11]
(Theorem 6.1, page 416) proved that

‖ε0‖2
A = ‖εk‖2

A +
k−1∑

j=0

γj‖rj‖2, (1)

see also [25]. It implies that

‖εk−1‖2
A − ‖εk‖2

A = γk−1‖rk−1‖2. (2)

If we prescribe strictly decreasing values of ‖εk‖A, k = 0, 1, . . . , n−1 and ‖εn‖A =
0, we obtain the coefficients γ0, γ1, . . . However, this does not us give us a linear
system with prescribed CG residual and error norms. It can be obtained using the
relations between CG and the Lanczos algorithm. It is well known that CG can be
obtained from the Lanczos algorithm using the Cholesky factorization of the sym-
metric tridiagonal matrix generated by the Lanczos iterations. It can be written as
T = LDLT , using the CG coefficients with

L =

⎛

⎜⎜⎜⎜⎜⎝

1√
δ1 1√

δ2 1
. . .

. . .√
δn−1 1

⎞

⎟⎟⎟⎟⎟⎠
(3)

and D is a diagonal matrix with diagonal entries 1/γ0, . . . , 1/γn−1. The matrix T

is symmetric tridiagonal and positive definite. We obtain a linear system with pre-
scribed residual norms and prescribed decreasing A-norms of the error by setting
A = V T V T and b = V e1 where V is any orthonormal matrix and e1 is the first
column of the identity matrix.

It seems that we are done. However, in the following, we would like to explore
how what was done in the previous years for prescribing residual norms of Krylov
methods for nonsymmetric problems can be used for the symmetric case.

The problem of prescribing residual norms in Krylov iterative methods for non-
symmetric matrices has been considered for quite a while (see [1, 4, 5, 9, 10, 15] and
also [24]). In Section 2 we briefly recall what is known so far for the Full Orthog-
onalization Method (FOM) of Saad [22, 23] which reduces to CG when the matrix
is SPD. In Section 3 we rely on results in [9] to construct a class of simple lin-
ear nonsymmetric systems with a prescribed FOM residual norm convergence curve.
Then, we consider the symmetric case for which we construct linear systems whose
matrices depend on n parameters. We show that, if some constraints on the param-
eters are satisfied, these matrices are positive definite. The constructed matrices are
symmetric tridiagonal matrices T , obtained from their inverses, such that CG yields
prescribed relative residual norms with the right-hand side e1. Then, as above, a
general SPD linear system Ax = b is obtained from A = V T V T and b = V e1
where V is any orthonormal matrix. Here the right-hand side b is of unit norm but
this is not a restriction. In Section 4 we show that the free parameters can be cho-
sen to be able to prescribe the convergence curve for the A-norm of the error. In
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Section 5 we completely characterize the inverses of the tridiagonal matrices pro-
duced by the Lanczos algorithm in terms of the CG residual norms and A-norms of
the error. This is of interest since, in the Lanczos algorithm, the iterates are computed
as xk = x0 + ‖r0‖VkT

−1
k e1 where the columns of Vk are the Lanczos basis vectors

and Tk is the principal submatrix of order k of T . In Section 6 we obtain expressions
and lower bounds for the �2 norm of the error in CG. In Section 7 we show that,
contrary to the nonsymmetric case, it is not always possible in the symmetric case to
prescribe both the residual norms and the eigenvalues of the matrix. The results of
this paper are illustrated in Section 8 with four numerical examples.

2 Summary of the results for prescribing residual norms in FOM

Even though the implementation is different, FOM is mathematically equivalent to
CG when the matrix is symmetric and positive definite. FOM uses an orthonormal
basis of the Krylov subspace constructed with the Arnoldi process [2] which reduces
to the Lanczos algorithm in the symmetric case. Prescribing the residual norms for
FOM was studied some years ago. One can construct linear systems for which the
matrix has prescribed eigenvalues and such that FOM delivers prescribed residual
norms and also prescribed Ritz values at all iterations (see [4] and also [1, 9, 10]).
If we do not have an early stop of the algorithm and if we can perform n iterations,
FOM computes matrices V and H such that AV = V H , V being the orthonormal
matrix whose columns are the basis vectors and H being an unreduced upper Hes-
senberg matrix with positive subdiagonal entries. Note that, in this case, the matrix A

is nonderogatory. The construction can be generalized to the case for which we have
an early stop (see [5]).

The upper Hessenberg matrix H can be factorized as H = UCU−1 where U is
upper triangular with u1,1 = 1 and C is the companion matrix corresponding to the
(prescribed) eigenvalues of A and H (see [6]). The matrix U is given by

U = (
e1 He1 H 2e1 · · · Hn−1e1

)
.

It was proved in [4] that the inverses of the absolute values of the entries of the
first row of U−1 are equal to the FOM relative residual norms ‖rF

k ‖/‖r0‖. The other
entries of U−1 can be chosen to prescribe the Ritz values at every iteration.

Let us denote the first row of U−1 as

νT = (
1 ν̂T

) = (
ν1 ν2 · · · νn

)T
, ν1 = 1,

that is, the absolute values of the components of ν are the inverses of the relative
FOM residual norms. In our constructions below, the signs of the entries of the first
row of U−1 can be chosen arbitrarily. So, we will in general take them to be strictly
positive. When we have constructed U−1 and C, we can compute H = UCU−1

and the matrix of the linear system is A = V HV T where V is any orthonormal
matrix. The right-hand side is b = V e1. Then, FOM starting from x0 = 0 delivers
the prescribed residual norms.

However, it is not easy to construct such a matrix H which is symmetric because,
in that case, the matrix U must have special properties. In the next section we consider
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another way to construct H and A that can be specialized to the symmetric case more
easily.

3 The solution from the work of A. Greenbaum and Z. Strakoš

We first consider the nonsymmetric case and the FOM algorithm. This will provide
us with the tools we need for the symmetric case.

3.1 The nonsymmetric case

Let H be an unreduced upper Hessenberg matrix. We start by constructing a nonsin-
gular lower triangular matrix L of order n such that FOM applied to (L−1, e1) yields
the same residual norms as FOM applied to (H, e1) with x0 = 0 in both cases. Note
that FOM applied to (V HV T , V e1) for any orthonormal matrix V yields the same
residual norms.

In [9] Greenbaum and Strakoš characterized the matrices B for which the Krylov
subspaces AKk(A, v) and BKk(B, v) are the same where v is a given vector and

Kk(A, v) = span{v, Av, A2v, · · · Ak−1v}.
The result is the following (Theorem 1, page 8 of [9]).

Theorem 1 Let wi, i = 1, . . . , k be an orthonormal basis for AKk(A, v) with k ≤
n, W be the matrix whose columns are the vectors wi, i = 1, . . . , n and H the upper
Hessenberg matrix such that AW = WH . Then, AKk(A, v) and BKk(B, v) are the
same for k = 1, . . . , n if and only if

B = WRHW ∗,

where R is any nonsingular upper triangular matrix.

Let us assume that k = n in Theorem 1 and denote Y = RH . It yields R−1 =
HY−1. According to the theorem, the matrix HY−1 must be upper triangular. It is
shown in [9] Theorem 3, that if H is an unreduced upper Hessenberg matrix, HX is
upper triangular if and only if

L(X) = L(H−1)D, (4)

where L(F ) denotes the lower triangular matrix whose lower triangular part is the
same as for the matrix F , D is a diagonal matrix and L(H−1) has no zero column.
This last condition is not relevant for our problem. Relation (4) means that the lower
triangular part of X = Y−1 is the lower triangular part of H−1 with any column
scaling.

Let us assume that we have constructed an upper Hessenberg matrix H = UCU−1

for which FOM applied to (H, e1) gives the prescribed residual norms we have cho-
sen. We are looking for a nonsingular matrix L for which FOM gives the same
residual norms on (L−1, e1).
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From the previous results, a way to achieve this is to construct a lower triangular
matrix L whose lower triangular part is the same as that of H−1, taking D = I in
relation (4). Let us first consider what is H−1, as a function of U and C, to obtain its
lower triangular part. We partition U−1 as

U−1 =
(

1 ν̂T

0 Û−1

)
. (5)

We singled out the first row of U−1 because, as we have seen above, it is related to
the FOM residual norms. It yields,

U =
(

1 −ν̂T Û

0 Û

)
.

Let C be the companion matrix associated with the eigenvalues of H , whose entries
are

C =

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 . . . 0 −α2
...

. . .
. . .

...
...

0 . . . 0 1 −αn−1

⎞

⎟⎟⎟⎟⎟⎠
.

The entries of the last column are the negatives of the coefficients of the characteristic
polynomial of H , α0 being the constant term. Let α̂ = (

α1 · · · αn−1
)T . If α0 �= 0

(which is the case since H is nonsingular), C is nonsingular and its inverse is

C−1 =
( −α̂/α0 In−1

−1/α0 0

)
,

where In−1 is the identity matrix of order n − 1. We have to partition C−1 in a
different way, compatible with the block structure of U and we denote the entries of
the first column as

β1 = −α1/α0, β̂T = ( −α2/α0 · · · −αn−1/α0 −1/α0
)

.

Let E be the matrix of order n − 1 which is zero except for the first upper diagonal
whose entries are equal to 1. We can write

C−1 =
(

β1 eT
1

β̂ E

)
. (6)

The inverse of the upper Hessenberg matrix H is characterized as follows.

Theorem 2 Assume α0 �= 0. Using the previous notation in (5) and (6) for U−1 and
C, the inverse of H is

H−1 =
(

β1 − ν̂T Û β̂ (β1 − ν̂T Û β̂)ν̂T + (eT
1 − ν̂T ÛE)Û−1

Û β̂ Û β̂ν̂T + ÛEÛ−1

)
.
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Proof The proof is almost straightforward. We have H−1 = UC−1U−1. Let us first
compute UC−1,

UC−1 =
(

1 −ν̂T Û

0 Û

) (
β1 eT

1
β̂ E

)
=

(
β1 − ν̂T Û β̂ eT

1 − ν̂T ÛE

Û β̂ ÛE

)
.

Then, we right multiply by U−1,

H−1 =
(

β1 − ν̂T Û β̂ eT
1 − ν̂T ÛE

Û β̂ ÛE

) (
1 ν̂T

0 Û−1

)

=
(

β1 − ν̂T Û β̂ (β1 − ν̂T Û β̂)ν̂T + (eT
1 − ν̂T ÛE)Û−1

Û β̂ Û β̂ν̂T + ÛEÛ−1

)
.

We observe that the matrix ÛEÛ−1 in the bottom right block of H−1 is strictly
upper triangular that is, with a zero diagonal. Hence, Theorem 2 gives a simple proof
of a result about inverses of Hessenberg matrices that was proved by several people
(see, for instance, Ikebe [12]). Namely, the lower triangular part of H−1 is the same
as the lower triangular part of a rank-one matrix. Here, we have the lower triangular
part of (

β1 − ν̂T Û β̂

Û β̂

) (
1 ν̂T

)
.

Let us construct a lower triangular matrix L = L(H−1). To simplify the notation, let
β̃ = β1 − ν̂T Û β̂. From Theorem 2 we have

L =
(

β̃ 0
Û β̂ Ũ

)
, (7)

with Ũ = L(Û β̂ν̂T ). The inverse of the lower triangular matrix L is

L−1 =
( 1

β̃
0

− 1
β̃
Ũ−1Û β̂ Ũ−1

)
.

The matrix L−1 is, in fact, lower bidiagonal. To prove this, let us factorize that matrix
as follows.

Theorem 3 Let σ = Û β̂, Dν (resp. Dσ ) be the diagonal matrix whose diagonal
entries are 1/νi, i = 1, . . . , n (resp. 1/σi−1 with σ0 = β̃) and B1 be the lower
bidiagonal matrix

B1 =

⎛

⎜⎜⎜⎜⎜⎝

1
−1 1

. . .
. . .
−1 1

−1 1

⎞

⎟⎟⎟⎟⎟⎠
.

Then, the inverse of the matrix L defined by relation (7) is L−1 = DνB1Dσ .
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Proof Using the definition of Ũ we have Ũ−1Û β̂ν̂T e1 = e1. It yields

− 1

β̃
Ũ−1Û β̂ = − 1

β̃ν2
e1.

Therefore, only the first two components of the first column of L−1 are nonzero.
Let us now look for the columns of Ũ−1. Let y be the solution of Ũy = e1. It

satisfies

Ũy =

⎛

⎜⎜⎜⎝

σ1ν2
σ2ν2 σ2ν3
σ3ν2 σ3ν3 σ3ν4

...
...

...
. . .

⎞

⎟⎟⎟⎠ y = e1.

The solution is given by

y1 = 1

σ1ν2
, y2 = − 1

σ1ν3
, yj = 0, j = 3, . . . , n.

We can compute the other columns of Ũ−1 in a similar way and we find

Ũ−1 =

⎛

⎜⎜⎜⎜⎝

1
σ1ν2− 1
σ1ν3

1
σ2ν3

− 1
σ2ν4

1
σ3ν4
. . .

. . .

⎞

⎟⎟⎟⎟⎠
.

Factoring the inverses of the νi’s on the left-hand side and the inverses of the σi’s on
the right-hand side yields the result.

We observe that the inverse of B1 is the lower triangular matrix whose entries of
the lower part are all equal to 1 and L (which is the lower triangular part of H−1, as
we already know from Theorem 2) is L = D−1

σ B−1
1 D−1

ν . Therefore,

L =

⎛

⎜⎜⎜⎝

σ0
σ1 σ1ν2
...

...
. . .

σn−1 σn−1ν2 · · · σn−1νn

⎞

⎟⎟⎟⎠ . (8)

In this matrix, the νi’s are linked to the FOM residual norms and the σi’s appear
as parameters that we are free to choose. We observe that the νi’s must be different
from zero for L to be nonsingular. But, νk = 0 would correspond to Hk singular and,
in this case, the kth iterate of FOM is not defined. Moreover, by choosing the σi’s
appropriately we can prescribe the eigenvalues of L−1.

Let us check our construction by showing that FOM applied to (L−1, e1) yields
the same residual norms as FOM applied to (H, e1). The matrix L−1, which is lower
bidiagonal, is the upper Hessenberg matrix obtained using the Arnoldi process with
(L−1, e1), except maybe for the signs of the subdiagonal entries but this has no
influence on the residual norms. To prove our claim let us consider the “U” matrix
associated to L−1, denoted as

UL−1 = (
e1 L−1e1 L−2e1 · · · L−(n−1)e1

)
.
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We would like to prove that the first row of U−1
L−1 is νT , that is, eT

1 U−1
L−1 = νT . This

will prove that the residual norms obtained from (L−1, e1) are what we are expecting.

Theorem 4 We have
νT UL−1 = eT

1 .

Proof The result is obvious for the first column of UL−1 . For the second column let
us consider νT L−1 using the factorization of Theorem 3. First, we have νT Dν =(

1 1 · · · 1
)
. Then, νT DνB1 = eT

n . Consequently,

νT L−1 = 1

σn−1
eT
n .

Obviously, we have νT e1 = e1 and νT L−1e1 = 0. For the other columns of UL−1 we
observe that

νT L−j e1 = νT L−1L−j+1e1.

The first column of the i-th power of L−1 has zero last components up to i = n − 2.
It implies that νT L−j e1 = 0 for j up to n − 1 which proves the result.

To summarize, applying FOM to (L−1, e1) yields relative residual norms that are
equal to the inverses of the absolute values of the components of ν. The previous
derivation shows that we have constructed a class of matrices and right-hand sides
with a FOM prescribed convergence curve by taking A = V L−1V T and b = V e1
where L is defined by relation (8) and V is any orthonormal matrix. The parameters
σ0, . . . , σn−1 can be chosen as we wish. If, in addition to the residual norms, we
would like to prescribe the eigenvalues of A, we can select the parameters σi, i =
0, . . . , n − 1 appropriately or we have to rely on the more complicated construction
of [4] with the matrices U and C which also allows to prescribe the Ritz values.
Other possibilities are to use the constructions in [1, 10, 24]. But, we observe that the
construction we have described in this section is particularly simple.

3.2 The symmetric case

Our main goal in this paper is to construct symmetric matrices giving the prescribed
residual norms in CG (or FOM). Following [9], we define

T −1 = L(H−1) + L̂(H−1)T ,

where L̂ gives the strict lower triangular part of the matrix (that is, with a zero
diagonal). This is a kind of “symmetrization” of what we have done above. From
Theorem 2 and using the same notation as before, we obtain the symmetric matrix

T −1 =
(

β̃ (Û β̂)T

Û β̂ L(Û β̂ν̂T ) + L̂(Û β̂ν̂T )T

)
=

⎛

⎜⎜⎜⎝

σ0 σ1 · · · σn−1
σ1 σ1ν2 · · · σn−1ν2
...

...
. . .

...
σn−1 σn−1ν2 · · · σn−1νn

⎞

⎟⎟⎟⎠ . (9)
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By computing the Cholesky factorization of T −1 one can see that this matrix is non-
singular if νi �= 0, i = 1, . . . , n and νiσi − νi+1σi−1 �= 0, i = 1, . . . , n − 1. From
the structure of T −1 we know that T is a symmetric tridiagonal matrix; see, for
instance [8, 16]. To check our construction we would like to prove that FOM applied
to (T , e1) gives relative residual norms equal to the inverses of the absolute values
of the components of ν. This will show that CG also yields the same residual norms,
even though T may not be positive definite. But we will consider this problem below.

We define
UT = (

e1 T e1 T 2e1 · · · T n−1e1
)
, (10)

and we would like to prove that νT UT = eT
1 .

Let μi, i = 1, . . . , n and ηi, i = 1, . . . , n − 1 be the diagonal and subdiagonal
entries of the tridiagonal matrix T . By identification in the relation T −1T = I , they
can be computed from the entries of T −1 as follows,

μ1 = − ν2

σ1 − ν2σ0
, η1 = 1

σ1 − ν2σ0
= −μ1

ν2
,

and for i = 2, . . . , n − 1,

χi = νi(νiσi − νi+1σi−1),

μi = −νi+1

χi

− ηi−1
νi−1

νi

, ηi = νi

χi

, (11)

the last diagonal entry being equal to

μn = 1

νnσn−1
− ηn−1

νn−1

νn

.

Of course, we have to assume that νi �= 0 for i = 1, . . . , n and χi �= 0 for i =
1, . . . , n − 1.

Lemma 1 For T −1 defined in (9) and i = 1, . . . , n − 1, we have νT T ei = 0.

Proof For the first column we obviously have

μ1 + ν2η1 = 0.

For i > 1, the three nonzero entries of column i of T are from top to bottom
ηi−1, μi, ηi . Then,

νi−1ηi−1 + νiμi + νi+1ηi = νi−1ηi−1 − νiνi+1

χi

− νi−1ηi−1 + νi+1
νi

χi

= 0.

Theorem 5 For UT defined in (10) we have

νT UT = eT
1 .

Proof The proof is similar to what we did for Theorem 4. From Lemma 1 only the
last component of νT T is nonzero. To prove the result we just have to remark that
the (n, 1) entry of the ith power of T is zero for j ≤ n − 2.
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Theorem 5 proves that FOM applied to (T , e1) yields the prescribed residual
norms. For the symmetric tridiagonal matrix T , FOM is mathematically equivalent
to CG. However, as we said above, T may not be positive definite and we have to
find sufficient conditions to enforce the positive definiteness.

We observe that, in our construction, the values σi in (9) appear as parameters.
Hence, the prescribed relative residual norms are obtained whatever the values of
these parameters are, provided there is no division by zero. We have a general class
of symmetric tridiagonal matrices giving the prescribed residual norms.

We can choose the σi’s to obtain a positive definite matrix. This can be seen by
computing the L�−1LT Cholesky-like factorization of T with L lower triangular
and � diagonal. Let ωi, i = 1, . . . , n be the diagonal entries of L and �.

Proposition 1 Assume νi �= 0, i = 1, . . . , n. The diagonal entries of the Cholesky-
like factorization of T are given by

ωi = −νi+1

νi

1

νiσi − νi+1σi−1
, i = 1, . . . , n − 1, ωn = 1

νnσn−1
.

Proof The proof is by induction. We have ω1 = μ1 and therefore, the formula is true
for i = 1 according to the definition of μ1. Then,

ωi = μi − η2
i−1

ωi−1
.

Putting in the values of μi , ηi−1 and ωi−1 we obtain

ωi = −νi+1

χi

− νi−1

di−1

νi−1

νi

+ ν2
i−1

d2
i−1

di−1

νi

= −νi+1

χi

.

Similarly, using the definition of μn we find that the last entry is

ωn = 1

νnσn−1
.

As we have said above, the matrix T is nonsingular if νi �= 0, i = 1, . . . , n and
νiσi − νi+1σi−1 �= 0, i = 1, . . . , n − 1. Of course, since CG is doing implicitly a
factorization of the Lanczos tridiagonal matrix, we have the relation ωi = 1/γi−1,
i = 1, . . . , n. If the ωi’s are positive, the matrix T is positive definite. This is the
case if the νi’s and the σi’ are chosen strictly positive and such that

σi−1

σi

>
νi

νi+1
, i = 1, . . . , n − 1. (12)

We will see in the next section how to choose the σi’s to prescribe decreasing values
of the A-norm of the error.

The matrix T −1 we have constructed, with a prescribed CG residual norm con-
vergence curve, has as its last column a vector proportional to the vector ν. When
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we apply CG to a symmetric positive definite linear system Ax = b, the tridiago-
nal matrix implicitly generated can be written as T = UCU−1. Let us show that,
conversely, the last column of T −1 is proportional to ν.

Proposition 2 If we denote T = UCU−1 which is a symmetric nonsingular tridiag-
onal matrix, the last column of T −1 is proportional to the transpose of the first row
of U−1.

Proof Since T = UCU−1 is symmetric as well as T −1,

T −1 = T −T = U−T C−T UT .

The last column of UT is un,nen. Using the notation of the present paper, the last
column of C−T is −(1/α0)e1. Finally, we obtain

T −1en = −un,n

α0
U−T e1,

which proves the result.

Theorem 6 Let νi, i = 1, . . . , n be given strictly positive values with ν1 = 1,
σi, i = 0, . . . , n − 1 be strictly positive parameters satisfying condition (12) and
T −1 be the matrix defined by (9). Define A = V T V T and b = V e1 where V is
any orthonormal matrix. Then, the norms of the CG residual vectors when solving
Ax = b starting from x0 = 0 are such that

‖rk‖ = 1

νk+1
, k = 0, 1, . . . , n − 1.

Note that r0 = b and ‖r0‖ = 1. Theorem 6 shows that any residual norm con-
vergence curve is possible for CG. In the previous construction we have x0 = 0 and
‖b‖ = 1, but this is not a restriction. In the general case we would have to solve
T x = ‖r0‖e1 and what is prescribed is the relative residual norm ‖rk‖/‖r0‖.

4 Prescribing the A-norms of the error

In this section we characterize the inverses of the principal matrices Tk of T and we
describe how to choose the parameters σi, i = 0, . . . , n − 1 in (9) to prescribe the
A-norms of the error (or T -norms for T x = ‖r0‖ e1) in addition to the prescribed
residual norms. Let εk = x − xk be the error vector. We have the relation

‖εk‖2
A = ‖r0‖2[(T −1)1,1 − (T −1

k )1,1], (13)

where Tk is of order k (see [17] or [8, Theorem 12.1]). To compute the difference in
relation (13) we would like to relate the entries of T −1

k , k < n to those of T −1.
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We use a result proved in [13]. Theorem 2.1 of [13] says that if B = A−1 with
ap,q and bq,p different from zero and M is the submatrix of A obtained by removing
row p and column q, then M is nonsingular and the entries of C = M−1 are

ci,j = bi,j − bi,pbq,j

bq,p

. (14)

In this formula, to simplify the notation, the indices (i, j) are the same as those for
A and B that is, i = 1, . . . , q − 1, q + 1, . . . , n and j = 1, . . . , p − 1, p + 1, . . . , n.
But, this is not important for us since we will use this result for removing the last row
and the last column. Let us first consider the principal submatrix Tn−1 of order n−1.

Lemma 2 Let T be the tridiagonal matrix whose inverse is defined by (9). The
inverse of Tn−1 is

T −1
n−1 =

⎛

⎜⎜⎜⎜⎝

σ
(n−1)
0 σ

(n−1)
1 · · · σ

(n−1)
n−2

σ
(n−1)
1 σ

(n−1)
1 ν2 · · · σ

(n−1)
n−2 ν2

...
...

. . .
...

σ
(n−1)
n−2 σ

(n−1)
n−2 ν2 · · · σ

(n−1)
n−2 νn−1

⎞

⎟⎟⎟⎟⎠
.

with

σ
(n−1)
i = σi − σn−1

νi+1

νn

, i = 0, 1, . . . , n − 2. (15)

Proof We just have to consider the first and last columns of the inverse. We remove
the last row and the last column. Hence, in relation (14) we have p = q = n. The
entries of the first column are for i = 1, . . . , n − 1,

(T −1
n−1)i,1 = σi−1 − (σn−1νi)σn−1

σn−1νn

= σi−1 − σn−1
νi

νn

.

The entries of the second column are for i = 2, . . . , n − 1,

(T −1
n−1)i,2 = σi−1ν2 − (σn−1νi)(σn−1ν2)

σn−1νn

=
(

σi−1 − σn−1
νi

νn

)
ν2.

More generally, the entries of column j are for i = j, . . . , n − 1,

(T −1
n−1)i,j = σi−1νj − (σn−1νi)(σn−1νj )

σn−1νn

=
(

σi−1 − σn−1
νi

νn

)
νj .

Hence, the entries of the last row of T −1
n−1, which are also those of the last column are

(
σ

(n−1)
n−1 σ

(n−1)
n−1 ν2 · · · σ

(n−1)
n−1 νn−1

)
,

using definition (15).

To obtain the inverse of Tk , with k = 1, . . . , n − 2 we apply Lemma 2 recursively.
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Theorem 7 Let T be the tridiagonal matrix whose inverse is defined by (9). The
inverse of Tk for k = 1, . . . , n − 1 is

T −1
k =

⎛

⎜⎜⎜⎜⎝

σ
(k)
0 σ

(k)
1 · · · σ

(k)
k−1

σ
(k)
1 σ

(k)
1 ν2 · · · σ

(k)
k−1ν2

...
...

. . .
...

σ
(k)
k−1 σ

(k)
k−1ν2 · · · σ

(k)
k−1νk

⎞

⎟⎟⎟⎟⎠
.

with

σ
(k)
i = σ

(k+1)
i − σ

(k+1)
k

νi+1

νk+1
, i = 0, 1, . . . , k − 1. (16)

Moreover,

σ
(k)
i = σi − σk

νi+1

νk+1
, i = 0, 1, . . . , k − 1. (17)

Proof Formula (16) is obtained by applying Lemma 2 to Tk+1. To prove relation (17),
we proceed by induction from k = n − 1 to k = 1. From Lemma 2, the result holds
for k = n − 1. Let us assume that it holds for k + 1. Then, for i = 0, . . . , k − 1,

σ
(k)
i = σ

(k+1)
i − σ

(k+1)
k

νi+1

νk+1
,

= σi − σk+1
νi+1

νk+2
−

(
σk − σk+1

νk+1

νk+2

)
νi+1

νk+1
,

= σi − σk

νi+1

νk+1
.

Corollary 1 Using the notation of Theorem 7, we have

σ
(k)
i = σ

(j)
i − σ

(j)
k

νi+1

νk+1
, i = 0, 1, . . . , k − 1, n ≥ j > k. (18)

Proof The proof is similar to the one for relation (17).

We observe that the results of Theorem 7 and Corollary 1 are valid for the inverse
of any nonsingular symmetric tridiagonal matrix since the inverse can always be
expressed as (9) (see [3]). Now, we apply these results to the computation of the
A-norm of the error.

Theorem 8 Using the notation of the previous section, the square of the A-norm of
the error is given by

‖εk‖2
A = ‖r0‖2 σk

νk+1
= |σk| ‖r0‖ ‖rk‖, k = 0, . . . , n − 1. (19)



Numerical Algorithms

Proof From Theorem 7 we have

(T −1)1,1 − (T −1
k )1,1 = σk

1

νk+1
.

Using relation (13) and the definition of νk+1, the result follows.

Consequently, we can prescribe the values of the A-norms of the error by comput-
ing the σi’s using relation (19). Of course, the prescribed values for ‖εk‖A must be
decreasing. This corresponds to the condition (12) being satisfied and to the matrix
T being positive definite.

Relation (19) can be related to the Hestenes and Stiefel relation (1),

‖εk‖2
A =

n−1∑

j=k

γj‖rj‖2, γj = ‖rj‖2

(Apj , pj )
.

The coefficient γj is one of the two coefficients computed in CG. By dividing every
term of the sum by ‖r0‖ ‖rk‖ and by identification, we obtain

|σk| =
n−1∑

j=k

γj

‖rj‖2

‖r0‖ ‖rk‖ . (20)

In particular, this yields |σn−1| = γn−1‖rn−1‖/‖r0‖ and ‖εn−1‖2
A = γn−1‖rn−1‖2.

5 The Lanczos tridiagonal matrix and its inverse

In this section we consider the tridiagonal matrix T that is obtained from the Lanczos
algorithm or implicitly from CG. We would like to characterize the entries of T and
the entries of the inverse of T as functions of the residual norms and the A-norms of
the error. To do this we just have to consider the first and last columns of the inverse
since all the other entries can be obtained from them.

As in Section 1, let γj , j = 0, . . . , n − 1 and δj , j = 1, . . . , n − 1 be the
CG coefficients. We use the LDLT factorization of the Lanczos tridiagonal matrix
we have seen in Section 1. The lower bidiagonal matrix L is given by relation (3)
with diagonal entries equal to 1 and D is a diagonal matrix with diagonal entries
1/γ0, . . . , 1/γn−1. Let us compute the inverse of L. For the column j of the inverse
we must have L�(j) = ej . It yields

�
(j)
i = 0, i = 1, . . . , j − 1, �

(j)
j = 1,

�
(j)
i = (−1)i−j

√
δ1 · · · δi−1, i = j + 1, . . . , n,
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and the inverse is

L−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−√

δ1 1√
δ1δ2 −√

δ2 1

−√
δ1δ2δ3

√
δ2δ3

. . . 1
...

...
. . .

. . .
(−1)n−1√δ1 · · · δn−1 (−1)n−2√δ2 · · · δn−1 · · · −√

δn−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then, we can compute the product L−T D−1L−1. We are particularly interested in
the first column T −1

:,1 which is

L−T

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

γ0

−γ1
√

δ1

γ2
√

δ1δ2
−γ3

√
δ1δ2δ3
...

(−1)n−1γn−1
√

δ1 · · · δn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

It yields

T −1
:,1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 + γ1δ1 + γ2δ1δ2 + · · · + γn−1δ1 · · · δn−1

−[γ1
√

δ1 + γ2
√

δ1δ2 + γ3
√

δ1δ2δ3 + · · · + γn−1
√

δ1δ2 · · · δn−1]
...

(−1)n−2[γn−2
√

δ1 · · · δn−2 + γn−1
√

δ1 · · · δn−2δn−1]

(−1)n−1γn−1
√

δ1 · · · δn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This can be factored as T −1
:,1 = �t where � is a diagonal matrix with �1,1 = 1,

�i,i = (−1)i−1√δ1 · · · δi−1 for i = 2, . . . , n and the vector t is

t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 + γ1δ1 + γ2δ1δ2 + · · · + γn−1δ1 · · · δn−1

γ1 + γ2δ2 + γ3δ2δ3 + · · · + γn−1δ2 · · · δn−1
...

γn−2 + γn−1δn−1

γn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In CG we have δk = ‖rk‖2/‖rk−1‖2. Hence, for i < j , δi · · · δj = ‖rj‖2/‖ri−1‖2 and

�i,i = (−1)i−1 ‖ri−1‖
‖r0‖ , i = 1, . . . , n.
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It yields

T −1
i,1 = (−1)i−1 1

‖r0‖ ‖ri−1‖
n−1∑

j=i−1

γj ‖rj‖2, i = 1, . . . , n,

whose absolute value was already known from relation (20). From Theorem 8 we
know that ‖εi‖2

A = |σi | ‖r0‖ ‖ri‖ and σi = T −1
i+1,1 for i = 0, . . . , n − 1. Therefore,

T −1
i,1 = (−1)i−1 ‖εi−1‖2

A

‖r0‖ ‖ri−1‖ , i = 1, . . . , n.

The last column of T −1 is

T −1:,n = γn−1

⎛

⎜⎜⎜⎜⎜⎝

(−1)n−1√δ1 · · · δn−1

(−1)n−2√δ2 · · · δn−1
...

−√
δn−1
1

⎞

⎟⎟⎟⎟⎟⎠
= γn−1

⎛

⎜⎜⎜⎜⎜⎜⎝

(−1)n−1 ‖rn−1‖
‖r0‖

(−1)n−2 ‖rn−1‖
‖r1‖

...
−‖rn−1‖

‖rn−2‖
1

⎞

⎟⎟⎟⎟⎟⎟⎠

= γn−1‖rn−1‖

⎛

⎜⎜⎜⎜⎜⎜⎝

(−1)n−1 1
‖r0‖

(−1)n−2 1
‖r1‖

...
− 1

‖rn−2‖
1

‖rn−1‖

⎞

⎟⎟⎟⎟⎟⎟⎠
= ‖εn−1‖2

A

‖rn−1‖

⎛

⎜⎜⎜⎜⎜⎜⎝

(−1)n−1 1
‖r0‖

(−1)n−2 1
‖r1‖

...
− 1

‖rn−2‖
1

‖rn−1‖

⎞

⎟⎟⎟⎟⎟⎟⎠
,

since ‖εn−1‖2
A = γn−1‖rn−1‖2. From this and the relation

σn−1 = (−1)n−1‖εn−1‖2
A/(‖r0‖ ‖rn−1‖)

we obtain

ν =

⎛

⎜⎜⎜⎜⎝

1
−‖r0‖‖r1‖

...
(−1)n−1 ‖r0‖‖rn−1‖

⎞

⎟⎟⎟⎟⎠
.

Hence, the signs of the components of ν alternate. Since we have

σi = T −1
i+1,1 = (−1)i

‖εi‖2
A

‖r0‖ ‖ri‖ , i = 0, . . . , n − 1,

and

νi = (−1)i−1 ‖r0‖
‖ri−1‖ , i = 1, . . . , n,

we can recover the nonzero entries of T using the formula (11).



Numerical Algorithms

Theorem 9 The nonzero entries of the symmetric tridiagonal matrix T implicitly
generated by the CG algorithm are given by

μ1 = ‖r0‖2

‖ε0‖2
A − ‖ε1‖2

A

, η1 = ‖r0‖ ‖r1‖
‖ε0‖2

A − ‖ε1‖2
A

,

and for i = 2, . . . , n,

μi = ‖ri−1‖2 ‖εi−2‖2
A − ‖εi‖2

A

(‖εi−1‖2
A − ‖εi‖2

A) (‖εi−2‖2
A − ‖εi−1‖2

A)
,

ηi = ‖ri‖ ‖ri−1‖
‖εi−1‖2

A − ‖εi‖2
A

.

Proof After some computations we obtain

νiσi − νi+1σi−1 = ‖εi−1‖2
A − ‖εi‖2

A

‖ri‖ ‖ri−1‖ ,

νi+1

νi

= −‖ri−1‖
‖ri‖ .

Inserting these expressions in the coefficients of the diagonal and subdiagonal entries
of T proves the result. We observe that this result could have also be obtained by
computing T = LDLT directly.

Note that μi, i = 2, . . . , n can also be written as

μi = ‖ri−1‖2

‖εi−1‖2
A − ‖εi‖2

A

+ ‖ri−1‖2

‖εi−2‖2
A − ‖εi−1‖2

A

.

We also know that

γi−1 = ‖εi−1‖2
A − ‖εi‖2

A

‖ri−1‖2
.

Hence, we have expressions for all the Lanczos and CG coefficients as functions of
the residual norms and A-norms of the error.

The matrices Tk are the principal matrices of T but the entries of their inverses
are, of course, different from the corresponding entries of the inverse of T . They can
be computed from Theorem 7 and the relation (17). It yields

σ
(k)
i = (−1)i

1

‖r0‖ ‖ri‖ (‖εi‖2
A − ‖εk‖2

A), i = 0, 1, . . . , k − 1.

We observe that if ‖εk‖2
A is small, σ

(k)
i must be close to σi , the corresponding entry

in T −1. The relative difference is∣∣∣∣∣
σ

(k)
i − σi

σi

∣∣∣∣∣ = ‖εk‖2
A

‖εi‖2
A

< 1, 0 ≤ i < k.

The convergence of the entries of the first column of T −1
k to the corresponding ones

of the first column of T −1 is therefore linked to the convergence of the A-norm of
the error.



Numerical Algorithms

6 The �2 norm of the error

The results of the previous sections can be used to obtain an expression of the error
εk = x − xk . For simplicity we assume that CG terminates at iteration n giving the
relation AV = V T .

Theorem 10 Let us assume that A has distinct eigenvalues and that CG terminates
at iteration n. The error vector is

εk = ‖r0‖V

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

σk

νk+1

⎛

⎜⎝
ν1
...
νk

⎞

⎟⎠

σk

...
σn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Proof The exact solution is given by x = x0 + Vy where y = ‖r0‖T −1e1 whence
xk = x0 + Vky

(k) with y(k) = ‖r0‖T −1
k e1 and Vk is the matrix of the first k columns

of V . Therefore,

εk = ‖r0‖V

[
T −1e1 −

(
T −1

k e1
0

)]
,

with a slight abuse of notation since the two vectors e1 do not have the same
dimension. It yields

εk = ‖r0‖V

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

σ0
...
...
...

σn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ
(k)
0
...

σ
(k)
k−1
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The result follows by using relation (17) of Theorem 7.

From Theorem 10 we obtain the �2 norm of the error.

Corollary 2

‖εk‖2 = ‖εk‖4
A

k−1∑

j=0

1

‖rj‖2
+

n−1∑

j=k

‖εj‖4
A

‖rj‖2
,

and we have a lower bound for the CG �2 norm of the error,

‖εk‖4
A

k−1∑

j=0

1

‖rj‖2
≤ ‖εk‖2. (22)
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Proof We just have to use the fact that V is an orthonormal matrix and the relations
we have for the νj ’s and σj ’s to obtain the result from Theorem 10.

Note that we have

k−1∑

j=0

1

‖rj‖2
= ‖pk−1‖2

‖rk−1‖4
,

see, for instance [18], page 53.
Of course, at iteration k we do not know ‖εk‖A but, to obtain a computable lower

bound of the �2 error norm, we can replace the A-norm of the error by a lower bound
computed using Gauss quadrature (see [8]).

7 Can we prescribe the residual norms and the eigenvalues of A?

Let λi, i = 1, . . . , n be real strictly positive distinct numbers. They are the eigenval-
ues we would like to eventually prescribe and let C be the corresponding companion
matrix. Let T = UCU−1 with U upper triangular. This is an unreduced upper
Hessenberg matrix. We would like to have T symmetric with a prescribed first
row of U−1. This will give a symmetric tridiagonal matrix with given eigenval-
ues and prescribed residual norms when solving T x = e1. Hence, we must have
UCU−1 = U−T CT UT . This can be written as

UCU−1 = U−T CT UT ⇒ UT UC = CT UT U . (23)

The problem on the right-hand side of (23) is a Sylvester equation but, C and CT

have the same eigenvalues and the solution UT U is not unique. This problem was
studied by Fiedler in [7]. His notation is different from ours. In particular, the com-
panion matrix he considered is the transpose of ours. But, stated in our notation and
specialized to our needs, his result (Theorem 2.1) is the following.

Theorem 11 Let p be the monic polynomial whose roots are λi, i = 1, . . . , n, C the
associated companion matrix and V the Vandermonde matrix constructed with the
λi’s (with ones on the first column). The following statements are equivalent,

1. H is a Hankel matrix compatible with p,
2. HC = CT H,
3. V−T HV−1 is a diagonal matrix D.

If the Hankel matrix is denoted as

H =

⎛

⎜⎜⎜⎝

h0 h1 · · · hn−1
h1 h2 · · · hn

...
...

. . .
...

hn−1 hn · · · h2n−2

⎞

⎟⎟⎟⎠ ,
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and the polynomial p is pnλ
n + · · · + p1λ + p0, H is compatible with p if

⎛

⎜⎜⎜⎝

h0 h1 · · · hn−1 hn

h1 h2 · · · hn hn+1
...

...
. . .

...
...

hn−2 hn−1 · · · h2n−3 h2n−2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

p0
p1
...

pn

⎞

⎟⎟⎟⎠ = 0 (24)

is satisfied. In our case pn = 1. The theorem proved by Fiedler is more general than
Theorem 11 since it allows to have multiple roots for the polynomial and a confluent
Vandermonde matrix. Theorem 11 corresponds to the solution of the equality (23)
for UCU−1. It tells us that UT U is the Cholesky factorization of a Hankel matrix
H = VT DV . The question is to know if there is a matrix D with a positive diagonal
such that ν can be the first row of U−1.

Let

U−1 =
(

1 ν̂T

0 Û−1

)
.

Then, using relation 3 in Theorem 11, we must have

UT U =
(

1 −ν̂T Û

−ÛT ν̂ ÛT Û + ÛT ν̂ν̂T Û

)

=

⎛

⎜⎜⎜⎝

d1 d2 · · · dn

d1λ1 d2λ2 · · · dnλn

...
...

...
d1λ

n−1
1 d2λ

n−1
2 · · · dnλ

n−1
n

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1 λ1 λ2
1 · · · λn−1

1
1 λ2 λ2

2 · · · λn−1
2

...
...

...
1 λn λ2

n · · · λn−1
n

⎞

⎟⎟⎟⎠ .

Looking at the first column, we must have

n∑

j=1

dj = 1, [ÛT ν̂]i = −
n∑

j=1

djλ
i
j , i = 1, . . . , n − 1.

The second relation can be used for the bottom right term. Given ν, in total we have
(n2 + n)/2 unknowns that is, the nonzero entries in Û and the diagonal entries of D,
and the same number of equations. However, we have a polynomial system and it is
not obvious that we can find a real solution with dj > 0, j = 1, . . . , n. In fact, this
is not always possible.

To see this, let us consider the case n = 2. We have

UT U =
(

1 −u2,2ν2

−u2,2ν2 u2
2,2(1 + ν2

2)

)
= VT DV =

(
d1 + d2 d1λ1 + d2λ2

d1λ1 + d2λ2 d1λ
2
1 + d2λ

2
2

)
.
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We have three equations and three unknowns. From the (1, 1) entry we can eliminate
d2 = 1 − d1. Then, we have

d1(λ1 − λ2) + λ2 = −u2,2ν2 ⇒ u2,2 = − 1

ν2
[d1(λ1 − λ2) + λ2].

We are left with one polynomial equation of degree 2 and one unknown d1,

d1(λ
2
1 − λ2

2) + λ2
2 = 1 + ν2

2

ν2
2

[d1(λ1 − λ2) + λ2]2.

After some computations, it turns out that the discriminant is

1 + ν2
2

ν2
2

(λ1 − λ2)
2[−4λ1λ2 + 1 + ν2

2

ν2
2

(λ1 + λ2)
2].

Clearly this can be negative if ν2
2 is small enough that is, if

ν2
2 <

4λ1λ2

(λ1 − λ2)2
.

If this is the case there is no real solution to the equation and consequently we cannot
construct U and the matrix T with prescribed eigenvalues. Even, if a real solution
exists, there are constraints on the eigenvalues for the dj ’s to be positive. Hence,
contrary to the nonsymmetric case, residual norms and eigenvalues cannot always be
prescribed together. This does not come as a surprise since it is well known that CG
convergence depends on the distribution of the eigenvalues.

8 Numerical experiments

Let us illustrate the results of the previous sections with four small examples. The
entries of T were computed using formulas (11) and (19). In this section we use the
word “A-norm” but for three of the examples we have A = T .

8.1 Example 1

For the first example, we construct a linear system for which the CG residual norms
are not converging before the last iteration but the A-norms of the error are decreasing
fast. We choose n = 15 and the prescribed residual norms as

f0 = 1, f2i−1 = 2, f2i = 1, i = 1, . . .

Hence the residual norms oscillate, being 1 or 2 depending on the parity of the itera-
tion number. The values of the A-norm of the error are g0 = 1, gi = 0.6 gi−1, i =
1, . . . , n. The condition number of the constructed matrix T is 6.37 · 106. We solve
T x = e1 with CG. Figure 1 shows the prescribed and computed residual norms
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Fig. 1 Example 1, the prescribed and computed residual norms and A-norms of the error

and A-norms of the error. The prescribed and computed values are visually indistin-
guishable. Figure 2 displays their relative differences. We can see that they are at the
roundoff level. The missing values are exactly zero.

8.2 Example 2

In the second example we take n = 20 and the prescribed residual norms are [1;
0.9; 0.8; 0.6; 0.3; 0.1; 0.09; 0.08; 0.06; 0.03; 0.01; 0.009; 0.008; 0.006; 0.003; 0.001;
0.0005; 0.0001; 0.00005; 0.00001]. The A-norms of the error are defined as g0 =
1, gi = 0.3 gi−1, i = 1, . . . , n. The condition number of the matrix T is 2.20·1010.
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10-15

10-14
Example 1
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err

Fig. 2 Example 1, relative differences of the residual norms and A-norms of the error with the prescribed
ones
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Fig. 3 Example 2, the prescribed and computed residual norms and A-norms of the error

Figure 3 shows the prescribed and computed residual norms and A-norms of
the error. Again, the prescribed and computed values are visually indistinguishable.
Figure 4 displays their relative differences. We can check that they are at the roundoff
level except for the last iterations for the A-norm.

8.3 Example 3

We use the same order and prescribed residual norms as in example 2. In this example
we use a matrix A = V T V T and a right-hand side b = V e1 where V is a random
orthonormal matrix. The A-norms of the error are defined as 100 times the residual
norms. The condition number of the matrix A is 61.6.
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err

Fig. 4 Example 2, relative differences of the residual norms and A-norms of the error with the prescribed
ones
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Fig. 5 Example 3, the prescribed and computed residual norms and A-norms of the error

Figure 5 shows the prescribed and computed residual norms and A-norms of
the error. Again, the prescribed and computed values are visually indistinguishable.
Figure 6 displays their relative differences. We can see that they are slightly larger
than the roundoff level except for the last iterations.

8.4 Example 4

For this example we just prescribe the residual norms as f0 = 1, fi =
0.8 fi−1, i = 1, . . . , n with n = 20 and σi ≡ 1. The condition number of the
matrix T is 2.82 ·103. In this example, in finite precision arithmetic, CG suffers from

2 4 6 8 10 12 14 16 18 20
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Fig. 6 Example 3, relative differences of the residual norms and A-norms of the error with the prescribed
ones
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Fig. 7 Example 4, the prescribed and computed residual norms with and without reorthogonalization

rounding errors and residual vectors lose their orthogonality (see [18, 20]). This leads
to a delay in convergence. We can see in Fig. 7 that the computed residual norms
deviate from the prescribed values. However, if we reorthogonalize the residual vec-
tors, we obtain the prescribed values. This can also be seen in Fig. 8 which displays
the relative differences. What we have prescribed is the mathematical behavior of
CG, not the computed one. However, our construction can be used to study the dif-
ferences between the mathematical properties and the behavior in finite precision
arithmetic.
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Fig. 8 Example 4, relative differences of the residual norms with the prescribed ones with and without
reorthogonalization
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9 Conclusion

In this paper we have shown how to construct linear systems with a positive def-
inite symmetric matrix such that CG gives prescribed residual norms as well as
prescribed decreasing A-norms of the error. It means that any convergence situation
can happen for CG. The difference with the situation for nonsymmetric problems and
FOM/GMRES (see [1, 4, 9, 10]) is that it is not always possible to also prescribe the
eigenvalues of the matrix. But, this does not come as a surprise since CG convergence
depends on the distribution of the eigenvalues of the matrix (see, for instance, [18]).

Finally, we observe that, since there are relations between the residual norms in
CG and those in Minres (see [21]), we can also prescribe the residual norms for
Minres.
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