
DETECTION AND CORRECTION OF SILENT ERRORS IN THE
CONJUGATE GRADIENT ALGORITHM

GÉRARD MEURANT∗

This article is dedicated to Claude Brezinski on the occasion of his
80th birthday

Abstract. We propose a new way to detect and correct silent errors in the conjugate gradient
algorithm. The detection criterion is simple, cheap to implement and can be used at each iteration.
This simplifies the correction process. Numerical experiments show that the new criterion is robust
and reliable.

Key words. Conjugate gradient algorithm, silent error, detection and correction.

AMS subject classifications. 65F10,65F30,65F50

1. Introduction. Today’s supercomputers have more and more processing el-
ements. Therefore, it is more likely than before that there can be some hardware
failures during the execution of a user’s parallel code. Some failures may crash the
job but there are also what are called soft faults or silent errors.

A silent error may cause an application floating point value to be changed to a
different floating point value that is valid, but incorrect. This may have a strong
and negative effect on the output of the code. The main problem is that these errors
may emit no indication that something has gone wrong. The faults can be persistent
or transient. Major challenges with silent errors are their detection and correction.
These problems were considered and discussed in [14, 3, 2, 24, 5, 11, 22, 20, 6, 7, 8,
9, 10, 12, 15, 19, 1] (ordered by date).

The most basic technique for fault detection is to do redundant computations.
These very general techniques are called double modular redundancy (DMR) and triple
modular redundancy (TMR). However, doing redundant computations is very costly
and may be impracticable.

A more interesting class of methods is named algorithm-based fault tolerance
(ABFT). It exploits the knowledge we may have about the numerical method in
use. Early in the 1980s the paper [14] described an algorithm capable of detecting
and correcting a single silent error in a matrix-matrix multiplication using row and
column check-sums. The authors considered dense matrices. Check-sum techniques
for sparse matrix-vector product and for sparse triangular solves were considered in
[24] and applied to the conjugate gradient (CG) method for solving symmetric positive
definite linear systems Ax = b.

Other techniques for detecting silent errors in CG (see Algorithm 1) were
- monitoring the residual norms, from one iteration to the next or in the aver-

age, checking if the current residual norm is larger than the mean of the last
m residual norms,

- check of local orthogonality. For instance, check of (pk−1, Apk)/[‖pk−1‖ ‖Apk‖]
which must be zero in exact arithmetic; see [23],

- comparison of the true and computed residual vectors.

Monitoring the residual norms may not be easy when there are large oscillations
of those norms and checking local orthogonality properties is not that obvious either.

∗(gerard.meurant@gmail.com) started in Saint Aubin sur mer, September 2021, version July 27,
2022

1

2 G. MEURANT

Moreover, checking (pk−1, Apk)/[‖pk−1‖ ‖Apk‖] may work but it needs the computa-
tion of three additional dot products (because the normalization is necessary) which
are not useful for the algorithm independently of the error detection.

A criterion based on the gap between the computed and true residual norms was
proposed in [1] but the norm of the matrix A is needed. It was complemented by
another criterion using an approximation of the largest eigenvalue of A.

Many papers proposed to use checkpointing to be able to correct the detected
errors. For instance, verification can be done every d iterations and checkpointing
every c× d iterations.

Self-stabilizing corrections after error detection in the CG method were investi-
gated in [22]. But the correction amounts to modifying the algorithm and this may
lead to a delayed convergence.

In this paper we are interested in the detection and correction of silent errors in
CG for solving linear systems Ax = b. In Section 2 we examine the effect of silent
errors on CG convergence. We introduce a new way of detecting silent errors in CG
in Section 3. We use a relation that must be satisfied by the CG coefficients and we
discuss its validity in finite precision arithmetic. In Section 4 we show how to correct
the errors and resume the algorithm. Checking if an error has occurred need some
additional computations. We show in Section 5 how these extra operations can be
used to introduce some parallelism in the algorithm.

2. The effect of silent errors on CG convergence. The well-known CG
algorithm is described as Algorithm 1. In this work we simulate silent errors by bit
flips in the output of some CG steps. Since we use IEEE double precision floating
point arithmetic, the mantissa (or significand) has 52 bits that we number from 1 to
52, 1 being the rightmost bit, the exponent has 11 bits that is, bits 53 to 63 and the
sign bit is bit 64.

A bit flip is changing the value of one of the bit bi, i = 1, . . . , 64. If bi = 0 the new
value is 1 and if bi = 1, the new value is 0. When we modify the output of a scalar
like, for instance, rTk rk we flip just one given bit of the output. When we modify the
output of a vector operation, we flip one bit in only one component of the vector.
This component is chosen randomly.

Algorithm 1 Conjugate Gradient

input A, b, x0
r0 = b−Ax0
p0 = r0
for k = 1, . . . until convergence do

αk−1 =
rTk−1rk−1

pT
k−1

Apk−1

xk = xk−1 + αk−1pk−1
rk = rk−1 − αk−1Apk−1

βk =
rTk rk

rT
k−1

rk−1

pk = rk + βkpk−1
end for

Intuitively we may think that flipping low order bits has less importance than,
say, flipping a bit in the exponent field. It is also likely that flipping a bit when CG
has almost converged is less dramatic than an early bit flip. Actually, these were the

Silent errors in CG 3

conclusions of the statistical study done in [1]. Let us check this when solving a linear
system with the matrix bcsstk01. This matrix is of order 48 with a condition number
of 8.8234 105. However, almost 220 CG iterations are needed to reach the maximum
attainable accuracy for the true residual norm ‖b−Axk‖. We use a zero initial vector
an a random right-hand side with components in [0, 1).

Figure 2.1 shows the relative true residual norms when flipping bits 7, 35 or 61 in
the output of (rk, rk) = rTk rk at iteration 50. We can see that flipping the low order bit
7 does not do too much harm to CG convergence. Flipping bit 35 delays convergence.
It takes almost 500 iterations to reach the maximum attainable accuracy. CG does
not converge any longer when flipping bit 61 which is in the exponent field.

0 50 100 150 200 250

10-15

10-10

10-5

100

no flip

7

35

61

Fig. 2.1. bcsstk01, relative true residual norms when flipping bits 7, 35 or 61 in (rk, rk) at
iteration 50

Figure 2.2 shows the residual norms when flipping the same bits later at iteration
110. Flipping bit 35 delays convergence and CG residual norms stall when flipping
bit 61.

Flipping bit 35 later at iteration 140 does not prevent CG convergence but there
is still no convergence when flipping bit 61 as one can see in Figure 2.3.

For Figure 2.4 we successively flip bits 10, 20, 30, 40, 50 and 60 at iteration 110.
Flipping bits 10 and 20 once does not change CG convergence. Perturbation of bits
larger than or equal to 30 delays or completely spoils convergence. For bits 30, 40
and 50 there is finally convergence but with a larger and larger delay. With the flip
of bit 60 there is no convergence in 1000 iterations.

Figure 2.5 shows the residual norms when we flip bit 60 in different CG steps at
iteration 110. For vectors we flip the bit in only one component chosen randomly. In
this computation without preconditioning the vector labelled z is equal to the vector
r, but it was not the same component that was modified and it explains why the
results are not the same. We observe that in most cases there is no convergence.
In fact, when flipping bit 60 in the output of the matrix-vector product, there is not
even convergence in 1000 iterations. When flipping bits which are not in the exponent
field, the algorithm may converge, but sometimes with a large number of iterations.

The results above confirm what was already observed in [1] where an interesting
statistical study of bit flips in the multiplication Apk−1 was done. Since silent errors

4 G. MEURANT

0 50 100 150 200 250

10-15

10-10

10-5

100

no flip

7

35

61

Fig. 2.2. bcsstk01, relative true residual norms when flipping bits 7, 35 or 61 in (rk, rk) at
iteration 110

0 50 100 150 200 250

10-15

10-10

10-5

100

no flip

7

35

61

Fig. 2.3. bcsstk01, relative true residual norms when flipping bits 7, 35 or 61 in (rk, rk) at
iteration 140

can have very bad consequences for CG convergence, particularly when the leftmost
bits are concerned, it is important to be able to detect these errors. We explain how
this can be done in the next section.

3. Detection of silent errors in CG. Let us consider a formula that was
derived in [21] and used in [16] in 1987 for the sake of introducing more parallelism
in CG with a predictor-corrector technique. This formula was reconsidered and its
usefulness discussed more recently in [4]. In CG the residual vectors satisfy the relation

rk − rk−1 = −αk−1Apk−1.

Silent errors in CG 5

0 50 100 150 200 250

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

no flip

10

20

30

40

50

60

Fig. 2.4. bcsstk01, relative true residual norms when flipping bits 10 to 60 in (rk, rk) at iteration
110

0 50 100 150 200 250

10-15

10-10

10-5

100

noflip

Ap

pAp

alpha

r

z

rk

beta

p

Fig. 2.5. bcsstk01, relative true residual norms when flipping bit 60 in different CG steps at
iteration 110

Computing the norm squared of the left-hand side and using the local orthogonality
of the residual vectors (rk, rk−1) = 0, we obtain

α2
k−1(Apk−1, Apk−1) = (rk−1, rk−1) + (rk, rk) = ‖rk−1‖2 + ‖rk‖2,(3.1)

which leads to the following relation between the CG coefficients αk−1 and βk,

α2
k−1

(Apk−1, Apk−1)

(rk−1, rk−1)
= 1 + βk.

We claim that if there are one or several silent errors in iteration k, relation (3.1)
won’t be satisfied. The only CG step that cannot be checked by this relation is the
computation of xk because a fault in this step does not have any influence on the

6 G. MEURANT

next steps of the algorithm. Faults in xk can be tested by computing the norm of the
true residual b−Axk at the end of the computation. However, in that case, the only
choice we have is to run the whole algorithm again.

Let us first see how relation (3.1) is satisfied when there is no fault. We define

dk =
|αk−1‖Apk−1‖ − (‖rk−1‖2 + ‖rk‖2)

1
2 |

(‖rk−1‖2 + ‖rk‖2)
1
2

,

that is, the absolute value of the difference of the square roots of the left-hand side
and the right-hand side of (3.1) divided by the square root of the right-hand side. We
use this to avoid too small values in the denominator. In Figure 3.1 we plot dk for
the matrix bcsstk01 when there are no silent errors. It is increasing with the iteration
number but stabilized at most at the level of 10−13.

0 50 100 150 200 250
10

-16

10
-15

10
-14

10
-13

10
-12

Fig. 3.1. bcsstk01, relative difference dk when there is no error

This is not the machine precision level. Hence, we may ask: How is relation (3.1)
satisfied in finite precision arithmetic and what happens to dk in that case?

The purpose of the following rounding error analysis is to understand why this
relation is not satisfied up to machine precision. For the analysis we use the standard
model for the IEEE floating point arithmetic; see, for instance, [13] and [17]. We
note that a rounding error analysis of a formula mathematically equivalent to (3.1)
was done in [4]. From [17], the recurrence relations for the residual and the descent
direction become

rk = rk−1 − αk−1Apk−1 + δrk−1,

pk = rk + βkpk−1 + δpk−1,(3.2)

where now rk and pk are the computed vectors. Of course, in finite precision arith-
metic, the coefficients αk−1 and βk are not computed exactly, but the corresponding
rounding errors can be incorporated in the perturbation terms δrk−1 and δpk−1. Then,
we can assume that the coefficients are computed exactly (see [17]) and the error
terms can be bounded as

‖δrk−1‖ ≤ u‖rk−1‖
[
1 + κ̄(A)

‖rk−1‖
‖pk−1‖

{m+ 2 + (m+ n)κ̄(A) + n+ 1}
]

+O(u2),

Silent errors in CG 7

‖δpk−1‖ ≤ u‖rk‖
[
1 + (3 + 2n)

‖pk−1‖
‖rk−1‖2

‖rk‖
]

+O(u2),

with κ̄(A) = ‖ |A| ‖/λ1, λ1 being the smallest eigenvalue of A, n is the order of A, m
is the maximum number of nonzero entries in rows of A and u is the roundoff unit.
These inequalities can be written as

‖δrk−1‖ ≤ u‖rk−1‖ (1 + Cr
k−1) +O(u2),

‖δpk−1‖ ≤ u‖rk‖ (1 + Cp
k−1) +O(u2).

The positive coefficients Cr
k−1 and Cp

k−1 are bounded because the ratios ‖rk−1‖/‖pk−1‖,
‖pk−1‖/‖rk−1‖ and ‖rk‖/‖rk−1‖ are bounded.

For relation (3.1), without assuming exact local orthogonality and taking into
account the rounding errors, we have the following result.

Theorem 3.1.

In finite precision arithmetic it holds

α2
k−1‖Apk−1‖2 = ‖rk−1‖2 + ‖rk‖2 + ‖δrk−1‖2

+ 2 [(rk−1 − rk, δrk−1)− (rk−1, rk)],

Proof. This relation is obtained by using (3.2)

Then, we have

αk−1‖Apk−1‖ ≤ (‖rk−1‖2+‖rk‖2)
1
2 +(

∣∣ ‖δrk−1‖2 + 2[(rk−1 − rk, δrk−1)− (rk−1, rk)]
∣∣) 1

2 .

We have to consider the terms in the second part of the right-hand side divided by
(‖rk−1‖2 + ‖rk‖2)

1
2 . Let us see what can be the largest term in the right-hand side.

The first term within the parentheses is positive and can be bounded as

‖δrk−1‖2

‖rk−1‖2 + ‖rk‖2
≤ u2 ‖rk‖2

‖rk−1‖2 + ‖rk‖2
(1 + Cp

k−1)2 +O(u4),

≤ u2 1
‖rk−1‖2
‖rk‖2 + 1

(1 + Cp
k−1)2 +O(u4).

When CG converges fast the denominator in the second line is large and, in any case,
the right-hand side is small. For the next term, we have

2 |(rk−1 − rk, δrk−1) |
‖rk−1‖2 + ‖rk‖2

≤
2 (‖rk−1‖+ ‖rk‖)‖δrk−1‖
‖rk−1‖2 + ‖rk‖2

,

=
2 ‖δrk−1‖

‖rk−1‖+ ‖rk‖2
‖rk−1‖

+
2 ‖δrk−1‖

‖rk−1‖2
‖rk‖ + ‖rk‖

.(3.3)

To simplify the notation, we can write 2 ‖δrk−1‖ ≤ uC‖rk−1‖ where C is bounded.
The first term of the right-hand side of (3.3) is bounded by

uC‖rk−1‖
‖rk−1‖+ ‖rk‖2

‖rk−1‖

=
uC

1 + ‖rk‖2
‖rk−1‖2

.

8 G. MEURANT

When CG converges fast, this term is close to uC. The second term is bounded by

uC‖rk−1‖
‖rk−1‖2
‖rk‖ + ‖rk‖

=
uC

‖rk−1‖
‖rk‖ + ‖rk‖

‖rk−1‖

.

If one term of the denominator is large, the other is small and vice-versa. Hence, this
term of the left-hand side of (3.3) is proportional to u. Note that this is a very loose
bound since, when CG converges, the vector rk−1 − rk becomes small, meaning that
the term (rk−1 − rk; δrk−1) is also small.

The term that can be a problem for us is

2|(rk−1, rk)|
‖rk−1‖2 + ‖rk‖2

,

because, even though |(rk−1, rk)| is small (as it can be seen in the Appendix), the
denominator ‖rk−1‖2 +‖rk‖2 can be small too. However, if we want to use (rk−1, rk)
in our detection criterion, an additional dot product has to be computed. This is too
expensive since we already have to compute (Apk−1, Apk−1). Therefore, we will use
the relative difference without the term proportional to (rk−1, rk) and we will have to
deal with the fact that relation (3.1) is not satisfied up to machine precision.

The reader may wonder why we use the relative difference and not the absolute
one. The main reason is that the absolute difference can sometimes be large and more
problem dependent than the relative difference.

Let us now consider what happens to the relative difference dk when there are
bit flips during the computation. We first flip bits 7, 35 or 61 of the result of the
computation of (rk, rk) at iteration 110 for bcsstk01 as we did above. From Figure 3.2
we clearly see that when flipping bits 35 or 61, something bad happened at iteration
110. Flipping bit 7 is almost innocuous since the relative difference is almost the same
as what we had in Figure 3.1. The largest value of dk is obtained when we flip bit 61
which is in the exponent field.

0 50 100 150 200 250

10-15

10-10

10-5

100

no flip

7

35

61

Fig. 3.2. bcsstk01, relative difference dk when flipping bits 7, 35 or 61 in (rk, rk) at iteration 110

Figure 3.3 shows the result of flipping bits in a random component of Apk−1 at
iteration 110. The effects of flipping bits are more or less the same as for (rk, rk) even
though the level of dk when flipping bit 35 is smaller.

Silent errors in CG 9

0 50 100 150 200 250

10-15

10-10

10-5

100

no flip

7

35

61

Fig. 3.3. bcsstk01, relative difference dk when flipping bits 7, 35 or 61 in one component of
Apk−1 at iteration 110

Figure 3.4 displays dk when flipping different bits in the output of (rk, rk) at
iteration 110. The larger is the bit number, the larger is the value of dk. Remember
that 1 is the rightmost bit. Flipping a bit in the exponent field gives the largest value
of dk.

0 50 100 150 200 250

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

no flip

10

20

30

40

50

60

Fig. 3.4. bcsstk01, relative difference dk when flipping bits in (rk, rk) at iteration 110

Let εd be a given threshold. We say that there was a fault in the computation
if dk > εd. Note that there can also be a fault when computing dk. However, the
computation of dk, which only involves a few scalars, can be done redundantly to be
sure that the result is correct.

Most of the time, CG is used with a preconditioner M which is a symmetric
positive definite matrix. With preconditioning and defining zk by Mzk = rk, the

10 G. MEURANT

relation (3.1) becomes

α2
k−1(Apk−1,M

−1Apk−1) = (rk, zk) + (rk−1, zk−1),(3.4)

in exact arithmetic and we define dk as

dk =
|αk−1(Apk−1,M

−1Apk−1)
1
2 − [(rk−1, zk−1) + (rk, zk)]

1
2 |

[(rk−1, zk−1) + (rk, zk)]
1
2

,

It may seem that we have to do two linear solves with the matrix M at each iteration,
but we will show how to avoid that in Section 5.

Of course, the main problem is to choose the threshold εd. The relative residual
norms corresponding to the bit flips for Figure 3.4 are displayed in Figure 2.4. We can
allow having the curves corresponding to bits 10 and 20, or even 30. In most of our
numerical experiments we chose εd = 10−12. However, this value of εd is a little too
small for bcsstk01. It could give what are called false positives that is, errors which
do not exist. Correcting this type of errors is useless and costly.

To check if our error detection works correctly we use a protocol similar to what
was done in [1]. The stopping criterion for CG is ‖rk‖/‖b‖ ≤ εc and the initial vector
is the zero vector. We use bcsstk01 and a subset of the matrices1 used in [1]. The
characteristics of the matrices are given in Table 3.1.

Table 3.1
Characteristics of the test matrices

Name order condition number

bcsstk01 48 8.8234 105

bodyy5 18,589 7.873336 103

bundle1 10,581 1.004238 103

crystm02 13,965 2.504738 102

crystm03 24,696 2.640325 102

dubcova1 16,129 9.971199 102

fv1 9,604 8.806042
fv3 9,801 2.026840 103

jnlbrng1 40,000 1.832266 102

kuu 7,102 1.575800 104

wathen100 30,401 5.816014 103

The exact solution xex for each run is a random vector with components in [−1, 1]
and the right-hand side is b = Axex. We do 1000 runs for each matrix and pre-
conditioner which are a diagonal preconditioner (diag) or an incomplete Cholesky
factorization without fill-in (IC).

In case we do not flip a bit we check if an alarm was raised. Otherwise, we first do
a run without flip to obtain the number m of iterations needed to satisfy the stopping
criterion. Then, we do a run flipping a bit chosen randomly at iteration bm/2c. If
the bit flip is not detected but if the stopping criterion is nevertheless satisfied within
m+ bm/2c iterations, we consider that CG has converged.

The acronyms used in Tables 3.2 and 3.4 for the same categories as in [1] are
defined below:

- nc: Number of the 1000 cases with a bitflip.

1They can be obtained at https://sparse.tamu.edu

Silent errors in CG 11

- true positive (tp): A bitflip occurred, it prevented convergence, and an alert
was raised.

- special positive (sp): A bitflip occurred, it did not prevent convergence, and
an alert was raised.

- false positive (fp): No bitflip occurred and an alert was raised.
- true negative (tn): No bitflip occurred, and there was no alert.
- false negative (fn): A bitflip occurred, it prevented convergence, but there

was no alert.
- special negative (sn): A bitflip occurred, it did not prevent convergence, and

there was no alert.
- max it.: Maximum number of iterations to satisfy the convergence criterion

for special negative cases.
- max bit: Maximum bit number perturbed for special negative cases.

What we would like to achieve is not to have false positives or false negatives.
For the results of Table 3.2, we do bit flips in the output of Apk−1. We see that for

bcsstk01 without preconditioning there are a few false positives because εd was a little
too small. This does not happen for the other matrices. What is important is that
there was no false negative. When a bit flip occurred and no alert was raised, there
was convergence within the 50% additional number of iterations that were allowed.
In these cases the last column shows what was the maximum number of the bits that
were flipped. It is generally between 30 and 40.

The matrix bcsstk01 has the largest condition number in the set of matrices in
Table 3.1 and we may wonder if the value εd is well suited for matrices having a
larger condition number, since the upper bound (6.1) in the Appendix is depending
on κ(A). To check this, let us consider the matrix nos7 of order 729. Its condition
number is 2.3745 109. We do bit flips in the output of Apk−1 using the same protocol
as before, but with different values of εd. The results are shown in Table 3.3. We
see that, with εd = 10−12, we have many false positives, even with a diagonal or an
incomplete Cholesky preconditioner. However, these preconditioners do not reduce
too much the condition numbers which are respectively 1.2934 108 and 9.0066 106 for
“diag” and “IC”. We have to increase εd at least up to 10−8 to get rid of most of the
false positives. Therefore, a “good” value of εd is somehow dependent on the condition
number of the matrix, but so far, we do not have an efficient way to automatically
choose εd, even though the condition number can be estimated during CG iterations,
see [18]. Note also that, taking a too small value of εd and having false positives, is
dangerous when using a recovery procedure because, if this is done without caution,
it may lead to an infinite looping of the algorithm.

For Table 3.4, we do bit flips in the output of (rk, zk). The results are similar
to those of Table 3.2 except for the number of true positives and for the maximum
bit numbers which are generally around 15. This means that there were more cases
without convergence. These results show that our detection method is working satis-
factorily if a proper value of εd is chosen.

4. Correction of the silent errors. Having a way to test if there was a silent
fault at iteration k, we can implement a recovery procedure.

Let us assume that we have at hand the values of the CG vectors and scalars at the
beginning of iterations k and k− 1. If we detect a fault, we go back to the beginning
of iteration k − 1. This is necessary because the fault could have happened in the
computation of pk−1 at iteration k− 1. We know that the data used for the recovery
is correct because, otherwise an error would have been detected (and corrected) in

12 G. MEURANT

Table 3.2
Bit flip in Apk−1, εd = 10−12, εc = 10−10

matrix prec. nc tp sp fp tn fn sn max it. max bit

bcsstk01 no 909 0 680 10 81 0 229 150 39
diag 898 382 276 0 102 0 240 49 24
IC 886 0 593 0 114 0 293 18 24

bodyy5 no 895 9 437 0 105 0 449 724 40
diag 909 29 470 0 91 0 410 444 36
IC 875 32 385 0 125 0 458 54 43

bundle1 no 898 53 422 0 102 0 423 232 38
diag 899 91 402 0 101 0 406 58 34
IC 922 0 489 0 78 0 433 25 37

crystm02 no 915 42 478 0 85 0 395 138 32
diag 906 49 417 0 94 0 440 56 33
IC 898 0 314 0 102 0 584 3 43

crystm03 no 923 42 459 0 77 0 422 144 33
diag 898 55 453 0 102 0 390 56 32
IC 898 55 453 0 102 0 390 3 44

dubcova1 no 913 49 454 0 87 0 410 164 35
diag 901 61 454 0 99 0 386 172 33
IC 907 27 474 0 93 0 406 89 34

fv1 no 907 27 474 0 93 0 406 31 34
diag 912 0 455 0 88 0 457 31 34
IC 891 0 465 0 109 0 426 10 33

fv3 no 879 106 422 0 121 0 351 220 30
diag 885 108 418 0 115 0 359 220 29
IC 895 26 508 0 105 0 361 68 36

jnlbrng1 no 903 29 488 0 97 0 386 133 35
diag 902 35 469 0 98 0 398 125 32
IC 902 25 455 0 98 0 422 27 35

kuu no 904 34 505 0 96 0 365 697 32
diag 899 82 449 0 101 0 368 593 30
IC 901 28 502 0 99 0 371 77 30

wathen100 no 881 27 454 0 119 0 400 319 34
diag 901 26 466 0 99 0 409 48 36
IC 921 0 456 0 79 0 465 13 38

iteration k − 1. The recovery procedure is implemented in Algorithm 2 when using a
preconditioner M . For simplicity we assume that there is no error in the initialization
phase and that the data (A, b) was correct. In Algorithm 2, at each iteration we
have to compute M−1rk and M−1Apk−1. These two solves are independent but if
M = LLT and if we are able to work with the matrix Ã = L−TAL−1 we could avoid
one of these two solves. The product w = Ãpk−1 is then obtained as

Ly = pk−1, LTw = Ay.

We will see another way to avoid one of the two solves with the matrix M in Section 5.

Figure 4.1 shows the norms of the true residuals when flipping bit 60 of the output
of (rk, zk) at iteration 110 but with the recovery procedure for bcsstk01. There is a
delay when using the recovery procedure because we did not update the iteration
number after the recovery.

Silent errors in CG 13

Table 3.3
Bit flip in Apk−1, nos7, εc = 10−10

εd prec. nc tp sp fp tn fn sn max it. max bit

10−12 no 897 70 827 103 0 0 0 - -
diag 901 40 844 97 2 0 17 50 33
IC 889 40 843 110 1 0 6 17 24

10−10 no 901 67 751 84 15 0 83 1524 41
diag 895 35 766 78 27 0 94 90 37
IC 907 30 806 84 9 0 71 28 41

10−8 no 912 77 354 6 82 0 481 2086 62
diag 913 29 296 0 87 0 588 91 61
IC 901 38 251 0 99 0 612 28 62

10−6 no 900 76 225 0 100 0 599 2139 63
diag 897 34 202 0 103 0 661 93 64
IC 886 25 138 0 114 0 723 29 64

Algorithm 2 Preconditioned Conjugate Gradient with silent fault check and recovery

input A, b, M x0, εd
r0 = b−Ax0, roo = r0
Solve Mz0 = r0
p0 = z0, poo = p0, zoo = z0
rtr = rT0 z0, rtroo = rtr, xoo = x0
for k = 1, . . . until convergence do
ro = rk−1, zo = zk−1, po = pk−1, rtro = rtr, xo = xk−1
αk−1 = rtr

pT
k−1

Apk−1

xk = xk−1 + αk−1pk−1
rk = rk−1 − αk−1Apk−1
d1 = αk−1 [Apk−1]TM−1Apk−1
Solve Mzk = rk
rtrk = rTk zk
βk = rtrk

rtr

d2 = (rtr + rtrk)
1
2

rtr = rtrk
pk = zk + βkpk−1
dk = |d1−d2|

d2

if k > 2 and dk > εd then
k = k − 2
pk = poo, rk = roo, zk = zoo, xk = xoo, rtr = rtroo

else
poo = po, roo = ro, zoo = zo, xoo = xo, rtroo = rtro

end if
end for

14 G. MEURANT

Table 3.4
Bit flip in (rk, zk), εd = 10−12, εc = 10−10

matrix prec. nc tp sp fp tn fn sn max it. max bit

bcsstk01 no 885 175 610 16 99 0 100 150 20
diag 895 384 353 0 105 0 158 49 15
IC 897 0 706 0 103 0 191 18 16

bodyy5 no 891 153 516 0 109 0 222 724 15
diag 905 172 532 0 95 0 201 445 16
IC 907 171 506 0 93 0 230 54 16

bundle1 no 906 327 414 0 94 0 165 233 15
diag 889 142 538 0 111 0 209 58 15
IC 889 142 538 0 111 0 209 25 14

crystm02 no 903 176 505 0 97 0 222 138 16
diag 907 178 534 0 93 0 195 56 14
IC 907 0 727 0 93 0 180 3 13

crystm03 no 897 175 516 0 103 0 206 144 16
diag 906 165 533 0 94 0 208 56 15
IC 901 0 726 0 99 0 175 3 14

dubcova1 no 904 322 361 0 96 0 221 164 16
diag 891 328 354 0 109 0 209 172 16
IC 901 213 466 0 99 0 222 89 16

fv1 no 889 149 544 0 111 0 196 32 14
diag 894 161 551 0 106 0 182 31 14
IC 913 0 739 0 87 0 174 10 13

fv3 no 911 326 379 0 89 0 206 220 16
diag 902 266 389 0 98 0 247 221 16
IC 897 209 487 0 103 0 201 68 16

jnlbrng1 no 903 143 541 0 97 0 219 133 16
diag 899 162 512 0 101 0 225 125 16
IC 901 177 530 0 99 0 194 27 14

kuu no 890 264 412 0 110 0 214 694 16
diag 919 213 490 0 81 0 216 593 16
IC 897 275 398 0 103 0 224 77 16

wathen100 no 898 298 388 0 102 0 212 319 16
diag 896 166 526 0 104 0 204 48 15
IC 916 0 732 0 84 0 184 13 14

Silent errors in CG 15

0 50 100 150 200 250

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

no flip

60

Fig. 4.1. bcsstk01, relative true residual norms when flipping bit 60 in (rk, rk) at iteration 110
with recovery

16 G. MEURANT

5. A parallel variant of CG with silent error detection and correction.
When looking at Algorithm 2, it seems, as we said above, that we have to solve two
linear systems with the matrix M at each iteration. Even though the two solves can be
done in parallel, this can also be avoided by using the predictor-corrector CG variant
introduced in [16]. Formula (3.4) is used to predict the value of rTk zk which is used
to compute βk and pk. The value of rTk zk is recomputed at the end of the iteration
to prevent instability. This method is described in Algorithm 3. It is mathematically
equivalent to standard CG, but not in finite precision arithmetic, see [16, 4].

We check the equality (3.4) using the corrected value of rTk zk. Since the stability
of the method is a little different than for standard CG and because we are using (3.4)
for two different purposes, we had to slightly modify the criterion for the detection of
silent errors, adding a test on the numerator. We did so because the relative difference
can sometimes become large without a bit flip.

Algorithm 3 Parallel preconditioned Conjugate Gradient with silent fault check and
recovery

input A, b, x0, εd
r0 = b−Ax0, roo = r0
p0 = r0, poo = p0
Solve Mz0 = r0
rtr = rT0 z0, rtroo = rtr, xoo = x0
for k = 1, . . . until convergence do
ro = rk−1, zo = zk − 1, po = pk−1, rtro = rtr, xo = xk−1
Solve Mv = Apk−1
vAp = vTApk−1, pAp = pTk−1Apk−1
αk−1 = rtr

pAp

d1 = αk−1
√
vAp

s = d21 − rtr % prediction
βk = s

rtr
xk = xk−1 + αk−1pk−1
rk = rk−1 − αk−1Apk−1
zk = zk−1 − αk−1v
pk = (zk−1 − αk−1v) + βkpk−1
rtrk = rTk zk % correction

d2 = (rtr + rtrk)
1
2

rtr = rtrk
dk = |d1−d2|

d2

if k > 2 and dk > εd and |d1 − d2| > εd then
k = k − 2
pk = poo, rk = roo, zk = zoo, xk = xoo, rtr = rtroo

else
poo = po, roo = ro, zoo = zo, xoo = xo, rtroo = rtro

end if
end for

Table 5.1 shows the same quantities as in Table 3.2 when we flip a bit in the output
of Apk−1. However, three of the test matrices are badly scaled and, with Algorithm 3,
it was not possible to use the same value of εd as for the other matrices. This problem

Silent errors in CG 17

was solved by scaling these three matrices by the maximum of the absolute values of
their entries. In these computations we used εd = 10−10 for all matrices.

What is different from the previous tables is the maximum bit number. There
are cases where a bit flip in the exponent field does not prevent convergence. This is
due to the slight change in the detection criterion. However, for most special negative
cases the maximum bit number was smaller than 40. We observe that there were no
false positives and false negatives.

Table 5.1
Bit flip in Apk−1, εd = 10−10, εc = 10−10, Algorithm 3

matrix prec. nc tp sp fp tn fn sn max it. max bit

bcsstk01 no 892 4 561 0 108 0 327 180 62
diag 908 345 210 0 92 0 353 50 38
IC 900 0 550 0 100 0 350 18 38

bodyy5 no 897 1 408 0 103 0 488 728 63
diag 891 20 332 0 109 0 539 449 63
IC 892 15 300 0 108 0 577 54 63

bundle1 no 897 20 124 0 103 0 753 255 64
scaled diag 901 13 202 0 99 0 686 58 63

IC 901 0 147 0 99 0 754 25 64

crystm02 no 906 15 208 0 94 0 683 139 63
scaled diag 900 16 235 0 100 0 649 59 63

IC 913 0 231 0 87 0 682 3 63

crystm03 no 906 14 205 0 94 0 687 144 63
scaled diag 900 18 199 0 100 0 683 56 63

IC 920 0 213 0 80 0 707 3 64

dubcova1 no 900 59 227 0 100 0 614 164 63
diag 914 64 200 0 86 0 650 172 64
IC 900 16 235 0 100 0 649 89 63

fv1 no 896 0 285 0 104 0 611 31 63
diag 881 0 275 0 119 0 606 31 63
IC 891 0 236 0 109 0 655 10 63

fv3 no 914 41 255 0 86 0 618 221 63
diag 899 38 219 0 101 0 642 221 63
IC 903 10 245 0 97 0 648 68 63

jnlbrng1 no 891 7 244 0 109 0 640 133 63
diag 906 8 216 0 94 0 682 125 63
IC 895 0 246 0 105 0 649 27 63

kuu no 911 19 276 0 89 0 616 696 63
diag 884 13 259 0 116 0 612 598 63
IC 914 14 266 0 86 0 634 78 63

wathen100 no 900 21 274 0 100 0 605 319 63
diag 900 3 272 0 100 0 625 48 63
IC 910 0 300 0 90 0 610 13 63

Figure 5.1 shows the true residual norms when flipping bit 60 of the output
of (rk, zk) at iteration 50 but with the recovery procedure for the matrix kuu with
an incomplete Cholesky preconditioner. As above, there is a delay when using the
recovery procedure because we did not update the iteration number after the recovery.

6. Conclusion. In this paper, we have proposed a new way to detect and correct
silent errors in the conjugate gradient algorithm. The detection criterion is simple

18 G. MEURANT

0 20 40 60 80 100 120 140 160
10

-20

10
-15

10
-10

10
-5

10
0

Fig. 5.1. kuu, incomplete Cholesky preconditioner, relative true residual norms when flipping
bit 60 in (rk, zk) at iteration 50 with recovery

and cheap to implement. When using a preconditioner it is nevertheless preferable
to use the predictor-corrector variant of CG. Numerical experiments show that the
new criterion is robust and reliable. One of the advantages of our method, besides its
simplicity, is that the check for errors can be done at every iteration, minimizing the
extra computations that have to be done for the recovery.

Appendix: CG local orthogonality. Using (3.2) it can be shown that

|(rk, rk−1)| ≤ κ(A)
‖rk−1‖
‖pk−1‖

[
CA

k−1u
‖rk−1‖
‖pk−1‖

‖rk−1‖2

‖rk−2‖2
+ ‖rk−1‖ ‖δpk−2‖

]
+‖δrk−1‖ ‖rk−1‖,

(6.1)
where κ(A) is the condition umber of A and CA

k−1 is a constant involved in the bound

|(Apk−2, pk−1)| ≤ λnCA
k−1u where λn is the largest eigenvalue of A.

The three terms in the right-hand side of inequality (6.1) are small provided that
the ratios are bounded and κ(A) is not too large. Local orthogonality is, in general,
well satisfied.

Acknowledgments. The author thanks Erin Carson for interesting comments and sugges-

tions.

REFERENCES

[1] E. Agullo, S. Cools, E. Fatih-Yetkin, L. Giraud, N. Schenkels and W. Vanroose, On
soft errors in the Conjugate Gradient method: Sensitivity and robust numerical detection,
SIAM J. Sci. Comput., v 42, n 6 (2020), pp. C-335-C358.

[2] P.G. Bridges, K.B. Ferreira, M.A. Heroux and M. Hoemmen, Fault-tolerant linear solvers
via selective reliability, arXiv preprint arXiv:1206.1390, (2012).

[3] G. Bronevetsky and B. de Supinski, Soft error vulnerability of iterative linear algebra meth-
ods, in Proceedings of the 22nd Annual International Conference on Supercomputing,
ICS’08, ACM, New York, USA, (2008), pp. 155-164.

[4] T. Chen and E. Carson, Predict-and-recompute conjugate gradient variants, SIAM
J. Sci. Comput., v 42 n 5 (2020), pp. A3084-A3108.

Silent errors in CG 19

[5] Z. Chen, Online-ABFT: An online algorithm based fault tolerance scheme for soft error de-
tection in iterative methods, in Proc. 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP’13, (2013), pp. 167-176.

[6] J. Elliott and M. Hoemmen, Quantifying the impact of single bit flips in GMRES, CSRI
Summer Proceedings 2013, (2014), pp. 10-31.

[7] J. Elliott, M. Hoemmen and F. Mueller, Evaluating the impact of SDC on the GMRES
iterative solver, 2014 IEEE 28th International Parallel and Distributed Processing Sympo-
sium, IEEE, (2014).

[8] J. Elliott, M. Hoemmen and F. Mueller, Resilience in numerical methods: a position on
fault models and methodologies, arXiv preprint arXiv:1401.3013, (2014).

[9] J. Elliott, M. Hoemmen and F. Mueller, A numerical soft fault model for iterative linear
solvers, Proceedings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing, (2015).

[10] J. Elliott, M. Hoemmen and F. Mueller, Exploiting data representation for fault tolerance,
Research Report SAND-2016-0354J, Sandia National Laboratory, (2016).

[11] J. Elliott, F. Mueller, F. Stoyanov and C. Webster, Quantifying the impact of single
bit flips on floating point arithmetic, Report North Carolina State University, Dept. of
Computer Science, (2013).

[12] M. Fasi, J. Langou, Y. Robert and B. Uçar, A backward/forward recovery approach for the
preconditioned conjugate gradient method, J. Comput. Sci., v 17 (2016), pp. 522-534.

[13] N. J. Higham, Accuracy and stability of numerical algorithms, SIAM (2002).
[14] K.-H. Huang and J.A. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE

transactions on computers, v 100 n 6 (1984), pp. 518-528.
[15] G. Kestor, B.O. Mutlu, J. Manzano, O. Subasi, O. Unsal and S. Krishnamoorthy, Com-

parative analysis of soft-error detection strategies: A case study with iterative methods, in
Proceedings of the 15th ACM International Conference on Computing Frontiers (2018),
pp. 173-182.

[16] G. Meurant, Multitasking the conjugate gradient method on the CRAY X-MP/48, Parallel
Computing, v 5, (1987), pp. 267-280.

[17] G. Meurant, The Lanczos and Conjugate Gradient algorithms, from theory to finite precision
computations, SIAM (2006).

[18] G. Meurant and P. Tichý, Approximating the extreme Ritz values and upper bounds for the
A-norm of the error in CG, Numer. Algorithms, v 82 n 3 (2019), pp. 937-968.

[19] B.O. Mutlu, G. Kestor, J. Manzano, O. Unsal, S. Chatterjee, S. and S. Krishnamoor-
thy, Characterization of the impact of soft errors on iterative methods, in 2018 IEEE 25th
International Conference on High Performance Computing (HiPC), pp. 203-214.

[20] Z. Rubenstein, H. Fujita, Z. Zheng and A. Chien, Error checking and snapshot-based re-
covery in a preconditioned conjugate gradient solver, Technical Report TR-2013-11, De-
partment of Computer Science, University of Chicago, (2013).

[21] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM
J. Sci. Stat. Comput., v 6 n 4 (1985), pp. 865-881.

[22] P. Sao and R. Vuduc, Self-stabilizing iterative solvers, in Proceedings of the Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, (2013).

[23] A. Schöll, C. Braun, M.A. Kochte and H.-J. Wunderlich, Low-overhead fault-tolerance
for the preconditioned conjugate gradient solver, in Proceedings of the International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS’15),
Amherst, Massachusetts, USA, (2015).

[24] M. Shantharam, S. Srinivasmurthy and P. Raghavan, Fault tolerant preconditioned conju-
gate gradient for sparse linear system solution in Proceedings of the 26th ACM interna-
tional conference on Supercomputing, ICS’12, New York, USA, (2012), pp. 69-78.

