ANY ADMISSIBLE HARMONIC RITZ VALUE SET IS POSSIBLE FOR GMRES

KUI DU* JURJEN DUINTJER TEBBENS AND GERARD MEURANT?

Abstract. It is known that the harmonic Ritz values are the zeros of tMRES residual polynomials. In this
paper we show that any decreasing GMRES residual norm yistpossible with any prescribed finite harmonic Ritz
values in every iteration of the GMRES process. In additiwe,characterize the admissible harmonic Ritz values
when GMRES stagnates during some iterations, and show ttieamy prescribed, in this sense admissible harmonic
Ritz values, any non-increasing GMRES residual norm hysi®possible. We also present a parameterization of
the class of matrices and right-hand sides yielding presdriGMRES residual norms and prescribed admissible
harmonic Ritz values.
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1. Introduction. The Generalized Minimum Residual (GMRES) iterative mettad
to Saad and Schultz [41] is one of the most popular Krylov méstfor solving large, sparse,
nonsingular and non-Hermitian linear systeris = b. During several decades, intensive
research has been invested in convergence analysis of GMRESconvergence behavior
of Hermitian counterparts of GMRES like the CG [23] and MINREethods [37] can well
be explained by the distribution of the eigenvaluesiofAn important question in GMRES
convergence analysis is to determine to what extent eijgesinfluence the convergence of
the method.

Mathematically, GMRES convergence needs not be governdgdebgigenvalues oft
only. This was shown very clearly in a series of papers by I[Ar@reenbaum, Ptak and
StrakoS [22, 21, 1]. These papers show that for any chosgmesee of positive, non-
increasing numbers, there exists a class of right-hand side matrices, whose nonzero
eigenvalues can be prescribed, giving residual norms tiaticle with the given non-increa-
sing sequence. GMRES residual norm convergence curvefdtas sense, independent
from the eigenvalues ofl. In [31] closed-form expressions for the GMRES residuahmer
were derived as functions of the eigenvalues and eigemgegctal as well as the right-hand
sideb. These expressions show precisely how the residual norpendeon the eigenval-
ues, the pairwise differences of eigenvalues and on thenegg#ors (or principal vectors if
A is not diagonalizable). In a nutshell, when the mattixs normal, the dependence of the
residual norms on the eigenvectors is mild but in the germais¢, GMRES convergence may
depend strongly on the eigenvectors in addition to the e@ers ofA. Several papers look
for approaches other than eigenvalue analysis to explaiRE®Iconvergence. Some exam-
ples are approaches based on the field of values [12], paltén¢ory [26], pseudospectra
[46, 35], the polynomial numerical hull [20], comparisontiwiGMRES for non-Euclidean
inner products [39] or decomposition in normal plus lowk§24]. Even if they can be very
suited for particular problems, none of the approachesapgye represent a universal tool to
explain the convergence behavior of the GMRES method.

The GMRES method uses the Arnoldi process [2] to compute #ooowormal basis of
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the Krylov subspace. The Arnoldi process generates uppssetderg matriced;, whose
eigenvalues (the so-called Ritz values) are often used @®@dmations of the eigenvalues
of A. In the CG method there is a strong correlation between theargence of Ritz values
to eigenvalues and the convergence of CG-iterates to thicolof the linear system [47].
Another relevant question for GMRES convergence is to know the (potential) conver-
gence of the Ritz values is related to the GMRES residual spsee, i.e., [48]. An answer
was given in [9] where it was shown that one can constructfigind sides and matrices
with prescribed eigenvalues, prescribed GMRES residuahs@nd prescribed Ritz values
at every GMRES iteration.

The convergence speed of the GMRES method is in practice siteh that the method
needs to be somehow accelerated. While the most popularavey this is through the
use of a preconditioner, significant attention has been joagh-called deflation techniques
(which may be incorporated into preconditioning themsglvBased on spectral information
aboutA which is obtained during the GMRES process, the influenc@efwalues which are
assumed to hamper convergence, is eliminated. Among anargeer of proposed deflation
techniques, some examples are described in [32, 25, 8, 79, 33, 14, 34, 6, 38, 28, 17,
7, 18]. Even if, in general, no eigenvalues need to hamperergence at all according to
the results by Arioli, Greenbaum, Ptak and Strako$ [22]12deflation methods have shown
to be able to accelerate GMRES in many applications. Inftiomabout the spectrum of
is extracted, during the GMRES process, from either the Ritaes or from the harmonic
Ritz values (though some deflation methods are more focuseglita vectorsin relation
with multigrid techniques [43, 44]). Harmonic Ritz values anostly preferred over ordinary
Ritz values and this may have two main reasons: First, haioyRitz values are related to
an Arnoldi process involvingl—! and appear to be more suited to find eigenvalues close to
zero than ordinary Ritz values. Precisely eigenvaluessdogero are often assumed to be
responsible for slow GMRES convergence. Second, harmdtdo/Rlues are more strongly
connected to GMRES residual norms: Every GMRES residuabves the product of a
polynomial in A with the initial residual vector and the roots of this regitipolynomial are
the harmonic Ritz values [36]. The ordinary Ritz values aréact the roots of the residual
polynomials of the Full Orthogonalization method (FOM) [4®hich is closely related to
GMRES but which does not minimize the residual norms [19].e @rerefore expects that
the extent to which GMRES residual norms are independemt &nalinary Ritz values is not
the same for harmonic Ritz values; the latter should be gtyanfluencing residual norms
because of their immediate relation with the GMRES resighodynomial. In this paper
we show that, surprisingly, GMRES residual norms are inddpat fromharmonicRitz
values as well. More precisely, our main result shows thataam construct right-hand sides
and matrices with prescribed eigenvalues, prescribed GMiREidual norms and prescribed
harmonic Ritz values at every GMRES iteration.

This paper is organized as follows. In the next section, vieipesome notation and
define harmonic Ritz values sets that are admissible witheso GMRES residual norms.
Section 3 addresses FOM residual norms in relation withnargi Ritz values. Section 4
contains the main result of the paper on prescribed GMRESua&lsnorms in combination
with prescribed harmonic Ritz values. In Section 5 we iHatg the result with some small
numerical examples and Section 6 contains closing remdtkfacilitate the discussion, we
shall adopt the following notation. For a matuk let a;;, Ax, A;, andA* denote the, j
entry, the upper-left x & submatrix, the upper-lef& + 1) x k submatrix, and the conjugate
transpose of4, respectively. The complex conjugate of a scalés writtenz. Let e, denote
the kth column of the identity matrix of appropriate order.
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2. Preliminaries. Let a nonsingular matrit € C**" and a vectob € C" be given.
For an initial guessy € C™, GMRES [41] approximates the exact solutionAf = b at
stepk by the vectory, € x¢ + K (A4, o) that minimizes the Euclidean norm of the residual
r, = b— Axy, ie.,

lrll = min |b—Az|= min |jro— Av|,
z€xo+K(A,r0) vEKL(A,r0)

where the Krylov subspace is defined as
Ki(A, ) = span{rg, Arg, ..., AF"1rg}.

Due to this minimization property, the residual vectqris the orthogonal projection of
ro onto (AK(A,70))+, the orthogonal complement ofiCi. (A, 7). It can therefore be
uniquely expressed as

(2.1) e = pr(A)ro,

wherepy(z) is the GMRES residual polynomial of tieh iteration. It is of degree at mokt
and has the value one at the origin; see, for example, [45].

The Arnoldi process [2] constructs an orthonormal basi€ ofA, r9). We assume that
the Arnoldi process for the pafr4, o} does not break down before théh iteration. Then
aftern iterations the process has generated the Arnoldi decotigrosi

AV = VH,

whereV is unitary andH is irreducible upper Hessenberg. Theigenvalues{u;k) .’;:1 of
the eigenvalue problem

Hiyw = pw

are called Ritz values at stépof the Arnoldi process fof A, 7o }. We will rather call them
ordinary Ritz values to clearly distinguish them from hamedRitz values. Thé eigenvalues

{9§.k)}§:1 of the generalized eigenvalue problem
(2.2) HyH,w=0H;w, k <mn,

are called harmonic Ritz values at stemf the Arnoldi process fof A4, r,}. We do not
consider here harmonic Ritz values resulting from a shittheforiginal spectrum to find close
to zero eigenvalues, i.e. we always implicitly assume zbiftss Becausdd is irreducible

upper Hessenberd{; H, is non-singular and thus no harmonic Ritz vaﬁé@ can be zero.
However, whenH, is singular, some of the harmonic Ritz valuﬂé@) are infinite.

LEMMA 2.1 ([5, 16]). TheGMRESresidual polynomiapy(z) in (2.1) can be expressed
as

k
z
n=11 (“W) ’
J=1 J
where{9§.'“)}.’;:1 are the harmonic Ritz values at step

THEOREM 2.2. Let ©(®) denote thek-tuple of the (not necessarily mutually different)
harmonic Ritz values at stép

o® = (9 o . oM.
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If GMRESapplied to{ A, ro} stagnates from stepp+ 1 to stepk +m (k+m < n — 1), i.e.,
7l = regall = -+ = lresmll,
then, fori = 1 : m, the(k + ¢)-tuple of the harmonic Ritz values at step- i is
O+ — (0 6% ... 0 00, -, 00).

Proof. Because, is the orthogonal projection of, onto(AKx (A, r9))*, rr41 is the or-
thogonal projection ofy onto(AK 1 (A, 70))*+ and becausd Ky, (A, 7o) € AKj41(A, o),

76|l = lre+1|l impliesry, = rig+q1. Therefore||rg|| = ||re+1l] = -+ = ||7k+m || iMplies
Tk =Tk4+1 = " = Tk4m-
It follows from ry, = rp4 1 = -+ = rr1, @nd the uniqueness of the GMRES residual

polynomial that

Pr(2) = prt1(2) = -+ = Prtm (2).
Then the statement of the theorem is a direct consequencnafia 2.1. O

Theorem 2.2 shows that if one prescribes GMRES to have saageating iterations,
this puts conditions on the corresponding harmonic Ritaesl We will show later that these
are theonly conditions which prescribed residual norms can imposenfke proof follows
in a later section, we formulate the definitionaafmissibleharmonic Ritz values with respect
to chosen residual norms already here.

DEFINITION 2.3. For prescribed GMRES residual norms
[roll = lrall = -+ = llrn—all = lIrnll = 0,
we call a set of tuples of nonzero complex and infinite numbers
0={eW e® .. em
= {6‘51)’ (952)’ 952))5 T (egn)’ Hén)a tr 6.7(171))}

an admissible harmonic Ritz value set if the tuple®igatisfy the property in Theorem 2.2.
We have here, in contrast with (2.2), considered the haren@itz valuesO(™ for the
nth iteration. The convention is that they coincide with thdioary Ritz values for theth
iteration and thus with the eigenvalues4f Before showing that admissible harmonic Ritz
values can be chosen independently from GMRES residual s\@renhave a look at the
somewhat simpler but analogue problem for ordinary Ritmesaland FOM residual norms.

3. Ordinary Ritz values and the FOM method. For an initial guess,, FOM approx-
imates the exact solution ofz = b at stepk by the vectorr” € z¢ + Kx(A, 7o) such that
the residuat’ = b — Az} is orthogonal toCy (4, o), i.e.,

1L Kr(A, o).
This translates to FOM iterates being of the form
(3.1) af = xo + VR y )
wherey %) is obtained by solving

(3.2) Hiy™ = |rolles
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andV (¥) consists of the first columns of’. Then, the residual ig’ = —hy11 xef y Py
and the norm of the residual vector is

(3.3 Il = hege lefy ™).

The latter relation holds in fact for any Q-OR method [13].

As mentioned in the introduction, the roots of the FOM realdaolynomialp!” such
thatr!” = pf'(A)ry (with pf (0) = 1) are the ordinary Ritz values at iteratiér{19]. Nev-
ertheless, as we will show next, the FOM residual norm carubg ihdependent from the
corresponding Ritz values. To gain more insight in the FOMdeal norm, let us analyze the
entries ofy®) in (3.2). The matrixH in (2.2) can be factored as

(3.4) H=U"'cU

whereU is upper triangular with real positive entries on the disaj@mdC is the companion
matrix of the eigenvalues df (and ofA); see for instance [29] or [10] where the factorization
process is described. Note that

Lj:l n—1

hjtrj = —=—,
Ujt1,5+1

ey 5

u; ; denoting the entries dff with u; ; = 1/||7o|. The matrixU is linked to the Krylov
matrix

K = [7‘0, ATo, ey Anilro]

and to the matrix of the basis vectdrsby KU = V, see, e.g., [9, 10, 11].

The principal submatrix{;, of H in (3.2) can be factored in a similar way with a com-
panion matrix revealing the eigenvaluesi®f, which are the ordinary Ritz values. This was
done in [11]. However, since the notation we use here isla hit different, we reformulate
this result.

THEOREM 3.1. The upper Hessenberg matik, computed in the Arnoldi process can
for k < n be factored as

(3.5) Hy, = U ' 0PU,.

whereUy, is the principal submatrix of ordek of U obtained from the Krylov matri¥” and
the unitary matrixy/ throughKU = V andC* is the companion matrix for the Ritz values
at iterationk. Moreover,

c® = By, + {0 - 0 _mUl:k,k-ﬁ-l}
whereFE), is a square down-shift matrix of ordér
0
1 0
Ek = i . T . )
1 0
1 0

andUy.y k41 IS the vector of thé first components of thie+ 1st column ofU.
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Proof. Clearly

I, _ I,
Hy,=[I, 0]H [o} =[I, ojU"'CU [o} ;
wherel}, is the identity matrix of ordek. Let

I, ojut=[U;t z], U {I’“} = {U’“] :

0 0
SinceC=E,+ [0 --- 0 sl ityields
_ ELU; _
H,=[U' Z] Lle}{UJ = U, 'ExUs + Zeref Uy.

The vectorZe; of lengthk is made of the: first components of thé + 1st column oftU !
that is,— U, Utk k+1/uk+1,64+1- Factoringl, * on the left and’, on the right gives the
result. O

Theorem 3.1 shows that the coefficients of the characepstynomialry, (\) = \¥ +
Ozkfl/\kil + -+ ag of Hy are

1 1
(3.6) : = — Ut hy1 = ——
Uk+1,k+1 Uk+1,k+1
Qf—1 Uk, k+1

Qg UL, k41

The roots of the polynomiat;, are the ordinary Ritz values at iteratibnFrom Theorem 3.1
we also have foy(®) in (3.1), assuming thatl}, is nonsingular,

y(k) _ HTOHlelel _ ||T‘0||U];1[C(k)]_1Ukel = U;l[C(k)]—lel.

If we write the companion matrig'*) as

C(k) _ |: O _O[Oj|

Ip—1 —a&

with ag # 0 since we assumeff;, to be nonsingular, then the inverse of the companion
matrix is

(k-1 _ |—&/ao -1
3.7) (c®)] [_1/% 1l
Therefore
eTy(k) __ 1 _ o Uktlket1 1
k QU U,k U o UT k-1 UL j+1 Pkt 1,k

Using (3.3), we have for iteratioriswhere FOM iterates exist that

1
I =

3.8 I S
( ) H k |u1,k+1|

This result was proved with a more complicated proof in [I1d holds for any Q-OR method.
If Hy, is singularag = 0 and SO iSuy j+1.
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We remark thati, 1 x+1, - - ., u1,x+1 are the coefficients (in descending order of powers)
of another polynomial whose roots are the ordinary Ritz &alat thekth iteration of the
Arnoldi process. This holds as well for the FOM (or Q-OR) desil polynomiap; which is
scaled such that’ (0) = 1. As a by-product of Theorem 3.1 we have that the coefficiehts o
pi are

1

U2 1
UL, k+1 1 UL, k41

uk,;c+1 U1, k+1

Ut g1 Uk+1,k+1
Uk+1,k+1

U1, k+1

If we write uy 1 @Suy g1 = |ur py1]e® +1%, then

U2 k41
U1, k+1 UL k41

P+t

Il .
Uk+1,k+1 U1 pi1
Uk+1,k+1
UL, k+1

Thus the matriXU;,; can be factorized as

lIroll

Uk+1 = Up41 Div1, Diy1 = ) ,

ePlt1?

il

and the non-zero entries of the columndf.;, are the coefficients of the residual polyno-
mials whose roots are the ordinary Ritz values. Hence, tiéesrof U, ; depend only on
the ordinary Ritz values for the iterations 1#o If the matrix, the right-hand side and the
starting vector are real, the coefficients’ are justs-1.

The above shows that it is straightforward to constructdirgystems with prescribed
FOM residual norms and, at the same time, prescribed ordRiz values. An example is
the linear systent{ x = e; whereH is computed according to (3.4) with being of the form

U=U,D,

where thé:th column ofl,, is chosen to be the unique FOM polynomial whose roots are the
ordinary Ritz values prescribed for th¢h iteration. D,, is chosen to contain the prescribed
FOM residual norms, with arbitrary angles. Other examples result from choosing a unitary
matrix Q and considering the syste@i HQx = Q*e;.

4. Prescribed GMRES residual norms and harmonic Ritz values We have seen in
the previous section that arbitrary ordinary Ritz values lsa generated during the Arnoldi
process. We now show a relation between ordinary and hamiritz values in terms of the
decomposition (3.5) that was used to generate arbitraipanglRitz values. If GMRES does
not stagnate at steép i.e.,||7x|| < ||rx—1||, then the harmonic Ritz values defined in (2.2) can
also be seen as the eigenvalues of the matrix

(4.1) Hy = Hy, + hiyy  Hy “erel
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since Hy, is nonsingular. This follows from multiplication of (2.2)ith 4, * from the left.
The following theorem was proved in [30]. For the convengentthe reader we give the
proof again using the notation of this paper.

THEOREM4.1. For kﬂ< n assume thatiy is nonsingular. Then the matrié{;, defined
in (4.1) can be written a¢l, = U, ' C¥ Uy, Uy, being upper triangular and

1
_UkU,:ele;‘g
Uk+1,k+1U1 k+1

ok — o) _

being a companion matrix whe@*) is the companion matrix i, = U, 'C*) U,

Proof. Let us first considef]; *e;,. We haveH, * = U;[CW]|~*U, *. SinceU is
upper triangular we obtaity, “e; = ﬁek with wy, ;, real and positive. Using (3.7) and
taking the (Hermitian) transpose, we have

1
(O], = ——e.
&%)
Finally we obtain
H " ! Ug
€l = — e
k ukkao

On the other hand, we havg 1 » = uk k/Uk+1,k+1. Then

Uk, k T

Hy = U '0WU, — 25 yreel.
Ukt k41 Q0

Let us factorU,;1 on the left andJ, on the right. We obtain
A~ _ Uk, « _
Hy =U W — 22 yuUie el U U
Uk1 1,541 Q0

We remark that[ U, = e Hencefl}, is similar to the matrix

. 1 1
Ck = o) _ ﬁUkU,jelef =0® — —UkU,jelef,
Uk41,k+1%0 Uk+1,k+1U1, k+1

where we used (3.6). The second term on the right-hand sidigfieonly the last column.
ThereforeC®) is a companion matrix. 0O

COROLLARY 4.2. Under assumptions of Theorem 4.1, the coefficients of thexctea-
istic polynomial offf;, whose roots are the harmonic Ritz values are given by thetivegaf
the last column of(®), that is, by

1 UL, k+1 1
(4.2) W= —— | 1 |+ ————UUfey.
Uk+1,k+1 ’ Uk4+1,k+1U1, k+1
Uk, k+1

Before we formulate the main theorem, we need the followinglery results.
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LEMMA 4.3.For k < n, the GMRES residual normig|| and||r;_1 || satisfy

k+1

—-1/2
1 1
2 _ _ _ Z 2 .
N Y e A (l_l'“”'>

Proof. Using the well-known relationship
1 1 1

IrE1? Tl lre—a]?
between FOM and GMRES residual norms [4] and using (3.8),mreddiately obtain the
first claim. Then

k+1

3 fun 1 L1 Lo 1
— el k=l el llre—2ll? [roll®  llrell®

THEOREM4.4. Let
O = {99)7 (6‘52)7952)% Ty (egn)veén)v s "97(ln))}

be any admissible harmonic Ritz value set for prescribed GBIResidual normgy, 0 <
k < n, where

po>p1 =2 pp—1 >0

is any non-increasing sequence of real positive numbersHLe- U~ 1CU whereC is the

companion matrix with eigenvaluéé"), 0&"), ceey 6", and the upper triangular matrix/
is constructed as follows. Lat; = 1/||ro||. For1 < k < n, if pr. < pr—1, then let

Bo
ur ki1 = \/1/pk — 1/ph_1,
8ol
1

Uk+1,k+1 = 5 5 7
|ﬂO|Pk\/ 1/Pk - 1/Pk_1

eTU;CU,jel
U, =pFi1u R
7,k+1 j—1UEk4+1,k+1

j=2,..k

ge ey Iy

U1, k+1

whereg;, 0 < j < k — 1, are the coefficients of the polynomial
Nt Bt N+ BN+ By

with roots{ej(.k) §:1. If p = pr—1, letus 41 = 0, ugt1 541 be an arbitrarily chosen
positive real number, and; ;1,2 < j < k, be arbitrarily chosen complex numbers. Then
GMRES applied t§ H, ||o||e1 } generates the residualg with |7 || = px and the harmonic
Ritz value se®.

Proof. By the construction of the first row @f and using Lemma 4.3, the residuglof
the GMRES applied t§ H, e, } satisfied|r«|| = px.
If pr. < pr—1, by (4.2), straightforward calculations yield

Bo
e, —
Br-1
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Therefore, the harmonic Ritz values at skeare{eg‘k)}";:l.
If pr = pr_1, according to Theorem 2.2, the harmonic Ritz values at ktape then

{95’“_1), Hék_l), e ,9,2’“__11), oo}. We now show why this is true with any choice®f 1,
2 < j < k, and any positive real choice of_; +1. By construction, we have

-1 10
Hy = Uk-i}l L’f] Uk.

For simplicity, we write

Then
R 0
Hk - Uk |:Ik—1 —tA/S:| Uk
and
S ) I
0 LU0t Lr } —[0 L] U*U s
HiH), = U - Ug.

—(t/s)* U, *U LkO_J (U Ut +1)/s2

Thus, the harmonic Ritz values at stemre the eigenvalues of the generalized eigenvalue
problem
4.3)
R 0
[0 La]U o [Ik—l

] — [0 L) UTU s
* % — 0 * —%k —
—(t/s)*U, U |:Ik1:| (tU Ut + 1)/

o 0 Ik—l —skrr—1
y-@{o —f*/s] U Uy

Multiplying by E’j;g (1)] on both sides of (4.3) yields

[0 LU U L@OJ —[0 L] UTUT s
0 1/s?

Therefore, the set of the harmonic Ritz values at étepnsists of one infinite value and the
eigenvalues of the generalized eigenvalue problem

0 I v
y_0|:0 k01:|Uk Ukly

N 0 |- w1 [ Lp—1] -
(4.9) 0 L1 ] UUL! [Ik_l]y_o[o In1] U, Ukl{ko 1} J.
Straightforward calculations yield

et D] _ [ [ 0 ]] e [T
(4.5) 0 I U U, { 0| = _U,C s U, 0

I P o],
=l [ ]] [

[ o1,
- _[Ik—l 0 Ut [Ik—IH U
= [U o U,
= [C(k_l)]*Ul:lUl;ll'
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By (4.5), Hj,—1 = U, ", C**~VU;_4, and
* * —xrr—1 0
Hi H, ,=U;_ [0 Ii1] U U, [Ik—l] Ur—1,

we know that the eigenvalues of the generalized eigenvahiglgm (4.4) are{9§k_1)}§;11.
This completes the proof. [

THEOREM 4.5. Let ©, {pi};Z, and H be given as in Theorem 4.4. Then GMRES

applied to{ A, ro} generates the residuals. with ||r;|| = pr and the harmonic Ritz value
setO if and only if there exists a unitary matrig such thatd = QHQ* andry = ppoQe;.

Proof. If GMRES applied to A, 7o} generates the residualgwith ||r4|| = px, we have
the Arnoldi decompositiorlV = V H andH = U~'CU, whereC is the companion matrix

with eigenvalue§§”),9§"), ...,6% andU is upper triangular with real positive diagonal
entries. Forl < k < n, we know from Lemma 4.3 that

[u1 kq1| = \/ 1/02 - 1/Pi_1-
uy k1 =\/1/pf — 1/p3_je?rert,

Let3;,0 < j < k — 1, be the coefficients of the polynomial

If pr. < pr, we write

Mg B N B+ B

with roots{ej(.k)}?:l. As the coefficientss; coincide with the entries of C(*)e;, equating
the first row in (4.2) and using Lemma 4.3 gives

T
U1, k+1 + €] UkUljel

Bo =

Uk+1,k+1 Uk4+1,k+1UL, k41

V10— 1 p_ e /02,
= + By mm—
Ykt ket Ukt 1ke+14/ 1/ P} — 1/ pF_jePr+1i
1 2 1 2 2
/o= 1/pk . 1/p2_, .

YetL kel w1 k1 1/ 0k = 1/p% 4

ePrt1i

Uk+1,k+1pi\/ 1//)% - 1/P£71

Therefore g1 must be the angle ofy, i.e.

e®+18 = By/|Bo
and then the first an@: + 1)st entry ofUe4 satisfy

Bo
ur 1 = =1/ 1/0% — 1/pi_y,
1Bol
1

Uk+1,k+1 = 5 5 S
|50|pk\/ 1/Pk - 1/Pk71
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The entriesy; ;11 follow from the corresponding rows in equation (4.2):

T *
€; UrUje

— Jj=2
U1, k+1

Uj k1 = Bj—1Uk+1,k+1 — ook
If p = pr—1, thenu; 41 = 0. As proved in Theorem 4.4, ;11 can be an arbitrary
positive real number and; ;11,2 < j < k can be arbitrary complex numbers.

Conversely, if there exists a unitary matéxsuch thatd = QHQ* andry = poQe1, by
the invariance under unitary similarity transformatiofsasidual norms as well as generated
Hessenberg matrices (see, for example, [45]) and TheorénGMRES applied td A, 7o}
generates the residuals with || || = pr. and the harmonic Ritz value sét O

The last two theorems represent a parameterization of #ss df matrices and right-
hand sides generating, when GMRES is applied to a membee afdls, prescribed residual
norms and prescribed admissible harmonic Ritz values. fBeelbm left over when prescrib-
ing these quantities simultaneously, is in the unitary ksirty transformations of the linear
system with@ (which incorporates as well the choice of the phase anglésediirst row of
U). If stagnation is prescribed, then there is additionadi@m in the choice of the non-zero
entries of the corresponding row &f- they can be chosen arbitrarily except for the diagonal
entry which must be positive real.

5. Numerical illustration. We have proved thainy GMRES convergence history is
possible withanyadmissible harmonic Ritz values in every iteration. In otdellustrate the
strength of this result we describe a few extreme situatidvesconsider a very small but not
fully academic example and first show that in this examplenuaric Ritz values explain the
behavior of GMRES much better than ordinary Ritz values.

Consider the one-dimensional convection-diffusion peabbn the unit intervgD, 1]

v +u' = f, u(0) = u(l) =0,

discretized with finite differences on a regular grid withinner nodes using upwind dif-
ferences for the convective term. This gives a linear systérare the system matriA is
tridiagonal with entries

A = h™?tridiag(—v — h,2v + h, —v), h=1/(n+1),

see, e.g. [42, Section 4]. In the convection dominated case,h? andA is close to a scaled
transposed Jordan block and in particular non-normal.hesburce ternf be nonzero only
around the first inner node/ (n + 1), with the value one in that node. Then the right-hand
sidebis e;. If we haver = 0.001 andn = 5, the matrixA is

6.072 —0.036 0 0 0
—6.036 6.072 —0.036 0 0
A=| 0  —6.036 6072 —003 0 |, [W'W —Is|~ 3953,
0 0  —6.036 6.072 —0.036
0 0 0  —6.036 6.072

whereW denotes the normalized eigenvector matrix4ofA is diagonalizable but not nor-
mal). GMRES generates the residual norms

(5.1) |Irol =1, |lr1]l =0.7050, ||ra|| = 0.5751, |rs|| =0.4978, |ra|| = 0.4451.

The convergence is slow and clearly sublinear. If ordinaitz Ralues influence GM-
RES convergence speed as suggested in [48], then we expdletr Slow convergence (or
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possibly divergence) of the ordinary Ritz values. The cadyrRitz values for the individual
iterations are represented with circles in Figures 1 and €.s@¢é that, on the contrary, they
seem to converge already in the very first step, where an eigetvalue was found. The
second iteration finds two more eigenvalues and furtheatiters show smooth convergence
reminding of interlacing eigenvalues for Hermitian magsc

05 1 05

-0.51 1 -05r

Fic. 1. Spectrum (plusses) and ordinary Ritz values (circles) enations one (left) and two (right) with
GMRES applied tA ande; .

051 1 05

-0.51 1 -05r

FiG. 2. Spectrum (plusses) and ordinary Ritz values (circles)emtions three (left) and four (right) with
GMRES applied tA ande;.

The behavior of the harmonic Ritz values, on the other hamlesponds much better to
that of GMRES in this example. The harmonic Ritz values feritidividual iterations can
be taken from Figures 3 and 4. They stay away from the eigeasdbr all iterations and do
not even seem to converge to other values, but 'dance’ arthenspbectrum.

This example seems to indicate that the convergence of macrRitz values is, in gen-
eral, closely related to that of GMRES. But as we have proudte previous sections, this
is not the case. We can for instance, using Theorem 4.1, gen@nother upper Hessenberg
matrix H such that it generates with the right-hand sigéhe same residual norms (5.1) as
A but such that it generates harmonic Ritz values that ardi@@mwith the nicely converging
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6 6
o
4 4
2t 2
of +4 o+ o E ot o+t
2 ol
-4 -4
o
-6 -6

FiG. 3. Spectrum (plusses) and harmonic Ritz values (circles)erations one (left) and two (right) with
GMRES applied tA (or H) ande;.

6 = 675
4 4

o
2 2t
of +4 o+ o E of o+t
-2t -2

o
" -4

o

-6 -6

L L L L L L
10 12 14 4 6 8 10 12 14

IS
o]
3

FiG. 4. Spectrum (plusses) and harmonic Ritz values (circles)eirations three (left) and four (right) with
GMRES applied tA (or H) ande;.

ordinary Ritz values in Figures 1 and 2. This matkixs

3.064 1.064 —0.486 0.296 4.8
3.036 5.073 0.560 —0.297 —4.829

H=| 0 4016 5566 0351 4829 |,  [[W*W —I5| ~ 3.988,
0 0 4522 5769 —4.781
0 0 0 4826 10.898

where we rounded to three decimal places; the matrix is nahntess normal thar. The
ordinary Ritz values with this matri¥/ are displayed in Figures 5 and 6 and seem, except
from an outlier, to often find close to exact eigenvalues itespf slow GMRES convergence.
There is no reason either why the harmonic Ritz values wooldehave, with the same
residual norms (5.1), in a counterintuitive manner midwatneen perfect convergence and
plain divergence. For instance, they could have convengetep one, diverge in step two,
converge in step three and diverge again in the last stepxamgle of this behavior is given
in Figures 7 and 8.
The upper Hessenberg mattik generating withe; such harmonic Ritz values and the
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1
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15

FiG. 5. Spectrum (plusses) and ordinary Ritz values (circles) emattons one (left) and two (right) with

GMRES applied tdf ande;.

1
05} ] 05
of o o + © H ofo
-05 ] -05
A 2 3 4 6 7 A 2 3

FiG. 6. Spectrum (plusses) and ordinary Ritz values (circles)amttons three (left) and four (right) with

GMRES applied td{ ande;.

of ++ B+

+4 o+

14 4 6

10

12

14

FiG. 7. Spectrum (plusses) and harmonic Ritz values (circles)eirations one (left) and two (right) with

GMRES applied tdd ande;.
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6 6
o
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o
2t 2 o
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FiG. 8. Spectrum (plusses) and harmonic Ritz values (circles)eirations three (left) and four (right) with
GMRES applied td ande; .

8 8
o
6 6f
4 4
2 2t
of o 4t E of o+
-2t -2
-4 -4
-6 -6
o
-8 -8
0 2 4 6 8 10 12 0 2 4 6 8 10 12

FiG. 9. Spectrum (plusses) and ordinary Ritz values (circles) eénations one (left) and two (right) with
GMRES applied td ande;.
residual norms (5.1) is

3.0641 —16.1873 —10.0627 —35.309 —45.2817 —88.268 4+ 97.75¢
3.0359  2.4280 1.5833 —4.692 — 12.4947 —34.712 4 15.306%

H= 0 18.5186 12.7967 38.1568 + 40.784 94.067 — 99.8761 | ,
0 0 1.2108 4.737 +11.131¢ 15.109 — 4.888:
0 0 0 4.162 7.345 — 11.131¢

([W*W — I5|| =~ 3,999, where we rounded to three decimal places. The ordinary Ritreg
with this matrix 4, behaving somewhat counterintuitively as well, are digpthin Figures 9
and 10.

Finally, Theorem 4.1 also shows how to generate the samecoverging harmonic
Ritz values from the original convection-diffusion proilesee Figures 3 and 4, but at the
same time, force faster, linear convergence of GMRES rasitlurms, e.qg.

[roll =1, |lr1|| =0.1, ||r2f| =0.01, |[rs|| =0.001, ||r4]] = 0.0001.

The upper Hessenberg system mafiixor the corresponding constructed linear system
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FiG. 10. Spectrum (plusses) and ordinary Ritz values (circles)amations three (left) and four (right) with

GMRES applied tdd ande;.

of o+t of +4 o+
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4t -4}
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6} J 6l
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4 6 8 10 12 14 4 6 8 10 12 14

Fic. 11. Spectrum (plusses) and ordinary Ritz values (circles)énaiions one (left) and two (right) with
GMRES applied td{ ande;.

11.951 —29.196 196.433 —1474.331 11797.602

1.201 6.138 0.005 1.747 —13.995
H= 0 0.907 6.082 0.268 —-0.049 |,
0 0 0.806 6.077 0.884
0 0 0 0.755 0.111

with ||W*W — I5|| & 2.252 and where we again rounded to three decimal places. Even if th
last matrix has some larger entries in its first row, its deparfrom normality as measured
by |[W*W — I5|| does not seem to deteriorate. The ordinary Ritz values Wwitnatrix 7
this time behave similarly to the harmonic Ritz values amddisplayed in Figures 11 and 12.

6. Conclusion. In this paper we have shown that one can construct right-lsades
and matrices with a prescribed spectrum such that GMRE8ualshorms and harmonic
Ritz values are also prescribed. This can be done providestpbed infinite harmonic Ritz
values correspond to prescribed stagnation iteration&MRES. Hence, there need be no
relation whatsoever between GMRES convergence and hacrRiazivalues.
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FiG. 12. Spectrum (plusses) and ordinary Ritz values (circles)erations three (left) and four (right) with
GMRES applied td ande; .

The results described above raise some questions abougltlagibr of restarting meth-
ods for GMRES using deflation. There are many practical exasnwhere using the har-
monic Ritz vectors improve the convergence of restarted GBiRsee [34]. It will be inter-
esting to find theoretical reasons for the fact that theseatil@flmethods work in many cases
despite of our results showing that there need be no rekdtiprbetween GMRES conver-
gence and harmonic Ritz values.

Software. At http://www.cs.cas.cz/duintjertebbens/duintjertebbens_soft.html the
reader can find MATLAB functions to create matrices andahitectors with the parametriza-
tion in this paper.
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