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Abstract. It is known that the harmonic Ritz values are the zeros of the GMRES residual polynomials. In this
paper we show that any decreasing GMRES residual norm history is possible with any prescribed finite harmonic Ritz
values in every iteration of the GMRES process. In addition,we characterize the admissible harmonic Ritz values
when GMRES stagnates during some iterations, and show that with any prescribed, in this sense admissible harmonic
Ritz values, any non-increasing GMRES residual norm history is possible. We also present a parameterization of
the class of matrices and right-hand sides yielding prescribed GMRES residual norms and prescribed admissible
harmonic Ritz values.
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1. Introduction. The Generalized Minimum Residual (GMRES) iterative methoddue
to Saad and Schultz [41] is one of the most popular Krylov methods for solving large, sparse,
nonsingular and non-Hermitian linear systemsAx = b. During several decades, intensive
research has been invested in convergence analysis of GMRES. The convergence behavior
of Hermitian counterparts of GMRES like the CG [23] and MINRES methods [37] can well
be explained by the distribution of the eigenvalues ofA. An important question in GMRES
convergence analysis is to determine to what extent eigenvalues influence the convergence of
the method.

Mathematically, GMRES convergence needs not be governed bythe eigenvalues ofA
only. This was shown very clearly in a series of papers by Arioli, Greenbaum, Pták and
Strakoš [22, 21, 1]. These papers show that for any chosen sequence of positive, non-
increasing numbers, there exists a class of right-hand sides and matrices, whose nonzero
eigenvalues can be prescribed, giving residual norms that coincide with the given non-increa-
sing sequence. GMRES residual norm convergence curves are,in this sense, independent
from the eigenvalues ofA. In [31] closed-form expressions for the GMRES residual norms
were derived as functions of the eigenvalues and eigenvectors ofA as well as the right-hand
sideb. These expressions show precisely how the residual norms depend on the eigenval-
ues, the pairwise differences of eigenvalues and on the eigenvectors (or principal vectors if
A is not diagonalizable). In a nutshell, when the matrixA is normal, the dependence of the
residual norms on the eigenvectors is mild but in the generalcase, GMRES convergence may
depend strongly on the eigenvectors in addition to the eigenvalues ofA. Several papers look
for approaches other than eigenvalue analysis to explain GMRES convergence. Some exam-
ples are approaches based on the field of values [12], potential theory [26], pseudospectra
[46, 35], the polynomial numerical hull [20], comparison with GMRES for non-Euclidean
inner products [39] or decomposition in normal plus low-rank [24]. Even if they can be very
suited for particular problems, none of the approaches appears to represent a universal tool to
explain the convergence behavior of the GMRES method.

The GMRES method uses the Arnoldi process [2] to compute an orthonormal basis of
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the Krylov subspace. The Arnoldi process generates upper Hessenberg matricesHk whose
eigenvalues (the so-called Ritz values) are often used as approximations of the eigenvalues
of A. In the CG method there is a strong correlation between the convergence of Ritz values
to eigenvalues and the convergence of CG-iterates to the solution of the linear system [47].
Another relevant question for GMRES convergence is to know how the (potential) conver-
gence of the Ritz values is related to the GMRES residual norms, see, i.e., [48]. An answer
was given in [9] where it was shown that one can construct right-hand sides and matrices
with prescribed eigenvalues, prescribed GMRES residual norms and prescribed Ritz values
at every GMRES iteration.

The convergence speed of the GMRES method is in practice often such that the method
needs to be somehow accelerated. While the most popular way to do this is through the
use of a preconditioner, significant attention has been paidto so-called deflation techniques
(which may be incorporated into preconditioning themselves). Based on spectral information
aboutA which is obtained during the GMRES process, the influence of eigenvalues which are
assumed to hamper convergence, is eliminated. Among a largenumber of proposed deflation
techniques, some examples are described in [32, 25, 8, 15, 3,27, 33, 14, 34, 6, 38, 28, 17,
7, 18]. Even if, in general, no eigenvalues need to hamper convergence at all according to
the results by Arioli, Greenbaum, Pták and Strakoš [22, 21, 1], deflation methods have shown
to be able to accelerate GMRES in many applications. Information about the spectrum ofA
is extracted, during the GMRES process, from either the Ritzvalues or from the harmonic
Ritz values (though some deflation methods are more focused on Ritz vectorsin relation
with multigrid techniques [43, 44]). Harmonic Ritz values are mostly preferred over ordinary
Ritz values and this may have two main reasons: First, harmonic Ritz values are related to
an Arnoldi process involvingA−1 and appear to be more suited to find eigenvalues close to
zero than ordinary Ritz values. Precisely eigenvalues close to zero are often assumed to be
responsible for slow GMRES convergence. Second, harmonic Ritz values are more strongly
connected to GMRES residual norms: Every GMRES residual vector is the product of a
polynomial inA with the initial residual vector and the roots of this residual polynomial are
the harmonic Ritz values [36]. The ordinary Ritz values are in fact the roots of the residual
polynomials of the Full Orthogonalization method (FOM) [40], which is closely related to
GMRES but which does not minimize the residual norms [19]. One therefore expects that
the extent to which GMRES residual norms are independent from ordinary Ritz values is not
the same for harmonic Ritz values; the latter should be strongly influencing residual norms
because of their immediate relation with the GMRES residualpolynomial. In this paper
we show that, surprisingly, GMRES residual norms are independent fromharmonicRitz
values as well. More precisely, our main result shows that one can construct right-hand sides
and matrices with prescribed eigenvalues, prescribed GMRES residual norms and prescribed
harmonic Ritz values at every GMRES iteration.

This paper is organized as follows. In the next section, we set up some notation and
define harmonic Ritz values sets that are admissible with respect to GMRES residual norms.
Section 3 addresses FOM residual norms in relation with ordinary Ritz values. Section 4
contains the main result of the paper on prescribed GMRES residual norms in combination
with prescribed harmonic Ritz values. In Section 5 we illustrate the result with some small
numerical examples and Section 6 contains closing remarks.To facilitate the discussion, we
shall adopt the following notation. For a matrixA, let aij , Ak, Ak, andA∗ denote thei, j
entry, the upper-leftk× k submatrix, the upper-left(k+1)× k submatrix, and the conjugate
transpose ofA, respectively. The complex conjugate of a scalarz is writtenz. Let ek denote
thekth column of the identity matrix of appropriate order.
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2. Preliminaries. Let a nonsingular matrixA ∈ Cn×n and a vectorb ∈ Cn be given.
For an initial guessx0 ∈ Cn, GMRES [41] approximates the exact solution ofAx = b at
stepk by the vectorxk ∈ x0 +Kk(A, r0) that minimizes the Euclidean norm of the residual
rk = b−Axk, i.e.,

‖rk‖ = min
x∈x0+Kk(A,r0)

‖b−Ax‖ = min
v∈Kk(A,r0)

‖r0 −Av‖,

where the Krylov subspace is defined as

Kk(A, r0) = span{r0, Ar0, . . . , A
k−1r0}.

Due to this minimization property, the residual vectorrk is the orthogonal projection of
r0 onto (AKk(A, r0))

⊥, the orthogonal complement ofAKk(A, r0). It can therefore be
uniquely expressed as

(2.1) rk = pk(A)r0,

wherepk(z) is the GMRES residual polynomial of thekth iteration. It is of degree at mostk
and has the value one at the origin; see, for example, [45].

The Arnoldi process [2] constructs an orthonormal basis ofKk(A, r0). We assume that
the Arnoldi process for the pair{A, r0} does not break down before thenth iteration. Then
aftern iterations the process has generated the Arnoldi decomposition

AV = V H,

whereV is unitary andH is irreducible upper Hessenberg. Thek eigenvalues{µ(k)
j }kj=1 of

the eigenvalue problem

Hkw = µw

are called Ritz values at stepk of the Arnoldi process for{A, r0}. We will rather call them
ordinary Ritz values to clearly distinguish them from harmonic Ritz values. Thek eigenvalues
{θ

(k)
j }kj=1 of the generalized eigenvalue problem

(2.2) H∗
kHkw = θH∗

kw, k < n,

are called harmonic Ritz values at stepk of the Arnoldi process for{A, r0}. We do not
consider here harmonic Ritz values resulting from a shift ofthe original spectrum to find close
to zero eigenvalues, i.e. we always implicitly assume zero shifts. BecauseH is irreducible
upper Hessenberg,H∗

kHk is non-singular and thus no harmonic Ritz valueθ
(k)
j can be zero.

However, whenHk is singular, some of the harmonic Ritz valuesθ
(k)
j are infinite.

LEMMA 2.1 ([5, 16]).TheGMRESresidual polynomialpk(z) in (2.1) can be expressed
as

pk(z) =
k
∏

j=1

(

1−
z

θ
(k)
j

)

,

where{θ(k)j }kj=1 are the harmonic Ritz values at stepk.

THEOREM 2.2. Let Θ(k) denote thek-tuple of the (not necessarily mutually different)
harmonic Ritz values at stepk:

Θ(k) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ).
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If GMRESapplied to{A, r0} stagnates from stepk+1 to stepk+m (k+m ≤ n− 1), i.e.,

‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖,

then, fori = 1 : m, the(k + i)-tuple of the harmonic Ritz values at stepk + i is

Θ(k+i) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ,∞, · · · ,∞).

Proof. Becauserk is the orthogonal projection ofr0 onto(AKk(A, r0))
⊥, rk+1 is the or-

thogonal projection ofr0 onto(AKk+1(A, r0))
⊥ and becauseAKk(A, r0) ⊆ AKk+1(A, r0),

‖rk‖ = ‖rk+1‖ implies rk = rk+1. Therefore,‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖ implies
rk = rk+1 = · · · = rk+m.

It follows from rk = rk+1 = · · · = rk+m and the uniqueness of the GMRES residual
polynomial that

pk(z) = pk+1(z) = · · · = pk+m(z).

Then the statement of the theorem is a direct consequence of Lemma 2.1.

Theorem 2.2 shows that if one prescribes GMRES to have some stagnating iterations,
this puts conditions on the corresponding harmonic Ritz values. We will show later that these
are theonlyconditions which prescribed residual norms can impose. Even if the proof follows
in a later section, we formulate the definition ofadmissibleharmonic Ritz values with respect
to chosen residual norms already here.

DEFINITION 2.3. For prescribed GMRES residual norms

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rn−1‖ ≥ ‖rn‖ = 0,

we call a set of tuples of nonzero complex and infinite numbers

Θ = {Θ(1), Θ(2), . . . , Θ(n)}

= {θ
(1)
1 , (θ

(2)
1 , θ

(2)
2 ), · · · , (θ

(n)
1 , θ

(n)
2 , . . . , θ(n)n )}

an admissible harmonic Ritz value set if the tuples inΘ satisfy the property in Theorem 2.2.
We have here, in contrast with (2.2), considered the harmonic Ritz valuesΘ(n) for the

nth iteration. The convention is that they coincide with the ordinary Ritz values for thenth
iteration and thus with the eigenvalues ofA. Before showing that admissible harmonic Ritz
values can be chosen independently from GMRES residual norms we have a look at the
somewhat simpler but analogue problem for ordinary Ritz values and FOM residual norms.

3. Ordinary Ritz values and the FOM method. For an initial guessx0, FOM approx-
imates the exact solution ofAx = b at stepk by the vectorxF

k ∈ x0 + Kk(A, r0) such that
the residualrFk = b −AxF

k is orthogonal toKk(A, r0), i.e.,

rFk ⊥ Kk(A, r0).

This translates to FOM iterates being of the form

(3.1) xF
k = x0 + V (k)y(k),

wherey(k) is obtained by solving

(3.2) Hky
(k) = ‖r0‖e1
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andV (k) consists of the firstk columns ofV . Then, the residual isrFk = −hk+1,ke
T
k y

(k)vk+1

and the norm of the residual vector is

(3.3) ‖rFk ‖ = hk+1,k |e
T
k y

(k)|.

The latter relation holds in fact for any Q-OR method [13].
As mentioned in the introduction, the roots of the FOM residual polynomialpFk such

thatrFk = pFk (A)r0 (with pFk (0) = 1) are the ordinary Ritz values at iterationk [19]. Nev-
ertheless, as we will show next, the FOM residual norm can be fully independent from the
corresponding Ritz values. To gain more insight in the FOM residual norm, let us analyze the
entries ofy(k) in (3.2). The matrixH in (2.2) can be factored as

(3.4) H = U−1CU

whereU is upper triangular with real positive entries on the diagonal andC is the companion
matrix of the eigenvalues ofH (and ofA); see for instance [29] or [10] where the factorization
process is described. Note that

hj+1,j =
uj,j

uj+1,j+1
, j = 1, . . . , n− 1,

ui,j denoting the entries ofU with u1,1 = 1/‖r0‖. The matrixU is linked to the Krylov
matrix

K = [r0, Ar0, . . . , A
n−1r0]

and to the matrix of the basis vectorsV byKU = V , see, e.g., [9, 10, 11].
The principal submatrixHk of H in (3.2) can be factored in a similar way with a com-

panion matrix revealing the eigenvalues ofHk, which are the ordinary Ritz values. This was
done in [11]. However, since the notation we use here is a little bit different, we reformulate
this result.

THEOREM 3.1. The upper Hessenberg matrixHk computed in the Arnoldi process can
for k < n be factored as

(3.5) Hk = U−1
k C(k)Uk.

whereUk is the principal submatrix of orderk of U obtained from the Krylov matrixK and
the unitary matrixV throughKU = V andC(k) is the companion matrix for the Ritz values
at iterationk. Moreover,

C(k) = Ek +
[

0 · · · 0 − 1
uk+1,k+1

U1:k,k+1

]

whereEk is a square down-shift matrix of orderk,

Ek =















0
1 0

. . .
. . .
1 0

1 0















,

andU1:k,k+1 is the vector of thek first components of thek + 1st column ofU .



6 K. DU, J. DUINTJER TEBBENS AND G. MEURANT

Proof. Clearly

Hk =
[

Ik 0
]

H

[

Ik
0

]

=
[

Ik 0
]

U−1CU

[

Ik
0

]

,

whereIk is the identity matrix of orderk. Let

[

Ik 0
]

U−1 =
[

U−1
k Z

]

, U

[

Ik
0

]

=

[

Uk

0

]

.

SinceC = En +
[

0 · · · 0 s
]

, it yields

Hk =
[

U−1
k Z

]

[

EkUk

e1e
T
kUk

]

= U−1
k EkUk + Ze1e

T
kUk.

The vectorZe1 of lengthk is made of thek first components of thek + 1st column ofU−1

that is,−U−1
k U1:k,k+1/uk+1,k+1. FactoringU−1

k on the left andUk on the right gives the
result.

Theorem 3.1 shows that the coefficients of the characteristic polynomialπk(λ) = λk +
αk−1λ

k−1 + · · ·+ α0 of Hk are

(3.6)







α0

...
αk−1






=

1

uk+1,k+1
U1:k,k+1 =

1

uk+1,k+1







u1,k+1

...
uk,k+1






.

The roots of the polynomialπk are the ordinary Ritz values at iterationk. From Theorem 3.1
we also have fory(k) in (3.1), assuming thatHk is nonsingular,

y(k) = ‖r0‖H
−1
k e1 = ‖r0‖U

−1
k [C(k)]−1Uke1 = U−1

k [C(k)]−1e1.

If we write the companion matrixC(k) as

C(k) =

[

0 −α0

Ik−1 −α̂

]

,

with α0 6= 0 since we assumedHk to be nonsingular, then the inverse of the companion
matrix is

(3.7) [C(k)]−1 =

[

−α̂/α0 Ik−1

−1/α0 0

]

.

Therefore

eTk y
(k) = −

1

α0 uk,k
= −

uk+1,k+1

uk,k u1,k+1
= −

1

u1,k+1 hk+1,k
.

Using (3.3), we have for iterationsk where FOM iterates exist that

(3.8) ‖rFk ‖ =
1

|u1,k+1|
.

This result was proved with a more complicated proof in [11] and holds for any Q-OR method.
If Hk is singular,α0 = 0 and so isu1,k+1.
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We remark thatuk+1,k+1, . . . , u1,k+1 are the coefficients (in descending order of powers)
of another polynomial whose roots are the ordinary Ritz values at thekth iteration of the
Arnoldi process. This holds as well for the FOM (or Q-OR) residual polynomialpFk which is
scaled such thatpFk (0) = 1. As a by-product of Theorem 3.1 we have that the coefficients of
pFk are

















1
u2,k+1

u1,k+1

...
uk,k+1

u1,k+1
uk+1,k+1

u1,k+1

















=
1

u1,k+1







u1,k+1

...
uk+1,k+1






.

If we write u1,k+1 asu1,k+1 = |u1,k+1| e
φk+1i, then







u1,k+1

...
uk+1,k+1






=

1

‖rFk ‖
eφk+1i

















1
u2,k+1

u1,k+1

...
uk,k+1

u1,k+1
uk+1,k+1

u1,k+1

















.

Thus the matrixUk+1 can be factorized as

Uk+1 = Ûk+1 Dk+1, Dk+1 =















1
‖r0‖

eφ2i

‖rF
1
‖

.. .
eφk+1i

‖rF
k
‖















,

and the non-zero entries of the columns ofÛk+1 are the coefficients of the residual polyno-
mials whose roots are the ordinary Ritz values. Hence, the entries of Ûk+1 depend only on
the ordinary Ritz values for the iterations 1 tok. If the matrix, the right-hand side and the
starting vector are real, the coefficientseφji are just±1.

The above shows that it is straightforward to construct linear systems with prescribed
FOM residual norms and, at the same time, prescribed ordinary Ritz values. An example is
the linear systemHx = e1 whereH is computed according to (3.4) withU being of the form

U = ÛnDn

where thekth column ofÛn is chosen to be the unique FOM polynomial whose roots are the
ordinary Ritz values prescribed for thekth iteration.Dn is chosen to contain the prescribed
FOM residual norms, with arbitrary anglesφj . Other examples result from choosing a unitary
matrixQ and considering the systemQ∗HQx = Q∗e1.

4. Prescribed GMRES residual norms and harmonic Ritz values. We have seen in
the previous section that arbitrary ordinary Ritz values can be generated during the Arnoldi
process. We now show a relation between ordinary and harmonic Ritz values in terms of the
decomposition (3.5) that was used to generate arbitrary ordinary Ritz values. If GMRES does
not stagnate at stepk, i.e.,‖rk‖ < ‖rk−1‖, then the harmonic Ritz values defined in (2.2) can
also be seen as the eigenvalues of the matrix

(4.1) Ĥk = Hk + h2
k+1,kH

−∗
k eke

T
k
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sinceHk is nonsingular. This follows from multiplication of (2.2) with H−∗
k from the left.

The following theorem was proved in [30]. For the convenience of the reader we give the
proof again using the notation of this paper.

THEOREM 4.1. For k < n assume thatHk is nonsingular. Then the matrix̂Hk defined
in (4.1) can be written aŝHk = U−1

k Ĉ(k)Uk, Uk being upper triangular and

Ĉ(k) = C(k) −
1

uk+1,k+1u1,k+1
UkU

∗
k e1e

T
k

being a companion matrix whereC(k) is the companion matrix inHk = U−1
k C(k)Uk.

Proof. Let us first considerH−∗
k ek. We haveH−∗

k = U∗
k [C

(k)]−∗U−∗
k . SinceUk is

upper triangular we obtainU−∗
k ek = 1

uk,k
ek with uk,k real and positive. Using (3.7) and

taking the (Hermitian) transpose, we have

[C(k)]−∗ek = −
1

ᾱ0
e1.

Finally we obtain

H−∗
k ek = −

1

uk,k ᾱ0
U∗
k e1.

On the other hand, we havehk+1,k = uk,k/uk+1,k+1. Then

Ĥk = U−1
k C(k)Uk −

uk,k

u2
k+1,k+1 ᾱ0

U∗
k e1e

T
k .

Let us factorU−1
k on the left andUk on the right. We obtain

Ĥk = U−1
k [C(k) −

uk,k

u2
k+1,k+1 ᾱ0

UkU
∗
k e1e

T
kU

−1
k ]Uk.

We remark thateTkU
−1
k = 1

uk,k
eTk . HenceĤk is similar to the matrix

Ĉ(k) = C(k) −
1

u2
k+1,k+1ᾱ0

UkU
∗
k e1e

T
k = C(k) −

1

uk+1,k+1u1,k+1
UkU

∗
k e1e

T
k ,

where we used (3.6). The second term on the right-hand side modifies only the last column.
Therefore,Ĉ(k) is a companion matrix.

COROLLARY 4.2. Under assumptions of Theorem 4.1, the coefficients of the character-
istic polynomial ofĤk whose roots are the harmonic Ritz values are given by the negative of
the last column of̂C(k), that is, by

(4.2) −Ĉ(k)ek =
1

uk+1,k+1







u1,k+1

...
uk,k+1






+

1

uk+1,k+1u1,k+1
UkU

∗
k e1.

Before we formulate the main theorem, we need the following auxiliary results.
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LEMMA 4.3. For k < n, the GMRES residual norms‖rk‖ and‖rk−1‖ satisfy

|u1,k+1|
2 =

1

‖rk‖2
−

1

‖rk−1‖2
, ‖rk‖ =

(

k+1
∑

l=1

|u1l|
2

)−1/2

.

Proof. Using the well-known relationship

1

‖rFk ‖
2
=

1

‖rk‖2
−

1

‖rk−1‖2

between FOM and GMRES residual norms [4] and using (3.8), we immediately obtain the
first claim. Then

k+1
∑

l=1

|u1l|
2 =

1

‖rk‖2
−

1

‖rk−1‖2
+

1

‖rk−1‖2
−

1

‖rk−2‖2
+ · · ·+

1

‖r0‖2
=

1

‖rk‖2
.

THEOREM 4.4. Let

Θ = {θ
(1)
1 , (θ

(2)
1 , θ

(2)
2 ), · · · , (θ

(n)
1 , θ

(n)
2 , . . . , θ(n)n )}

be any admissible harmonic Ritz value set for prescribed GMRES residual normsρk, 0 ≤
k < n, where

ρ0 ≥ ρ1 ≥ · · · ≥ ρn−1 > 0

is any non-increasing sequence of real positive numbers. Let H = U−1CU whereC is the
companion matrix with eigenvaluesθ(n)1 , θ

(n)
2 , . . . , θ

(n)
n , and the upper triangular matrixU

is constructed as follows. Letu11 = 1/‖r0‖. For 1 ≤ k < n, if ρk < ρk−1, then let

u1,k+1 =
β0

|β0|

√

1/ρ2k − 1/ρ2k−1,

uk+1,k+1 =
1

|β0|ρ2k

√

1/ρ2k − 1/ρ2k−1

,

uj,k+1 = βj−1uk+1,k+1 −
eTj UkU

∗
k e1

u1,k+1
, j = 2, . . . , k,

whereβj , 0 ≤ j ≤ k − 1, are the coefficients of the polynomial

λk + βk−1λ
k−1 + · · ·+ β1λ+ β0

with roots{θ(k)j }kj=1. If ρk = ρk−1, let u1,k+1 = 0, uk+1,k+1 be an arbitrarily chosen
positive real number, anduj,k+1, 2 ≤ j ≤ k, be arbitrarily chosen complex numbers. Then
GMRES applied to{H, ‖r0‖e1} generates the residualsrk with ‖rk‖ = ρk and the harmonic
Ritz value setΘ.

Proof. By the construction of the first row ofU and using Lemma 4.3, the residualrk of
the GMRES applied to{H, e1} satisfies‖rk‖ = ρk.

If ρk < ρk−1, by (4.2), straightforward calculations yield

−Ĉ(k)ek =







β0

...
βk−1






.
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Therefore, the harmonic Ritz values at stepk are{θ(k)j }kj=1.
If ρk = ρk−1, according to Theorem 2.2, the harmonic Ritz values at stepk are then

{θ
(k−1)
1 , θ

(k−1)
2 , · · · , θ

(k−1)
k−1 ,∞}. We now show why this is true with any choice ofuj,k+1,

2 ≤ j ≤ k, and any positive real choice ofuk+1,k+1. By construction, we have

Hk = U−1
k+1

[

0
Ik

]

Uk.

For simplicity, we write

Uk+1 =

[

Uk t
0 s

]

, t =

[

0
t̂

]

.

Then

Hk = U−1
k

[

0 0
Ik−1 −t̂/s

]

Uk

and

H∗
kHk = U∗

k









[

0 Ik−1

]

U−∗
k U−1

k

[

0
Ik−1

]

−
[

0 Ik−1

]

U−∗
k U−1

k t/s

−(t/s)∗U−∗
k U−1

k

[

0
Ik−1

]

(t∗U−∗
k U−1

k t+ 1)/s2









Uk.

Thus, the harmonic Ritz values at stepk are the eigenvalues of the generalized eigenvalue
problem
(4.3)








[

0 Ik−1

]

U−∗
k U−1

k

[

0
Ik−1

]

−
[

0 Ik−1

]

U−∗
k U−1

k t/s

−(t/s)∗U−∗
k U−1

k

[

0
Ik−1

]

(t∗U−∗
k U−1

k t+ 1)/s2









y = θ

[

0 Ik−1

0 −t̂∗/s

]

U−∗
k U−1

k y.

Multiplying by

[

Ik−1 0
t̂∗/s 1

]

on both sides of (4.3) yields





[

0 Ik−1

]

U−∗
k U−1

k

[

0
Ik−1

]

−
[

0 Ik−1

]

U−∗
k U−1

k t/s

0 1/s2



 y = θ

[

0 Ik−1

0 0

]

U−∗
k U−1

k y.

Therefore, the set of the harmonic Ritz values at stepk consists of one infinite value and the
eigenvalues of the generalized eigenvalue problem

(4.4)
[

0 Ik−1

]

U−∗
k U−1

k

[

0
Ik−1

]

ỹ = θ
[

0 Ik−1

]

U−∗
k U−1

k

[

Ik−1

0

]

ỹ.

Straightforward calculations yield

[

0 Ik−1

]

U−∗
k U−1

k

[

Ik−1

0

]

=

[

U−1
k

[

0
Ik−1

]]∗

U−1
k

[

Ik−1

0

]

(4.5)

=

[

U−1
k

[

0
Ik−1

]]∗ [
Ik−1

0

]

U−1
k−1

=

[

[

Ik−1 0
]

U−1
k

[

0
Ik−1

]]∗

U−1
k−1

= [U−1
k−1C

(k−1)]∗U−1
k−1

= [C(k−1)]∗U−∗
k−1U

−1
k−1.
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By (4.5),Hk−1 = U−1
k−1C

(k−1)Uk−1, and

H∗
k−1Hk−1 = U∗

k−1

[

0 Ik−1

]

U−∗
k U−1

k

[

0
Ik−1

]

Uk−1,

we know that the eigenvalues of the generalized eigenvalue problem (4.4) are{θ(k−1)
j }k−1

j=1 .
This completes the proof.

THEOREM 4.5. Let Θ, {ρk}
n−1
k=0 andH be given as in Theorem 4.4. Then GMRES

applied to{A, r0} generates the residualsrk with ‖rk‖ = ρk and the harmonic Ritz value
setΘ if and only if there exists a unitary matrixQ such thatA = QHQ∗ andr0 = ρ0Qe1.

Proof. If GMRES applied to{A, r0} generates the residualsrk with ‖rk‖ = ρk, we have
the Arnoldi decompositionAV = V H andH = U−1CU , whereC is the companion matrix
with eigenvaluesθ(n)1 , θ

(n)
2 , . . . , θ

(n)
n , andU is upper triangular with real positive diagonal

entries. For1 ≤ k < n, we know from Lemma 4.3 that

|u1,k+1| =
√

1/ρ2k − 1/ρ2k−1.

If ρk < ρk, we write

u1,k+1 =
√

1/ρ2k − 1/ρ2k−1e
φk+1 i.

Let βj , 0 ≤ j ≤ k − 1, be the coefficients of the polynomial

λk + βk−1λ
k−1 + · · ·+ β1λ+ β0

with roots{θ(k)j }kj=1. As the coefficientsβj coincide with the entries of−Ĉ(k)ek, equating
the first row in (4.2) and using Lemma 4.3 gives

β0 =
u1,k+1

uk+1,k+1
+

eT1 UkU
∗
ke1

uk+1,k+1u1,k+1

=

√

1/ρ2k − 1/ρ2k−1e
φk+1 i

uk+1,k+1
+

1/ρ2k−1

uk+1,k+1

√

1/ρ2k − 1/ρ2k−1e
φk+1 i

=





√

1/ρ2k − 1/ρ2k−1

uk+1,k+1
+

1/ρ2k−1

uk+1,k+1

√

1/ρ2k − 1/ρ2k−1



 eφk+1 i

=
eφk+1 i

uk+1,k+1ρ2k

√

1/ρ2k − 1/ρ2k−1

.

Therefore,φk+1 must be the angle ofβ0, i.e.

eφk+1 i = β0/|β0|

and then the first and(k + 1)st entry ofUek+1 satisfy

u1,k+1 =
β0

|β0|

√

1/ρ2k − 1/ρ2k−1,

uk+1,k+1 =
1

|β0|ρ2k

√

1/ρ2k − 1/ρ2k−1

.
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The entriesuj,k+1 follow from the corresponding rows in equation (4.2):

uj,k+1 = βj−1uk+1,k+1 −
eTj UkU

∗
k e1

u1,k+1
, j = 2, . . . , k.

If ρk = ρk−1, thenu1,k+1 = 0. As proved in Theorem 4.4,uk+1,k+1 can be an arbitrary
positive real number andui,k+1, 2 ≤ j ≤ k can be arbitrary complex numbers.

Conversely, if there exists a unitary matrixQ such thatA = QHQ∗ andr0 = ρ0Qe1, by
the invariance under unitary similarity transformations of residual norms as well as generated
Hessenberg matrices (see, for example, [45]) and Theorem 4.4, GMRES applied to{A, r0}
generates the residualsrk with ‖rk‖ = ρk and the harmonic Ritz value setΘ.

The last two theorems represent a parameterization of the class of matrices and right-
hand sides generating, when GMRES is applied to a member of the class, prescribed residual
norms and prescribed admissible harmonic Ritz values. The freedom left over when prescrib-
ing these quantities simultaneously, is in the unitary similarity transformations of the linear
system withQ (which incorporates as well the choice of the phase angles ofthe first row of
U ). If stagnation is prescribed, then there is additional freedom in the choice of the non-zero
entries of the corresponding row ofU - they can be chosen arbitrarily except for the diagonal
entry which must be positive real.

5. Numerical illustration. We have proved thatany GMRES convergence history is
possible withanyadmissible harmonic Ritz values in every iteration. In order to illustrate the
strength of this result we describe a few extreme situations. We consider a very small but not
fully academic example and first show that in this example harmonic Ritz values explain the
behavior of GMRES much better than ordinary Ritz values.

Consider the one-dimensional convection-diffusion problem on the unit interval[0, 1]

−νu′′ + u′ = f, u(0) = u(1) = 0,

discretized with finite differences on a regular grid withn inner nodes using upwind dif-
ferences for the convective term. This gives a linear systemwhere the system matrixA is
tridiagonal with entries

A = h−2 tridiag(−ν − h, 2ν + h,−ν), h = 1/(n+ 1),

see, e.g. [42, Section 4]. In the convection dominated case,ν ≪ h2 andA is close to a scaled
transposed Jordan block and in particular non-normal. Let the source termf be nonzero only
around the first inner node1/(n + 1), with the value one in that node. Then the right-hand
sideb is e1. If we haveν = 0.001 andn = 5, the matrixA is

A =













6.072 −0.036 0 0 0
−6.036 6.072 −0.036 0 0

0 −6.036 6.072 −0.036 0
0 0 −6.036 6.072 −0.036
0 0 0 −6.036 6.072













, ‖W ∗W − I5‖ ≈ 3.953,

whereW denotes the normalized eigenvector matrix ofA (A is diagonalizable but not nor-
mal). GMRES generates the residual norms

(5.1) ‖r0‖ = 1, ‖r1‖ = 0.7050, ‖r2‖ = 0.5751, ‖r3‖ = 0.4978, ‖r4‖ = 0.4451.

The convergence is slow and clearly sublinear. If ordinary Ritz values influence GM-
RES convergence speed as suggested in [48], then we expect similar slow convergence (or
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possibly divergence) of the ordinary Ritz values. The ordinary Ritz values for the individual
iterations are represented with circles in Figures 1 and 2. We see that, on the contrary, they
seem to converge already in the very first step, where an exacteigenvalue was found. The
second iteration finds two more eigenvalues and further iterations show smooth convergence
reminding of interlacing eigenvalues for Hermitian matrices.

5 5.5 6 6.5 7
−1

−0.5

0

0.5

1

5 5.5 6 6.5 7
−1

−0.5

0

0.5

1

FIG. 1. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied toA ande1.

5 5.5 6 6.5 7
−1

−0.5
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−0.5

0

0.5

1

FIG. 2. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied toA ande1.

The behavior of the harmonic Ritz values, on the other hand, corresponds much better to
that of GMRES in this example. The harmonic Ritz values for the individual iterations can
be taken from Figures 3 and 4. They stay away from the eigenvalues for all iterations and do
not even seem to converge to other values, but ’dance’ aroundthe spectrum.

This example seems to indicate that the convergence of harmonic Ritz values is, in gen-
eral, closely related to that of GMRES. But as we have proved in the previous sections, this
is not the case. We can for instance, using Theorem 4.1, generate another upper Hessenberg
matrixH such that it generates with the right-hand sidee1 the same residual norms (5.1) as
A but such that it generates harmonic Ritz values that are identical with the nicely converging
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FIG. 3. Spectrum (plusses) and harmonic Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied toA (or H̃) ande1.
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FIG. 4. Spectrum (plusses) and harmonic Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied toA (or H̃) ande1.

ordinary Ritz values in Figures 1 and 2. This matrixH is

H =













3.054 1.064 −0.486 0.296 4.8
3.036 5.073 0.560 −0.297 −4.829
0 4.016 5.566 0.351 4.829
0 0 4.522 5.769 −4.781
0 0 0 4.826 10.898













, ‖W ∗W − I5‖ ≈ 3.988,

where we rounded to three decimal places; the matrix is not much less normal thanA. The
ordinary Ritz values with this matrixH are displayed in Figures 5 and 6 and seem, except
from an outlier, to often find close to exact eigenvalues in spite of slow GMRES convergence.

There is no reason either why the harmonic Ritz values would not behave, with the same
residual norms (5.1), in a counterintuitive manner midway between perfect convergence and
plain divergence. For instance, they could have converged in step one, diverge in step two,
converge in step three and diverge again in the last step. An example of this behavior is given
in Figures 7 and 8.

The upper Hessenberg matrix̂H generating withe1 such harmonic Ritz values and the
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FIG. 5. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied toH ande1.
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FIG. 6. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied toH ande1.
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FIG. 7. Spectrum (plusses) and harmonic Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied tôH ande1.
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FIG. 8. Spectrum (plusses) and harmonic Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied tôH ande1.
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FIG. 9. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied tôH ande1.

residual norms (5.1) is

Ĥ =













3.0541 −16.1873 −10.0627 −35.309− 45.281i −88.268 + 97.75i
3.0359 2.4280 1.5833 −4.692− 12.494i −34.712 + 15.306i

0 18.5186 12.7967 38.158 + 40.78i 94.067− 99.876i
0 0 1.2108 4.737 + 11.131i 15.109− 4.888i
0 0 0 4.162 7.345− 11.131i













,

‖W ∗W − I5‖ ≈ 3, 999, where we rounded to three decimal places. The ordinary Ritz values
with this matrixĤ , behaving somewhat counterintuitively as well, are displayed in Figures 9
and 10.

Finally, Theorem 4.1 also shows how to generate the same non-converging harmonic
Ritz values from the original convection-diffusion problem, see Figures 3 and 4, but at the
same time, force faster, linear convergence of GMRES residual norms, e.g.

‖r0‖ = 1, ‖r1‖ = 0.1, ‖r2‖ = 0.01, ‖r3‖ = 0.001, ‖r4‖ = 0.0001.

The upper Hessenberg system matrixH̃ for the corresponding constructed linear system
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FIG. 10. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied tôH ande1.
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FIG. 11. Spectrum (plusses) and ordinary Ritz values (circles) in iterations one (left) and two (right) with
GMRES applied tõH ande1.

is

H̃ =













11.951 −29.196 196.433 −1474.331 11797.602
1.201 6.138 0.005 1.747 −13.995
0 0.907 6.082 0.268 −0.049
0 0 0.806 6.077 0.884
0 0 0 0.755 0.111













,

with ‖W ∗W −I5‖ ≈ 2.252 and where we again rounded to three decimal places. Even if this
last matrix has some larger entries in its first row, its departure from normality as measured
by ‖W ∗W − I5‖ does not seem to deteriorate. The ordinary Ritz values with the matrixH̃
this time behave similarly to the harmonic Ritz values and are displayed in Figures 11 and 12.

6. Conclusion. In this paper we have shown that one can construct right-handsides
and matrices with a prescribed spectrum such that GMRES residual norms and harmonic
Ritz values are also prescribed. This can be done provided prescribed infinite harmonic Ritz
values correspond to prescribed stagnation iterations forGMRES. Hence, there need be no
relation whatsoever between GMRES convergence and harmonic Ritz values.
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FIG. 12. Spectrum (plusses) and ordinary Ritz values (circles) in iterations three (left) and four (right) with
GMRES applied tõH ande1.

The results described above raise some questions about the behavior of restarting meth-
ods for GMRES using deflation. There are many practical examples where using the har-
monic Ritz vectors improve the convergence of restarted GMRES; see [34]. It will be inter-
esting to find theoretical reasons for the fact that these deflation methods work in many cases
despite of our results showing that there need be no relationship between GMRES conver-
gence and harmonic Ritz values.

Software. At http://www.cs.cas.cz/duintjertebbens/duintjertebbens soft.html the
reader can find MATLAB functions to create matrices and initial vectors with the parametriza-
tion in this paper.
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