
A NOTE ON THE GRCAR MATRIX

GÉRARD MEURANT∗

1. Introduction. The Grcar type of matrix was devised in 1989 by Joseph
F. Grcar to test some iterative methods [6]. For n = 10, the matrix is

G10 =



1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1


.

In fact, the matrix defined by Grcar was the transpose of that matrix, but this does
not matter for our purposes. The matrix Gn of order n is Toeplitz upper Hessenberg
and banded with −1 on the subdiagonal and 1 on the main diagonal and on three
upper diagonals. It is often used for testing algorithms for computing eigenvalues
since those of Gn are known to be sensitive to perturbations.

Being an unreduced upper Hessenberg matrix, Gn is nonderogatory, which means
that its minimal polynomial is equal to its characteristic polynomial or equivalently
all the eigenvalues are of geometric multiplicity one; see [5] for a proof. In this
note we are interested in its determinant, its inverse, its LU factorization, and in a
characterization of its asymptotic spectrum.

2. Determinant. We are interested in the determinants since they are involved
in formulas for the inverses. There are recurrence formulas for the determinant of the
successive Grcar matrices Gn. But, because of the banded structure of Gn, they are
different for the first values of n.

Proposition 2.1. Let dn = det(Gn). The determinants are

d1 = 1,

d2 = d1 + 1 = 2,

d3 = d2 + d1 + 1 = 4,

d4 = d3 + d2 + d1 + 1 = 8,

dn = dn−1 + dn−2 + dn−3 + dn−4, n ≥ 5.

Proof. This is obtained using the Laplace expansions from the first columns.

The determinants are always positive, and increasing with n. Therefore, all the
Grcar matrices are nonsingular. The first values are

1, 2, 4, 8, 15, 29, 56, 108, 208, 401,
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2 G. MEURANT

for n = 1, 2, . . . , 10. The value of the determinant is approximately multiplied by
2 when n is increased by 1. We have det(G100) ≈ 1.7944 1028 and det(G200) ≈
5.6852 1056.

3. Inverse. Matrices Gn are persymmetric, that is, symmetric with respect to
the principal anti-diagonal. The inverse of a persymmetric matrix is persymmetric.
The inverse of Gn can be obtained as in [11] or [3]. However, we can compute it in a
simpler way.

We first permute the rows of the matrix. Let P be the permutation matrix
corresponding to moving the first row to the last position. We use the following result
from [8].

Proposition 3.1. Let H be an unreduced upper Hessenberg matrix of order n
such that

PH =

(
Ĥ w
hT h1,n

)
,

where Ĥ is square of order n − 1. Let `T = hT Ĥ−1 and α = h1,n − `Tw 6= 0. The
inverse of PH is

(PH)−1 =

 Ĥ−1(I + 1
αw`

T ) − 1
αĤ
−1w

− 1
α`
T 1

α


and

H−1 =
1

α

−Ĥ−1w Ĥ−1(αI + w`T )

1 −`T

 .

Proof. We use the LU factorization of PH, see [8]. We have

L =

(
I 0
`T 1

)
⇒ L−1 =

(
I 0
−`T 1

)
,

U =

(
Ĥ w
0 α

)
⇒ U−1 =

(
Ĥ−1 − 1

αĤ
−1w

0 1
α

)
.

The result is obtained by (PH)−1 = U−1L−1. Note that the matrix Ĥ is upper
triangular.

We apply the previous result to the Grcar matrix. The diagonal entries of the
matrix Ĝn of order n − 1 are equal to −1 and there are three upper diagonals with
entries equal to 1. For instance, for n = 10,

Ĝ10 =



−1 1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1

−1


.
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First, we have to find what are the inverses of such Toeplitz upper triangular matrices.

Theorem 3.2. The inverse of Ĝn is a Toeplitz upper triangular matrix,

(Ĝn)−1 =



−1 −d1 −d2 −d3 · · · −dn−3 −dn−2

−1 −d1 −d2 −dn−4 −dn−3

−1
. . .

. . .
...

...
. . .

. . .
...

...
−1 −d1 −d2

−1 −d1

−1


,

where the di’s are the determinants of Proposition 2.1.
Proof. The proof is by induction. The result is clearly true for Ĝ1, and also Ĝ2.

Let us assume that it holds for Ĝn−1. Since Ĝn is an upper triangular matrix, the

principal submatrix of order n−1 of (Ĝn)−1 is (Ĝn−1)−1. So, we only have to consider
the last column which is

(Ĝn−1)−1 ( 0 · · · 0 1 1 1 1 )
T
,(3.1)

and −1 as the last component. The components of the vector in (3.1) are the sums

of the four last entries of each row of (Ĝn−1)−1. Using the definitions of the di’s in
Proposition 2.1 proves the claim.

Let us compute the other quantities involved in Proposition 3.1. For the Grcar
matrix,

hT = ( 1 1 1 1 0 · · · 0 ) ,

and, for n > 4, w is a zero vector except for the last four components equal to 1.
Therefore,

`T = hT (Ĝn)−1,

= (−1, −1− d1, −1− d1 − d2, −1− d1 − d2 − d3, d1 − d2 − d3 − d4, · · ·
− dn−5 − dn−4 − dn−3 − dn−2),

= (−d1, −d2, −d3, · · · −dn−1 ) .

Since, for n > 4 h1,n = 0, α = −`Tw, that is, the sum of the last four components of
−`T , which yields α = dn 6= 0.

For (Ĝn)−1w, we just have to compute the sum of the four last entries of each
row of the matrix. It yields

(Ĝn)−1w = (−dn−1 −dn−2 · · · −d2 −d1 )
T
.

Theorem 3.3. With the notation above and n > 4, the inverse of Gn is

G−1
n =

1

dn



dn−1

dn−2

...
d2

d1

dn(Ĝn)−1 + (Ĝn)−1w `T

1 d1 d2 · · · · · · dn−2 dn−1

 .
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Proof. The proof is straightforward from Proposition 3.1 and the results above.
Note that in the last row, we have the entries of the inverse, and not a product of
determinants as it may look.

Since (Ĝn)−1 is upper triangular, we clearly see that the lower triangular part of
G−1
n is the lower triangular part of a rank-one matrix, as it is for all unreduced upper

Hessenberg matrices. The first inverses are

G−1
2 =

1

2

(
1 −1
1 1

)
, G−1

3 =
1

4

 2 −2 0
1 1 −2
1 1 2

 ,

G−1
4 =

1

8


4 −4 0 0
2 2 −4 0
1 1 2 −4
1 1 2 4

 , G−1
5 =

1

15


8 −7 1 2 4
4 4 −7 1 2
2 2 4 −7 1
1 1 2 4 −7
1 1 2 4 8

 .

When the inverse of Gn is multiplied by its determinant, the entries are integers.

4. LU factorization. Linear systems with the matrix Gn can be solved using
the factorization given in the proof of Proposition 3.1. However, it is also interesting
to directly look for an LU factorization (without pivoting).

Theorem 4.1. The matrix Gn can be factorized as Gn = LnUn with

Ln =



1
−1 1

−d1d2 1

−d2d3 1

−d3d4 1

−d4d5 1

. . .
. . .

−dn−2

dn−1
1


,

where di is the determinant of the matrix Gi, and where the upper triangular matrix
Un has nonzero entries ui,j defined as

u1,1:4 = ( 1 1 1 1 ) ,

u2,2:5 = ( d2d1
d3−d2
d1

1 + 1
d1

1 ) .

and, for k ≥ 3,

uk,k =
dk
dk−1

,

uk,k+1 =
dk+1 − dk
dk−1

, k + 1 ≤ n,

uk,k+2 = 1 +
dk−2

dk−1
, k + 2 ≤ n,

uk,k+3 = 1, k + 3 ≤ n.
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Proof. The proof is by induction. The result is clearly true for n = 1, 2. Let us
assume that it holds for Gn−1 and that

Gn =

(
Gn−1 gn

gn,n−1e
T
n−1 1

)
.

Ln is a lower bidiagonal matrix and Un is banded upper triangular. Gn can be
factorized as

Gn =

(
Ln−1 0

`n,n−1e
T
n−1 1

)(
Un−1 un

0 un,n

)
.

By identification,

Ln−1Un−1 = Gn−1,

Ln−1un = gn,

`n,n−1 =
gn,n−1

un−1,n−1
,

un,n = gn,n − `n,n−1[un]n−1.

We have gn,n−1 = −1 and gn,n = 1, and by the induction hypothesis, un−1,n−1 =
dn−1/dn−2. It yields `n,n−1 = −dn−2/dn−1. To obtain un we have to consider the
inverse of Ln−1 which is a lower bidiagonal matrix with a unit diagonal.

The inverse of a lower bidiagonal matrix Bn with a unit diagonal and values
β1, . . . , βn−1 on the first subdiagonal is a lower triangular matrix,

B−1
n =


1
−β1 1
β1β2 −β2 1

...
...

...
. . .

(−1)n−1β1 · · ·βn−1 (−1)nβ2 · · ·βn−1 · · · −βn−1 1

 .

Therefore,

L−1
n−1 =



1
1 1
1
d2

d1
d2

1
1
d3

d1
d3

d2
d3

1
1
d4

d1
d4

d2
d4

d3
d4

1

...
...

...
...

...
. . .

1
dn−2

d1
dn−2

d2
dn−2

d3
dn−2

d4
dn−2

· · · dn−3

dn−2
1


.

We have gn = ( 0 · · · 0 1 1 1 )
T

. Since u = un = L−1
n−1gn, we have to sum the

last three entries of the rows of L−1
n−1. The first n− 4 components are clearly 0. The

last three ones are

un−3 = 1,

un−2 = 1 +
dn−4

dn−3
=
dn − dn−1 − dn−2

dn−3
,

un−1 = 1 +
dn−3 + dn−4

dn−2
=
dn − dn−1

dn−2
.
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We have

`n,n−1 = − 1

un−1,n−1
= −dn−2

dn−1
.

Finally, since gn,n = 1,

un,n = 1 +
dn−2

dn−1

dn − dn−1

dn−2
=

dn
dn−1

,

which ends the proof.

5. Eigenvalues. As far as we know, there is no explicit formula for the eigen-
values of Grcar matrices. In 1985, W.F. Trench published a characterization of the
eigenvalues of banded Toeplitz matrices [12]. Let us specialize his results to our
matrices Gn. Let

q(z, λ) = z4 + z3 + z2 + (1− λ)z − 1,(5.1)

be the polynomial defined by the symbol of Gn − λI after multiplication by z. For a
given λ, the polynomial q(z, λ) has distinct roots except for at most four values of λ.
This is obtained by considering the resultant of q(z, λ) and its derivative with respect
to z. It is a 7 × 7 determinant that must be zero if there is a multiple root. Let
γ = 1− λ. The resultant is the polynomial

r(γ) = −27γ4 + 14γ3 − 141γ2 − 130γ − 279.

It has four distinct roots (2 complex pairs) which gives four distinct values of λ,

7.0708 10−2 ± 2.2635 i, 1.6700± 1.1301 i.

Hence, the generic case is that q(z, λ) = 0 has four distinct solutions zi, i = 1, . . . , 4.
Let

Zn =


1 1 1 1

zn+1
1 zn+1

2 zn+1
3 zn+1

4

zn+2
1 zn+2

2 zn+2
3 zn+2

4

zn+3
1 zn+3

2 zn+3
3 zn+3

4

 ,

whose entries are functions of λ. Trench proved that λ is in the spectrum of Gn if and
only if det(Zn) = 0. Moreover, if y is in the null space of Zn, that is, with Zny = 0,
an eigenvector x related to λ can be written as

xi =

4∑
j=1

yjz
i
j , i = 1, . . . , n.

Even though the solutions zi of the quartic equation q(z, λ) = 0 can be written
with radicals, their expressions as functions of λ or γ = 1− λ are too much intricate
to be useful for obtaining an analytic formula for the eigenvalues. Hence, the previous
result has only a theoretical interest.

Figure 5.1 displays the eigenvalues of Gn for n = 5, 10, 20, 100. We see that,
at least when n is large, the eigenvalues of Gn are located on well-defined curves
and there is some kind of convergence. This motivates the study of the asymptotic
spectrum. Asymptotically, the spectrum is composed of three curves. The lower left
curve is the symmetric with respect to the x-axis of the upper left curve.
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-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Fig. 5.1. Eigenvalues of Grcar matrices Gn, n = 5 (black *), n = 10 (green +), n = 20, (red
o), n = 100, (blue *)

6. The asymptotic spectrum. The limit of spectra of Toeplitz matrices was
investigated by P. Schmidt and F. Spitzer [10] in 1960. They introduced the concept
of asymptotic spectrum. Let Tn be a Toeplitz matrix of order n with a spectrum

Σn = {λ | det(Tn − λI) = 0}.

The asymptotic spectrum is defined as

Σa = {λ |λ = lim
m→∞

λm, λm ∈ Σ`m , lim
m→∞

`m =∞}.

Hence, there is, at least, a subsequence of spectra converging in some sense to the
asymptotic spectra. In general, Σn is not contained in Σa for all values of n.

Let p and q two integers defining the bandwidth of Tn. For Gn, p = 1 and q = 3.
If the entries of a generic row of Tn are

tp, . . . , t0, t1, . . . , tq,

t0 being the diagonal entry, an eigenvalue λ and the corresponding eigenvector x must
satisfy

q∑
`=−p

t`xj+` = λxj , j = 1, 2, . . . , n,(6.1)

with boundary conditions

x−` = 0, ` = 0, 1, . . . , p− 1, xn+` = 0, ` = 1, 2, . . . , q.

Relation (6.1) is a difference equation for x. We can look for a solution with xj = zj

where z is a complex number. Then, from (6.1), we have

λ =

q∑
`=−p

t`z
`.(6.2)
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For a given λ, equation (6.2) has p+ q roots zi(λ) ordered such that

|z1(λ)| ≤ |z2(λ)| ≤ · · · ≤ |zp+q(λ)|.

In [10] it is proved that the asymptotic spectrum is characterized as

Σa = {λ | |zp(λ)| = |zp+1(λ)|}.(6.3)

Schmidt and Spitzer proved that Σa is not empty, has no isolated point, and consists
of a finite number of analytic arcs. However, they did not prove that it is connected.
This was proved by J.L. Ullman [13]. I.I. Hirschman Jr. [7] proved that Σa can be
represented as a finite union of closed analytic arcs, where either distinct arcs are
disjoint, or, if not, their intersection consists of one or both common end points. He
studied the limiting eigenvalue distribution. He showed that there exists a probability
measure µ on Σa such that

1

n

∑
λ∈Σn

δλ → µ,

where each eigenvalue in the sum is counted according to its multiplicity. Details on
spectral properties of banded Toeplitz matrices can be found in the book [2]; for a
generalization, see also [4].

For Gn, (6.3) means that Σa is the set of λ’s in the complex plane such that the
two roots of

λ = −1

z
+ 1 + z + z2 + z3.(6.4)

with the two smallest moduli have the same modulus. Since the entries of Gn are
real, Σa is symmetric with respect to the x-axis. Equation (6.4) can be converted into
a polynomial equation of degree 4 in z or 1/z. Note that this polynomial is the same
as q(z, λ) defined in (5.1).

In [1], R.M. Beam and R.F. Warming proposed an algorithm for computing points
on the asymptotic spectrum of a banded Toeplitz matrix.

Let us briefly explain their algorithm on our example. We write z = ẑ e−iφ with
0 < φ < π. Since ẑ eiφ must give the same value of λ, by subtracting, we obtain

sin(φ)
1

ẑ
+ sin(φ)ẑ + sin(2φ)ẑ2 + sin(3φ)ẑ3 = 0.

It is somehow easier to work with y = 1/ẑ for which we obtain

y4 + y2 +
sin(2φ)

sin(φ)
y +

sin(3φ)

sin(φ)
= 0.

But, sin(2φ) = 2 sin(φ) cos(φ) and sin(3φ) = 3 sin(φ)−4 sin3(φ). Therefore, defining
ζ = cos(φ), the equation becomes

y4 + y2 + 2 ζ y − 1 + 4 ζ2 = 0.(6.5)

This is a depressed quartic equation (which means that the coefficient of y3 is zero).
The nature of the roots (real or complex) depends on the sign of the discriminant ∆
which is

∆(ζ) = 16384ζ6 − 12464ζ4 + 3568ζ2 − 400.
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This is a function of ζ which is symmetric with respect to the vertical axis. The limit
when ζ goes to −∞ or +∞ is +∞. It has only two real zeros, symmetric with respect
to 0, one negative ζ− and one positive ζ+ which is approximately 0.5623291174585.
It corresponds to an angle which is a little less than 56 degrees. The function is
decreasing for ζ < 0 and increasing when ζ > 0. The discriminant ∆(ζ) is negative
when ζ ∈ (ζ−, ζ+), and positive outside. It implies that the equation (6.5) has two
complex conjugate pairs of roots when ∆(ζ) > 0 (that is, for angles between 0 and 56
degrees) and two distinct real roots and a complex pair when ∆(ζ) < 0.

For each root of equation (6.5), and using (6.4), we compute λ (which is a function
of ζ) and the solutions of

y4 + (λ− 1)y3 − y2 − y − 1 = 0.

By definition, this equation has at least two roots of equal modulus. If the roots
with the two largest moduli have the same modulus, λ is a point of the asymptotic
spectrum. This is done with as many values of ζ ∈ (−1, 1) as we wish. In fact, it is
clear that it is enough to consider the interval (0, 1).

Now, we will show that we can obtain an analytic description of the asymptotic
spectrum of the Grcar matrices. Let us look for the solution of equation (6.5). We
first consider the case ∆(ζ) > 0, that is, ζ > ζ+. We have two pairs of complex
conjugate roots.

Lemma 6.1. Let ζ be such that ∆(ζ) > 0. The four solutions of equation (6.5)
can be written as

r + ıs1, r − ıs1, −r + ıs2, −r − ıs2,

with r =
√
r̂. Let α, β, and γ defined as

α =
11

144
− ζ2

3
, β =

111

5184
− 5 ζ2

96
, γ = α3 + β2.(6.6)

Then,

r̂ = 2
√
−α cos

(
1

3
arccos

(
β

(−α)
3
2

))
− 1

6
,

and

s1 =

√
1

2

(
1 + 2r̂ +

ζ

r

)
.

Proof. We can assume that the solutions have this form because the coefficient of
y3 in (6.5) is zero. Taking the product of the four roots and by identification with the
coefficients of the polynomial of equation (6.5), we have the three following equations,

(A) (r2 + s2
1) + (r2 + s2

2) = 1 + 4r2,

(B) (r2 + s2
1)− (r2 + s2

2) =
ζ

r
,

(C) (r2 + s2
1) (r2 + s2

2) = 4ζ2 − 1.
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Clearly, we need to have 1 ≥ ζ ≥ 1/2 which is satisfied with our hypothesis on ζ.
Using (A)+(B), (A)-(B), and (C), we obtain an equation for r,

16r6 + 8r4 + (5− 16ζ2)r2 − ζ2 = 0.(6.7)

Defining r̂ = r2, we obtain a cubic polynomial equation that we can solve for r̂ as a
function of ζ. If there is a positive real root, since we are looking for r ≥ 0, we take
r =
√
r̂, and

2s2
1 = 1 + 2r2 +

ζ

r
, 2s2

2 = 1 + 2r2 − ζ

r
.

Note that if r is changed to −r, s1 becomes s2 and vice-versa. Clearly, s2
1 > s2

2 and the
largest modulus of the roots is given by r± i s1. Let us now solve the cubic equation
for r̂ divided by the leading coefficient 16. We have a polynomial of degree 3 with
coefficients

a3 = 1, a2 =
1

2
, a1 =

5

16
− ζ2, a0 = − ζ

2

16
.

The number of real solutions depends on the sign of γ defined in (6.6). As a function
of ζ, γ is monotonely decreasing on [1/2, 1] and has a unique zero for ζ+.

Since, with our hypothesis on ζ, γ ≤ 0, there are three real solutions of the
equation for r̂. Note that it implies that α ≤ 0. Let η = 2

√
−α, and

θ = arccos

(
β

(−α)
3
2

)
, ϕ1 =

θ

3
, ϕ2 = ϕ1 −

2π

3
, ϕ3 = ϕ1 +

2π

3
.

Then, the three solutions are

r̂i = η cos(ϕi)−
1

6
.

We must pick a positive root to compute r and, then, s1 and s2 as above. It is given
by r̂1. The solution we will be interested in later on is r − is1, where

r̂ = 2

√
ζ2

3
− 11

144
cos

1

3
arccos

 111
5184 −

5 ζ2

96(
ζ2

3 −
11
144

) 3
2


− 1

6
.

The cosine is positive as well as r̂, and

r =
√
r̂, s1 =

√
1

2

(
1 + 2r̂ +

ζ

r

)
.

Now, we consider the case ∆(γ) ≤ 0, that is ζ ∈ (0, ζ+] and show that we obtain
the same equation (6.7) for r. We already know that we have two distinct real roots
and a pair of complex conjugate roots if ζ < ζ+. Therefore, the two solutions with
the same modulus are those of the complex pair. If ζ = ζ+, the two real solutions are
equal. We will see that their modulus is smaller than the moduli of the roots in the
complex pair.
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Lemma 6.2. Let ζ be such that ∆(ζ) ≤ 0. The four solutions of equation (6.5)
can be written as

r + ıs, r − ıs, r1, r2,

with r, s, r1, and r2 real. Then, the real part r is a solution of equation (6.7).

Let α, β, γ defined by (6.6), and δ = (|β|+√γ)1/3. Then, r =
√
r̂ with

r̂ =

{
δ − α

δ −
1
6 if β ≥ 0 ,

α
δ − δ −

1
6 if β < 0

and s =

√
1
2

(
1 + 2r̂ + ζ

r

)
Proof. We write the equation (6.5) as

[y2 − 2ry + r2 + s2] [y2 − (r1 + r2)y + r1r2] = 0.

By identification of the coefficients of y3 and y2, we obtain

r1 + r2 = −2r,

r1 r2 = 1 + 3r2 − s2.

It yields

[y2 − 2ry + r2 + s2] [y2 + 2ry + 1 + 3r2 − s2] = 0.

With the coefficient of y and the constant term, we get

−r (1 + 3r2 − s2) + r (r2 + s2) = ζ,

(r2 + s2) (1 + 3r2 − s2) = 4ζ2 − 1.

Multiplying the second equation with r2, we have the difference and the product of
two quantities α̃ = r(1 + 3r2 − s2) and β̃ = r(r2 + s2). We also have α̃+ β̃ = r+ 4r3.
Eliminating β̃, we obtain a quadratic equation for α̃,

α̃2 + ζ α̃+ r2(1− 4ζ2) = 0.

It yields α̃+ β̃ = r + 4r3 = ±
√

(1 + 16r2)ζ2 − 4r2. Squaring this relation, we obtain

(r + 4r3)2 = (1 + 16r2)ζ2 − 4r2.

Simplifying, we have a polynomial equation for r,

16r6 + 8r4 + (5− 16ζ2)r2 − ζ2 = 0,

which is the same as (6.7). Moreover, we obtain

s2 = r2 +
ζ

r
+

1

2
,

which is the same as s2
1 in Lemma 6.1. Here, the cubic equation for r̂ has only one

real solution which is given in the statement of the lemma.
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If ζ = ζ+, we have r1 = r2 = −r. It yields r2 + s2 = 1 + 3r2, and the complex
conjugate solution gives the largest modulus.

To obtain the upper part (above the x-axis) of the asymptotic spectrum, we use
the solution r− i s described in lemmas 6.1 and 6.2, with s = s1 when ∆(γ) > 0. We

have to multiply with eiφ = ζ + i
√

1− ζ2 to get

1

z
= ỹ = (r ζ + s

√
1− ζ2) + i (−s ζ + r

√
1− ζ2).(6.8)

Note that we have |ỹ|2 = r2 + s2. Lemmas 6.1 and 6.2 lead to the following result.

Theorem 6.3.
Let ζ ∈ (0, 1). With the notation above and (6.8), let

sin(ϕ) =
−s ζ + r

√
1− ζ2

√
r2 + s2

< 0, cos(ϕ) =
r ζ + s

√
1− ζ2

√
r2 + s2

> 0.

The points λ on the upper part of the asymptotic spectrum of Gn are given by

Re(λ) = 1− 1

|ỹ|2
+

cos(ϕ)

|ỹ|

[
1− |ỹ|2 +

2 cos(ϕ)

|ỹ|
+

4 cos2(ϕ)− 3

|ỹ|2

]
,

Im(λ) = − sin(ϕ)

|ỹ|

[
1 + |ỹ|2 +

2 cos(ϕ)

|ỹ|
+

3− 4 sin2(ϕ)

|ỹ|2

]
,

with ỹ defined by (6.8).
Proof. The point λ on the upper part of the asymptotic spectrum is

λ = −ỹ + 1 +
1

ỹ
+

1

ỹ2
+

1

ỹ3
.

To compute λ, we use the polar form of ỹ = |ỹ| eiϕ, with

|ỹ|2 = r2 + s2, ϕ = atan2(−s ζ + r
√

1− ζ2, r ζ + s1

√
1− ζ2).

Then, ỹj = |ỹ|j eijϕ = |ỹ|j (cos(jϕ) + i sin(jϕ)). For our case the values −s ζ +

r
√

1− ζ2 are negative, and thus

sin(ϕ) =
−s ζ + r

√
1− ζ2

√
r2 + s2

< 0, cos(ϕ) =
r ζ + s

√
1− ζ2

√
r2 + s2

> 0.

Moreover,

sin(2ϕ) = 2 sin(ϕ) cos(ϕ), cos(2ϕ) = 2 cos2(ϕ)− 1,

sin(3ϕ) = 3 sin(ϕ)− 4 sin3(ϕ), cos(3ϕ) = 4 cos3(ϕ)− 3 cos(ϕ).

It yields, as functions of ζ,

Re(λ) = −|ỹ| cos(ϕ) + 1 +
cos(ϕ)

|ỹ|
+

cos(2ϕ)

|ỹ|2
+

cos(3ϕ)

|ỹ|3
,

Im(λ) = −|ỹ| sin(ϕ)− sin(ϕ)

|ỹ|
− sin(2ϕ)

|ỹ|2
− sin(3ϕ)

|ỹ|2
.
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Rearranging the terms, we obtain

Re(λ) = 1− 1

|ỹ|2
+

cos(ϕ)

|ỹ|

[
1− |ỹ|2 +

2 cos(ϕ)

|ỹ|
+

4 cos2(ϕ)− 3

|ỹ|2

]
,

Im(λ) = − sin(ϕ)

|ỹ|

[
1 + |ỹ|2 +

2 cos(ϕ)

|ỹ|
+

3− 4 sin2(ϕ)

|ỹ|3

]
.

This is a parametric description of the upper part of the asymptotic spectra of Gn for
ζ ∈ (0, 1]. The lower part is obtained by changing the sign of the imaginary part.

Theorem 6.3 shows that the expression of the asymptotic spectrum of Gn is a
complicated function of ζ. However, the real and imaginary parts are very smooth
functions of ζ and they can be fitted with least squares polynomials or a rational
approximation.

An good approximation can be obtained using rational functions. We use the
AAA algorithm of Nakatsukasa, Sète, and Trefethen [9]. Sets of 100 function values
on [10−2, 1] are approximated by a rational function

r(ζ) =

∑m
j=1

wjfj
ζ−zj∑m

j=1
wj

ζ−zj
.

We asked for an accuracy of 10−10. It yields m = 14 for the real part and m = 15 for
the imaginary part. For the real part, the weights wj are

−4.6364 10−1, 5.4008 10−2, 3.4071 10−2, −1.2689 10−1, −4.6563 10−2,

3.6930 10−1, 3.3729 10−2, 2.5439 10−1, −2.7119 10−2, −4.6470 10−1,

5.8926 10−2, −8.7516 10−2, 5.5798 10−1, −1.4597 10−1.

The values fj of the data are

7.0708 10−2, 1.6955, 1.6181, 3.9119 10−1, 1.2370, 1.6575, 1.4835

1.6316, 1.6468, 1.6438, 8.8905 10−1, 1.6196, 1.0637 10−1, 1.6802.

The support points zj in [10−2, 1] are

1.0000, 4.2000 10−1, 1.0000 10−2, 9.1000 10−1, 6.7000 10−1, 2.8000 10−1,

5.9000 10−1, 1.7000 10−1, 5.1000 10−1, 2.3000 10−1, 7.7000 10−1,

6.0000 10−2, 9.9000 10−1, 3.5000 10−1.

For the imaginary part, the weights wj are

8.1519 10−4, 2.3012 10−2, 9.6495 10−2, 1.0884 10−2, −6.3678 10−2,

−1.0310 10−1, −1.2201 10−2, 2.4750 10−2, 6.4215 10−1, −4.9020 10−3,

−4.9754 10−1, 2.6857 10−1, −2.2893 10−1, 2.2010 10−1, −3.7642 10−1.

The values fj of the data are

2.2635, 3.0810 10−2, 9.3667 10−1, 1.5961, 1.2240, 1.8451 10−1, 1.1438, 1.1808,

7.3986 10−1, 1.8618, 8.1797 10−1, 1.2878, 1.3039, 3.6679 10−1, 5.7302 10−1.
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Fig. 6.1. Imaginary part of the asymptotic spectrum (blue) and rational fit (red o)

The support points zj in [10−2, 1] are

1.0000, 1.0000 10−2, 3.3000 10−1, 7.9000 10−1, 6.0000 10−1, 6.0000 10−2,

4.7000 10−1, 5.4000 10−1, 2.5000 10−1, 8.8000 10−1, 2.8000 10−1, 6.5000 10−1,

6.6000 10−1, 1.2000 10−1, 1.9000 10−1.

The relative errors are of the order of 10−11 or smaller; see Figure 6.1.

Figure 6.2 shows the asymptotic spectrum, computed with the formulas of The-
orem 6.3, and the eigenvalues of G500 computed with the eig Matlab function. The
eigenvalues must be close to the asymptotic spectrum, but we see that this is not
always true for all the eigenvalues. It means that the QR algorithm has difficulties
computing accurate eigenvalues for this matrix when n is large. In [1], Beam and
Warming proposed a scaling of the matrix to improve the computation of the spec-
tra of banded Toeplitz matrices, but it requires the computation of the asymptotic
spectrum.

7. Conclusion. We have studied the Grcar matrices giving formulas for com-
puting the determinants, the inverses, and the LU factorizations. We also showed
how to obtain a parametric description of the asymptotic spectrum. This could be
useful when testing eigenvalue solvers with Grcar matrices of large dimension.
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