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Abstract. In this paper we propose a Lanczos–like parallel method for solving symmetric
positive definite linear systems. We use the connections of the Lanczos algorithm with orthogonal
polynomials to construct a (non-orthogonal) basis of the Krylov subspace. Although this algorithm
needs more inner products than the CG algorithm it offers much more potential for parallelism.

1. Introduction. The conjugate gradient (CG) algorithm is the iterative method
of choice for solving sparse symmetric positive definite linear systems. However solv-
ing large sparse linear systems requires using parallel computers and CG is not so well
suited for such architectures. There are many synchronization points in CG and the
computation of two inner products per iteration can be also a bottleneck; see [16].

Several attempts have been made to modify CG to make it “more parallel”. Some
people tried to remove synchronization points as much as possible; see Van Rosendale
[18], Chronopoulos and Gear [2], Meurant [14], d’Azevedo, Eijkhout and Romine [4].
Unfortunately, most of these variants are less stable than the classical CG algorithm.
Another way of research was started by Fischer and Freund [7]. Their goal was to get
rid of the inner products by using the spectral information that can be obtained after
a few steps of CG or of the Lanczos algorithm (which is equivalent to CG).

In this paper we propose a Lanczos-like algorithm to solve symmetric positive
definite linear systems. Although this method uses more storage than the Lanczos
algorithm, it offers more opportunities for parallelism. It also allows to group together
several consecutive iterations. This could help improving the speed of the matrix-
vector product by computing at the same time several matrix-vector products like
Av,A2v, . . .; see [3]. Minimizing communications and increasing parallelism in linear
algebra algorithms have been a major concern recently with the advent of multicore
architectures; see [1] and [5].

Here we use the same starting point as in Fischer and Freund [6] doing first a few
iterations of the Lanczos algorithm to obtain an estimate of the spectrum of A or, to
be more precise, of the piecewise constant measure associated with A and the starting
residual vector. From this spectral information we compute another approximate
piecewise constant measure which is generally closer to the exact one. Then we use
algorithms to compute the coefficients of the three-term recurrence satisfied by the
orthogonal polynomials associated to this approximate measure. These coefficients
are used to generate a (non-orthogonal) basis of the Krylov subspace associated with
A and the initial residual vector. The basis is then used to compute an approximation
of the solution of the linear system. This methodology requires more storage and the
computation of more inner products than the CG or Lanczos algorithms. However,
it is more parallel since, after the initial Lanczos iterations, almost everything can be
done in parallel.

The contents of the paper are the following. Section 2 recalls the Lanczos algo-
rithm and the links from the coefficients of the algorithm to the orthogonal polynomi-
als associated with a piecewise constant measure that depends on the matrix A and
the initial vector. Section 3 describes how to obtain an approximate piecewise con-
stant measure from the spectral information that can be gathered after a few Lanczos
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initial iterations. Computing the coefficients of the three-term recurrence satisfied by
the orthogonal polynomials associated with this approximate measure is an inverse
eigenvalue problem. Section 4 uses a basis computed with these coefficients to com-
pute an approximation of the solution of the linear system. To obtain an efficient
solver we need to introduce preconditioning. This is done in section 5. Numerical
experiments on a sequential computer are provided in section 6. Results on a par-
allel computer will be given in a forthcoming paper. Finally, section 7 gives some
conclusions.

2. The Lanczos algorithm. Let A be a symmetric sparse nonsingular square
matrix of order n. In the Lanczos algorithm, the Lanczos basis vectors vk can be
written as vk = pk(A)v where v = v1 is the starting vector (of unit l2-norm) and pk
is a polynomial of order k − 1. The Lanczos vectors are computed as

η1v
2 = Av1 − αkv

1, ηkv
k+1 = Avk − αkv

k − ηk−1v
k−1, k = 2, . . .

From this definition, it is clear that the polynomials pk satisfy a three-term recurrence

ηkpk+1(λ) = (λ− αk)pk(λ)− ηk−1pk−1(λ), p0 ≡ 0, p1 ≡ 1.

The coefficient αk is determined to enforce the orthogonality condition (vk)T vk+1 = 0
and is given by an inner product

αk = (Avk, vk).

The coefficient ηk is computed to have ‖vk+1‖ = 1. Theoretically it is also given by
the orthogonality condition (vk−1)T vk+1 = 0 which leads to

ηk−1 = (Avk, vk−1).

The Lanczos recurrence computes an orthonormal basis of the Krylov subspaceK(A, v) =
{v,Av,A2v, . . .}. If we collect the basis vectors vj , j = 1, . . . , k as the columns of a
matrix Vk we have the matrix relation

AVk = VkTk + ηkvk+1(ek)T ,

where Tk is a symmetric tridiagonal matrix whose diagonal coefficients are the αj ’s
and the subdiagonal coefficients are the ηj ’s. The vector ek is the k-th column of the
identity matrix of order k.

Using the spectral decomposition of the symmetric matrix A, A = QΛQT with
Q the orthogonal matrix of the eigenvectors and Λ a diagonal matrix whose diagonal
elements λj are the eigenvalues of A, the formula defining αk is

αk = (Avk, vk) = (Apk(A)v, pk(A)v) = (Λpk(Λ)v̄, pk(Λ)v̄) =
n∑

i=1

λi[pk(λi)]2(v̄i)2,

with v̄ = QT v. The last sum can be written as a Riemann–Stieltjes integral

αk =
∫ λn

λ1

λ[pk(λ)]2 dσ(λ).

The measure σ is given by

σ(λ) =




0 if λ < λ1∑i
j=1[v̄

1
j ]

2 if λi ≤ λ < λi+1∑n
j=1[v̄

1
j ]

2 if λn ≤ λ
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where v̄j is the jth component of QT v that is (qj , v). Similarly, we have

ηk−1 =
∫ λn

λ1

λpk(λ)pk−1(λ) dσ(λ).

The polynomials pk are orthogonal with respect to the scalar product defined by
the Riemann–Stieltjes integral for the measure σ; see [11]. This measure is piecewise
constant with jumps at the eigenvalues of A, see the blue curve in figure 2.1. Of course,
the measure σ is unknown since we do not know the eigenvalues and eigenvectors of
A. Hence we cannot compute the coefficients αj and ηj directly from the integrals.
Therefore the idea is to construct an approximation of the measure σ. It was remarked
by several people (see for instance Fischer and Freund [6]) that the Jacobi matrix
Tk computed by the Lanczos algorithm provides an approximation to σ after a few
iterations. This is shown in figure 2.1. This exemple uses a matrix arising from the
finite difference discretization of the Poisson equation in the unit square using a 10×10
regular mesh. This gives a linear system of order n = 100. Note that the matrix A
has only 51 distinct eigenvalues. The blue curve is the measure associated with A
and a starting vector with random entries between 1 and −1 and the red curve is the
measure obtained from the eigenvalues and eigenvectors of T10 and the vector e1; see
[11].
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Fig. 2.1. Measures for A (blue) and T10(red)

3. Computation of an approximate measure. We would like to obtain an
approximation of the measure σ by using only the information obtained from the
matrix Tk with k small. We use the same remark as in Fischer and Freund [6] which
is that the middles of the vertical segments of the measure for Tk give good pointwise
approximations to the measure for A. The idea is then to construct a monotone
piecewise cubic interpolation of σ by using these middle points as interpolation points.
This is done using the Matlab function pchip; see [8]. We obtain the green curve in
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figure 2.1 using 200 points to display the continuous approximation. This gives what
is a good approximation for the measure σ.
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Fig. 3.1. Measures for A (blue), T10 (red), the interpolation points (blue stars) and the inter-
polant (green)

Then we use this interpolant to compute approximate values of αk and ηk. We
first discretize the continuous monotone interpolant. The interpolation points ξj are
chosen as the Fejer points (see Gautschi [9]) plus λmin and λmax which are lower
and upper bounds for the smallest and largest eigenvalues of A. The values fj are
obtained from the continuous interpolant at the mid-point of each interval.

The problem of computing the coefficients from the discretization σ̃ of the con-
tinuous approximation of the measure σ can be considered as an inverse eigenvalue
problem. We have the (interpolation) points ξj and the weights which are the differ-
ences of the values fj+1 − fj . We then use the Gragg and Harrod algorithm (see [12])
as implemented in the package OPQ of Gautschi [10] which computes the Jacobi ma-
trix (the coefficients α̃k and η̃k) from the spectral data. These are the coefficients of
the three-term recurrence of the orthogonal polynomials associated to σ̃. The Gragg
and Harrod algorithm is known as being more stable and reliable than the Stieltjes
or Lanczos algorithms; see [11]. We could have also use the pftoqd algorithm from
Laurie [13].

4. Solving the linear system. Since the coefficients are sensitive to variations
of the measure (see [17]) we do not use them directly to solve the linear system. We
construct a Krylov basis using the three-term recurrence generated by the coefficients
α̃k and η̃k. This gives us a polynomial p̃k(A) and we can obtain new basis vectors ṽk

by ṽ1 = v1 and

ṽk = p̃k(A)v1, k = 2, . . .
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The vectors ṽk are defined as

η̃kṽ
k+1 = Avk − α̃kv

k − η̃k−1v
k−1, ṽ1 = v1.

This defines a matrix Ṽk whose columns are the basis vectors ṽj . The coefficients α̃j

and η̃j are all known in advance; hence, to introduce more parallelism we can remark
that for computing ṽk+1 we have Aṽk = (A2ṽk−1 − α̃k−1Aṽ

k−1 − η̃k−2Aṽ
k−2)/η̃k−1.

This allows to be able to compute simultaneously Aṽk−1 and A2ṽk−1. On modern
processors this can help improving the computational speed; see [3]. We can compute
an approximate solution xk = x0 + Ṽkz by solving

Ṽ T
k AṼkz = Ṽ T

k r
0.

Note that the matrix-vector products Aṽj have already been computed by the three-
term recurrence. When going from step k− 1 to step k we have to compute the inner
products (ṽk, ṽj), j = 1, . . . , k and (ṽk, r0). All these inner products can be computed
in parallel. Is the basis given by Ṽk better than the natural Krylov basis given by the
vectors Ajv1? The numerical rank of the natural basis is 26 for our small example
and 51 for the basis obtained from α̃k and η̃k.

Let us summarize the algorithm:
• Do init iterations of the Lanczos algorithm to obtain Tinit
• Compute the eigenvalues of Tinit
• Compute the interpolant using pchip
• Discretize the interpolant
• Compute the coefficients α̃k and η̃k using the Gragg and Harrod algorithm
• Compute the basis vectors ṽk

• Compute the Cholesky factorization of Ṽ T
k AṼk

• Compute the approximation xk

It may seem that this way of computing an approximate solution has several
drawbacks. The first one is that we have to compute the full matrix V T

k AṼk since it
is not tridiagonal because the vectors ṽk are orthogonal but not for the usual inner
product. This means that, contrary to our first goal, we have to compute more inner
products. As we said, they can be computed in parallel and there is no synchronization
points between the inner products. Anyway we have to solve a dense system even
though the Cholesky factorization can be done incrementally in parallel with the
computation of some of the inner products.

The second problem is that the vectors ṽk may loose their linear independence
which means that the matrix Ṽ T

k AṼk may become singular or quasi-singular. Fig-
ure 4.1 is the same example as before with init=10. Around iteration 40 the matrix
becomes quasi-singular and the norm of the residual (red curve) stagnates. Then, we
restart the algorithm with the current solution at iteration 30 (green), 40 (magenta)
and 50 (cyan). We see that we regain the same speed of convergence as before. For
CG we show the norm of the iterated residual; for the other computations we display
the norm of b − Axk. In these computations we did not use the last Lanczos iterate
as the starting vector, we just use the given x0 (which is 0 in our case).

Choosing the moment of restart can be automatized by testing if the matrix is
quasi-singular when computing the Cholesky factorization. This is done by testing the
pivots that are computed in the Cholesky factorization. Let Ck = Ṽ T

k AṼk = LkL
T
k ,

the matrix Lk being lower triangular. The factorization of Ck+1 is computed by
first solving Lky

k = Ck+1(1 : k, k + 1) where this last vector is made of the k first
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components of the last column of Ck+1. Then

(Lk+1)k+1,k+1 =
√

(Ck+1)k+1,k+1 − (yk)T yk

and

Lk+1 =
(
Lk 0

(yk)T (Lk+1)k+1,k+1

)
.

We restart the algorithm if (Lk+1)k+1,k+1 < εL where εL is a given threshold.
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Fig. 4.1. log10 of the norm of the residual, CG (blue), init=10, no restart (red), restart=30
(green), 40 (magenta), 50 (cyan), n = 100

5. Preconditioning. To obtain a practical algorithm we have to introduce pre-
conditioning. Let us assume that we have a preconditioner M which is a symmetic
positive definite matrix. First we have to use the preconditioned Lanczos algorithm.
We solve the linear system

M− 1
2AM− 1

2 y =M− 1
2 b.

The solution is recovered by x =M− 1
2 y. The orthogonal basis is computed using

M− 1
2AM− 1

2 V̄k = V̄kT̄k + η̄kv̄k+1(ek)T .

Of course we cannot compute M− 1
2 . We can get rid if it by a change of variable. Let

Vk =M− 1
2 V̄k. Then

M−1AVk = VkT̄k + η̄kvk+1(ek)T .

The first vectors are defined as

v̄1 =
r̄0

‖r̄0‖ , v
1 =M− 1

2 v̄1 =
M− 1

2 r̄0

‖r̄0‖ .
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But

M− 1
2 r̄0 =M−1r0 =M−1(b−Ax0)

and ‖r̄0‖ = (M−1r0, r0). Therefore

v1 =
M−1r0

(M−1r0, r0)
.

It remains to see how to compute the coefficients ᾱk and η̄k. We have

ᾱk = (M− 1
2AM− 1

2 v̄k, v̄k) = (Avk, vk).

The other coefficient is given by

η̄k = ‖M− 1
2AM− 1

2 v̄k − ᾱkv̄
k − η̄k−1v̄

k−1‖.
It is not difficult to see that

η̄2k = (M−1Avk − ᾱkv
k − η̄k−1v

k−1, Avk).

The Lanczos iterates are computed as yk = y0 + V̄kz̄ with

T̄kz̄ = ‖r̄0‖e1.
It gives xk = x0 + Vkz̄.

For the parallel Lanczos algorithm we first do init iterations of the precondi-
tioned Lanczos algorithm and then we compute the approximate measure from the
eigenvalues of T̄k. The Gragg and Harrod algorithm gives the coefficients α̃j and η̃j
from which we obtain the matrix Ṽk. Even with preconditioning the linear system to
solve is

Ṽ T
k AṼkz̃ = Ṽ T

k (b−Ax0)
and the approximate solution is obtained by xk = x0 + Ṽkz̃.

6. Numerical experiments. We first solve a linear system corresponding to the
finite difference discretization of the Poisson equation on a regular 30×30 mesh of the
unit square. We use a random right hand side with a unit norm. Figure 6.1 displays
the result without preconditioning. With εL = 10−5 (red curve) there are restarts
at iterations 86 and 177. With εL = 10−7 the restarts happen at iterations 103 and
188. Figure 6.2 shows the results with an incomplete Cholesky IC(0) preconditioner.
Using a good preconditioner allows to reduce the number of initial Lanczos iterations.
The results of figure 6.3 use only init=3. With εL = 10−5 there are two restarts at
iterations 28 and 55. With εL = 10−7 the algorithm restarts at iterations 35 and 70.

Then we consider a problem that is more difficult to solve. We look for an
approximate solution to the following PDE

−div(λ(x, y)∇u) = f,

in Ω =]0, 1[2 with homogeneous Dirichlet boundary conditions.
The diffusion coefficient is defined as

λ(x, y) =
1

(2 + p sin x
η )(2 + p sin y

η )
.
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Fig. 6.1. log10 of the norm of the residual, CG (blue), init=10, εL = 10−5 (red), εL = 10−7

(green), Poisson problem n = 900
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Fig. 6.2. log10 of the norm of the residual, IC(0) preconditioning, CG (blue), init=10, εL =
10−2 (magenta), εL = 10−5 (red), Poisson problem n = 900

The solution is given as u = sin(απx) sin(βπy) with α and β being positive
integers. Given this solution, the right hand side is f = N/D with.

N = (2 + p sin
x

η
)(2 + p sin

y

η
) sin(απx) sin(βπy)[α2 + β2]π2
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Fig. 6.3. log10 of the norm of the residual, IC(0) preconditioning, CG (blue), init=3, εL =
10−5 (red), εL = 10−7 (green), Poisson problem n = 900

+
πp

η
[α cos(απx) sin(βπy) cos

x

η
(2 + p sin

y

η
) + β sin(απx) cos(βπy) cos

y

η
(2 + p sin

x

η
)],

and

D = (2 + p sin
x

η
)2(2 + p sin

y

η
)2.

The λ function may have peaks. The parameter η allows to choose the number of
peaks and the value of the parameter p determines the heights of the peaks. We
are interested in the values p = 1.8, η = 0.1 for which the diffusion coefficient has a
single peak and α = 1, β = 1. We use simple five-point finite differences on a regular
cartesian mesh. The mesh has m ×m interior points for which we want to compute
the solution which is 0 on the square boundary. Figures 6.4 and 6.5 show the log10

of the norm of the residual for two different values of the number of initial Lanczos
iterations.

7. Conclusions. In this paper we have proposed a Lanczos–like method for
solving symmetric positive definite linear systems. We use the connections of the
Lanczos algorithm with orthogonal polynomials to construct a (non-orthogonal) basis
of the Krylov subspace. Although this algorithm needs more inner products than the
CG algorithm it offers more potential for parallelism.
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