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Abstract In this paper we give explicit expressions for the norms of the
residual vectors generated by the GMRES algorithm applied to a non-normal
matrix. They involve the right-hand side of the linear system, the eigenvalues,
the eigenvectors and, in the non-diagonalizable case, the principal vectors.
They give a complete description of how eigenvalues contribute in forming
residual norms and offer insight in what quantities can prevent GMRES from
being governed by eigenvalues.
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1 Introduction

We consider the convergence of GMRES (the Generalized Minimal RESidual
method) for solving linear systems with complex nonsingular matrices A of size
n and n-dimensional right-hand sides b; see e.g. [38] or [37] for a description of
the algorithm. The kth GMRES iterate x; minimizes, with o = 0, the norm
of the kth residual vector rp, = b — Axy over all vectors in the kth Krylov
subspace Kj(A,b) = span{b, Ab, ..., A¥=1b}. Therefore, residual norms are
non-increasing and satisfy

7%l = min [[p(A)bl],
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where 7, is the set of polynomials of degree k with the value one at the origin
and || - || denotes the 2-norm. If the Jordan canonical form of A is denoted by
A=XJX! then

il = main 1X p (J)X~0]. (1)

In this paper we focus on how convergence of the GMRES residual norms is
influenced by the entirety of spectral properties of A, that is, by the eigenvalues
contained in J and by the eigenvectors or principal vectors contained in X.

If A is Hermitian, the orthogonality of the eigenvectors results in a predom-
inant influence of the eigenvalues on convergence. For example, in Hermitian
counterparts of GMRES like the MINRES method [34] or the Conjugate Gra-
dients method [19], clustering of eigenvalues stimulates convergence, eigenval-
ues close to zero hamper convergence and the eigenvalue distribution decides
about the rate of convergence (for a survey, see, e.g., [27]). In addition, there
exist for these methods sharp upper bounds consisting of a min-max problem
which depends on the spectrum only. For instance, in MINRES the residual
norms satisfy

Irell
< ; 2
b S min, max | [pe() (2)

with A; denoting the eigenvalues of A (see, e.g., [37]) and for every k there
exists a right-hand side (depending on k) such that equality holds. If A is
a normal matrix, the residual norms generated by GMRES satisfy the same
inequality and in this case, GMRES convergence is governed by eigenvalues as
well. Moreover, from (1) we have for a normal matrix

7%l = min [|p (J)X b, (3)
PETE

with J being a diagonal matrix of eigenvalues. This shows that the residual
norms are fully determined by two quantities: eigenvalues and components of
the right-hand side in the eigenvector basis. A closed-form expression for the
kth GMRES residual norm in terms of these quantities (in fact of the moduli
of the components of the right-hand side in the eigenvector basis), i.e. the
solution of (3), was presented in [10] and in an unpublished report Bellalij and
Sadok (A new approach to GMRES convergence, 2011).

When A is not normal, the predominant role of the eigenvalues can be lost.
For diagonalizable non-normal matrices, the upper bound (2) is multiplied with
the condition number k(X) of the eigenvector matrix, which may be large. We
refer to [26, Section 3.1] for a detailed discussion of other difficulties with in-
terpreting this bound in the non-normal case. The probably most convincing
results showing that GMRES needs not be governed only by eigenvalues can
be found in a series of papers by Arioli, Greenbaum, Ptdk and Strakos [18,17,
1]. They show that for any prescribed sequence of n non-increasing residual
norms, there exists a class of right-hand sides and matrices, whose nonzero
eigenvalues can be chosen arbitrarily, giving residual norms that coincide with
the given non-increasing sequence. In this sense, GMRES convergence curves
(with respect to residual norms) are independent from the eigenvalues of A. It
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was shown in [8] that convergence curves do not even depend on the Ritz values
generated during all iterations of the GMRES process. The strong potential
independence from eigenvalues inspired many papers that look for some ap-
proaches other than eigenvalue analysis to explain GMRES convergence. They
include pseudospectra [33,44], the field of values [11], the polynomial numeri-
cal hull [16], potential theory [23], decomposition in normal plus low-rank [20]
or comparison with GMRES for non-Euclidean inner products [36]. Though
they can be very suited to explain convergence for particular problems, none
of the approaches seems to represent a universal tool for GMRES analysis.

Nevertheless for many practical problems, eigenvalues seem to influence
convergence behavior strongly. This follows for instance from the fact that
slow convergence can often be successfully cured by eliminating particular
convergence hampering eigenvalues with a so-called deflation strategy; see, to
mention just some of a large number of proposed techniques, for instance [30,
22,7,12,2,24,31,32,5,35,29,14,6,15]. This is not surprising since residual vec-
tors are formed from a matrix polynomial times the right-hand side and matrix
polynomials are naturally related to eigenvalues. It is often assumed that the
situation where the behavior of GMRES is not or little governed by eigenval-
ues occurs only for matrices that are far from normal. However, even such a
highly non-normal matrix as a Jordan block can yield GMRES convergence
curves that are dominated by the size of the involved eigenvalue (this will also
be discussed in Section 3 of this paper). In fact, Arioli, Greenbaum, Ptdk and
Strakos never wrote in [18,17,1] that GMRES convergence does not depend
on the eigenvalues. The results in [18,17,1] merely show that there are sets
of matrices with different (arbitrary) eigenvalue distributions and right-hand
sides giving the same GMRES residual norms. In view of (1) this means that
if one modifies eigenvalues, then in order to have the same residual norms, the
eigenvectors and/or principal vectors and the right-hand side must and can be
modified appropriately.

In this paper we address the interplay of eigenvalues, eigenvectors and the
right-hand side with respect to convergence. In the first place, our goal is to
show as precisely as possible, how eigenvalues contribute to the computation
of residual norms. To this end, we derive closed-form expressions for the resid-
ual norms. In the second place, we use these expressions in an attempt to
enhance insight in when convergence can be suspected to be dominated by
the spectrum and when not. We discuss several interpretations of departure
from normality, the role of the right-hand side and the frequently observed
convergence hampering influence of eigenvalues close to the origin.

The contents of the paper are as follows. In Section 2 we give an expression
of the GMRES residual norms for diagonalizable matrices. Section 3 general-
izes the ideas of the previous section for matrices with one Jordan block and
Section 4 treats the more general case when the matrix A is not diagonal-
izable. We formulate some conclusions in the last section. Throughout the
paper we will use the phrase ,,convergence is governed by eigenvalues” when
convergence depends only on eigenvalues and on components of the right-hand
side in the eigenvector basis; eigenvectors and right-hand side do not influence
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convergence curves otherwise. This is the case for GMRES applied to normal
matrices, see (3), for the MINRES method, and, with respect to the norm of
the A-error, the Conjugate Gradients method. We will assume that GMRES
does not terminate before iteration n. Hence, the Krylov subspaces are of full
dimension and their orthogonal bases constructed using the Gram-Schmidt
algorithm are well defined. For the sake of simplicity we choose ¢ = 0 and
we normalize the right-hand side b such that ||ro|| = ||b]] = 1. The vector e;
will denote the ith column of the identity matrix (of appropriate order). The
entry on the 7th row and in the jth column of a matrix X is denoted by X; ;
and X;.; ¢ denotes the submatrix of X with rows from 7 to j and columns
from k to . X;.;. denotes the submatrix with rows from ¢ to j and with all
columns of X.

2 GMRES convergence for diagonalizable matrices

In this section we look for the solution of the minimization problem (1) in
terms of J, X and X ~'b when A is diagonalizable with spectral factorization
X AX ! where the eigenvalues are contained in A = J = diag(Ay,...,\,) . To
this end, we generalize the results in [10] and in the unpublished report Bellalij
and Sadok (A new approach to GMRES convergence, 2011) that solved the
minimization problem (3) for normal matrices. The next sections will address
the non-diagonalizable case.
Let
K=(b Ab A% ... A1),

be the Krylov matrix whose first k columns are the natural basis vectors of the
Krylov subspace Ki(A,b) for 1 < k < n and let ¢ = X~ 1b. Then the Krylov
matrix K can be written as K = X (¢ Ac --- A" !¢) and let us define
the moment matrix

M=K'K=(c Ac - A" )" X*X(c Ac --- A"lc). (4)

For all Krylov subspaces to have full dimension we need the eigenvalues to be
distinct and c to have no zero entries. We remark that it is easily seen from the
parametrizations in [1] and [9] that any non-increasing GMRES convergence
curve is possible for diagonalizable matrices with any distinct eigenvalues.
We now try to show how eigenvectors and components of the right-hand side
must be modified if we wish to generate the same residual norms with different
distinct eigenvalues.
The residual norms in GMRES are given by

1

TAf L,
e Mk+161

lrell® = k=1,...,n—1, (5)

where M}, 1 is the leading principal submatrix of order k+1 of M. This result
has been proved independently in several papers; see [45, Theorem 4.1], [21,
Theorem 2.1] where the result is formulated differently using a pseudo-inverse
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and [39, Lemma 1] where it is given for real matrices. In [25, Theorem 2.1]
and the remarks thereafter it is pointed out that the formula goes back to [40,
Section 3 and 4]. As in [10] and in the unpublished report Bellalij and Sadok
(A new approach to GMRES convergence, 2011), the (1,1) entry of M,;_ll in
(5) will be calculated using Cramer’s rule:

_ det(Ma:py1,2:541)
M 1 — s
( k’+1)1,1 det(Mk+1)

(6)

With D, denoting the diagonal matrix whose diagonal entries ¢; are the com-
ponents of ¢ and with

1 A - )\llc
L A - M

Vk;_i,_l: : : . ) (7)
1 Ay - A

an n x (k+ 1) matrix, we see that My in (6) can be written as
Myp1 = Vi1 DeX* XD Vi 8)

If R*R is the Cholesky decomposition of X*X and F' = RDVj41, then My
is the product F* F of two rectangular matrices. To compute the determinants
of My41 and Majyq 2:641 in (6) we will use the Cauchy-Binet formula for
determinants of products of rectangular matrices: For the product of a (k x n)
matrix G with an (n x k) matrix H there holds

det(GH) =) det(G. 1,) det(H, .).
Iy

The notation used here is clear from the following definitions, which we will
need in the sequel.

Definition 1 With I (or Ji) we denote sets of k ordered indices i1, ...,k
such that 1 < i1 < --- < 7 < n. With Zlk we denote summation over all
such possible ordered index sets. With >, -, we denote summation over
the ordered index sets Jj that are greater than or equal to a given index set
Iy, where greater is understood with respect to lexicographic ordering. With
Xr1,,7. we denote the square k x k submatrix of X whose row and column
indices of entries are defined respectively by I and J. With Hj[ <jyeq. We
denote the product over all pairs of indices jg, j, in the ordered index set Jj
such that j, < jp.

Having outlined the main proof ingredients, we now give the resulting
expressions of the residual norm for GMRES processes that do not terminate
before iteration n. The next theorem does not contain very elegant formulaes,
but it gives the solution of (1) in the case where J is a diagonal matrix.
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Theorem 1 Let A be a diagonalizable matriz with a spectral factorization
XAX~ where A = diag(\1,...,\,) contains the distinct eigenvalues. Let b
be a vector of unit norm such that c = X ~'b has no zero entries and let R*R
be the Cholesky decomposition of X*X. When solving Ax = b with xg = 0, the
GMRES residual norm at iteration k < n satisfies

Irl* = o1 /o,

where
2
N — . . . — .
Ok41 = § § det(RIk+17Jk+1) Cjr Gk H ()\]p )‘]e) ’
Int1 | Jk+12Tk41 Je<ip€Jk+1
D n 2
o =Y ‘ZjZi R;jciA;j| , and for k> 2
2
D __
O = E E det(RIka)le S Ay A H (Ajp _)‘jz)
I |Je2>1k Je<jp€Jk

Proof We apply Cramer’s rule (6) to compute the (1,1) entry of the inverse
of My 1. Let us first consider the determinant of M. By the Cauchy-Binet
formula,

det(Mk_H) = Z |det(F[k+17;)‘2.

JP)

Thus we have to compute the determinant of F7,_, ., a matrix which consists
of rows i1, ...,ik41 of RDVy41. It is the product of a (k+ 1) x n matrix that
we can write as (RD.)r, ., by the n x (k + 1) matrix Vj ;. Once again we
can use the Cauchy-Binet formula. Let

1A, A

D VIR
V(Aj1w'~v>‘jk+1): . . :2

T Xy oo /\?}C+1

which is a square Vandermonde matrix of order k+1. Then, taking into account
that R is upper triangular,

det(F1k+1,2) = Z det(R1k+17Jk+l)cjl © G det(V()‘jN T )\jk+1))'

Jrpt1>1Ik41

Moreover, we have (see, e.g. [13])

det(vo‘ﬁ IR /\jk+1)) = H ()\jp - )‘jz)'

Je<jp€Jk41
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Finally, the determinant of My ; is

Uljcv+1 = Z Z det(RIkJthkJrl)cjl Gk H (/\jp - /\jz)

Tiyr [ Tep12Tr41 Je<Jp€Jk+1

Let us now consider the determinant of Ms.;41,2:k+1 which is a matrix
of order k. The computation is essentially the same, except that we have to
consider the rows and columns 2 to k + 1. Therefore, it is not Vi which is
involved any longer but a matrix that can be written as AVy. We have

Mo.gy1,2.641 = Vi A"DzR*RD AV,

Then, we have some additional factors arising from the diagonal matrix A
and we have to consider only sets of k indices I and Ji. The determinant of
M.k 41,2:541 is obtained, for k > 1, as

o']? = Z Z det(R[kka)le S G Ay A H (/\jp - /\jﬂ)

Iy | Je2>1k Je<ip<Jk

Noting that for £ = 1, the matrix V;, reduces to the number one, we have

2
ol =33 |det(Rr, g, )cj, - ciy Mgy -+ Ay, det(Vr))|
Iy J1>25h
2

= Xn: > Rijej A det(1)

i=1|j>i

The residual norm squared is finally given as [|ry||? = opY,, /of .

Theorem 1 shows in what manner the norm of the residual vector depends
on the eigenvalues (through eigenvalue products and products of eigenvalue
differences), on the eigenvectors (through determinants of submatrices of the
Cholesky factor of X*X) and on ¢ = X ~!b (through products of its entries).
Theorem 1 seems to support the frequently observed fact that eigenvalues close
to the origin tend to hamper convergence. The common explanation for this
behavior is that it is difficult for GMRES to construct, when it terminates, a
polynomial with the value one in the origin which is zero in an eigenvalue close
to zero. Theorem 1 shows that, with diagonalizable matrices, a spectrum close
to the origin may cause many terms in the denominators 0{3 to be close to zero
and may give relatively large residual norms. Of course, the papers [18], [17],
[1] proved that small eigenvalues need not hamper convergence in general.

As we mentioned in the introduction, a standard upper bound for GMRES
residual norms with diagonalizable matrices is

[l .
||bH = H( )pG;Ii i:l,ia.}.(,n |pk(>‘1)|a (9)
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see, e.g., [38]. This bound suggests that the condition number x(X) of the
eigenvector matrix plays an important role for convergence behavior. But ac-
cording to Theorem 1, GMRES residual norms are not explicitly dependent on
k(X). The eigenvector matrix X has a large impact, but its inverse is present
only through the entries of ¢ = X ~!b (which is also clear from (1)). With an
appropriate right-hand side, the influence of a large value of || X~!| can be
eliminated and give a vector ¢ with entries of moderate size.

Note that in Theorem 1 we could have replaced the matrix R by the matrix
of the eigenvectors X. In that case, the summations ZJk+lZIk+1 and ZJkZIk
must be replaced by summation over all possible index sets, i.e. with Jesn
and 7,.» respectively. The matrix R was introduced because when the matrix
A is normal, we have X*X = I and hence R = I. Then the sums over J, > I
and Jyq1 > Ip41 reduce to only one term (Jy, = I, respectively Jyy1 = Ij11)
and we recover the formula in [10] and in the unpublished report Bellalij and
Sadok (A new approach to GMRES convergence, 2011).

Theorem 2 Let A be a normal matrix with distinct eigenvalues and the spec-
tral factorization X AX* where A = diag (A1,...,An), X*X = XX* =1. Let
b be a vector of unit morm such that all entries of the vector ¢ = X*b are
nonzero. When solving Ax = b with xo = 0, the GMRES residual norm at
iteration k = 1 satisfies

ZIQ Wiy Wiy Hig<ij612 |/\ZJ - >‘i2|2
D i wilAil? 7

)1 =
and fork=2,...,n—1,
kaﬂ [Hfill wij] Hu<1‘,,-elk+1 [Ai; — Aie|?
Zlk [H?:l wij|’\ij|2} Hi¢<ijelk Ai; — /\ie|2,

(E

where w;; = \eich| 2,

We remark that equations (10) and (11) were derived in [28, Theorem 2.1]
for k = n — 1 and that the residual norms generated by the MINRES method
satisfy exactly the same equations (for all k).

When A is normal, GMRES residual norms depend on the eigenvectors
and the right-hand side only through the sizes w; of the squared components
of the right-hand side in the eigenvector basis (which is also clear from (3)).
Therefore, the role of eigenvalues is much more pronounced than in the non-
normal case. If A is close to normal in the sense that X*X = I, the Cholesky
factor R may be a small perturbation of the identity matrix. Then in the nu-
merators o}, ; and denominators of of Theorem 1 the involved determinants
of submatrices of R may be small except for the choices Jy11 = Ij41, respec-
tively Ji = I, but this has to be investigated further. We can, however, derive
bounds from Theorem 1 that involve the conditioning of X. We derive them
with the help of the following bounds that can be found in [3].
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Lemma 1 Let G and H be two matrices of sizes n X (k+ 1) and n x n
respectively, k < n — 1. If the matriz G is of full rank,
0min<H)2 < 1 < Umaa:(H)Q
T (G*G) ey — el (G*(H*H)G) te; — el (G*G)~1ley’

(12)

Proposition 1 Let A be a matriz with distinct eigenvalues and the spectral
factorization X AX 1 where A = diag (\1,...,\,). Let b be a vector of unit
norm such that all entries of the vector ¢ = X ~1b are nonzero. When solving
Ax = b with zo = 0, the GMRES residual norm at iteration k = 1 satisfies

9 ZIQ Wiy Wiy Hie<ijelz |)‘i:‘ = A |?
Z?:l wilAq]? ’

212 Wiy Wiy Hig<ij€Ig |>‘ZJ - )‘i15|2

Doy wil A2 ’

Ir1l2 > omin (X)

I < 17

and fork=2,...,n—1,
k+1
ZI}c+1 |:]._.[j:1 wlj:| Hiz<ij€[}c+1 |)\ZJ - )\ié‘2
k )
S [T w6, P Thiciyen, s = Xicl?
k+1
ZI}C+1 |:H]=1 wij:| Hiz<ij61k+1 |)\'L7 - Ail|2
k‘ )
10 [Tz i, i 2] Ty e, s = N2

7kl = omin (X)?

el < 1X1J2
where w;; = \e£c| 2,
Proof Because of (5) and (8), we have

1
6{(VZ+1DE(X*X)DCV]€+1)7161 '

Irl* =

Applying Lemma 1 with G = D.V},4+1 and H = X we obtain

O'min(X)2
ef Viy1DeDeViy1) ter

X2 |
6{(VZ+1D5DCV]€+1)71€1

< lrl? <

The claim follows by realizing that the value 1/e] (Vi DzDcViy1) ter is
precisely the squared residual norm for a linear system with normal matrix
having eigenvalues A1, ..., A, and such that ¢ = X ~1b.

The bounds in the previous proposition are attained if £(X) = 1 and are in
some sense a two-sided alternative to (9). They show that if 6., (X) is close
t0 Omax(X), then residual norms behave essentially as in the normal case and
are governed by eigenvalues. However, the opposite needs not be true. If x(X)
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is large, the question whether convergence is dominated by the spectrum of A
will depend on the interplay with the entries of ¢ = X ~'b and determinants
of X. If we wish to derive bounds similar to those in Proposition 1 where the
eigenvalues are fully separated from eigenvectors and right-hand side, this can
be done as follows.

Proposition 2 Let A be a matriz with distinct eigenvalues and the spectral
factorization X AX 1 where A = diag (\1,...,\,). Let b be a vector of unit
norm such that all entries of the vector ¢ = X ~'b are nonzero and let D,
denote the diagonal matriz whose diagonal entries ¢; are the components of
c. When solving Ax = b with xo = 0, the GMRES residual norm at iteration
k =1 satisfies

2 ZIQ Hig<ij€]2 |)‘i.7‘ = i, ‘2
iz INil? ’

EIQ Hig<ijeIz |/\ij - )‘iz|2

Dim [Aal? ’

”7'1”2 > Omin(X De)

Ir1]* < [ XD]*

and fork=2,...,n—1,
ZI,C+1 Hig<ije1k+1 ‘)\ij - /\ie|2
Zlk {H?:l ‘)‘ij‘Q] Hig<ij€[k |/\ij - )‘iz|2’
Zlk+1 Hil<i_,»elk+1 |)\ij - )‘ie‘Q
o [T a2 Thiciyen, A, = Xl

||7"k||2 > Umin(XDC)2

Ir* < [1X D]

Proof Because of (5) and (8), we have

1

2
rill? = )
|| k” 6?(VZ+1D5(X*X)DCV]€+1)_161

Applying Lemma 1 with G = V,4; and H = X D, we obtain
| X D|”

ef Vi1 Vi) ter

o'rnin(—Xv-l)c)2
6?(V;+1Vk+1)_161

The claim follows in the same way as in the proof of Proposition 1.

< lrl* <

The bounds in this proposition may be tight even if the condition number
of the eigenvector matrix X is large: D. = diag(c) may represent a favorable
scaling of the eigenvector matrix. In fact, as D, contains X ! through ¢ =
X 10, in some particular cases the influence of X ! in the product X D, might
be cancelled out by X. For other bounds that incorporate the right-hand side
through X ~1b we refer to [43], where the scaling of X is also discussed.

Because for diagonalizable matrices, ”departure from normality” can be
translated to ”size of the condition number of the eigenvector matrix”, we
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conclude that GMRES for diagonalizable matrices close to normal will be
governed by the spectrum. With a more important departure from normality,
the degree to which eigenvalues govern GMRES will depend upon the interplay
with determinants of X and entries of X ~'b; even with a high condition num-
ber x(X), GMRES behavior can be governed by the spectrum in particular
cases.

3 One Jordan block

We start our investigation of how Theorem 1 can be extended to the non-
diagonalizable case by considering the situation where the Jordan canonical
form of A has one Jordan block only. Let A have the Jordan form XJX !
with J = bidiag (), 1) for a nonzero eigenvalue A and let b be a vector of unit
norm such that the last entry of ¢ = X ~'b is nonzero (otherwise GMRES
terminates before the nth iteration). Then the moment matrix M is

M=K'K=(c Jc - J)VX*X(c Jc - J'le).
In contrast with the Krylov matrix (¢ Ae --- A""'¢) = D.V, in the pre-
vious section (see (4) and (7)), the Krylov matrix (¢ Je --- J" l¢) cannot

be written as the product of a diagonal matrix containing the entries of ¢ with
a Vandermonde matrix. Instead, it can be decomposed as

(¢ Je - J'le) =CE= (13)

cT C ... ... Cp 1 A A2 ... An—l1
0 1 2\ - (”1)An2
C2 C3 .. Cp ( 1

C3 ... Cp

o
o
—_

D en Do " :

Cn oo o -- 1
where the matrix C is a Héankel “anti upper triangular” matrix defined by
Cly.-.,Cpn,
0,---,0. Here is a small example for illustration: Let n = 5 and let all entries
of ¢ = X~1b be nonzero. Then the Krylov matrix (¢ Je --- J%c)is

c1 Aci +co )\2(;1 + 2Xco + c3 )\?Cl -+ 3)\262 + 3Xc3 + ¢y )\4(;1 + 4)\362 + 6)\263 +4Xcy + 5
ca Aca +c3 )\202 + 2Xc3 + cq )\SCQ + 3)\2C3 + 3Xcq + ¢35 )\4(;2 —+ 4)\303 + 6)\264 + 4Xcs

cs Aes+ca A2e3 4 2heq + s Aes 4 3M2%¢q + 3Xes Aeg 4+ 4X3¢y 4+ 602¢s
cy Aeqg +cs Aca + 2Xes Ay + 302¢s Ay +4X3¢s
Cs )\05 A265 )\305 /\405

with the factorization

Ci1 C2 C3 C4 Ch 1 A /\2 )\3 /\4
Cy C3 C4 Cjx 12X 3)\2 4)\3
(¢ Je -+ J)=|c3 c1 c5 13X 6A2
c4 Cp 1 4\

Cs 1
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The (k + 1)st leading principal submatrix My of M is given by
Mysr=(c Jec - Je)'X*X(c Je --- Jke).

With (13) and defining
Y = XC,

we have
M1 = (Bpo1) (XC)' XCOE. 16041 = (Eo1ik1) Y'Y E. 1415

which can be written as the product My = F*F of two rectangular matrices
where F' = Y'F. 1.;.11. The matrix E. 1.;41 depends only on the eigenvalue, the
matrix Y contains all information from the principal vectors and the right-
hand side. Using exactly the same proof technique as for Theorem 1, we obtain
for a single Jordan block the following.

Corollary 1 Let A be a nonsingular matriz with a single eigenvalue A\ and
with Jordan form XJX ™' where J = bidiag (A, 1). Let b be a vector of unit
norm such that the last entry of c = X ~'b is nonzero, let E be the eigenvalue
matriz defined by (13) and let Y = XC, where C is the Hankel matriz defined
in (13). When solving Ax = b with xo = 0, the GMRES residual norm at
iteration k < n satisfies

Zlk+1
sz |2Jk det(Yr,,7,) det(Ey, 2:k41)

’ 2

ZJkJrl det(Ylk+17Jk+1) det(Ee]k+1,1:k+1)
|2

lrel® = (14)

Corollary 1 shows an interplay between eigenvalues, principal vectors and
right-hand side which is similar to the interplay between eigenvalues, eigen-
vectors and right-hand side in Theorem 1. GMRES residual norms are formed
from polynomials in the eigenvalue on the one hand and from determinants of
the principal vector matrix multiplied with a matrix containing the entries of
X ~'b on the other hand. The inverse X ! of the matrix of principal vectors
X appears only in combination with the right-hand side through the vector
¢ = X~ 'b and as before, possible ill-conditioning of X does not necessarily
have a significant influence on convergence behavior.

One can prove an analogue of Proposition 1 by applying Lemma 1 with
G = CFE and H = X. It would show that if x(X) = 1, the behavior of
GMRES applied to a very defective matrix is still governed by the eigenvalue.
This would correspond to the special and somewhat superficial situation where
A has a single Jordan block and where the matrix X is unitary, i.e. the Jordan
form of A is A = XJX*. For example, GMRES for a single, plain Jordan
block is, in general, strongly governed by the eigenvalue (see, e.g., the results
for a single Jordan block in [26] and [42]). Matrices of the form A = X JX*
are far from normal in the sense of being maximally defective. Clearly, this
type of departure from normality of A does not decide upon whether GMRES
is governed by eigenvalues. As in the previous section, the departure from
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orthogonality of the eigenvector or principal vectors tells us something. If k(X)
is large, the degree to which the spectrum governs convergence behavior is
influenced by the entries of X and ¢ = X~!b (an analogue of Proposition 2
for one Jordan block is possible too).

Compared with Theorem 1, we see that the summations over Jy and Jy41
in Corollary 1 involve all possible index sets, not only those larger or equal
Iy, respectively Ij4q1. This is because Y is not upper triangular. Like in the
section on diagonalizable matrices, we could have introduced the Cholesky
decomposition R*R of X*X and then have defined Y as Y = RC. Then Y
would be, like C', Hankel “anti upper triangular” and we can eliminate some
terms in the summations exploiting this structure. We did not pursue this
idea, because more useful and elegant simplifications of the expression (14)
are given by the next lemmas.

The numerator of ||ry||? contains the determinants of Ey, ,, 1.441 for all
index sets Ji4+1. Their values are given in the following result.

Lemma 2 For all the sets of k+ 1 indices Jxy1 in the numerator of (14), the
only determinant of Ej, .| 1:.x+1 which is non-zero is det(E1.x41,1:641) = 1.

Proof. We have to consider all the sets of indices j, such that 1 < j; <
.. < Jk4+1 < n. Since E is upper triangular, all the determinants involving a
row of index larger than k+ 1 are zero. The only set of indices Ji1 without a
row of index larger than k+1is {1,2,...,k+1}. The corresponding submatrix
is triangular with ones on the diagonal. 0

From Lemma 2 there is only one term for the sum over Jj4; in the numer-
ator o, | in (14) and

o1 = Z ‘det(YlkH,l:kH)’Q-

Ty

We remark that in this case the numerator does not depend on the eigenvalue.
For the denominator in (14) we are interested in the determinants of Ej, 2.541.
They are characterized in the following lemma.

Lemma 3 The k+1 non-zero determinants of Ej, 2..+1 are obtained for the
sets of indices Jy not containing an index strictly larger than k + 1. If those
sets are enumerated in lexicographic order, the determinants are respectively

NN UM 1. Moreover, the denominator o for ||ry||? in (14) is
2
of =Y |Adet(Yr, z,)+ - +Adet(Yy, )+ det(Vy, 7,.,)]
Iy
whereZ;, j =1,...,k+1, are the sets of indices with k elements in the ordered

combinations of k 4+ 1 elements enumerated in lexicographic ordering.
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Proof. The first claim is obvious since if there is a row index strictly larger
than k + 1 in Jj then there is a zero row in the matrix Fj, 2.x+1 and the
determinant is zero. The proof of the second claim is by induction on k. For
k = 1 the only nonzero determinants of E; o are, in lexicographical order,
det(E12) = E12 = A and det(E22) = E2 2 = 1. Let us assume that the claim
is true for £ — 1. We have to consider the determinants of submatrices of order
k of the n x k matrix

by )\2 . )\kfl )\k

(RS e (R e
o () (P

E. o1 =

o o0 -- 0 0
In lexicographic order the first set of indices Jj is {1,2,...,k}. We have to

consider the determinant of the matrix E(*) obtained from the first k& rows of
E. 5.41. Let us compute this determinant using the last column. It is equal to

k _
()N det(BY) 1)) - (1)” Het(BY) 1)

- k
— o (—1)R (k_1> Adet(Eik,z’lzk,l)],

where det(E(l?,l: r_1) denotes the determinant of the square submatrix of order

k—1 of E® from columns 1 to k— 1 with row j removed. Those determinants
are given by our induction hypothesis (in reverse order); they are 1, A, ...,
A¢~1. Therefore we can factor A* and we obtain

(D) (2) e ()

One can see that the sum within brackets is equal to 1 and the determinant
we were looking for is A*. The proof for the other sets of indices Jj, is along
the same lines. O

Combining Lemmas 3 and 2 with Corollary 1, we obtain the next theorem.
Note that if the given right-hand side is sparse this may influence the nonzero
pattern of Y and cause the annihilation of some further determinants.

Theorem 3 Let A be a nonsingular matriz with a single eigenvalue A and
with Jordan form XJX ! where J = bidiag (), 1). Let b be a vector of unit
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norm such that the last entry of c = X b is nonzero, let E be the eigenvalue
matriz defined by (13) and let Y = XC, where C is as defined in (13). When
solving Ax = b with xqg = 0, the GMRES residual norm at iteration k < n
satisfies

Dl |det(Y7, y k1)

2
rel® = (5
Il >or, IAEdet(Yr, 7,) + -+ - + Adet(Yz, 7,) + det(Yr, 7, ) ? (15)

where L;, j =1,...,k+1 are the sets of indices with k elements in the ordered
combinations of k + 1 elements enumerated in lexicographic ordering.

Another result for the residual norms generated by GMRES applied to a
Jordan block was given in [21]. The expression in that paper contains constants
whose values are generally unknown.

We observe from Theorem 3 an interesting, slightly enhanced independence
from the spectrum in comparison with diagonalizable matrices: The numerator
is fully independent from the eigenvalue and so are the summands det(Y7, 7, ,)
in the denominator. In the expression for residual norms of Theorem 1 all
summands in both numerator and denominator are depending on eigenvalues.

We next consider a very small convection-diffusion model problem where
matrices close to a single Jordan block arise. The choice of the number of
inner nodes for discretization and of the source term are physically somewhat
articifial but we made these choices for the sake of showing that the formulas
for the residual norm can be useful.

Consider the one-dimensional convection-diffusion problem on the unit in-
terval [0, 1]
—vu” +u' = f, u(0) = u(1) =0,
discretized with finite differences on a regular grid with n inner nodes using

upwind differences for the convective term. This gives a linear system where
the system matrix A is tridiagonal with entries

A = h™? tridiag(—v — h, 2v + h, —v),

see, e.g. [41, Section 4]. In the convection dominated case, v < h? and A is
close to a scaled transposed Jordan block. Let the source term be nonzero only
around the first inner node 1/(n + 1), with the value (v + h)/(—h?) in that
node. Then the right-hand side b is a multiple of e; and GMRES applied to
the pair (4, b) gives the same residual norms as GMRES applied to the pair

12 72
( h IAI,th>, (16)

v+ h v+ h

where I~ denotes the (unitary) antidiagonal reversion matrix with ones on the
antidiagonal. The matrix %[ ~AI™ is anear Jordan block with the eigenvalue
A= —(2v+ h)/(v + h), the right-hand side is e,,.

In the left part of Figure 1 we show the GMRES residual norms generated
with the pair (16), where n = 4 and v = 0.01 (dashed lines). We also show the
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convergence curve for the same pair, except that the lower subdiagonal entries
of A have been put to zero to obtain a true Jordan block (dotted lines). Clearly,
the convergence of GMRES applied to the pair (A, b) is very close to that for a
Jordan block with eigenvalue A = —(2v+h)/(v+h) = —1.0476 and right-hand
side e,,. Below we give explicit formulaes for the residual norms generated with
this Jordan block using Theorem 3. Note that in this example Y = C =1".

N
~ 1 09F

N 1 08
S 1 0.7

T 1 0.6

T~ 05 S

04 -]

0.3
0

Fig. 1 GMRES residual norm curves for a one-dimensional convection-diffusion model prob-
lem with near Jordan block (dashed lines) and with true Jordan block (dotted lines). In the
left part the right hand side is e, in the right part it is e1 + en.

— For k =1, with Lemma 2, the numerator in (15) is

Z | det(C’12,1:2)|2.
I

There are six terms for Iy : {1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}, with
only the last one giving the nonzero determinant det(C/3 43 {1,2y) = —1. For
the denominator in (15) we sum over the trivial index sets {1}, {2}, {3},{4}
and Z; = {1}, {2}. We obtain nonzero values for the index sets {3},{4}
only:

[Adet(Cray p1y)+det(Cay 121)* = 1, [Adet(Cray 1y)+det(Cray 211> = (AP
The first residual norm satisfies

1
2 = -
||T'1|| 1+|/\|2

For k = 2 the numerator in (15) is computed by summation over the sets of
ordered indices {1,2,3}, {1,2,4},{1,3,4},{2, 3,4} with only the last one
giving the nonzero determinant det(Cyz3,43,1:3) = —1.

For the denominator, we have Z, = {1, 2}, {1, 3}, {2, 3}, and the outer sum-
mation is over the index sets {1, 2}, {1,3},{1,4}, {2,3}, {2,4}, {3,4}. From



Title Suppressed Due to Excessive Length 17

these, only those not containing the index 1 lead to non-zero summands
(the first three entries of the first row are all zero). Thus

2
212 ‘)\2 det(C’IQ,{LQ}) —|— )\det(C’I%{l,g}) + det(C’IZ’{Q,;;})’
= ‘)\2 det(C{273},{172}) + )\det(C{Q,3}7{173}) + det(C{273}7{2,3})
‘)\2 det(C{274},{172}) + )\det(C{214}7{173}) + det(C{274}7{2,3})

2
P\Q det(Cy3,43,41,2y) + Adet(Cy3ay,(1,3)) + det(c{3,4},{2,3})‘
L+ M2+ [\

| 2

| 2

+ +

The square of the norm of the residual at iteration 2 is

[ S —
S YR\

— For k = 3 we have only one set of indices for I, that is, {1,2,3,4}. There-
fore,

Z|det(014,1;4)|2 = |det(C’)|2 = |det(I_)|2 =1.

Iy
For the denominator in (15) we have Zs = {1,2,3},{1,2,4},{1, 3,4},
{2,3,4} = I3. It yields

S g [N det(Cry (1,2.3)) + A2 det(C, (1,2,4)) + Adet(Cr, (1,3.47) + det(Cry 2,3,43)]?
= |det(Cp123) 12.3.4)) > + [N det(Cpi 2.4y, 1,3.41)1° + [N det(Cpa 3,43, (1,2,01)]
+ [N det(Crasay 12D = 1+ AP+ AT +[A]°

and the last non-zero residual norm satisfies

s = !
3 T4+ A2+ A+ NS

We can easily obtain formulaes for a right-hand side with more nonzero entries.
For instance with a source term having the value (v+h)/(—h?) also in the last
inner node n/(n+ 1), we obtain a linear system with a near Jordan block and
right-hand side e; + e,. The convergence curves for GMRES applied to this
system and applied to the same system where the nonzero lower subdiagonal
entries have been replaced by zeros, are displayed in the right part of Figure 1.
They are very close. Using Theorem 3 we obtain the exact residual norms for
the latter system (for which Y = C' is the matrix I~ + ejel.)

— For k = 1, in comparison with the case b = e, the numerator in (15)
contains the additional nonzero determinant det(C{173}7{1,2}) =b; = 1. For
the denominator in (15) we have an additonal nonzero value for the index
sets {1}: [Adet(Cay q13) + det(Cpay q23)|* = [Ab1|* = |A|%. The squared
first residual norm is

2
2 = ==
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— For k = 2, in comparison with the case b = e,,, the numerator in (15) also
contains the nonzero determinant det(C{y 23y,1:3) = —b1. For the denomi-
nator, the outer summation is over the index sets {1, 2}, {1, 3}, {1,4}, {2, 3},
{2,4},{3,4} where {1, 2}, {1, 3} lead to the additional non-zero summands
|Ab1]? and |A%b1|?, respectively. The square of the norm of the residual at
iteration 2 is

ol = ———2
TR 2

— For k = 3, the numerator in (15) is Y, |det(Cy, 1.4)|> = [det(C)]* =
|det(I~ + erel)|? = 1. For the denominator, the outer summand for the
index set {1,2,3} takes the value |[A\3b; 4 1|? and the remaining summands
are unchanged. The last non-zero residual norm satisfies

1

2
T = .
Il = e P AT ap

We see that for these right-hand sides we would have good convergence
if the modulus of lambda is large, as one would expect. Nevertheless, it is
in general not true that an eigenvalue close to zero hampers convergence for
matrices with one Jordan block. If A — 0, then for a given k£ both the numer-
ator and denominator in (15) go to values independent from A. The speed of
convergence it then fully determined by the entries of X and X ~'b and needs
not be slow. This is a nice illustration of the limited role of the eigenvalue,
i.e. of the theory in the series of papers [18,17,1].

4 GMRES for non-diagonalizable matrices

The generalization of Section 3 to multiple Jordan blocks is straightforward.
Let A have the Jordan form XJX ! and let it have m (m < n) distinct
eigenvalues denoted as A1, g, ..., Ay We assume A is non-derogatory because
we consider GMRES processes that do not terminate before iteration n. Let
the size of the Jordan block J; corresponding to \; be n;, i.e. 2111 n; = n,
and let us denote by s;, ¢ = 1,...,m the index of the row where the block J;
starts, to which we add s;,11 = n + 1. The block J; goes from row s; to row
si+1 — 1. To avoid early termination, we also assume that the right-hand side b
is a vector of unit norm such that the entries on positions s;41 —1, 1 <i < m,
of ¢ = X~ 'b are nonzero.

As before, we have

M=KK=(c Jec - J%)'X*X(c Jec --- Jlc).
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For multiple Jordan blocks, the decomposition (13) can be modified as follows.
If we define the rows s; to s;4+1 — 1 of E corresponding to the eigenvalue \; as

[P VD C A /\?i—l )\?—1
) n; — 1 n;—2 n—1 n—2
o 1 o (M et ()
ni—1Y\ \n,—3 n—2\  n-3
E8i25i+171,2 =10 0 1 < 2 ) A ( 2 ) Ai
00 0 - 1 <n_1>/\;tm
and the corresponding diagonal block of C' as
Cs; Cs;+1 Csi+1,1
Csi+1 Csi+2 s Csip1—1
CSiZSiJrl*l,SiiSHl*l = )
Cs;+2 e qu,+1—1
Csip1—1
Csipt1—1
then
(¢ Je --- J"le)=CE.

The matrix C' is block diagonal with Hénkel anti-upper triangular diagonal
blocks of order n;. We again give an example to illustrate.

Consider a matrix A = XJX ! of order 5 with J defined as
Al

J= A , (17)

I

where A\ and pu (A # u) are given complex numbers different from 0. Let
¢ = X 'b, where b is the right-hand side, and let ¢ have no zero entries. Then

the Krylov matrix (¢ Je --- J" 7 lc)is
c1 AerF+ca MNep 42X e + ez Aer +302ca +3Xes AMep + 4X3¢co + 6023
co  Aca +c3 /\262 + 2)\c3 )\362 -+ 3/\263 /\462 -+ 4)\303
c3 Acs A2es A3es Aes
ca pca+cs pulcq + 2ucs w3cq + 3plcs putes + 4pdes
¢ pes pes wies pres

and can be factorized as

C1 C2 C3 0 0 1 A )\2 )\3 /\4

ca cg 0 0 O 0 1 2Xx 3X2 4x3
(¢ Je - J'le)=|es O 0 0 O 0 0 1 3x 6A% [,

0 0 0 ¢ o5 1 opop? o opt

0 0 0 ¢ O 0 1 2u 3u® 4u°
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with a block diagonal matrix C.
Let, as before,
Y = XC.
Then if the (k + 1)st leading principal submatrix M1 of M is written as

My =(c Je - Je)' X*X (¢ Jec - JFe)
= Eil:k-}-lO*X*XCE:,l:k-i-l - (YE:,I:k—i-l)*YE:,l:k-i-h

we immediately obtain, again by using the proof technique of Theorem 1, the
formula

2 Zlk+1 |EJ;€+1 det(YIk+1;Jk+1> det(EJk+1~,1ik+1)|2

el 5
sz |2Jk det(Y7,,7,) det(EJk,2:k+1)|

(18)

The formula is the same as the one presented in Corollary 1, but of course, Y’
and F are here generalizations of the Y and FE in Corollary 1. E represents all
the influence of eigenvalues and Y all the influence of eigenvectors, principal
vectors and right-hand side. The remarks in Sections 2 and 3 on the role of
k(X) and of X b apply to this section, too.

A difference is that the interplay between the distinct eigenvalues will play
a role. The determinants of Ej, ., 1.x4+1 and Ej, 2.441 may contain eigenvalue
differences. For example, so do most determinants of F involved in forming
||r3]|? for the matrix J in (17), see Tables 1 and 2. All determinants in Table 1
have p— X as a factor. Hence they may be small if  is close to A. This suggests
that eigenvalue clusters accelerate convergence whereas outliers cause delay,
which is often true (see, e.g., [4]). If u = A, corresponding to two Jordan
blocks with the same eigenvalue, we have early termination, ||r3|| = 0 (in
exact arithmetic).

We now investigate whether with non-diagonalizable matrices, GMRES
residual norms are slightly less dependent on eigenvalues than with diago-
nalizable matrices in the sense that not all summands in (18) depend upon
eigenvalues. We have seen with Theorem 3 that this holds for matrices with a
single Jordan block.

For simplicity, we first we address the case k = 1. Let us consider the
determinants in the numerator of (18), i.e. the determinants of Ej, {1 4} for
the set of indices Jy. There are n!/(2(n — 2)!) of them. But the rows that are
involved are only of three different types whatever the dimension n is. The
first type that we can denote as t1(;) is t1(\;) = (1 A;), for an eigenvalue
;. The two other types are t = (0 1) and t3 = (0 0). The two last types
may or may not exist depending on the values of n;, ¢ = 1,...,m. We have
only three kinds of non-zero determinants

=1 (19)
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Then in the terms )

Z det(YIz,b) det(Ejz’l;Q) 5

Jo
of the numerator of (18), the sum runs over the set of indices such that
det(Ey, 1.2) # 0 that is, such that we have one of the three kinds of deter-
minant listed above. With the second and third kind there is no dependence
on eigenvalues. For the denominator of (18) we can proceed similarly. Thus,
depending on the sizes of the individual Jordan blocks, a number of summands
is independent from the spectrum.

Table 1 Determinants of Ej, 1.4 for the numerator in (18) with k = 3, for the matrix J in
(17).

[ Indices in Jy [ value ]
{1,2,3,4} (n—N)3
{1,2,3,5} 3(u—N)?
{1,2,4,5} (n— )%
{1,3,4,5} —2(p — )3
{2,3,4,5} 3(pn—N)?

Table 2 Determinants of Ej, 2.4 for the denominator in (18) with k = 3, for the matrix J
in (17).

[ Indices in J3 [ value “ Indices in J3 [ value ]
{1,2,3} A3 {1,4,5} A2 (p— N)?
{1,2,4} N plp —X)? {2,3.4} u[(p =N+ A2A — )]
{172’5} )‘2(“ — )‘)(3“ — )‘) {27375} 3(:”‘ — >‘)2
{1,3,4} A — N (p — 2)) {2,4,5} B2 (= N (= 3X)
{1,3,5} AR =N+ p(p —2))] {345} 1% (3X — 2u)

For k£ > 1 we have the following straightforward result.

Proposition 3 If k < max;(n;), then in formula (18) there are determinants
of both Ej,, 1:k+1 and Ej, .41 that are equal to 1.

Proof The result is obvious since some of the submatrices are upper triangular
with ones on the diagonal.

It is not difficult to see that when an eigenvalue approaches zero, this gives
determinants tending to be independent on that eigenvalue. Similarly to the
previous section, the influence of the corresponding Jordan block on GMRES
is then fully determined by the right-hand side and eigenvectors and/or prin-
cipal vectors and consequently, eigenvalues close to the origin do not seem to
necessarily hamper convergence.
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5 Conclusion

We presented the solution of the minimization problem (1) for GMRES resid-
ual norms generated with general diagonalizable and with non-diagonalizable
matrices. It is explicitly formulated in a closed form, unlike the norms of the
GMRES residuals in GMRES computations. The solution is not simple and has
no immediate practical application but it completely describes the mechanism
of forming the residual norm from eigenvalues, eigenvectors or principal vectors
and the right-hand side. It shows in what (complicated) way eigenvalues influ-
ence GMRES convergence. Other objects than eigenvalues may lead to more
elegant formulaes, but if we wish to know the exact influence of eigenvalues, the
presented closed-form expressions give the answer. In the diagonalizable case,
it is eigenvalue products and products of eigenvalue differences that influence
the residual norm. In the non-diagonalizable case, more general polynomials
in eigenvalues play a role in forming the residual norm and small eigenvalues
are less prone to hamper convergence. Eigenvectors (principal vectors) influ-
ence residual norms in two ways. Determinants of the eigenvector (principal
vector) matrix play the most important role. The inverse of this matrix con-
tributes only in the form of its product with the right-hand side. As for the
right-hand side, it contributes only through its components in the eigenvector
(principal vector) basis. The degree to which GMRES is governed by eigenval-
ues is not so much determined by the departure from diagonalizability of the
system matrix, but in general more by the departure from orthogonality of the
eigenvector (principal vector) matrix X. With a small value of k(X ), GMRES
is governed by the spectrum even if the system matrix is defective; with a
larger value of k(X) GMRES may or may not be governed by the spectrum,
depending on X, X~ 'b and the interplay between them.
Future work includes extension to other Krylov methods.
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