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Abstract: The most popular iterative methods for solving nonsymmetric linear systems are
Krylov methods. Recently, an optimal Quasi-ORthogonal (Q-OR) method was introduced,
which yields the same residual norms as the Generalized Minimum Residual (GMRES)
method, provided GMRES is not stagnating. In this paper, we study how to introduce
matrix sketching in this algorithm. It allows us to reduce the dimension of the problem in
one of the main steps of the algorithm.
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1. Introduction
Let A be a real nonsingular nonsymmetric matrix of order n. So far, the most popular

iterative methods for solving a nonsymmetric linear system Ax = b, where b is a given
real vector, are Krylov methods. Many of them can be classified as Quasi-ORthogonal
(Q-OR) methods or Quasi-Minimal Residual (Q-MR) methods (see, for instance, [1]). All
these methods use the same framework but differ by the basis which is chosen. Different
possibilities for computing the basis are described in [1] (Chapter 4). Well-known examples
of Krylov methods are FOM [2,3] and GMRES [4], which use an orthonormal basis. In [5],
a Q-OR optimal method that minimizes the residual norm using a non-orthogonal basis
was proposed. In most cases, it must give the same residual norms as GMRES, which also
minimizes the residual norm, but uses an orthonormal basis computed with the Arnoldi
process (see [4]).

In recent years, randomization techniques have been proposed to reduce the dimension
of some problems in numerical linear algebra (see [6–8]). In this paper, we study how to
introduce randomization and matrix sketching in the Q-OR optimal algorithm. Sketching
is used to solve a least squares subproblem that must be solved at each iteration.

Section 2 recalls the Q-OR optimal method [1,5]. In Section 3, we describe some known
techniques for matrix sketching. Section 4 shows how to use these techniques in the Q-OR
optimal method. This is illustrated by a few numerical experiments described in Section 5,
showing that, even though some monotonicity properties are lost, convergence is preserved
for the randomized algorithm.

2. The Q-OR Optimal Method
Let r0 = b− Ax0 be the initial residual vector. Let us assume that we have an ascending

basis of the nested Krylov subspaces Kk(A, r0), which are defined as

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0}, k = 1, 2, . . .
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The dimension of these subspaces rises to kmax ≤ n, known as the grade of A
with respect to r0. This means that, if v1, . . . , vk are the basis vectors of Kk(A, r0), then
v1, . . . , vk, vk+1 are the basis vectors for Kk+1(A, r0) as long as k + 1 ≤ kmax.

Such basis vectors satisfy what is called an Arnoldi relation,

AVk = Vk Hk + hk+1,kvk+1eT
k = Vk+1Hk, (1)

where Hk is an upper Hessenberg matrix with entries hi,j, the columns of Vk are the basis
vectors v1, . . . , vk, and ek is the last column of the identity matrix of order k. The matrix Hk
is Hk, appended at the bottom with a k + 1st row equal to hk+1,keT

k .
The iterates xk, k ≥ 1 in Q-OR and Q-MR methods are sought as

xk = x0 + Vkyk, (2)

for some unique vector yk ∈ Rk. Since we choose v1 = r0/∥r0∥, the residual vector rk,
defined as rk = b − Axk, is

rk = b − Axk

= b − Ax0 − AVkyk

= ∥r0∥Vke1 − AVkyk

= Vk(∥r0∥ e1 − Hkyk)− hk+1,k[yk]kvk+1. (3)

In a Q-OR method, the kth iterate xO
k is defined (provided that Hk is nonsingular) by

computing yk = yO
k in (2) as the solution of the linear system

Hkyk = ∥r0∥ e1. (4)

This annihilates the term within the parentheses on the right side of (3). The iterates
of the Q-OR method are xO

k = x0 + ∥r0∥Vk H−1
k e1, the residual vector rO

k is proportional to
vk+1, and

∥rO
k ∥ = hk+1,k

∣∣∣ [yO
k ]k

∣∣∣. (5)

In the case where Hk is singular and xO
k is not defined, we define the residual norm as

being infinite, ∥rO
k ∥ = ∞.

The residual vector in relation (3) can also be written as

rk = Vk+1(∥r0∥ e1 − Hkyk). (6)

Instead of removing the term within the parentheses on the right side of (3), we would
like to minimize the norm of the residual itself. This is what is carried out in GMRES with
an orthonormal basis [4]. Minimizing the norm of the residual may seem as costly when
the columns of the matrix Vk+1 are not orthonormal. However, we have

∥rk∥ ≤ ∥Vk+1∥ ∥ ∥r0∥ e1 − Hkyk∥.

In a general Q-MR method, the vector yM
k is computed as the solution of the least

squares problem:
min

y
∥ ∥r0∥ e1 − Hky∥. (7)

Note that yM
k does not minimize the norm of the residual, but the norm of what is

called the quasi-residual, as follows:

zM
k = ∥r0∥ e1 − HkyM

k . (8)

The Q-MR iterates are always defined as opposite to the Q-OR iterates when Hk is
singular. Note that the preceding definitions do not depend on the choice of the basis. It is
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a general framework that could use any basis. Q-OR and Q-MR methods, as well as their
many interesting mathematical properties, are studied in detail in [1].

The Hessenberg matrices Hk are unreduced since hj+1,j ̸= 0 for j = 1, . . . , k − 1.
Therefore, they are nonderogatory and can be factorized as Hk = UkC(k)U−1

k , where Uk is
an upper triangular matrix with |Uk]1,1 = 1, and C(k) is a companion matrix corresponding
to the characteristic polynomial of Hk (see [1]). The matrix Uk is, in fact, a Krylov matrix:

Uk =
(

e1 Hke1 H2
k e1 . . . Hk−1

k e1

)
.

Clearly, Uk is the principal matrix of order k of Uk+1. Let ϑ1,j be the entries of the first
row of U−1

k+1. It is proved in [1,5] that, whatever the basis of the Krylov subspace is, the
Q-OR residual norms satisfy

∥rO
k ∥

∥r0∥
=

1
|ϑ1,k+1|

, k = 0, 1, . . .

As shown in [1,5], there exists a non-orthogonal basis such that |ϑ1,k+1| is maximized.
Therefore, this minimizes the Q-OR residual norm. Assuming that ϑ1,k ̸= 0 and vT

k Avk ̸= 0,
it can be computed as follows:

ṽk = Avk − Vks − βvk, vk+1 =
ṽk

∥ṽk∥
,

with
VT

k Vks = VT
k Avk, (9)

and
β =

α

vT
k Avk

, α = ∥Avk∥2 − (VT
k Avk)

Ts.

The k first entries of the kth column of the upper Hessenberg matrix Hk are
h1:k,k = s + βek, and hk+1,k = ∥ṽk∥. Moreover, we have ϑ1,1 = 1, and

ϑ1,k+1 = − 1
hk+1,k

k

∑
j=1

ϑ1,jhj,k, k = 1, . . . , n − 1.

At iteration k, we have to solve the linear system (9) whose matrix is symmetric-
positive-definite as long as Vk is of rank k. In [5], this linear system was solved by incremen-
tally computing the inverses of the triangular factors of the Cholesky factorization of VT

k Vk.
The details of the method, as described in [5], are shown as Algorithm 1. In this algorithm,
the matrix Lk contains the inverse of the Cholesky factor of VT

k Vk. Preconditioning can be
easily incorporated each time we have a product of the matrix A with a vector.

Note that the modulus of ϑ1,k+1 gives the inverse of the (relative) norm of the Q-OR
residual at iteration k. Hence, we can compute the basis vectors vk, stop the iterations
using ϑ1,k+1, and then reduce the upper Hessenberg matrix to an upper triangular form to
compute the final approximate solution.

This method is named Q-ORoptinv because it minimizes the residual norm and uses
the inverses of Cholesky factors. When, for all k, vT

k Avk ̸= 0, it must give the same residual
norms as GMRES. The reader may wonder why we have derived an algorithm which
delivers the same residual norms as GMRES but with more floating point operations.
The reason is that the dot products in Q-ORoptinv are all independent and they can be
computed in parallel, contrary to the dot products in the modified Gram–Schmidt (MGS)
implementation of GMRES.
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As in GMRES, the storage increases at every iteration, so the algorithm can be restarted
every m iterations to limit the needed storage.

Algorithm 1 Q-ORoptinv.

1: input A, b, x0
2: —Initialization
3: r0 = b − Ax0
4: v1 = r0/∥r0∥, vA

1 = Av1, L1 = 1
5: ω = vT

1 vA
1 , α = (vA

1 )
TvA

1 − ω2

6: h1,1 = ω + α
ω

7: ṽ = vA
1 − h1,1v1, h2,1 = ∥ṽ∥

8: v2 = 1
h2,1

ṽ, vA
2 = Av2

9: V2 =
(
v1 v2

)
10: ϑ1,1 = 1, ϑ1,2 = − h1,1

h2,1

11: ϑ =
(
ϑ1,1 ϑ1,2

)T

12: —End of initialization
13: for k = 2, . . . until convergence do
14: vV

k = VT
k−1vk, vtA

k = VT
k vA

k
15: ℓk = Lk−1vV

k , yT
k = ℓT

k Lk−1
16: if ℓT

k ℓk < 1 then

17: ℓk,k =
√

1 − ℓT
k ℓk

18: else
19: (pv

k)
T = yT

k VT
k−1, ℓk,k = ∥vk − pv

k∥
20: end if

21: Lk =

(
Lk−1 0

− 1
ℓk,k

yT
k

1
ℓk,k

)
22: ℓA = LkvtA

k , s = LT
k ℓA

23: α = (vA
k )

TvA
k − ℓT

AℓA, β = α
(vtA

k )k

24: h1:k,k =

h1,k
...

hk,k

 = s + βek

25: ṽ = vA
k − Vk h1:k,k, hk+1,k = ∥ṽ∥

26: ϑ1,k+1 = − 1
hk+1,k

ϑTh1:k,k

27: ϑ =
(
ϑ1,1 · · · ϑ1,k+1

)T

28: vk+1 = 1
hk+1,k

ṽ, vA
k+1 = Avk+1

29: Vk+1 =
(
Vk vk+1

)
30: if needed, solve Hky(k) = ∥r0∥e1, xk = x0 + Vky(k)

31: end for

The solution s of Equation (9) is also the solution of the least squares problem:

min
y∈Rk

∥Vky − Avk∥, (10)

since (9) is the normal equation corresponding to (10). Hence, we can use the economy size
QR factorization of Vk to solve (10) with an upper triangular matrix R of order k instead of
using the inverses of the Cholesky factors of VT

k Vk. Since the method is often restarted with
m ≪ n, meaning that the number of columns k is small compared to the number of rows,
Vk is what is called a tall-and-skinny matrix. There exist special algorithms for computing
the QR factorization of such matrices that can be used on parallel computers (see [9,10]).
Note that the columns of Q give an orthogonal basis of the Krylov subspace. So, if we use
the QR factorization, we are more or less back to what is completed in GMRES. When the
restart parameter m is large, or when there is no restart, using the QR factorization may be
too expensive. However, at each iteration, we only add one more column to the matrix Vk.
There exist algorithms for updating the QR factorization when we add a new column to
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the matrix (see [11,12]). This can be carried out, for instance, by orthogonalizing the new
column against the columns of the previous matrix Q with the modified Gram–Schmidt
algorithm. This is what we used in our numerical experiments.

3. Random Sketching
Since the matrix Vk in the least squares problem (10) is tall and skinny, it may be useful

to use a random sketching, a technique that was introduced during the last twenty years. This
is used to reduce the dimension of the problem (see, for instance, [6]). A sketching matrix S is
of order ℓ× n with ℓ ≪ n. Let V be a subspace of Rn. The matrix S is an ε-embedding of V if

| ∥Sv∥ − ∥v∥ | ≤ ε ∥v∥, ∀v ∈ V , (11)

where 0 < ε < 1. Generally, ε-embeddings are constructed with probabilistic techniques
to be independent of the subspace V with a high probability. They are called oblivious
ε-embeddings. There are several distributions for constructing such embeddings, such as
Gaussian ones and the subsampled randomized Hadamard transform (SRHT) [13].

SRHT is constructed with Hadamard matrices. These matrices are defined recursively.
Starting with H = 1, and having a Hadamard matrix H, the next matrix is(

H H
H −H

)
.

Therefore, their order is always a power of 2. Let p be an integer such that 2p is the
smallest power of 2 larger than or equal to n. The ℓ× 2p SRHT matrix S̃ is

S̃ =
1√
ℓ

PHD,

where D is a random diagonal matrix with diagonal entries ±1, H is a Hadamard matrix,
and P is a random uniform subsampling matrix. The constant in front of PHD depends on
the way the Hadamard matrix is scaled. For our purposes, the sketching matrix S is made of
the first n columns of S̃. We apply S̃ to a vector with only the first n components, which are
nonzero. The multiplication by H is carried out using the fast Walsh–Hadamard transform.
It uses the recursive structure of H to evaluate the product in N log2(N) operations with
N = 2p. The problem with this sketching matrix is that 2p can be much larger than n.

Another possibility is to use the Clarkson–Woodruff transform [8,14]. The matrix S
is an ℓ× n sparse matrix with only one nonzero entry in each column which is ±1 with
probability 1/2. The row number of the entry is chosen randomly. For the first ℓ columns
of S, a random permutation of [1, 2, . . . , ℓ] is chosen.

A delicate issue with matrix sketching is the choice of ℓ. It is known that inequality (11)
is satisfied for SRHT with probability 1 − δ if

ℓ = O
(

ε−2
(

k + log
N
δ

)
log

k
δ

)
,

where k is the dimension of the subspace V . However, this is of little help for us since we need
the same sketching matrix S for all iterations and the subspace dimension is increasing by one
every iteration. If the Q-OR method is restarted, k may be chosen as the restart parameter m.
However, this may be too small to obtain a fast convergence. We will show experimentally in
Section 5 how the choice of ℓ influences the convergence of the sketched Q-OR method.

In numerical linear algebra, matrix sketching has been mainly used with some suc-
cesses for solving large least squares problems. In recent years, randomization has also
been used in different Krylov methods for solving linear systems. However, methods such
as randomized GMRES [15] or sketched GMRES [7] do not minimize the residual norm
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as in GMRES. Hence, they are misnamed. In fact, some of them are Q-MR methods with
non-orthogonal bases.

4. The Randomized Q-OR Method
A randomized variant of the Q-OR optimal method can be carried out by simply

replacing (10) with
min
y∈Rk

∥SVky − SAvk∥, (12)

where S is an ℓ× n sketching matrix that is computed before running the algorithm. The
matrix SVk can be computed incrementally since SVk =

(
SVk−1 Svk

)
. Thus, there are

only two matrix–vector products with S per iteration. Now, it makes more sense to use a
QR factorization to solve the least squares problem (12) because it is of a smaller dimension
than (10). Of course, the basis that is obtained is no longer optimal, and the method
does not minimize the residual norm. However, since ∥S(Vky − Avk)∥ ≈ ∥Vky − Avk∥,
the convergence of the method must not be too different, even though the decrease in
the residual norm may not be monotone, as we will see with the numerical experiments
detailed the next section.

The sketched algorithm is described as Algorithm 2. In statement 12, the QR factor-
ization is simply a normalization of the vector vS

1 , and the initial matrix R is a scalar, i.e.,
the norm of vS

1 . Statement 17 is an update of the QR factorization when we append a new
vector vS

k to the previous matrix. This can be completed in different ways. In numerical
experiments, we use a modified Gram–Schmidt implementation of the update. Note that
the first dimension ℓ of the sketching matrix must be larger than the iteration number k.

Algorithm 2 Q-ORsketch.
1: input A, b, x0, S
2: —Initialization
3: r0 = b − Ax0
4: v1 = r0/∥r0∥, vA

1 = Av1, vS
1 = Sv1

5: ω = vT
1 vA

1 , α = (vA
1 )

TvA
1 − ω2

6: h1,1 = ω + α
ω

7: ṽ = vA
1 − h1,1v1, h2,1 = ∥ṽ∥

8: v2 = 1
h2,1

ṽ, vA
2 = Av2

9: V2 =
(
v1 v2

)
10: ϑ1,1 = 1, ϑ1,2 = − h1,1

h2,1

11: ϑ =
(
ϑ1,1 ϑ1,2

)T

12: [Q, R] = QR(vS
1 )

13: —End of initialization
14: for k = 2, . . . until convergence do
15: vV

k = VT
k−1vk, vtA

k = VT
k vA

k
16: vS

k = Svk, vSA
k = SvA

k
17: [Q, R] = update_QR(Q, R, vS

k )

18: s = R−1(QTvSA
k )

19: α = (vA
k )

TvA
k − (vA

k )
T(Vks), β = α

(vtA
k )k

20: h1:k,k =

h1,k
...

hk,k

 = s + βek

21: ṽ = vA
k − Vk h1:k,k, hk+1,k = ∥ṽ∥

22: ϑ1,k+1 = − 1
hk+1,k

ϑTh1:k,k

23: ϑ =
(
ϑ1,1 · · · ϑ1,k+1

)T

24: vk+1 = 1
hk+1,k

ṽ, vA
k+1 = Avk+1

25: Vk+1 =
(
Vk vk+1

)
26: if needed, solve Hky(k) = ∥r0∥e1, xk = x0 + Vky(k)

27: end for
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5. Numerical Experiments
For the first experiment, we consider the matrix fs_680_1 (https://sparse.tamu.edu,

URL accessed on 1 January 2025). We scale this matrix to have a unit diagonal and
name it fs_680_1c. This sparse matrix of order 680 has 21,184 nonzero entries and a
condition number equal to 8.6944 × 103. Figure 1 shows the true residual norms ∥b − Axk∥
for the standard Q-ORoptinv method using the inverses of Cholesky factors and the
randomized method using SRHT sketching without preconditioning and without restarting.
The initial iterate is the zero vector. Note that for SRHT, N = 1204 when n = 680.
The value of ℓ is n/4 = 170. Using Clarkson–Woodruff sketching provides almost the
same results. The residual norms of the two algorithms are almost similar, but since the
method with sketching does not minimize the residual norm, it is slightly larger and with
small oscillations.

iteration

0 20 40 60 80 100 120

tr
u

e
 r

e
s
id

u
a

l 
n

o
rm

s

10-15

10-10

10-5

100

105

Q-ORoptinv

Q-ORsketch

Figure 1. fs_680_1c, true residual norms, Q-ORoptinv (solid), Q-OR with SRHT sketching,
ℓ = n/4 (dashed).

Figure 2 displays the true residual norms for the method with SRHT sketching for
ℓ = n/2, n/4, n/8, and n/16. Note that 680/8 = 85 and ⌈680/16⌉ = 43. This limits the
number of iterations that we can perform with these small values of ℓ. In fact, one can see
that, after 43 iterations, the algorithm with ℓ = n/16 does not converge. The results with
n/2, n/4, and n/8 are more or less the same, showing that the algorithm is only weakly
dependent on the choice of ℓ. However, with ℓ = n/8, we cannot perform much more than
85 iterations.

iteration
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Figure 2. fs_680_1c, true residual norms, Q-OR with SRHT sketching, ℓ = n/2 (solid), n/4 (dashed),
n/8 (dash-dotted), n/16 (dotted).

https://sparse.tamu.edu
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For the second example, we consider the matrix rajat27 (https://sparse.tamu.edu)
of order 20,640. Since this matrix has some zero entries on the diagonal and this can be a
problem for some preconditioners, we add 2I to the matrix, and we name it rajat27b. This
matrix has 101,681 nonzero entries and an estimated condition number equal to 4.8588× 107.
We use a diagonal preconditioner.

Figure 3 shows the computed residual norms (using relation (5)) for the standard
Q-ORoptinv method and the randomized method using SRHT sketching. Once again, the
method with sketching converges similarly to the standard method.

iteration

0 50 100 150 200 250 300 350 400 450 500
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u
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n
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s

10-20

10-15

10-10

10-5

100

105

Q-ORoptinv

Q-ORsketch

Figure 3. rajat27b, diagonal preconditioner, computed residual norms, Q-ORoptinv (solid), Q-OR
with SRHT sketching, ℓ = n/4 (dashed).

Figure 4 displays the computed residual norms for the method with SRHT sketching
for ℓ = n/4, n/8, n/16, and n/32. Note that all these values of ℓ are larger than the number
of iterations we have to perform. The results with these values of ℓ are more or less the
same, showing, once again, that the randomized algorithm is only weakly dependent on
the choice of ℓ.

iteration
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o
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10
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l=n/8

l=n/16

l=n/32

Figure 4. rajat27b, diagonal preconditioner, computed residual norms, Q-OR with SRHT sketching,
ℓ = n/4 (solid), n/8 (dashed), n/16 (dash-dotted), n/32 (dotted).

Figure 5 compares SRHT and Clarkson–Woodruff sketching. The two algorithms con-
verge similarly, but more oscillations occur with Clarkson–Woodruff sketching. However,
it is cheaper than SRHT.

https://sparse.tamu.edu
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iteration
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Figure 5. rajat27b, diagonal preconditioner, computed residual norms, Q-OR with sketching, SRHT
(solid), Clarkson–Woodruff (dot-dashed).

The third example corresponds to the finite difference discretization of a convection–
diffusion equation,

− ∂

∂x

(
λ(x, y)

∂u
∂x

)
− ∂

∂y

(
λ(x, y)

∂u
∂y

)
+

∂u
∂x

+
∂u
∂y

= f in [0, 1]2,

with homogeneous Dirichlet boundary conditions. The diffusion coefficient λ(x, y) is
piecewise constant, being equal to 100 in [1/4, 3/4]2 and 1 elsewhere. The mesh size
is h = 1/151, providing a matrix of order 22,500. Its estimated condition number is
9.3909 × 105. The right-hand side is a random vector.

We use an incomplete LU preconditioner without fill-in (ILU(0)) and we restart the
methods every 100 iterations. Figure 6 shows that, even though there are some oscillations
with the method using sketching, the convergence is very similar to that of Q-ORoptinv.

iteration

0 50 100 150 200 250 300 350 400 450

re
s
id

u
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l 
n

o
rm

s

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Q-ORoptinv

Q-ORsketch

Figure 6. convection–diffusion, ILU(0) preconditioner, computed residual norms, Q-ORoptinv
(solid), Q-OR with SRHT sketching, ℓ = n/4 (dashed), m = 100.

6. Conclusions
In this paper, we have shown how to use the technique of matrix sketching in the

Krylov method Q-ORoptinv for solving nonsymmetric linear systems. This was accom-
plished to reduce the complexity of an important part of the algorithm. Even though the
sketched method does not minimize the norm of the residual, it converges almost as fast as
the genuine method, as demonstrated by the numerical experiments. This new variant of
the method can be interesting when solving large nonsymmetric linear systems.
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