
ar
X

iv
:2

10
1.

03
93

1v
1

 [
m

at
h.

N
A

]
 1

1
Ja

n
20

21

ACCURATE ERROR ESTIMATION IN CG∗

GÉRARD MEURANT∗, JAN PAPEŽ† AND PETR TICHÝ‡

Abstract. In practical computations, the (preconditioned) conjugate gradient (P)CG method
is the iterative method of choice for solving systems of linear algebraic equations Ax = b with a real
symmetric positive definite matrix A. During the iterations it is important to monitor the quality of
the approximate solution xk so that the process could be stopped whenever xk is accurate enough.
One of the most relevant quantities for monitoring the quality of xk is the squared A-norm of the
error vector x−xk. This quantity cannot be easily evaluated, however, it can be estimated. Many of
the existing estimation techniques are inspired by the view of CG as a procedure for approximating
a certain Riemann–Stieltjes integral. The most natural technique is based on the Gauss quadrature
approximation and provides a lower bound on the quantity of interest. The bound can be cheaply
evaluated using terms that have to be computed anyway in the forthcoming CG iterations. If
the squared A-norm of the error vector decreases rapidly, then the lower bound represents a tight
estimate. In this paper we suggest a heuristic strategy aiming to answer the question of how many
forthcoming CG iterations are needed to get an estimate with the prescribed accuracy. Numerical
experiments demonstrate that the suggested strategy is efficient and robust.

Key words. Conjugate gradients, Error estimation, Accuracy of the estimate

AMS subject classifications. 15A06, 65F10

1. Introduction. Nowadays, the (preconditioned) conjugate gradient (P)CG
method of Hestenes and Stiefel [11] is the method of choice for solving large and
sparse systems of linear algebraic equations

(1.1) Ax = b

with a real symmetric positive definite matrix A of order n. In theory, the CG method
has the best of the two worlds of iterative and direct linear solvers. As an iterative
method, it has low memory requirements and provides an approximate solution xk

at each iteration allowing to stop the algorithm whenever a stopping criterion is met.
As a direct method, it finds (assuming exact arithmetic) the solution after at most n
iterations, and the approximate solution xk is optimal in the sense that it minimizes
the squared A-norm (also called the energy norm) of the error vector x− xk,

(1.2) εk ≡ ‖x− xk‖
2
A = (A(x − xk), x− xk),

over the underlying linear manifold. Note that ‖x− y‖
2

A as a function of y was called
“the error function” in the original Hestenes and Stiefel paper [11]. The authors
mention [11, p. 413] that this function can be used as a measure of the “goodness”
of xk as an approximation of x. Following them and for the sake of simplicity, we
will call εk the error. In the context of solving various real word problems, the error
εk has an important meaning, e.g., in physics, quantum chemistry, or mechanics, and
plays a fundamental role in evaluating convergence and estimating the algebraic error
in the context of numerical solving of PDE’s [1, 12, 2, 3].

∗Version of January 12, 2021. The work of J. Papež and P. Tichý was supported by the Grant
Agency of the Czech Republic under grant no. 20-01074S

∗Paris, France. E-mail: gerard.meurant@gmail.com.
†Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic. E-mail:

papez@math.cas.cz.
‡Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic. E-mail:

petr.tichy@mff.cuni.cz.

1

http://arxiv.org/abs/2101.03931v1

2 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

The theoretical properties of CG can be described in many mathematically equiv-
alent ways. For example, the connection with orthogonal polynomials, which has
already been noticed in [11], allows seeing CG as a procedure for computing Gauss
quadrature approximation to a Riemann–Stieltjes integral. This view of CG is very
useful not only for estimating norms of the error vectors, but also for analyzing the
CG behavior in finite precision arithmetic. During many finite precision CG com-
putations, the orthogonality among the residual vectors is usually lost quickly and
convergence is delayed [9, 10]. Based on previous results of Paige [20], it has been
shown by Greenbaum [9] that the results of finite precision CG computations can be
interpreted (up to some small inaccuracy) as results of exact CG applied to a larger
system with a system matrix having many eigenvalues distributed throughout tiny
intervals around the eigenvalues of A. In other words, the results of [9] show that
some theoretical properties of CG remain valid even in finite precision arithmetic.
For a summary of the properties of the CG and Lanczos algorithms in finite precision
arithmetic see, e.g., [16, 17].

Inspired by the connection of CG with Riemann–Stieltjes integrals, a way of re-
search on estimating norms of the error vector was started by Gene Golub in the 1970s
and continued throughout the years with several collaborators (e.g., G. Dahlquist,
S. Eisenstat, S. Nash, B. Fischer, G. Meurant, Z. Strakoš). The main idea is to ap-
proximate the Riemann–Stieltjes integral of a suitable function by a Gauss or another
modified quadrature rule (Gauss–Radau, Gauss–Lobatto, anti-Gauss etc.), and try to
bound the estimated quantity [6, 8, 7]. Note that the resulting bounds can sometimes
be very inaccurate approximations to the quantity of interest.

As already mentioned above, the error εk must play a prominent role in evaluating
CG convergence. In this paper we concentrate on its accurate estimation. Following
the ideas of [8, 7, 21, 18, 19], one can improve the accuracy of the bounds, considering
quadrature rules at iterations k and k + d for some integer d ≥ 0 called the delay.
At CG iteration k + d, an improved estimate of the error at iteration k is obtained.
For a detailed construction of the (lower and upper) bounds on εk based on the
delay approach see, e.g., [18, Section 2.5]. The larger the delay is, the better are
the bounds at iteration k. However, a constant value of d is usually not sufficient in
the initial stage of convergence, and it may require too many extra steps of CG in
the convergence phase. Hence, there is a need for developing a heuristic technique to
choose d adaptively at each iteration, to reflect the required accuracy of the estimate.

In this paper, we focus on estimating the error εk using the Gauss quadrature
approach that provides a lower bound. We address the problem of the adaptive choice
of d. In particular, we develop an adaptive (heuristic) strategy, which aims to ensure
that the lower bound approximates the error εk with a prescribed tolerance. Note
that an analogous technique can be also used to improve the accuracy of other bounds
based, e.g., on Gauss–Radau quadrature.

The paper is organized as follows. In Section 2 we introduce the notation, recall
the standard Hestenes and Stiefel version of the CG algorithm, and present formulas
that will be used for constructing the lower bound of the error. In Section 3, we
describe an adaptive strategy for choosing the delay d, aiming to meet the prescribed
accuracy of the lower bound. Section 4 shows how to modify the formulas for precon-
ditioned CG. Some possible extensions to make the adaptive strategy more reliable
in hard cases are presented in Section 5. Results of numerical experiments are given
in Section 6 and the paper ends with a concluding discussion. In Appendix A we
provide a simplified MATLAB code of the suggested algorithm.

ACCURATE ERROR ESTIMATION IN CG 3

Algorithm 2.1 Conjugate Gradients

input A, b, x0

r0 = b− Ax0, p0 = r0
for k = 0, . . . until convergence do

αk =
rTk rk
pT
k Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk






cgiter(k)

βk+1 =
rTk+1rk+1

rTk rk

pk+1 = rk+1 + βk+1pk

end for

2. The CG algorithm and the lower bound on the error. The classical
version of the Conjugate Gradient method (Hestenes and Stiefel, [11]) is given by
Algorithm 2.1. For later use, we denote the function that performs one CG iteration
for updating the approximations xk, corresponding residuals rk, direction vectors pk,
and computing the CG coefficients αk and βk+1 by cgiter(k).

The theoretical properties of CG are well known and we do not list them here;
see, for instance, [16]. In our context it is only important that the sequence of errors
{εk} is decreasing and that the value of the difference between two consecutive terms
is known. The proof of results of the following lemma can be found in standard
literature; see, e.g., [8, 16, 21].

Lemma 2.1. Until the solution is found, i.e., xs = x, it holds that

(2.1) εk = αk‖rk‖
2 + εk+1, k = 0, 1, . . . , s− 1,

with αk‖rk‖
2 > 0, k = 0, 1, . . . , s− 1. In particular, the squared A-norm of the error

vector x− xk in CG is decreasing, i.e.,

(2.2) εk > εk+1, k = 0, 1, . . . , s− 1.

Note that Lemma 2.1 assumes exact arithmetic so that the algorithm always
finds the exact solution, i.e., xs = x for some s ≤ n. In finite precision computations,
the errors εk usually do not approach zero, but reach an ultimate level of accuracy
proportional to the squared machine precision, and then, they stagnate. Nevertheless,
it has been shown in [21] that until the ultimate level of accuracy is reached, the
identity (2.1) and the inequality (2.2) hold also for the computed quantities, up to
some small inaccuracy. Hence, considering iterations k before this level is reached, we
can assume that (2.1) and (2.2) do hold also during finite precision computations.

The relation (2.1) is the basis for the derivation of the lower bound on the error.
Given a nonnegative integer d and assuming that (2.1) holds for iterations k, k + 1,
. . . , k + d, with k + d ≤ s− 1, we obtain

(2.3) εk =

k+d∑

j=k

αj‖rj‖
2 + εk+d+1 ,

see [21], and we define

(2.4) ∆k:k+d ≡

k+d∑

j=k

αj‖rj‖
2.

4 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

Note that instead of ∆k:k we write ∆k. Using the fact that εk+d+1 ≥ 0, the quantity
(2.4) represents a lower bound on εk. The indisputable advantage of the bound (2.4)
is that it is very cheap to compute since it only involves quantities which have to be
computed in CG, and, as already mentioned, it works under natural assumptions also
for finite precision computations; for more details see [21].

While (2.3) suggests that the computable lower bound (2.4) is tight for sufficiently
large d, the choice of d that ensures a sufficient accuracy of the lower bound in practical
computations, is usually unknown. A constant value of d can be fine in some special
cases with a rapid and linear convergence. However, in general, we expect that the
convergence of the A-norm of the error vector x − xk in (P)CG is irregular. Quasi-
stagnation can alternate with convergence periods, and in a convergence period we
can often observe linear, superlinear, but also sublinear convergence.

To illustrate numerically the behavior of the bound ∆1/2

k:k+d, we consider the matrix
s3dkq4m2 of order n = 90449 that can be downloaded from the SuiteSparse Matrix
collection∗. The right-hand side vector b is randomly generated and normalized to 1.
The factor L in the preconditioner M = LLT is determined by the MATLAB incom-
plete Cholesky (ichol) factorization with threshold dropping, type = ’ict’, droptol
= 1e-5, and with the global diagonal shift diagcomp = 1e-2.

500 1000 1500 2000 2500 3000

10 -15

10 -10

10 -5

Fig. 2.1. Matrix s3dkq4m2: the A-norm of the error vector x−xk (dotted curve) and the lower

bound ∆1/2

k:k+d for two fixed values of d: d = 10 (solid curve) and d = 100 (thick solid curve).

In Figure 2.1 we can observe that ‖x− xk‖A (dotted curve) exhibits an irregular
behaviour. The lower bound ∆1/2

k:k+d for d = 10 (solid curve) underestimates signifi-
cantly the quantity of interest in the case of quasi-stagnation, but, when convergence
starts around iteration 2500, the lower bound ∆1/2

k:k+d is sufficiently accurate. The
choice d = 100 (thick solid curve) improves the results, but ‖x−xk‖A is still underes-
timated by several orders of magnitude. However, in the final convergence phase we
now use a value of d larger than necessary, and, therefore, we waste computational
resources, particularly, if the error is used as a criterion to stop the iterations. One
may think that we do not have to care too much about the quasi-stagnation phase,
but if the underestimation of the A-norm of the error is too large, we may undesirably
stop the iterations too soon when we are far of having a good approximation of the

∗https://sparse.tamu.edu

ACCURATE ERROR ESTIMATION IN CG 5

solution.
This example demonstrates clearly a need for developing a technique to choose

d adaptively. As we said, if our stopping criterion is based on the lower bound (2.4)
and d is too small, we are at risk to stop the iterations too early. At the same time,
we would like to keep d as small as possible to avoid unnecessary iterations. This is a
nontrivial task. As we will see later, we can never guarantee a completely safe choice
of d. Nevertheless, we are able to suggest a strategy that works satisfactorily in most
cases.

3. The adaptive choice of d. In this section we set a requirement on the
accuracy of the bound, introduce the ideal value of d, which ensures this accuracy,
and present a first adaptive strategy for the choice of d.

3.1. Prescribing the accuracy of the estimate. Given a prescribed tolerance
τ ∈ (0, 1), we require that the relative error of the lower bound satisfies

(3.1)
εk −∆k:k+d

εk
≤ τ.

By simple manipulations, this is equivalent to

(3.2) εk ≤
∆k:k+d

1− τ
.

In other words, if (3.1) holds, then we also get an upper bound on the error. We
observe that the relative error of the upper bound (3.2) is bounded above by τ/(1−τ).
Note also that if (3.1) holds, then

(3.3)
‖x− xk‖A −∆

1/2
k:k+d

‖x− xk‖A
< τ,

i.e., the A-norm ‖x−xk‖A = ε
1/2
k is approximated by ∆

1/2
k:k+d with a relative accuracy

less than τ .
Using (2.3), one can rewrite (3.1) as

(3.4)
εk+d+1

εk
≤ τ.

It means that d should be ideally chosen such that the error decreases sufficiently in
d + 1 iterations. We now translate this requirement into the problem of choosing a
proper value of d.

Definition 3.1. We define the ideal value of d at a given iteration k to be the

minimal value of d such that (3.4) holds, and denote it by d̃k. To simplify the notation

we usually omit the subscript k.

As demonstrated in Figure 2.1, a constant value of d will usually not be satis-
factory, where “satisfactory” means that it satisfies (3.4) at each iteration and avoids

d̃ ≪ d. In other words, the value of d should depend on the iteration number k, d = dk
(again to simplify the notation we will omit the subscript k). The adaptive choice

of d that reflects the required accuracy and tightly approximates d̃ is a challenging
problem we tackle in the rest of the section.

6 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

3.2. An adaptive strategy for choosing d. The strategy we propose is based
on replacing the unknown errors in (3.4) by their estimates. For the denominator, we
use the lower bound (2.4), which is available at the iteration k+d. The approximation
of the numerator using the available information is a complicated task. If some a priori
information is known, in particular a tight underestimate of the smallest eigenvalue
of A, one may try to use the upper bound based on Gauss–Radau quadrature [19].
However, as mentioned in [19] and discussed in more detail in Section 5.1, even if
we know the smallest eigenvalue to high accuracy, the Gauss–Radau upper bound is
usually delayed in later iterations, and, therefore, does not always provide a sufficiently
accurate information on the current error.

Here our main idea is to bound the error εk+d+1 using the available (poor) lower
bound ∆k+d+1 that can be computed in the iteration k + d + 1, and a safety fac-

tor S > 1 (that again depends on k) such that

(3.5) εk+d+1 ≤ S∆k+d+1.

Having some heuristic value of S that would ideally satisfy the inequality (3.5) in
hands at iteration k, we choose d as the minimal value satisfying

(3.6)
S∆k+d+1

∆k:k+d
≤ τ.

The following lemma shows that S can be bounded from above by κ(A).

Lemma 3.2. In the notation introduced above, it holds that εk ≤ κ(A)∆k.

Proof. To get the lower bound on ∆k = αk‖r‖
2
k, we use the inequality

pTkApk ≤ rTk Ark

which can be proved using only local orthogonality, that is, orthogonality of two
consecutive vectors; see [16, Lemma 2.31]. Denoting λmin and λmax the smallest and
the largest eigenvalue of A, it holds that

∆k =
‖rk‖

2

pTk Apk
‖rk‖

2 ≥
‖rk‖

2

rTk Ark
‖rk‖

2 ≥
1

λmax

‖rk‖
2 ≥

λmin

λmax

‖x− xk‖
2
A,

where we have used rk = b−Axk = A(x− xk). Finally, ∆k ≥ κ(A)−1εk.

Note that the local orthogonality used in the proof of Lemma 3.2 is well preserved
during finite precision computations; see [21]. Also, the recursively computed residual
rk corresponds with the true residual b−Axk during finite precision CG computations
until the ultimate level of accuracy is reached. In summary, one can expect that the
inequality in Lemma 3.2 holds also during finite precision computations (up to some
small unimportant inaccuracy) until the ultimate level of accuracy is reached.

Before introducing the formula for S, we make one important remark. At iteration
k + d+ 1, a new term ∆k+d+1 is available. Recalling relation (2.3), this term can be
added to all previous lower bounds on the errors to obtain better approximations. In
[22, Sect. 5.2], this technique is called “reconstruction of the convergence curve”. In
particular, the previous lower bounds on the errors εℓ can be improved using all the
available information by

εℓ ≈

k+d+1∑

j=ℓ

αj‖rj‖
2 = ∆ℓ:k+d+1, 0 ≤ ℓ ≤ k + d,

ACCURATE ERROR ESTIMATION IN CG 7

and ∆ℓ:k+d+1 represents again a lower bound on εℓ.
Our numerical experiments show that a proper value of S can vary with the

iterations. Therefore, our aim is to vary S based on the information we get from the
previous iterations. The choice of S should account for the underestimation of εk+d+1

by the (simplest) lower bound ∆k+d+1. Therefore, at iteration k we choose it as the
largest underestimation in some number of the latest iterations,

(3.7) S ≡ max
m≤ℓ≤k+d

∆ℓ:k+d+1

∆ℓ
≈ max

m≤ℓ≤k+d

εℓ
∆ℓ

.

Here m could be set as 0, meaning that the overall convergence history is used. How-
ever, then S would be nondecreasing, which does not reflect the observed behavior.
Therefore, we use information only from the latest iterations that caused a significant
decrease in the error from iteration m to iteration k, say, about four orders of magni-
tude (i.e. two orders of magnitude in the A-norm of the error vector x−xk). In other
words, we define m to be the largest ℓ, 0 ≤ ℓ < k such that

(3.8)
∆k:k+d+1

∆ℓ:k+d+1

≤ TOL, TOL ≡ 10−4.

If the condition (3.8) is not satisfied for any admissible ℓ, we define m = 0. In this way,
only the latest part of the reconstructed convergence curve is used to determine S.

Note that the computation of the bound using (2.4) requires d additional CG
iterations. In practice, however, one runs the CG algorithm, and estimates the error
in a backward way, i.e., d iterations back. The CG algorithm with the adaptive choice
of d based on (2.4) and (3.7) is given in Algorithm 3.1. When a stopping criterion
is satisfied on line 14 of Algorithm 3.1, one can use the latest available approximate
solution xℓ, thanks to the monotonicity (2.2) of errors in CG.

Algorithm 3.1 CG with the adaptive choice of d

1: input A, b, x0, τ , TOL
2: r0 = b−Ax0, p0 = r0
3: d = 0, k = 0
4: for ℓ = 0, . . . , do
5: cgiter(ℓ)
6: compute ∆ℓ

7: if ℓ > 0 then
8: compute ∆k:k+d

9: determine m and S using (3.8) and (3.7)
10: while d ≥ 0 and (3.6) do
11: accept ∆k:k+d as an estimate for εk
12: k = k + 1, d = d− 1
13: compute ∆k:k+d, if d ≥ 0
14: end while
15: use the latest estimate ∆k−1:k+d in stopping criteria, if k > 0
16: d = d+ 1
17: end if
18: end for

Note that on line 11 of Algorithm 3.1 we accept ∆k:k+d as an estimate of εk.
However, at this moment we can compute a better approximation to εk given by

8 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

∆k:k+d+1 which should be used in practical computations. Nevertheless, for the sake
of consistency with numerical experiments where we check the inequality (3.1), we
store here ∆k:k+d. On line 11 we can also store the corresponding value of dk = d.
On line 15, the latest estimate ∆k−1:k+d (after the update of k on line 12) can be used
as a guaranteed lower bound and ∆k−1:k+d/(1−τ) as a heuristic upper bound on εk−1.
Note also that on lines 7-15, it always holds k + d = ℓ − 1 so that ∆k+d+1 = ∆ℓ. If
one wants to fix the smallest value of d to guarantee that information from at least,
say dmin, forthcoming iterations is always used to approximate εk, then one can replace
the condition d ≥ 0 on line 10 by the condition d ≥ dmin.

4. Modifications of the algorithms for preconditioned CG. In the stan-
dard view of preconditioning, the CG method is thought of as being applied to a
“preconditioned” system

Âx̂ = b̂, Â = L−1AL−T , b̂ = L−1b,(4.1)

where L represents a nonsingular (eventually lower triangular) matrix. Denoting the
corresponding CG coefficients and vectors with a hat and defining

xk ≡ L−T x̂k, rk ≡ L r̂k, pk ≡ L−T p̂k, zk ≡ L−TL−1rk ≡ M−1rk,

(here xk and rk represent the approximate solution and residual for the original prob-
lem Ax = b), we obtain the standard version of the preconditioned CG (PCG) method
which involves only M = LLT ; for more details see, e.g., [15, 22, 16]. The precondi-
tioner M should be chosen such that the linear system with the matrix M is easy to
solve, while the matrix L−1AL−T ensures fast convergence of PCG.

Algorithm 4.1 Preconditioned CG (PCG) algorithm

input A, b, x0, M
r0 = b− Ax0

z0 = M−1r0, p0 = z0
for k = 0, . . . until convergence do

α̂k =
zT
k rk

pT
k Apk

xk+1 = xk + α̂kpk
rk+1 = rk − α̂kApk
Solve Mzk+1 = rk+1






pcgiter(k)

β̂k+1 =
zT
k+1rk+1

zT
k rk

pk+1 = zk+1 + β̂kpk
end for

Since

‖r̂k‖
2 = rTk L

−TL−1rk = rTk M
−1rk = zTk rk

and

‖x̂− x̂k‖
2

Â
= (LTx− LTxk)

TL−1AL−T (LTx− LTxk) = ‖x− xk‖
2
A,

the A-norm of the error vector x−xk in PCG can be estimated similarly as in classical
CG. In particular, (2.3) takes the form

(4.2) εk = ∆̂k:k+d + εk+d+1 ,

ACCURATE ERROR ESTIMATION IN CG 9

where

(4.3) ∆̂k:k+d ≡

k+d∑

j=k

α̂jz
T
j rj .

Therefore, in PCG we can compute the lower bounds using the PCG coefficients α̂k

and inner products zTk rk (instead of using ‖r̂k‖
2) that are computed anyway in the

forthcoming PCG iterations. In other words, the lower bound (4.3) is still easy and
cheap to evaluate. Note that the safety factor S is now bounded by the condition
number of the preconditioned matrix; see Lemma 3.2.

5. Improvements. In this section we comment on several modifications that
can be helpful in some difficult cases.

5.1. The initial choice of d. Algorithm 3.1 is very simple, and it provides
fairly good results in most of the situations; see Section 6 for numerical experiments.
However, in some cases we can observe a long quasi-stagnation phase of the A-norm of
the error vector during the initial iterations of (P)CG; see, e.g., the example s3dkt3m2
in Figure 6.3. Then, it can happen that the strategy suggested in Algorithm 3.1 may
not detect the quasi-stagnation, and the chosen value of dk is typically significantly
smaller than the ideal d̃k. As a result, the A-norm of the error vector can be underes-
timated by several orders of magnitude. The large underestimation can last typically
until (P)CG starts to converge faster. To overcome this difficulty, we propose a safer
strategy for the choice of the initial value of d rather than starting from d = 0.

Our aim is to find d > 0 such that

εd
ε0

< τ,

where τ is the prescribed tolerance. While ε0 can be approximated as above by its
lower bound ∆0:d, we need to obtain a convenient approximation to εd, ideally an
upper bound.

If some underestimate of the smallest eigenvalue λmin of the (preconditioned)
system matrix is known, one can use upper bounds on the error εd discussed in [19].
In particular, if 0 < µ ≤ λmin is given, then

(5.1) εd < α(µ)

d ‖rd‖
2 <

‖rd‖
2

µ

‖rd‖
2

‖pd‖2

where α(µ)

d can be computed recursively using

(5.2) α(µ)

j+1 =

(
α(µ)

j − αj

)

µ
(
α(µ)

j − αj

)
+ βj+1

, α(µ)

0 =
1

µ
, j = 1, . . . , d− 1.

While the first bound in (5.1),

(5.3) ω(µ)

d ≡ α(µ)

d ‖rd‖
2

cannot be used as an approximation to εd if µ > λmin, the second bound in (5.1) can
still serve as an approximation to εd for any µ ≈ λmin; see [19]. Note that there are
several applications in the context of numerical solving of PDE’s, see, e.g., [4, 5, 14],
where a tight underestimate of λmin can always be determined a priori.

10 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

If no a priori information about the smallest eigenvalue λmin is known, we can
approximate it from the (P)CG process as described in [19]. In particular, denoting
the initial values

ρ0 = α0, τ0 = ρ0, σ0 = 0, s0 = 0, c0 = 1, π0 = 1,

by incremental(), the smallest eigenvalue λmin of the (preconditioned) matrix can
be approximated incrementally from the (P)CG coefficients, using the recurrences
denoted as incremental(k):

σk = −

√
αk

βk

αk−1

(sk−1σk−1 + ck−1τk−1) , τk = αk

(
βk

τk−1

αk−1

+ 1

)
,

χ2
k = (ρk−1 − τk)

2 + 4σ2
k, c2k =

1

2

(
1−

ρk−1 − τk
χk

)
,

ρk = ρk−1 + χkc
2
k,

sk =
√
1− c2k, ck = |ck| sign(σk),

µk = ρ−1

k ,

πk =
πk−1

πk−1 + βk
.

Using the idea of incremental norm estimation, the above algorithm aims to approxi-
mate the smallest Ritz value. The updated value µk estimates the smallest Ritz value
from above, and, therefore, µk > λmin. Numerical experiments in [19] predict that
for k sufficiently large µk usually approximates the smallest Ritz value to one or two
valid digits. Since πk = ‖rk‖

2/‖pk‖
2, we can define the quantity

(5.4) ∆̃k ≡
πk

µk
‖rk‖

2

with the idea of approximating the rightmost upper bound in (5.1); see [19]. In the
initial stage of convergence, the smallest Ritz value (and, therefore, also µk) is a
poor approximation to the smallest eigenvalue λmin. Therefore, we cannot expect
that µk ≈ λmin, and ∆̃k typically underestimates εk by several orders of magnitude.
However, as soon as the smallest Ritz value starts to be a fair approximation of λmin,
one can expect that ∆̃k is an upper bound on εk. Note that if µ ≤ λmin is available,
then one can replace µk in (5.4) by µ, and ∆̃d would represent a guaranteed upper
bound on εd.

As an improved strategy, we suggest to choose the initial value of d such that

(5.5)
εd
ε0

≈
∆̃d

∆0:d
< τ ;

see Algorithm 5.1. As already mentioned, in the initial stage of convergence, the
quantity ∆̃d can underestimate εd by several orders of magnitude. Despite this fact,
the ratio ∆̃d/∆0:d often represents an upper bound on εd/ε0. To get an idea why
it is so, let us assume that the error stagnates in the initial stage of convergence.
Then both ∆̃d as well as ∆0:d substantially underestimate the target quantities, but
the underestimation using ∆̃d is relatively smaller than the one based on ∆0:d. As a
result, the ratio of the two underestimates is an upper bound on εd/ε0. The above
considerations are purely heuristic, but work satisfactory in all of our experiments.

ACCURATE ERROR ESTIMATION IN CG 11

Algorithm 5.1 CG with the adaptive choice of d and the initial phase

1: input A, b, x0, τ , TOL
2: r0 = b−Ax0, p0 = r0
3: d = 0, k = 0
4: incremental()

5: initial = true
6: for ℓ = 0, . . . , do
7: cgiter(ℓ)
8: if initial then
9: incremental(ℓ)

10: compute ∆̃d using (5.4)
11: if (5.5) then
12: initial = false
13: else
14: d = d+ 1
15: end if
16: else
17: use code on lines 8-16 of Algorithm 3.1
18: end if
19: end for

5.2. Using (the approximation of) the upper bound. The quantity ∆̃k

defined by (5.4) can also be used to approximate the ratio in (3.4), leading to another
strategy for the adaptive choice of d. However, as already mentioned in Subsection 3.2,
even if we know the smallest eigenvalue to a high accuracy, the bounds and approxi-
mations presented in (5.1) and (5.4) often do not provide relevant information on the
current error εk in the final stage of convergence. In some cases they can be delayed
several hundreds of iterations over εk. As a result, an adaptive strategy based on
approximating εk+d+1 by ∆̃k+d+1 in (3.4) would use values of d larger than necessary.

This is clearly demonstrated in Figure 5.1, where the example s3dkt3m2 is con-
sidered. In the top part of the figure we plot the A-norm of x − xk (dotted curve),

the quantity ∆̃
1/2
k (dashed curve) defined using (5.4), and the square root of the

Gauss–Radau upper bound ω(µ)

k defined in (5.3) (bold dashed curve). Note that to
compute the upper bound ω(µ)

k , we have to provide a tight underestimate µ of the
smallest eigenvalue of the preconditioned matrix. For experimental reasons, we com-
puted the smallest Ritz value at an iteration k in which the ultimate level of accuracy
was reached, and got a very accurate approximation to the smallest eigenvalue of the
preconditioned matrix. Then we defined µ to be this computed approximation to the
smallest eigenvalue divided by 1 + 10−4. We set τ = 0.25. If we use the quantity
∆̃k+d+1 to approximate εk+d+1 in the ratio (3.4), and choose d such that the ap-
proximated radio is less than τ , we obtain very tight lower bounds (blue solid curve).
However, in the final stage of convergence that is very important for stopping the
iterations, such an adaptively chosen d differs from the ideal d̃k by about 200 (the
bottom part). In other words, we compute about 200 iterations of P(CG) more than
necessary to reach a given level of accuracy. Note that very similar results will be
obtained when using the Gauss–Radau upper bound (5.3) to approximate εk+d+1 in
the ratio (3.4), since normal and bold dashed curves almost coincide in the final stage
of convergence. We will show how to fix these problems with the Gauss–Radau upper

12 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

500 1000 1500 2000 2500 3000

10 -10

10 -5

500 1000 1500 2000 2500 3000
0

1000

2000

500 1000 1500 2000 2500 3000
0

200

400

Fig. 5.1. Matrix s3dkt3m2, top part: the A-norm of the error vector x− xk (dots), the square

root of the upper bound ω
(µ)

d (bold dashed), the quantity ∆̃
1/2
k (dashed), and the lower bound with

the adaptive choice of d based on replacing εk+d+1 in (3.4) by ∆̃k+d+1 (blue solid curve). Bottom

parts: the adaptive value dk (blue bold solid curve) and the ideal value d̃k (red solid curve).

bound in a forthcoming paper.
In summary, the strategy for the adaptive choice of d based on replacing εk+d+1 by

∆̃k+d+1 or by ω(µ)

k+d+1
in (3.4), seems to be a safe strategy in the sense that it usually

produces d larger than their ideal counterparts. For such d’s, the inequality (3.4) is
satisfied. On the other hand, it can use values of d that are significantly larger than
necessary to reach the prescribed accuracy of the estimate ∆k:k+d. In particular,
we observed unnecessarily large values of d in the later (P)CG convergence phase.
Therefore, it is better to use the strategy of Algorithm 3.1, eventually combined with
the strategy for choosing the initial value of d.

6. Numerical experiments. In the following numerical experiments we con-
sider a set of test problems from the SuiteSparse Matrix collection, listed in Table 6.1.
We believe that the selected problems represent the most relevant scenarios one can
face in practical computations. The experiments were run using double precision in
MATLAB R2019b.

When it is not provided with the matrix, the right-hand side b is chosen such
that b has equal components in the eigenvector basis or such that the entries of b are
randomly generated in the interval (−1, 1). In both cases, b is normalized to have
the unit norm ‖b‖ = 1. The right-hand side for s3dkt3m2 with only the last element
nonzero comes with the application; see [13].

The preconditioners are determined by the incomplete Cholesky factorization (us-
ing the ichol command), either with zero-fill or with threshold dropping (ict) where
the first parameter is the drop tolerance and the second parameter is the global diag-
onal shift; for more details see the MATLAB documentation.

In Figures 6.1 to 6.4 we test the accuracy of the lower bound ∆1/2

k:k+dk
as an

approximation of the A-norm of the error vector x− xk, ‖x− xk‖A = ε1/2

k , where dk
is determined as in Algorithm 3.1. In the top parts of Figures 6.1 to 6.4 we plot the

ACCURATE ERROR ESTIMATION IN CG 13

name size rhs b precond. M = LLT

bcsstk02 66


 equal components

—
bcsstk04 132 —
bcsstk09 1083 ict(1e-3, 1e-2)
s3dkt3m2 90 449 comes with the matrix ict(1e-5, 1e-2)
s3dkq4m2 90 449





rand(−1, 1)

ict(1e-5, 1e-2)
pwtk 217 918 ict(1e-5, 1e-1)
af shell3 504 855 zero-fill
tmt sym 726 713 zero-fill
ldoor 952 203 zero-fill

Table 6.1

A set of test problems from the SuiteSparse Matrix collection.

bcsstk02

10-10

10-5

100

0

0.5

1

20 40 60 80 100
0

10
20
30

CG iterations

bcsstk04

10-10

10-5

0

0.5

1

100 200 300 400 500 600 700
0

100

200

CG iterations

Fig. 6.1. Matrices bcsstk02 and bcsstk04: the A-norm of the error vector x − xk and the
adaptive lower bound (top part), the relative error and the prescribed tolerance from (3.1) (middle

part), the value dk and the ideal value d̃k (bottom part).

lower bound ∆1/2

k:k+dk
(blue solid curve) together with ‖x − xk‖A (red dots). In the

middle parts of figures we plot the relative error

εk −∆k:k+dk

εk

(blue solid curve) together with the prescribed tolerance τ = 0.25 (dotted line);
see (3.1). Finally, in the bottom parts of Figures 6.1 to 6.4 we plot the value of dk de-

termined by Algorithm 3.1, and compare it with the ideal value d̃k of Definition 3.1.
Note that the ideal value d̃k was determined using the quantities εk that are not
known in practical computations.

For the first two test problems (Figure 6.1), the unpreconditioned CG method
needs significantly more iterations than what is the size of the problem to reach
the ultimate level of accuracy. In other words, convergence is substantially delayed
due to finite precision arithmetic. We choose these examples to demonstrate that the

14 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

estimates and techniques for the adaptive choice of d work well also in finite precision.
This is actually no surprise. Using results of [21] we know that the estimation process
is based on identities that do hold (up to some small inaccuracy) also during finite
precision computations, despite the loss of orthogonality, until the ultimate level of
accuracy is reached. One can observe that the required accuracy of estimates is
reached and that the value of dk is close to the ideal value d̃k in almost all iterations.

bcsstk09+no precond.

10-10

10-5

0

0.5

1

50 100 150 200 250 300 350
0

20
40
60

CG iterations

bcsstk09+ict(1e-3, 1e-2)

10-10

10-5

0

0.5

1

5 10 15 20 25 30 35

0

2

4

PCG iterations

Fig. 6.2. Matrix bcsstk09 without and with the preconditioner: the A-norm of the error vector
x − xk and the adaptive lower bound (top part), the relative error and the prescribed tolerance

from (3.1) (middle part), the value dk and the ideal value d̃k (bottom part).

In Figure 6.2 we test the performance of the adaptive procedure by considering
the test problem bcsstk09 of size 1083 with and without a preconditioner. Similarly
as in the previous example, the adaptive strategy of Algorithm 3.1 works satisfactorily
and provides estimates with the prescribed accuracy.

In the unpreconditioned case, the convergence is at first quite slow so that one
needs larger values of dk (around 50) to reach the prescribed accuracy. As soon as
convergence accelerates (around iteration 200), just a moderate value of dk (around
10) is needed. Our strategy perfectly captures this behavior, though in the beginning

dk overestimates the ideal value d̃k moderately. However, this should not represent
a serious drawback in practical computations since the iterations will probably be
stopped after iteration 200, when dk and the ideal d̃k almost coincide. If stopped
earlier, we just obtain a more accurate estimate than necessary.

In the preconditioned case, convergence is fast and the adaptive strategy provides
values of dk that are almost identical to d̃k. This is in particular true in the final
convergence phase when d̃k = 0 so that PCG uses only terms from the current itera-
tion. Hence, in this example, the adaptive strategy works very well in the case of fast
convergence and no unnecessary iterations are needed.

In Figure 6.3 we consider quite large problems pwtk, af shell3, tmt sym, and
ldoor that we are still able to handle using MATLAB on a personal computer. In
all four cases, PCG was used to solve the systems. We can again conclude that our
adaptive strategy works satisfactorily and provides tight bounds. Algorithm 3.1 can
handle slow or fast convergence (as for pwtk and ldoor), the staircase convergence

ACCURATE ERROR ESTIMATION IN CG 15

pwtk

10-10

10-5

100

0

0.5

1

2000 4000 6000 8000 10000
0

500

1000

PCG iterations

af shell3

10-10

10-5

100

0

0.5

1

200 400 600 800 1000 1200
0

50

100

PCG iterations

tmt sym

10-10

10-5

100

0

0.5

1

500 1000 1500
0

200
400
600

PCG iterations

ldoor

10-10

10-5

100

0

0.5

1

500 1000 1500 2000
0

100

200

PCG iterations

Fig. 6.3. Matrices pwtk, af shell3, tmt sym, ldoor: the A-norm of the error vector x − xk

and the adaptive lower bound (top part), the relative error and the prescribed tolerance from (3.1)

(middle part), the value dk and the ideal value d̃k (bottom part).

(pwtk and tmt sym) and (mostly) also initial quasi-stagnation phases (tmt sym). In

some iterations, the value dk overestimates moderately the ideal value d̃k, providing
more accurate adaptive estimates than required. On the other hand, it is better to
slightly overestimate the ideal value of d̃k than to underestimate it. As in the previous
examples we observe that in iterations that are suitable for stopping the algorithm
(a few orders of magnitude above the ultimate level of accuracy), the adaptively

determined dk is very close to the ideal d̃k so that no unnecessary iterations are
needed to get the estimates with the required accuracy.

Note that in the test problem tmt sym, the A-norm of the error vector exhibits

16 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

s3dkt3m2

10-10

10-5

0

0.5

1

500 1000 1500 2000 2500 3000
0

500
1000
1500

PCG iterations

s3dkq4m2

10-10

10-5

0

0.5

1

500 1000 1500 2000 2500 3000
0

500

1000

PCG iterations

Fig. 6.4. Matrices s3dkt3m2, s3dkq4m2: the A-norm of the error vector x−xk and the adaptive
lower bound (top part), the relative error and the prescribed tolerance from (3.1) (middle part), the

value dk and the ideal value d̃k (bottom part).

quite a long initial quasi-stagnation phase (up to the iterations 500). In such cases,

dk computed by Algorithm 3.1 need not be close to d̃k in a few initial iterations. As a
result, the lower bound ∆1/2

k:k+dk
can underestimate visibly the quantity of interest ε1/2

k ;
see also the test problem bcsstk04 sym (Figure 6.1). In such cases, the strategy for
the initial choice of described in Subsection 5.1 should be used. This strategy will be
discussed in more detail in a later experiment.

In Figure 6.4 we show the most difficult cases we have found when testing Algo-
rithm 3.1 for the adaptive choice of dk. In the test problems s3dkt3m2 and s3dkq4m2,
the A-norm of the error vector exhibits various phases of the convergence (sublinear,
superlinear, quasi-stagnation) that alternate. The quasi-stagnation phase can happen
at the very beginning as for s3dkt3m2 but also in later iterations as for s3dkq4m2. Such
a complicated convergence behaviour need not be fully captured by Algorithm 3.1.
At some iterations, the resulting dk underestimates significantly the ideal value d̃k
and, therefore, we observe visually a considerable underestimation of the quantity of
interest. While for s3dkt3m2 we are able to fix the problem using a suitable initial d0,
see Subsection 5.1 and Figure 6.6, for the problem s3dkq4m2 we were not able to find
an improvement that would prevent an underestimation close to the iteration 1000.

Nevertheless, though the strategy of Algorithm 3.1 applied to the test problems
shown in Figure 6.4 does not always provide estimates of ‖x− xk‖A with a required
accuracy, it can still be considered as satisfactory. It provides lower bounds that are
close to the quantity of interest (they are of the same magnitude) so that one could

use them in stopping criteria. Moreover, in both cases, dk is very close to d̃k in the
final convergence phase that is suitable for stopping the algorithm.

In Figure 6.5 we demonstrate the technique of Subsection 5.1 for the initial choice
of d0. As already observed in test problems bcsttk04, tmt sym, and s3dkt3m2, Algo-
rithm 3.1 can provide smaller values of dk than needed in the initial quasi-stagnation
phase. One can overcome this trouble by the strategy presented in Subsection 5.1

ACCURATE ERROR ESTIMATION IN CG 17

s3dkt3m2+d0

10-10

10-5

0

0.5

1

500 1000 1500 2000 2500 3000
0

1000

2000

PCG iterations

tmt sym+d0

10-10

10-5

100

0

0.5

1

500 1000 1500
0

500

PCG iterations

Fig. 6.5. Matrices s3dkt3m2 and tmt sym with the adaptive algorithm of Subsection 5.1 to
determine the initial value d0: the A-norm of the error vector x− xk and the adaptive lower bound
(top part), the relative error and the prescribed tolerance from (3.1) (middle part), the value dk and

the ideal value d̃k (bottom part).

when approximating the nominator in (5.5) using the quantity (5.4) that does not
need any a priory information or using the Gauss–Radau upper bound, if available.
In our experiment we use Algorithm 5.1, i.e., the quantity (5.4).

For both test problems tmt sym and s3dkt3m2, the strategy based on the cri-
terion (5.5) determines properly a safe value d0 that ensures the prescribed relative

accuracy of the initial estimate. The value d0 overestimates the ideal value d̃0 which
means that the error has significantly decreased in d0 iterations of PCG, and that
the initial estimate is more accurate than required. In other words, using d0 we have
safely overcame the initial quasi-stagnation phase.

After d0 is found in Algorithm 5.1, we continue along the lines of Algorithm 3.1.
In particular, we immediately get the estimates of the A-norm of the error vector for
the initial plateau since the values of k are increased and the values of d are decreased
on line 12 of Algorithm 3.1, without computing further PCG iterations. Once the
criterion (3.6) is not met, we continue to use the standard strategy of Algorithm 3.1.

Again, dk is very close to d̃k in the final convergence phase.
Finally, in the last Figure 6.6 we test the quality of the heuristic upper bound (3.2),

(6.1)
∆k:k+d

1− τ

that uses the adaptive choice of dk as in Algorithm 3.1. We know that if dk is chosen
such that (3.1) is satisfied (if dk ≥ d̃k), then (6.1) represents an upper bound on εk.
Note that even though the heuristic upper bound (6.1) is not guaranteed to be an
upper bound in general, its advantage is that no estimates of eigenvalues are needed.
We compare the heuristic upper bound (6.1) with the upper bound Ω(µ)

k:k+d defined
below that uses the same number of dk terms as the quantity (6.1). In particular,
the bound Ω(µ)

k:k+d is defined using the identity (2.3) with the last term εk+d, and the

18 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

bcsstk04

10-10

10-5

100 200 300 400 500 600 700

0

2

4

6

PCG iterations

s3dkt3m2

10-10

10-5

500 1000 1500 2000 2500 3000

0

2

4

6

PCG iterations

Fig. 6.6. Matrices bcsstk04 and s3dkt3m2. Top part: the A-norm of the error vector x − xk

(red dashed curve), the square root of the heuristic upper bound (3.2) (blue solid curve), and the
square root of the upper bound (6.2) (black dash-dotted curve). Bottom part: the accuracy of bounds
measured by the relative quantities (6.3).

Gauss–Radau upper bound (5.3) on εk+d,

(6.2) ‖x− xk‖
2
A ≤ ∆k:k+d−1 + α(µ)

k+d‖rk+d‖
2 ≡ Ω(µ)

k:k+d.

The bound (6.2) depends on an a priori given underestimate µ to the smallest eigen-
value of the (preconditioned) system matrix. In our experiments, the underestimate µ
was computed in the same way as described in Subsection 5.2.

In the top part of Figure 6.6 we plot ‖x−xk‖A (red dots) together with the upper
bound (Ω(µ)

k:k+dk
)1/2 and the heuristic upper bound given by the square root of (6.1);

in the bottom part, we check the quality of bounds using the relative quantities

(6.3)
Ω(µ)

k:k+dk
− εk

εk
(dashed) and

∆k:k+dk

1−τ − εk

εk
(solid).

Obviously, the considered heuristic upper bound is more accurate than the Gauss–
Radau upper bound in the convergence phase that is crucial for stopping the iterations.
In a future work we would like to explain the behavior of the Gauss–Radau upper
bound (why it is delayed) and possibly fix the problem seen in the last iterations.

7. Summary and concluding discussion. In this paper we focused on the
accurate estimation of the error εk in the P(CG) method. Our approach is based
on the Hestenes and Stiefel formula (2.3) that is well preserved also during finite
precision computations. Our goal was to find a nonnegative integer d (ideally the
smallest one) such that the relative accuracy of the estimate ∆k:k+d is less than or
equal to a prescribed tolerance τ . The developed technique for the adaptive choice of d
is purely heuristic so that the accuracy of the estimate ∆k:k+d cannot be guaranteed
in general. Nevertheless, the heuristic strategy has shown to be robust and reliable,
which was demonstrated by numerical experiments. Moreover, in the final stage of
convergence that is suitable for stopping the iterations, the suggested value of d is
usually very close to the optimal (ideal) one so that one avoids unnecessary iterations.

ACCURATE ERROR ESTIMATION IN CG 19

One can also think of many other different adaptive strategies that are based,
e.g., on the Gauss–Radau or anti-Gaussian quadrature rules, or on other techniques
for approximating the ratio (3.4). We have tested many of them, and the strategy
suggested in this paper seems to be efficient, simple, and robust.

Our techniques can also be adjusted for estimating the relative quantities

‖x− xk‖
2
A

‖x− x0‖2A
or

‖x− xk‖
2
A

‖x‖2A

using the fact that ‖x‖2A = ‖x− x0‖
2
A + bTx0 + rT0 x0; see also [22].

We hope that the results presented in this paper will prove to be useful in practical
computations. They allow to approximate the error εk at a negligible cost during
(P)CG iterations without any user-defined parameter, while taking into account the
prescribed relative accuracy of the estimate.

20 G. MEURANT, J. PAPEŽ, AND P. TICHÝ

Appendix A. Algorithm 3.1 (MATLAB code, preconditioned version).

1 function [x,estim ,delay] = pcga (A,b,tau ,maxit ,L,x)

2 %% ... preconditioned CG with the adaptive choice of d

3

4 r = b - A * x; % ... pcg initialization

5 z = L\r; z = L’\z; p = z;

6 rr = z’ * r;

7 k = 1; d = 0;

8

9 for ell = 1: maxit+1

10

11 RR = rr; % ... begin cgiter(ell)

12 Ap = A * p;

13 alpha = RR/(p’ * Ap);

14 x = x + alpha * p;

15 r = r - alpha * Ap;

16 z = L \ r; z = L’ \ z;

17 rr = z’ * r;

18 beta = rr / RR;

19 p = z + beta * p; % ... end cgiter(ell)

20

21 Delta(ell) = alpha * RR;

22 curve(ell) = 0;

23 curve = curve + Delta(ell);

24

25 if ell > 1 % ... adaptive choice of d

26 S = findS(curve ,Delta ,k);

27

28 num = S * Delta(ell);

29 den = sum(Delta(k:ell -1));

30

31 while (d >= 0) && (num/den <= tau)

32 delay(k) = d;

33 estim(k) = den;

34 k = k + 1; d = d - 1;

35 den = sum(Delta(k:ell -1));

36 end

37 d = d + 1;

38 % ... use estim(k-1) in stopping criteria , if k > 1

39 end

40 end

41 end % of function

42

43 function [S] = findS(curve ,Delta ,k)

44 %% ... find the safety factor S using the tolerance 1e-4

45

46 ind = find ((curve(k)./ curve) <= 1e-4, 1, ’last ’);

47 if isempty (ind), ind = 1; end

48

49 S = max(curve(ind:end -1)./ Delta(ind:end -1));

50 end

ACCURATE ERROR ESTIMATION IN CG 21

REFERENCES

[1] M. Arioli, A stopping criterion for the conjugate gradient algorithms in a finite element
method framework, Numer. Math., 97 (2004), pp. 1–24.

[2] M. Arioli, E. H. Georgoulis, and D. Loghin, Stopping criteria for adaptive finite element
solvers, SIAM J. Sci. Comput., 35 (2013), pp. A1537–A1559.

[3] V. Dolejš́ı and P. Tichý, On efficient numerical solution of linear algebraic systems arising
in goal-oriented error estimates, J. Sci. Comput., 83 (2020), pp. 1–29.

[4] T. Gergelits, K.-A. Mardal, B. F. Nielsen, and Z. Strakoš, Laplacian preconditioning of
elliptic PDEs: localization of the eigenvalues of the discretized operator, SIAM J. Numer.
Anal., 57 (2019), pp. 1369–1394.

[5] T. Gergelits, B. F. Nielsen, and Z. Strakoš, Generalized spectrum of second order differ-
ential operators, SIAM J. Numer. Anal., 58 (2020), pp. 2193–2211.

[6] G. H. Golub and G. Meurant, Matrices, moments and quadrature, in Numerical analysis
1993 (Dundee, 1993), vol. 303 of Pitman Res. Notes Math. Ser., Longman Sci. Tech.,
Harlow, 1994, pp. 105–156.

[7] G. H. Golub and G. Meurant, Matrices, moments and quadrature. II. How to compute the
norm of the error in iterative methods, BIT, 37 (1997), pp. 687–705.

[8] G. H. Golub and Z. Strakoš, Estimates in quadratic formulas, Numer. Algorithms, 8 (1994),
pp. 241–268.

[9] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences,
Linear Algebra Appl., 113 (1989), pp. 7–63.

[10] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

[11] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[12] P. Jiránek, Z. Strakoš, and M. Vohraĺık, A posteriori error estimates including algebraic
error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), pp. 1567–
1590.

[13] R. Kouhia, Description of the CYLSHELL set, tech. report, Aalto University, May 1998.
Matrix Market.

[14] M. Kub́ınová and I. Pultarová, Block preconditioning of stochastic Galerkin problems: new
two-sided guaranteed spectral bounds, SIAM/ASA J. Uncertain. Quantif., 8 (2020), pp. 88–
113.

[15] G. Meurant, Numerical experiments in computing bounds for the norm of the error in the
preconditioned conjugate gradient algorithm, Numer. Algorithms, 22 (1999), pp. 353–365.

[16] G. Meurant, The Lanczos and conjugate gradient algorithms: From Theory to Finite Preci-
sion Computations, vol. 19 of Software, Environments, and Tools, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

[17] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite pre-
cision arithmetic, Acta Numer., 15 (2006), pp. 471–542.

[18] G. Meurant and P. Tichý, On computing quadrature-based bounds for the A-norm of the
error in conjugate gradients, Numer. Algorithms, 62 (2013), pp. 163–191.

[19] G. Meurant and P. Tichý, Approximating the extreme Ritz values and upper bounds for the
A-norm of the error in CG, Numer. Algorithms, 82 (2019), pp. 937–968.

[20] C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigen-
problem, Linear Algebra Appl., 34 (1980), pp. 235–258.

[21] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it
works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–
80.

[22] Z. Strakoš and P. Tichý, Error estimation in preconditioned conjugate gradients, BIT, 45
(2005), pp. 789–817.

	1 Introduction
	2 The CG algorithm and the lower bound on the error
	3 The adaptive choice of d
	3.1 Prescribing the accuracy of the estimate
	3.2 An adaptive strategy for choosing d

	4 Modifications of the algorithms for preconditioned CG
	5 Improvements
	5.1 The initial choice of d
	5.2 Using (the approximation of) the upper bound

	6 Numerical experiments
	7 Summary and concluding discussion
	Appendix A. alg:pseudo (MATLAB code, preconditioned version)
	References

