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Abstract
In practical conjugate gradient (CG) computations, it is important to monitor the
quality of the approximate solution to Ax = b so that the CG algorithm can be
stopped when the required accuracy is reached. The relevant convergence character-
istics, like the A-norm of the error or the normwise backward error, cannot be easily
computed. However, they can be estimated. Such estimates often depend on approx-
imations of the smallest or largest eigenvalue of A. In the paper, we introduce a new
upper bound for the A-norm of the error, which is closely related to the Gauss-Radau
upper bound, and discuss the problem of choosing the parameter μ which should
represent a lower bound for the smallest eigenvalue of A. The new bound has several
practical advantages, the most important one is that it can be used as an approxima-
tion to the A-norm of the error even if μ is not exactly a lower bound for the smallest
eigenvalue of A. In this case, μ can be chosen, e.g., as the smallest Ritz value or its
approximation. We also describe a very cheap algorithm, based on the incremental
norm estimation technique, which allows to estimate the smallest and largest Ritz
values during the CG computations. An improvement of the accuracy of these esti-
mates of extreme Ritz values is possible, at the cost of storing the CG coefficients
and solving a linear system with a tridiagonal matrix at each CG iteration. Finally,
we discuss how to cheaply approximate the normwise backward error. The numerical
experiments demonstrate the efficiency of the estimates of the extreme Ritz values,
and show their practical use in error estimation in CG.
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1 Introduction

The (preconditioned) conjugate gradient ((P)CG) algorithm by Hestenes and Stiefel
[18] is now considered as the iterative method of choice for solving linear systems
Ax = b with a real symmetric positive definite matrix A. An important question to
solve practical problems is to know when to stop the iterations. Stopping criteria are
application dependent. Some of them are based on the norm of the residual vector
rk = b − Axk (where xk is the approximate solution at iteration k), which is avail-
able in CG. For example, in optimization algorithms, −rk plays often the role of the
gradient, and it can then be natural to stop CG based on ‖rk‖. However, in other appli-
cations, the use of ‖rk‖ as a measure of the quality of the approximation xk can be
misleading, as it was already mentioned in [18]. Moreover, in many cases, the resid-
ual norm is oscillating making the use of the stopping criteria based on ‖rk‖ more
problematic.

In many applications, a natural stopping criterion could be based on the A-norm
of the error

‖x − xk‖A = ((x − xk)
T A(x − xk))

1/2.

Mathematically, CG minimizes this quantity at each iteration k (see [18]). In some
linear systems arising from engineering problems, the A-norm of the error corre-
sponds to the energy norm and thus has a physical meaning. Of course, in real-world
problems, the error and its norm are unknown. Therefore, this has led to some
research works for finding approximations or even lower and upper bounds for the
A-norm of the error. It turns out that the CG A-norm of the error is linked to a
Riemann-Stieltjes integral for a discrete measure involving the distribution of the
eigenvalues of A. Inspired by this connection already mentioned by Hestenes and
Stiefel [18, p. 428], research on this topic was started by Gene Golub in the 1970s
and continued throughout the years with several collaborators (e.g., G. Dahlquist,
S. Eisenstat, S. Nash, B. Fischer, G. Meurant, Z. Strakoš). The main idea is to approx-
imate the Riemann-Stieltjes integral by Gauss or Gauss-Radau quadrature rules.
Since, in this case, the sign of the remainders of the quadrature rules are known, in
theory, this gives lower and upper bounds for the A-norm of the error. These bounds
can be used to design more reliable stopping criteria than just using the relative norm
of the residual (for details on these techniques, see [4, 5, 9–11, 13]). This research
was summarized in [12] and [22]. More recently, some simpler and improved formu-
las for the computation of the bounds on the A-norm of the error were provided in
[23].

The techniques used in [10, 13, 29, 30] to compute lower or upper bounds use
a positive integer d which is called the delay, in such a way that, at CG iteration
k + d, an estimate of the A-norm of the error at iteration k is obtained. The larger
the delay is, the better are the bounds at iteration k. However, even when using
these techniques, the situation is still not completely satisfactory. Obtaining an upper
bound with the Gauss-Radau quadrature rule needs to have a prescribed parameter
which should represent a lower bound for the smallest eigenvalue of the (precondi-
tioned) system matrix. This may not be readily available to the user. Moreover, some
numerical examples have shown that, even if we have a good lower bound for the
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smallest eigenvalue, the quality of the Gauss-Radau upper bound may deteriorate
when the A-norm of the error becomes small. Sometimes, it is also useful to compute
an approximation of the matrix 2-norm if the user wants to compute an estimate of
the normwise backward error (see [25, 28]), or to approximate the ultimate level of
accuracy, or the condition number of the (preconditioned) system matrix.

The goal of this paper is to discuss and address these issues to obtain cheap approx-
imations to the smallest and largest eigenvalues of the (preconditioned) system matrix
during the CG computations, and to use them in estimating convergence character-
istics like the A-norm of the error or the normwise backward error. In particular, we
introduce a new upper bound for the A-norm of the error which is less sensitive to
the choice of the approximation to the smallest eigenvalue and suggest an approxi-
mation of this upper bound which does not require any a priori information about the
smallest eigenvalue.

The paper is organized as follows. In Section 2, we recall the Lanczos and CG
algorithms as well as some relations which show the links between CG and Gauss
quadrature. Section 3 is concerned with the Gauss-Radau upper bound and the deriva-
tion of a new upper bound. In Section 4, we present a numerical example that shows
the troubles that may happen with the Gauss-Radau upper bounds, and a possible
potential of the new upper bound which is not sensitive to the choice of the approxi-
mation to the smallest eigenvalue. In Section 5, we address the problem of computing
estimates of the smallest and largest eigenvalues of A. This is done by using incre-
mental estimates of norms of bidiagonal matrices. These algorithms can be useful in
a more general setting than computing bounds for the CG error norms. In Sections 6
and 7, these results are used to approximate the Gauss-Radau upper bound and the
normwise backward error. Section 8 illustrates numerically the quality of approxi-
mations to the smallest and largest eigenvalues, and their use in approximating the
normwise backward error and the A-norm of the error. Finally, in Section 9, we give
some conclusions and perspectives.

2 The Lanczos and CG algorithms

Given a starting vector v ∈ R
N and a symmetric matrix A ∈ R

N×N , one can consider
a sequence of nested subspaces

Kk(A, v) ≡ span
{
v, Av, . . . , Ak−1v

}
, k = 1, 2, . . . ,

called Krylov subspaces. The dimension of these subspaces is increasing up to an
index n ≤ N called the grade of v with respect to A, at which the maximal dimension
is attained, and Kn(A, v) is invariant under multiplication with A. Assuming that k <

n, the Lanczos algorithm (Algorithm 1) computes an orthonormal basis v1, . . . , vk+1
of the Krylov subspace Kk+1(A, v). The basis vectors vj of unit norm satisfy the
matrix relation

AVk = VkTk + β̃kvk+1e
T
k
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Algorithm 1 Lanczos algorithm

input A, v

β̃0 = 0, v0 = 0
v1 = v/‖v‖
for k = 1, . . . do

w = Avk − β̃k−1vk−1
α̃k = vT

k w

w = w − α̃kvk

β̃k = ‖w‖
vk+1 = w/β̃k

end for

where Vk = [v1 · · · vk], ek denotes the kth column of the identity matrix, and

Tk =

⎡
⎢⎢⎢⎢⎣

α̃1 β̃1

β̃1
. . .

. . .
. . .

. . . β̃k−1

β̃k−1 α̃k

⎤
⎥⎥⎥⎥⎦

is the k × k symmetric tridiagonal matrix of the recurrence coefficients computed in
Algorithm 1. The coefficients β̃j being positive, Tk is a Jacobi matrix. The Lanczos
algorithm works for any symmetric matrix, but if A is positive definite, then Tk is
positive definite as well.

When solving a system of linear equations Ax = b with a real symmetric positive
definite matrix A, the CG method (Algorithm 2) can be used. Mathematically, the
CG iterates xk minimize the A-norm of the error over the manifold x0 + Kk(A, r0),

‖x − xk‖A = min
y∈x0+Kk(A,r0)

‖x − y‖A,

Algorithm 2 Conjugate gradients

input A, b, x0
r0 = b − Ax0
p0 = r0
for k = 1, . . . until convergence do

γk−1 = rT
k−1rk−1

pT
k−1Apk−1

xk = xk−1 + γk−1pk−1
rk = rk−1 − γk−1Apk−1

δk = rT
k rk

rT
k−1rk−1

pk = rk + δkpk−1
end for
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and the residual vectors rk = b − Axk are proportional to the Lanczos vectors vj ,

vj+1 = (−1)j
rj

‖rj‖ , j = 0, . . . , k.

Thanks to this close relationship between the CG and Lanczos algorithms it can
be shown (see, for instance [22]) that the recurrence coefficients computed in both
algorithms are connected via

β̃k =
√

δk

γk−1
, α̃k = 1

γk−1
+ δk−1

γk−2
, δ0 = 0, γ−1 = 1. (1)

Writing these formulas in matrix form, we get

Tk = LkL
T
k , LT

k =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
γ0

√
δ1
γ0

. . .
. . .
. . .

√
δk−1
γk−2
1√
γk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In other words, CG computes implicitly the Cholesky factorization of the Jacobi
matrix Tk generated by the Lanczos algorithm. Hence, the eigenvalues of Tk (the so-
called Ritz values) are equal to the squared singular values of the upper bidiagonal
matrix LT

k .
It is well known that the reduction of the squared A-norm of the error from iter-

ation k − 1 to iteration k is given by γk−1‖rk−1‖2 (see [18, relation (6:1)]). As a
consequence

‖x − x0‖2
A =

k−1∑
j=0

γj‖rj‖2 + ‖x − xk‖2
A. (2)

The relation (2) represents the basis for the quadrature-based estimation of the A-
norm of the error in the CG method [10, 11, 13, 23, 24, 29, 30]. In more details, let
A = Q�QT be the spectral decomposition of A, with Q = [q1, . . . , qN ] orthonor-
mal and � = diag(λ1, . . . , λN), the λi’s, i = 1, . . . , N being the eigenvalues of
A. For simplicity of notation, we assume that the eigenvalues of A are distinct and
ordered as λ1 < λ2 < · · · < λN . Let us define the weights ωi by

ωi ≡ (r0, qi)
2

‖r0‖2
so that

N∑
i=1

ωi = 1 , (3)

and the (nondecreasing) stepwise constant distribution function ω(λ) with a finite
number of points of increase λ1, λ2, . . . , λN ,

ω(λ) ≡

⎧⎪⎨
⎪⎩

0 for λ < λ1 ,∑i
j=1 ωj for λi ≤ λ < λi+1 , 1 ≤ i ≤ N − 1 ,

1 for λN ≤ λ .

(4)
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Having the distribution function ω(λ) and an interval 〈ζ, ξ〉 such that ζ < λ1 < λ2 <

· · · < λN < ξ , for any continuous function f , one can define the Riemann-Stieltjes
integral (see, for instance [12])

∫ ξ

ζ

f (λ) dω(λ) =
N∑

i=1

ωif (λi). (5)

For the integrated function defined as f (λ) = λ−1, we obtain the integral represen-
tation of the squared initial A-norm of the error

‖x − x0‖2
A = rT

0 A−1r0 = (QT r0)
T �−1(QT r0)

= ‖r0‖2
n∑

j=1

λ−1
j ωj = ‖r0‖2

∫ ξ

ζ

λ−1 dω(λ).

Finally, using the optimality of CG, it can be shown that the formula (2) represents
the scaled k-point Gauss quadrature rule for approximating the Riemann-Stieltjes
integral of the function f (λ) = λ−1, with the scaled positive remainder ‖x − xk‖2

A.
The scaling factor is ‖r0‖−2. Various modified quadrature rules can be used to
obtain other approximations to the integral, possibly also with a negative reminder.
Such rules usually require some a priori information about the spectrum of A (for a
summary, see, e.g., the book [12]).

3 Quadrature-based bounds and a new upper bound

In this section, we concentrate on two simple upper bounds. To summarize some
results of [10, 13, 29], and [23] related to the Gauss and Gauss-Radau quadrature
bounds for the A-norm of the error in CG, it has been shown that

γk‖rk‖2 < ‖x − xk‖2
A < γ

(μ)

k ‖rk‖2 (6)

where

γ
(μ)

k+1 =
(
γ

(μ)

k − γk

)

μ
(
γ

(μ)

k − γk

)+ δk+1
, γ

(μ)

0 = 1

μ
, (7)

k < n − 1, and μ such that 0 < μ ≤ λmin. Note that in the special case k = n − 1
since ‖x − xn‖2

A = 0, we get ‖x − xn−1‖2
A = γn−1‖rn−1‖2. If the initial residual r0

has a nontrivial component in the eigenvector corresponding to λmin, then λmin is also
an eigenvalue of Tn. If in addition μ is chosen such that μ = λmin, then γn−1 = γ

(μ)

n−1
and the second strict inequality in (6) changes to equality.

The simple updating formula (7) was first presented in [23]. Following the idea
of [13] and [29], we can improve the lower and upper bounds in (6) by considering
quadrature rules (2) at iterations k and k + d for some integer d > 0 which is called
the delay. Then, we get the formula

‖x − xk‖2
A =

k+d−1∑
j=k

γj‖rj‖2 + ‖x − xk+d‖2
A, (8)



Numerical Algorithms

and one can bound the error norm at iteration k + d using (6) to obtain

k+d−1∑
j=k

γj‖rj‖2 + γk+d‖rk+d‖2 < ‖x − xk‖2
A (9)

and

‖x − xk‖2
A <

k+d−1∑
j=k

γj‖rj‖2 + γ
(μ)

k+d‖rk+d‖2. (10)

Note that (9) and (10) give a lower bound and an upper bound for the A-norm of
the error at iteration k when CG is already at iteration k + d whence (6) provides
lower and upper bounds when CG is at iteration k. In [29], it has been shown that
the identity (8) holds (up to some small inaccuracies) also for numerically computed
quantities in finite precision arithmetic, until the A-norm of the error reaches its ulti-
mate level of accuracy. So, it can be used safely for estimating the A-norm of the
actual error.

Mathematically, we will derive another upper bound for the squared A-norm of the
error, which is closely related to the Gauss-Radau upper bound. This bound depends
on the ratio

φk ≡ ‖rk‖2

‖pk‖2
,

which can be updated using a simple recurrence relation. In particular, using pk =
rk + δkpk−1 and the orthogonality between rk and pk−1 (local orthogonality), we
obtain

‖pk‖2 = ‖rk‖2

(
1 + δk

‖pk−1‖2

‖rk−1‖2

)
,

and, therefore,

φk = φk−1

φk−1 + δk

, φ0 = 1. (11)

Hence, φk can be updated cheaply without computing the norm of pk which is not
readily available in CG. From (11) and by induction, it follows that

φ−1
k = 1 + ‖rk‖2

‖rk−1‖2
φ−1

k−1 = ‖rk‖2
k∑

j=0

‖rj‖−2

and hence

‖rk‖2 φk =
⎛
⎝

k∑
j=0

‖rj‖−2

⎞
⎠

−1

; (12)

(see also [18, Theorem 5:3]). Note that mathematically, the quantity (12) can be inter-
preted as the norm of the residual vector determined by the minimal residual method
(see, e.g., [8, Theorem 3.5]). In finite precision arithmetic, the quantity (12) can-
not be, in general, interpreted as the norm of the residual vector generated by some
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minimal residual method. We remark that the quantity φk appears also as a coeffi-
cient in strategies for residual smoothing [16, 17]. In particular, one can compute the
smoothed residual rS

k and the corresponding approximation xS
k using the recurrences

rS
k = (1 − φk) rS

k−1 + φkrk, xS
k = (1 − φk) xS

k−1 + φkxk .

The new upper bound is as follows.

Theorem 1 Let 0 < μ ≤ λmin be given. The approximations xk , k < n, generated
by the CG method satisfy

‖x − xk‖2
A <

‖rk‖2

μ

‖rk‖2

‖pk‖2
, (13)

and the bound is decreasing with increasing k.

Proof Based on (6), it is sufficient to show that μγ
(μ)

k ≤ φk . We will prove it by
induction. The inequality holds for k = 0. Using the induction hypothesis, (7), and
(11) we obtain, for k < n − 1,

μγ
(μ)

k+1 = μ
(
γ

(μ)

k − γk

)

μ
(
γ

(μ)

k − γk

)+ δk+1
<

μγ
(μ)

k

μγ
(μ)

k + δk+1
≤ φk

φk + δk+1
= φk+1.

Recall that γ
(μ)

k − γk is positive because of (6). Finally, using (12), the bound (13) is
monotonically decreasing with increasing k.

The tightness of the bound (13) can further be improved when using a delay d,
similarly as in (10). First, the proof of the previous theorem also shows that the
Gauss-Radau upper bound presented in (6) can be bounded from above by

γ
(μ)

k ‖rk‖2 <
‖rk‖2

μ

‖rk‖2

‖pk‖2
. (14)

Second, combining (10) and (14), we can get an improved upper bound

‖x − xk‖2
A <

k+d−1∑
j=k

γj‖rj‖2 + ‖rk+d‖2

μ

‖rk+d‖2

‖pk+d‖2
. (15)

In practical computations, the parameter μ has to be determined. This represents
a nontrivial task.

4 A numerical example: the choice ofμ

As an example that can demonstrate the difficulties to compute accurate upper
bounds for the A-norm of the error, we consider the matrix bcsstk01 from the
set BCSSTRUC1 in the Harwell-Boeing collection, which can be obtained from the
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Fig. 1 bcsstk01, u
(μ)

k and uuu
(μ)

k , μ = λmin/(1 + 10−m),m = 2, ..., 14

Matrix Market1 or from the SuiteSparse Matrix Collection.2 It is a small stiffness
matrix of order 48 arising from dynamic analysis in structural engineering with 400
nonzero entries. Its condition number is κ(A) = 8.8234 × 105. The smallest eigen-
value λmin(A) = 3.417267562666500 × 103 was computed in extended precision
and rounded to double precision. The right-hand side b has been chosen such that b

has equal components in the eigenvector basis, and such that ‖b‖ = 1.
The linear system Ax = b is difficult to solve with CG without a preconditioner.

We have to perform around 180 iterations to reach the maximum attainable accuracy
when the matrix is only of order 48. There is a long phase of quasi-stagnation of the
A-norm of the error that last almost 100 iterations as one can see in Fig. 1. Denote

u
(μ)

k ≡
√

γ
(μ)

k ‖rk‖, uuu
(μ)

k ≡
√

φk

μ
‖rk‖ (16)

the bounds which correspond to (6) and (13) (without any delay d = 0).
Figure 1 displays the A-norm of the error (dotted curve), the bounds u

(μ)

k for differ-
ent values of μ equal to λmin/(1+10−m), m = 2, ..., 14 (dashed curves), and the new
upper bounds uuu

(μ)

k (thick solid curves). The closer μ is to λmin the better is the upper
bound u

(μ)

k of the A-norm of the error. However, below a level of approximately 10−8,
all the values of μ in our experiment give visually the same upper bound u

(μ)

k which
is not very close to the A-norm of the error. We can also observe that the new upper
bound uuu

(μ)

k is insensitive to the choice of μ and gives an envelope of the Gauss-Radau
upper bounds u

(μ)

k .
Figure 2 shows the “upper bounds” u

(μ)

k for values of μ which are larger than but
close to λmin; μ = λmin/(1 − 10−m), m = 2, 4, 6, ..., 14. We use quotes since, as

1http://math.nist.gov/MatrixMarket
2https://sparse.tamu.edu/

http://math.nist.gov/MatrixMarket
https://sparse.tamu.edu/
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0 50 100 150

10 -15

10 -10

10 -5

Fig. 2 bcsstk01, |γ (μ)

k |1/2 ‖rk‖, μ = λmin/(1−10−m),m = 2, 4, 6, , ..., 14 (dashed curves). Large dots
emphasize this quantity if γ

(μ)

k < 0

one can see, we do not obtain an upper bound in general, even though we are close to
λmin. If μ is chosen to be larger than λmin, then, at some point, the coefficient γ

(μ)

k can
even be negative. In such cases, we use |γ (μ)

k | and emphasize the corresponding value
by a dot. In Fig. 2, we do not plot the new bound uuu

(μ)

k . However, from its definition
and the assumption that μ ≈ λmin, it follows that uuu

(μ)

k will stay visually the same as
in Fig. 1. Note that the dashed curves in Fig. 2 are overlapping in the final stage of
convergence and look like a solid curve.

In summary, the node μ should satisfy μ ≤ λmin, and, simultaneously, it should
closely approximate λmin; otherwise, the Gauss-Radau upper bound u

(μ)

k would be a
poor approximation of the A-norm of the error. If the smallest eigenvalue is known in
advance, then the bound u

(μ)

k can give very good results until some level of accuracy
of the error norm (in our case 10−8) is reached. Below this level, the bounds u

(μ)

k and
uuu

(μ)

k visually coincide, and are far away from the A-norm of the norm.
If the parameter μ has to be determined, possibly in some adaptive way, then we

can expect troubles. First, one cannot hope in general to get a very accurate approxi-
mation of the smallest eigenvalue without too much work. Second, there is usually no
guarantee that the condition μ ≤ λmin is satisfied. Typically, the best we can get from
the Lanczos process are the Ritz values (eigenvalues of Tk) which can approximate
the eigenvalues of A. However, Ritz values provide only upper bounds on λmin, and
some heuristics (e.g., multiplication by a safety constant) have to be used to obtain μ

with the desired properties. As we have seen in the numerical example, the value u
(μ)

k

can be very sensitive to small perturbations of μ. Then, using a heuristic can strongly
influence the approximation properties of u

(μ)

k and cause numerical troubles in com-
putation of u

(μ)

k if μ > λmin. On the other hand, the new bound uuu
(μ)

k can be computed
without any troubles also for μ > λmin. If in addition μ ≈ λmin, then either uuu

(μ)

k

represents an upper bound, or, it is an approximation of the A-norm of the error. For
example, an approximation μk of the smallest Ritz value can be used as a heuristic
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to approximate the upper bound uuu
(μ)

k using uuu
(μk)

k . Since the upper bound uuu
(μ)

k is not

too sensitive to the choice of μ, one can expect that the approximation uuu
(μk)

k can give
reasonable results even if μk is only a moderate approximation to the smallest Ritz
value, and the smallest Ritz value is a poor estimate of the smallest eigenvalue. This
fact will be demonstrated later in the numerical experiments of Section 8.

5 Approximating the extreme Ritz values

In this section, we develop efficient algorithms for the incremental approximation
of the smallest and largest Ritz values. This information can be used not only in the
error approximation techniques based on various modified quadrature rules (see, e.g.,
[10, 11, 23]), but also to approximate the 2-norm of A or the condition number of A.
Note that an approximation of ‖A‖ is needed in estimating the maximum attainable
accuracy (see [15]) or in the computation of the normwise backward error (see [28]).

As already mentioned, Jacobi matrices Tk and the lower bidiagonal matrices Lk

which appear in CG are related through Tk = LkL
T
k . In particular, it holds that

λmax(Tk) = ‖Lk‖2 , λmin(Tk) =
∥∥∥L−1

k

∥∥∥
−2

. (17)

Hence, one can approximate the extreme eigenvalues of Tk using incremental norm
estimation applied to the upper triangular matrices LT

k and L−T
k . Although we are

mainly motivated by the approximation of the extreme Ritz values in CG, we consider
the problem of incremental norm estimation of bidiagonal matrices and their inverses
by itself, since it can be useful also in other algorithms involving bidiagonal matrices.

5.1 The eigenvalues and eigenvectors of a 2 × 2 symmetric matrix

An important ingredient of incremental norm estimation is the fact that the eigenval-
ues and eigenvectors of a 2 × 2 symmetric matrix are known explicitly. Consider a
matrix of the form [

ρ σ

σ τ

]
. (18)

The two eigenvalues of (18) are given by

λ+ = 1

2
(ρ + τ + χ) , λ− = 1

2
(ρ + τ − χ)

where

χ2 = (ρ − τ)2 + 4σ 2. (19)

If σ 
= 0, the matrix of unnormalized eigenvectors is given by
[

ρ − τ + χ ρ − τ − χ

2σ 2σ

]
.

For more details see [6, p.306], [12, p.166].
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5.2 Incremental estimation of the norms of upper triangular matrices

To approximate the maximum singular value of an upper triangular matrix, we use
an incremental estimator proposed in [6]. The algorithm is based on incremental
improvement of an approximation of the right singular vector that corresponds to
the maximum singular value. In [7], it has been shown that this technique tends to
be superior, with respect to approximating maximum singular values, to the original
incremental technique proposed in [3]. In the following, we recall the basic idea of
the incremental norm estimation and reformulate the algorithm slightly so that it can
be efficiently applied to upper bidiagonal matrices and their inverses.

Let R ∈ R
k×k be an upper triangular matrix and let z be its approximate (or exact)

maximum right singular vector. Let

R̂ =
[

R v

η

]
, v ∈ R

k, η ∈ R, (20)

and consider the new approximate maximum right singular vector in the form

ẑ =
[

sz

c

]
, (21)

where s2 + c2 = 1. The parameters s and c are chosen such that the norm of the
vector R̂ẑ is maximal. It holds that

‖R̂ẑ‖2 =
[

s

c

]T [
ρ σ

σ τ

] [
s

c

]

where
ρ = ‖Rz‖2, σ = vT Rz, τ = vT v + η2.

Hence, to maximize ‖R̂ẑ‖2, we need to determine the maximum eigenvalue of the
symmetric 2 × 2 matrix (18), and the corresponding eigenvector. Using the previous
results [

s

c

]
= u

‖u‖ , u =
[

ρ − τ + χ

2σ

]
, (22)

and

λ+ = ρ + τ + χ

2
, χ2 = (ρ − τ)2 + 4σ 2.

Note that if σ = 0, the formula for the eigenvector that corresponds to λ+ is still
valid. Next, it holds that

‖u‖2 = 2(χ2 + (ρ − τ) χ),

and, therefore, from (19),

c2 = 2σ 2

χ2 + (ρ − τ) χ
= 1

2

χ2 − (ρ − τ)2

χ2 + (ρ − τ) χ
= 1

2

(
1 − ρ − τ

χ

)
.

We can also express ‖R̂ẑ‖2 in a more convenient form

‖R̂ẑ‖2 = ρ + τ + χ

2
= ρ + χ

2

(
1 − ρ − τ

χ

)
= ρ + χc2.
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To compute ẑ, we still need to determine the signs of s and c. From (22), it follows
that s ≥ 0 and c has the same sign as σ . Therefore,

s =
√

1 − c2, c = |c|sign(σ ).

Using the subscript k, we can formulate Algorithm 3 for the incremental norm
estimation of

Rk+1 =
[

Rk vk

ηk

]
, vk ∈ R

k, ηk ∈ R, (23)

where Rk in Algorithm 3 is a principal submatrix of Rk+1.

Algorithm 3 Incremental estimation of ‖Rk‖2

input matrices Rk

z1 = 1,
for k = 1, . . . do

% . . . Compute the entries of the 2 × 2 matrix.

ρk = ‖Rkzk‖2, σk = vT
k Rkzk, τk = vT

k vk + η2
k

% . . . Compute the new estimate ρk+1.

χ2
k = (ρk − τk)

2 + 4σ 2
k , c2

k = 1
2

(
1 − ρk−τk

χk

)
, ρk+1 = ρk + χkc

2
k

% . . . If required, compute zk+1.

sk =
√

1 − c2
k, ck = |ck| sign(σk), zk+1 =

[
skzk

ck

]

end for

Note that if we start the algorithm with z1 = 1, then ρ1 = r2
1,1, and ρ2 is equal to

‖R2‖2. In more details, it holds that

ρ2 = ρ1 + χ1c
2
1 = 1

2
(χ1 + ρ1 + τ1)

= 1
2

(
r2

1,1 + r2
2,2 + r2

1,2 +
√(

r2
1,1 − r2

2,2 − r2
1,2

)2 + 4r2
1,1r

2
1,2

)
= ‖RT

2 R2‖.

As we will see in the following, if Rk is upper bidiagonal, it is possible to incre-

mentally estimate ‖Rk‖ and
∥∥∥R−1

k

∥∥∥ in a very efficient way, without storing the

coefficients of the matrix Rk and even without storing the approximate right singular
vectors zk . In particular, we will be able to find simple updating formulas for σk and
τk which are then used in the updating formula for ρk+1.
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5.3 Specialization to upper bidiagonal matrices

Consider a bidiagonal matrix Bk ,

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β1
α2 β2

. . .
. . .
. . . βk−1

αk

⎤
⎥⎥⎥⎥⎥⎥⎦

. (24)

Having relation (23) in mind and taking Rk = Bk , the vector vk and the entry ηk in the
last column of Bk+1 are given by vk = βkek , ηk = αk+1, where ek = [0, · · · , 0, 1]T
is the kth column of the k × k identity matrix. Hence,

ρk = ‖Bkzk‖2, σk = αkβke
T
k zk, τk = β2

k + α2
k+1.

Note that the last entry eT
k zk of the vector zk is given by ck−1 (see (21)), and, there-

fore, σk = αkβkck−1. Using the previous results, we are now able to update the
entries ρk , σk and τk without storing the vector zk (see Algorithm 4).

Algorithm 4 Incremental estimation of ‖Bk‖2

input entries αk and βk of upper bidiagonal matrices
ρ1 = α2

1 , ρmax
1 = ρ1, c0 = 1,

for k = 1, . . . do
σ 2

k = α2
kβ

2
k c2

k−1, τk = β2
k + α2

k+1

χ2
k = (ρk − τk)

2 + 4σ 2
k

c2
k = 1

2

(
1 − ρk−τk

χk

)

ρk+1 = ρk + χkc
2
k

ρmax
k+1 = ρk+1

end for

In some cases, a better accuracy of the approximations to norms of matrices is
needed. To improve the accuracy, we need to store Bk and zk so that we can run
Algorithm 3, and construct the approximate maximum right singular vector

zk+1 =
[

skzk

ck

]
(25)

of Bk+1. The vector zk+1 can also be seen as an approximate eigenvector of
BT

k+1Bk+1 corresponding to the approximate maximum eigenvalue ρk+1. Hence, one
can improve the vector zk+1 using one shifted inverse iteration applied to the matrix
BT

k+1Bk+1, where ρk+1 is used as a shift (see, e.g., [14, Section 7.6]).
In detail, having the LDLT factorization of the tridiagonal matrix BT

k+1Bk+1, we
can easily compute the LDLT factorization of the matrix BT

k+1Bk+1 − ρk+1I using
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the dstqds algorithm by Parlett and Dhillon [27]. The last factorization can be used
to perform one inverse iteration by solving the system

(
BT

k+1Bk+1 − ρk+1I
)

y = zk+1.

Finally, we can consider the vector ẑk+1 ≡ y/‖y‖ and the scalar ρ̂k+1 ≡
‖Bk+1̂zk+1‖2 to be new approximations to the maximum right singular vector and
to the squared norm of Bk+1, and ρ̂max

k+1 ≡ ρ̂k+1 to be an improved estimate of the
largest eigenvalue of BT

k+1Bk+1.

5.4 Inversions of nonsingular upper bidiagonal matrices

Consider a nonsingular bidiagonal matrix Bk of the form (24), αi 
= 0. It is well
known that the last column wk+1 of the matrix B−1

k+1 can be expressed in the explicit
form

wk+1 = 1

αk+1

[
(−1)k

∏k
i=1

βi

αi
, . . . ,

βk−1
αk−1

βk

αk
, −βk

αk
, 1

]T
.

Hence,

B−1
k+1 =

[
B−1

k −wk
βk

αk+1
1

αk+1

]
, wk+1 = 1

αk+1

[−wkβk

1

]
, (26)

where wk is the last column of the matrix B−1
k . We now specialize the idea of the

incremental norm estimation presented in Section 5.2 to the case of matrices B−1
k ,

that is,

Rk = B−1
k , vk = −wk

βk

αk+1
, ηk = 1

αk+1
.

First, let us find updating formulas for ‖wk+1‖2 and B−T
k wk . From (26), it follows

that

‖wk+1‖2 = 1

α2
k+1

(
β2

k ‖wk‖2 + 1
)

, (27)

and

B−T
k wk =

[
B−T

k−1

−wT
k−1

βk−1
αk

1
αk

][
−wk−1

βk−1
αk

1
αk

]
=
[

−βk−1
αk

(
B−T

k−1wk−1

)

‖wk‖2

]
. (28)

Using the formulas (27) and (28), we are now able to update the entries σk and τk

which are needed in the process of the incremental norm estimation (see Section 5.2).
For τk we get

τk = ‖wk+1‖2 = 1

α2
k+1

(
β2

k ‖wk‖2 + 1
)

= 1

α2
k+1

(
β2

k τk−1 + 1
)

,
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and for σk ,

σk = vT
k Rkzk = − βk

αk+1
zkB

−T
k wk

= − βk

αk+1

[
sk−1zk−1

ck−1

]T
[

−βk−1
αk

(
B−T

k−1wk−1

)

‖wk‖2

]

= − βk

αk+1

(
sk−1

[
−βk−1

αk

zT
k−1B

−T
k−1wk−1

]
+ ck−1‖wk‖2

)

= − βk

αk+1
(sk−1σk−1 + ck−1τk−1) .

The initial values

ρ1 = 1

α2
1

, τ0 = 1

α2
1

, σ0 = 0, s0 = 0, c0 = 1,

lead to the 2 × 2 matrix

[
ρ1 σ1
σ1 τ1

]
=
⎡
⎣

1
α2

1
− β1

α2α
2
1

− β1

α2α
2
1

1
α2

2
+
(

β1
α2α1

)2

⎤
⎦ = B−T

2 B−1
2 ,

so that ρ2 =
∥∥∥B−1

2

∥∥∥
2
. The results are summarized in Algorithm 5.

Algorithm 5 Incremental estimation of ‖B−1
k ‖2

input entries αk and βk of upper bidiagonal matrices
ρ1 = α−2

1 , ρmin
1 = α2

1, τ0 = ρ1, σ0 = 0, s0 = 0, c0 = 1
for k = 1, . . . do

σk = − βk

αk+1
(sk−1σk−1 + ck−1τk−1),

τk = 1
α2

k+1

(
β2

k τk−1 + 1
)

χ2
k = (ρk − τk)

2 + 4σ 2
k

c2
k = 1

2

(
1 − ρk−τk

χk

)

ρk+1 = ρk + χkc
2
k

sk =
√

1 − c2
k , ck = |ck| sign(σk)

ρmin
k+1 = ρ−1

k+1
end for

Similarly as in the previous section, we can improve the accuracy of the approx-
imations of norms of inverses of matrices by one shifted inverse iteration. To do so,
we need to store Bk , zk , and also the vector B−T

k wk (to compute σk) which can be
updated using the formula (28). Then, as in (25), we can construct the approximate
maximum right singular vector zk+1 of B−1

k+1. The vector zk+1 can be seen as an
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approximate eigenvector of the matrix B−T
k+1B

−1
k+1, or, as an approximate eigenvector

of the matrix Bk+1B
T
k+1,

B−T
k+1B

−1
k+1zk+1 ≈ ρk+1zk+1, ρ−1

k+1zk+1 ≈ Bk+1B
T
k+1zk+1.

The accuracy of the vector zk+1 can now be improved by one shifted inverse iteration
applied to the matrix Bk+1B

T
k+1, where ρ−1

k+1 is used as a shift.
In detail, we can easily get the UDUT factorization (U is upper bidiagonal)

of the tridiagonal matrix Bk+1B
T
k+1. Using a straightforward modification of the

dstqds algorithm, the UDUT factorization of the matrix Bk+1B
T
k+1 − ρ−1

k+1I can
be computed and used to solve the system

(
Bk+1B

T
k+1 − ρ−1

k+1I
)

y = zk+1.

The modification of the dstqds algorithm consists in the unitary transformation
of the problem for the UDUT factorization to the problem with LDLT factor-
ization, using the backward identity matrix. Finally, one can consider the vector
ẑk+1 ≡ y/‖y‖ and the scalar ρ̂k+1 ≡ ‖B−1

k+1̂zk+1‖2 to be new approximations to the

maximum right singular vector and to ‖B−1
k+1‖2, and ρ̂min

k+1 ≡ ρ̂−1
k+1 to be an improved

estimate of the smallest eigenvalues of BT
k+1Bk+1.

5.5 CG and approximations of the extreme Ritz values

The results of the previous sections can be applied to the upper bidiagonal matrices
Bk = LT

k that are computed in CG, i.e.,

αj = 1√
γj−1

, j = 1, . . . , k, βj =
√

δj

γj−1
, j = 1, . . . , k − 1,

to approximate the smallest and largest eigenvalues of Tk (see (17)). In particular,
after substitution, we obtain in Algorithm 4,

σ 2
k = δk

γ 2
k−1

c2
k−1, τk = 1

γj−1
+ δk

γj−1
,

and in Algorithm 5,

σk = −
√

γk

δk

γk−1
(sk−1σk−1 + ck−1τk−1) , τk = γk

(
δk

τk−1

γk−1
+ 1

)
. (29)

Moreover, for τk in Algorithm 5, it holds that

τk

γk

= [
1 + δk(1 + δk−1(1 + · · · + δ2(1 + δ1) . . . ))

] = ‖pk‖2

‖rk‖2
.
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6 Approximation of the Gauss-Radau upper bound

The previous section provides a cheap tool to approximate the Gauss-Radau upper
bound without having an a priori information about the smallest eigenvalue of the
(preconditioned) system matrix. In particular, to approximate the Gauss-Radau upper
bound, one can use the new upper bound (13). Instead of μ which should closely
approximate the smallest eigenvalue from below, one can use the updated approxi-
mation μk ≡ ρmin

k to the smallest Ritz value (see Algorithm 5 and Section 5.5). Since
the bound (13) is not sensitive to the choice of μ, the approximation of (13) which
uses μk will be close to the bound (13) for μ = λmin whenever μk ≈ λmin. More-
over, as we have seen in Section 4, the bound (13) is often a good approximation
to the Gauss-Radau upper bound, in particular if μ approximates the smallest eigen-
value only roughly, say to 1 or 2 valid digits. In summary, when we do not have
an a priori information about the smallest eigenvalue of the (preconditioned) system
matrix, we suggest to estimate the Gauss-Radau upper bound u

(μ)

k (see (16)), using
an approximation

uuu
(μk)

k = ‖rk‖√
μk

‖rk‖
‖pk‖ =

√
φk

μk

‖rk‖ (30)

where μk = ρmin
k is updated at each iteration as in Algorithm 5, with σk and τk

computed directly from the CG coefficients using (29). The algorithm for updating
μk starts with ρ1 = γ0, μ1 = γ −1

0 , τ0 = ρ1, σ0 = 0, s0 = 0, c0 = 1. Note that
it does not make too much sense to use inverse iterations to improve the quality of
the approximation of the smallest Ritz value. A more accurate approximation to the
smallest Ritz value does not improve the approximation (30) significantly.

7 Approximation of the normwise backward error

In [1, 26], backward error perturbation theory was used to derive a family of stopping
criteria for iterative methods. In particular, given x̃, one can ask what the norms are of
the smallest perturbations ΔA of A and Δb of b measured in the relative sense such
that the approximate solution x̃ represents the exact solution of the perturbed system

(A + ΔA) x̃ = b + Δb .

In other words, we are interested in the quantity

η = min {δ : (A + ΔA) x̃ = b + Δb, ‖ΔA‖ ≤ δ‖A‖, ‖Δb‖ ≤ δ‖b‖} .

It was shown by Rigal and Gaches [28] that this quantity, called the normwise
backward error, is given by

η = ‖̃r‖
‖A‖‖x̃‖ + ‖b‖ . (31)

where r̃ = b − Ax̃. This approach can be generalized (see [1, 26]) in order to quan-
tify levels of confidence in A and b. The normwise backward error is, as a base for
stopping criteria, frequently recommended in the numerical analysis literature (see,
e.g. [2, 19]).
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When solving a linear system with CG, the norms of vectors x̃ = xk and r̃ = rk
are easily computable, and ‖A‖ can be approximated from below using Algorithm 4
(see also Section 5.5). Hence, we can efficiently compute an upper bound on the
normwise backward error (31) in CG. In the following subsection, we show that if
x0 = 0, then ‖xk‖ can be approximated cheaply in an incremental way.

7.1 A cheap approximation of ‖xk‖ in CG

If x0 = 0, then the CG approximate solution xk can be expressed as

xk = ‖r0‖VkT
−1
k e1, and ‖xk‖2 = ‖r0‖2eT

1 T −1
k V T

k VkT
−1
k e1.

Using the global orthogonality among the Lanczos vectors, we obtain

‖xk‖2 = ‖r0‖2eT
1 T −2

k e1. (32)

Note that in finite precision arithmetic, the orthogonality is usually quickly lost. How-
ever, we observed in numerical experiments (see Section 8) that despite the loss or
orthogonality, the quantity

ξk ≡ ‖r0‖2eT
1 T −2

k e1 (33)

still approximates ‖xk‖2 very accurately. In the following lemma, we suggest an
algorithm to efficiently compute ξk at a negligible cost.

Lemma 1 With the notation introduced in Section 2, it holds that

ξk =
k−1∑
j=0

‖rj‖−2

⎛
⎝

k−1∑
i=j

ψi

⎞
⎠

2

, ψi = γi‖ri‖2,

and ξk+1, k = 0, 1, 2, . . . , can be computed using the recurrences

ϑk+1 = ϑk + γkφ
−1
k , (34)

ξk+1 = ξk + ψk (ϑk+1 + ϑk) , (35)

where ϑ0 = 0, ξ0 = 0, and φk can be updated using (11).

Proof It holds that

ξk = ‖r0‖2eT
1 T −2

k e1 = ‖‖r0‖L−T
k L−1

k e1‖2 ≡ ‖y‖2

where y = [y1, . . . , yk]T solves the system LT
k Lky = ‖r0‖e1. Using the bidiagonal

structure of Lk , we get in a straightforward way that

yj = (−1)j+1 1

‖rj−1‖

⎛
⎝

k−1∑
i=j−1

ψi

⎞
⎠ , j = 1, . . . , k,

and, therefore,

ξk = ‖y‖2 =
k−1∑
j=0

(∑k−1
i=j ψi

)2

‖rj‖2
.
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It remains to find a way how to compute ξk in an efficient way. In other words,
knowing ξk and ψk , we would like to express ξk+1. It holds that

ξk+1 =
k∑

j=0

(∑k
i=j ψi

)2

‖rj‖2
= ψ2

k

‖rk‖2
+

k−1∑
j=0

ψ2
k

‖rj‖2
+

k−1∑
j=0

2ψk

∑k−1
i=j ψi

‖rj‖2
+ ξk

= ψk

⎛
⎝

k∑
j=0

∑k
i=j ψi

‖rj‖2
+

k−1∑
j=0

∑k−1
i=j ψi

‖rj‖2

⎞
⎠+ ξk

= ξk + ψk (ϑk+1 + ϑk)

where

ϑk ≡
k−1∑
j=0

∑k−1
i=j ψi

‖rj‖2
.

Let us find an updating formula for ϑk+1. We have,

ϑk+1 = γk +
k−1∑
j=0

∑k−1
i=j ψi + ψk

‖rj‖2
= γk + ϑk + ψk

k−1∑
j=0

1

‖rj‖2

= γk + ϑk + γk

‖rk‖2

‖rk−1‖2

⎛
⎝‖rk−1‖2

k−1∑
j=0

‖rj‖−2

⎞
⎠

= γk + ϑk + γkδkφ
−1
k−1

= ϑk + γkφ
−1
k ;

see (11) and (12).

Lemma 1 shows how to cheaply approximate ‖xk‖ in CG under the assumption
x0 = 0. If x0 
= 0, then xk − x0 = ‖r0‖VkT

−1
k e1 and ξk can be seen as an approx-

imation to ‖xk − x0‖2. Considering preconditioned CG (PCG) (see Algorithm 6)
with a symmetric and positive definite preconditioner M , quantities ξk (computed
using (11) and (34)–(35) from the coefficients and residual norms which correspond
to the preconditioned system) will approximate ‖xk − x0‖2

M . The norms ‖xk‖M of
preconditioned approximations can be of interest when approximating the normwise
backward error which corresponds to the preconditioned system.

7.2 Normwise backward error in PCG

Given a symmetric positive definite matrix M = LLT , we can formally think about
preconditioned CG (see Algorithm 6) as CG applied to the modified system

L−1AL−T︸ ︷︷ ︸
Â

LT x︸︷︷︸
x̂

= L−1b︸ ︷︷ ︸
b̂

. (36)

Moreover, a change of variable is used to go back to the original variable x and
the original residual r in such a way that the only preconditioning matrix which is
involved is M or its inverse, and not L which may be unknown. Using the techniques
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Algorithm 6 Preconditioned conjugate gradients (PCG)

input A, b, x0, M ,
r0 = b − Ax0, solve Mz0 = r0 to get z0, p0 = z0
for k = 1, . . . until convergence do

γ̂k−1 = zT
k−1rk−1

pT
k−1Apk−1

xk = xk−1 + γ̂k−1pk−1
rk = rk−1 − γ̂k−1Apk−1
solve Mzk = rk to get zk

δ̂k = zT
k rk

zT
k−1rk−1

pk = zk + δ̂kpk−1
end for

presented in Sections 5 and 7.1, we can approximate the normwise backward error
for the preconditioned system (36),

η̃ = ‖̃r‖
‖Â‖ ‖x̃‖ + ‖b̂‖ , (37)

where x̃ is a given approximation and r̃ = b̂ − Âx̃. In particular, in PCG, we are
interested in x̃ = LT xk , r̃ = L−1rk , so that

‖x̃‖2 = ‖xk‖2
M, ‖̃r‖2 = zT

k rk = ‖rk‖2
M−1 , ‖b̂‖2 = ‖b‖2

M−1 . (38)

The norm of the preconditioned matrix ‖Â‖ can be approximated from the PCG
coefficients γ̂k and δ̂k using techniques developed in Section 5, and the norm
of the preconditioned approximation ‖LT xk‖ = (xT

k Mxk)
1/2 = ‖xk‖M can be

approximated using Lemma 1. The other quantities are available in PCG.
We know that x̃ is the exact solution of a perturbed problem (Â+ΔÂ)̃x = b̂+Δb̂,

where the relative sizes of ΔÂ and Δb̂ are bounded by η̃. Hence, xk is the exact
solution of the perturbed system

(A + Δ̂A)xk = b + Δ̂b, Δ̂A ≡ L(ΔÂ)LT , Δ̂b ≡ L(Δb̂) .

Since the relative sizes of ΔÂ and Δb̂ are bounded by η̃, it holds that ‖Δ̂A‖/‖A‖ ≤
κ(M)̃η and ‖Δ̂b‖/‖b‖ ≤ κ(M)1/2η̃.

Nevertheless, the question of which backward error makes more sense in a given
problem remains. The quantity η in (31) tells us how well we have solved the original
system whence η̃ in (37) tells us how well we have solved the preconditioned system.
We did not find any discussion of this issue in the literature.

8 Numerical experiments

Numerical experiments are divided into two parts. In the first part, we demonstrate
the quality of our estimates approximating the extreme Ritz values and the norms of
approximate solutions during the CG computations. In the second part, we use these
estimates to approximate characteristics of our interest, i.e., the Gauss-Radau upper
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bound for the A-norm of the error and the normwise backward error. The experiments
are performed in Matlab 9.2 (R2017a).

We consider four systems of linear equations. The first one with the system matrix
bcsstk01 has already been described in Section 4. For this system, the influence of
finite precision arithmetic to CG computations is substantial; orthogonality is quickly
lost and convergence is significantly delayed. Hence, one can test whether our tech-
niques work also under these circumstances which are quite realistic during practical
computations.

The second system arises after discretizing the diffusion equation

−div(λ(x, y)∇u) = f in � = (0, 1)2, u|∂� = 0,

with the diffusion coefficient

λ(x, y) = 1

2 + 1.8 sin(10x)
· 1

2 + 1.8 sin(10 y)
.

The PDE is discretized using standard finite differences with a five-point scheme on
a 60 × 60 mesh so that the system matrix Pb26 has the moderate dimension 3600
(for more details, see [22, Section 9.2, p. 313]). Note that nnz(A) = 17760 and
κ(A) ≈ 7.54 × 104. The right-hand side b is a random vector normalized to have
a unit norm. The starting vector is x0 = 0. In the experiments, the system is solved
without preconditioning.

The third linear system Pres Poisson from the SuiteSparse Matrix Collection
arises in problems of computational fluid dynamics. The matrix size is n = 14822,
nnz(A) = 715804, κ(A) ≈ 2.04 × 106, the right-hand side b is provided with the
matrix. The starting vector is x0 = 0. We use incomplete Cholesky factorization
with zero-fill as a preconditioner (see, e.g., [14, Section 11.5.8]). To compute this
factorization, we use the Matlab command ichol(A).

Finally, the last system matrix s3dkt3m2 is of order n = 90449 and κ(A) ≈
3.6 × 1011. It can be downloaded from the CYLSHELL collection in the Matrix
Market library, which contains matrices that represent low-order finite-element dis-
cretizations of a shell element test, the pinched cylinder. Only the last element of
the right-hand side vector b is nonzero, which corresponds to the given physical
problem (for more details, see [20] and the references therein). The factor L in the
preconditioner M = LLT is determined by the incomplete Cholesky factorization
with threshold dropping. To compute this factorization, we use the Matlab com-
mand ichol with parameters type = ’ict’, droptol = 1e-5, and with the
global diagonal shift diagcomp = 1e-2. Note that here nnz(A) = 3686223 and
nnz(L) = 6541916. When used in experiments, the smallest eigenvalue of the pre-
conditioned matrix was computed as the smallest Ritz value at the iteration k = 3500
for which the ultimate level of accuracy of the A-norm of the error was already
reached.

8.1 Approximations to the extreme Ritz values and to ‖xk‖

It is sometimes difficult to know beforehand good approximations of the smallest and
largest eigenvalues of A. Since CG is equivalent to the Lanczos algorithm, estimates
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of the smallest and largest eigenvalues can be computed during CG iterations via
approximating the smallest and largest Ritz value. In Algorithms 4 and 5, and in
Section 5.5, we formulated a very cheap way of approximating the extreme Ritz
values at a negligible cost of a few scalar operations per iteration. Moreover, the
estimates can be improved when updating the LDLT factorization of the tridiagonal
matrix Tk and performing one shifted inverse iteration (see Sections 5.3 and 5.4).

Note that an adaptive algorithm for approximating the smallest eigenvalue was
also proposed in [21], with the aim to get the parameter μ for computing the Gauss-
Radau bound. The user was required to provide an initial lower bound for λmin(A).
Then, during the CG iterations the smallest Ritz values were computed using a
fixed number of inverse iterations. When the smallest Ritz value was considered to
be converged, the value of μ was changed to the converged value. However, this
required solving several tridiagonal linear systems at every CG iteration and the size
of these linear systems was increasing with the CG iterations. Therefore, we can do
now something better with our new cheap estimates, as well as with the improved
estimates which require solving of just one linear system per iteration.

Let us first describe the meaning of curves in Figs. 3, 4, 5, and 6. The left and
right parts of the figures correspond to approximations of the largest and smallest
eigenvalue, respectively. Denote by θ

(k)

1 , . . . , θ
(k)

k the eigenvalues of Tk , i.e., the Ritz
values, sorted in nondecreasing order, which we compute using the Matlab command
eig. We plot the convergence history of the relative distance of the largest or smallest
Ritz value to the largest or smallest eigenvalue of A respectively, i.e., the quantities

∣∣λmax(A) − θ
(k)

k

∣∣
λmax(A)

,

∣∣λmin(A) − θ
(k)

1

∣∣
λmin(A)

,

as a dash-dotted curve. The dashed and dotted curves are related to the relative
accuracy of the estimates of the largest or smallest Ritz value,

∣∣θ (k)

k − estmax
k

∣∣
θ

(k)

k

,

∣∣θ (k)

1 − estmin
k

∣∣
θ

(k)

1

,
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Fig. 3 Approximating the extreme Ritz values for the system bcsstk01
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Fig. 4 Approximating the extreme Ritz values for the system Pb26

where estmax
k stands for ρmax

k or ρ̂max
k , and estmin

k stands for ρmin
k or ρ̂min

k . In particular,
the dashed curves correspond to the relative accuracy of the cheap estimates ρmax

k

and ρmin
k computed by Algorithms 4 and 5 respectively, while the dotted curve corre-

sponds to the relative accuracy of the improved estimates ρ̂max
k and ρ̂min

k , described in
Sections 5.3 and 5.4. Finally, the relative distances of the cheap estimates ρmax

k and
ρmin

k to the largest and smallest eigenvalues, i.e.,

∣∣λmax(A) − ρmax
k

∣∣
λmax(A)

,

∣∣λmin(A) − ρmin
k

∣∣
λmin(A)

,

are plotted as a solid curve. Note that λmin(A) < θ
(k)

1 ≤ estmin
k and estmax

k ≤ θ
(k)

k <

λmax(A).
In Figs. 3 and 4, we can observe that if CG is applied to an unpreconditioned

system, the largest Ritz values θ
(k)

k converge to λmax(A) after a few iterations of CG
(dash-dotted curve in the left part), while convergence of the smallest Ritz values
θ

(k)

1 to λmin(A) (dash-dotted curve in the right part) is often delayed, and it is usually
related to the convergence of the A-norm of the error.
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Fig. 5 Approximating the extreme Ritz values for the preconditioned system Pres Poisson
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Fig. 6 Approximating the extreme Ritz values for the preconditioned system s3dkt3m2

In a few initial iterations, the cheap estimates ρmax
k and ρmin

k (dashed curves)
approximate the corresponding Ritz values with a very high accuracy (in theory, the
estimates agree with the exact Ritz values in iterations 1 and 2). However, in later iter-
ations, their relative accuracy stagnates on the level of 10−1 or 10−2. In other words,
the estimates agree with the corresponding Ritz values to 1 or 2 valid digits. Since
the extreme Ritz values approximate the extreme eigenvalues of A, the estimates also
approximate these eigenvalues. We can observe that if an extreme Ritz value has con-
verged, then its cheap estimate approximates the corresponding extreme eigenvalue
to 1 or 2 valid digits (solid curve). Note that in most applications, this would be a
sufficient accuracy. The dotted curves show the relative accuracy of the improved
estimates ρ̂max

k and ρ̂min
k of the corresponding extreme Ritz values. The experiments

predict that at the cost of computing one linear system with the tridiagonal matrix
available in the form of LDLT factorization, the accuracy of the estimates can be
significantly improved.

A similar picture can be seen for preconditioned systems (see Figs. 5 and 6). Recall
that if we precondition the system, the extreme Ritz values approximate the extreme
eigenvalues of the preconditioned matrix Â. As we can see, convergence of θ

(k)

k to
λmax(Â) to full precision accuracy is for the preconditioned systems significantly
delayed. This is due to the fact that the preconditioned matrix has often a cluster of
eigenvalues, which corresponds to the largest eigenvalue. Then, the power method as
well as the Lanczos method (or CG) need more iterations to approximate the largest
eigenvalue accurately. Moreover, a cluster of eigenvalues about the largest eigenvalue
leads to a cluster of Ritz values which approximate the largest eigenvalue, and, as a
consequence, the improved estimates ρ̂max

k (dotted curve) based on inverse iterations
often do not improve the accuracy of the approximation significantly.

Similarly as in the unpreconditioned case, the cheap estimates ρmax
k and ρmin

k

approximate the corresponding Ritz values with a high relative accuracy in a few
initial iterations (dashed curve), but in later iterations, the relative accuracy is get-
ting worse and stagnates on the level of about 10−1 or 10−2. As a result, one can
expect that in later iterations, the estimates ρmax

k and ρmin
k can approximate the largest
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and smallest eigenvalues of Â also with the relative accuracy of 10−1 or 10−2 (solid
curve).

Note that in all our numerical experiments with various matrices, we have always
observed that the estimates ρmax

k and ρmin
k approximate the largest and smallest

eigenvalues to at least 1 or 2 digits of accuracy.
Finally, let us test numerically, how well the quantity ξ

1/2
k approximates ‖xk‖ in

the unpreconditioned case, and ‖xk‖M in the preconditioned case. Recall that ξk is
defined by (33) and, in the experiments, we compute it cheaply using the formulas
(34)–(35).

In Fig. 7, we consider the unpreconditioned systems bcsstk01 and Pb26. By
the dashed curve, we plot the relative error of the approximation

∣∣∣∣
‖xk‖ − ξk

‖xk‖
∣∣∣∣ (dashed).

In the left part (system bcsstk01), the abovementioned relative error is close or
below the level of 10−10, despite the severe loss of orthogonality. In other words, ξk

agrees with the approximated quantity ‖xk‖ to about 10 valid digits. For comparison,
we also plot with a solid curve the relative error of ‖xk‖ as an approximation of ‖x‖,
and by dots the relative error of ξk as an approximation of ‖x‖,

∣∣∣∣
‖x‖ − ‖xk‖

‖x‖
∣∣∣∣ (solid),

∣∣∣∣
‖x‖ − ξk

‖x‖
∣∣∣∣ (dots).

We can observe that the solid curve coincides visually with the dots until the level of
10−10 is reached. Below this level, the two curves can differ, but they are still close
to each other. In the right part of the figure (system Pb26), the relative accuracy of
ξk as an approximation of ‖xk‖ is even better, close to machine precision.

In Fig. 8, we consider systems Pres Poisson and s3dkt3m2 solved with
preconditioning. Here, ξk is computed using the formulas (34)–(35) from the
PCG coefficients γ̂k and δ̂k , and it approximates ‖xk‖M . Similarly as for the
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Fig. 7 Approximating ‖xk‖ using ξk when solving the unpreconditioned systems bcsstk01 (left part)
and Pb26 (right part)
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Fig. 8 Approximating ‖xk‖M using ξk when solving the preconditioned systems Pres Poisson (left
part) and s3dkt3m2 (right part)

unpreconditioned systems, we can observe that ξk approximates ‖xk‖M very accu-
rately. In the considered examples, the relative errors are close to the level of machine
precision.

8.2 Approximating convergence characteristics

The cheap approximations to the smallest and largest Ritz values, and to the norms
of approximate solutions can be used to approximate various characteristics which
provide some information about the convergence. In particular, in this section, we
concentrate on approximating the normwise backward error and the Gauss-Radau
upper bound, for the preconditioned systems Pres Poisson and s3dkt3m2.

In Section 7, we discussed approximation of the normwise backward error. In
Fig. 9, we plot the backward error (31) (solid curve) which corresponds to the orig-
inal system, and the backward error (37) (dash-dotted curve) which corresponds to
the preconditioned system. As mentioned in Section 7.2, using the cheap techniques,
we can approximate the norm of the preconditioned matrix Â, and the M-norm of
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Fig. 9 Approximating the backward error for the preconditioned systems Pres Poisson (left part) and
s3dkt3m2 (right part)
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the approximate solution ‖xk‖M . Therefore, we can only efficiently approximate
the backward error (37). The dots in Fig. 9 correspond to the approximations of
the backward error (37), where ‖Â‖ was approximated using the incremental tech-
nique (Algorithm 4) and ‖xk‖M was computed using the formulas (34)–(35). For
both systems, we can observe that the backward error (37) visually coincides with its
approximation.

The Gauss-Radau upper bound can be approximated using the approximation (30)
which does not require any a priori information about the smallest eigenvalue (see
Section 6). In Fig. 10, we plot the A-norm of the error (dotted curve) and the Gauss-
Radau upper bounds u

(μ)

k (dashed curves), where the values of μ closely approximate
the smallest eigenvalue of the preconditioned matrix Â from below. Similarly as in
Section 4, we choose μ to be equal to

λmin
(
Â
)

(1 + 10−m)
, for m = 1, 4, 8, 12.

The approximation (30) using μk is plotted as a solid curve. As expected, the quantity
(30) underestimates the A-norm of the error in the initial stage of convergence, since
the smallest Ritz value is a poor approximation to the smallest eigenvalue. However,
as soon as the smallest Ritz value approximates the smallest eigenvalue, the quantity
(30) bounds the A-norm of the error from above. Moreover, in the final stage of
convergence, the quantity (30) is as good as the Gauss-Radau upper bounds even if μ

approximates λmin
(
Â
)

tightly. As in the numerical example presented in Section 4,
we can observe that the Gauss-Radau upper bounds are very sensitive to the accuracy
to which μ approximates λmin(Â). Nevertheless, below some level, all the values of
μ give visually the same upper bound, which is not very close to the A-norm of the
error. This phenomenon appeared almost in all experiments we performed and we
believe it deserves further investigation.

In the last numerical experiment (Fig. 11), we choose the delay d = 10 for the
preconditioned system Pres Poisson and d = 40 for s3dkt3m2. We approx-
imate the A-norm of the error (dotted curve) using the Gauss-Radau upper bound
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Fig. 10 Approximating the Gauss-Radau upper bound for the preconditioned systems Pres Poisson
(left part) and s3dkt3m2 (right part)
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Fig. 11 Approximating the A-norm of the error using Gauss-Radau upper bound, the approximation (30),
and the Gauss lower bound for the preconditioned systems Pres Poisson (left part, d = 10) and
s3dkt3m2 (right part, d = 40)

(10) (dashed curve) for a value of μ which closely approximates λmin(Â) from
below, μ = λmin(Â)/(1 + 10−12), simulating the situation when we know λmin(Â)

in advance from the application. If there is no a priori information about λmin(Â),
one can use the approximation of the upper bound (15) (solid curve) with μk+d . For
comparison, we also plot the Gauss lower bound based on (9) (dash-dotted curve).

In the left part of Fig. 11, we can observe that d = 10 significantly improves
all the bounds. The approximation of the upper bound (15) (solid) is slightly over-
estimating the A-norm of the error ‖x − xk‖A in the initial stage of convergence.
When convergence accelerates (around iteration 200), all the estimates approximate
‖x − xk‖A tightly. In Fig. 10 (left part), we have observed that the curves describing
upper bounds are about 10 iterations delayed in the later stage of convergence. This
is the reason why the choice of d = 10 is sufficient to get good approximations to
‖x − xk‖A.

In the right part of Fig. 11, we consider the more complicated problem with the
system s3dkt3m2. Here, the choice of d = 40 does not improve the bounds too
much in the initial stagnation phase. The Gauss lower bound (dash-dotted) as well
as the approximation of the upper bound (15) (solid) underestimate ‖x − xk‖A sig-
nificantly. The only useful bound in this phase of convergence is the Gauss-Radau
upper bound (dashed) with a prescribed value of μ. When the A-norm of the error
starts to decrease (around iteration 2300), the Gauss lower bound with d = 40 starts
to be visually the same as ‖x − xk‖A, until the ultimate level of accuracy is reached.
This is not the case for the approximation of the upper bound (15) (solid), which is
significantly delayed. However, in comparison to Fig. 10 (right part), the approxi-
mation of (15) is moved about 40 iterations towards ‖x − xk‖A. The Gauss-Radau
upper bound (dashed) approximates at first ‖x − xk‖A tightly, but, below a certain
level, it starts to give the same results as the approximation of (15), i.e., the curve is
delayed. This experiment demonstrates the potential weakness of upper bounds and
the approximation of (15) in the final stage of convergence. It also shows a need for
an adaptive choice of d at each iteration, which would reflect the desired accuracy of
approximations.
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9 Conclusions

In this paper, we derived a new upper bound for the A-norm of the error in CG.
The new bound is closely related to the Gauss-Radau upper bound. While the Gauss-
Radau upper bound can be very sensitive to the choice of the parameter μ which
should closely approximate the smallest eigenvalue of the (preconditioned) system
matrix from below, the new bound is not sensitive to the choice of μ. One can use
it even if μ is larger than the smallest eigenvalue, as an approximation of the upper
bound, so that μ can be chosen as an approximation to the smallest Ritz value.

We next developed a very cheap algorithm for approximating the smallest and
largest Ritz values during the CG computations. These approximations can further
be improved using inverse iterations, at the cost of storing the CG coefficients and
solving a linear system with a tridiagonal matrix at each CG iteration. The cheap
approximations to the smallest and largest Ritz values can be useful in general, e.g.,
to approximate almost for free the condition number of the system matrix, or to esti-
mate the ultimate level of accuracy. In this paper, we used them to approximate the
parameter μ for the new upper bound on the A-norm of the error, and also to approx-
imate the 2-norm of the system matrix when computing the normwise backward
error.

Numerical experiments show that the approximation of the upper bound for the
A-norm of the error which uses the cheap technique to approximate the smallest Ritz
value is in the later stage of convergence usually as good as the Gauss-Radau upper
bound for which μ has to be prescribed. We also observed that even if the smallest
eigenvalue is known in advance, the Gauss-Radau upper bound loses its sharpness as
the A-norm of the error decreases, and, below some level, it is visually the same as
its approximation (30). This phenomenon is caused by the underlying finite precision
Lanczos process, and it deserves additional investigation.

As further demonstrated, the quality of the lower and upper bounds can be
improved using the delay parameter d. This technique is very promising for practical
estimation of the A-norm of the error in CG. However, constant value of d is usually
not sufficient in the initial stage of convergence, and it requires too many extra steps
of CG in the convergence phase. Hence, there is a need for developing a heuristic
technique to choose d adaptively at each iteration, to reflect the required accuracy of
the estimate. We believe that results of this paper can be useful in developing such a
technique. The adaptive choice of d remains a subject of our further work.

Acknowledgments The authors thank an anonymous referee for the very helpful comments.
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13. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithms 8(2-4), 241–268 (1994)
14. Golub, G.H., Van Loan, C.F. Matrix Computations. Johns Hopkins Studies in the Mathematical

Sciences, 4th edn. Johns Hopkins University Press, Baltimore (2013)
15. Greenbaum, A.: Estimating the attainable accuracy of recursively computed residual methods. SIAM

J. Matrix Anal. Appl. 18(3), 535–551 (1997)
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