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Abstract
Consider the problem of solving systems of linear algebraic equations Ax = bwith a
real symmetric positive definite matrix A using the conjugate gradient (CG) method.
To stop the algorithm at the appropriate moment, it is important to monitor the quality
of the approximate solution. One of the most relevant quantities for measuring the
quality of the approximate solution is the A-norm of the error. This quantity cannot be
easily computed; however, it can be estimated. In this paper we discuss and analyze the
behavior of theGauss-Radau upper boundon the A-normof the error, based onviewing
CG as a procedure for approximating a certain Riemann-Stieltjes integral. This upper
bound depends on a prescribed underestimate µ to the smallest eigenvalue of A. We
concentrate on explaining a phenomenon observed during computations showing that,
in later CG iterations, the upper bound loses its accuracy, and is almost independent
ofµ. We construct a model problem that is used to demonstrate and study the behavior
of the upper bound in dependence of µ, and developed formulas that are helpful
in understanding this behavior. We show that the above-mentioned phenomenon is
closely related to the convergence of the smallest Ritz value to the smallest eigenvalue
of A. It occurs when the smallest Ritz value is a better approximation to the smallest
eigenvalue than the prescribed underestimate µ. We also suggest an adaptive strategy
for improving the accuracy of the upper bounds in the previous iterations.
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1 Introduction

Our aim in this paper is to explain the origin of the problems that have been noticed [1]
when computing Gauss-Radau quadrature upper bounds of the A-norm of the error
in the Conjugate Gradient (CG) algorithm for solving linear systems Ax = b with a
symmetric positive definite matrix of order N .

The connection between CG and Gauss quadrature has been known since the sem-
inal paper of Hestenes and Stiefel [2] in 1952. This link has been exploited by Gene
H. Golub and his collaborators to bound or estimate the A-norm of the error in CG
during the iterations; see [1, 3–13].

Using a fixed nodeμ smaller than the smallest eigenvalue of A and theGauss-Radau
quadrature rule, an upper bound for the A-norm of the error can be easily computed.
Note that it is useful to have an upper bound of the error norm to stop the CG iterations.
In theory, the closerμ is to the smallest eigenvalue, the closer is the bound to the norm.

Concerning the approximation properties of the upper bound, we observed in many
examples that in earlier iterations, the bound is approximating the A-norm of the
error quite well, and that the quality of approximation is improving with increasing
iterations. However, in later CG iterations, the bound suddenly becomes worse: it is
delayed, almost independent of μ, and does not represent a good approximation to the
A-norm of the error anymore. Such a behavior of the upper bound can be observed also
in exact arithmetic. Therefore, the problem of the loss of accuracy of the upper bound
in later iterations is not directly linked to rounding errors and has to be explained.

The Gauss quadrature bounds of the error norm were obtained by using the con-
nection of CG to the Lanczos algorithm and modifications of the tridiagonal matrix
which is generated by this algorithm and implicitly by CG. This is why we start in
Section 2 with the Lanczos algorithm. In Section 3 we discuss the relation with CG
and how the Gauss-Radau upper bound is computed. A model problem showing the
problems arising with the Gauss-Radau bound in “exact” arithmetic is constructed
in Section 4. In Sections 5 to 7 we give an analysis that explains that the problems
start when the distance of the smallest Ritz value to the smallest eigenvalue becomes
smaller than the distance of μ to the smallest eigenvalue. We also explain why the
Gauss-Radau upper bound becomes almost independent of μ. In Section 8 we present
an algorithm for improving the upper bounds in previous CG iterations such that the
relative accuracy of the upper bounds is guaranteed to be smaller than a prescribed
tolerance. Conclusions are given in Section 9.

2 The Lanczos algorithm

Given a starting vector v and a symmetric matrix A ∈ R
N×N , one can consider a

sequence of nested Krylov subspaces

Kk(A, v) ≡ span{v, Av, . . . , Ak−1v}, k = 1, 2, . . .

The dimension of these subspaces can increase up to an index n called the grade
of v with respect to A, at which the maximal dimension is attained, and Kn(A, v) is
invariant under multiplication with A.
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Algorithm 1 Lanczos algorithm.
input A, v
β0 = 0, v0 = 0
v1 = v/‖v‖
for k = 1, . . . do

w = Avk − βk−1vk−1
αk = vTk w

w = w − αkvk
βk = ‖w‖
vk+1 = w/βk

end for

Assuming that k < n, the Lanczos algorithm (Algorithm 1) computes an orthonor-
mal basis v1, . . . , vk+1 of theKrylov subspaceKk+1(A, v). The basis vectors v j satisfy
the matrix relation

AVk = VkTk + βkvk+1e
T
k

where ek is the last column of the identity matrix of order k, Vk = [v1 · · · vk] and Tk
is the k × k symmetric tridiagonal matrix of the recurrence coefficients computed in
Algorithm 1:

Tk =

⎡
⎢⎢⎢⎢⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk

⎤
⎥⎥⎥⎥⎦

.

The coefficients β j being positive, Tk is a so-called Jacobi matrix. If A is positive
definite, then Tk is positive definite as well. In the following we will assume for
simplicity that the eigenvalues of A are simple and sorted such that

λ1 < λ2 < · · · < λN .

2.1 Approximation of the eigenvalues

The eigenvalues of Tk (Ritz values) are usually used as approximations to the eigen-
values of A. The quality of the approximation can be measured using βk and the last
components of the normalized eigenvectors of Tk . In more detail, consider the spectral
decomposition of Tk in the form

Tk = Sk�k S
T
k , �k = diag

(
θ

(k)
1 , . . . , θ

(k)
k

)
, STk Sk = Sk S

T
k = Ik,

where Ik is the identity matrix of order k, and assume that the Ritz values are sorted
such that

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k .
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Denote s(k)
i, j the entries and s(k)

:, j the columns of Sk . Then it holds that

min
i=1,...,N

|λi − θ
(k)
j | ≤

∥∥∥A
(
Vks

(k)
:, j
)

− θ
(k)
j

(
Vks

(k)
:, j
)∥∥∥ = βk |s(k)

k, j |, (1)

j = 1, . . . , k. Since the Ritz values θ
(k)
j can be seen as Rayleigh quotients, one can

improve the bound (1) using the gap theorem; see [14, p. 244] or [15, p. 206]. In
particular, let λ� be an eigenvalue of A closest to θ

(k)
j . Then

|λ� − θ
(k)
j | ≤

(
βks

(k)
k, j

)2

gap(k)
j

, gap(k)
j = min

i �=�
|λi − θ

(k)
j |.

In the following we will be interested in the situation when the smallest Ritz value
θ

(k)
1 closely approximates the smallest eigenvalue of A. If λ1 is the eigenvalue of A

closest to θ
(k)
1 > λ1, then using the gap theorem and [14, Corollary 11.7.1 on p. 246],

(
βks

(k)
k,1

)2

λn − λ1
≤ θ

(k)
1 − λ1 ≤

(
βks

(k)
k,1

)2

λ2 − θ
(k)
1

, (2)

giving the bounds

λ2 − θ
(k)
1 ≤

(
βks

(k)
k,1

)2

θ
(k)
1 − λ1

≤ λn − λ1. (3)

It is known (see, for instance, [16]) that the squares of the last components of the
eigenvectors are given by

(
s(k)
k, j

)2 =
∣∣∣∣∣
χ1,k−1(θ

(k)
j )

χ
′
1,k(θ

(k)
j )

∣∣∣∣∣ ,

where χ1,� is the characteristic polynomial of T� and χ
′
1,� denotes its derivative, i.e.,

(
s(k)
k, j

)2 = θ
(k)
j − θ

(k−1)
1

θ
(k)
j − θ

(k)
1

· · · θ
(k)
j − θ

(k−1)
j−1

θ
(k)
j − θ

(k)
j−1

θ
(k−1)
j − θ

(k)
j

θ
(k)
j+1 − θ

(k)
j

· · · θ
(k−1)
k−1 − θ

[k)
j

θ
(k)
k − θ

(k)
j

.

The right-hand side is positive due to the interlacing property of the Ritz values for
symmetric tridiagonal matrices. In particular,

(
s(k)
k,1

)2 = θ
(k−1)
1 − θ

(k)
1

θ
(k)
2 − θ

(k)
1

· · · θ
(k−1)
k−1 − θ

(k)
1

θ
(k)
k − θ

(k)
1

. (4)
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When the smallest Ritz value θ
(k)
1 converges to λ1, this last component squared

converges to zero; see also (3).

2.2 Modification of the tridiagonal matrix

Given μ < θ
(k)
1 , let us consider the problem of finding the coefficient α

(μ)
k+1 such that

the modified matrix

T (μ)
k+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk βk

βk α
(μ)
k+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

has the prescribedμ as an eigenvalue. The connection of this problem to Gauss-Radau
quadrature rule will be explained in Section 3.

In [17, pp. 331-334] it has been shown that at iteration k + 1

α
(μ)
k+1 = μ + ζ

(μ)
k

where ζ
(μ)
k is the last component of the vector y, solution of the linear system

(Tk − μI )y = β2
k ek . (6)

From [10, Section 3.4], the modified coefficients α
(μ)
k+1 can be computed recursively

using

α
(μ)
j+1 = μ + β2

j

α j − α
(μ)
j

, α
(μ)
1 = μ, j = 1, . . . , k. (7)

Using the spectral factorization of Tk , we can now prove the following lemma.

Lemma 1 Let μ < θ
(k)
1 . Then it holds that

α
(μ)
k+1 = μ +

k∑
i=1

η
(μ)
i,k , η

(μ)
i,k ≡

(
βks

(k)
k,i

)2

θ
(k)
i − μ

. (8)

If μ < λ < θ
(k)
1 , then α

(μ)
k+1 < α

(λ)
k+1. Consequently, if μ < θ

(k+1)
1 , then α

(μ)
k+1 < αk+1.

Proof Since μ < θ
(k)
1 the matrix Tk − μI in (6) is positive definite and, therefore,

nonsingular. Hence,

ζ
(μ)
k = eTk y = β2

k e
T
k (Tk − μI )−1ek =

k∑
i=1

(
βks

(k)
k,i

)2

θ
(k)
i − μ

(9)
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so that (8) holds. From (8) it is obvious that if μ < λ < θ
(k)
1 , then α

(μ)
k+1 < α

(λ)
k+1.

Finally, taking λ = θ
(k+1)
1 < θ

(k)
1 (because of the interlacing of the Ritz values) we

obtain α
(λ)
k+1 = αk+1 by construction. �	

3 CG and error norm estimation

When solving a linear system Ax = b with a symmetric and positive definite matrix
A, the CG method (Algorithm 2) is the method of choice. In exact arithmetic, the CG
iterates xk minimize the A-norm of the error over the manifold x0 + Kk(A, r0),

‖x − xk‖A = min
y∈x0+Kk (A,r0)

‖x − y‖A,

and the residual vectors rk = b − Axk are proportional to the Lanczos vectors v j ,

v j+1 = (−1) j
r j

‖r j‖ , j = 0, . . . , k.

Thanks to this close relationship between the CG and Lanczos algorithms, it can
be shown (see, for instance, [16]) that the recurrence coefficients computed in both
algorithms are connected via α1 = γ −1

0 and

β j =
√

δ j

γ j−1
, α j+1 = 1

γ j
+ δ j

γ j−1
, j = 1, . . . , k − 1. (10)

Writing (10) in matrix form, we find out that CG computes implicitly the LDLT

factorization Tk = LkDkLT
k , where

Lk =

⎡
⎢⎢⎢⎢⎣

1
√

δ1
. . .

. . .
. . .√
δk−1 1

⎤
⎥⎥⎥⎥⎦

, Dk =

⎡
⎢⎢⎢⎢⎣

γ −1
0

. . .

. . .

γ −1
k−1

⎤
⎥⎥⎥⎥⎦

. (11)

Algorithm 2 Conjugate gradient algorithm.
input A, b, x0
r0 = b − Ax0
p0 = r0
for k = 1, . . . until convergence do

γk−1 = rTk−1rk−1

pTk−1Apk−1
xk = xk−1 + γk−1 pk−1
rk = rk−1 − γk−1Apk−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

cgiter(k-1)

δk = rTk rk
rTk−1rk−1

pk = rk + δk pk−1
end for
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Hence the matrix Tk is known implicitly in CG.

3.1 Modification of the factorization of Tk+1

Similarly as in Section 2.2 we can ask how to modify the Cholesky factorization of
Tk+1, that is available in CG, such that the resulting matrix T (μ)

k+1 given implicitly
in factorized form has the prescribed eigenvalue μ. In more detail, we look for a
coefficient γ (μ)

k such that

T (μ)
k+1 = Lk+1

[
Dk (

γ
(μ)
k

)−1

]
LT
k+1.

This problem was solved in [10] leading to an updating formula for computing the
modified coefficients

γ
(μ)
j+1 = γ

(μ)
j − γ j

μ(γ
(μ)
j − γ j ) + δ j+1

, j = 1, . . . , k − 1, γ
(μ)
0 = 1

μ
. (12)

Moreover, γ (μ)
k can be obtained directly from the modified coefficient α(μ)

k+1,

γ
(μ)
k = 1

α
(μ)
k+1 − δk

γk−1

, (13)

and vice-versa, see [10, p. 173 and 181].

3.2 Quadrature-based bounds in CG

We now briefly summarize the idea of deriving the quadrature-based bounds used in
this paper. For a more detailed description, see, e.g., [5–7, 10–13].

Let A = QQT be the spectral decomposition of A, with Q = [q1, . . . , qN ]
orthonormal and = diag(λ1, . . . , λN ). As we said above, for simplicity of notation,
we assume that the eigenvalues of A are distinct and ordered as λ1 < λ2 < · · · < λN .
Let us define the weights ωi by

ωi ≡ (r0, qi )2

‖r0‖2 so that
N∑
i=1

ωi = 1 ,
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and the (nondecreasing) stepwise constant distribution function ω(λ) with a finite
number of points of increase λ1, λ2, . . . , λN ,

ω(λ) ≡

⎧⎪⎨
⎪⎩

0 for λ < λ1 ,∑i
j=1 ω j for λi ≤ λ < λi+1 , 1 ≤ i ≤ N − 1 .

1 for λN ≤ λ .

Having the distribution function ω(λ) and an interval 〈η, ξ 〉 such that η < λ1 <

λ2 < · · · < λN < ξ , for any continuous function f , one can define the Riemann-
Stieltjes integral (see, for instance, [18])

∫ ξ

η

f (λ) dω(λ) =
N∑
i=1

ωi f (λi ).

For f (λ) = λ−1, we obtain the integral representation of ‖x − x0‖2A,
∫ ξ

η

λ−1 dω(λ) = ‖r0‖−2‖x − x0‖2A. (14)

Using the optimality of CG it can be shown that CG implicitly determines nodes
and weights of the k-point Gauss quadrature approximation to the Riemann-Stieltjes
integral (14). The nodes are given by the eigenvalues of Tk , and the weights by the
squared first components of the normalized eigenvectors of Tk . The corresponding
Gauss quadrature rule can be written in the form

∫ ξ

η

λ−1 dω(λ) = (T−1
k )1,1 + ‖x − xk‖2A

‖r0‖2 , (15)

where (T−1
k )1,1 represents the Gauss quadrature approximation, and the reminder is

nothing but the scaled and squared A-norm of the kth error, i.e., the quantity of our
interest.

To approximate the integral (14), one can also apply a modified quadrature rule.
In this paper we consider the Gauss-Radau quadrature rule consisting in prescribing a
node 0 < μ ≤ λ1 and choosing the other nodes and weights to maximize the degree
of exactness of the quadrature rule. We can write the corresponding Gauss-Radau
quadrature rule in the form

∫ ξ

η

λ−1 dω(λ) = ((T (μ)
k )−1)1,1 + R(μ)

k ,

where the reminder R(μ)
k is negative, and T (μ)

k is given by (5).
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The idea of deriving (basic) quadrature-based bounds in CG is to consider the
Gauss quadrature rule (15) at iteration k, and a (eventually modified) quadrature rule
at iteration k + 1,

‖x − x0‖2A
‖r0‖2 =

(
T̂−1
k+1

)
1,1

+ R̂k+1, (16)

where T̂k+1 = Tk+1 when using the Gauss rule and T̂k+1 = T (μ)
k+1 in the case of using

the Gauss-Radau rule. From the equations (15) and (16) we get

‖x − xk‖2A =
[
‖r0‖2

((
T̂−1
k+1

)
1,1

−
(
T−1
k

)
1,1

)]
+ R̂k+1. (17)

The term in square brackets represents either a lower bound on ‖x−xk‖2A if T̂k+1 =
Tk+1 (because of the positive reminder), or an upper bound if T̂k+1 = T (μ)

k+1 (because
of the negative reminder). In both cases, the term in square brackets can easily be
evaluated using the available CG related quantities. In particular, the lower bound is
given by γk‖rk‖2, and the upper bound by γ

(μ)
k ‖rk‖2, where γ

(μ)
k can be updated using

(12).
To summarize results of [5, 7, 12], and [1, 10, 11] related to the Gauss and Gauss-

Radau quadrature bounds for the A-norm of the error in CG, it has been shown that

γk‖rk‖2 ≤ ‖x − xk‖2A < γ
(μ)
k ‖rk‖2 <

( ‖rk‖2
μ‖pk‖2

)
‖rk‖2 (18)

for k < n − 1, and μ such that 0 < μ ≤ λ1. Note that in the special case k = n − 1
it holds that ‖x − xn−1‖2A = γn−1‖rn−1‖2. If the initial residual r0 has a nontrivial
component in the eigenvector corresponding to λ1, then λ1 is an eigenvalue of Tn . If
in addition μ is chosen such that μ = λ1, then γn−1 = γ

(μ)
n−1 and the second inequality

in (18) changes to equality. The last inequality is strict also for k = n − 1.
The rightmost bound in (18), that will be called the simple upper bound in the

following, was derived in [1]. The norm ‖pk‖ is not available in CG, but the ratio

φk = ‖rk‖2
‖pk‖2

can be computed efficiently using

φ−1
j+1 = 1 + φ−1

j δ j+1, φ0 = 1. (19)

Note that at an iteration � ≤ k we can obtain a more accurate bound using

‖x − x�‖2A =
k−1∑
j=�

γ j
∥∥r j
∥∥2 + ‖x − xk‖2A, (20)
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by applying the basic bounds (18) to the last term in (20); see [1] for details on the
construction ofmore accurate bounds. In practice, however, one runs theCGalgorithm,
and estimates the error in a backward way, i.e., k − � iterations back. The adaptive
choice of the delay k−�when using the Gauss quadrature lower bound was discussed
recently in [19].

In the following we will we concentrate on the analysis of the behavior of the basic
Gauss-Radau upper bound

γ
(μ)
k ‖rk‖2 (21)

in dependence of the choice of μ. As already mentioned, we observed in many exam-
ples that in earlier iterations, the bound is approximating the squared A-norm of the
error quite well, but in later iterations it becomes worse, it is delayed and almost
independent of μ. We observed that this phenomenon is related to the convergence
of the smallest Ritz value to the smallest eigenvalue λ1. In particular, the bound is
getting worse if the smallest Ritz value approximates λ1 better than μ. This often
happens during finite precision computations when convergence of CG is delayed
because of rounding errors and there are clusters of Ritz values approximating indi-
vidual eigenvalues of A. Usually, such clusters arise around the largest eigenvalues. At
some iteration, each eigenvalue of A can be approximated by a Ritz value, while the
A-norm of the error still does not reach the required level of accuracy, and the process
will continue and place more and more Ritz values in the clusters. In this situation,
it can happen that λ1 is tightly (that is, to a high relative accuracy) approximated by
a Ritz value while the CG process still continues. Note that if A has well separated
eigenvalues and we run the experiment in exact arithmetic, then λ1 is usually tightly
approximated by a Ritz value only in the last iterations. The above observation is key
for constructing a motivating example, in which we can readily observe the studied
phenomenon also in exact arithmetic, and which will motivate our analysis.

4 Themodel problem and a numerical experiment

In the construction of the motivating example we use results presented in [16, 20–23].
Based on the work by Chris Paige [24], Anne Greenbaum [20] proved that the results
of finite precision CG computations can be interpreted (up to some small inaccuracies)
as the results of the exact CG algorithm applied to a larger system with the system
matrix having many eigenvalues distributed throughout “tiny” intervals around the
eigenvalues of the original matrix. The experiments show that “tiny” means of the
size comparable to u‖A‖, where u is the roundoff unit. This result was used in [21]
to predict the behavior of finite precision CG. Inspired by [20–22] we will construct a
linear system Ax = bwith similar properties as the one suggested byGreenbaum [20].
However, we want to emphasize and visualize some phenomenons concerning the
behavior of the basic Gauss-Radau upper bound (21). Therefore, we choose the size
of the intervals around the original eigenvalues larger than u‖A‖.
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We start with the test problem y = w from [23], where w = m−1/2(1, . . . , 1)T

and  = diag(λ̂1, . . . , λ̂m),

λ̂i = λ̂1 + i − 1

m − 1
(λ̂m − λ̂1)ρ

m−i , i = 2, . . . ,m. (22)

The diagonalmatrix and the vectorw determine the stepwise distribution function
ω(λ) with points of increase λ̂i and the individual jumps (weights) ω j = m−1,

ω(λ) ≡

⎧⎪⎨
⎪⎩

0 for λ < λ̂1 ,∑i
j=1 ω j for λ̂i ≤ λ < λ̂i+1 , 1 ≤ i ≤ m − 1 ,

1 for λ̂m ≤ λ .

(23)

We construct a blurred distribution function ω̃(λ) having clusters of points of
increase around the original eigenvalues λ̂i . We consider each cluster to have the
same radius δ, and let the number ci of points in the i th cluster grow linearly from 1
to p,

ci = round

(
p − 1

m − 1
i + m − p

m − 1

)
, i = 1, . . . ,m.

The blurred eigenvalues
λ̃

(i)
j , j = 1, . . . , ci ,

are uniformly distributed in [λ̂i − δ, λ̂i + δ], with the corresponding weights given by

ω̃
(i)
j = ωi

ci
j = 1, . . . , ci ,

i.e., the weights that correspond to the i th cluster are equal, and their sum isωi . Having
defined the blurred distribution function ω̃(λ) we can construct the corresponding
Jacobimatrix T ∈ R

N×N in a numerically stablewayusing theGragg andHarrod rkpw
algorithm [25]. Note that the mapping from the nodes and weights of the computed
quadrature to the recurrence coefficients is generally well-conditioned [26, p. 59]. To
construct the above-mentioned Jacobi matrix T we used Matlab’s vpa arithmetic with
128 digits. Finally, we define the double precision data A and b that will be used for
experimenting as

A = double(T ), b = e1, (24)

where e1 ∈ R
N is the first column of the identity matrix. We decided to use double

precision input data sincewe can easily compare results of our computations performed
in Matlab’s vpa arithmetic with results obtained using double precision arithmetic for
the same input data.

In our experimentwe choosem = 12, λ̂1 = 10−6, λ̂m = 1,ρ = 0.8, δ = 10−10, and
p = 4, resulting in N = 30.Let us run the “exact”CGQalgorithmof [10] on themodel
problem (24) constructed above, where exact arithmetic is simulated using Matlab’s
variable precision with digits=128. Let λ1 be the exact smallest eigenvalue of A.
We use four different values ofμ for the computation of the Gauss-Radau upper bound
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(21):μ3 = (1−10−3)λ1,μ8 = (1−10−8)λ1,μ16 which denotes the double precision
number closest to λ1 such that μ16 ≤ λ1, and μ50 = (1 − 10−50)λ1 which is almost
like the exact value. Note that γ (μ)

k is updated using (12).
Figure 1 shows the A-norm of the error ‖x − xk−1‖A (solid curve), the upper

bounds for the considered values of μi , i = 3, 8, 16, 50 (dotted solid curves), and the
rightmost bound in (18) (the simple upper bound) for μ50 (dashed curve). The dots
represent the values θ

(k)
1 − λ1, i.e., the distances of the smallest Ritz values θ

(k)
1 to λ1.

The horizontal dotted lines correspond to the values of λ1 − μi , i = 3, 8, 16.
TheGauss-Radau upper bounds in Fig. 1 first overestimate, and then closely approx-

imate‖x−xk−1‖A (starting from iteration 5).However, at somepoint, theGauss-Radau
upper bounds start to differ significantly from‖x−xk−1‖A and representworse approx-
imations, except forμ50.We observe that for a givenμi , i = 3, 8, 16, the upper bounds
are delayed when the distance of θ

(k)
1 to λ1 becomes smaller than the distance of μi

to λ1, i.e., when
θ

(k)
1 − λ1 < λ1 − μi . (25)

If (25) holds, then the smallest Ritz value θ
(k)
1 is a better approximation to λ1

thanμi . This moment is emphasized using vertical dashed lines that connect the value
θ

(k)
1 −λ1 with ‖x−xk−1‖A in the first iteration k such that (25) holds.Moreover, below
a certain level, the upper bounds become almost independent of μi , i = 3, 8, 16, and
visually coincide with the simple upper bound. The closer is μ to λ1, the later this
phenomenon occurs.

Depending on the validity of (25), we distinguish between phase 1 and phase 2 of
convergence. If the inequality (25) does not hold, i.e., if μ is a better approximation
to λ1 than the smallest Ritz value, then we say we are in phase 1. If (25) holds, then
the smallest Ritz value is closer to λ1 than μ and we are in phase 2.

5 10 15 20 25 30

10
-20

10
-15

10
-10

10
-5

10
0

Fig. 1 ‖x − xk−1‖A , upper bounds and the distance of θ
(k)
1 to λ1, digits=128
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Obviously, the beginning of phase 2 depends on the choice of μ and on the conver-
gence of the smallest Ritz value to the smallest eigenvalue. Note that for μ = μ50 we
are always in phase 1 before we stop the iterations.

In the given experiment as well as in many practical problems, the delay of the
upper bounds is not large (just a few iterations), and the bounds can still provide a
useful information for stopping the algorithm. However, we have also encountered
examples where the delay of the Gauss-Radau upper bound was about 200 iterations;
see, e.g., [1, Fig. 10] or [19, Fig. 2] concerning the matrix s3dkt3m2. Hence, we
believe that this phenomenon deserves attention and explanation.

5 Analysis

The upper bounds are computed from the modified tridiagonal matrices (5) discussed
in Section 2.2, that differ only in one coefficient at the position (k+1, k+1). Therefore,
the first step of the analysis is to understand how the choice of μ and the validity of
the condition (25) influences the value of the modified coefficient

α
(μ)
k+1 = μ +

k∑
i=1

η
(μ)
i,k , η

(μ)
i,k =

(
βks

(k)
k,i

)2

θ
(k)
i − μ

; (26)

see (8). We will compare its value to a modified coefficient for which phase 2 does
not occur; see Fig. 1 for μ50.

Based on that understanding we will then address further important questions.
First, our aim is to explain the behavior of the basic Gauss-Radau upper bound (21)
in phase 2, in particular, its closeness to the simple upper bound (18). Second, for
practical reasons, without knowing λ1, we would like to be able to detect phase 2, i.e.,
the first iteration k for which the inequality (25) starts to hold. Finally, we address the
problem of how to improve the accuracy of the basic Gauss-Radau upper bound (21)
in phase 2.

We first analyze the relation between two modified coefficients α
(μ)
k+1 and α

(λ)
k+1

where 0 < μ < λ < θ
(k)
1 .

Lemma 2 Let 0 < μ < λ < θ
(k)
1 . Then

η
(λ)
i,k − η

(μ)
i,k

η
(μ)
i,k

= λ − μ

θ
(k)
i − λ

(27)

and

α
(λ)
k+1 − α

(μ)
k+1 =

(
λ − μ

θ
(k)
1 − μ

)
η

(λ)
1,k + (λ − μ) E (λ,μ)

k (28)
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where

E (λ,μ)
k ≡ 1 +

k∑
i=2

η
(λ)
i,k

θ
(k)
i − μ

(29)

satisfies E (λ,μ)
k = E (μ,λ)

k .

Proof From the definition of η
(μ)
i,k and η

(λ)
i,k , it follows immediately

η
(λ)
i,k

θ
(k)
i − μ

= η
(μ)
i,k

θ
(k)
i − λ

,

which implies E (λ,μ)
k = E (μ,λ)

k and (27).

Note that 0 < η
(μ)
i,k < η

(λ)
i,k . Using (27), the difference of the coefficients α’s is

α
(λ)
k+1 − α

(μ)
k+1 = (λ − μ) +

k∑
i=1

(
η

(λ)
i,k − η

(μ)
i,k

)

= (λ − μ) + (λ − μ)

k∑
i=1

η
(μ)
i,k

θ
(k)
i − λ

= (λ − μ)
η

(λ)
1,k

θ
(k)
1 − μ

+ (λ − μ)

(
1 +

k∑
i=2

η
(μ)
i,k

θ
(k)
i − λ

)

which implies (28). �	

5.1 Assumptions

Let us describe in more detail the situation we are interested in. In the analysis that
follows we will assume implicitly the following.

1. λ1 is well separated from λ2 so that we can use the gap theorem mentioned in
Section 2.1, in particular relation (3) bounding η

(λ1)
1,k .

2. μ is a tight underestimate to λ1 such that

λ1 − μ  λ2 − λ1. (30)

3. The smallest Ritz value θ
(k)
1 converges to λ1 with increasing k so that there is an

iteration index k from which

θ
(k)
1 − λ1  λ1 − μ.

Let us briefly comment on these assumptions. The assumption that λ1 is well sep-
arated from λ2 is used later to prove that η

(λ1)
1,k is bounded away from zero; see (33).
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If there is a cluster of eigenvalues around λ1, one can still observe the discussed phe-
nomenon of loss of accuracy of the upper bound, but a theoretical analysis would be
much more complicated. Note that the first assumption is also often satisfied for a
system matrix Â that models finite precision CG behavior, if the original matrix A
has well separated eigenvalues λ1 and λ2. Using results of Greenbaum [20] we know
that Â can have many eigenvalues distributed throughout tiny intervals around the
eigenvalues of A. We have constructed the model matrix Â in many numerical exper-
iments, using the procedure suggested in [20]. We found out that the constructed Â
has usually clusters of eigenvalues around the larger eigenvalues of A while a smaller
eigenvalue of A is usually approximated by just one eigenvalue of Â. Therefore, the
analysis presented below can then be applied to the matrix Â that models the finite
precision CG behavior.

If μ is not a tight underestimate, then the Gauss-Radau upper bound is usually not
a very good approximation of the A-norm of the error. Then the condition (25) can
hold from the beginning and phase 1 need not happen.

Finally, in theory, the smallest Ritz value need not converge to λ1 until the last
iteration [27]. But, in that case, there won’t be any problem for the Gauss-Radau
upper bound. However, in practical computations, we very often observe the conver-
gence of θ

(k)
1 to λ1. In particular, in cases of matrices Â with clustered eigenvalues

that model finite precision behavior of CG, θ
(k)
1 approximates λ1 to a high relative

accuracy usually earlier before the A-norm of the error reaches the ultimate level of
accuracy.

5.2 Themodified coefficient˛(�)

k+1

Below we would like to compare α
(λ1)
k+1 for which phase 2 does not occur with α

(μ)
k+1for

which phase 2 occurs; see Fig. 1. Using (27) and (30), we are able to compare the
individual η-terms. In particular, for i > 1 we get

η
(λ1)
i,k − η

(μ)
i,k

η
(μ)
i,k

= λ1 − μ

θ
(k)
i − λ1

<
λ1 − μ

λ2 − λ1
 1,

where we have used θ
(k)
i > λ2 for i > 1. Therefore,

η
(λ1)
i,k ≈ η

(μ)
i,k for i > 1.

Hence, α(μ)
k+1 can significantly differ from α

(λ1)
k+1 only in the first term of the sum in

(26) for which
η

(λ1)
1,k − η

(μ)
1,k

η
(μ)
1,k

= λ1 − μ

θ
(k)
1 − λ1

. (31)
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If θ
(k)
1 is a better approximation to λ1 than μ in the sense of (25), then (31) shows

that η(λ1)
1,k can bemuch larger than η

(μ)
1,k . As a consequence, α

(λ1)
k+1 can differ significantly

from α
(μ)
k+1. On the other hand, if μ is chosen such that

λ1 − μ  θ
(k)
1 − λ1,

for all k we are interested in, then phase 2 will not occur, and

α
(λ1)
k+1 − α

(μ)
k+1 = (λ1 − μ) +

k∑
i=1

(
η

(λ1)
i,k − η

(μ)
i,k

)
≈ 0 ,

since μ is assumed to be a tight approximation to λ1 and η
(λ1)
i,k ≈ η

(μ)
i,k for all i .

In the following we discuss phase 1 and phase 2 in more detail.
In phase 1,

λ1 − μ < θ
(k)
1 − λ1,

and, therefore, all components η
(μ)
i,k (including η

(μ)
1,k ) are not sensitive to small changes

of μ; see (27). In other words, the coefficients α
(μ)
k+1 are approximately the same for

various choices of μ.
Let us denote

hk = λ1 − μ

θ
(k)
1 − λ1

< 1.

In fact, we can write θ
(k)
1 − μ = θ

(k)
1 − λ1 + λ1 − μ and use the Taylor expansion

of 1/(1 + hk). It yields

1

θ
(k)
1 − μ

= 1

θ
(k)
1 − λ1

(
1

hk + 1

)
= 1

θ
(k)
1 − λ1

[
1 − hk + h2k − h3k + · · ·

]
.

Obviously, hk is an increasing function of the iteration number k; the numerator is
constant while the denominator is decreasing in absolute value. The size of hk depends
also on how well μ approximates λ1. If μ is a tight approximation to λ1, then, at the
beginning of the CG iterations, the denominator of hk can be large compared to the
numerator, hk is small and the right-hand side of 1/(θ(k)

1 − μ) is almost given by

1/(θ(k)
1 −λ1), independent of μ. We observed that the first term of the sum of the η

(μ)
i,k

is then usually the largest one.
Let us now discuss phase 2. First recall that for any 0 < μ < λ1 it holds that

α
(μ)
k+1 < α

(λ1)
k+1 and η

(μ)
1,k < η

(λ1)
1,k . (32)
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As before, suppose that λ1 is well separated from λ2 and that (30) holds. Phase 2
begins when θ

(k)
1 is a better approximation to λ1 than μ, i.e., when (25) holds. Since

θ
(k)
1 is a tight approximation to λ1 in phase 2, (3) and (25) imply that

η
(λ1)
1,k ≥ λ2 − θ

(k)
1 = λ2 − λ1 + λ1 − θ

(k)
1 > (λ2 − λ1) − (λ1 − μ). (33)

Therefore, using (30), η(λ1)
1,k is bounded away from zero. On the other hand, (3) also

implies that

η
(μ)
1,k = θ

(k)
1 − λ1

θ
(k)
1 − μ

η
(λ1)
1,k ≤ θ

(k)
1 − λ1

θ
(k)
1 − μ

(λn − λ1)

and as θ
(k)
1 converges to λ1, η

(μ)
1,k goes to zero. Therefore,

α
(μ)
k+1 ≈ μ +

k∑
i=2

η
(μ)
i,k ,

and the sum on the right-hand side is almost independent of μ. Note that having two
values 0 < μ < λ < λ1 such that

θ
(k)
1 − λ1 < λ1 − λ and λ − μ  λ2 − λ1, (34)

then one can expect that
α

(μ)
k+1 ≈ α

(λ)
k+1 (35)

because η
(μ)
1,k and η

(λ)
1,k converge to zero and η

(μ)
i,k ≈ η

(λ)
i,k for i > 1 due to

η
(λ)
i,k − η

(μ)
i,k

η
(μ)
i,k

= λ − μ

θ
(k)
i − λ

<
λ − μ

λ2 − λ1
 1,

where we have used (27) and the assumption (34). Therefore, α(μ)
k+1 is relatively insen-

sitive to small changes of μ and the same is true for the upper bound (21).

5.3 The coefficient˛k+1

The coefficient αk+1 can also be written as

αk+1 = α
(μ)
k+1 for μ = θ

(k+1)
1 ,
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and the results of Lemmas 1 and 2 are still valid, even though, in practice, μ must be
smaller than λ1. Using (28) we can express the differences between the coefficients,
it holds that

αk+1 − α
(λ1)
k+1 = η

(λ1)
1,k

θ
(k+1)
1 − λ1

θ
(k)
1 − θ

(k+1)
1

+
(
θ

(k+1)
1 − λ1

)
E

(θ
(k+1)
1 ,λ1)

k . (36)

If the smallest Ritz value θ
(k+1)
1 is close to λ1, then the second term of the right-hand

side in (36) will be negligible in comparison to the first one, since

E
(θ

(k+1)
1 ,λ1)

k = O(1),

see (29), and since η
(λ1)
1,k is bounded away from zero; see (33). Therefore, one can

expect that

αk+1 − α
(λ1)
k+1 ≈ η

(λ1)
1,k

θ
(k+1)
1 − λ1

θ
(k)
1 − θ

(k+1)
1

. (37)

The size of the term on the right-hand side is related to the speed of convergence
of the smallest Ritz value θ

(k)
1 to λ1. Denoting

θ
(k+1)
1 − λ1

θ
(k)
1 − λ1

= ρk < 1,

we obtain

θ
(k+1)
1 − λ1

θ
(k)
1 − θ

(k+1)
1

=
θ

(k+1)
1 −λ1

θ
(k)
1 −λ1

1 − θ
(k+1)
1 −λ1

θ
(k)
1 −λ1

= ρk

1 − ρk
.

For example, if the convergence of θ
(k)
1 to λ1 is superlinear, i.e., if ρk → 0, then

αk+1 and α
(λ1)
k+1 are close.

5.4 Numerical experiments

Let us demonstrate numerically the theoretical results described in previous sections
using our model problem. To compute the following results, we, again, use Matlab’s
vpa arithmetic with 128 decimal digits.

We first consider μ = μ3 = (1− 10−3)λ1 for which we have λ1 − μ = 10−9. The
switch from phase 1 to phase 2 occurs at iteration 13. Figure 2 displays the first term
η

(μ)
1,k and the maximum term η

(μ)
i,k as well as the sum ζ

(μ)
k defined by (9), see Lemma 1,

as a function of the iteration number k. In phase 1 the first term η
(μ)
1,k is the largest one.

As predicted, after the start of phase 2, the first term is decreasing quite fast.
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10
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10
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10
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phase 1 phase 2

Fig. 2 First term η
(μ)
1,k , maximum term η

(μ)
i,k , and the sum ζ

(μ)
k for μ = μ3

Let us now use μ = μ8 = (1 − 10−8)λ1 for which we have λ1 − μ = 10−14. The
switch from phase 1 to phase 2 occurs at iteration 15; see Fig. 3. The conclusions are
the same as for μ3.

The behavior of the first term is completely different for μ = (1− 10−50)λ1 which
almost corresponds to using the exact smallest eigenvalue λ1.

The maximum term of the sum is then almost always the first one; see Fig. 4.
Remember that, for this value of μ, we are always in phase 1.

Finally, in Fig. 5 we present a comparison of the sums ζ
(μ)
k for μ3, μ8, and μ50.

We observe that from the beginning up to iteration 12, all sums visually coincide.
Starting from iteration 13 we enter phase 2 for μ = μ3 and the sum ζ

(μ3)
k starts to

differ significantly from the other sums, in particular from the “reference” term ζ
(μ50)
k .

Similarly, for k = 15 we enter phase 2 for μ = μ8 and ζ
(μ8)
k and ζ

(μ50)
k start to differ.

We can also observe that ζ (μ3)
k and ζ

(μ8)
k significantly differ only in iterations 13, 14,

5 10 15 20 25 30

10
-6

10
-4

10
-2

10
0

phase 1 phase 2

Fig. 3 First term η
(μ)
1,k , maximum term η

(μ)
i,k , and the sum ζ

(μ)
k for μ = μ8
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-2
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phase 1

Fig. 4 First term η
(μ)
1,k , maximum term η

(μ)
i,k , and the sum ζ

(μ)
k for μ = μ50

and 15, i.e., when we are in phase 2 for μ = μ3 but in phase 1 for μ = μ8. In all other
iterations, ζ (μ3)

k and ζ
(μ8)
k visually coincide.

In Fig. 6 we plot the coefficients α
(μ3)
k , α(μ8)

k , α(λ1)
k and αk , so that we can compare

the observed behavior with the predicted one. Phase 2 starts for μ3 at iteration 13, and
for μ8 at iteration 15; see also Fig. 1. For k ≤ 13 we observe that

α
(μ3)
k ≈ α

(μ8)
k ≈ α

(λ1)
k

as explained in Section 5.2 and αk is larger. For k ≥ 16, the first terms η
(μ3)
1,k−1 and

η
(μ8)
1,k−1 are close to zero, and, as explained in Section 5.2,

α
(μ3)
k ≈ α

(μ8)
k .

5 10 15 20 25 30

10
-6

10
-4

10
-2

10
0

Fig. 5 Comparison of the sums ζ
(μ3)
k , ζ (μ8)

k , and ζ
(μ50)
k
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Fig. 6 α
(μ3)
k , α(μ8)

k , α(λ1)
k , and αk

For k = 14 and k = 15, α
(μ3)
k and α

(μ8)
k can differ significantly because α

(μ3)
k is

already in phase 2 while α
(μ8)
k is still in phase 1.

We can also observe that αk can be very close to α
(λ1)
k when the smallest Ritz value

θ
(k)
1 is a tight approximation to λ1, i.e., in later iterations. We know that the closeness

of αk to α
(λ1)
k depends on the speed of convergence of the smallest Ritz value to λ1;

see (37) and the corresponding discussion.

6 The Gauss-Radau bound in phase 2

Our aim in this section is to investigate the relation between the basic Gauss-Radau
upper bound (21) and the simple upper bound; see (18). Recall the notation

φk = ‖rk‖2
‖pk‖2

;

see (19). In particular, we would like to explain why the two bounds almost coincide
in phase 2. Note that using (13) we obtain

α
(μ)
k+1 =

(
γ

(μ)
k

)−1 + δk

γk−1
(38)

and from (8) it follows

α
(μ)
k+1 = μ + β2

k e
T
k (Tk − μI )−1 ek, β2

k = 1

γk−1

δk

γk−1
.
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Therefore,

(
γ

(μ)
k

)−1 = μ + β2
k

(
eTk (Tk − μI )−1 ek − γk−1

)
. (39)

In the following lemma we give another expression for eTk (Tk − μI )−1 ek .

Lemma 3 Let 0 < μ < θ
(k)
1 . Then it holds that

eTk (Tk − μI )−1 ek = γk−1 + μ
γ 2
k−1

φk−1
+

k∑
i=1

(
μ

θ
(k)
i

)2
(
s(k)
k,i

)2

θ
(k)
i − μ

. (40)

Proof Since
∥∥∥μT−1

k

∥∥∥ < 1, we obtain using a Neumann series

(Tk − μI )−1 =
(
I − μT−1

k

)−1
T−1
k =

⎛
⎝

∞∑
j=0

μ j T− j
k

⎞
⎠ T−1

k

so that

eTk (Tk − μI )−1 ek = eTk T
−1
k ek + μeTk T

−2
k ek +

∞∑
j=2

μ j eTk T
−( j+1)
k ek .

We now express the terms on the right-hand side using the CG coefficients and
the quantities from the spectral factorization of Tk . Using Tk = LkDkLT

k we obtain
eTk T

−1
k ek = γk−1. After some algebraic manipulation, see, e.g., [28, p. 1369] we get

T−1
k ek = γk−1‖rk−1‖

⎡
⎢⎢⎣

(−1)k−1

‖r0‖
...
1

‖rk−1‖

⎤
⎥⎥⎦

so that

eTk T
−2
k ek = eTk T

−1
k T−1

k ek = γ 2
k−1

k−1∑
i=0

‖rk−1‖2
‖ri‖2 = γ 2

k−1
‖pk−1‖2
‖rk−1‖2 = γ 2

k−1

φk−1
.

Finally,

eTk

⎛
⎝

∞∑
j=2

μ j T−( j+1)
k

⎞
⎠ ek = eTk Sk

⎛
⎝

∞∑
j=2

μ j�
−( j+1)
k

⎞
⎠ STk ek
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where the diagonal entries of the diagonal matrix

∞∑
j=2

μ j�
−( j+1)
k

have the form

1

θ
(k)
i

(
μ

θ
(k)
i

)2 ∞∑
j=0

(
μ

θ
(k)
i

) j

= 1

θ
(k)
i

(
μ

θ
(k)
i

)2
1

1 − μ

θ
(k)
i

=
(

μ

θ
(k)
i

)2
1

θ
(k)
i − μ

.

Hence,

eTk

⎛
⎝

∞∑
j=2

μ j T−( j+1)
k

⎞
⎠ ek =

k∑
i=1

(
μ

θ
(k)
i

)2
(
s(k)
k,i

)2

θ
(k)
i − μ

.

�	
Based on the previous lemma we can now express the coefficient γ (μ)

k .

Theorem 1 Let 0 < μ < θ
(k)
1 . Then it holds that

(
γ

(μ)
k

)−1 = μ

φk
+

k∑
i=1

(
μ

θ
(k)
i

)2

η
(μ)
i,k . (41)

Proof We start with (39). Using the previous lemma

(
γ

(μ)
k

)−1 = μ + μβ2
k γ

2
k−1φ

−1
k−1 + β2

k e
T
k

⎛
⎝

∞∑
j=2

μ j T−( j+1)
k

⎞
⎠ ek

= μ
(
1 + δkφ

−1
k−1

)
+ β2

k

k∑
i=1

(
μ

θ
(k)
i

)2
(
s(k)
k,i

)2

θ
(k)
i − μ

= μφ−1
k +

k∑
i=1

(
μ

θ
(k)
i

)2
(
βks

(k)
k,i

)2

θ
(k)
i − μ

,

where we have used relation (19). �	
Obviously, using (41), the basic Gauss-Radau upper bound (21) and the simple

upper bound in (18) are close to each other if and only if

k∑
i=1

(
μ

θ
(k)
i

)2

η
(μ)
i,k  μ

φk
, (42)
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which can also be written as

(
μ

θ
(k)
1

)2
η

(μ)
1,k

μ
+

k∑
i=2

(
βks

(k)
k,i

θ
(k)
i

)2
μ

θ
(k)
i − μ

 φ−1
k . (43)

Under the assumptions formulated in Section 5.1, in particular that λ1 is well
separated from λ2, and that μ is a tight underestimate to λ1 in the sense of (30), the
sum of terms on the left-hand side of (43) can be replaced by its tight upper bound

(
λ1

θ
(k)
1

)2
η

(μ)
1,k

μ
+

k∑
i=2

(
βks

(k)
k,i

θ
(k)
i

)2
λ1

θ
(k)
i − λ1

(44)

which simplifies the explanation of the dependence of the sum in (43) on μ.
The second term in (44) is independent of μ and its size depends only on the

behavior of the underlying Lanczos process. Here

(
βks

(k)
k,i

θ
(k)
i

)2

=
∥∥∥A

(
Vks

(k)
:,i
)

− θ
(k)
i

(
Vks

(k)
:,i
)∥∥∥2

(
θ

(k)
i

)2 (45)

can be seen as the relative accuracy to which the i th Ritz value approximates an
eigenvalue, and the size of the term

λ1

θ
(k)
i − λ1

, i ≥ 2, (46)

depends on the position of θ
(k)
i relatively to the smallest eigenvalue. In particular,

one can expect that the term (46) can be of size O(1) if θ
(k)
i approximates smallest

eigenvalues, and it is small if θ
(k)
i approximates largest eigenvalues.

Using the previous simplifications and assuming phase 2, the basic Gauss-Radau
upper bound (21) and the rightmost upper bound in (18) are close to each other if and
only if

η
(μ)
1,k

μ
+

k∑
i=2

(
βks

(k)
k,i

θ
(k)
i

)2
λ1

θ
(k)
i − λ1

 φ−1
k . (47)

From Section 5.2 we know that η(μ)
1,k goes to zero in phase 2. Hence, if

η
(μ)
1,k < μ, (48)
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which will happen for k sufficiently large, then the first term in (47) is smaller than
the term on the right-hand side.

As already mentioned, the sum of positive terms in (47) depends only on approx-
imation properties of the underlying Lanczos process, that are not easy to predict in
general. Inspired by our model problem described in Section 4, we can just give an
intuitive explanation why the sum could be small in phase 2.

Phase 2 occurs in later CG iterations and it is related to the convergence of
the smallest Ritz value to the smallest eigenvalue. If the smallest eigenvalue is
well approximated by the smallest Ritz value (to a high relative accuracy), then
one can expect that many eigenvalues of A are relatively well approximated by
Ritz values. If the eigenvalue λ j of A is well separated from the other eigenval-
ues and if it is well approximated by a Ritz value, then the corresponding term
(45) measuring the relative accuracy to which λ j is approximated, is going to be
small.

In particular, in our model problem, the smallest eigenvalues are well separated
from each other, and in phase 2 they are well approximated by Ritz values. There-
fore, the corresponding terms (45) are small. Hence, the Ritz values that did not
converge yet in phase 2, are going to approximate eigenvalues in clusters which
do not correspond to smallest eigenvalues, i.e., for which the terms (46) are small;
see also Figs. 3 and 2. In our model problem, the sum of positive terms in (47) is
small in phase 2 because either (45) or (46) are small. Therefore, one can expect
that the validity of (47) will mainly depend on the size of the first term in (47); see
Fig. 7.

The size of the sum of positive terms in (47) obviously depends on the clustering
and the distribution of the eigenvalues, and we cannot guarantee in general that it will
be small in phase 2. For example, it need not be small if the smallest eigenvalues of
A are clustered.
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Fig. 7 The first and second term in (44), left-hand side of (43), and φ−1
k
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7 Detection of phase 2

For our model problem it is not hard to detect phase 2 from the coefficients that are
available during the computations. We first observe, see Fig. 7, that the coefficients

γ
(μ)
k and

φk

μ
, (49)

and the corresponding bounds (21) and (18) visually coincide from the beginning up
to some iteration �1. From iteration �1 + 1, the Gauss-Radau upper bound (21) starts
to be a much better approximation to the squared A-norm of the error than the simple
upper bound (18). When phase 2 occurs, the Gauss-Radau upper bound (21) loses
its accuracy and, starting from iteration �2 (approximately when (48) holds), it will
again visually coincide with the simple upper bound (18). We observe that phase 2
occurs at some iteration k where the two coefficients (49) significantly differ, i.e., for
�1 < k < �2. To measure the agreement between the coefficients (49), we can use the
easily computable relative distance

φk
μ

− γ
(μ)
k

γ
(μ)
k

= φk

⎡
⎣
(

μ

θ
(k)
1

)2
η

(μ)
1,k

μ
+

k∑
i=2

(
βks

(k)
k,i

θ
(k)
i

)2
μ

θ
(k)
i − μ

⎤
⎦ . (50)

We will consider this relative distance to be small, if it is smaller than 0.5.
The behavior of the term in (50) for various values of μ is shown in Fig. 8. The

index �1 = 12 is the same for all considered values of μ. For μ3 we get �2 = 15 (red
circle), for μ8 we get �2 = 18 (magenta circle), for μ16 �2 = 25 (blue circle), and
finally, for μ50 there is no index �2.

As explained in theprevious section, inmore complicated caseswecannot guarantee
in general a similar behavior of the relative distance (50) as in our model problem.
For example, in many practical problems we sometimes observe a staircase behavior
of the A-norm of the error, when few iterations of stagnation are followed by few
iterations of rapid convergence. In such cases, the quantity (50) can oscillate several
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Fig. 8 The behavior of the relative distance in (50) for various values of μ
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times and it can be impossible to use it for detecting phase 2. Therefore, in general,
we are not able to detect the beginning of phase 2 using (50) reliably. Nevertheless, in
particular cases, the formulas (41) and (50) can be helpful.

8 Upper bounds with a guaranteed accuracy

In some applications it might be of interest to obtain upper bounds on the A-norm
of the error that are sufficiently accurate. From the previous sections we know that
the basic Gauss-Radau upper bound at iteration k can be delayed, and, therefore, it
can overestimate the quantity of interest significantly. Nevertheless, going back in
the convergence history, we can easily find an iteration index � ≤ k such that for all
0 ≤ i ≤ �, the sufficiently accurate upper bound can be found. To find such �, we will
use the ideas described in [12] and [19].

For integers k ≥ j ≥ � ≥ 0, let us denote

� j = γ j
∥∥r j
∥∥2 , ��:k =

k∑
j=�

� j , and � j : j−1 = 0.

Denoting ε j ≡ ‖x − x j‖2A, the relation (20) takes the form

ε� = ��:k−1 + εk, (51)

A more accurate bound at iteration � is obtained such that the last term in (51)
is replaced by the basic lower or upper bounds on εk . In particular, the improved
Gauss-Radau upper bound at iteration � can be defined as

�
(μ)
�:k = ��:k−1 + γ

(μ)
k ‖rk‖2 , (52)

and the improved Gauss lower bound is given by ��:k .
To guarantee the relative accuracy of the improved Gauss-Radau upper bound, we

would like to find the largest iteration index � ≤ k in the convergence history such
that

�
(μ)
�:k − ε�

ε�

≤ τ (53)

where τ is a prescribed tolerance, say, τ = 0.25. Since

�
(μ)
�:k − ε�

ε�

<
�

(μ)
�:k − ��:k

��:k
=

‖rk‖2
(
γ

(μ)
k − γk

)

��:k
,

we can require � ≤ k to be the largest integer such that

‖rk‖2
(
γ

(μ)
k − γk

)

��:k
≤ τ. (54)
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If (54) holds, then also (53) holds. The just described adaptive strategy for obtaining
� giving a sufficiently accurate upper bound is summarized in Algorithm 3.

Algorithm 3 CG with the improved Gauss-Radau upper bound.
input A, b, x0, μ, τ
r0 = b − Ax0, p0 = r0
� = 0, γ (μ)

0 = 1
μ

for k = 0, . . . , do
cgiter(k)
while k ≥ � and (54) do

accept �(μ)
�:k

� = � + 1
end while

γ
(μ)
k+1 = γ

(μ)
k −γk

μ(γ
(μ)
k −γk )+δk+1

end for

Note that
�

(μ)
�:k − ε�

ε�

+ ε� − ��:k
ε�

<
�

(μ)
�:k − ��:k

��:k
,

i.e., if (54) holds, then τ represents also an upper bound on the sum of relative errors of
the improved lower and upper bounds. In other words, if � is such that (54) is satisfied,
then both the improved Gauss-Radau upper bound as well as the improved Gauss
lower bound are sufficiently accurate. For a heuristic strategy focused on improving
the accuracy of the Gauss lower bound, see [19].

In the previous sections we have seen that the basic Gauss-Radau upper bound is
delayed, in particular in phase 2. The delay of the basic Gauss-Radau upper bound
can be defined as the smallest nonnegative integer j such that

γ
(μ)
�+ j+1

∥∥r�+ j+1
∥∥2 < ε�. (55)

Having sufficiently accurate lower and upper bounds (e.g., if (54) is satisfied), we
can approximately determine the delay of the basic Gauss-Radau upper bound as the
smallest j satisfying (55) where ε� in (55) is replaced by its tight lower bound ��:k .

9 Conclusions

In this paper we discussed and analyzed the behavior of the Gauss-Radau upper bound
on the A-norm of the error in CG. In particular, we concentrated on the phenomenon
observed during computations showing that, in later CG iterations, the upper bound
loses its accuracy, it is almost independent of μ, and visually coincides with the
simple upper bound. We explained that this phenomenon is closely related to the
convergence of the smallest Ritz value to the smallest eigenvalue of A. It occurs
when the smallest Ritz value is a better approximation to the smallest eigenvalue
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than the prescribed underestimate μ. We developed formulas that can be helpful in
understanding this behavior. Note that the loss of accuracy of the Gauss-Radau upper
bound is not directly linked to rounding errors in computations of the bound, but
it is related to the finite precision behavior of the underlying Lanczos process. In
more detail, the phenomenon can occur when solving linear systems with clustered
eigenvalues. However, the results of finite precision CG computations can be seen
(up to some small inaccuracies) as the results of the exact CG algorithm applied to a
larger systemwith the systemmatrix having clustered eigenvalues. Therefore, one can
expect that the discussed phenomenon can occur in practical computations not only
when A has clustered eigenvalues, but also whenever orthogonality is lost in the CG
algorithm.
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