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Abstract

The conjugate gradient method is the default iterative method for the solu-
tion of linear systems of equations with a large symmetric positive definite
matrix A. The development of techniques for estimating the norm of the er-
ror in iterates computed by this method has received considerable attention.
Available methods for bracketing the A-norm of the error evaluate pairs of
Gauss and Gauss-Radau quadrature rules to determine lower and upper
bounds. The latter rules require a user to allocate a node (the Radau node)
between the origin and the smallest eigenvalue of the system matrix. The
determination of such a node generally demands further computations to es-
timate the location of the smallest eigenvalue; see, e.g., [14, 15, 16, 20, 21].
An approach that avoids the need for a lower bound of the smallest eigen-
value is to replace the Gauss-Radau quadrature rule by an anti-Gauss rule
such as in [4]. However, this approach may sometimes yield inaccurate error
norm estimates. This paper proposes the use of pairs of Gauss and asso-
ciated optimal averaged Gauss quadrature rules to estimate the A-norm of
the error in iterates determined by the conjugate gradient method.
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1. Introduction

Linear systems of equations

Ax = b (1)

with a large symmetric positive definite matrix A ∈ Rn×n and right-hand
side vector b ∈ Rn are often solved by the conjugate gradient (CG) iterative
method. It is desirable to be able to estimate the norm of the error in iterates
computed by the CG method so that the computations can be terminated
as soon as an iterate that approximates the solution of (1) with required
accuracy has been determined.

Let x∗ ∈ Rn denote the solution of (1) and let x` ∈ Rn stand for the `th
iterate determined by the CG method when applied to the solution of this
system. In many applications, e.g., in physics and structural engineering,
since A is symmetric positive definite, it is meaningful to measure the error
ẽ` = x∗ − x` with the A-norm,

‖ẽ`‖A =
√
ẽT` Aẽ`, (2)

where the superscript T denotes transposition. The A-norm is often referred
to as the energy norm.

The development of techniques for determining bounds or estimates of
the A-norm of the error (2) has received considerable attention in the liter-
ature; see, e.g., [14, 15, 16, 20, 21, 23, 24, 34]. The CG method is closely re-
lated to Gauss-type quadrature rules, and one approach to calculate bounds
for (2) evaluates pairs of Gauss and Gauss-Radau quadrature rules. To
obtain an upper bound, the latter rule requires the user to specify a node
(the Radau node) between the origin and the smallest eigenvalue of A. In
many applications the allocation of this node is not straightforward, be-
cause further computations typically are required to determine a positive
lower bound for the smallest eigenvalue of A, though there are exceptions;
see, e.g., [13, 18, 27] for preconditioned linear systems of equations that arise
from the discretization of certain boundary value problems for some partial
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differential equations for which a lower bound for the smallest eigenvalue of
A can be determined quite inexpensively.

To improve the accuracy of the Gauss lower bound, Golub and Strakoš
[16] as well as Golub and Meurant [14, 15, 20] used a Gauss rule of higher
degree of precision. Specifically, they introduce a “delay” of d conjugate
gradient steps when computing an estimate of ‖ẽ`‖A, i.e., they estimate
‖ẽ`‖A when `+ d steps of the CG method have been carried out. This adds
an expense of d matrix-vector product evaluations that are not required
to satisfy a specified error-tolerance for the A-norm. How expensive these
d matrix-vector product evaluations are depends on the size of the matrix
A, on how the matrix is stored, and on how the matrix-vector product
is computed. It could be quite expensive; see [10, Example 1.1] for an
illustration. Typical values of the delay d are d = 5, d = 10, or larger; see
[14, 16, 20]. Large delays may sometimes be required. A heuristic algorithm
for an adaptive choice of the delay during the CG iterations to obtain a
required accuracy is proposed in [22]; see also [25].

The difficulties with the approaches mentioned above to estimate the
error norm in the CG method lead Calvetti et al. [4] to propose to compute
estimates of lower and upper bounds for the A-norm by evaluating pairs of
Gauss and associated anti-Gauss quadrature rules. The latter rules, which
were introduced by Laurie [19], do not require a user to specify a node
between the origin and the smallest eigenvalue of A. A sufficient condition
for pairs of Gauss and associated anti-Gauss rules to bracket the A-norm of
the error is that the smallest eigenvalue of A is far away enough from the
origin. This follows from the discussion at the end of [5, Section 2]. However,
it is difficult to verify whether this condition holds for a given linear system
(1), and it is quite easy to find linear systems for which the anti-Gauss rules
yield error estimates of poor quality; see Example 4.3 in Section 4 for an
illustration.

Laurie [19] also defined averaged Gauss quadrature rules, which are the
average of a Gauss rule and an associated anti-Gauss rule. The difference
between the Gauss rule and an associated averaged Gauss rule can be used
to estimate the A-norm of the error. Subsequently, Spalević [33] introduced
optimal averaged Gauss quadrature rules that are of higher degree of preci-
sion than the averaged Gauss rules by Laurie [19] with the same number of
nodes. In this paper, we propose the use of pairs of Gauss and associated
averaged or optimal averaged Gauss quadrature rules, or pairs of Gauss and
shifted averaged or optimal averaged Gauss rules, to estimate the A-norm.
The shift is analogous to the delay mentioned above. These quadrature rules
do not require a user to explicitly allocate a node between the origin and
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the smallest eigenvalue of A. Moreover, the shifted averaged and optimal
averaged Gauss quadrature rules give error estimates of higher quality than
using a delay of the same size as the shift for the Gauss rule. Our imple-
mentation of these rules uses an elegant approach described by Meurant and
Tichý [23] for computing quadrature rules from the recurrence coefficients
of the CG method.

This paper is organized as follows. Section 2 reviews properties of Gauss,
averaged Gauss, and optimal averaged Gauss quadrature rules. The appli-
cation of these rules to the estimation of the A-norm of the error in iterates
computed by the CG method when applied to the solution of (1) is discussed
in Section 3, where also implementations of these quadrature rules are de-
scribed. Section 4 presents a few computed examples. This paper illustrates
the performance of the computed error estimates for a few fixed values of d,
i.e., d is the same for all iterations. The methods can be extended to allow
d to depend on the iteration number `, similarly as described in [22, 25] at
the expense of a more complicated algorithm. Concluding remarks can be
found in Section 5.

We conclude this section by noting that techniques based on extrapola-
tion also can be applied to estimate the norm of the error in approximate
solutions determined by iterative methods; see, e.g., Brezinski et al. [2, 3],
Mitrouli and Roupa [26], and [28] for illustrations. A careful comparison of
quadrature methods and extrapolation methods is a topic for forthcoming
work.

2. Gauss, averaged Gauss, and optimal averaged Gauss quadra-
ture rules

Let dω denote a non-negative real-valued measure with infinitely many
points of support on the positive real axis such that all moments µk =∫
tkdω(t), k = 0, 1, 2, . . ., exist. We assume for notational simplicity in this

section that µ0 = 1. Let the function f be continuous on the convex hull
of the support of the measure and consider the approximation of Riemann-
Stieltjes integrals of the form

I(f) =

∫
f(t) dω(t) (3)

by an `-node Gauss quadrature rule

G`(f) =
∑̀
k=1

f(t
(`)
k )w

(`)
k . (4)
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It is well known that the nodes t
(`)
k are real and distinct, and that the

weights w
(`)
k are positive. The Gauss rule has degree of precision 2`− 1, i.e.,

it satisfies
G`(f) = I(f), ∀ f ∈ P2`−1,

where P2`−1 denotes the set of all polynomials of degree at most 2`− 1; see,
e.g., Gautschi [12] for a proof.

The Gauss rule (4) can be associated with a symmetric tridiagonal matrix

T` =


α1 β1 0
β1 α2 β2

. . .
. . .

. . .

β`−2 α`−1 β`−1

0 β`−1 α`

 ∈ R`×` (5)

with non-trivial entries αk ∈ R and βk > 0. The αk and β2
k are coefficients

in the three-term recursion formula for the sequence of monic orthogonal
polynomials {pk}∞k=0 (with deg(pk) = k) corresponding to the inner product

(g, h) =

∫
g(t)h(t) dω(t).

Thus,
pk+1(t) = (t− αk+1)pk(t)− β2

k pk−1(t), k = 0, 1, . . . ,

where p−1(t) ≡ 0, p0(t) ≡ 1, and

αk+1 =
(tpk, pk)

(pk, pk)
, β2

k =
(pk, pk)

(pk−1, pk−1)
;

see [12]. The eigenvalues of T` are the nodes t
(`)
k and the squared first

components of normalized eigenvectors are the weights w
(`)
k of the Gauss

rule (4); see [12, 15]. Using the spectral factorization of T`, it is easy to see
that the Gauss rule (4) can be expressed as

G`(f) = eT1 f(T`)e1; (6)

throughout this paper ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth column of
an identity matrix of appropriate order.

Laurie [19] introduced the (` + 1)-node anti-Gauss rule Ğ`+1 associated
with the Gauss rule (4). It is characterized by the property

(I − Ğ`+1)(f) = −(I − G`)(f), ∀ f ∈ P2`+1. (7)
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The rule Ğ`+1 is related to the symmetric tridiagonal matrix

T̆`+1 =



α1 β1 0
β1 α2 β2

. . .
. . .

. . .

β`−2 α`−1 β`−1

β`−1 α`
√

2β`
0

√
2β` α`+1


∈ R(`+1)×(`+1). (8)

Analogously to (6), we have

Ğ`+1(f) = eT1 f(T̆`+1)e1. (9)

Moreover,
Ğ`(f) = I(f), ∀ f ∈ P2`−1.

Anti-Gauss rules have recently been analyzed by Dı́az de Alba et al. [1].
If the magnitude of the coefficients of an expansion of the integrand f

in terms of the orthogonal polynomials pj decreases sufficiently quickly with
increasing index, then the Gauss rule (4) and the anti-Gauss rule (9) bracket
the integral (3); see [5] for a proof. We remark that in the application to
estimating the error in the CG method, the integrand of interest is f(t) =
1/t and the support of the measure is at the eigenvalues of the symmetric
positive definite matrix A in (1); see Section 3. Then, the magnitude of the
coefficients decays faster to zero the further away the support of the measure
is from the origin.

However, given a measure dω and an integrand f , it is difficult to verify
whether this condition on the coefficients holds. Therefore, it is typically not
known to a user whether pairs of the rules (4) and (9) bracket the integral
(3). Computed examples with application to the estimation of the A-norm
of the error are presented in [4] as well as in Section 4, where we illustrate
that anti-Gauss rules may determine estimates for the error norm of rather
poor quality for some linear systems of equations.

Laurie [19] also defined the averaged Gauss rule

A2`+1 =
1

2
(G` + Ğ`+1) (10)

with 2`+1 nodes. Property (7) suggests that the quadrature error for A2`+1

is smaller than the quadrature error for G`. Indeed, it follows from (7) that
the degree of exactness of A2`+1 is at least 2` + 1. This suggests that the
difference

A2`+1(f)− G`(f) (11)
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may be used to estimate the quadrature error

I(f)− G`(f). (12)

It is illustrated in [30] that for many integrands, the difference (11) yields a
quite accurate estimate of the quadrature error (12) for various values of `,
where the accuracy of the estimates depends both on the integrand as well
as on `.

Spalević [33] showed that the averaged Gauss rule (10) can be repre-
sented by a single symmetric tridiagonal matrix of order 2`+ 1. This obser-
vation lead him to modify this matrix to obtain the optimal averaged Gauss
quadrature rule Â2`+1 with higher degree of precision and the same number
of nodes as the averaged Gauss rule (10). The symmetric tridiagonal ma-
trix associated with the optimal averaged Gauss quadrature rule with 2`+1
nodes is defined as follows. Introduce the reverse matrix

T ′` =


α` β`−1 0
β`−1 α`−1 β`−2

. . .
. . .

. . .

β2 α2 β1

0 β1 α1

 ∈ R`×`,

which is obtained by reversing the order of the rows and columns of the
matrix (5). The nodes and weights of the optimal averaged Gauss rule are
the eigenvalues and the squared first components of normalized eigenvectors,
respectively, of the concatenated symmetric tridiagonal matrix

T̂2`+1 =

 T` β`e` 0
β`e

T
` α`+1 β`+1e

T
1

0 β`+1e1 T ′`

 ∈ R(2`+1)×(2`+1).

We remark that ` eigenvalues of this matrix are eigenvalues of T`. Analo-
gously to (6), we have

Â2`+1(f) = eT1 f(T̂2`+1)e1.

It is easy to see that this quadrature rule has degree of precision at least
2`+ 2; see, e.g., [31] for details. This suggests that the quadrature error in
the Gauss rule (4) be estimated as

Â2`+1(f)− G`(f). (13)
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Computed examples reported in [30] show this estimate to be quite accu-
rate for many integrands. Since this rule has higher degree of precision than
Laurie’s averaged Gauss rule (10), we expect the quadrature error estimate
(13), generally, to be more accurate than the estimate (11) at least for in-
tegrands that are differentiable many times. Computed examples presented
in [30] corroborate this expectation.

It is convenient to use the representation

Â2`+1(f) =
β2
`+1

β2
` + β2

`+1

G`(f) +
β2
`

β2
` + β2

`+1

G∗`+1(f), (14)

where
G∗`+1(f) = eT1 f(T ∗`+1)e1 (15)

with

T ∗`+1 =



α1 β1 0
β1 α2 β2

. . .
. . .

. . .

β`−2 α`−1 β`−1

β`−1 α` β∗`
0 β∗` α`+1


∈ R(`+1)×(`+1)

and
β∗` =

√
β2
` + β2

`+1.

The representation (14) is shown in [29]. It is analogous to the representation
(10) of the averaged rule and simplifies to the latter when β`+1 = β`. Some
properties of the quadrature rule (15) have recently been shown in [11].

The A-norm of the error in approximate solutions determined by the CG
method can be estimated by evaluating the quadrature error of the Gauss
rule (4) when applied to the integrand f(t) = 1/t for a certain measure, that
is determined by the matrix A and right-hand side b in (1), with support on
the positive real axis. The quality of the error estimates (11) and (13) may
depend on how close to the origin a node of the averaged Gauss rules A2`+1

and optimal averaged Gauss rules Â2`+1 is located, because the nodes are
not required to be in the convex hull of the support of the measure that de-
termines the Gauss rule. The location of the extreme nodes of these rules has
been investigated for a variety of classical and other measures for which the
recurrence coefficients for the orthogonal polynomials are explicitly known;
see, e.g., [7, 8, 9] and references therein. The analyses show whether the
nodes are in the convex hull of the support of the measure. However, these
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results generally do not shed light on how the nodes for measures that arise
in the application of this paper are allocated.

3. Error norm estimates for the conjugate gradient method

This section discusses how the averaged and optimal averaged Gauss
rules described in the previous section can be used to estimate the A-norm
of the error in iterates of the CG method when applied to the solution of the
system (1). The system is assumed to be preconditioned if preconditioning is
desired; preconditioning is discussed in, e.g., [23, 25]. We use the technique
described by Meurant and Tichý [23] to evaluate the quadrature rules.

In this and the following sections, the initial iterate is set to x0 = 0.
We provide an algorithm for the CG method for completeness; see, e.g.,
[15, 17, 32] for discussions of this method.

Algorithm 1 The conjugate gradient method

1: Input: Symmetric positive definite matrix A ∈ Rn×n, b ∈ Rn, number
of steps `;

2: x0 := 0 ∈ Rn; r0 := b; p0 := r0;

3: for k = 1 to `

4: w := Apk−1;

5: γk−1 := rTk−1rk−1/w
T pk−1;

6: xk := xk−1 + γk−1pk−1;

7: rk := rk−1 − γk−1w;

8: δk := rTk rk/r
T
k−1rk−1;

9: pk := rk + δkpk−1;

10: end for

11: Output: Approximate solution x`, recursion coefficients {γk}`−1
k=0,

{δk}`k=1;

The conjugate gradient method applied to the solution of (1) generates a
sequence of approximations x1, x2, . . . , x` of the solution x∗. The kth iterate,
xk, minimizes the A-norm of the error,

ẽk = x∗ − xk, (16)

over the Krylov subspace

Kk(A, b) = span{b, Ab, . . . , Ak−1b},
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i.e., the error (16) satisfies

‖ẽk‖A = ‖x∗ − xk‖A = min
x∈Kk(A,b)

‖x∗ − x‖A; (17)

see, e.g., [32, Chapter 6]. The residual vector rk = b−Axk satisfies

rTk A
−1rk = ẽkAẽk = ‖ẽk‖2A.

Let f be a function such that f(A) is well defined and introduce the
spectral factorization

A = UΛUT ,

where the matrix U ∈ Rn×n is orthogonal and the diagonal entries of

Λ = diag[λ1, λ2, . . . , λn]

are the eigenvalues of A. Let b′ = [b′j ]
n
j=1 = UT b. Then

bT f(A)b =
n∑
j=1

f(λj)(b
′
j)

2 =

∫
f(t) dω(t), (18)

where the distribution function ω(t) associated with the measure dω(t) is
non-decreasing, piece-wise constant, and has jumps (b′j)

2 at t = λj for j =
1, 2, . . . , n. Define the lower bidiagonal matrix

L` =


1 0√
δ1 1

. . .
. . .√
δ`−2 1

0
√
δ`−1 1

 ∈ R`×`, (19)

the diagonal matrix

D` = diag[1/γ0, 1/γ1, . . . , 1/γ`−1] ∈ R`×`, (20)

and the symmetric tridiagonal matrix

T` = L`D`L
T
` . (21)

This is a Cholesky-type factorization. The entries of these matrices are de-
termined by the CG method and can be evaluated when ` steps of Algorithm
1 have been carried out. We have that

G`(f) = ‖b‖2eT1 f(T`)e1
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is the `-node Gauss quadrature rule for the approximation of the integral
on the right-hand side of (18).

In the context of approximating the A-norm, we let f(t) = 1/t and define
the matrix Tn that can be computed when n steps of the CG method have
been executed. Then

‖ẽ`‖2A = ‖b‖2eT1 T−1
n e1 − ‖b‖2eT1 T−1

` e1; (22)

see, e.g., [15, Theorem 12.1] or [21]. The matrix Tn is too expensive to
compute. Instead we approximate the first term in the right-hand side of
(22) by a quadrature rule that is more accurate than G`(f).

We note for future reference that the entries of the matrices T`, L`, and
D` are related as follows:

βk =

√
δk

γk−1
, αk =

1

γk−1
+
δk−1

γk−2
, k = 1, 2, . . . , `, (23)

with δ0 = 0 and γ−1 = 1; this follows from (21).
Following Meurant and Tichý [23], we evaluate the Gauss rule (4) with

the integrand f(t) = 1/t by using the Cholesky-type factorization (21),

G`(f) = ‖b‖2 eT1 T−1
` e1 = ‖b‖2 eT1 L−T` D−1

` L−1
` e1 = ‖b‖2‖D−1/2

` L−1
` e1‖2,

where the right-hand side is evaluated as

G`(f) = ‖b‖2
γ0 +

∑̀
j=2

γj−1(δj−1δj−2 . . . δ1)

 . (24)

From the definition of the δi’s in Algorithm 1, it can be shown that δj−1δj−2 . . . δ1 =
‖rj−1‖2/‖b‖2; see [22].

After having carried out `+d steps of the CG algorithm, we can evaluate
the quadrature rule G`+d(f) in a similar fashion to obtain

G`+d(f)− G`(f) = ‖b‖2
`+d∑
j=`+1

γj−1(δj−1δj−2 . . . δ1).

The evaluation of the quadrature rules Ğ`+d+1(f) and G∗`+d+1(f) in (9)
and (15), respectively, with ` replaced by `+ d is straightforward. We note
that the Cholesky-type factorization of the matrix (8) (with ` replaced by
`+ d) is given by

T̆`+d+1 = L̆`+d+1D̆`+d+1L̆
T
`+d+1,
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with lower bidiagonal matrix

L̆`+d+1 =


1 0√
δ1 1

. . .
. . .√
δ`+d−1 1

0
√
δ̆`+d 1

 ∈ R(`+d+1)×(`+d+1)

and diagonal matrix

D̆`+d+1 = diag[1/γ0, . . . , 1/γ`−1, 1/γ̆`+d] ∈ R(`+d+1)×(`+d+1),

where

δ̆`+d = s2δ`+d, γ̆`+d =

(
1

γ`+d
+

(1− s2)δ`+d
γ`+d−1

)−1

.

Here α`+d, α`+d+1, and β`+d are determined by (23) with ` replaced by `+d
and s =

√
2. In particular, the leading (`+d)×(`+d) principal submatrices

of L̆`+d+1 and D̆`+d+1 agree with the matrices (19) and (20), respectively,
with ` replaced by `+ d. It follows that we obtain, analogously to (24),

Ğ`+d+1(f) = ‖b‖2
γ0 +

`+d∑
j=2

γj−1(δj−1δj−2 . . . δ1)

 (25)

+ ‖b‖2γ̆`+d(δ̆`+dδ`+d−1δ`+d−2 . . . δ1).

We are in a position to discuss the computation of the difference (11)
with ` replaced by `+ d in the first term. It follows from (24) and (25) that

A2(`+d)+1(f)− G`(f)

=
1

2
(G`+d(f) + Ğ`+d+1(f))− G`(f)

= ‖b‖2
 `+d∑
j=`+1

γj−1(δj−1δj−2 . . . δ1) +
1

2
γ̆`+d(δ̆`+dδ`+d−1 . . . δ1)

 .

Finally, we turn to the evaluation of the error estimate (13) with ` re-
placed by ` + d in the first term, and start with the computation of the
quadrature rule (15). This rule is evaluated similarly as (9). Let

s =

(
1 +

δ`+d+1

γ2
`+d

·
γ2
`+d−1

δ`+d

)1/2
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and

δ∗`+d = s2δ`+d, γ∗`+d =

(
1

γ`+d
+

(1− s2)δ`+d
γ`+d−1

)−1

with α`+d, α`+d+1, and β`+d determined by (23). This gives analogously to
(25),

G∗`+d+1(f) = ‖b‖2
γ0 +

`+d∑
j=2

γj−1(δj−1δj−2 . . . δ1)


+ ‖b‖2γ∗`+d(δ∗`+dδ`+d−1 . . . δ1).

The error estimate (13), with ` replaced by `+ d in the first term, can now
be computed by using the representation (14). Thus,

Â2(`+d)+1(f)− G`(f)

=
β2
`+d+1

β2
`+d + β2

`+d+1

G`+d(f) + σ(l,d)G∗`+d+1(f)− G`(f)

= ‖b‖2
 `+d∑
j=`+1

γj−1(δj−1δj−2 . . . δ1) + σ(l,d)γ
∗
`+d(δ

∗
`+dδ`+d−1 . . . δ1)

 ,

where σ(l,d) =
β2
`+d

β2
`+d+β2

`+d+1
. It follows from (22) that an estimate of the A-

norm of the error in the iterate x` is given by the square root of the above
error estimate. The other estimates for the error in G`(f) derived in this
section can be used similarly.

We finally remark that the remainder formula for Gauss quadrature ap-
plied to the integrand f(t) = 1/t on the positive real axis shows that the
integration error (12) is positive, which means that the Gauss rule gives a
lower bound; see [12, 15]. Moreover, Strakoš and Tichý [34] have shown
that Gauss quadrature rules for increasing number of nodes ` can be eval-
uated accurately in finite precision arithmetic by a recursion formula. The
difficulty is to compute an upper bound.

We have seen that a quite natural approach is to approximate the error
(12) by

G`+d(f)− G`(f) (26)

for some d > 0 as described in [14, 15, 16, 20]. It is desirable to choose the
delay d as small as possible since, as already mentioned in Section 1, the
computational effort required to evaluate G`+d(f) increases with d; when
the matrix A is large, the dominating computational work is the calculation
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of ` + d matrix-vector products with A. This suggests that one should
choose d = 1. However, Clenshaw and Curtis [6, p. 199] have illustrated
that this choice may yield useless estimates of the quadrature error (12); in
their example the actual quadrature error is more than a factor 100 larger
than the computed estimate. The authors of [14, 15, 16, 20, 22, 25] use
a larger value of d. This reduces the difficulty pointed out in [6]. The
following section compares error estimates determined for several values of
d to estimates obtained with the averaged and optimal averaged Gauss rules
and shifted variants thereof.

4. Numerical experiments

This section presents a few computed examples that illustrate the quality
of the error norm estimates discussed in the previous section. All compu-
tations were carried out with IEEE double precision arithmetic, i.e., with
about 15 significant decimal digits, using MATLAB R2021a on a 64-bit per-
sonal computer. The initial approximate solution is x0 = 0 in all examples.
The iterations are terminated as soon as ‖ẽk‖A < ε, where ε = 10−11. We
observed that the error norm estimates perform well also for smaller values
of ε, as long as the maximum attainable accuracy of the A-norm of the error
has not been reached.

In the first three examples we compute estimates of the Riemann-Stieltjes
integral (18) with f(t) = 1/t, that is, of the bilinear form bTA−1b. Notice
that this bilinear form is the square of the initial A-norm of the error. The
other examples are concerned with the estimates of the A-norm of the error
ẽk in the CG iterate xk, which is given by (16).

Example 4.1. Let the matrix A ∈ Rn×n be symmetric tridiagonal
with diagonal entries 2[1, 2, . . . , n] and subdiagonal entries [1, 2, . . . , n−1]/2.
Then A is positive definite. We let n = 500, x∗ = [1, 1, . . . , 1]T /

√
n ∈ Rn,

and b = Ax∗. The exact value of F(A) := bTA−1b is 750.50. The header
MVP in the following tables stands for the number of matrix-vector products
with the matrix A required to compute the iterates and the quadrature rules.
This is the dominating computational cost when the matrix A is large.

Table 1 displays the magnitude of the relative quadrature errors incurred
when approximating bTA−1b by several quadrature rules. The (`+ 1)-node
anti-Gauss rule Ğ`+1(f) is seen to yield a smaller error than the `-node Gauss
rule. The smallest errors are achieved by the averaged Gauss rules A2`+1(f)
and the optimal averaged Gauss rules Â2`+1(f) with 2`+1 nodes; the latter
rules give the smallest errors for ` = 30 and ` = 40, and close to the smallest
error for ` = 20. The fact that the quadrature errors achieved with the
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Table 1: Example 4.1: Magnitude of the relative error of computed approximations of the
integral (18) with f(t) = 1/t for A ∈ R500×500, b = Ax∗, and x∗ = [1, 1, . . . , 1]T /

√
500.

MVP ` = 20 ` = 30 ` = 40

` |G`(f)−F(A)
F(A) | 1.7668 · 10−5 3.5430 · 10−6 9.9117 · 10−7

`+ 1 | Ğ`+1(f)−F(A)
F(A) | 1.1271 · 10−5 2.5176 · 10−6 8.6987 · 10−7

`+ 1 |A2`+1(f)−F(A)
F(A) | 3.1985 · 10−6 5.1274 · 10−7 6.0650 · 10−8

`+ 1 | Â2`+1(f)−F(A)
F(A) | 3.4954 · 10−6 5.0020 · 10−7 5.1140 · 10−8

averaged and optimal averaged Gauss rules are smaller than the errors for
the Gauss rule makes the differences (11) and (13) useful estimates of the
quadrature error (12) of the Gauss rule.

Table 2 reports the magnitude of the relative differences determined by
(11), (13), and (26) for a few values of d. The evaluation of the quadrature
rules Â2(`+d)+1(f) and A2(`+d)+1(f) requires `+d+1 matrix-vector products
(MVPs) with the matrix A. It is desirable to keep the number of MVPs
small. We can observe that the error estimates determined by the averaged
and optimal averaged Gauss rules are about the same for the values of d
considered. Moreover, the error estimates determined by Â2(`+d)+1(f) and
A2(`+d)+1(f) are more accurate than those obtained by G`+d(f) for the same
values of d, i.e., they are closer to the actual errors shown in the first line of
Table 1.

The error estimates in Table 2 are seen not to decrease monotonically
as the delay d increases. This is due to the fact that the Gauss rule G`(f)
only furnishes an approximation of the exact value F(A). To illustrate that
the quadrature errors of the rules G`+d(f), Â2(`+d)+1(f), and A2(`+d)+1(f)
decrease monotonically as d increases, we show in Table 3 the quadrature
errors for these rules for the same values of ` and d as in Table 2.

Example 4.2. Let B ∈ R100×100 be a symmetric matrix with randomly
generated uniformly distributed real eigenvalues in the interval [−5, 5] and
a random orthogonal eigenvector matrix. Define the matrix A = I100 +B2,
where I100 denotes the identity matrix of order 100, and let the vector b in
the linear system (1) be b = Ax∗, where the vector x∗ is a random vector of
unit norm.

Table 4 is similar to Table 1 and displays the magnitude of the relative
quadrature errors in the computed approximations. We can observe that the
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Table 2: Example 4.1: Magnitude of the relative error estimates determined by Gauss,
averaged Gauss, and optimal averaged Gauss rules for the problem of Table 1. The entries
should be compared with the entries of line 1 of Table 1.

Error
MVP ` = 20 ` = 30 ` = 40

`+ 1 |G`+1(f)−G`(f)
F(A) | 3.0066 · 10−6 4.5295 · 10−7 1.1172 · 10−7

`+ 4 |G`+4(f)−G`(f)
F(A) | 8.9436 · 10−6 1.4605 · 10−6 3.7481 · 10−7

`+ 8 |G`+8(f)−G`(f)
F(A) | 1.2962 · 10−5 2.2803 · 10−6 6.0758 · 10−7

`+ 1 |A2`+1(f)−G`(f)
F(A) | 1.4469 · 10−5 3.0303 · 10−6 9.3052 · 10−7

`+ 3 |A2`+5(f)−G`(f)
F(A) | 1.5548 · 10−5 3.2084 · 10−6 9.6622 · 10−7

`+ 5 |A2`+9(f)−G`(f)
F(A) | 1.6208 · 10−5 3.3308 · 10−6 9.9189 · 10−7

`+ 1 | Â2`+1(f)−G`(f)
F(A) | 1.4172 · 10−5 3.0428 · 10−6 9.4003 · 10−7

`+ 3 | Â2`+5(f)−G`(f)
F(A) | 1.5226 · 10−5 3.1477 · 10−6 9.5042 · 10−7

`+ 5 | Â2`+9(f)−G`(f)
F(A) | 1.6009 · 10−5 3.2376 · 10−6 9.5490 · 10−7
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Table 3: Example 4.1: Magnitude of the relative error of computed approximations of the
integral (18) with f(t) = 1/t for A ∈ R500×500, b = Ax∗, and x∗ = [1, 1, . . . , 1]T /

√
500.

Error
MVP ` = 20 ` = 30 ` = 40

`+ 1 |G`+1(f)−F(A)
F(A) | 1.4661 · 10−5 3.0901 · 10−6 8.7945 · 10−7

`+ 4 |G`+4(f)−F(A)
F(A) | 8.7240 · 10−6 2.0825 · 10−6 6.1636 · 10−7

`+ 8 |G`+8(f)−F(A)
F(A) | 4.7051 · 10−6 1.2628 · 10−6 3.8359 · 10−7

`+ 1 |A2`+1(f)−F(A)
F(A) | 3.1985 · 10−6 5.1274 · 10−7 6.0650 · 10−8

`+ 3 |A2`+5(f)−F(A)
F(A) | 2.1197 · 10−6 3.3468 · 10−7 2.4946 · 10−8

`+ 5 |A2`+9(f)−F(A)
F(A) | 1.4598 · 10−6 2.1227 · 10−7 7.2648 · 10−10

`+ 1 | Â2`+1(f)−F(A)
F(A) | 3.4954 · 10−6 5.0020 · 10−7 5.1140 · 10−8

`+ 3 | Â2`+5(f)−F(A)
F(A) | 2.4416 · 10−6 3.9533 · 10−7 4.0747 · 10−8

`+ 5 | Â2`+9(f)−F(A)
F(A) | 1.6585 · 10−6 3.0548 · 10−7 3.6264 · 10−8

quadrature errors achieved with the optimal averaged rules are of somewhat
smaller magnitude than the errors achieved with the averaged rules that
require the same number of matrix-vector product evaluations.

Table 5 is analogous to Table 2 and shows the relative differences

|(A2(`+d)+1(f)− G`(f))/F(A)| and |(Â2(`+d)+1(f)− G`(f))/F(A)|

to provide more accurate estimates of the relative errors in G`(f) than
|(G`+d(f)− G`(f))/F(A)| with fewer matrix-vector product evaluations.

Example 4.3. Let the matrix A ∈ R48×48 in the linear system (1) be of
the form A = WDW T , where W is a random orthogonal matrix and D is a
diagonal matrix with diagonal entries

di = γ +
i− 1

47
(ρ− γ)σ48−i, i ∈ {1, 2, . . . , 48}

with ρ = 100, σ = 0.875, and γ = 0.1. Hence, A is a symmetric positive
definite dense matrix with eigenvalues in [0.1, 100]. The vector b is chosen
so that x∗ = [1, 1, . . . , 1]T solves the linear system (1). A similar example
can be found in [34].
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Table 4: Example 4.2: Magnitude of the relative error of computed approximations of the
integral (18) with f(t) = 1/t for A ∈ R100×100, b = Ax∗, and x∗ a random vector.

MVP ` = 10 ` = 20

` |G`(f)−F(A)
F(A) | 1.0883 · 10−4 3.2009 · 10−8

`+ 1 | Ğ`+1(f)−F(A)
F(A) | 1.5541 · 10−4 8.8694 · 10−8

`+ 1 |A2`+1(f)−F(A)
F(A) | 2.3288 · 10−5 2.8343 · 10−8

`+ 1 | Â2`+1(f)−F(A)
F(A) | 7.1428 · 10−6 1.6473 · 10−9

Table 5: Example 4.2: Magnitude of the relative error estimates determined by Gauss,
averaged Gauss, and optimal averaged Gauss rules for the problem of Table 4.

Error
MVP ` = 10 ` = 20

`+ 1 |G`+1(f)−G`(f)
F(A) | 6.3832 · 10−5 2.0127 · 10−8

`+ 4 |G`+4(f)−G`(f)
F(A) | 1.0490 · 10−4 3.1407 · 10−8

`+ 8 |G`+8(f)−G`(f)
F(A) | 1.0871 · 10−4 3.1983 · 10−8

`+ 1 |A2`+1(f)−G`(f)
F(A) | 1.3212 · 10−4 6.0352 · 10−8

`+ 3 |A2`+5(f)−G`(f)
F(A) | 1.1072 · 10−4 3.2372 · 10−8

`+ 5 |A2`+9(f)−G`(f)
F(A) | 1.0792 · 10−4 3.1930 · 10−8

`+ 1 | Â2`+1(f)−G`(f)
F(A) | 1.0169 · 10−4 3.3656 · 10−8

`+ 3 | Â2`+5(f)−G`(f)
F(A) | 1.1049 · 10−4 3.2124 · 10−8

`+ 5 | Â2`+9(f)−G`(f)
F(A) | 1.0872 · 10−4 3.1933 · 10−8

Figure 1 displays the estimates given by the Gauss rule G`(f), the anti-
Gauss rule Ğ`+1(f), and the exact value F(A) = bTA−1b as functions of the
number of iterations `. The Gauss quadrature rules achieve values smaller
than the value of bTA−1b, but pairs of Gauss and anti-Gauss rules can be
seen not to bracket the value of the integral.

Example 4.4. Let the matrix A ∈ Rn×n be defined by

A = WDW T , D = diag[d1, d2, . . . , dn],
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Figure 1: Example 4.3: Graphs for G`(f) (solid red curve), Ğ`+1(f) (dash-dotted blue
curve), and the value of the integral F(A) (straight black line) for f(t) = 1/t.

where the eigenvector matrix W ∈ Rn×n either is the identity or a random
orthogonal matrix, and n = 1000. Thus, the matrix A is symmetric and
either diagonal or dense. Let the diagonal elements of D be dj = j/7. Then
A is positive definite. The right-hand side vector b is chosen so that the
vector x∗ = [1, 1, . . . , 1]T solves the linear system (1).

Figure 2 displays the 10-logarithm of the error norm ‖ẽ`‖A as a function
of the iteration number `, as well as error estimates determined by several
quadrature rules when the matrix A is diagonal. Panel (a) shows the op-
timal averaged Gauss rule to determine accurate error estimates. Also, all
quadrature rules used for panel (b) give accurate estimates. The curves ob-
tained from the optimal averaged rule Â2`+1, the averaged rule A2`+1, and
the anti-Gauss rule are very close in all panels. Figure 3 shows results for the
situation when A is a dense matrix. The lack of smoothness of the curves
of panels (a) and (b) depends on oscillations of the CG residual vectors.
The optimal averaged rule Â2`+1 gives the best error estimates in panel (a),
while all quadrature rules determine accurate estimates in panel (b).

Example 4.5. Let n = 200 and consider the symmetric Toeplitz matrix
T ∈ Rn×n with first row [1, 1/2, 1/22, . . . 1/2n−1]. Define A = T 2. Then the
matrix A is symmetric and positive definite. Let x∗ ∈ R200 be a vector with
normally distributed random entries (with zero mean and variance one), and
let b = Ax∗. Figure 4 is analogous to Figure 3 and shows that the optimal
averaged rule Â2`+1 gives the best error estimates in panel (a), while all
quadrature rules determine accurate estimates in panel (b). Similarly, as in
Example 4.4, we notice that the three curves obtained from the averaged,
the optimal averaged, and the anti-Gauss rules are almost the same.
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(a) (b)

Figure 2: Example 4.4: Diagonal matrix A. (a) 10-logarithm of ‖ẽ`‖A (solid black graph)
and 10-logarithm of estimates of ‖ẽ`‖A given by (i) |G`+1(f)− G`(f)| (dashed red curve),

(ii) |Ğ`+1(f)−G`(f)| (dotted green curve), (iii) |Â2`+1(f)−G`(f)| (dash-dotted blue curve),
and (iv) |A2`+1(f)−G`(f)| (dotted yellow curve) for f(t) = 1/t. (b) 10-logarithm of ‖ẽ`‖A
(solid black curve) and 10-logarithm of estimates of ‖ẽ`‖A given by (i) |G`+4(f) − G`(f)|
(dashed red curve), (ii) |Ğ`+4(f) − G`(f)| (dotted green curve), (iii) |Â2`+7(f) − G`(f)|
(dash-dotted blue curve), and (iv) |A2`+7(f)−G`(f)| (dotted yellow curve) for f(t) = 1/t.

Finally, Figure 5 is analogous to Figure 1 and displays the convergence
of Gauss and anti-Gauss rules to the value of the integral bTA−1b as the
number of nodes increases. Here the Gauss rule and anti-Gauss rule can be
seen to bracket the exact value.
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(a) (b)

Figure 3: Example 4.4: Dense matrix A. (a) 10-logarithm of ‖ẽ`‖A (solid black curve) and
10-logarithm of estimates of ‖ẽ`‖A given by (i) |G`+1(f)− G`(f)| (dashed red curve), (ii)

|Ğ`+1(f)− G`(f)| (dotted green curve), (iii) |Â2`+1(f)− G`(f)| (dash-dotted blue curve),
and (iv) |A2`+1(f)−G`(f)| (dotted yellow curve) for f(t) = 1/t. (b) 10-logarithm of ‖ẽ`‖A
(solid black curve) and 10-logarithm of estimates of ‖ẽ`‖A given by (i) |G`+4(f) − G`(f)|
(dashed red curve), (ii) |Ğ`+4(f) − G`(f)| (dotted green curve), (iii) |Â2`+7(f) − G`(f)|
(dash-dotted blue curve), and (iv) |A2`+7(f)−G`(f)| (dotted yellow curve) for f(t) = 1/t.

(a) (b)

Figure 4: Example 4.5: (a) 10-logarithm of ‖ẽ`‖A (solid black curve) and 10-logarithm of
the estimate of ‖ẽ`‖A given by (i) |G`+1(f) − G`(f)| (dashed red curve), (ii) |Ğ`+1(f) −
G`(f)| (dotted green curve), (iii) |Â2`+1(f) − G`(f)| (dash-dotted blue curve), and (iv)
|A2`+1(f) − G`(f)| (point yellow curve) for f(t) = 1/t. (b) 10-logarithm of ‖ẽ`‖A (solid
black curve) and 10-logarithm of the estimate of ‖ẽ`‖A given by (i) |G`+4(f) − G`(f)|
(dashed red curve), (ii) |Ğ`+4(f) − G`(f)| (dotted green curve), (iii) |Â2`+7(f) − G`(f)|
(dash-dotted blue curve), and (iv) |A2`+7(f)− G`(f)| (point yellow curve) for f(t) = 1/t.
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Figure 5: Example 4.5: Graphs for G`(f) (solid red curve), Ğ`+1(f) (dash-dotted blue
curve), and the value of the integral F(A) (straight black line) for f(t) = 1/t.
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5. Conclusion

This paper describes new approaches to estimate the A-norm of the error
in iterates determined by the conjugate gradient method when applied to
the solution of linear systems of equations with a symmetric positive def-
inite matrix. The averaged and optimal averaged Gauss rules and shifted
variants thereof are found to determine more accurate error estimates than
the Gauss and anti-Gauss rules. Since the optimal averaged Gauss rules,
or shifted variants thereof, are of higher degree of precision, than the corre-
sponding averaged Gauss rules and their evaluation requires about the same
computational effort, we propose the application of the former rules.
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[34] Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient
method and why it works in finite precision computations, Electron.
Trans. Numer. Anal., 13 (2003), pp. 53–80.

26


