
Acta Numerica (2007), pp. 1–71 c© Cambridge University Press, 2007

DOI: 10.1017/S0962492904 Printed in the United Kingdom

The Lanczos and conjugate gradient
algorithms in finite precision arithmetic

Gérard Meurant
CEA/DIF,

BP 12,
91680, Bruyères le Chatel, France
E-mail: gerard.meurant@cea.fr

Zdeněk Strakoš∗
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The Lanczos and conjugate gradient algorithms were introduced more than
five decades ago as tools for numerical computation of dominant eigenvalues
of symmetric matrices and for solving linear algebraic systems with symmetric
positive definite matrices respectively. Because of their fundamental relation-
ship with the theory of orthogonal polynomials and Gauss quadrature of the
Riemann-Stieltjes integral, the Lanczos and conjugate gradient algorithms
represent very interesting general mathematical objects with highly nonlinear
properties which can be conveniently translated from algebraic language into
the language of mathematical analysis, and vice versa. The algorithms are
also very interesting numerically, since their numerical behaviour can be ex-
plained by an elegant mathematical theory, and the interplay between analysis
and algebra is useful there too.
Motivated by this view, the present contribution wishes to pay a tribute to
those who have made an understanding of the Lanczos and conjugate gradient
algorithms possible through their pioneering work, and to review recent solu-
tions of several open problems which have also contributed to the knowledge
on the subject.
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1. Introduction

The Lanczos algorithm is one of the most frequently used tools for computing
a few dominant eigenvalues (and eventually eigenvectors) of a large sparse
symmetric n by n matrix A. More specifically, if for instance the extreme
eigenvalues of A are well separated, the Lanczos algorithm obtains good
approximations to these eigenvalues in only a few iterations. Moreover, the
matrix A need not be explicitly available. The Lanczos algorithm only needs
a procedure performing the matrix-vector product Av for a given vector v.
Hence, it can even be used in some applications for which the matrix cannot
be stored as long as one is able to produce the result of the operation matrix
times a given vector. Another interesting property is that when one just
needs the eigenvalues, the Lanczos algorithm only requires a very small
storage of a few vectors (besides storing the matrix where applicable), since
a new basis vector is computed using only the two previous ones.

The Lanczos algorithm constructs a basis of Krylov subspaces which are
defined for a square matrix A of order n and a vector v by

Kk(v, A) = span{v, Av, . . . , Ak−1v} , k = 1, 2, . . . .

The natural basis v, Av, . . . , Ak−1v being badly conditioned, the algorithm
constructs an orthonormal basis of Kk(v, A). The vectors in the natural
basis can even become numerically dependent (within the accuracy of the
floating point calculations) for a small value of k. In fact, computing succes-
sively Akv for a given vector v is, with a proper normalization, the basis of
the power method. Unlike the power method, which focuses at the kth step
only on the local information present in Ak−1v, and aims to converge to the
eigenvector corresponding to the eigenvalue of largest modulus, the Lanc-
zos algorithm exploits simultaneously all vector information accumulated in
previous steps. Building an orthonormal basis of Kk(v, A) can therefore be
seen as an effective numerical tool for extracting information from the se-
quence v, Av, . . . , Ak−1v while preventing any possible loss which could be
caused by effects of existing dominance.
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The orthonormal basis vectors vj , j = 1, . . . , k are constructed recursively
one at a time and can be considered columns of a matrix Vk = (v1, . . . , vk).
The method also constructs at iteration k an unreduced symmetric tridi-
agonal k by k matrix Tk (which is obtained from Tk−1 by adding one row
and one column) having positive subdiagonal entries, whose eigenvalues are
approximations to the eigenvalues of A, see for instance (Lanczos 1950),
(Wilkinson 1965), (Parlett 1980). Moreover, in exact arithmetic AVm =
VmTm for some m ≤ n, n being the dimension of the problem. It means
that the columns of Vm span an invariant subspace of the operator repre-
sented by A, and the eigenvalues of Tm are also eigenvalues of A.

All these properties are quite nice. However, it has been known since the
introduction of the method in 1950 by Cornelius Lanczos (Lanczos 1950)
that when used in finite precision arithmetic, this algorithm does not ful-
fill its theoretical properties. In particular, the computed basis vectors lose
their orthogonality as the iteration number k increases. Moreover, as a
consequence of the loss of orthogonality, in finite precision computations
multiple approximations of the original eigenvalues appear within the set of
computed approximate eigenvalues if we do a large enough number of itera-
tions. This phenomenon leads to a delay in the computation of some other
eigenvalues. Sometimes it is also difficult to determine if some computed
approximations are additional copies caused by rounding error effects and
the loss of orthogonality, or genuine close eigenvalues.

The finite precision behaviour of the Lanczos algorithm was analyzed in
great depth by Chris Paige in his pioneering Ph.D. thesis (Paige 1971), see
also (Paige 1972), (Paige 1976), (Paige 1980). With no exaggeration, the
work of Paige was revolutionary. He showed that the effects of rounding
errors in the Lanczos algorithm can be described by a rigorous and ele-
gant mathematical theory. In the spirit of Wilkinson, the theory built by
Paige reveals the mechanics of the finite precision Lanczos algorithm be-
haviour. It starts with bounds on the elementary roundoff errors at each
iteration, and ends up with elegant mathematical theorems which link con-
vergence of the computed eigenvalue approximations to the loss of orthogo-
nality. Following Paige, the theory has further been developed and applied
in (Parlett and Scott 1979), (Scott 1979), (Parlett 1980), (Simon 1982),
(Simon 1984), (Simon 1984b). A forward error analysis was attempted
in (Grcar 1981).

Another fundamental step forward, similar in significance to that of Paige,
was made by Anne Greenbaum (Greenbaum 1989). On the foundations
laid by Paige she developed a backward-like analysis of the Lanczos algo-
rithm (and also of the closely related conjugate gradient algorithm). Her
ideas, combined with thoughts of several other authors, stimulated fur-
ther developments, see, e.g. (Druskin and Knizhnerman 1991), (Strakoš
1991), (Greenbaum and Strakoš 1992), (Strakoš and Greenbaum 1992),
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(Knizhnerman 1995), (Druskin, Greenbaum and Knizhnerman 1998). Re-
cently, new analysis of the open problems formulated in the literature has
led to (Zemke 2003), (Meurant 2006), (Wülling 2005), (Wülling 2005b).

The Lanczos algorithm has been implemented and in practice used in
two ways. In the first way it is applied without any additional measures
designed to limit roundoff. The number of iterations is not limited by
strict rules and the “good” eigenvalue approximations are identified by some
convergence tests. This has been advocated in particular in (Cullum and
Willoughby 1985). The second way limits the unwanted effects of rounding
errors by some more or less sophisticated form of reorthogonalization. Pro-
posals in this direction were made by (Parlett and Scott 1979), (Grcar 1981),
(Simon 1982), (Parlett 1992). Here the theory developed by Paige almost
immediately led to successful software implementations. The way the Lanc-
zos algorithm is used in a particular application depends on a particular
goal.

After a period of intensive discussions which concentrated in particular
among the activities of The Institute of Numerical Analysis at UCLA, see
(Hestenes and Todd 1991) and (Golub and O’Leary 1989), the Conjugate
Gradient (CG) algorithm, independently introduced by Magnus Hestenes
and Eduard Stiefel, was thoroughly described in their seminal paper pub-
lished in 1952 (Hestenes and Stiefel 1952). Intended for solving symmetric
positive definite linear systems, it is closely linked to the Lanczos algorithm.
Lanczos used his algorithm to solve linear systems in (Lanczos 1952) but it
was already clear in (Lanczos 1950) that it can be used for that purpose.
In fact, even though it was not introduced in this way, one can obtain the
Hestenes and Stiefel CG from the Lanczos algorithm by doing an LU fac-
torization (with L lower triangular and U upper triangular) of the positive
definite matrix Tk given by the Lanczos coefficients (with introducing some
intermediate variables). In exact arithmetic the CG residual vectors are
proportional to the Lanczos vectors. In finite precision, the residual vectors
lose their orthogonality just as the Lanczos vectors do.

The Lanczos algorithm, resp. CG, builds up (in exact arithmetic) orthog-
onal bases of Krylov subspaces Kk(v, A), k = 1, 2, . . . . and the basis vectors
can be expressed in terms of polynomials in the matrix A applied to the ini-
tial vector v. Using the spectral decomposition of the symmetric (resp. the
symmetric positive definite) matrix A, it is easy to see that the correspond-
ing polynomials are orthogonal with respect to a Riemann-Stieltjes integral.
Its piecewise constant distribution function is defined by the points of in-
crease equal to the eigenvalues of A and by the sizes of the discontinuities
equal to the squared components of v in the corresponding invariant sub-
spaces. In this way, the Lanczos algorithm and CG are intimately related
to orthogonal polynomials, see (Hestenes and Stiefel 1952), (Fischer 1996).
This fact has been emphasized for decades in the work of Gene Golub, who
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substantially contributed to the whole field by his deep understanding of
the interconnections between different mathematical areas and by sharing
his ideas with many collaborators, see, e.g. (Gautschi 2002). Such inter-
connections are fundamental in the understanding of the Lanczos algorithm
and CG behaviour in both exact and finite precision arithmetic. In partic-
ular, in exact arithmetic the A–norm of the CG error can be written using
the Gauss quadrature formula and this clearly shows that the convergence
rate depends in a rather complicated way on how well the eigenvalues of
A are approximated by the eigenvalues of Tk. This also indicates possible
differences in the role of eigenvalues in different parts of the spectrum of
A regarding the convergence behaviour. In finite precision arithmetic the
Gauss quadrature formula is also verified up to small terms involving the
machine precision. However, the appearance of multiple approximations of
the original eigenvalues leads to a delay in CG convergence.

The concept of delay is essential in analysis of the CG finite precision be-
haviour. In short, delay of convergence in a CG finite precision computation
is determined by the rank-deficiencies of the computed Krylov subspaces.
This understanding emerged from the work of Greenbaum (Greenbaum
1989), (Greenbaum and Strakoš 1992), (Notay 1993), and it was strongly
advocated in (Paige and Strakoš 1999). Analysis and discussion of the Gauss
quadrature relationship in finite precision arithmetic can be found in (Golub
and Strakoš 1994), (Strakoš and Tichý 2002), (Meurant 2006).

A finite precision computation does not give the approximate solution
with an arbitrarily small error. The error is not reduced below some level,
called the maximal attainable accuracy. This is not so important for the
Lanczos algorithm, as (Paige 1971) shows, but it can become important
in solving highly ill-conditioned linear systems and, in particular, in some
inner iterations within nonlinear optimization algorithms. Maximal attain-
able accuracy of CG has been studied for a long time. The early results,
see, e.g. (Wozniakowski 1978), (Wozniakowski 1980), (Bollen 1984), with a
thorough survey given in Chapter 16 of (Higham 1996), were however not
applicable to practically used implementations. These were analyzed more
recently in (Greenbaum 1997), (Greenbaum 1994), (Sleijpen, van der Vorst
and Fokkema 1994), (Sleijpen, van der Vorst and Modersitzki 2001), (Björck,
Elfving and Strakoš 1998) and (Gutknecht and Strakoš 2000). It turns out
that a deterioration of the maximal attainable accuracy can be caused at a
very early stage of the computation and that CG is unable to correct such
a situation in later iterations.

The authors have previously published some surveys of the Lanczos and
CG algorithms in exact and finite precision arithmetic as parts of more
widely based publications, see (Meurant 1999b), (Strakoš 1998), (Strakoš
and Liesen 2005). Following some views from these works, this paper first
recalls in Sections 2 and 3 the basic facts about the Lanczos and CG al-
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gorithms in exact arithmetic. Then we turn to our main goal – to review
the main results about the behaviour of the Lanczos and CG algorithms
in finite precision arithmetic, and to present some recent developments re-
lated in particular to the appearance of multiple computed approximations
of simple original eigenvalues. Section 4 is devoted to the Lanczos algorithm
and Section 5 to CG.

For simplicity of exposition we adopt in this paper several restrictions.
We will consider real symmetric resp. symmetric positive definite problems.
Restriction to real problems is not substantial; we use it for convenience of
notation. We will not consider nonsymmetric problems since this extension
would necessarily bring into consideration fundamental issues not present
in the symmetric case, some of them still not fully understood. This would
to our opinion distract the focus of this paper. In part on CG we will
assume that the symmetric positive definite matrix A is not close to being
singular. Solving close to singular problems needs (similarly as in singular
problems) specific approaches. Their presentation and the analysis of their
behaviour in finite precision arithmetic is out of the scope of this paper.
We will consider problems with single right hand sides only. In particular,
we will not include the block Lanczos algorithm since that would require
significant additional space. Though we understand that preconditioning
represents an unavoidable and fundamental part of practical computations,
here we concentrate on analysis of basic unpreconditioned algorithms. Most
of the results can be extended to preconditioned algorithms, see (Strakoš
and Tichý 2005), (Meurant 2006).

Unless we need to relate the exact arithmetic quantities to the correspond-
ing results of finite precision computations, we do not use for the latter any
specific notation. The meaning will be clear from the context. When it will
be helpful, we will emphasize the distinction by using the word “ideally” to
refer to a result that holds using exact arithmetic, and “computationally”
or “numerically” to refer to a result of a finite precision computation.

2. The Lanczos algorithm

This section briefly describes the Lanczos algorithm in exact arithmetic and
presents bounds for the convergence of the eigenvalue approximations. For
an extensive and thorough description we refer to (Parlett 1980).

Strictly speaking, we should not use the term ‘convergence’ since (with
a proper initial vector) the algorithm ideally finds all distinct eigenvalues
of A in less than (or equal to) n iterations. Similarly, the term ‘conver-
gence of CG’ used throughout the paper must be understood differently
from the classical asymptotic approach, see, e.g. (Hackbusch 1994), p. 270,
(Beckermann and Kuijlaars 2002). Here we must analyze the behaviour
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from the start since there is no transient phase which can be skipped, just
as there is no asymptotic phase which eventually describes convergence.

2.1. Basic properties of the Lanczos algorithm

Let A be a real n by n nonsingular symmetric matrix and v be a given n-
dimensional vector of Euclidean norm 1. The kth Krylov subspace is defined
as

Kk(v, A) = span{v, Av, . . . , Ak−1v}.
Ideally, as long as k is less than or equal to the order of the minimal polyno-
mial of v with respect to A, see Chapter VII, §1 and §2 in (Gantmacher 1959),
the subspace Kk(v, A) is of dimension k and the vectors Ajv, j = 0, . . . , k−1
are linearly independent. Clearly, for any v the degree of the minimal poly-
nomial of v with respect to A is always less than or equal to the degree of
the minimal polynomial of A; there always exist a vector v such the the
latter is reached.

Our goal is to construct an orthonormal basis of the Krylov subspace.
Although historically things did not proceed in this way, let us consider
what is now called the Arnoldi algorithm (Arnoldi 1951). This is a variant
of the Gram–Schmidt orthogonalization process applied to the Krylov basis
without assuming A symmetric. Starting from v1 = v, the algorithm for
computing the (j + 1)st vector of the basis using the previous ones is:

hi,j = (Avj , vi), i = 1, . . . , j ,

v̂j = Avj −
j∑

i=1

hi,jv
i ,

hj+1,j = ‖v̂j‖ , if hj+1,j = 0 then stop ,

vj+1 =
v̂j

hj+1,j
.

It is easy to verify that the vectors vj span the Krylov subspace and that
they are orthonormal. Collecting the basis vectors up to iteration k in an n
by k matrix Vk, the relations defining the vector vk+1 can be written in a
matrix form as

AVk = VkHk + hk+1,kv
k+1(ek)T ,

where Hk is an unreduced upper Hessenberg matrix with elements hi,j , which
means that its elements are nonzero on the first subdiagonal, and zero below
this. The vector ek is the kth column of the k×k identity matrix (throughout
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this paper, ej denotes the jth column of an identity matrix of the size
determined by the context). From the orthogonality of the basis vectors

V T
k AVk = Hk.

If we suppose that the matrix A is symmetric, then because of the last
relation, Hk is also symmetric, and therefore tridiagonal. Consequently v̂k

and hence vk+1 can be computed using only the two previous vectors vk and
vk−1, and this gives the elegant Lanczos algorithm. Starting from a vector
v1 = v, ‖v‖ = 1, v0 = 0, η1 = 0, the iterations are

for k = 1, 2, . . .

αk = (Avk, vk) = (vk)T Avk,

v̂k+1 = Avk − αkv
k − ηkv

k−1 ,

ηk+1 = ‖v̂k+1‖, if ηk+1 = 0 then stop ,

vk+1 =
v̂k+1

ηk+1
.

We point out that the orthogonalization of the newly computed Avk against
the previously computed vectors in the Arnoldi algorithm and in the Lanc-
zos algorithm described above corresponds to the classical version of the
Gram-Schmidt orthogonalization. Here the individual orthogonalization co-
efficients are computed independently of each other. If a mathematically
equivalent modified Gram-Schmidt orthogonalization is used, then the or-
thogonalization coefficients are computed and the orthogonalization is per-
formed recursively, which in the case of the Lanczos algorithm gives the
following implementation: Starting from v1 = v, ‖v‖ = 1, v0 = 0, η1 = 0,

for k = 1, 2, . . .

uk = Avk − ηkv
k−1 ,

αk = (uk, vk) ,

v̂k+1 = uk − αkv
k , (2.1)

ηk+1 = ‖v̂k+1‖ , if ηk+1 = 0 then stop ,

vk+1 =
v̂k+1

ηk+1
.

Clearly, this version can be implemented by storing two vectors instead
of three. Though mathematically equivalent to the previous version, the
last one advocated by Paige (Paige 1976, Paige 1980) and Lewis (Lewis
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1977) can, because of the relationship between classical and modified Gram-
Schmidt orthogonalization, be expected to be slightly numerically superior.

In matrix notation the Lanczos algorithm can be expressed as follows

AVk = VkTk + ηk+1v
k+1(ek)T ,

where

Tk =

⎛
⎜⎜⎜⎜⎜⎝

α1 η2

η2 α2 η3
. . . . . . . . .

ηk−1 αk−1 ηk

ηk αk

⎞
⎟⎟⎟⎟⎟⎠

is an unreduced symmetric tridiagonal matrix with positive subdiagonal
entries storing coefficients of the Lanczos recurrence.

We note that since ‖vk‖ = 1, αk is a so–called Rayleigh quotient. This
implies that

λmin(A) ≤ αk ≤ λmax(A).

We denote the eigenvalues of A (which are real) by

λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A) ,

and the corresponding orthonormal eigenvectors q1, . . . , qn, Q ≡ (q1, . . . , qn).
If ηj �= 0 for j = 2, . . . , n, then AVn = VnTn (v̂n+1 must be orthogonal

to the set of n orthonormal vectors in a space of dimension n and therefore
must vanish). Otherwise there exists an m + 1 < n for which ηm+1 = 0,
AVm = VmTm, and we have found an invariant subspace of A, the eigenvalues
of Tm being a subset of the eigenvalues of A. When the Lanczos algorithm
does not stop before m = n, the eigenvalues of A are simple since A is
similar to the unreduced symmetric tridiagonal matrix Tn. On the other
hand, if A has some multiple eigenvalues, then ηm+1 = 0 for some m +
1 < n. Ideally, the Lanczos algorithm cannot detect the multiplicity of the
individual eigenvalues. In exact arithmetic an eigenvalue of A is found as
an eigenvalue of Tm only once.

Let

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k

be the eigenvalues of Tk with the corresponding normalized eigenvectors
zj
(k) ≡ (ζ(k)

1,j , . . . , ζ
(k)
k,j )T , j = 1, . . . , k, Zk ≡ (z1

(k), . . . , z
k
(k)) . Since the Lanczos

algorithm can be considered a Rayleigh-Ritz procedure, the eigenvalues θ
(k)
j

are called Ritz values and the associated vectors xj
(k) = Vkz

j
(k) are known

as the Ritz vectors. They are the approximations to the eigenvectors of A

given by the algorithm. The residual associated with an eigenpair (θ(k)
j , xj

(k))
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obtained from Tk is

rj
(k) = Axj

(k) − θ
(k)
j xj

(k) = (AVk − VkTk)z
j
(k) = ηk+1(ek)T zj

(k) vk+1

= ηk+1ζ
(k)
k,j vk+1 .

Therefore
‖rj

(k)‖ = ηk+1|ζ(k)
k,j | .

We see that for a given k all residual vectors are proportional to vk+1. When
the product of the coefficient ηk+1 with the absolute value of the bottom
element of zj

(k) is small, we have a small residual norm. Moreover, using
the spectral decomposition of A and the fact that (in exact arithmetic!)
‖xj

(k)‖ = 1,

min
i

|λi − θ
(k)
j | ≤ ‖rj

(k)‖ = ηk+1|ζ(k)
k,j | .

Consequently a small residual norm ‖rj
(k)‖ means convergence of θ

(k)
j to some

eigenvalue of A.

2.2. Relationship with orthogonal polynomials

By using the three–term recurrence, the Lanczos basis vectors v2, v3, . . . can
be expressed in terms of polynomials in the matrix A acting on the initial
vector v1. From (2.1) we see that

vk+1 = pk+1(A)v1, k = 0, 1, . . . , (2.2)

where the polynomials pk satisfy the three–term recurrence (with p0 ≡ 0)

p1(λ) = 1; ηk+1pk+1(λ) = (λ−αk)pk(λ)−ηkpk−1(λ), k = 1, 2, . . . (2.3)

Let χ1,k(λ) (or, where appropriate, simply χk(λ)) be the characteristic poly-
nomial of Tk (determinant of Tk −λI), so that χ0(λ) = 1, χ1(λ) = (α1 −λ),
χk(λ) = (αk − λ)χk−1(λ) − η2

kχk−2(λ), then for the degree k polynomials

pk+1(λ) = (−1)k χ1,k(λ)
η2 · · · ηk+1

.

Using the orthogonality of the vectors v1, v2, . . . and the spectral decompo-
sition of A, the normalized Lanczos polynomials p1(λ)=1, p2(λ), p3(λ), . . .
are orthonormal polynomials with respect to a scalar product defined by the
Riemann–Stieltjes integral

(p, q) =
∫ λn

λ1

p(λ)q(λ) dω(λ) =
n∑

l=1

ωl p(λl)q(λl) , (2.4)

where the distribution function ω is a non-decreasing piecewise constant
function with at most n points of increase λ1, . . . , λn. For simplicity of



Finite precision Lanczos and CG 11

exposition, suppose that

λ1 < λ2 < . . . < λn ,

i.e. all eigenvalues of A are distinct. Then

ω(λ) =

⎧⎨
⎩

0 if λ < λ1 ,∑i
l=1 ωl if λi ≤ λ < λi+1 ,∑n
l=1 ωl = 1 if λn ≤ λ ,

where ωl = |(v1, ql)|2 is the squared component of the starting vector v1 in
the direction of the lth invariant subspace of A.

Writing Pk(λ) = (p1(λ), · · · , pk(λ))T , the recurrence for the orthonormal
polynomials can be written in the matrix form

λPk(λ) = TkPk(λ) + ηk+1pk+1(λ)ek .

Since pk+1 is proportional to the characteristic polynomial of Tk, its roots
are the eigenvalues of Tk, that is the Ritz values θ

(k)
j , j = 1, . . . , k.

Since χ1,k(λ) is (apart from multiplication by (−1)k) a monic polynomial
orthogonal with respect to the inner product defined by (2.4) to any poly-
nomial of degree k − 1 or less, it must resolve the following minimization
problem

(−1)kχ1,k(λ) = arg min
ψ∈Mk

∫ λn

λ1

ψ2(λ)dω(λ) , k = 1, 2, . . . , n ,

where Mk denotes the set of all monic polynomials of degree less than or
equal to k.

Consider an unreduced symmetric tridiagonal matrix Tk defined above.
It stores the coefficients of the first k steps of the Lanczos algorithm ap-
plied to A with an initial vector v1. The same Tk can be seen as a result
of the Lanczos algorithm applied to Tk with the (k-dimensional) initial vec-
tor e1. Consequently the polynomials p1 = 1, p2, . . . , pk+1 form a set of
orthonormal polynomials with respect to a scalar product defined by the
Riemann-Stieltjes integral

(p, q)k =
∫ λn

λ1

p(λ)q(λ) dω(k)(λ) =
k∑

l=1

ω
(k)
l p(θ(k)

l )q(θ(k)
l ) , (2.5)

where the distribution function ω(k) is a non-decreasing piecewise constant
function with k points of increase θ

(k)
1 , . . . , θ

(k)
k ,

ω(k)(λ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if λ < θ
(k)
1 ,∑i

l=1 ω
(k)
l if θ

(k)
i ≤ λ < θ

(k)
i+1 ,∑k

l=1 ω
(k)
l = 1 if θ

(k)
k ≤ λ ,
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and ω
(k)
l = |(zl

(k), e
1)|2. We see that the first components of the normal-

ized eigenvectors of Tk determine the weights in the Riemann-Stieltjes inte-
gral (2.5). Here pk+1 represents the (k + 1)st orthogonal polynomial in the
sequence defined by (2.4), and, at the same time, the final polynomial with
roots θ

(k)
1 , . . . , θ

(k)
k in the same sequence of orthonormal polynomials defined

by (2.5). This fact has the following fundamental consequence, formulated
as a theorem.

Theorem 1. Using the previous notation, (2.5) represents the kth Gauss
quadrature approximation to the Riemann-Stieltjes integral (2.4).

Proof. Consider a polynomial Φ(λ) of degree at most 2k− 1. Then we can
write

Φ(λ) = pk+1(λ)Φ1(λ) + Φ2(λ) = pk+1(λ)Φ1(λ) +
k∑

l=2

νlpl(λ) + ν1 ,

where Φ1(λ), Φ2(λ) are of degree at most k−1 and ν1, . . . , νk are some scalar
coefficients. From the orthogonality of 1, p2(λ), . . . , pk(λ) with respect to
both (2.4) and (2.5) it immediately follows that∫ λn

λ1

Φ(λ)dω(λ) =
∫ λn

λ1

ν1dω(λ) = ν1 =
∫ λn

λ1

ν1dω(k)(λ) =
∫ λn

λ1

Φ(λ)dω(k)(λ) .

Since χk−1(λ) = −χk(λ)/(λ − θ
(k)
l ) + a polynomial of degree at most k−2,∫ λn

λ1

χ2
k−1(λ)dω(λ) = −

∫ λn

λ1

χk−1(λ)
χk(λ)

(λ − θ
(k)
l )

dω(λ)

= −
∫ λn

λ1

χk−1(λ)
χk(λ)

(λ − θ
(k)
l )

dω(k)(λ)

= −
k∑

i=1

ω
(k)
i

[
χk−1(λ)

χk(λ)

(λ − θ
(k)
l )

]
λ=θ

(k)
i

= −ω
(k)
l χk−1(θ

(k)
l )χ′

k(θ
(k)
l ) .

Consequently

ω
(k)
l = |(zl

(k), e
1)|2 = −

∫ λn
λ1

χ2
k−1(λ)dω(λ)

χk−1(θ
(k)
l )χ′

k(θ
(k)
l )

= − η2
2η

2
3 . . . η2

k

χk−1(θ
(k)
l )χ′

k(θ
(k)
l )

(2.6)

gives for l = 1, . . . , k the weights ω
(k)
l of the kth Gauss quadrature applied

to (2.4). It is worth noticing that this identity gives squares of the first
elements of eigenvectors of any unreduced symmetric tridiagonal matrix Tk
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in terms of the values of the derivative χ′
k(λ) of its characteristic polynomial

and of the values of the characteristic polynomial χ1,k−1(λ) of the reduced
matrix with the last row and column omitted. Here (and in several other
places below) we do not use the positiveness of the subdiagonal entries of the
coefficient matrices in the Lanczos algorithm, since in the theory of unre-
duced symmetric tridiagonal matrices the positiveness of the subdiagonal
entries is insignificant, see (Parlett 1980), Lemma 7.2.1.

Clearly we can consider the Lanczos algorithm applied to Tk with the
initial vector ek, leading to the Riemann-Stieltjes integral analogous to (2.5)
but with the weights |(zl

(k), e
k)|2. Then analogously to (2.6),

|(zl
(k), e

k)|2 = − η2
2η

2
3 . . . η2

k

χ2,k(θ
(k)
l )χ′

k(θ
(k)
l )

, (2.7)

where χ2,k(λ) is the characteristic polynomial of the reduced matrix with
the first row and column omitted. It is useful to exploit the knowledge
about unreduced symmetric tridiagonal matrices, see, e.g. (Wilkinson 1965),
(Thompson and McEnteggert 1968), (Golub 1973), (Paige 1971, Paige 1980),
(Parlett 1980), (Elhay, Gladwell, Golub and Ram 1999) and also (Strakoš
and Greenbaum 1992). For other equivalent expressions for the components
of the eigenvectors, see (Meurant 2006). In particular,

χ2,k(θ
(k)
l )χ1,k−1(θ

(k)
l ) = η2

2η
2
3 . . . η2

k ,

and

|(zl
(k), e

1)|2 = −χ2,k(θ
(k)
l )

χ′
k(θ

(k)
l )

, |(zl
(k), e

k)|2 = −χk−1(θ
(k)
l )

χ′
k(θ

(k)
l )

. (2.8)

One of the beautiful and most powerful features of mathematics can be
demonstrated by a translation of a given problem into a proper language
where the problem can easily be resolved. The Lanczos algorithm and re-
lated mathematical structures offer an excellent example:

• Given A and v1, the Lanczos algorithm is usually formulated in n-
dimensional vector space, and computes the orthonormal basis vectors
v1, v2, . . . of the Krylov subspaces Kk(v1, A), k = 1, 2, . . . .

• The Lanczos algorithm can be formulated in terms of the unreduced
symmetric tridiagonal matrices Tk, k = 1, 2, . . ., with positive next to
diagonal elements, where Tk is appended by a row and a column at
each Lanczos step.

• The Lanczos algorithm can be formulated in terms of polynomials
p1(λ)=1, p2(λ), p3(λ), . . . orthonormal with respect to the Riemann-
Stieltjes integral (2.4).
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• The Lanczos algorithm can be formulated in terms of Gauss quadrature
approximations (2.5) to the original Riemann-Stieltjes integral (2.4).

Thus the purely algebraic formulation of the problem can be translated to
a problem in the classical theory of orthogonal polynomials, and vice versa.
Similarly, classical tools such as moments, continued fractions, interpolatory
quadratures etc. can be directly related to the algebraic tools developed a
century, or many decades, later. These connections are fundamental. They
were promoted in modern numerical linear algebra by many distinguished
mathematicians. Among them, tribute should be paid in particular to Gene
Golub, see e.g. (Gautschi 2002), (Strakoš and Tichý 2002), (Fischer 1996).

2.3. Approximation from subspaces and the persistence theorem

Approximation results for eigenvalues can be obtained by using the general
theory of Rayleigh–Ritz approximations. Good expositions of the theory
are given by Stewart (Stewart 2001) or Parlett (Parlett 1980). Here is an
example of such a result for an eigenpair (λi, q

i) of A that we quote from
(Stewart 2001), p. 285.

Theorem 2. Let U be an orthonormal matrix, B = UT AU be the matrix
Rayleigh quotient, and θ the angle between the eigenvector qi we want to
approximate and the range of U , where Aqi = λiq

i. Then there exists a
matrix E satisfying

‖E‖ ≤ sin θ√
1 − sin2 θ

‖A‖

such that λi is an eigenvalue of B + E.

Then one can apply a general theorem on eigenvalues of perturbed matri-
ces, see (Stewart 2001), p. 285–286.

Corollary 3. With the notation of Theorem 2, there exists an eigenvalue
µ of B such that

|µ − λi| ≤ ‖E‖.

This shows that if as a result of an iterative algorithm we get a small angle
θ between the wanted eigenvector qi and U , then we get an approximate
eigenvalue of B = UT AU converging towards the eigenvalue λi of A.

In the case of the Lanczos algorithm we build up a sequence U = Vk

and B = Tk, k = 1, 2, . . . . We will not further describe the a priori error
bounds which can be found elsewhere. We will rather concentrate on a
posteriori bounds and properties important for analysis of the finite precision
behaviour.
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Let A = QΛQT and Tk = ZkΘkZ
T
k be the spectral decompositions of A

and Tk respectively, Λ = diag (λi), Θk = diag (θ(k)
j ). Denote by V̄k ≡ QT Vk

the matrix whose columns are composed of the projections of the Lanczos
vectors on the eigenvectors of A. Since Tk = V T

k AVk = V̄ T
k ΛV̄k, we have the

following relationship between the Ritz values and the eigenvalues of A.

Proposition 4. Let Wk = (w1
(k), . . . , w

k
(k)) ≡ QT VkZk = V̄kZk,

wj
(k) ≡ (ξ(k)

1,j , . . . , ξ
(k)
n,j )

T . Then,

Θk = W T
k ΛWk,

θ
(k)
j =

n∑
l=1

(ξ(k)
l,j )2 λl,

n∑
l=1

(ξ(k)
l,j )2 = 1 .

Proof. The result follows from Tk = V T
k AVk and the eigendecompositions

of A and Tk, W T
k Wk = ZT

k V T
k QQT VkZk = I.

Clearly the Ritz values are convex combinations of the eigenvalues.
We have seen above that a small residual norm ‖rj

(k)‖ = ηk+1|ζ(k)
k,j | means

that θ
(k)
j is close to some eigenvalue λi of A. The following fundamental

result proven by Paige, which we formulate for its importance as a theorem,
shows that once an eigenvalue λi of A is at step t approximated by some
Ritz value θ

(t)
s with a small residual norm, it must be approximated to a

comparable accuracy by some Ritz value at all subsequent Lanczos steps.

Theorem 5. (Persistence theorem) Let t < k. Then,

min
j

|θ(t)
s − θ

(k)
j | ≤ ηt+1|ζ(t)

t,s | .

Proof. A proof was given by (Paige 1971) using the result in (Wilkinson
1965) p. 171, see the relation (3.9) on p. 241 of (Paige 1980).

Theorem 5 implies that for every k > t and for any unreduced symmet-
ric tridiagonal extension Tk of Tt there is an eigenvalue θ

(k)
j of Tk within

ηt+1|ζ(t)
t,s | of θ

(t)
s . The situation deserves a formal definition. In order to

avoid possible subtle ambiguities in the exposition, we slightly modify the
Definition 1 in (Paige 1980).

Definition 6. We call an eigenvalue θ
(t)
s of the t by t unreduced symmetric

tridiagonal matrix Tt stabilized to within δ ≡ ηt+1|ζ(t)
t,s | . In short, if ηt+1|ζ(t)

t,s |
is small, we call θ

(t)
s stabilized to within small δ.

We will see in Section 4 that for some Ritz value θ
(t)
s at step t of the Lanc-

zos algorithm, it can happen that for any unreduced symmetric tridiagonal
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extension Tk of Tt there is an eigenvalue θ
(k)
j very close to θ

(t)
s , even though

δ = ηt+1|ζ(t)
t,s | is not small. However the subsequent Theorem 7 and results in

Section 4 will also show that in such case θ
(t)
s must be a close approximation

to some eigenvalue of A.
Another useful result in (Paige 1971) relates the difference θ

(t)
s − θ

(k)
j to

the scalar products of the corresponding eigenvectors.

Theorem 7. Using the same notation as in Theorem 5,

(θ(t)
s − θ

(k)
j )(zj

(k))
T

[
zs
(t)

0

]
= ηt+1ζ

(t)
t,s ζ

(k)
t+1,j .

Proof. See (Paige 1980), p. 241.

Using this theorem, it is interesting to compare Ritz values on successive
steps of the Lanczos algorithm, i.e. take k = t + 1. Then, because of the
interlacing property of Ritz values it is enough to consider j = s or j = s+1,

(θ(t)
s − θ

(t+1)
j )

t∑
l=1

ζ
(t)
l,t ζ

(t+1)
l,j = ηt+1ζ

(t)
t,s ζ

(t+1)
t+1,j .

In particular this leads to

ηt+1|ζ(t)
t,s ζ

(t+1)
t+1,j | ≤ |θ(t)

s − θ
(t+1)
j |,

for j = s or j = s + 1. Assuming that ηt+1 is not small (a small ηt+1

would mean the lucky event indicating closeness to an invariant subspace
and convergence of all Ritz values), this shows that if the difference between
the Ritz values |θ(t)

s − θ
(t+1)
j | from two successive steps is small, then the

product of the last elements of the corresponding eigenvectors is small. This
suggests that Ritz values in two successive steps which are close to each other
indicate convergence to some eigenvalue of A. This question has further been
investigated in (Wülling 2005) following some earlier thoughts in (Strakoš
and Greenbaum 1992). We will discuss the related results in more detail in
Section 4.

3. The Conjugate Gradient algorithm

The conjugate gradient (CG) algorithm was developed independently by
Magnus Hestenes in the US and by Eduard Stiefel in Switzerland, at the
beginning of the fifties. Then they met during a conference in 1951 and
wrote a famous joint paper (Hestenes and Stiefel 1952). The algorithm
was derived using conjugacy and minimization of functionals. However, it
turns out that it is very closely related to the Lanczos algorithm which
can easily be applied for solving linear algebraic systems (Lanczos 1950),
(Lanczos 1952).



Finite precision Lanczos and CG 17

Consider a symmetric positive definite matrix A, right hand side b, and
the problem Ax = b. With an initial vector x0 and the corresponding
residual r0 = b − Ax0, we can seek an approximate solution to the given
linear system in the form xk = x0 + Vky

k, where Vk is the matrix of the
orthonormal basis vectors of the Krylov subspace Kk(v1, A) generated by
the Lanczos algorithm with v1 = r0/‖r0‖. If we ensure that the residual
rk = b−Axk is orthogonal to Vk, then rn+1 = 0. The resulting method will
give (in exact arithmetic) the exact solution in at most n steps and therefore
will represent a direct method. Since rk = r0 − AVky

k, this will give

0 = V T
k rk = V T

k r0 − Tky
k,

implying that the coordinates of the approximate solution in Vk are given
by the solution of the k by k system with matrix Tk. With the background
of the Lanczos algorithm, the whole method can be formulated as

Tky
k = ‖r0‖e1 , xk = x0 + Vky

k . (3.1)

The residual rk is proportional to vk+1, since from the matrix form of (2.1)

rk = r0 − AVky
k = r0 − (VkTk + ηk+1vk+1(ek)T )yk

= −ηk+1(yk, ek) vk+1 = (−1)kvk+1‖r0‖η2 · · · ηk+1/ det(Tk),

using the adjugate of Tk. We next show that ideally (3.1) is equivalent to
the CG algorithm of Hestenes and Stiefel (Hestenes and Stiefel 1952).

3.1. Relationship between the formulation of the CG and Lanczos
algorithms

In our notation, the Hestenes and Stiefel formulation of the CG algorithm
for solving Ax = b with a symmetric positive definite matrix A given
in (Hestenes and Stiefel 1952) is a follows. Given x0, r0 = b−Ax0, p0 = r0,
the subsequent approximate solutions xk and the corresponding residual
vectors rk = b − Axk are computed by

for k = 1, 2, . . .

γk−1 =
‖rk−1‖2

(pk−1, Apk−1)
,

xk = xk−1 + γk−1p
k−1 ,

rk = rk−1 − γk−1Apk−1 , (3.2)

βk =
‖rk‖2

‖rk−1‖2
,

pk = rk + βkp
k−1 .
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With v1 = r0/‖r0‖ it can be seen, for example by induction, that

Kk(v1, A) = span {r0, . . . , rk−1} = span {p0, . . . , pk−1} .

Another straightforward induction, see (Hestenes and Stiefel 1952) gives

(ri, rj) = 0 and (pi, Apj) = 0 for i �= j .

This immediately implies rk⊥Kk(v1, A) and therefore proves the equivalence
(up to signs) with the Lanczos algorithm-based formulation described above.
Eliminating pk−1 from the recurrence for the CG residual we get after a
simple manipulation

− 1
γk−1

rk = Ark−1 −
(

1
γk−1

+
βk−1

γk−2

)
rk−1 +

βk−1

γk−2
rk−2 . (3.3)

Comparing (3.2) with the Lanczos recurrence (2.1), or more easily with the
3-term recurrence (3.3) for rk, shows that

vk+1 = (−1)k rk

‖rk‖ . (3.4)

If v̂m+1 = 0 in (2.1), i.e. ηm+1 = 0 and the Lanczos algorithm stops,
then this means that r0, . . . , Am−1r0 are linearly independent while r0 ∈
span AKm(v1, A), i.e. rm = b − Axm = r0 − Aum = 0, um ∈ Km(v1, A).
Consequently, termination of the Lanczos algorithm means convergence of
CG to the exact solution.

The Lanczos coefficients αk, ηk+1 can be determined from the CG co-
efficients γk−1, βk in the following way. Using (3.4) in (3.3) and βk =
‖rk‖2/‖rk−1‖2 gives

√
βk

γk−1
vk+1 = Avk −

(
1

γk−1
+

βk−1

γk−2

)
vk −

√
βk−1

γk−2
vk−1

and therefore we have for k = 1, 2, . . . the following relations between the
coefficients

αk =
1

γk−1
+

βk−1

γk−2
, β0 = 0, γ−1 = 1,

ηk+1 =
√

βk

γk−1
.

On the other hand, the CG algorithm (3.2) can be derived from the Lanc-
zos algorithm by the LDLT decomposition (a variant of the Cholesky de-
composition where L is a lower triangular, here lower bidiagonal, factor with
ones on the diagonal and D is a diagonal matrix) of the matrix Tk. This
idea, presented in (Householder 1964), Section 5.7, and thoroughly exploited
in (Paige and Saunders 1975), see also (Stoer 1983), offers a very insightful
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explanation on the behaviour of CG when A is indefinite. Since the CG
approximate solution satisfies, see (3.1),

xk = x0 + ‖r0‖VkT
−1
k e1 , k = 1, 2, . . . ,

it does not exist whenever Tk is singular. When the Lanczos algorithm ter-
minates, the matrix Tm has all its eigenvalues equal to some eigenvalues
of the (symmetric and nonsingular) matrix A. Clearly, Tm must also be
nonsingular. An easy exercise shows that whenever Tk and Tk+1 for any
1 ≤ k < m − 1 are simultaneously singular, then Tk+2, . . . , Tm must also
be singular, a contradiction. Consequently, at least every second Tk in the
sequence T1, . . . , Tm must be nonsingular, which means that the CG ap-
proximation exists at least at every second step. It cannot, in general, be
computed via the formulas (3.2), since the Cholesky decomposition of the
singular Tk does not exist and the implementation (3.2) in such case breaks
down. If Tk is close to singular, the Cholesky decomposition is poorly de-
termined numerically for all j > k, and so is the recurrence (3.2).

Paige and Saunders showed in a very instructive way how to compute the
CG approximation xk when it exists, and how to avoid numerical instabili-
ties when Tk is close to singular. Their approach is based on exploiting the
Lanczos algorithm, but it does not require storing the Lanczos basis Vk. The
CG approximations xk are computed recursively with the help of auxiliary
approximations to the solution which exist at every step and which define the
method called SYMMLQ. They also suggested an effective implementation
of the Krylov subspace method MINRES which minimizes residual norms
and which is used for symmetric indefinite problems. The paper (Paige and
Saunders 1975) resolved open problems which had arisen from the earlier
work (Fridman 1963), (Luenberger 1969), (Luenberger 1970). The relation-
ship of different implementations were further studied in (Fletcher 1976),
and a numerically stable variant of the OD algorithm of Fridman (Fridman
1963) called STOD was suggested in (Stoer and Freund 1982), see the
overview in (Stoer 1983).

3.2. Orthogonality and optimality properties

In some important applications leading to systems with symmetric positive
definite matrices it is natural to measure the error in the A-norm,

‖x − u‖A = (x − u, A(x − u))
1
2 ,

since the A norm can be interpreted as the discretized measure of energy
which is to be minimized, see, e.g. (Arioli 2004), (Arioli, Noulard and Russo
2001). The CG algorithm is from this point of view best suited for solving
such problems, since it minimizes the A-norm of the error among all possible
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approximations from the same Krylov subspaces,

‖x − xk‖A = min
u∈x0+Kk(v1,A)

‖x − u‖A . (3.5)

Indeed, in order to reach the minimum (3.5), x − xk must be orthogonal
with respect to the inner product defined by the matrix A to the Krylov
subspace Kk(v1, A), i.e.

0 = (rj , A(x − xk)) = (rj , rk) = (vj+1, rk) for j = 0, . . . , k − 1 ,

which uniquely determines the approximate solution xk generated by the
CG algorithm described above.

Using the A-orthogonality of the direction vectors p0, p1, p2, . . . , it can
be seen from (3.2) that the kth error can conveniently be written, assuming
that CG terminates at step m with xm = x,

x − x0 =
k∑

l=1

γl−1p
l−1 + x − xk =

m∑
l=1

γl−1p
l−1 ,

x − xk =
m∑

l=k+1

γl−1p
l−1 ,

‖x − x0‖2
A =

m∑
l=1

γ2
l−1(p

l−1, Apl−1) =
m∑

l=1

γl−1‖rl−1‖2 ,

‖x − xk‖2
A =

m∑
l=k+1

γl−1‖rl−1‖2 ,

and, finally,

‖x − x0‖2
A =

k∑
l=1

γl−1‖rl−1‖2 + ‖x − xk‖2
A , k = 1, 2, . . . , m . (3.6)

The last identity reflects the mathematical elegance of the CG algorithm,
but it also demonstrates complications which have to be dealt with in finite
precision arithmetic computations. The derivation of (3.6) presented above
relies upon the global A-orthogonality of all vectors p0, . . . , pm−1,

(pi, Apj) = 0 for i �= j

which holds ideally, but which is not preserved numerically. Unless (3.6)
is supported by arguments which also hold numerically, it cannot be used
for the results of finite precision computations. This point is of principal
importance. A patient reader will, however, see in Section 5 that (3.6) indeed
holds, up to a small insignificant inaccuracy, also numerically (see (Strakoš
and Tichý 2002).

As the relationship of CG with the Lanczos algorithm suggests, there is



Finite precision Lanczos and CG 21

of course, a three–term recurrence formulation ideally equivalent to (3.2),
see, e.g. (Rutishauser 1959), (Hageman and Young 1981). The three–term
recurrence is reputed to have some disadvantages concerning the maximal
attainable accuracy, see Section 5 and (Gutknecht and Strakoš 2000). How-
ever, it is of some interest for parallel computation.

Convergence bounds for CG are typically derived from its polynomial
formulation which follows from (3.2) (see e.g. the 3-term recurrence (3.3)
for rk)

rk = ϕk(A)r0 , ϕk(0) = 1 ,

x − xk = ϕk(A)(x − x0) ,

where ϕk(0) = 1 follows e.g. from induction on the 3-term recurrence for
rk, while the x − xk expression follows since A is nonsingular. The 3-term
recurrences and the definition of the Lanczos polynomials pk in (2.3) lead to

ϕk(λ) =
pk+1(λ)
pk+1(0)

.

Here the assumption that A is symmetric positive definite guarantees that
all roots of pk are no less than λ1 > 0, and therefore pk(0) �= 0. With the
spectral decomposition of A we can easily obtain the following theorem
Theorem 8.

‖rk‖2 = ‖r0‖2
n∑

i=1

k∏
l=1

(
1 − λi

θ
(k)
l

)2

ωi ,

‖x − xk‖2 = ‖r0‖2
n∑

i=1

k∏
l=1

(
1
λi

− 1

θ
(k)
l

)2

ωi ,

‖x − xk‖2
A = ‖r0‖2

n∑
i=1

k∏
l=1

(
1√
λi

−
√

λi

θ
(k)
l

)2

ωi ,

where, as in (2.4), ωi = |(v1, qi)|2, v1 = r0/‖r0‖.
Proof. We remark that x − x0 = A−1r0 and

pk+1(λi)2

pk+1(0)2
=

k∏
l=1

(
1 − λi

θ
(k)
l

)2

.

By using this, the proofs become straightforward.

Since ‖x − xk‖A ≤ ‖ϕk(A)‖ |x − x0‖A, we have the following bound

‖x − xk‖A ≤ min
ϕ∈Πk

max
i

|ϕ(λi)| ‖x − x0‖A , (3.7)

where Πk denotes the set of all polynomials of degree at most k with the
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constant term equal to one (value one at zero). Any bound which is based
on (3.7) holds for any initial error (initial residual) and therefore represents
a worst case bound. Therefore, even the analytic knowledge of the value

min
ϕ∈Πk

max
i

|ϕ(λi)| =

∣∣∣∣∣∣
k+1∑
l=1

(−1)l−1
k+1∏

j=1,j �=l

µj

µj − µl

∣∣∣∣∣∣
−1

, (3.8)

where {µ1, . . . , µk+1} is some properly chosen subset of the distinct eigen-
values of A (on which the kth minimax polynomial assumes its maximum
absolute value), see (Greenbaum 1979), see also (Liesen and Tichy 2005),
does not help in describing possible differences in behaviour of CG for dif-
ferent initial residuals (right hand sides), cf. (Beckermann and Kuijlaars
2002), (Strakoš and Tichý 2005). The error bound (3.7) with (3.8) is sharp
i.e. at any given step k it can be attained with a certain initial vector (which
depends on k).

The generally known bound is derived from using the k-th degree Cheby-
shev polynomial on the spectral interval [λ1, λn], which gives

‖x − xk‖A

‖x − x0‖A
≤ 2

⎡
⎣(√

κ − 1√
κ + 1

)k

+

(√
κ + 1√
κ − 1

)k
⎤
⎦
−1

≤ 2

(√
κ − 1√
κ + 1

)k

, (3.9)

where κ ≡ κ(A) ≡ λn/λ1 denotes the condition number of A. This bound is
frequently attributed to (Kaniel 1966) or (Daniel 1967), but it has appeared
even earlier in the paper (Meinardus 1963), see (Li 2005). Though it is
useful in analysis of many model problems, it cannot be identified, except
for some specific cases, with convergence behaviour of CG. The bound (3.9)
describes linear convergence; it shows that the closer the condition number
is to 1, the faster is the convergence of CG when measured in the A–norm.
However we have seen in Theorem 8, and we are going to see again in the
next section, that CG convergence depends on the distribution of all the
eigenvalues of A and not just on the condition number. If the distribution
of eigenvalues is favourable, then the convergence of CG significantly accel-
erates as k increases. For an early investigation of convergence behaviour
in relation to the spectrum see, e.g. (Axelsson and Linskog 1986), (van der
Vorst 1982).

3.3. Estimating quadratic forms and identities for the error norms in CG

We have seen that given A and v1 resp. r0, v1 = r0/‖r0‖, the Lanczos al-
gorithm and CG can be formulated in terms of the orthogonal polynomials
1, p1(λ), p2(λ), . . . , and therefore in terms of the Gauss quadrature of the
Riemann-Stieltjes integral determined by A, v1. In this way, the Lanczos
algorithm and CG can be viewed as matrix representations of Gauss quadra-
ture. That explains the subtle character of problems related to the Lanczos
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and CG convergence behaviour. Here we will go a step forward to show how
the A-norm of the error and the Euclidean norm of the error in CG can
be computed using Gauss quadrature and how they can be bounded using
some of its modifications.

Computing the A–norm of the error εk ≡ x − xk is closely related to ap-
proximating quadratic forms. This was studied extensively by Gene Golub
with many collaborators during the last thirty five years. The relationship
to Gauss quadrature was summarized in (Golub and Meurant 1994), see
also (Golub and Meurant 1997), (Golub and Strakoš 1994), (Fischer 1996),
(Golub and von Matt 1991) and (Calvetti, Morigi, Reichel and Sgallari
2000). With A symmetric positive definite, the problem considered in
(Golub and Meurant 1994) was to find upper and lower bounds (or ap-
proximations) for the entries of a function of a matrix. This problem leads
to the quadratic form

uT f(A)u,

where u is a given vector and f is a smooth (possibly C∞) function on a
given interval of the real line. The more general case uT f(A)v can easily be
converted into the previous one using the well-known identity

uT f(A)v =
1
2

(
uT f(A)u + vT f(A)v − (u − v)T f(A)(u − v)

)
.

This problem is of great importance in computational sciences such as com-
putational quantum chemistry or solid states physics. The example we are
interested in for CG is f(λ) = 1/λ. This is related to the problem of com-
puting the A–norm of the error since the error εk is related to the residual
rk by the equation Aεk = rk. Therefore,

‖εk‖2
A = (Aεk, εk) = (A−1rk, rk) = (rk)T A−1rk.

Using the spectral decomposition of A (as above, here for simplicity we
assume that the eigenvalues of A are distinct and ordered, λ1 < λ2 < . . . <
λn)

f(A) = Qf(Λ)QT .

Therefore,

uT f(A)u = uT Qf(Λ)QT u

= yT f(Λ)y,

=
n∑

i=1

ωif(λi) , y ≡ QT u, ωi ≡ |(u, qi)|2 .

We consider, with no loss of generality, ‖u‖ = 1 . Clearly, similarly as in
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Section 2, the last sum represents a Riemann–Stieltjes integral

I[f ] = uT f(A)u =
∫ λn

λ1

f(λ) dω(λ),

where, as above, the distribution function ω is the non-decreasing piece-
wise constant function with points of increase at the eigenvalues of A, and
discontinuities of sizes ω1, . . . , ωn .

We are looking for upper and lower bounds L[f ] and U [f ] for I[f ],

L[f ] ≤ I[f ] ≤ U [f ] .

They can be obtained, among other techniques, by using Gauss, Gauss–
Radau and Gauss–Lobatto quadrature formulas; for the pioneering work see,
in particular, (Dahlquist, Eisenstat and Golub 1972), (Dahlquist, Golub and
Nash 1978). We shall use the following general formula∫ λn

λ1

f(λ) dω(λ) =
k∑

j=1

ω
(k)
j f(τ (k)

j ) +
M∑
l=1

ϑ
(M)
l f(σ(M)

l ) + Rk,M [f ],

where the weights ω
(k)
j , j = 1, . . . , k, ϑ

(M)
l , l = 1, . . . , M, and the nodes

τ
(k)
j , j = 1, . . . , k are to be determined while the nodes σ

(M)
l , l = 1, . . . , M

are prescribed, see (Davis and Rabinowitz 1984), (Gautschi 1968), (Gautschi
1985), (Golub and Welsch 1969). It is well known (see the excellent survey
(Gautschi 1981)) that

Rk,M [f ] =
f (2k+M)(η)
(2k + M)!

∫ λn

λ1

M∏
l=1

(λ − σ
(M)
l )

⎡
⎣ k∏

j=1

(λ − τ
(k)
j )

⎤
⎦

2

dω(λ) ,

where λ1 < η < λn . If M = 0, this leads to the Gauss rule with no prescribed
nodes. If M = 1 and we fix the node at one of the end points, σ1 = λ1 or
σ1 = λn, we have the Gauss–Radau formula. If M = 2 and σ1 = λ1, σ2 = λn,
this is the Gauss–Lobatto formula.

As presented above, the nodes and weights in the Gauss rule are given by
the eigenvalues of Tk (the Ritz values θ

(k)
j ) and the squared first elements of

the normalized eigenvectors of Tk respectively, cf. (Golub and Welsch 1969),
where Tk is the tridiagonal matrix of the recurrence coefficients generated
by the Lanczos algorithm for A and the starting vector v1 = u. For the
Gauss quadrature rule∫ λn

λ1

f(λ) dω(λ) ≡ L
(k)
G [f ] + R

(k)
G [f ] ,

with

L
(k)
G [f ] =

k∑
j=1

ω
(k)
j f(θ(k)

j ) = (e1)T f(Tk) e1 ,
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R
(k)
G [f ] =

f (2k)(η)
(2k)!

∫ λn

λ1

⎡
⎣ k∏

j=1

(λ − θ
(k)
j )

⎤
⎦

2

dω(λ) .

Consequently, in order to compute the value of the quadrature, we do not
need to determine its nodes and weights. Suppose f is such that f (2k)(ξ) >
0, ∀k, ∀ξ, λ1 < ξ < λn . Then

LG[f ] ≤ I[f ], k = 1, 2, . . .

and the Gauss rule provides in this case a lower bound for the quadratic
form. Note that this applies for f(λ) = 1/λ.

Summarizing, for estimating the A-norm of the error in CG we get

‖ε0‖2
A = (A−1r0, r0) = ‖r0‖2(T−1

n e1, e1) ,

L
(k)
G

[
1
λ

]
= (T−1

k e1, e1) ,

‖r0‖2
[
(T−1

n e1, e1) − (T−1
k e1, e1)

]
= ‖r0‖2 R

(k)
G

[
1
λ

]
≥ 0 .

and we formulate the key point as a theorem.

Theorem 9. Using the previous notation, we get the following identities
for the A-norm of the error in CG

‖εk‖2
A = ‖r0‖2 R

(k)
G

[
1
λ

]
= ‖r0 ‖2[(T−1

n e1, e1) − (T−1
k e1, e1)] ,

i.e.

‖εk‖2
A = ‖r0‖2

⎡
⎣ n∑

j=1

(zj
(n), e

1)2

λj
−

k∑
j=1

(zj
(k), e

1)2

θ
(k)
j

⎤
⎦ .

Proof. This result is known, see (Dahlquist, Golub and Nash 1978). The
proof given here is however different than the original one.

By using the definition of the A–norm and Aεk = rk = r0 − AVky
k, we

have

‖εk‖2
A = (Aεk, εk) = (A−1r0, r0) − 2(r0, Vky

k) + (AVky
k, Vky

k).

Since Tky
k = ‖r0‖e1,

(r0, Vky
k) = ‖r0‖2(T−1

k e1, e1),

and

(AVky
k, Vky

k) = (V T
k AVky

k, yk) = (Tky
k, yk) = ‖r0‖2(T−1

k e1, e1) ,

the first identity is proven. The rest follows from the spectral decomposition
of Tn and Tk.

We can conclude that the square of the A-norm of the error of the CG error



26 G. Meurant and Z. Strakoš

at the kth step divided by ‖r0‖2 represents the remainder of the kth Gauss
quadrature approximation of the corresponding Riemann-Stieltjes integral
determined by A and u = r0/‖r0‖. Therefore the Gauss quadrature (here
represented fully in the matrix form) gives lower bounds for the A-norm of
the CG error. Upper bounds can be obtained with the Gauss–Radau rule if
we have estimates of λ1, see (Golub and Meurant 1994). The second identity
reflects the complicated relationship between the CG rate of convergence and
the convergence of the Ritz values towards the eigenvalues of A. Another
point on this is given by the following theorem.

Theorem 10. ∀k there exists ϑk, λ1 ≤ ϑk ≤ λn such that the A–norm of
the error is given by

‖εk‖2
A =

‖r0‖2

ϑ2k+1
k

n∑
i=1

⎡
⎣ k∏

j=1

(λi − θ
(k)
j )2

⎤
⎦ωi ,

where ωi = |(v1, qi)|2.

Proof. The remainder of approximation
∫ λn
λ1

f(λ) dω(λ) with the Gauss
quadrature is

f (2k)(ϑ)
(2k!)

∫ λn

λ1

k∏
j=1

(λ − θ
(k)
j )2 dω(λ),

with λ1 ≤ ϑ ≤ λn. Using f = 1/λ, this gives the statement of the theorem.

This shows that in exact arithmetic when a Ritz value has converged to an
eigenvalue of A, we have eliminated the component of the initial residual in
the direction of the corresponding eigenvector of A. For related results on
this subject we refer in particular to (Axelsson and Linskog 1986) and (van
der Sluis and van der Vorst 1986).

The statement from Theorem 9 can be written as

‖ε0‖2
A = ‖r0‖2(T−1

k e1, e1) + ‖εk‖2
A .

This recalls (3.6); restated as a theorem it reads:

Theorem 11.

‖ε0‖2
A =

k∑
l=1

γl−1‖rl−1‖2 + ‖εk‖2
A .

This means that the Gauss quadrature approximation (T−1
k e1, e1) can easily
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be computed as

L
(k)
G

[
1
λ

]
=

k∑
l=1

γl−1
‖rl−1‖2

‖r0‖2
.

Theorem 11 is in fact proven in Hestenes and Stiefel (Hestenes and Stiefel
1952), Theorem 6:1 on page 416. The result has later been derived and used,
independently of the original paper, by many authors, see, e.g. (Deuflhard
1994), (Axelsson and Kaporin 2001), (Greenbaum 1997), (Arioli 2004). It
has been used without explicitly stating it in (Golub and Meurant 1997).
In some of the given references the motivation is estimation of the error in
CG.

The importance of the formula in Theorem 11 has been emphasized in
(Strakoš and Tichý 2002), (Strakoš and Tichý 2005). The first paper points
to the original reference (Hestenes and Stiefel 1952), proves the equivalence
with the Gauss quadrature and gives an elementary proof which does not
use the global orthogonality of the residuals or the global A-orthogonality
of the direction vectors

‖εk‖2
A − ‖εk+1‖2

A = ‖x − xk+1 + xk+1 − xk‖2
A − ‖εk+1‖2

A

= ‖xk+1 − xk‖2
A + 2(x − xk+1)T A(xk+1 − xk)

= γ2
k(pk, Apk) + 2(rk+1, xk+1 − xk) = γk‖rk‖2 .

The independence of the result on the global orthogonality is fundamental
– it allows one to perform a detailed rounding error analysis, and to build-
up a mathematically rigorous argument which justifies validity of the given
identity in finite precision CG computations. Without such an analysis,
results derived using assumptions which are violated because of rounding
errors, are numerically useless since they can give misleading information.
Estimating errors in CG will be reviewed in Section 5.

Regarding the Euclidean norm, (Hestenes and Stiefel 1952), Theorem 6:3
on pp. 416–417 gives the following result.
Theorem 12.

‖εk‖2 − ‖εk+1‖2 =
‖εk‖2

A + ‖εk+1‖2
A

µ(pk)
,

with

µ(pk) =
(pk, Apk)
‖pk‖2

.

Consequently, the Euclidean norm of the error is monotonically decreasing.
There is another expression for the Euclidean norm of the error which has

been derived in (Meurant 2003).
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Theorem 13.

‖εk‖2 = ‖r0‖2[(e1, T−2
n e1) − (e1, T−2

k e1)] − 2
(ek, T−2

k e1)
(ek, T−1

k e1)
‖εk‖2

A.

This result (which is, of course, equivalent to the expression obtained by
Hestenes and Stiefel) allows one, by using the spectral decomposition of Tn

and Tk, to relate the norm of the error to the eigenvalues of A and to the
Ritz values.

4. The Lanczos algorithm in finite precision

As an example, we consider a matrix that was introduced by the second
author of the present paper in (Strakoš 1991) and used in (Strakoš and
Greenbaum 1992). The matrix of dimension n is diagonal with the eigen-
values

λi = λ1 +
(

i − 1
n − 1

)
(λ1 − λn) ρn−i , i = 1, . . . , n .

The parameter ρ controls the distribution of the eigenvalues within the in-
terval [λ1, λn]. We shall use n = 30, λ1 = 0.1, λn = 100 and ρ = 0.8, which
gives well separated large eigenvalues, and call this matrix D30. Figure 4.1
shows log10 of the elements of |V T

30V30|, each plotted against its index pair
i, j, for the Lanczos algorithm applied to A = D30 with the initial vector
v1 having equal components. Ideally V T

30V30 should be the identity matrix.
But numerically this matrix is far from the identity. The magnitude of most
non diagonal entries is much larger than the level of elementary roundoff.
On the contrary, the magnitude of many of them is O(1).

It has been known since (Lanczos 1950) that the behaviour of the algo-
rithm in finite precision arithmetic is far from the ideal one. The Lanczos
vectors vk do not stay orthogonal as they ideally should. This also means
that V T

k AVk is not a tridiagonal matrix anymore and the computed tridiag-
onal matrix Tk is not the projection of A on the computed Krylov subspace.
Therefore the computed Tn is not similar to A, and the algorithm typi-
cally does not deliver sufficiently accurate numerical approximations to all
eigenvalues of A in n iterations. Moreover, some eigenvalues of A can be
numerically approximated by sets of very close Ritz values (called multiple
copies) and it is difficult to decide whether such Ritz values are good ap-
proximations of the genuine close eigenvalues of A or just artifacts caused
by rounding errors.

All these troubles are easily observable from numerical experiments; they
are pointed out in practically all textbook expositions of the effect of round-
ing errors to the Lanczos algorithm. The same attention is, however, not
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Figure 4.1. Matrix D30, log10 of |V T
30V30|

paid to the analysis and resolution of the worst consequence of rounding er-
rors, which every practical user of the Lanczos algorithm is inevitably faced
with. Since numerically the Lanczos vectors are not orthogonal and they
can very soon become linearly dependent, there is no guarantee whatsoever
that the norm of the Ritz vector

xj
(k) = Vkz

j
(k)

is close to one, where we assume for simplicity that the eigenvector zj
(k) of

the computed Tk corresponding to the Ritz value θ
(k)
j is determined exactly.

It can even numerically vanish with the norm close to the machine preci-
sion. In such a case it is absolutely unclear whether a small value of the
convergence criterion ηk+1|ζ(k)

k,j | described in Section 2.1 means convergence

of θ
(k)
j to any eigenvalue λi of A using the finite precision Lanczos algorithm.

Please notice that the trouble is not in computing ηk+1|ζ(k)
kj | more or less

accurately from Tk. We will assume (with negligible and easily quantifi-
able inaccuracy) that the exact spectral decomposition of Tk is known and
that the quantity in question is computed exactly. The trouble consists in
the fact that the derivation of the bound for min

i
|λi − θ

(k)
j | is based on the

assumption that V T
k Vk = I, which is usually drastically violated in finite

precision computations.
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It may seem that all the mathematical theory behind the Lanczos al-
gorithm is lost because of rounding errors and the loss of orthogonality.
Without a proper rounding error analysis we can not even interpret any
Ritz value as a close approximation to an eigenvalue of A.

The first, and at the same time most original and most significant step in
explaining the behaviour of the Lanczos algorithm in finite precision arith-
metic was made by Chris Paige in his Ph.D. thesis in 1971 (Paige 1971). He
proved the fundamental result that loss of orthogonality goes hand in hand
with convergence of Ritz values, and developed a theory which formed a
base for practically all further progress in this area (except, perhaps, inves-
tigations of the maximal attainable accuracy of Krylov subspace linear alge-
braic solvers). His results were published in a series of papers (Paige 1972),
(Paige 1976), (Paige 1980). Most of them are also included, together with
some subsequent developments, in the classical monograph by Beresford
Parlett (Parlett 1980).

In this paper we would like to (partially) address the following questions:

• What theoretical properties of the Lanczos algorithm remain (with an
insignificant inaccuracy) true in finite precision arithmetic?

• How can we describe the mechanics of the loss of orthogonality among
the Lanczos vectors?

• What happens numerically to the equivalence of the Lanczos and CG
algorithms as well as to the equivalence with orthogonal polynomials
and Gauss quadrature?

• How do we evaluate convergence of CG in finite precision arithmetic?

The length of this paper is limited. Unless there is a good expository
reason for presenting a part or the whole proof, in the following review we
present theorems and statements without proofs. A reader interested in the
proofs and/or further details is referred to the original works.

4.1. Finite precision arithmetic

We use the standard model for floating point computations, see e.g. (Higham
2002). Where needed we will denote by fl(X) the result of the computation
of X or denote the computed quantities by ˜ . For any of the four basic
operations (+,−, ∗, /) denoted by op we have

fl(x op y) = (x op y)(1 + δ), |δ| ≤ uM

uM being the unit roundoff which is (1/2)β1−t where β is the base and t is
the number of digits in the mantissa. This bound is obtained when rounding
to the nearest floating point number is used, but this is generally the case.
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In IEEE standard 754, double precision, (β = 2, t = 53) and

uM = 1.110223024625157 × 10−16,

which is half of the machine precision unit (machine epsilon) εM = β1−t

representing the distance from 1 to the next larger floating point number.

4.2. Paige’s theory, loss of orthogonality, stabilization and convergence

The fundamental work of Chris Paige started in the end of the sixties with
some technical reports and papers (Paige 1969), (Paige 1969b), (Paige 1970),
and (Paige 1970b), whose results led to his Ph.D. thesis (Paige 1971) which
clearly stated and proved, against the common wisdom of that time, that
even though the Lanczos algorithm in finite precision arithmetic does not
keep its theoretical properties, it nevertheless works well as a reliable and
highly efficient numerical tool for computing highly accurate approximations
of dominant, and often other, eigenvalues of large sparse matrices.

The main contributions of Chris Paige presented in his thesis or further
developed from it can be described in the following way. He derived bounds
for the local rounding errors in the Lanczos algorithm. He showed that
the last elements of the eigenvectors of the computed tridiagonal matrix Tk

indeed reliably tell us how well the eigenvalues of A are approximated by Ritz
values, and how we can always obtain useful intervals containing eigenvalues
of A. The computed Ritz values always lie between the extreme eigenvalues
of A to within a small multiple of the machine precision. Moreover, at
least one small interval containing an eigenvalue of A is found by the nth
iteration. The algorithm behaves numerically like the Lanczos algorithm
with full reorthogonalization until a very close eigenvalue approximation
is found. Of course, the most (and rightly) celebrated of the results from
Paige’s thesis is his proof that loss of orthogonality follows a rigorous pattern
and implies that some Ritz values have converged.

Paige used a handy notation to bound combinations of rounding errors.
Given ε1, . . . , εp with each |εi| ≤ uM , then there exists a value α such that

p∏
i=1

(1 + εi) = αp, |α − 1| ≤ uM .

Let D(α) represents a diagonal matrix with elements not necessarily equal
but satisfying the above bounds. Rules for manipulating such quantities are

αpαq = αp+q,

x = α(y + z) ⇒ x = αy + αz,

x = (
αp

αq
)y or x = αpαqy ⇒ x = [1 + (p + q)ε]y
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where |ε| ≤ 1.01uM . Using this notation, for the inner product we have,
neglecting higher order terms in ε,

fl(xT y) = xT D(αn) y = xT y + nε |xT | |y|,
and for the computation of the Euclidean norm

fl(xT x) = αnxT x.

For the matrix vector product Paige used

fl(Ax) = (A + δA)x, |δA| ≤ mAε |A|,
where mA is the maximum number of non zero elements per row. This leads
to

‖δA‖ ≤ mAε ‖ |A| ‖.
Let β be such that ‖ |A| ‖ = β‖A‖ . Then

‖δA‖ ≤ mAεβ ‖A‖ .

Then Paige’s thesis analyzed various implementations of the Lanczos al-
gorithm. This part of his work was published and complemented in (Paige
1972) which justifies (2.1) as the preferable variant of the Lanczos algorithm.

In the subsequent part of the thesis, published in (Paige 1976), the imple-
mentation (2.1) was studied further. The results were gathered in a theorem,
see also (Paige 1980), relations (2.10)–(2.16).

Theorem 14. Let ε0 = 2(n + 4)εM < 1
12 , ε1 = 2(7 + mAβ)εM . Then

the computed results of the Lanczos algorithm in finite precision arithmetic
satisfy the matrix identity

AVk = VkTk + ηk+1v
k+1(ek)T + δVk ,

where for j = 1, 2, . . . , k

|(vj+1)T vj+1 − 1| ≤ ε0,

‖δvj‖ ≤ ε1‖A‖,
ηj+1|(vj)T vj+1| ≤ 2ε0‖A‖,

|η2
j + α2

j + η2
j+1 − ‖Avj‖2| ≤ 4j(3ε0 + ε1)‖A‖2.

Since the local errors collected in δVk are minor, the computed quantities
satisfy the identity which formally looks very close to its exact precision
counterpart. The presence of the extra term δVk has, however, significant
consequences. As an immediate one we get the following theorem.
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Theorem 15. (Paige 1971), (Paige 1976, (21)–(23)). If Rk is the strictly
upper triangular part of V T

k Vk such that

V T
k Vk = RT

k + diag((vj)T vj) + Rk ,

then
TkRk − RkTk = ηk+1V

T
k vk+1(ek)T + δRk ,

where δRk is upper triangular with elements such that |(δRk)1,1| ≤ 2ε0‖A‖,
and for j = 2, 3, . . . , k

|(δRk)j,j | ≤ 4ε0‖A‖, |(δRk)j−1,j | ≤ 2(ε0 + ε1)‖A‖ ,

|(δRk)i,j | ≤ 2ε1‖A‖, i = 1, 2, . . . , j − 2 .

This shows how the loss of orthogonality propagates through the algorithm.
A paper which finalizes publication of many of the results presented in

the thesis (Paige 1971) was published in 1980 in Linear Algebra and its
Applications (Paige 1980). This paper is truly seminal; in our times of ma-
lign overemphasis on quantity of publications it should serve as a textbook
example of a paper which could easily be split, not for good, into several
easily publishable papers. The effect would have been similar to cutting a
large diamond of superb quality into several pieces of more common size.
The resulting pieces would still be easy to sell, but would represent common
goods. As a single brilliant piece, the paper (Paige 1980) should be, is, and
will be read decades after its publication.

The paper starts by recalling the theorems of (Paige 1976) we have quoted
above (in (Paige 1980) and also here the values of ε0 and ε1 are twice those
of (Paige 1976)). The matrix δRk is bounded by

‖δRk‖2
F ≤ 2[2(5k − 4)ε2

0 + 4(k − 1)ε0ε1 + k(k − 1)ε2
1] ‖A‖2,

where ‖ · ‖F denotes the Frobenius norm. If we denote ε2 =
√

2 max(6ε0, ε1)
then

‖δRk‖F ≤ kε2‖A‖.
The fundamental result relating the loss of orthogonality to eigenvalue con-
vergence is given in the following theorem. We present the proof for its
elegance and instructiveness.

Theorem 16. Let zj
(k) = (ζ(k)

1,j , . . . , ζ
(k)
k,j )T be the eigenvector of Tk corre-

sponding to the Ritz value θ
(k)
j and xj

(k) = Vkz
j
(k) the corresponding Ritz

vector, j = 1, . . . , k . Let ε
(k)
l,j = (zl

(k))
T δRkz

j
(k). Then,

|ε(k)
l,j | ≤ kε2‖A‖,
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and

(xj
(k))

T vk+1 = − ε
(k)
j,j

ηk+1|ζ(k)
k,j |

.

Proof. Multiplying the identity from Theorem 15 on both sides with a
different eigenvector of Tk, we have

(zl
(k))

T (TkRk − RkTk)z
j
(k) = ηk+1(xl

(k))
T vk+1ζ

(k)
k,j + ε

(k)
l,j .

Therefore,

(θ(k)
l − θ

(k)
j )(zl

(k))
T Rkz

j
(k) = ηk+1(xl

(k))
T vk+1ζ

(k)
k,j + ε

(k)
l,j .

If we take l = j, we obtain the result. The bound on ε
(k)
l,j is a consequence

of the bound on the norm of δRk.

Hence, until ηk+1|ζ(k)
k,j | is very small (at least proportional to kε2‖A‖), the

scalar product of the Ritz vector xj
(k) and vk+1 is small.

We point out that here and elsewhere in this expository paper the actual
values of the upper bounds for the quantities which are small are not at all
tight for realistic problems. They do not represent indicators of the maximal
attainable accuracy using the Lanczos algorithm. Most of the known worst
case bound techniques inevitably produce values of the bounds which are
largely oversized. But this has little effect, if any, to the value of the results
obtained by the worst case rounding error analysis. Their importance and
strength is in the insight, not in values of the bounds.

Now we come to the point. Ideally, small ηk+1|ζ(k)
k,j | means convergence of

θ
(k)
j to some eigenvalue λi of A. Numerically, however, we must take into

account that ‖xj
(k)‖ can be significantly smaller than unity, and, as given

in (Paige 1980), relation (3.15),

min
i

|λi − θ
(k)
j | ≤ ηk+1|ζ(k)

k,j |(1 + ε0) +
√

kε1‖A‖
‖xj

(k)‖
.

A bound for the accuracy of the Ritz vector then is, see (Paige 1971) and
also (Strakoš and Greenbaum 1992), Lemma 3.4,

‖xj
(k) − (xj

(k), q
i)qi‖ ≤ ηk+1|ζ(k)

k,j | +
√

kε1‖A‖
minl �=i |λl − θ

(k)
j |

.

Up to now, the analysis was relatively simple and straightforward. This is
no more true for the rest. In order to prove convergence of θ

(k)
j for ‖xj

(k)‖
significantly different from unity, Paige has ingeniously exploited properties
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of unreduced symmetric tridiagonal matrices. In particular, his concept of
stabilized eigenvalues of Tk, see Section 2, plays the main role here. Paige
has proven that if ‖xj

(k)‖ is significantly different from unity, then for some
step t < k there must be an eigenvalue of the left principal submatrix Tt of
Tk which has stabilized to within a small δ and is close to θ

(k)
j . This has

further been used to prove that if ηk+1|ζ(k)
k,j | is small, i.e. if θ

(k)
j has stabilized

to within a small δ, then it is always close to some eigenvalue λi of A,
regardless the size of ‖xj

(k)‖. Consequently, though the Lanczos algorithm
can produce multiple Ritz approximations of single original eigenvalues, it
can never produce any “spurious” eigenvalues i.e. Ritz values for which
the convergence test ηk+1|ζ(k)

k,j | is small and θ
(k)
j does not correspond to any

eigenvalue λi of A. We summarize the result of (Paige 1980), pp. 241-249 in
the following theorem.

Theorem 17. Using the previous notation, for an eigenvalue θ
(k)
j of the

matrix Tk computed via the Lanczos algorithm in finite precision arithmetic,
it holds that

min
i

|λi − θ
(k)
j | ≤ max{2.5(ηk+1|ζ(k)

k,j |+ k1/2‖A‖ε1), [(k +1)3 +
√

3n2] ‖A‖ε2} .

In the particular case when ηk+1|ζ(k)
k,j | is small, the statement can be strength-

ened.

Theorem 18. If

ηk+1|ζ(k)
k,j | ≤

√
3k2‖A‖ε2 ,

then there exists a step 1 ≤ t ≤ k and an index 1 ≤ s ≤ t such that

ηt+1|ζ(t)
s,t | ≤

√
3t2‖A‖ε2 and ‖xs

(t)‖ ≥ 1
2

,

min
i

|λi − θ(t)
s | ≤ 5t2‖A‖ε2 ,

and θ
(t)
s , xs

(t) is an exact eigenpair for a matrix within 5t2‖A‖ε2 of A.

Please note that we are unable to prove a similar result for the given θ
(k)
j .

The difficulty is related to the possible existence of other Ritz values θ
(k)
l

close to θ
(k)
j . Using (2.8), Theorems 5 and 7 from Section 2 and Theorem 16

Paige has proven that if θ
(k)
j is well separated from the other Ritz values

at the same step, then ‖xj
(k)‖ cannot be significantly different from unity,
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see (Paige 1980), relation (3.21), p. 243. In particular, if

min
l �=j

|θ(k)
j − θ

(k)
l | ≥ k5/2‖A‖ε2 ,

we have
0.42 < ‖xj

(k)‖ < 1.4 .

Then, the result proven for θ
(t)
s will hold also for θ

(k)
j . The strength of

Theorem 17 is in the fact that the statement holds for θ
(k)
j no matter how

many other eigenvalues of Tk are close to it.
The following theorem, see (Paige 1980, Theorem 4.1), shows that at least

one eigenvalue of Tn must approximate some eigenvalue of A.

Theorem 19. If n(3ε0 + ε1) ≤ 1, then at least one eigenvalue θ
(n)
j of Tn

must be within (n + 1)3‖A‖ε2 of an eigenvalue λi of the (n by n) matrix A.
Moreover, there exist 1 ≤ s ≤ t ≤ n such that

ηt+1|ζ(t)
t,s | ≤ 5t2‖A‖ε2 ,

i.e. θ
(t)
s is within 5t2‖A‖ε2, of λi .

One may raise a question whether an analogous result can be proven for
some Lanczos step k < n. The answer is negative, as follows from the
beautiful result published in (Scott 1979) which we now recall. Please note
that the previous theory must hold for any initial vector v1, ‖v1‖ = 1.
Scott’s suggestion is to find, using an idea of reconstructing the unreduced
symmetric tridiagonal matrix from the spectral data (for the history of this
classical problem see (Strakoš and Greenbaum 1992), p. 8) a particular
initial vector constructed in the following way.

Consider the diagonal matrix A = diag(λi). Then (remember the as-
sumption that the eigenvalues of A are distinct) the weights in the corre-
sponding Riemann-Stieltjes integral (2.4) are determined by ωl = |(v1, el)|2.
Using (2.6) for the last step of the ideal Lanczos algorithm, the same weights
are given by

ωl = |(v1, el)|2 = − η̂

χn−1(λl)χ′
n(λl)

, l = 1, . . . , n . (4.1)

where η̂ is a proper normalization constant chosen such that for the con-
structed vector v1 we will have ‖v1‖ = 1. Clearly, prescribing the eigenvalues
of Tn−1 (polynomial χn−1), (4.1) allows us to construct

v1 ≡ (
√

ω1, . . . ,
√

ωn)T

such that the ideal Lanczos algorithm applied to A = diag(λi) with this v1

gives Tn in the last step (and Tn−1 in the step n− 1). The point is that the
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eigenvalues Tn−1 (Ritz values θ
(n−1)
l ) can be chosen, e.g., as the midpoints of

the intervals determined by the (distinct) eigenvalues of Tn (and A). Then
no Ritz value θ

(n−1)
l at the step n−1 of the ideal Lanczos algorithm applied

to A, with v1 constructed as above, approximates an eigenvalue of A and
no ηn|ζ(n−1)

n−1,l | is small, l = 1, . . . , n − 1. But this means, by the Persistence

theorem, that no ηt+1|ζ(t)
t,s | can be small for any choice 1 ≤ s ≤ t ≤ n − 1.

Consequently, for this A and v1 no Ritz value converges until step n.
A variant of the above construction of v1 works for any given symmetric

matrix A. Moreover, using a clever argument, Scott quantified the result in
the following theorem, see (Scott 1979), Section 4, Theorem 4.3.

Theorem 20. Let A be a symmetric n by n matrix with eigenvalues λ1 <
λ2 < . . . < λn , δA ≡ minl �=i |λi − λl| . Then there exists a starting vector
v1 such that for the exact Lanczos algorithm applied to A with v1, at any
step j < n the residual norm

‖Ax(j) − θ(j)x(j)‖
of any Ritz pair θ(j), x(j) will be larger than δA/4 .

It should be emphasized that this result does not imply that no Ritz value
can be close to an eigenvalue of A before step n. Under some lucky circum-
stances this can happen. Theorem 20 proves that such a situation cannot be
revealed by the residual norm ‖Ax(j) − θ(j)x(j)‖ or by the value ηj+1|ζ(j)

j,l | .
The previous results have remarkable consequences.

• First, since small ηk+1|ζ(k)
k,j | means convergence of θ

(k)
j to some eigen-

value λi of A, Theorem 16 states:

Orthogonality can be lost only in the directions of the converged Ritz vectors.

In contrast to this, we do not have a proof that convergence of a Ritz
value is necessarily accompanied by the loss of orthogonality of vk+1 in
the direction of the corresponding Ritz vector, since e

(k)
j,j in the numer-

ator in the statement of Theorem 16 can vanish. We have, however,
not seen an example of such behaviour.

• Second, in the example constructed by Scott there is ideally no con-
vergence of Ritz values until the final step. If this remains true also
numerically, then for the particular A, v1 given by Scott there is no
significant loss of orthogonality among the computed Lanczos vectors
v1, . . . , vn ! This means that loss of orthogonality in the finite precision
Lanczos algorithm significantly depends for a given A on the choice
of v1. It should be admitted, though, that the particular initial vectors
for which the loss of orthogonality is suppressed typically have rather
weird components varying by many orders of magnitude. An interested
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reader can check the validity of the above statements and the illustra-
tive properties of the initial vectors suggested by Scott by numerical
experiments.

An argument derived from the investigation of the accuracy of θ
(k)
j as the

Rayleigh quotient shows (Paige 1980), relation (3.48)

λmin(A) − k
5
2 ‖A‖ε2 ≤ θ

(k)
j ≤ λmax(A) + k

5
2 ‖A‖ε2 ,

which is true whether θ
(k)
j has stabilized to within a small δ or not.

We have seen that until some Ritz value stabilizes to within small δ, the
orthogonality of numerically computed Lanczos vectors cannot be lost. This
poses the question as to how closely the Lanczos algorithm in finite precision
arithmetic can resemble the ideal one. Paige gives an elegant answer in terms
of the backward error. In fact, if at step k

ηl+1|ζ(l)
l,j | ≥

√
3k2‖A‖ε2 , 1 ≤ j ≤ l ≤ k , (4.2)

then ‖Rk‖2
F < 1/12 and all singular values of Vk lie in the open interval

(0.41, 1.6), see (Paige 1980), p. 250. If the Lanczos algorithm is applied with
full reorthogonalization at every step, implemented via the modified Gram-
Schmidt algorithm, then under a mild restriction, the computed columns
Vk span the exact Krylov subspace of A + δA (starting with the same v1),
where ‖δA‖ is a multiple of ‖A‖εM (Paige 1970). The following Theorem,
see (Paige 1980), Theorem 4.2, completes the argument.

Theorem 21. Using the previous notation, let (4.2) holds at step k of the
finite precision Lanczos algorithm applied to A with v1. Then there exists
a matrix

A′(k) within (3k)1/2‖A‖ε2 of A

such that for all l = 1, . . . , k + 1 the Lanczos vectors v1, . . . , vl span the
Krylov subspaces of A′(k) with the initial vector v1.

Consequently, until the computed Krylov subspace contains an exact eigen-
vector of a matrix to within 5k2‖A‖ε2 of the original matrix A (see Theo-
rem 18), this subspace is the same as the Krylov subspace generated by a
slightly perturbed matrix, i.e. it is numerically stable in the backward error
sense. It should however be noted that generally Krylov subspaces can be
very sensitive to small changes in the matrix A.

We conclude the journey through the fascinating paper (Paige 1980) with
the following comment. Until a Ritz value in steps 1 through k has stabilized
to within

√
3k2‖A‖ε2, the Lanczos algorithm behaves numerically like the

algorithm with full modified Gram-Schmidt reorthogonalization.
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4.3. Backward-like analysis of Greenbaum and subsequent results

Consider a fixed step k of the finite precision Lanczos algorithm applied
to A and v1. We ask whether the results computed in steps 1 through k
can be interpreted in some sense as results of the ideal Lanczos algorithm
applied to some matrix B with an initial vector v1

B. Indeed, as we have
seen in Section 2, the numerically computed matrix Tk storing the Lanczos
recurrence coefficients can be obtained in k steps of the k-dimensional ideal
Lanczos algorithm applied to Tk with the initial vector e1. Components of e1

in the basis of the (orthonormal) eigenvectors Zk = (z1
(k), . . . , z

k
(k)) of Tk

are equal to the elements of the first row of the matrix Zk; their squares
representing weights in the corresponding k-dimensional Riemann-Stieltjes
integral, see (2.6). Consequently, the matrix Tk can be obtained as a result
of the exact Lanczos algorithm applied to any k by k matrix B having the
same eigenvalues as Tk with the initial vector v1

B having the components in
the corresponding eigenspaces of B equal to the elements of ZT

k e1.
This relationship, although interesting, does not tell us much, since Tk

(or B) can have some eigenvalues close to the eigenvalues of A, but others
can be very different from the eigenvalues of A. As we have seen, the finite
precision Lanczos algorithm may form multiple copies of several eigenvalues
of A, with the multiplicities growing as the number of iteration steps in-
creases. But the algorithm will never give a Ritz value stabilized to within a
small δ which does not approximate any eigenvalue of A. It seems therefore
necessary to impose additional conditions on B and v1

B.
Given Tk computed in k steps of the finite precision Lanczos algorithm

applied to A with v1, we look for B and v1
B such that all eigenvalues of B

lie close to the eigenvalues of A. In addition to that, the sum of squares
of the components of v1

B in the invariant subspaces corresponding to close
approximations of some eigenvalue λi of A is required to be equal to the
squared component of v1 in the direction of the original eigenvector qi.
Finally, the point is that we require Tk to be determined in the first k steps
of the exact Lanczos algorithm applied to B with v1

B.
When Anne Greenbaum developed her highly original and deeply thought

theory on the foundations laid by Paige, she supported the previous intu-
itive argument by a rigorous mathematical derivation. She showed that the
exact Lanczos recurrence for a matrix whose eigenvalues are clustered in
small intervals can be thought of as a slightly perturbed recurrence, anal-
ogous to that of Theorem 14, for a new problem. This new problem has,
for each original cluster interval, one eigenvalue from this interval represent-
ing the whole cluster. The sum of the weights of the original eigenvalues
in each cluster is equal to the weight of its chosen representing eigenvalue,
see (Greenbaum 1989). From that she set the goal (Greenbaum 1989) – to
prove that every slightly perturbed Lanczos recurrence, including the finite
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precision Lanczos algorithm described in Theorem 14, is in the sense de-
scribed above equivalent to an exact Lanczos recurrence for a matrix whose
eigenvalues lie in small intervals about the eigenvalues of the given original
matrix.

While the details of the theorems and proofs in (Greenbaum 1989) are
quite involved and they have probably not been read carefully by many peo-
ple, the basic ideas are ingenious, and the paper (Greenbaum 1989) should
be considered an obligatory classical reading next to (Paige 1980). We will
try to recall the main points in order to reveal, within our abilities, the
beauty of the construction given by Greenbaum.

To show that the matrix Tk generated at step k of the finite precision
Lanczos recurrence applied to A with v1 is the same as that given by the
exact Lanczos algorithm applied to some B with v1

B, where all eigenvalues of
B are close to those of A, it is sufficient and also necessary to show that Tk

can be extended to a larger unreduced symmetric tridiagonal matrix (having
positive subdiagonal entries)

Tk+K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Tk ηk+1

ηk+1 αk+1 ηk+2

ηk+2 αk+2 ηk+3
. . . . . . . . .

ηk+K−1 αk+K−1 ηk+K

ηk+K αk+K

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

whose eigenvalues are all close to those of A. Then we can simply take
B ≡ Tk+K , v1

B ≡ e1.
Greenbaum has constructed Tk+K by a hypothetical continuation of the

first k steps of the finite precision Lanczos algorithm applied to A with v1.
The needed situation ηk+K+1 = 0 for some K can be reached in the following
way. Based on the theory of Paige describing the loss of orthogonality among
the Lanczos and Ritz vectors, Greenbaum has identified a set of k−mk vec-
tors in the subspace generated by the computed {v1, . . . , vk} such that the
chosen vectors are mutually (exactly) orthogonal and normalized, and the
newly computed vk+1 is also approximately orthogonal to all of them. Let
these vectors be stored as the columns of the n by (k − mk) matrix Yk−mk

.
Exact orthogonalization of vk+1 against them adds a small additional contri-
bution into the error term. Then the Lanczos recurrence can hypothetically
be continued with the exact orthogonalization of the newly generated Lanc-
zos vectors against each other and with exact orthogonalization of them
against Yk−mk

. From the exact orthogonalization we must get ηk+K+1 = 0
since (Yk−mk

, vk+1, . . . , vk+K), where K = n + mk − k, represents a set of n
orthogonal vectors in the n-dimensional space. Summarizing, we get

AVk+M = Vk+KTk+K + Fk+K ,
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where in Fk+K = ( f1, . . . , fk−1, fk, . . . , fk+K ) the first k − 1 columns are
the perturbations in the steps of the original finite precision Lanczos algo-
rithm and the other columns fk, . . . , fk+K are perturbations arising from
reorthogonalizations in Greenbaum’s construction. The way this is done
cannot be described here since it involves many details which cannot be
included in this expository paper. The key point is in the choice of the
orthonormal vectors Yk−mk

; they cannot contain, e.g., any vector in the
subspace of the converged Ritz vectors corresponding to well separated Ritz
values since these represent well-defined directions in which the orthogo-
nality is definitely lost. What is substantial, the clever choice of Yk−mk

described in (Greenbaum 1989) allows her to prove that the perturbation
vectors fk, . . . , fk+K , introduced in the hypothetical continuation of the fi-
nite precision Lanczos algorithm, are small. Paige’s results summarized in
Theorem 17 can then be applied to the k + K = n + mk steps of the hy-
pothetically extended finite precision Lanczos recurrence described above
with ηn+mk+1 = 0, where from the proofs in (Paige 1980) it follows that the
size of the errors corresponding to the perturbations fk, . . . , fk+K can be
expressed in term of their norms, giving

Theorem 22. The matrix Tk generated at step k of the finite precision
Lanczos algorithm applied to A with v1 is equal to that generated by an
exact Lanczos recurrence applied to an (n + mk) by (n + mk) matrix B
whose eigenvalues lie within

O(n + mk)
3 max{εM‖A‖, ‖fk‖, . . . , ‖fn+mk‖}

of some of the eigenvalues of A, where fk, . . . , fn+mk are the smallest pertur-
bations that will cause a coefficient ηj+1 to be zero at or before step n+mk.

The particular fk, . . . , fn+mk given via the construction in (Greenbaum
1989) are perhaps not the optimal ones, but they are small enough to justify
this approach. Finally, (Strakoš 1991), Theorem 4.2 proves the intuitively
expected fact that any matrix B with the property of Theorem 22 must have
at least one eigenvalue close to each eigenvalue of the original matrix A for
which the component of the initial vector v1 in the corresponding invariant
subspace is nonzero.

We remark that the value mk and the matrix B depend on k. The matrix
B with the required property described above is not unique; there might be
other constructions giving similar results with matrices of different sizes. If
we limit the number of steps in the application of the Lanczos algorithm to
some reasonable number N , say, much smaller than (nεM‖A‖)−1, then it is
legitimate to ask whether one can take a matrix B with v1

B such that the
exact Lanczos algorithm applied to B with v1

B will give in steps 1 through N
not necessarily identical, but very close Ritz values, to those provided by the
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finite precision Lanczos algorithm applied to A, v1. Here we do not mean
determining B (and v1

B) a posteriori for the step N , but a priori using the
spectral decomposition of A and the components of v1 in the individual
invariant subspaces. This idea was thoroughly illustrated in (Greenbaum
and Strakoš 1992), where B was constructed by spreading sufficiently many
eigenvalues in tiny intervals around each eigenvalues of A. Numerical ex-
periments suggest that the size of such intervals is much smaller than the
technically complicated bounds from (Greenbaum 1989) would suggest. A
rigorous mathematical quantification of this approach is still incomplete.
When completed, it would also lead to a possibly very elegant matrix-free
description of the Lanczos algorithm behaviour in finite precision arithmetic
in terms of the Gauss quadratures of a Riemann-Stieltjes integral with a
slightly blurred distribution function. This must, however, include a sensi-
tivity analysis of Gauss quadrature to small perturbations of the Riemann-
Stieltjes integral, which appears to be a rather difficult problem (O’Leary
and Strakoš 2005). A different but somewhat related problem concerning
sensitivity of the Lanczos coefficients to perturbations of the distribution
function in the Riemann-Stieltjes integral is investigated in (Kautsky and
Golub 1983), see also (Druskin, Borcea and Knizhnerman 2005).

A frequently asked question is whether the finite precision Lanczos al-
gorithm can simply miss an eigenvalue because it is constantly forming
copies of others. This is known as the Lanczos phenomenon, see (Cullum
and Willoughby 1985), and it can be considered resolved by the series of
works by Druskin and Knizhnermann (Druskin and Knizhnerman 1991),
(Knizhnerman 1995), (Knizhnerman 1995b), (Knizhnerman 1996), see also
(Druskin, Greenbaum and Knizhnerman 1998), (Greenbaum 1994). Using
some technical assumptions, it is proven that each eigenvalue of A will in-
deed eventually be approximated by a Ritz value. The proven statement is,
however, more of theoretical than practical interest. A considerable part of
these papers is also devoted to approximation of matrix functions.

Existence of tight clusters of Ritz values is linked to most of the techni-
cal difficulties which complicate the bounds and proofs in (Paige 1980) and
in (Greenbaum 1989). We know that a Ritz value can stabilize to within a
small δ only close to an eigenvalue of A. If the stabilized Ritz value is well
separated, then the norm of the Ritz vector cannot significantly differ from
unity, and the Ritz vector closely approximates the corresponding eigenvec-
tor of A. When a Ritz value is a part of a tight cluster, then some or all
Ritz pairs corresponding to the cluster can have weird properties.

In (Strakoš and Greenbaum 1992) several conjectures have been formu-
lated, but not proven (except for some simple cases). In particular, it is
important to ask:



Finite precision Lanczos and CG 43

C1 (Stabilization of clusters.) Does any tight well separated cluster con-
sisting of at least two Ritz values approximate an eigenvalue of A?

C2 (Stabilization of Ritz values in a cluster.) Is any Ritz value in a tight
well separated cluster stabilized to within a small δ? In particular,
in (Strakoš and Greenbaum 1992) it was conjectured that the answer
is positive, and that δ is proportional to the square root of the size of
the cluster interval divided by the square root of the separation of the
cluster from the other Ritz values.

C3 (Stabilization of weights.) Let Ritz values in a tight well separated clus-
ter, which may consist of one or more Ritz values, closely approximate
some eigenvalue λi of A. Does the sum of weights of these Ritz values in
the corresponding Riemann-Stieltjes integral closely approximate the
weight of the original eigenvalue λi?

Similar questions can be formulated solely in terms of unreduced symmetric
tridiagonal matrices, and they are therefore not specific to the finite preci-
sion Lanczos algorithm. In the latter case they are, however, of particular
importance. We will not specify the intuitive meaning of the terms ‘tight
cluster’, ‘size of the cluster interval’ and ‘separation of the cluster’ since
that would need detailed notation which we cannot afford, because of lack
of space. The intuitive meaning is clear; a technical quantification can be
found in the papers by Wülling, which we are now going to recall.

The conjectures were investigated in (Wülling 2005) and (Wülling 2005b)
with the following outcome:

• Every tight well separated cluster of at least two Ritz values must
stabilize, i.e. the answer to C1 is positive.

• There are tight well separated clusters of Ritz values (which, according
to the previous point, must approximate an eigenvalue of A) in which
none of the Ritz values is stabilized to within a small δ, i.e. the answer
to C2 is negative.

• The weights in the Riemann-Stieltjes integral corresponding to the kth
Gauss quadrature of the original Riemann-Stieltjes integral determined
by A and v1 must stabilize, i.e. the answer to C3 is positive. This is not
proven directly in (Wülling 2005), but it can be obtained by a combina-
tion of (Wülling 2005) with the inequality (8.21) in (Greenbaum 1989),
see (Wülling 2005), Section 5.

In contrast with (Strakoš and Greenbaum 1992), where the results are based
on relatively simple algebraic manipulations of the known formulas for eigen-
values and eigenvector elements of unreduced symmetric tridiagonal matri-
ces, (Wülling 2005) and (Wülling 2005b) are based on the following very
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clever observation. The bottom and top elements of the eigenvectors of Tk,
which determine the stabilization criterion and the weights respectively, are
expressed in terms of the values of polynomials χk−1(θ) and χ′

k(θ), see (2.6)–
(2.8). Moreover, χk−1(θ) and χk(θ) have simple roots in the corresponding
Ritz values. Therefore, using the Residue theorem from complex analysis,
the sum of squares of the bottom elements of the (normalized) eigenvectors
of Tk which correspond to the Ritz values in a cluster C can be viewed as
the result of the line integral

∑
C

(ζ(k)
k,l )2 = −

∑
C

χk−1(θ
(k)
l )

χ′
k(θ

(k)
l )

=
1
2π

∣∣∣∣
∫

∂DC

χk−1(z)
χk(z)

dz

∣∣∣∣ , (4.3)

where ∂DC is the circle which contains all Ritz values belonging to C in its
interior and all other eigenvalues of Tk in its exterior, see (Wülling 2005b).
Similarly, omitting technicalities, the changes in the weights can be investi-
gated using the line integral

1
2π

∣∣∣∣∣
∫

∂DC

η2
2η

2
3 . . . η2

k

χk−1(z)χk(z)
dz

∣∣∣∣∣ , (4.4)

see (Wülling 2005), relation (4.5). The results are then obtained by bound-
ing the line integrals (4.3) and (4.4), which represent an example of nontrivial
technical work. We also point out that concerning C1 and C2, the results
in (Wülling 2005b) are stronger than the formulations of the conjectures
in (Strakoš and Greenbaum 1992) have assumed.

The analysis of Wülling gives another example of an interplay between
analysis (here between complex analysis which is used to obtain bounds for
algebraic expressions formulated in terms of values of orthogonal polynomi-
als) and algebra, often observable while dealing with the Lanczos algorithm.

4.4. Intermediate quantities and the accuracy of Ritz approximations

As we have already seen, the finite precision Lanczos algorithm serves as an
instructive example illustrating several fundamental principles. Its rounding
error analysis is perhaps complicated, lengthy and full of unpleasant techni-
cal details, bounds and formulas. It however reveals rigorously the pattern,
and the conclusions can be formulated clearly, simply and in an elegant way.

In addition to that, the whole rounding error analysis reveals the follow-
ing principal fact of ‘philosophical’ importance. The Ritz values as approx-
imations to eigenvalues of the original matrix A can be computed to high
accuracy despite the fact that the intermediate quantities, i.e. the com-
puted Lanczos coefficients stored in the matrix Tk, k = 1, 2, . . . , can have
from some (typically rather modest) value of k not a single digit of accu-
racy. In other words, the number of correct digits in the computed entries
of Tk (in comparison with their ideal counterparts) is absolutely irrelevant
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for the obtainable accuracy of the approximations to the eigenvalues of A
determined from Tk. Here we see the power of the backward-like analysis
(cf. (Parlett 1990), pp. 22 and 24), and the limitations of the mechanically
applied forward error analysis, when it considers comparison of all computed
and ideal quantities.

4.5. Reorthogonalization strategies and rewards for maintaining
semiorthogonality

Although the inaccuracy of Tk does not prevent accurate approximation
of eigenvalues of A by Ritz values, it has rather unpleasant effects – mul-
tiple approximations of some eigenvalues of A, and delays in the approx-
imation of another ones. A way to suppress these side effects, which is
sometimes desirable, is to apply some correction procedure which preserves
maximally, or to some proper level, the mutual orthogonality of the com-
puted Lanczos vectors. Reorthogonalization strategies and the rewards
for maintaining a proper level of mutual orthogonality are thoroughly de-
scribed in (Scott 1978), (Parlett and Scott 1979), (Scott 1981), (Simon
1982), (Simon 1984), (Parlett 1994), and excellently summarized in (Simon
1984b), (Parlett 1992). Here we will briefly recall some main ideas. An
extended exposition can be found in the last two papers.

We start with the Ph.D. thesis of Grcar which was, to our knowledge, not
published (Grcar 1981). In contrast to other researchers, his considerations
are based on the forward error of the computed Lanczos vectors. The results
in (Grcar 1981) suggest, though the formal proofs have not been completed,
that until the above mentioned forward error exceeds the level proportional
to

√
εM , the computed Krylov subspace is correct to the level proportional

to εM (the error stays largely within the ideal Krylov subspace). In order
to maintain this so called projection property, Grcar suggested periodic re-
orthogonalization. The forward approach in (Grcar 1981) has to deal with
some theoretical and practical difficulties. The way (Grcar 1981) uses nonho-
mogeneous three term recurrences inspired later solutions of other problems,
see (Gutknecht and Strakoš 2000), (Meurant 2006).

Beresford Parlett and his Ph.D. students played the instrumental role
in the other reorthogonalization strategies, which have been conveniently
based on the results of Paige, and on backward error analysis. It was dis-
covered that in order to largely suppress the unpleasant effects of roundoff
on the approximation of the eigenvalues of A, full reorthogonalization of
the Lanczos vectors (in order to maintain their mutual orthogonality close
to εM ) is not necessary. It suffices to maintain some ‘strong linear inde-
pendence’ of the computed Lanczos vectors. Scott has shown, see (Parlett
and Scott 1979), (Scott 1978), (Scott 1981), that it is beneficial to main-
tain semi-orthogonality of the numerically computed Lanczos vectors, i.e.
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to satisfy

‖V T
k vk+1‖ ≤ √

εM , k = 1, 2, . . . . (4.5)

Since Theorem 16 proven by Paige shows that orthogonality can be lost only
in the direction of the converged Ritz vectors, it is suggested to maintain
semi-orthogonality by reorthogonalizing at each step k the newly computed
Lanczos vector against all Ritz vectors for which

ηk+1|ζ(k)
k,l | < k

√
εM‖A‖ ,

cf. (Simon 1984b), Theorem 6, p. 126. This strategy, called selective re-
orthogonalization (SO) requires computing Ritz vectors. That is avoided
in the partial reorthogonalization strategy (PRO) of Simon. Based on the
underlying rigorous analysis of Paige, Simon has suggested and justified a
simplified model of finite precision behaviour of the Lanczos algorithm. His
strategy is based on monitoring the loss of orthogonality among the Lanczos
vectors via a three-term recurrence, see (Simon 1984b), Theorem 1, p. 107.
It reorthogonalizes the newly computed Lanczos vector at step k against
those previously computed Lanczos vectors related through some heuristic
to the threshold criteria for the loss of orthogonality proportional to

√
εM/k.

Simon then proved the following theorem.

Theorem 23. Let Tk be the unreduced symmetric tridiagonal matrix com-
puted by the Lanczos algorithm applied to A with v1 that uses some re-
orthogonalization in order to maintain semi-orthogonality among the com-
puted Lanczos vectors. Then Tk is, up to a (full) perturbation matrix having
norm proportional to ε‖A‖, the orthogonal projection of A onto the subspace
spanned by the computed Lanczos vectors.

This means, see also (Simon 1984b), pp. 119-122, (Parlett 1992), pp. 255-
257, that in the above sense semi-orthogonality is as good as orthogo-
nality maintained proportional to full machine precision. Finally, Theo-
rem 4.4 of (Parlett 1992) proves that an additional full reorthonalization
at a step k guarantees an improvement of the mutual orthogonality only if
semi-orthogonality is maintained in steps 1 to k.

As mentioned above, in our exposition we assume that the exact spectral
decomposition of the unreduced symmetric tridiagonal matrix Tk is known.
Here such an assumption is reasonable, since an investigation of further
issues related to computing this spectral decomposition is out of the scope
of this review. Nevertheless, since Tk can have tight clusters of eigenvalues,
we wish at least to point out several publications (Ye 1995), (Parlett 1996),
(Parlett and Dhillon 2000), (Dhillon and Parlett 2003) and (Dhillon and
Parlett 2004) devoted to interesting issues arising from this problem.
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4.6. Recent results on the loss of orthogonality and multiple approximation
of eigenvalues

As we have said before, an attempt at forward error analysis of the Lanc-
zos algorithm was given in (Grcar 1981). Grcar obtained expressions for the
computed Lanczos vectors in terms of the exact Lanczos vectors. In this sec-
tion, we will summarize works ((Zemke 2003), (Meurant 2006)) interested in
the components of the Lanczos vectors in the directions of the eigenvectors
of A. The goal of these works is to understand the behaviour of the projec-
tions of the Lanczos vectors, their relation to the loss of orthogonality, and
the appearance of multiple copies of the eigenvalues. This problem leads to
investigation of perturbed three–term scalar recurrences. There are different
ways to write the solution of these recurrences (for instance, using polynomi-
als or using the Lanczos matrix Tk). They show what equation (2.2) giving
Lanczos vectors as polynomials in A applied to the initial vector becomes in
finite precision arithmetic.

Let us start by considering the D30 example. We look at components of
the Lanczos vectors in the directions of the eigenvectors of A. Since the
matrix D30 is diagonal, we simply consider the components of the Lanczos
vectors. The initial vector has all its components equal. The eigenvalue
which is first approximated by a Ritz value is the largest one λ30 = 100.
In Figure 4.2 the solid line is log10(|vk

30|) as a function of k, computed by
the Lanczos algorithm using full reorthogonalization of the newly computed
Lanczos vector against the previously computed Lanczos vectors, with the
reorthogonalization done twice (which we call double reorthogonalization).
Before the component of interest vk

30 reaches the square root of machine
precision, the computed results of this example can be considered close ap-
proximations to the exact precision ones. As predicted by theory, the last
component of the Lanczos vector (with double reorthogonalization) con-
verges to machine precision. The dashed line (which is hidden behind the
solid line until it is nearly at the horizontal line) is log10(|ṽk

30|) computed
by the standard finite precision Lanczos algorithm. The + signs represent
log10 of the absolute value of the differences vk

30 − ṽk
30. The horizontal line

is log10(
√

εM ). The dots give the distances of the Ritz values to λ30 after
they become smaller than a threshold of 0.1.

The computed component is almost equal to the ideal result down to
√

εM

but then, instead of continuing to go down, it starts going back up to O(1).
The difference is increasing almost from the beginning of the iterations up
to iteration 18. After that there is an almost periodic behaviour. Each
time the last component reaches O(1), a new copy of the largest eigenvalue
appears. This simple example shows there is an interesting structure in
the components of the Lanczos vectors in the directions of the eigenvectors
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Figure 4.2. D30, log10 of the absolute value of the last component of the Lanczos
vectors

of A. Similar pictures with different examples are given and analyzed in
(Zemke 2003) pp. 210–217.

In exact arithmetic we have the relation,

ηk+1v
k+1 = Avk − αkv

k − ηkv
k−1.

In finite precision computations, this relation becomes

η̃k+1ṽ
k+1 = Aṽk − α̃kṽ

k − η̃kṽ
k−1 + fk, (4.6)

where fk represents the rounding errors that occurred while computing step
k + 1. Of course, the coefficients α̃k and η̃k are different from those in
exact arithmetic since they are determined (numerically) using the computed
Lanczos vectors. This is what makes a forward analysis of the finite precision
Lanczos algorithm difficult. Let v̄k = QT ṽk, be the vector of the projections
of the computed Lanczos vector on the eigenvectors of A. We have

η̃k+1v̄
k+1
i = λiv̄

k
i − α̃kv̄

k
i − η̃kv̄

k−1
i + f̄k

i , (4.7)

where f̄k = QT fk. Solutions of such three–term recurrences are studied in
(Meurant 2006) where the following result is proven.

Theorem 24. Let j be given and pj,k be the polynomials determined by

pj,j−1(λ) ≡ 0, pj,j(λ) ≡ 1,

ζk+1pj,k+1(λ) = (λ − τk)pj,k(λ) − ζkpj,k−1(λ), k = j, j + 1, . . . .
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The solution of the perturbed scalar recurrence

ζk+1sk+1 = (λ − τk)sk − ζksk−1 + fk, (4.8)

starting from s0 = 0 and s1 is given by

sk+1 = p1,k+1(λ)s1 +
k∑

l=1

pl+1,k+1(λ)
fl

ζl+1
.

The polynomials pj,k, j > 1 are usually called the associated polynomials.
They are orthogonal with respect to a Riemann-Stieltjes integral with a
distribution function that depends on j.

Lemma 25. The polynomial pj,k, k ≥ j is given by

pj,k(λ) = (−1)k−j χj,k−1(λ)
ζj+1 · · · ζk

,

where χj,k(λ) is the determinant of T̃j,k − λI, where T̃j,k is the tridiagonal
matrix obtained from the computed Lanczos matrix T̃k by deleting the first
j − 1 rows and columns.

The possible growth of the local round off perturbations is therefore linked
to the eigenvalues of the matrices T̃j,k for all j ≤ k. A similar technique has
also been used in the investigation of the maximal attainable accuracy in
(Gutknecht and Strakoš 2000).

Applying these results to the finite precision Lanczos algorithm, that is
to (4.7), one obtains the following result.

Theorem 26. Let j be given and p̃j,k be the polynomials given by

p̃j,j−1(λ) ≡ 0, p̃j,j(λ) ≡ 1,

η̃k+1p̃j,k+1(λ) = (λ − α̃k)p̃j,k(λ) − η̃kp̃j,k−1(λ), k = j, j + 1, . . . .

Then, the computed Lanczos vector at iteration k + 1 is

ṽk+1 = p̃1,k+1(A)v1 +
k∑

l=1

p̃l+1,k+1(A)
f l

η̃l+1
. (4.9)

This is to be compared with (2.2) which gives the result in exact arith-
metic. We note that the first term p̃1,k+1(A)v1 is different from what we have
in exact arithmetic since the coefficients of the recurrence are different. If
we want to pursue the forward analysis and consider the difference between



50 G. Meurant and Z. Strakoš

ideal and computed Lanczos vectors, we have to link ṽk+1 to vk+1. Looking
at the three–term recurrences for the ideal and computed polynomials we
have

ηk+1p1,k+1(λ) = (λ − αk)p1,k(λ) − ηkp1,k−1(λ),

and
η̃k+1p̃1,k+1(λ) = (λ − α̃k)p̃1,k(λ) − η̃kp̃1,k−1(λ).

Denoting ∆pk(λ) = p1,k(λ) − p̃1,k(λ) this difference satisfies a three–term
recurrence relation,

η̃k+1∆pk+1(λ) = (λ − α̃k)∆pk(λ) − η̃k∆pk−1(λ) + gk(λ), (4.10)

with

gk(λ) = (η̃k+1 − ηk+1)p1,k+1(λ) + (α̃k − αk)p1,k(λ) + (η̃k − ηk)p1,k−1(λ).

From Theorem 24 one can obtain the solution of (4.10) and then derive
an expression for the difference between the ideal and computed Lanczos
vectors, see (Meurant 2006).

Theorem 27. As long as k < n,

ṽk+1 = vk+1 +
k∑

l=1

p̃l+1,k+1(A)gl(A)
v1

η̃l+1
+

k∑
l=1

p̃l+1,k+1(A)
f l

η̃l+1
. (4.11)

Theorem 27 shows that the difference between the ideal and the computed
Lanczos vectors arises from two sources: the local rounding errors f l and the
differences of the coefficients (which, of course, come from the differences of
the previous Lanczos vectors). From the D30 example, we have seen that
it is interesting to consider the behaviour of (v̄k+1)i = (QT ṽk+1)i. This is
given by

(QT ṽk+1)i = p̃1,k+1(λi)(QT v1)i +
k∑

l=1

p̃l+1,k+1(λi)
(QT f l)i

η̃l+1
. (4.12)

It is difficult to study the behaviour of the sum in (4.12). This shows
again the limitations of a forward analysis. However, in order to get some
insight, one can look at each term individually.

What can be shown is the fact that, for a given λi towards which a Ritz
value is converging, the absolute value of the polynomials |p̃1,k(λi)|, as a
function of k, first decreases to the level

√
εM , and then increases back to

O(1). The values |p̃j,k(λi)| for j > 1 increase as a function of k up to a
maximum of O(1), and then decrease down to

√
εM . This can be proven

rigorously for the beginning of the process until the first Ritz value has
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converged and |p̃1,k(λi)| is back to O(1). This is done by investigating the
product |p̃1,k(λ)p̃j,k(λ)| for k > j > 1, see (Meurant 2006).

The approach using polynomials offers some insight into the numerical
behaviour of the Lanczos algorithm. In the beginning, the growth of the
individual terms in the sum representing the influence of the roundoff on
the components of the Lanczos vectors in the directions of the eigenvectors
of A goes hand in hand with the decrease of the original component. But,
the argument is incomplete since we cannot analyze the whole sums defining
a component of v̄k.

One can also consider other ways to write the solution of a three–term
nonhomogeneous recurrence, see (Meurant 2006). We consider once again
the recurrence (4.8) with s1 given and ζ2s2 = (λ− τ1)s1 + f1. For simplicity
we take λ = 0 and let

Lk+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0 0
τ1 ζ2 0 · · · 0 0

ζ2 τ2 ζ3
...

...
. . . . . . . . . 0

...
ζk−1 τk−1 ζk 0

ζk τk ζk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix is written as

Lk+1 =
(

(e1)T 0
Tk ζk+1e

k

)
,

where Tk is the tridiagonal matrix of the recurrence coefficients. Let sk+1 =
( s1, . . . , sk+1 )T and g = s1, h = ( f1, · · · , fk )T then the non homogeneous
recurrence (4.8) can be written as

Lk+1s
k+1 =

(
g
h

)
.

Later on we shall use this for the Lanczos algorithm with T̃k − λiI instead
of Tk. To obtain the solution of the recurrence, the first step is to find an
expression for the inverse of Lk+1 involving Tk. This is given in the next
theorem in which we only give the entries we are interested in, and with the
proof left to (Meurant 2006).
Theorem 28.

(L−1
k+1)(1:k,1) =

1
(T−1

k )1,k

T−1
k ek,

(L−1
k+1)(1:k,2:k+1) = T−1

k − 1
(T−1

k )1,k

T−1
k ek(e1)T T−1

k ,
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From Theorem 28 we have a characterization of the solution of the three–
term recurrence (4.8) involving the inverse of Tk.

Theorem 29. The k first elements of the solution of the three–term re-
currence (4.8) are given by

sk = (L−1
k+1

(
s1

h

)
)1:k =

s1

(T−1
k )1,k

T−1
k ek + [I − 1

(T−1
k )1,k

T−1
k ek(e1)T ]T−1

k h .

(4.13)
Moreover, the last element is

sk = (T−1
k h)k − (T−1

k )k,k

(T−1
k )1,k

(T−1
k h)1 +

(T−1
k )k,k

(T−1
k )1,k

s1 ;

The solution can also be written as

sk =
(T−1

k )k,k

(T−1
k )1,k

s1 +
1

ζk(T−1
k−1)1,k−1

k−1∑
j=1

(T−1
k−1)j,1fj .

For the components of the Lanczos vectors in the directions of the eigenvec-
tors of A we apply Theorem 29 with T̆k = T̃k − λiI (which is nonsingular)
instead of Tk, where T̃k is the computed Lanczos matrix. This gives

v̄k+1
i =

(T̆−1
k+1)k+1,k+1

(T̆−1
k+1)1,k+1

v̄1
i +

1
ηk+1(T̆−1

k )1,k

k∑
j=1

(T̆−1
k )j,1f̄

j
i .

It can be shown that the first term on the right hand side of the last identity
is

(T̆−1
k+1)k+1,k+1

(T̆−1
k+1)1,k+1

v̄1
i = p̃1,k+1(λi)v̄1

i ,

where p̃1,k is the polynomial defined in Theorem 26.
We will finish this section by showing that the previous results are useful

in bounding the perturbation terms. Going back to (4.13) and denoting

Uk = I − 1

(T̆k
−1

)1,k

T̆k
−1

ek(e1)T

and h(i) = ( f̄1
i · · · f̄k

i )T , we can bound the perturbation term UkT̆k
−1

h(i)

by

‖UkT̆k
−1

h(i)‖ ≤ ‖Uk‖ ‖T̆k
−1‖ ‖h(i)‖.

It can be shown, see (Meurant 2006), that ‖Uk‖ is bounded by C
√

k/|v̄1
i |

where C is a constant independent of k, when the component of the initial
vector in the direction of the ith eigenvector |v̄1

i | = (qi, v1) is different from
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zero. This result seems not to be optimal since, when |v̄1
i | is small, the bound

can be large. This can possibly reflect the fact that, in this case, T̃k − λiI
can be close to singular. Using this bound, we have the following result.

Theorem 30. Using the previous notation and supposing |v̄1
i | �= 0, the

perturbation term in (4.13) is bounded by

‖UkT̆k
−1

h(i)‖ ≤ C
√

k

|v̄1
i |

‖h(i)‖
minj(θ

(k)
j − λi)

.

We note that

‖h(i)‖2 =
k∑

j=1

(qi, f j)2 ≤
k∑

j=1

‖f j‖2 .

Theorem 30 shows that if minj(θ
(k)
j −λi) is large (no Ritz value is close to λi),

the perturbation term for the ith component (QT ṽk+1)i of the projection of
the finite precision Lanczos vector stays bounded and small, as long as |v̄1

i |
is not too small.

This represents a different point of view to the behaviour of the finite
precision Lanczos algorithm which also helps understanding some properties
of CG convergence in presence of roundoff errors. However, the approach
here does not allow us to study how |v̄k

i | varies, since (T̆−1
k )j,1 seems to be

difficult to analyze.

5. The conjugate gradient algorithm in finite precision

Let us start with an example. Figure 5.3 depicts the Euclidean norm of the
residual when the conjugate gradient algorithm is applied to a linear system
with the matrix D30, the right hand side of all ones and starting vector equal
to zero. The solid line corresponds to the finite precision CG computation
and the dashed line to CG with full reorthogonalization of the iteratively
computed residual vectors at each step. As expected, in the latter case the
residual vanishes at iteration 30. However, in finite precision arithmetic it
takes many more iterations to get a small residual. Notice that even to reach
a modest decrease, the number of iterations is considerably larger than the
order of the matrix.

In finite precision arithmetic CG exhibits similar problems to the Lanczos
algorithm: the residual vectors lose their orthogonality. Moreover in com-
parison to what happens in exact arithmetic or with reorthogonalization,
convergence of the CG approximate solution is delayed. Intuitively, this
observed fact is closely related to convergence of Ritz values. In CG the
tridiagonal matrix Tk and the Ritz values do not appear explicitly, therefore
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Figure 5.3. D30, log10 of the norms of residuals

the appearance of multiple Ritz approximations to single original eigenvalues
is hard to notice for a practical user of the algorithm. Since we know that
ideally CG behaviour depends on convergence of the Ritz values to eigenval-
ues, see Section 3, we may also expect the same numerically. An appearance
of multiple Ritz approximations to some eigenvalues delays convergence of
Ritz values to other eigenvalues. Consequently it also delays convergence of
the approximate solutions in the finite precision CG algorithm.

We first recall the relationships between the Lanczos and CG algorithms
in finite precision arithmetic. For the finite precision CG algorithm we
present, based on the existing literature, the corresponding CG-Lanczos re-
currence which resembles, apart from the different perturbation error terms,
the finite precision Lanczos algorithm from Section 4. Using the established
correspondence, we then use the knowledge about the finite precision Lanc-
zos algorithm in order to understand the finite precision CG behaviour.

In practical applications it is important to estimate the errors of com-
puted approximate solutions. We recall the state of the art error estimates
and explain the instrumental role of rounding error analysis in convergence
evaluation and in formulation of a meaningful stopping criteria. Finally, in
addition to delaying convergence, rounding errors also limit the maximal at-
tainable accuracy of the computed approximate solutions. We address this
issue and end the section by pointing out some recent developments.
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5.1. Local rounding errors and the CG-Lanczos recurrence

Analogously to the finite precision Lanczos algorithm, the recurrences (c.f.
(3.2)) for the CG quantities computed in finite precision arithmetic can be
written in the form

γk−1 ≡ γk−1 + δk−1
γ ≡ ‖rk−1‖2

(pk−1, Apk−1)
+ δk−1

γ ,

xk = xk−1 + γk−1p
k−1 + δk

x ,

rk = rk−1 − γk−1Apk−1 + δk
r , (5.1)

βk ≡ βk + δk
β ≡ ‖rk‖2

‖rk−1‖2
+ δk

β ,

pk = rk + βkp
k−1 + δk

p ,

where the perturbation terms depend, in addition to εM , n and ‖A‖, also on
the norms and absolute values of the computed vector and scalar quantities
respectively. The detailed bounds for the perturbation terms can be found
in (Strakoš and Tichý 2002), relations (7.9)–(7.14), p. 71, see also (Meurant
2006). The local orthogonality between the vectors rk+1 and rk, rk+1 and
pk, pk+1 and Apk can also be bounded analogously to the local orthogonality
among the computed subsequent Lanczos vectors in Theorem 14, but the
bounds (and the proofs) are considerably more complicated. They depend,
in addition to εM , n and ‖A‖ also on κ(A) and ‖rk‖2, see (Strakoš and
Tichý 2002), Section 9.

Similarly to the ideal CG algorithm in Section 3.1 we can write a three-
term recurrence for the computed residuals,

rk = −γk−1Ark−1 +
(

1 +
γk−1βk−1

γk−2

)
rk−1 − γk−1βk−1

γk−2
rk−2 + ∆k

r , k ≥ 2 ,

r1 = r0 − γ0Ar0 + ∆0
r .

Introducing the CG-Lanczos vectors wk determined from the iteratively
computed CG residuals (in finite precision arithmetic wk is not in general
identical to the vector vk computed via the finite precision Lanczos algo-
rithm)

wk+1 = (−1)k rk

‖rk‖ k = 1, 2, . . . ,

we get the following theorem.

Theorem 31. The three–term recurrence for the CG-Lanczos vectors de-
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termined from the finite precision CG algorithm is

ηk+1w
k+1 = Awk − αkw

k − ηkw
k−1 + ∆k

w , k = 2, 3, . . . , (5.2)

where

ηk+1 =
√

βk

γk−1
, αk =

1
γk−1

+
βk−1

γk−2
, α1 =

1
γ0

with

γk =
‖rk‖2

(Apk, pk)
, βk =

‖rk‖2

‖rk−1‖2

and the initial vectors given by

w1 = r0/‖r0‖ + ∆0
w , η2w

2 = Aw1 − α1w
1 − ∆1

w .

Here the recurrence is based on the coefficients γk and βk determined from
the computed rk, rk−1 and pk exactly. If we want to refer to the computed
coefficients γk and βk, we still have the same kind of relationship but with
slightly different perturbation terms. We left the bound on the perturbation
terms ∆k

w to (Meurant 2006).

5.2. Results of the backward-like analysis of CG

Based on Theorem 31, the analysis of Section 4.3 will apply also to the fi-
nite precision CG algorithm, see (Greenbaum 1989), p. 24. The tridiagonal
matrix Tk, with the entries defined by the finite precision CG algorithm as
described in Theorem 31, is equal to that generated by the exact CG algo-
rithm for a matrix whose eigenvalues lie within small intervals of the original
eigenvalues. This relationship implies that the Euclidean norms of the resid-
uals in the finite precision CG algorithm are the same as those in the corre-
spondingly constructed exact CG recurrence. With the A-norm of the error,
which is minimized at each step of the ideal CG algorithm, the situation is
technically more complicated, as the reader can find in (Greenbaum 1989),
Theorem 3, pp. 26-29 since the definition of the norm depends on the ma-
trix. It can still be concluded, however, that the A-norm of the error in
the finite precision CG algorithm is reduced at approximately the same
rate as the corresponding energy-norm of the error in the constructed exact
CG recurrence. This has further been discussed and illustrated numerically
in (Greenbaum and Strakoš 1992).

Here it is assumed that the maximal attainable accuracy, which is lim-
ited because of rounding errors, is far away. We are solely interested in
the delay of convergence. In principle, the delay at step k is given by the
rank-deficiency of a basis of the computed Krylov subspace. This is in fact
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determined from the numerical rank (for some appropriate threshold cri-
terion) of the computed matrix Wk = (w1, . . . , wk), where the wj are the
CG-Lanczos vectors, cf. (Paige and Strakoš 1999).

The results can be quantified in various ways using the polynomial for-
mulation of the CG algorithm. Instead of working with orthogonal polyno-
mials corresponding to the distribution function with n points of increase
λ1 < λ2 < . . . < λn (we again assume, for simplicity of notation, that the
eigenvalues of A are distinct), one must, however consider orthogonal poly-
nomials with respect to distribution functions having possibly many points
of increase close to some or each λj .

In constructing the bounds one must consider the minimax polynomials
on the union of tiny intervals containing the eigenvalues λj , see (Greenbaum
1989), (Greenbaum and Strakoš 1992), (Greenbaum 1994). This seemingly
small difference generally has a dramatic impact. We notice this from the
fact that rounding errors can make a dramatic difference to the behaviour
of the CG errors and residuals, see, e.g., the example presented in Fig. 5.3
above. The last fact is obvious, but in terms of polynomials it is not always
correctly understood. This sometimes leads to misleading statements relat-
ing convergence behaviour of finite precision CG to incorrectly interpreted
and simplified approximations to the minimal polynomial of A.

An example of a rigorous and instructive extension of the results from
(Greenbaum 1989) and (Greenbaum and Strakoš 1992) can be found in
(Notay 1993), where the author presents bounds for the delay of convergence
of the finite precision CG algorithm in the presence of isolated outlying
eigenvalues.

5.3. Estimates of the error norms

As we have seen in Section 3.3, the initial error ε0 = x − x0 and the kth
error εk = x−xk, measured in the A-norm, are in exact precision CG ideally
related by the identity

‖ε0‖2
A

‖r0‖2
= kth Gauss quadrature +

‖εk‖2
A

‖r0‖2
,

where ε0 and εk are unknowns and the kth Gauss quadrature can be deter-
mined by

(e1)T T−1
k e1 =

k∑
l=1

γl−1‖rl−1‖2 .

In order to get an estimate for ‖εk‖2
A, we have to eliminate ‖ε0‖2

A, see (Golub
and Strakoš 1994), pp. 262-263. Subtracting the identities for k and k + d,

‖εk‖2
A

‖r0‖2
= (k + d)th Gauss quadrature
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− kth Gauss quadrature +
‖εk+d‖2

A

‖r0‖2
.

Since the last term on the right hand side is always nonnegative (and strictly
smaller than the term on the left hand side), the difference between the
Gauss quadratures determines in exact arithmetic the square of the lower
bound for ‖εk‖A/‖r0‖.

Based on the analysis of the Gauss quadrature, it was proven in (Golub
and Strakoš 1994) that this bound also works in finite precision CG com-
putations until ‖εk‖A/‖r0‖ drops below the level

√
εM . An appropriate

numerically stable implementation of this estimate was proposed in (Golub
and Meurant 1997). Experimental evidence shows that estimates obtained
with this implementation are not significantly affected by rounding errors
until the finite precision CG algorithm reaches its maximal attainable ac-
curacy level. The proof from (Golub and Strakoš 1994) cannot however be
extended in order to justify that.

As mentioned in Section 3.3, using some simple algebraic manipulations
and a lengthy rounding error analysis it was proven in (Strakoš and Tichý
2002) that in the finite precision CG algorithm the A-norm of the error
satisfies

‖εk‖2
A − ‖εk+1‖2

A = γk‖rk‖2 + δk
ε , (5.3)

where δk
ε depends on the loss of orthogonality between rk+1 and pk. Based

on (5.3),

νk,k+d =
k+d−1∑

l=k

γl‖rl‖2 (5.4)

can be used as a lower bound for ‖εk‖2
A, and this lower bound is not signifi-

cantly affected by rounding errors until ‖εk‖A/‖ε0‖A reaches a level propor-
tional to the machine precision, see (Strakoš and Tichý 2002), Section 10.

We wish to emphasize an important point. The numerical justification
for (5.4) as the squared lower bound for ‖εk‖A is in no way based on the
fact that in finite precision arithmetic this term is evaluated with negligi-
ble additional errors (here we do not even consider them). It is based on
the nontrivial fact that (5.3) holds for the finite precision CG approximate
solutions, and that δk

ε is small. We see an analogy with the rounding er-
ror analysis of the accuracy of Ritz values in the finite precision Lanczos
algorithm given by Paige, see Section 4. Here again, the error estimate is
also valid in finite precision computations, but we know this only because
of rigorous and nontrivial mathematical proofs. It can be easily shown that
ideally equivalent but numerically different formulas can lead to highly mis-
leading results, see (Strakoš and Tichý 2002), Fig. 6.1 on p. 69, (Strakoš
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and Liesen 2005), Fig. 8 on p. 319. Error estimates without appropriate
rounding error analyses represent a highly hazardous pursuit.

In order to get a lower bound for the A-norm of the error at step k, we
need to perform d extra steps. If the A-norm of the error reasonably drops
at around step k, then d can be small. If on the other hand the A-norm
of the error almost stagnates, then a small d will not assure a close lower
bound. Of course the actual convergence behaviour is not known — it is to
be estimated. Therefore the choice of d represents a difficult open problem.
In any case, the proposed lower bound offers extra information which is
computable at negligible additional cost, and which can with great benefit
complement the commonly used measures of convergence, see (Arioli 2004),
(Arioli, Noulard and Russo 2001), (Strakoš and Liesen 2005), (Strakoš and
Tichý 2005), (Meurant 1999). Moreover, if we agree to store one additional
real number per iteration, we can easily update the previous estimates at
each step. Together with the estimate for ‖εk‖A based on d, we can get (at
step k + d) an estimate for ‖εk−1‖A based on d + 1, an estimate for ‖εk−2‖A

based on d + 2, etc. In this way, the convergence of CG measured by the
A-norm of the error can be ‘reconstructed’ using lower bounds, see (Strakoš
and Tichý 2005) Fig. 5.4.

In linear systems arising from finite element discretizations of self-adjoint
elliptic partial differential equations it is natural to evaluate CG convergence
via the relative A-norm of the error

‖εk‖A

‖x‖A
=

‖x − xk‖A

‖x‖A
,

see (Arioli 2004). Subtracting the ideal identities

‖ε0‖2
A = ν0,k+d + ‖εk+d‖2

A ,

‖ε0‖2
A = ‖x − x0‖2

A = ‖x‖2
A − bT x0 − (r0)T x0

gives

‖x‖2
A = ν0,k+d + bT x0 + (r0)T x0 + ‖εk+d‖2

A ,

‖x‖2
A ≥ µk+d ≡ ν0,k+d + bT x0 + (r0)T x0 .

We will assume that ‖x − x0‖A ≤ ‖x‖A. This represent a very natural as-
sumption which should never be violated in practical computations. Indeed,
it is meaningless to use a nonzero x0 without justification that guarantees
that a nonzero initial approximation is better than taking x0 = 0. For CG,
the A-norm of the error represents the proper measure of ‘goodness’. If
in doubt, it is always possible to scale an initial approximation such that
‖x − αx0‖A is minimal, which gives

α =
bT x0

(x0)T Ax0
,
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see (Strakoš and Tichý 2005). If ‖x − x0‖A ≤ ‖x‖A, then it is easy to show
that µk+d > 0, and an algebraic manipulation gives ideally

‖εk‖2
A

‖x‖2
A

≥ νk,d

µk+d
> 0

i.e. in exact precision CG, νk,d/µk+d is a lower bound for the squared
relative A-norm of the error. Since numerically all considerations leading
to this bound are based on local orthogonality only, this estimate is also
well-established (though not always a lower bound) for the finite precision
CG algorithm. For further details we refer to (Strakoš and Tichý 2005)
and also to (Strakoš and Tichý 2002), which also describes estimation of the
Euclidean norm of the error and presents open problems. For the estimation
of the Euclidean norm, see also (Meurant 2003) and for that norm in finite
precision see (Meurant 2006).

Various other options for computing the error bounds in the CG algorithm
are summarized in (Calvetti, Morigi, Reichel and Sgallari 2000). Based on
quadrature considerations, the bounds are more complicated. They cannot
be easily justified for finite precision CG computations. Still, they can prove
useful in some particular applications.

5.4. Maximal attainable accuracy

Rounding errors generally do not allow the finite precision CG algorithm to
produce approximate solutions with an arbitrary accuracy. It is therefore
important to find out the maximal attainable accuracy which can be reached
for a given A and b. The importance of this question is, however, more in
the impact which the corresponding analysis has on understanding the CG
algorithm and its implementations, than in practical applications of the
results. In most applications, perhaps with the exception of some inner
CG iterations used in nonlinear optimization, or difficult problems with
‖A‖ large, the computation is stopped much before the maximal attainable
accuracy is reached.

Here we will assume, as above, that A is symmetric positive definite and
not close to singular, and we will concentrate on limitations on the maxi-
mal attainable accuracy caused by the possible amplification of elementary
roundoff throughout the recurrences. We leave other effects which can be
observed in indefinite systems or systems that are close to singular, to the
literature, see, e.g. (Sleijpen, van der Vorst and Modersitzki 2001). Work
on maximal attainable accuracy has focused on the residual as the easiest
and most common measure of convergence. Based on the residual, bounds
for the maximal attainable accuracy measured by the Euclidean or the A-
norm of the error can easily be obtained using the obvious relationships,
together with the characterization of conditioning of the matrix A.
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In the CG algorithm, the residual vector is recursively computed at each
step as a part of the recurrence. In finite precision arithmetic, this recur-
sively computed residual rk, see (5.1), can differ from the directly com-
puted quantity b−Axk, which is generally called the true residual. Conver-
gence of the recursive residuals was analyzed e.g. in (Wozniakowski 1978),
(Wozniakowski 1980), (Bollen 1984). Though some assumptions used there
cannot be in general satisfied by the CG recurrence (5.1), the results proved
useful in a further analysis, see (Greenbaum 1994), (Greenbaum 1997b). For
a survey of the early developments see (Higham 1996).

In (Greenbaum 1989), Theorem 2, the question of the difference between
the true residual and the recursively computed residual was analyzed, to our
knowledge, for the first time. It was shown that this difference at step k
can be bounded by a simple sum of the elementary perturbation terms at
steps 0 (which means computation of the initial residual) through k,

‖rk − (b − Axk)‖ ≤ ‖δ0
r‖ +

k∑
l=1

(
‖δl

r‖ + ‖Aδl
x‖

)
.

In (Sleijpen, van der Vorst and Fokkema 1994), (Greenbaum 1994) and
slightly later in (Greenbaum 1997b) this problem was studied further, which
resulted in the bound

‖rk − (b − Axk)‖
‖A‖ ‖x‖ ≤ O(k) εM

(
1 + max

l≤k

‖xl‖
‖x‖

)
. (5.5)

If ‖rk‖ becomes of the order of the machine precision, which is often observed
numerically for large k but which has not been completely proven yet in
the given literature, then (5.5) gives a bound for the maximal attainable
accuracy measured by the true residual norm divided by ‖A‖ ‖x‖.

This result offers the following insight into the behaviour of the finite pre-
cision CG algorithm: One can expect a high maximal attainable accuracy
with the finite precision CG algorithm if the norms of the iterates do not sig-
nificantly exceed the norm of the true solution. Since ideally the Euclidean
norm of the error is strictly decreasing, ‖x − xk‖ < ‖x − x0‖ implies

‖xk‖ ≤ 2‖x‖ + ‖x0‖ .

Using the backward-like error analysis of Greenbaum described above, this
upper bound holds true, with a small inaccuracy, also in the finite precision
CG algorithm. With a reasonable choice of ‖x0‖, the finite precision CG
algorithm can therefore be expected to achieve a high maximal attainable
accuracy if ‖A‖ is not too large.

The situation is dramatically different in CG-like algorithms applied to
nonsymmetric systems, to many of which the above analysis can also be
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applied. For detailed discussions see (Greenbaum 1997b) and (Greenbaum
1997), Section 7.3.

When the CG algorithm is implemented via the mathematically equivalent
three-term recurrence, for examples see (Rutishauser 1959), and (Hageman
and Young 1981), the maximal attainable accuracy is much more vulnerable
to local errors. As shown in (Gutknecht and Strakoš 2000), the difference
rk − (b − Axk) is then equal to a sum of local error terms (different from
those in the analysis of the two term recurrences above) plus multiples of the
same terms by factors which can become large if the norm of the iteratively
computed residual oscillates, i.e. if

max
0≤l<j≤k

‖rj‖2

‖rl‖2
is large .

Consequently a large increase in the norm of the computed iterative residu-
als can damage the maximal attainable accuracy. Moreover damage caused
at an early stage of the computation cannot in general be compensated
for in the subsequent iterations. The technique used in (Gutknecht and
Strakoš 2000) is based on writing k steps of the second order nonhomoge-
neous difference equation for the gap rk − (b − Axk) as a superposition of
the k + 1 homogeneous difference equations, which resembles the technique
used in a different context in (Grcar 1981). For further details we refer
to (Gutknecht and Strakoš 2000). As pointed out in concluding part of the
last paper, the same result can also be attained by using matrix approach
analogous to that in (Paige 1980). The matrix approach allows easier further
generalizations.

5.5. Recent developments

In this section we summarize some recent results about CG convergence in
finite precision arithmetic, see (Meurant 2006).

For the recurrence of wk given in (5.2) we can directly apply the results
we have reviewed for general three–term recurrences, see Theorem 29. Let
us denote by w̄k

i the component of wk in the direction of the ith eigenvector
of A, i = 1, 2, . . . , n.

Theorem 32. Let

δ̄k ≡ (δ̄k
1 , . . . , δ̄k

n)T = QT ∆k
w,

let j be given and pj,k be the polynomial determined by

pj,j−1(λ) = 0, pj,j(λ) = 1,

ηk+1pj,k+1(λ) = (λ − αk)pj,k(λ) − ηkpj,k−1(λ), k = j, j + 1, . . . .
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The solution of the perturbed recurrence

ηk+1w̄
k+1
i = (λi − αk)w̄k

i − ηkw̄
k−1
i + δ̄k

i ,

starting from w0
i = 0 and w1

i is given by

w̄k+1
i = p1,k+1(λi)w̄1

i +
k∑

l=1

pl+1,k+1(λi)
δ̄l
i

ηl+1
, i = 1, . . . , n .

This immediately leads to an expression for wk+1,

wk+1 = p1,k+1(A)w1 +
k∑

l=1

pl+1,k+1(A)
∆l

w

ηl+1
.

Then, using the correspondence between wk+1 and rk, we can express the
recursively determined CG residual vector computed in finite precision arith-
metic in the following form.

Theorem 33. Using the notation of Theorem 32,

rk = (−1)k ‖rk‖
‖r0‖p1,k+1(A)r0 + (−1)k‖rk‖

k∑
l=1

pl+1,k+1(A)
∆l

w

ηl+1
.

In exact arithmetic, after a Ritz value has converged, the corresponding
projections of the residual and of the error on the corresponding eigenvector
vanish. This is not the case in finite precision arithmetic. After decreasing
for a while, the projection of the residual on the subspace generated by the
corresponding eigenvector of A rises back to contribute to the norm of the
residual, because of the amplification of the local roundoff. Once a new Ritz
copy is formed, the component again decreases etc. This can delay conver-
gence and lead to oscillations of the residual components in the directions
of the individual eigenvectors of A, and, as a consequence, to oscillations of
the residual norm. In comparison to the expression for the finite precision
Lanczos-CG vector wk+1, the perturbation term in Theorem 33 is multi-
plied by ‖rk‖. Therefore, for small ‖rk‖ the possible oscillations caused by
possible amplification of the error terms are typically much less pronounced
in rk than in wk+1.

When considering CG convergence, one has to be careful on how to link
the error to the computed quantities. Ideally, the error is εk = x−xk where
x is the exact solution and it is related to the residual by Aεk = rk. But this
is only true if the residual is b − Axk. We have seen in Section 5.4 that the
computed iterative residual can be different from b − Axk. Hence there are
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more alternatives. Considering the ultimate stagnation of ‖b−Axk‖, it seems
reasonable to work, besides the true error linked to the true residual, with
(A−1rk, rk) = ‖A− 1

2 rk‖2, where rk is the (recursively) computed iterative
residual, as another useful measure. We denote it εk ≡ A−1rk. Then, we
have the following result whose proof is based on a lengthy analysis of local
orthogonality, see (Meurant 2006), cf. (Strakoš and Tichý 2002), relation
(10.1).

Proposition 34.

‖εk+1‖2
A = ‖εk‖2

A − γk‖rk‖2 + εMCk
1 ‖rk‖2 + ε2

MCk
2 ‖rk‖2,

where |Ck
1 | and |Ck

2 | are bounded by quantities involving ‖rk‖ and ‖pk‖.

This Proposition leads to a result about strict decrease of the error norm
under a restriction on the condition number of A.

Theorem 35. If

κ(A) <
1

εMλ1|Ck
1 |

+ O(εM ) , ∀k,

then
‖εk+1‖A < ‖εk‖A.

Hence, if the condition number is not too large, ‖εk‖A is, as in exact arith-
metic, strictly decreasing. However, having a limitation on κ(A) is not
satisfactory since in numerical computations we hardly observe an increase
or oscillation of ‖εk‖A.

This result complements those of Anne Greenbaum (Greenbaum 1989)
who obtained a decrease of the A–norm of the error without an explicit
restriction on the condition number but with additional small terms. A
proof of the strict decrease of ‖εk‖A and a proof that the computed iterative
residual must ultimately vanish, i.e. ‖rk‖ → 0, without any restriction on
the condition number, remains still open.

6. Conclusions

The Lanczos and conjugate gradient algorithms are considered effective nu-
merical tools for computing eigenvalues, approximating matrix functions and
quadratic forms, and for solving (linear) algebraic equations. As we have
seen, they also represent interesting mathematical objects with very deep
links reaching far beyond the borders of numerical linear algebra, numerical
mathematics or algebraic structures. This is perhaps why the investigation
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into their behaviour in exact and in finite precision arithmetic is leading to
results which are being, piece by piece, assembled into a rigorous, consistent,
rich and beautiful mathematical theory. In this way the Lanczos and con-
jugate gradient algorithms represent another example along the lines drawn
in (Baxter and Iserles 2003). The rigour and beauty of their mathematical
structure, including the effects of rounding errors, reveals once again the
presence of such attributes in the field called computational mathematics.
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