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Abstract. In this paper some results are reviewed concerning the characterization of inverses
of symmetric tridiagonal and block tridiagonal matrices as well as results concerning the decay of the
elements of the inverses. These results are obtained by relating the elements of inverses to elements
of the Cholesky decompositions of these matrices. This gives explicit formulas for the elements of the
inverse and gives rise to stable algorithms to compute them. These expressions also lead to bounds
for the decay of the elements of the inverse for problems arising from discretization schemes.
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1. Introduction. When solving elliptic or parabolic partial differential equa-
tions (pde’s) with finite difference methods, we have to consider tridiagonal (for one-
dimensional (1D) problems)or block tridiagonal (for higher dimensions) matrices. For
developing and studying preconditioners for iterative methods like the conjugate gra-
dient method, it is often of interest to know the properties of the inverse, for instance,
how the elements of the inverse decay along a row or a column; see [13], [14], [17].

Inverses of tridiagonal matrices have been extensively studied in the past, al-
though it seems that most of the results that have been obtained were unrelated and
that many of the authors did not know each others’ results. To mention just a few,
let us cite [1], [2], [5], [6], [18], [19], [24], [26], [29], and [34], where formulas are given
for inverses of tridiagonal matrices and [3], [9], [10], [24], [29], [31], and [32], where
extensions to block tridiagonal or banded matrices are provided.

Closed form explicit formulas for elements of the inverses can only be given for
special matrices, e.g., Toeplitz tridiagonal matrices [19] corresponding, for instance,
to constant coefficients 1D partial differential elliptic equations, or for block matrices
arising from separable 2D elliptic pde’s [3]. We recall that a Toeplitz matrix is a
matrix with constant diagonals.

Basically there are two kinds of papers: the first gives analytic formulas for
special cases; the second gives characterizations of matrices whose inverse has certain
properties, e.g., being tridiagonal or banded.

Historically, the oldest paper we found considering the explicit inverse of matrices
is that of Moskovitz [29] from 1944, in which analytic expressions are given for 1D and
2D Poisson model problems. A very important paper for the inverses of band matrices
is the seminal 1959 work by Asplund [1] in which conditions under which the inverse
of a matrix is banded were given. In the 1960 paper by Bickley and McNamee [10],
formulas were given for the 2D problem and separable equations. In 1969, Fischer
and Usmani [19] gave a general analytical formula for symmetric Toeplitz tridiago-
nal matrices, i.e., for 1D model problems. In 1971, Baranger and Duc-Jacquet [5]
considered symmetric factorizable matrices (whose elements are aibj for i <_ j) and
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proved that the inverse is tridiagonal (this is Asplund’s result) and conversely. In 1973,
Bukhberger and Emel’yanenko [11] gave formulas based on Cholesky factorization for
the inverse of a symmetric tridiagonal matrix. Two 1977 papers, by Bank and Rose
[3] and Bank [4], gave analytic formulas for the inverse of block tridiagonal matrices
arising from separable problems. The 1979 Ikebe paper [24] studied inverses of Hes-
senberg matrices; specialization of this result to tridiagonal matrices gave Asplund’s
results. This result is extended to block tridiagonal matrices when the outer blocks
are nonsingular. In 1979, Barrett [6] introduced the "triangle property" (a matrix R
has this property if Rj (RcRcj)/Rck); a matrix having the "triangle property"
and nonzero diagonal elements has a tridiagonal inverse and vice versa). This result
is not strictly equivalent to Asplund’s result. In one theorem there is a restriction
on the diagonal elements and in the other there is a restriction on the nondiagonal
elements of the inverse. Also in 1979, Yamamoto and Ikebe [34] obtained formulas
for the inverses of banded matrices. Fadeev [18] gave another proof of Ikebe’s result
for Hessenberg matrices in 1981. Another important paper is that by Barrett and
Feinsilver [7]. It established a correspondence between the vanishing of a certain set
of minors of a matrix and the vanishing of a related set of minors of the inverse.
This gave a characterization of inverses of banded matrices; for tridiagonal matrices
this reduces to the "triangle property." In 1984 Barrett and Johnson [8] generalized
the work of Barrett and Feinsilver. Also in 1984, Rizvi [32] generalized the "triangle
property" to block matrices and gave expressions for inverses of block tridiagonal ma-
trices. The 1987 paper by Rbzsa [31] generalized Asplund’s work. In 1986, Romani
[30] studied the additive structure of the inverses of banded matrices, namely, that
the inverse of a 2k + 1 diagonal symmetric banded matrix can be expressed as a sum
of k symmetric matrices belonging to the class of inverses of symmetric irreducible
tridiagonal matrices. In 1988, Bevilacqua, Codenotti, and Romani [9] gave formulas
for block Hessenberg and block tridiagonal matrices with nonsingular outer blocks.

Regarding the decay of the elements of inverses the most interesting papers are
those by Demko [15], in which results are proved for particular banded matrices, and
by Demko, Moss, and Smith [16], which presents results for positive definite banded
matrices. In 1987, Greengard [22] studied the decrease of Green’s functions which is
equivalent to studying the inverse of the 2D and 3D Poisson problems. Eijkhout and
Polman [17] in 1988 exhibited bounds for the inverses of M-matrices, the Cholesky
factors of which are bounded by diagonally dominant Toeplitz matrices. These matri-
ces .arise in the design of block preconditioners (cf. [13]). Also in 1988, Kuznetsov [25]
gave results on the decay of the elements of the inverse for symmetric positive definite
matrices that are used in a domain decomposition method (cf. Meurant [28]).

When no explicit solutions for the elements of the inverse can be found, they
are usually given in terms of solutions of second-order linear recurrences [5], [9], [14].
However, as it was shown in Concus and Meurant [14] for tridiagonal and pentadiag-
onal matrices, these recurrences can be numerically unstable and can lead to trouble
for large problems. In this paper we obtain most of the previously known results as
well as new ones using a unified framework. Simple relationships between elements of
the inverse and Cholesky or block Cholesky decompositions are obtained. This allows
us to obtain analytic formulas and to compute elements of the inverse in a very stable
way, at least when the matrix is symmetric and positive definite. We also provide
estimates of decays of the elements of the inverse. It is clear that most of our results
can be easily extended to nonsymmetric matrices with straightforward modifications.

The outline of the paper is as follows: in 2, we study the tridiagonal case corre-
sponding to one-dimensional pde problems, in particular, simple but precise formulas
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for the decay of the elements of the inverse are given. Section 3 is devoted to block
tridiagonal matrices. We solve the general problem and as a consequence we easily
get formulas for separable two-dimensional elliptic problems. In 4, results about the
decay of the inverse are recalled and it is shown how to obtain estimates for two-
dimensional pde problems.

Throughout the paper, it is supposed that the matrices under consideration are
nonsingular and that their Cholesky decompositions exist. So, the principal minors of
the matrices are also nonsingular.

2. Tridiagonal matrices. We are interested in finding formulas for the inverse
of a symmetric tridiagonal matrix T of order n,

al -b2
-b2 a2 -b3

-bn-1 an-1 -bn
-bn an

As a particularly interesting case for pde’s, the example of a tridiagonal Toeplitz
matrix will be considered:

a -1
-1 a -1

a o o
-1 a -1

-1 a

It should be noted that this latter case has been previously studied by several authors;
see, for instance, [19] and [29]. A good reference for numerical methods for solving
Toeplitz linear systems is [12].

2.1. The general case. It is natural to suppose that bi 0, for all _> 2 (that
is, T is irreducible) as if one of the bi’s is 0, then the problem can be reduced to two
smaller subproblems (for a discussion of this issue, see [6]). Here, the sign is just a
technical convenience and has no specific significance, unless otherwise stated. From
[1], [5], and [18] it is known that there exist two sequences {u}, {v}, i 1, n such
that

UlVl UlV2 UlV3 UlVn

UlV2 U2V2 t2V3 U2Vn

T-1 UlV3 u2v3 u3v3 U3Vn

UlVn U2Vn ?.t3Vn UnVn

This result can also be easily proved with the techniques used in 3. Moreover, every
nonsingular matrix of the previous form (the matrices of this class have been called
"matrices factorisables" in [5]) is the inverse of an irreducible tridiagonal matrix. It
means that to know all the elements of T-1, it is enough to compute its first and last
columns. In fact, it is enough to know 2n- 1 quantities as Ul can be chosen arbitrarily
(note that 2n- 1 is the number of nonzero terms determining T). The second-order
recurrences for computing ui and vi given in [13] can be unstable and can lead to
trouble for large systems, but this problem was already solved in [14]. However, much
simpler formulas can be obtained if {u}, {v} are computed in the following way: let
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us first compute v. The {ui}, {vi} are only defined up to a multiplicative constant.
So, for instance, Ul can be chosen as ul 1. Then let v (vl,..., vn)T; as ul 1
the first column of T-1 is v, so

Tv el

where el (1, 0,..., 0)T.
Because of the special structure of the right-hand side, it is natural to consider a

UL decomposition of T:
T UDI1UT,

with

dl -b2
d2 -b3 d2

".. ".. Du "..
dn-1 -bn

d, d,

By inspection, it is easily seen that

b2+1 i=n-1 1dn an, di ai
di+

With the help of the UL decomposition the linear system for v can be easily
solved.

PROPOSITION 2.1.

1 b2"." bi
v1= -1, vi

dl di-ldi
i 2, n.

Proof. It is clear that solving Tv el is equivalent to solving

1DIUTv- 1 el,

and the proposition follows. D
Let u (u Un)T,... the last column of T-1 is vnu and therefore

vnTu en

where en (0,..-, 0, 1)T. To solve this system, because of the structure of the right-
hand side, it is easier to use an LU decomposition of T:

T LD-1LT

with
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By inspection,

PROPOSITION 2.2.

Un-i
bn-i+ bn

Proof. Clearly,

Solving for u gives the result.
Note that

1DLLTu en.nVn

b2 bn d dn

but dl... d 51-.-5 det T, so u 1, as the values of (vi} were computed with
this scaling.

Together, the preceding results prove the following theorem.
THEOREM 2.3. For the general case,

(T-1),j uivj bi+ bj
dj+l d
&

di+ dn(T- ), uivi 5n

vi, vj>i,

In these products, terms that have indices greater than n must be taken equal to 1.
This gives a computationally stable and simple algorithm for computing elements

of the inverse of T as it involves only Cholesky decompositions that are proved to be
stable when the matrix T possesses enough properties as to be diagonally dominant.

We are also interested in characterizing the decrease of the elements of T- along
a row or column starting from the diagonal element. In [13], it is proved that if T
is strictly diagonally dominant, then the sequence (ui} is strictly increasing and the
sequence {vi} is strictly decreasing. From Theorem 2.3, we have

(T-1)i,j dj+l

(T-1)i,i+l b+l’

and, therefore,

(T-),
dj+l dj+l T_
bj+l bj+l i,j+l.

By induction, the following result is proved.
THEOREM 2.4. IfT is strictly diagonally dominant (ai > bi + bi+, for all i) then

the sequence di is such that
di > bi.

Hence, the sequence To-. is a strictly decreasing function of j, for j > i. Similarly,
we have > bi+l.

Proof. We have
dn an > bn.
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Suppose di+l > bi+l; then

di -ai b2+1 > ai bi+l > bi.

Remark that the theorem can be proved under a weaker hypothesis. Namely, we
can only suppose that T is diagonally dominant (ai >_ bi -Fbi+l) and an > bn, al > b2.
This result was already proven in [13], although not in the same way.

2.2. The Toeplitz case. Here, as an example, the Toeplitz tridiagonal matrix

Ta that was defined in the introduction of 2 is considered. The interesting thing is
that we are then able to analytically solve the recurrences arising in the Cholesky
decompositions. This is given in the following lemma.

LEMMA 2.5. Let

Ci--i

Then, if a 2,

where

rd=
a :}: v/a2 4

are the two solutions of the quadratic equation r2 -ar + 1 O.
ai (i + 1)/i.

Proof. We set

Ci-- fli--l"
Therefore, we now have a recurrence on i:

Ira 2, then

The solution of this linear second-order difference equation is well known (see, for
instance, [23]):

+
From the initial conditions we have co + Cl 0. Hence, the solution can be written as

+1 ri+ );

when a 2, it is easy to see that i + 1, and the result follows. D
This proof explains the difficulties that arise when using the second-order recur-

rences for ui and vi. As r+ > 1, -- oo when i -- oo. On the contrary, ci remains
bounded.

Remark. can be written in the other form,

sinh((i + 1))
ci sinh(i)

sin((/+ 1))
sin(i)

a
where cosh()= if a>2,

a
where cos()= if a<2.
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From this lemma, the solutions of the recurrences involved in the Cholesky decompo-
sitions of Ta can be deduced. When a 7 2, we have

dn-i+l
r_+1 ri+1_

Solving for v the following result is obtained.
PROPOSITION 2.6. For the sequence vi in T1,

Vi r_+ rn__+l
Vi.

Note in particular, that
r/ r_

Vn rn++ rn+l"
It is obvious that for the Toeplitz case, we have the relation

i dn-i+

Solving for u, the following result is obtained.
PROPOSITION 2.7. For the sequence ui in Tg-1,

r+ r_

With these two last results, the expression of the elements of the inverse can be
computed.

THEOREM 2.8. For j >_ i and when a 7 2,

(Ta-1)i,j uivj
(r_ r/_)(r;-j+l rn-j+l)

(r+ r_)(r+1 rn_+1)

where r+ are the two solutions of the quadratic equation r2 -ar + 1 O.
also be written (for a > 2) as

This can

asinh(i) sinh((n j + 1))
with cosh() ;(Ta-1)i’J sinh() sinh((n + 1))

for a- 2, we have

(Ta)_l n j + 1
i,j =i n-- 1

These formulas are similar to the ones in [19], where they were obtained with a
different method.

Regarding the decay of the elements of Tg-1, in this simple case we can obtain
useful bounds. Suppose that a > 2. Then we have

uivj r-J+l--rn_-j+l r;-j+l....
n-j rn-J > r+ > 1

uivj+ r-3 rn__-3 r+
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and

uivj < r-j-1 (1 ri)(1 rn-+)
(1 -r)(1 -rn+l)

where r (r_ /r+ < 1.
From this, the following result can be deduced.
THEOREM 2.9. If a > 2, we have the bound

j>_i+l,

(ra-1)i,j < (r_)J-i(ra-1)i,i V i, /j

_
i,

r_-+
V i Vj >_i+ l.(Ta-1)i’J < 1 r

This implies that the following estimate holds: let e > 0 and e2 > 0 be given:

(ra-1)i’J
_

el if j- i > lge[
ra-1)i,i log r+

(ra-1)i,j
_
2 if j- i + 1 _> log [e2(1 r)] -1

log r+

3. Block tridiagonal matrices. In this section we consider the symmetric
block tridiagonal matrix

Dx -AT
-A2 D2 -AaT

-A,_I D,_ -AT
-A D,

Each block is of order n, although this is not essential for our results.
In the two-dimensional partial differential applications we have in mind, the ma-

trices D will be tridiagonal and the matrices Ai will be diagonal, but this does not
influence the method and the results that will be described in this section.

As an interesting example, the following problem will be considered:

T -I
-I T -I

AT ".. ".. "..
-I T -I

-I T

T being a Toeplitz tridiagonal matrix. This example arises, for instance, from the
discretization of the Poisson equation in a square.

3.1. The general case. To obtain the formulas for the inverse, three different
block factorizations will be used: LU, UL, and a twisted factorization. Let us first
give formulas for the block LU and UL factorizations. Denote by L the block lower
part of A. Then,

A (A + L) A- (A + LT) (E + LT) --1 ( q_ L),
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where A and ] are block diagonal matrices whose diagonal blocks are denoted by Ai
and Ei and are given by block recurrences

A1

A Di A (A-I)-I (Ai)T,
D,,

P D (A+I (+1) Ai+.

A twisted factorization can be defined for each j 2,..., n- 1 as

A ((I) + :)(I)-1 ((I) + T)

where (I) is a block diagonal matrix and : has the following twisted block structure:

-A 0 -Ay+l

where the row with two nonzero terms is the jth block row. By inspection, we have

(I)i Ai, l,.., j- 1,
(I)i Fi, i n,... ,j + 1,

--I T ]-:IAj+I(I)./= D./- A./Aj_ Ay A’+
It should be noted that when we know the LU and UL decompositions, we know the
twisted factorizations for all j’s. So, these twisted factorizations are only a convenience
to obtain simpler formulas.

With the twisted factorization at hand, the block jth column X of the inverse
can be computed in a straightforward way.

THEOREM 3.1. The jth block column X of A-1 is given by

A_l+ A-l+l Aj
--1NiT1 -]jl Aj+l Y]j-bl-l’’" -;1 Aj4-1

These expressions are valid for any block tridiagonal matrix that satisfies our
hypothesis. When matrices Ai are nonsingular, A is said to be proper (cf. [9]); in this
case, the formulas can be simplified. Using the uniqueness of the inverse, we can prove
the following.

PROPOSITION 3.2. If A is proper, then

From these relations, we deduce alternate formulas for the other elements of the
inverse.



716 G]RARD MEURANT

THEOREM 3.3. If A is proper,

Xj-l (AT_IAj-I-1 ATA1)(E-IA ’’’AT- -1jEj ), /= 1,.-.,j- 1,

Xj+l -1(Aj+l+lEj+l+i...A E,)(AA,...A-IA+AI), l= 1,...,u-j.

As before, the elements of the inverse can be computed in a stable way using block
Cholesky decomposition when the matrix is diagonally dominant or positive definite.
These formulas are the block counterpart of the ones for tridiagonal matrices in The-
orem 2.3. They give a characterization of the inverse of a proper block tridiagonal
matrix.

THEOREM 3.4. If A is proper, there exist two (nonunique) sequences of matrices

{Ui}, {V} such that .for j >_
(A-I),i U,VT,

with Ui A-(TAi-1 ATA1 and VT EIAT2 AT-1
j--

In other words, A- can be written as

A-= V3U1T V3U2T U3V3T

"..
YnVlT gnu2T gnu3T

This result was proven using different methods in [9].
If we denote by En the matrix

and Ln ETn I, U (U, Un)T, VT (vT, VnT), we can write the result of
Theorem 3.4 as

A- UVT o E, + VUT o L,,

where o denotes the Hadamard (element by element) product. If we denote by ui the
columns of U and by vi those of V, this can also be written as

n

A-1 E (ltivTi oEn cviltTi o

j=l

This result about the additive structure of the inverse was proved for banded matrices
in [30].

3.2. Separable problems. Here we consider the matrix AT defined at the be-
ginning of this section. This is not the most general problem that can be considered,
but for this case explicit formulas can be given. Because the matrix is persymmetric,
we have



ON THE INVERSE OF TRIDIAGONAL MATRICES 717

and
An+j+1) 1,..-,j 1.

With the same methods as in [27], it can be proved that all the Ai’s have the same
eigenvectors as T and hence they commute. In this case, the block recursion for the
diagonal elements in the Cholesky decomposition can be solved:

A --T,

Ai T- (Ai--1) -1

Let A (M) be the diagonal matrix of the eigenvalues of T and Ai the corresponding
one for Ai. Then the following propositions hold.

PROPOSITION 3.5. The following relation holds:

which can be written elementwise as

From this last result and Lemma 2.5, we can compute the values of A.
PROPOSITION 3.6.

(r(j)_)+

where r(j)+ are the roots of r2 + Mr- 1 O. if M > 2 (which is the case for the
Poisson problem), this can be written

,{ sinh((i + 1)j)
cosh(d) -.sinh(id)

Now let A+ and A_ be the diagonal matrices whose diagonal elements are r(j)+
and r(j)_. From Proposition 3.6, we have

Ai (i_+1 AiF1)(A# M_)-I.

Let Q be the matrix of the eigenvectors of all the matrices. Denote

T+ QA+QT, T_ QA_QT;

then
A (T+i+1 T_i+I)(T Ti)-1

Along the same lines as what was done for a tridiagonal matrix, we have the following
theorem.
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THEOREM 3.7. The (block) elements of the inverse are given by

(Ar1),j (T/i/l T_i+1)(T+n-j+ _T_n-J+l)(T+n+l T_n+l)-I (T+ -T-)-1

From these results, it can easily be seen that

-1(AT ), S (T) S_I(T) Sn-j(T) for j _> i,

where Sn(x) is the shifted Chebyshev polynomial of the second kind, that is, defined
for x > 2 as

sinh((i / 1))S(x)
sinh()

with cosh() x/2.

This expression for the inverse was given in [3]. Now we establish relations that will
be useful in the next section. The (simple) roots of the Chebyshev polynomial Sn are

#- 2cos(/7/(n + 1)), l- 1,...,n. Therefore,

n

l--1

As in [20], remark that for j >_ i, S(x) i--I(X) Sn--j(X) is a rational function in x,
so it can be developed in elementary fractions. We write

n

It can easily be seen that

From this expansion, we get an expression for the elements of the inverse in terms of
the zeros of Chebyshev polynomials.

THEOREM 3.8. The (block) elements of the inverse of AT are given by:

n

(Al)i,j Ei (T #,I)-l--1

j>_i.

These results can be extended to more general separable problems, although in
these cases the roots of the involved polynomials are not explicitly known.

4. Decay of the inverse for two-dimensional problems. In this section, the
decay of the elements for two-dimensional pde problems is examined. We recall some
known results and establish new ones. First, the Poisson equation is considered that
is easy to handle, as the inverse is explicitly known. Then we will turn to the problem
of finding bounds for general tridiagonal problems using results from convergence of
iterative methods. Finally, the possibility to numerically compute approximate decays
for certain block tridiagonal matrices is considered.

4.1. The Poisson equation. Because the Poisson equation is an isotropic prob-
lem, it is enough to look at the decay of the elements in one direction of the underlying
mesh, i.e., we can only look at the diagonal blocks of the inverse. This is because a
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FI(. 1. Exact inverse of the Poisson problem matrix.

column (or a row) of the inverse is obtained by putting a Dirac delta function (a "func-
tion" being 1 in one point of the mesh and 0 elsewhere) as the right-hand side. Because
of the isotropic property of the diffusion equation (as the limit of a time-dependent
problem), the right-hand side diffuses the same in both directions. A picture of the
inverse of the Poisson problem matrix for a 5 5 mesh is given in Fig. 1.

If we look more closely at what happens for a row of the matrix, starting from
the diagonal, we obtain what is shown in Fig. 2. This picture has been obtained for
row number 61 in a 121 121 matrix corresponding to a 11 11 mesh.

From the previous section, it is known that

n

(T- #4I) -1
l--1

where

and

cos < 2
n+l

4 -1
-1 4 -1

-1 4 -1
-1 4

Therefore, T- #4I is a Toeplitz matrix with a diagonal element greater than 2. From
2, we know that the elements of the inverses of all these matrices strictly decay away
from the diagonal along a row.

THEOREM 4.1. Let B be the th diagonal block of the inverse of AT and r+ [/] the
positive root of r2 -(4- #4)r- 1 0; then

Bpp >_ min{(r+[1])q_p} q>P.
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0,600 values

0.400

0,200

0,000
60 70 80 90 I00 110 120

column number

FIG. 2. A row of the inverse of the Poisson problem matrix.

Proof. Let (T #4)- 1,

hence
Iq-pl

Bp____2_p > ?=1 aii(r+[/]) (T)pq > min{(r+[1])lq_pl}. 13
Bpq ’]?=1 (i(Tl)pq

This gives a uniform (related to i) estimate of the decay.
Asymptotically, we obtain

Bpq <_ C(h),Bpp
where

C(h) 1 (q p)rh + O(h2).
However, the bound of Theorem 4.1 is a little pessimistic, as shown by the following
numerical example. Consider the linear system from the Poisson equation for n 11.
Figure 3 shows the relative decrease of the elements for a row of a diagonal block and
the bound given by the previous formulas. We see that the slope is correct, but the
values are pessimistic.

4.2. The general block tridiagonal case. Here we consider finding bounds
for the decay of the elements of the inverse of a general symmetric positive definite
tridiagonal matrix corresponding to the discretization of an elliptic or parabolic prob-
lem with a five-point finite difference scheme. The matrix of the problem is

D1 -A2T
-A2 D2 -A3T

*o
-An-1 Dn-1 -AT
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0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

o,

o

relative values

6 7 8 9

bound

10 11

column number

FIG. 3. Bound for the relative decay for the Poisson problem matrix.

0 0 0 0 0

0 0 ? 0 0

0 -_ 0

I-0 0 0 0

0 0 0 0 0

FIG. 4. Five-point finite difference scheme.

In this example, matrices Di are tridiagonal and matrices Ai are diagonal correspond-
ing to the scheme displayed in Fig. 4.

To obtain bounds on the decay of the elements of the inverse, we will follow the
same lines as [15]; see also [16]. Consider solving the linear system

Ax=b

with a Chebyshev first-order iterative method: let x be given and

Xk+l xk + (x (b Axk).

This method converges when A is symmetric positive definite and the coefficients ck
are chosen as the reciprocals of the roots of Chebyshev polynomials.

If ek x xk is the error we have the following bounds (cf., for instance, [21]).
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PROPOSITION 4.2. Let a Amax/Amin be the condition number of A; then

l[ekll maxlek < l[ekll2 < 2( v/---- l )V+I
In practice this method is not used because it is unstable; to be stabilized, special

orderings of the coefficients must be used. However, we will only use it to obtain
bounds on the solution. For this purpose, the previous results can be used to get
bounds on the infinity norm. For the Chebyshev method,

ek Pk(A)e,
where Pk is a kth-order polynomial. From this, it follows that

where N n2.
Therefore, we have also the following proposition.
PROPOSITION 4.3.

Ilek IIo <_ 2n( v/--v/+ 11)
k

To compute the jth column x (or the jth row as the matrix is symmetric) of the
inverse, a system with b ej, where ej (0,..., 0, 1, 0,..., 0)T, must be solved, the
nonzero element being in position j. Now, consider the Chebyshev iterative method
with x -0, so e x.

As x 0, the vector x cne has the same sparsity pattern as e. The idea is
to consider the sparsity patterns of the successive iterates xk. To do this, it is easier
to think in terms of the underlying two-dimensional mesh. Let the mesh points be
indexed by two integers (p, q), and N(p, q) denote the set of neighbouring mesh points
in the five-point stencil centered on (p, q). Then, the following proposition holds.

PROPOSITION 4.4. Let ,(xk) be the set of mesh points corresponding to the spar-
sity pattern of xk. If ,(ej) .(x1) (Pl, ql), then

’(xk) S(xk-) U N(pz,qz).
(pz,qz)ES(xk-l)

Proof It is clear that the sparsity pattern of xk is deduced from the sparsity
pattern of xk- by a multiplication with A. The vector xk-1 can be written as
xk- -] zet, where the index runs across the sparsity pattern of x_. So, the
sparsity pattern we are looking for is the union of the sparsity patterns of Aet for all
in the sparsity pattern of xk-. But the vector Aet is the/th column of A; therefore,
there are at most only five nonzero terms corresponding to the mesh point related to
the/th component and its four neighbours in the five-point stencil. [:l

Remark. This result is not restricted to the five-point stencil and can be easily
extended, for instance, to sparse matrices arising from finite element methods.

The result from Proposition 4.4 is illustrated in Fig. 5, the black points corre-
sponding to the nonzero components in xk.

Let S be the sets of indices S(xk) generated from b e. Regarding the decay
of the elements of the inverse, the following general result holds.
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0 000000 0 000000 0000000 000000
0 000000 0 000000 000000 OOeeeO0
0 000000 0 00000 0000 00
0 000000 0 000000 0000000 0000000
0 000000 0 000000 0000000 0000000
0 000000 0 000000 000000 0000
0 000000 0 000000 0000000 000000

2 3 4
x x x x

S S 2. S 3 S4.

FIG. 5. Sparsity patterns of x1, x2, x3, and x4.

THEOREM 4.5.

IAll <_ 2n( x/--vf+ 11/k m.ax IA j I Vi

Proof. We have ek x xk; when i S], the corresponding components of x
are zero. Hence IAI _< Ilell. [1

The condition i S) is verified, for instance, for mesh points (p, q) satisfying

I(p,, q,) (pC, q )l _> kh,

where h is the mesh size. The last theorem shows that the elements of the inverse
decay as shown in Fig. 1.

Now we specialize to problems arising from finite difference approximations. We
suppose that A is a diagonally dominant M-matrix. Then we have the following result.

PROPOSITION 4.6. When A is a diagonally dominant M-matrix,

1
(A-1)ii _> Vi,

max (A-1)j (A-1) Vi.

Proof. Denote C A-. Looking at the AC product, we obtain

n

k=

because the ask, k i are nonpositive and the cki are positive. Therefore,

which gives the first result. Now, suppose there exists a j i such that maxk Cik

Cj > C; then
n

0 ajkcki ajjcij Z lajklck,.
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By hypothesis, 0 < cki cik < cij, so

But as cj >_ 0 and A is diagonally dominant, this is a contradiction. Therefore the
maximum of the elements of the inverse occurs on the diagonal.

For the Poisson problem we considered in the last section, is explicitly known,

From Theorem 4.5, we know that

2
(1 kTrh)where C(h)

This is a factor of 2/h off from the formula we obtained in 4.1, which can be quite
large. However, this general formula must account for the possible worst case for the
decay.

For a general diagonally dominant M-matrix, we have the following theorem.
THEOREM 4.7. When A is a diagonally dominant M-matrix,

(A-)i. < 2n(V/- 1)(A-)../ + 1

Still, this bound is not very satisfactory when it is compared, for instance, with
the bound obtained for the Poisson problem. In order to obtain more insights into
particular problems, we will specialize to generalized strictly diagonally dominant
matrices.

DEFINITION 4.8. A is generalized strictly diagonally dominant (GSDD) if there
exist a vector s (si) > 0 such that

This also means that there exists a diagonal matrix S such that S-1AS is strictly
diagonally dominant; this is also true for AS.

In particular, strictly diagonally dominant and irreducibly diagonally dominant
(cf. [33]) M-matrices and H-matrices are GSDD.

Now, to obtain bounds, simply consider the Jacobi iteration. Let A D+L+LT,
D being the diagonal part and L the strictly lower triangular part of A,

xk -D-I(L + LT)xk-1 h- D-ej.

Let J(A) -D-(L + LT) be the iteration matrix. Then, we have

e J(A)keo.

Using these definitions, the following result is obtained.
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PROPOSITION 4.9. If A is GSDD, we have

ST, 11ekl <_ IIJ(S-iAS)kllomx[s(A-)j Vj.

We also have the following result.
THEOREM 4.10. If A is GSDD,

(A-)i <_ silIJ(S-AS)klIo mx[s-l(A-)l]
What follows is the problem of estimating IIJ(S-AS)klIo, which is strictly less

than 1 as the Jacobi iteration is convergent for a GSDD matrix. Let B S-AS and, a given (small) positive real number; then we have the following proposition.
PROPOSITION 4.11. For any matrix B and any > O,

IlBkllk <_ p(B) / e,

where p(B) is the spectral radius of B.
Proof. Let B()= p(S)+e B; then

p(B(e)) < 1,

and limk-.o IlBk()ll 0. So, for k large enough, IIBk()ll < 1. As

(p(B) +

the result is proved.
Now note that p(J(S-IAS)) p(J(A)). Therefore, the following theorem holds.
THEOREM 4.12. If A is GSDD, we have

(A-1)ij <_ si[p(J(A)) + ]k mx[s-l(A-)lj] Vi S].

The matrix S or the vector s can be chosen in many different ways. In fact, if A
is an M-matrix and y > 0 is any given positive vector, we can get s by solving

As-- y.

It is clear that by choosing y appropriately s can be made, for instance, close to a vector
e made of ls: there exists e > 0, such that y Ae+e > 0; then s e+eA-le

THEOREM 4.13. IfA is a diagonally dominant M-matrix, there exists such that
p(g(A)) + < 1 and

(A-1)iJ < s[p(j(A)) +]k Vi S].(A-)jj 1 + eA

Proof. Use the previous result and Theorem 4.12.
Remark. If A is strictly diagonally dominant, the factor (sill + eA) ca: be re-

placed by 1.
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FIO. 6. Comparison of the actual decay and the approximation.

If we specialize to the Poisson problem, p(J(A)) cos(rh)
_
1- (r2h2/2). Hence

we get a better estimate than the one given in Theorem 4.5.

4.3. Approximation of the decay for general problems. For general block
tridiagonal problems, the precise value of the condition number of the matrix is usually
not known. The only information we have for some problems is that a O(h-2). So,
it is of interest to be able to compute a numerical approximation of the decay of the
elements of the inverse. We can do this in the following way which mimics the INV
preconditioner defined in [13]. Instead of computing the LU and UL decompositions
as in 3.1, we are going to compute block incomplete factorizations.

Let trid(B) be a tridiagonal matrix with the nonzero elements that are the same
as the corresponding ones in B. Then we define two incomplete block factorizations:

(A+L) A-1 (A+LT) and (E-4-LT) E-1 (E+L),

where A and E are block diagonal matrices whose diagonal blocks are tridiagonal and
denoted by Ai and Ei. They are given by the following formulas:

Ai Di Ai trid[A-_l] (A)T, {E. )T trid[-
D,

Ei Di (A+l Ai+.

We then approximate the diagonal blocks of the inverse by the inverse of the tridiagonal
matrix

Dj- Aj trid[A-__11] A- AjT+I trid[El] Aj+i.

When this tridiagonal matrix is computed and factored, we can obtain numerical
information on the decay of the elements using the method of 2 and 3. This gives
information on the decay along one direction of the two-dimensional mesh. To have
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information in the other direction (if the problem at hand is not isotropic), we can
compute the other block elements with the formulas developed in 3.

Let us now compare the bounds obtained in this way with the actual decay of the
elements on the Poisson problem. Figure 6 shows the actual decay of the elements in
row 61 for a matrix on an 11 11 mesh and the decay of the estimate obtained in the
previous way. It is seen that although the values are not very good, the behaviour of
the curve is quite the same. However, this is a very simple example and this conclusion
has to be checked on more general ones.

5. Conclusions. In this paper, we have exhibited useful relationships between
the elements of inverses of tridiagonal and block tridiagonal matrices and elements
of the Cholesky decompositions of these matrices. In particular, we got very simple
expressions for the elements of the inverse of a block tridiagonal matrix. This allows us
to develop stable algorithms for computing elements of the inverse when the matrix has
more properties, like being diagonally dominant. The characterization of the inverse
allows us also to obtain bounds for the decay of the elements of the inverse.
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