
Computer Solution of Large Linear Systems

Gérard Meurant1

March 21, 2024

130 rue du sergent Bauchat, 75012 Paris, France. (gerard.meurant@gmail.com).

i

This book is dedicated to Gene H. Golub.

Gene has been and is always very influential about the development and growth of numerical
linear algebra. He taught me most of the things I know about this field and has always been a
constant source of inspiration and encouragement. Moreover, Gene is a very nice person and a
very good friend.

Paris, December 1998.

Published by North-Holland (Elsevier) in 1999

Depuis qu’on a remarqué qu’avec le temps vieilles folies deviennent
sagesse, et qu’anciens petits mensonges assez mal plantés ont produit de
grosses, grosses vérités, on en a de mille espèces. Et celles qu’on sait sans
oser les divulguer : car toute vérité n’est pas bonne à dire; et celles qu’on
vante, sans y ajouter foi : car toute vérité n’est pas bonne à croire; et les
serments passionnés, les menaces des mères, les protestations des buveurs,
les promesses des gens en place, le dernier mot des marchands, cela ne finit
pas. Il n’y a que mon amour pour Suzon qui soit une vérité de bon aloi.

– Beaumarchais (1732–1799), Le mariage de Figaro, Acte IV, Scéne I

Chacun se dit ami; mais fol qui s’y repose :
Rien n’est plus commun que ce nom,

Rien n’est plus rare que la chose.
– Jean de La Fontaine (1621–1695), Fables

iv

Contents

Preface 1

1 Introductory Material 3
1.1 Vector and matrices norms . 3
1.2 Eigenvalues . 8
1.3 Irreducibility and diagonal dominance . 13
1.4 M-Matrices and generalizations . 17
1.5 Splittings . 21
1.6 Positive definite matrices . 21
1.7 The graph of a matrix . 25
1.8 Chebyshev polynomials . 27
1.9 Discretization methods for partial differential equations 29
1.10 Eigenvalues and Fourier analysis . 35
1.11 Floating point arithmetic . 41
1.12 Vector and parallel computers . 44
1.13 BLAS and LAPACK . 45
1.14 Bibliographical comments . 47

2 Gaussian elimination for general linear systems 49
2.1 Introduction to Gaussian elimination . 49

2.1.1 Gaussian elimination without permutations 49
2.1.2 Gaussian elimination with permutations (partial pivoting) . . . 55
2.1.3 Gaussian elimination with other pivoting strategies 57
2.1.4 Operation counts . 57

2.2 Gaussian elimination for symmetric systems 58
2.2.1 The outer product algorithm 58
2.2.2 The bordering algorithm . 59
2.2.3 The inner product algorithm 60
2.2.4 Coding the three factorization algorithms 60
2.2.5 Positive definite systems . 64
2.2.6 Indefinite systems . 66

2.3 Gaussian elimination for H-matrices . 66
2.4 Block methods . 68
2.5 Tridiagonal and block tridiagonal systems 69
2.6 Roundoff error analysis . 77
2.7 Perturbation analysis . 81
2.8 Scaling . 84
2.9 Iterative refinement . 84

v

vi Contents

2.10 Parallel solution of general linear systems 85
2.11 Bibliographical comments . 88

3 Gaussian elimination for sparse linear systems 89
3.1 Introduction . 89
3.2 The fill-in phenomenon . 89
3.3 Graphs and fill-in for symmetric matrices 91
3.4 Characterization of the fill-in . 93
3.5 Band and envelope numbering schemes for symmetric matrices 95

3.5.1 The Cuthill-McKee and reverse Cuthill-McKee orderings . . . 96
3.5.2 Sloan’s algorithm . 99

3.6 Spectral schemes . 100
3.6.1 The basic idea . 100
3.6.2 The multilevel spectral algorithm 102
3.6.3 The Kumfert and Pothen hybrid algorithm 102
3.6.4 The Boman-Hendrickson multilevel algorithm 103

3.7 The minimum degree ordering . 103
3.8 The nested dissection ordering . 105
3.9 Generalization of dissection algorithms . 107

3.9.1 General dissection algorithms 107
3.9.2 Graph bisection improvement techniques 109
3.9.3 The multisection algorithm 110

3.10 The multifrontal method . 110
3.11 Non-symmetric sparse matrices . 113
3.12 Numerical stability for sparse matrices . 115
3.13 Parallel algorithms for sparse matrices . 115
3.14 Bibliographical comments . 118

4 Fast solvers for separable PDEs 121
4.1 Introduction . 121
4.2 Fast Fourier Transform . 123

4.2.1 The basics of the FFT . 123
4.2.2 The complex FFT . 123
4.2.3 The real transforms . 125
4.2.4 FFT on vector and parallel computers 128
4.2.5 Stability of the FFT . 128
4.2.6 Other algorithms . 129
4.2.7 Double Fourier analysis . 129

4.3 The Fourier/tridiagonal Method . 129
4.4 The cyclic reduction method . 132
4.5 The FACR(l) method . 140
4.6 The capacitance matrix method . 141
4.7 Bibliographical comments . 143

5 Classical iterative methods 145
5.1 Introduction . 145
5.2 The Jacobi method . 146
5.3 The Gauss-Seidel method . 151
5.4 The SOR Method . 154
5.5 The SSOR method . 158

Contents vii

5.6 Alternating direction methods . 161
5.7 Richardson methods . 166
5.8 Acceleration techniques . 169
5.9 Stability of classical iterative methods . 171
5.10 Bibliographical comments . 172

6 The conjugate gradient and related methods 173
6.1 Derivation of the method . 173
6.2 Generalization and second form of PCG 176
6.3 Optimality of PCG . 179
6.4 The convergence rate of PCG . 183
6.5 The Lanczos algorithm . 193
6.6 A posteriori error bounds . 195
6.7 The Eisenstat’s trick . 208
6.8 The Conjugate Residual method . 209
6.9 SYMMLQ . 209
6.10 The minimum residual method . 212
6.11 Hybrid algorithms . 213
6.12 Roundoff errors of CG and Lanczos . 214
6.13 Solving for several right-hand sides . 217
6.14 Block CG and Lanczos . 220

6.14.1 The block Lanczos algorithm 220
6.14.2 The Block CG algorithm . 222

6.15 Inner and outer iterations . 223
6.16 Constrained CG . 223
6.17 Vector and parallel PCG . 224
6.18 Bibliographical comments . 227

7 Krylov methods for non-symmetric systems 229
7.1 The normal equations . 229
7.2 The Concus and Golub non-symmetric CG 231
7.3 Construction of bases for Krylov spaces 233

7.3.1 The Arnoldi algorithm . 233
7.3.2 The Hessenberg algorithm . 234
7.3.3 The generalized Hessenberg process 235

7.4 FOM and GMRES . 236
7.4.1 Definition of FOM and GMRES 236
7.4.2 Convergence results . 239
7.4.3 Truncated and restarted versions 242
7.4.4 Methods equivalent to GMRES 242
7.4.5 Methods equivalent to FOM 246

7.5 Roundoff error analysis of GMRES . 246
7.6 Extensions to GMRES . 248

7.6.1 Flexible GMRES . 248
7.6.2 GMRES* . 249

7.7 Hybrid GMRES algorithms . 251
7.8 The non-symmetric Lanczos algorithm . 251

7.8.1 Definition of the non-symmetric Lanczos algorithm 251
7.8.2 Variants of the non-symmetric Lanczos algorithm 253
7.8.3 Maintaining semi bi-orthogonality 254

viii Contents

7.9 The BiConjugate Gradient Algorithm . 255
7.10 Roundoff error analysis of BiCG . 257
7.11 Handling of breakdowns . 258

7.11.1 FOP . 258
7.11.2 Padé approximation . 259
7.11.3 Block bi-orthogonality . 260
7.11.4 Modified Krylov spaces . 261

7.12 The Conjugate Gradient Squared algorithm 261
7.13 Extensions of BiCG . 263
7.14 The Quasi Minimal Residual algorithm . 267
7.15 CMRH . 269
7.16 Which method to use? . 269
7.17 Complex linear systems . 270
7.18 Krylov methods on parallel computers . 271
7.19 Bibliographical comments . 272

8 Preconditioning 273
8.1 Introduction . 273
8.2 The diagonal preconditioner . 274
8.3 The SSOR preconditioner . 276

8.3.1 Definition of SSOR . 276
8.3.2 Convergence results for SSOR 276
8.3.3 Fourier analysis of SSOR . 278

8.4 The block SSOR preconditioner . 279
8.4.1 Definition of BSSOR . 279
8.4.2 Analysis of BSSOR . 280
8.4.3 Fourier analysis of BSSOR 281

8.5 The incomplete Cholesky decomposition 285
8.5.1 The general decomposition 285
8.5.2 Incomplete decomposition of H-matrices 287
8.5.3 Incomplete decomposition of non-symmetric matrices 290
8.5.4 Different incomplete decomposition strategies 290
8.5.5 Finite difference matrices . 291
8.5.6 Fourier analysis of IC(1,1) . 294
8.5.7 Comparison of periodic and Dirichlet boundary conditions . . . 296
8.5.8 Axelsson’s results . 303

8.6 The modified incomplete Cholesky decomposition 304
8.6.1 The DKR preconditioner . 304
8.6.2 Analysis of DKR . 304
8.6.3 Fourier analysis of DKR . 306
8.6.4 Extensions of DKR . 307

8.7 The relaxed incomplete Cholesky decomposition 308
8.8 More on the incomplete decompositions for the model problem 308
8.9 Stability of incomplete decomposition . 311
8.10 The generalized SSOR preconditioner . 312
8.11 Incomplete decomposition of positive definite matrices 315
8.12 Different orderings for IC . 316

8.12.1 Experimental results . 317
8.12.2 Theory for model problems 321
8.12.3 Value dependent orderings . 323

Contents ix

8.12.4 Multicolor orderings . 324
8.13 The repeated Red-Black decomposition . 324

8.13.1 Description of the methods 324
8.13.2 Analysis of RRB . 326

8.14 The block incomplete Cholesky decomposition 329
8.14.1 Block tridiagonal matrices . 329
8.14.2 Pointwise equivalent decomposition 330
8.14.3 The modified incomplete block decomposition 331
8.14.4 Block incomplete decomposition for H-matrices 331
8.14.5 Generalization of the block incomplete decomposition 331
8.14.6 Fourier analysis of INV and MINV 332
8.14.7 Axelsson’s results . 339
8.14.8 Block-size reduction . 339

8.15 The block Cholesky decomposition for 3D problems 340
8.15.1 Point preconditioners . 340
8.15.2 1D block preconditioners . 341
8.15.3 2D point preconditioners . 342
8.15.4 2D block preconditioners . 343

8.16 Nested factorization . 345
8.16.1 The ACP preconditioner for 3D problems 345
8.16.2 The preconditioner of Appleyard, Cheshire and Pollard 346
8.16.3 Improvements of ACP . 346

8.17 Sparse approximate inverses . 347
8.17.1 The sparse inverses of Huckle and Grote 348
8.17.2 The sparse inverses of Gould and Scott 348
8.17.3 The sparse inverses of Chow and Saad 349
8.17.4 Sparse approximate inverses for symmetric matrices 349
8.17.5 The sparse inverses of Benzi, Meyer and Tůma 349

8.18 Polynomial preconditioners . 350
8.18.1 Truncated Neumann series . 351
8.18.2 The minmax polynomial . 352
8.18.3 Least squares polynomials . 353
8.18.4 Stable evaluation of polynomials 358
8.18.5 A polynomial independent of eigenvalue estimates 361
8.18.6 Adaptive algorithms for SPD matrices 362
8.18.7 Polynomials for symmetric indefinite problems 362
8.18.8 Polynomials for non-symmetric problems 363

8.19 Double preconditioners . 363
8.20 Other ideas . 364

8.20.1 ADI preconditioner . 364
8.20.2 ADDKR preconditioner . 364
8.20.3 Element by element preconditioner 365
8.20.4 Fast solvers . 365
8.20.5 Wavelets . 365

8.21 Vector and parallel computing . 366
8.21.1 Vectorization of IC(1,1) . 366
8.21.2 Parallel orderings . 367
8.21.3 Vectorization of INV . 368
8.21.4 Twisted incomplete block factorizations 368
8.21.5 Incomplete block cyclic reduction 370

x Contents

8.21.6 A massively parallel preconditioner 370
8.22 Bibliographical comments . 371

9 Multigrid methods 373
9.1 Introduction . 373
9.2 The two-grid method . 373
9.3 A one dimensional example . 376

9.3.1 The choice of the smoothing 377
9.3.2 The choice of the restriction 378
9.3.3 The choice of prolongation 379
9.3.4 The choice of the coarse grid matrix 379

9.4 The choices of components . 384
9.4.1 The smoothing . 384
9.4.2 The coarsening . 386
9.4.3 Grid transfers . 387
9.4.4 The coarse grid operator . 388

9.5 The multigrid method . 388
9.6 Convergence theory . 391
9.7 Complexity of multigrid . 393
9.8 The full multigrid method . 395
9.9 Vector and parallel multigrid . 397
9.10 Algebraic multigrid . 399
9.11 Bibliographical comments . 402

10 Domain decomposition and multilevel methods 403
10.1 Introduction to domain decomposition . 403
10.2 Schwarz methods . 404

10.2.1 The classical Schwarz alternating method 404
10.2.2 The matrix form of the Schwarz alternating method 406
10.2.3 The rate of convergence . 408
10.2.4 Other boundary conditions . 410
10.2.5 Parallelizing multiplicative Schwarz 410
10.2.6 The additive Schwarz method 410
10.2.7 Adding a coarse mesh correction 411

10.3 An additive Schwarz preconditioner for parabolic problems 411
10.4 Algebraic domain decomposition methods without overlapping 413

10.4.1 Exact solvers for the subdomains 414
10.4.2 Approximate solvers for the subdomains 417

10.5 Approximate Schur complements in the two subdomains case 418
10.5.1 The Schur complement for block tridiagonal matrices 418
10.5.2 Eigenvalues of the Schur complement for separable problems . 419
10.5.3 Dryja’s preconditioner . 423
10.5.4 Golub and Mayers’ preconditioner 423
10.5.5 The Neumann-Dirichlet preconditioner 424
10.5.6 The Neumann-Neumann preconditioner 425
10.5.7 Dependence on the aspect ratio 426
10.5.8 Dependence on the coefficients 427
10.5.9 Probing . 428
10.5.10 INV and MINV approximations 430
10.5.11 The Schur complement for more general problems 431

Contents xi

10.6 Approximations of Schur complements with many subdomains 432
10.7 Inexact subdomain solvers . 436
10.8 Domain decomposition with boxes . 439

10.8.1 The Bramble, Pasciak and Schatz preconditioner 441
10.8.2 Vertex space preconditioners 443

10.9 A block Red-Black DD preconditioner . 444
10.10 Multilevel preconditioners . 445

10.10.1 Additive multilevel Schwarz preconditioners 446
10.10.2 Multilevel ILU preconditioners 447

10.11 Bibliographical comments . 452

Bibliography 455

Index 478

xii Contents

Preface

This book covers both direct and iterative methods for solving non–singular sparse linear sys-
tems of equations, particularly those arising from the discretization of partial differential equa-
tions. Many problems in physics or some other scientific areas lead to solving partial differential
equations or systems of partial differential equations. Most of the time these equations are non–
linear. The discretization of these equations and iterative methods to deal with the non linearity
(like Newton’s method) lead to solving sparse linear systems. Very large sparse systems are now
solved due to the progresses of numerical simulation and also of computers’ speed and increases
in the amounts of memory available. So, solving sparse linear systems is a problem of paramount
importance for numerical computation. Many methods have been invented over the years. Un-
fortunately, some of the older methods are not so efficient anymore when applied to very large
systems and there is still the need for a very active research in this area. During the last years,
there has been a rapid development of parallel computers. Therefore, we put some emphasis on
the adaptation of known methods to parallel computations and also on the development of new
parallel algorithms.

This book tries to cover most of the best algorithms known so far for solving sparse linear
systems. It should be useful for engineers and scientists as well as graduate students interested
in numerical computations.

The first chapter recalls some mathematical results and tools that are needed in the next
chapters. The direct methods we consider are different versions of Gaussian elimination and
also fast solvers for solving separable partial differential equations on domains with a simple
geometry. Chapter 2 is devoted to Gaussian elimination for general linear systems and Chapter
3 focuses on special techniques and variants of Gaussian elimination for sparse systems. Some
fast solvers for separable partial differential equations on rectangular domains are described and
analyzed in Chapter 4.

Classical iterative methods are recalled in Chapter 5. Even though there are not really effi-
cient for solving the problems we consider, they are still of use for constructing preconditioners
or for the multigrid method, so it is worthwhile to study these methods. In Chapter 6 the empha-
sis is put on the conjugate gradient (CG) method which is probably the most efficient method
for solving sparse symmetric positive definite linear systems. We also consider some methods
for symmetric indefinite problems. In Chapter 7 we consider some of the many generalizations
of conjugate gradient that have appeared for non–symmetric matrices. A very important issue
for using CG or CG–like methods efficiently is preconditioning. Therefore, in Chapter 8 we
describe many of the attempts to derive efficient preconditioners. An introduction to the multi-
grid method is given in Chapter 9. This method is interesting as it can allow solving a problem
with a complexity proportional to the number of unknowns. Chapter 10 describes some domain
decomposition and multilevel techniques. This is a very natural framework to use when solving
linear systems on parallel computers.

This book grows from lectures which have been given in Paris VI University from 1984 to
1995 and also from research and review papers written since 1982. However, we have tried to

1

2 Preface

give a broad view of the field and to describe state of the art algorithms. Therefore the works
of many people are described and quoted in this book, too many for thanking them individually.
A large reference list gives the papers and reports we have found interesting and useful over the
years.

I am very indebted to Barbara Morris who carefully tried to convert my Frenglish into good
English. All the remaining mistakes are mine.

1

Introductory Material

In this chapter, for the convenience of the reader, we recall some definitions and prove some well-
known fundamental theorems on matrix properties that will be used in the following chapters.
More details can be found in the classical books by Berman-Plemmons [43], Forsythe-Moler
[196], Golub-Van Loan [241], Householder [290], Strang [425], Stewart [420, 422, 423], Varga
[457], Wilkinson [468], and Young [473]. We shall study some tools to be used in later chapters
such as Chebyshev polynomials and Fourier analysis. We also recall some facts about computer
arithmetic that will be useful in studying round off errors. More on this topic can be found in the
books by Higham [282, 283] and Chatelin and Fraysse [84]. We give a few examples of linear
systems arising from discretization of partial differential equations which can be solved with the
numerical methods that are considered in this book.

There are two main classes of algorithms used to compute the solution of a linear system,
direct methods and iterative methods. Direct methods obtain the solution after a finite number
of floating point operations by doing combinations and modifications of the given equations. Of
course, as computer floating point operations can only be obtained to a certain given precision,
the computed solution is generally different from the exact solution, even with a direct method.
Iterative methods define a sequence of approximations that are expected to be closer and closer
to the exact solution in some given norm, stopping the iterations using some predefined criterion,
obtaining a vector which is only an approximation of the solution.

In chapters ??-??, we shall study some direct methods, mainly Gaussian elimination and
some methods using the Fourier transform. Other chapters will be devoted to iterative methods.
We shall consider classical (relaxation) methods, the Conjugate Gradient method, Krylov meth-
ods for non-symmetric systems and the Multigrid method. A chapter is devoted to the important
topic of preconditioning. Finally, we shall introduce Domain Decomposition methods.

Without being explicitly stated, we shall consider matrices A of dimension n × n with real
coefficients that we shall denote by ai,j . Most of the time we shall denote matrices by capital
letters, vectors by roman letters and scalars by greek letters. Elements of a vector x are denoted
by xi. Generally, elements of a vector sequence (iterates) will be denoted by xk.

1.1 Vector and matrices norms
Let us first recall the definition of the scalar product of two vectors x and y ∈ �n

x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T .

Definition 1.1. The Euclidean scalar product of two vectors x and y in �n, denoted by (x, y), is

3

4 1. Introductory Material

defined by

(x, y) =

n∑
i=1

xiyi

As a matrix multiplication, this can also be written as xT y. Computing a scalar product needs
n multiplications and n− 1 additions, that is 2n− 1 floating point operations in total. From the
scalar product, we can define the Euclidean norm (sometimes called the `2 norm) of the vector
x.

Definition 1.2. The Euclidean norm of x in �n is defined by

‖x‖ = (x, x)
1
2 =

(
n∑
i=1

x2
i

) 1
2

.

Proposition 1.3. Every vector norm has the three following properties,

‖λx‖ = |λ| ‖x‖, ∀λ ∈ �,
‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

For the Euclidean norm, the last relation can be shown using the following Cauchy-Schwarz
inequality.

Proposition 1.4. For the scalar product of two vectors in �n, we have

|(x, y)| ≤ ‖x‖ ‖y‖.

Equality holds only if x and y are collinear.

Proof. If y = 0 the proof is trivial. Hence, we can assume y 6= 0, then we have

0 ≤ ‖x− (x, y)

‖y‖2
y‖2 = ‖x‖2 − 2

(x, y)2

‖y‖2
+

(x, y)2

‖y‖4
‖y‖2 =

‖x‖2‖y‖2 − (x, y)2

‖y‖2
.

Hence,
‖x‖2‖y‖2 − (x, y)2 ≥ 0,

which proves the result.
A matrix norm can be defined in such a way that it is related to any given vector norm. Such

a matrix norm is said to be induced by (or subordinate to) the vector norm.

Definition 1.5. Let ‖ · ‖p be any vector norm. The induced matrix norm is defined as

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

.

Another equivalent definition of an induced matrix norm is ‖A‖p = max‖y‖p=1 ‖Ay‖p.
Definition 1.5 implies ‖Ax‖p ≤ ‖A‖p‖x‖p. The following result states the properties of a
matrix norm, see [241].

1.1. Vector and matrices norms 5

Proposition 1.6. A matrix norm satisfies the following properties:

‖λA‖p = |λ| ‖A‖p, ∀λ ∈ �,
‖A‖p ≥ 0 and‖A‖p = 0 ⇐⇒ A = 0,

‖A+B‖p ≤ ‖A‖p + ‖B‖p.

Proposition 1.7. For every induced norm,

‖AB‖p ≤ ‖A‖p‖B‖p.

More generally, one defines every function from

M(�n) = {matrices of order n with real coefficients}

to �+ which satisfies Proposition 1.6 as a matrix norm. We shall, however, add the property
of Proposition 1.7 to the definition of a norm since it is often the most useful one. Let us now
turn to some examples of norms. We shall see the norm that is induced by the Euclidean norm
in Proposition 1.23 but this requires some additional definitions. Let us first consider other
examples.

Definition 1.8. We define the maximum norm of a vector by ‖x‖∞ = maxi |xi| and the induced
matrix norm by ‖A‖∞.

Proposition 1.9. The ‖.‖∞ norm of A is

‖A‖∞ = max
i

n∑
j=1

|ai,j |.

Proof. Let y = Ax. Then,

‖y‖∞ = max
i

∣∣∣∣∑
j

ai,jxj

∣∣∣∣ ≤ max
i

∑
j

|ai,j | · |xj | ≤ ‖x‖∞max
i

∑
j

|ai,j |.

Hence, ‖A‖∞ ≤ maxi
∑
j |ai,j |. Now, let us suppose that maxi

∑
j |ai,j | =

∑
j |aI,j |. Let us

define x such that xj = sign aI,j . Clearly we have ‖x‖∞ = 1 and yI =
∑
j aI,jxj =

∑
j |aI,j |.

Since,

‖y‖∞ = max
j
|yi| ≥ yI =

∑
j

|aI,j |,

‖A‖∞ ≥ ‖Ax‖∞ = ‖y‖∞ ≥
∑
j

|aI,j | = max
i

∑
j

|ai,j |.

6 1. Introductory Material

The energy norm of a vector x is defined as ‖x‖A = (Ax, x)
1
2 , where A is a given matrix.

However, for this to be a norm, we need (Ax, x) > 0,∀x 6= 0. This is true only for some
classes of matrices (positive definite ones) which we shall consider later in this chapter. Another
example of a matrix norm is given by the Frobenius norm.

Definition 1.10. The Frobenius norm of A denoted by ‖A‖F is defined by

‖A‖F =

 n∑
i=1

n∑
j=1

a2
i,j

 1
2

= (trace [ATA])
1
2 ,

where trace [ATA] is the sum of the diagonal elements of ATA and AT is the transpose of A.

The Frobenius norm satisfies Proposition 1.7 but is not an induced norm, since for In, the
identity matrix of order n, we have ‖In‖F = n

1
2 . For finite dimensional spaces all norms are

equivalent. In particular, the Euclidean and Frobenius norms are related to each other by the
following inequalities.

Proposition 1.11. The Euclidean and Frobenius norms satisfy

max
i,j
|ai,j | ≤ ‖A‖ ≤ ‖A‖F ≤ n‖A‖.

Proof. Let us prove the first inequality. For all x, y 6= 0 the Cauchy-Schwarz inequality
(Proposition 1.4) gives

|(x,Ay)|
‖x‖ ‖y‖

≤ ‖Ay‖
‖y‖

≤ ‖A‖.

Let us take x = ei and y = ej where ei and ej are vectors with zeros in all components except
in the ith and jth position where the value is 1. Then,

|(x,Ay)| = |ai,j |,

and hence
|ai,j | ≤ ‖A‖.

This inequality holds for every i and j. Therefore,

max
i,j
|ai,j | ≤ ‖A‖.

We use, once again, the Cauchy-Schwarz inequality to prove the second inequality.

‖Ax‖2 =

n∑
i=1

(

n∑
j=1

ai,jxj)
2,

≤
n∑
i=1

[
(

n∑
j=1

a2
i,j)(

n∑
j=1

x2
j)

]
,

= (

n∑
i=1

n∑
j=1

a2
i,j)(

n∑
j=1

x2
j),

= ‖A‖2F ‖x‖2.

1.1. Vector and matrices norms 7

To obtain the last inequality, we bound ai,j by max |ai,j | so,

‖A‖F = (

n∑
i=1

n∑
j=1

a2
i,j)

1
2 ≤ n max

i,j
|ai,j | ≤ n‖A‖.

Definition 1.12. Let L be a non-singular matrix, the L- norm of A is defined by

‖A‖L = ‖LAL−1‖.

It is easy to prove that this definition satisfies the properties of Proposition 1.6. With the
scalar product of Definition 1.1, we can generalize to any dimension the usual definition of
orthogonality in �3.

Definition 1.13. Two vectors x and y are said to be orthogonal if and only if

(x, y) = 0.

Every set of vectors {x1, x2, . . . , xn} can be orthogonalized in the following way.

Proposition 1.14. We can find a set of vectors {y1, y2, . . . , yn} such that (yi, yj) = 0 and
‖yi‖ = 1, for all i 6= j and span (y1, y2, . . . , yn) = span (x1, x2, . . . , xn), where span (x1, x2, . . . , xn)
is the subspace spanned by x1, x2, . . . , xn.

Proof. The method to obtain yi, is known as the Gram-Schmidt orthogonalization process.
Let us consider first only two vectors, that is, n = 2. Let x1 and x2 be given. We define

y1 =
x1

‖x1‖
,

z2 = x2 − (x1, x2)

‖x1‖2
x1 = x2 − (y1, x2)y1,

y2 =
z2

‖z2‖
.

Note that (x1,x2)
‖x1‖2 x

1 is the component of x2 in the direction x1. Clearly, if we subtract this
component from x2 we obtain a vector y2 which is orthogonal to x1. The vectors y1 and y2

are independent, linear combinations of x1 and x2 and span the same subspace. This can be
generalized to n vectors giving

y1 =
x1

‖x1‖
,

zi = xi − (y1, xi)

‖y1‖2
y1 − · · · − (yi−1, xi)

‖yi−1‖2
yi−1,

yi =
zi

‖zi‖
, i = 2, . . . , n.

It is easy to check that the yi are orthogonal and by induction that the spanned subsets are the
same.

8 1. Introductory Material

Note that for the Gram-Schmidt algorithm we have to construct and store the previous i− 1
vectors to compute yi.

Definition 1.15. A matrix Q is an orthogonal matrix if and only if the columns of Q are orthog-
onal vectors with Euclidean norm 1.

For an orthogonal matrix Q, we have QTQ = I . Note that if we normalize the vectors yi in
the Gram-Schmidt process and if we think of the vectors {x1, . . . , xn} as columns of a matrix
A, this is nothing else than computing a factorization A = QR where Q (whose columns are
the normalized yi) is orthogonal and R is upper triangular. In the Gram-Schmidt algorithm Q
and R are computed one column at a time. Unfortunately Gram-Schmidt has poor numerical
properties. Typically there is a loss of orthogonality in the computed vectors. However, there is a
rearrangement of the computation, called the modified Gram-Schmidt (MGS) algorithm, that leads
to much better results, see [393], [45], [241], [282]. In MGS, as soon as one yi is computed, all the
remaining vectors are orthogonalized against it. The algorithm is the following. We introduce
partially orthogonalized vectors yi(j) whose initial values are

yi(1) = xi, i = 1, . . . , n.

Then, for i = 1, . . . , n,

yi =
yi(i)

‖yi(i)‖
,

and for j = i+ 1, . . . , n,
yj(i+1) = yi(i) − (yi, yj(i))y

i.

For stability results on MGS, see Higham [282, 283].

1.2 Eigenvalues
In this section, we consider some matrix properties related to eigenvalues and eigenvectors that
are useful even when we are not interested in computing eigenvalues.

Definition 1.16. λ ∈ � is an eigenvalue of A if and only if there exists at least one vector x 6= 0
such that

Ax = λx.

The vector x is said to be an eigenvector of A.

We have the following very important result.

Proposition 1.17. Suppose that A has n distinct eigenvalues λ1, λ2, . . . , λn. Then, there exists
a non-singular matrix S such that

S−1AS =

λ1

λ2

. . .
λn

 ,

that is, A is similar to a diagonal matrix.

Proof.

1.2. Eigenvalues 9

This can be proved using the fact that eigenvectors associated with two distinct eigenvalues
are linearly independent and thus they yield an orthogonal basis for �n.

Unfortunately the result of Proposition 1.17 is not always true if some eigenvalues are equal.

Definition 1.18. If λi = λi+1 = · · · = λi+m−1 = λ we say that λ is of algebraic multiplic-
ity m. The geometric multiplicity is defined as the dimension of the subspace spanned by the
eigenvectors associated with λ.

The two multiplicities may be different, as it is shown in the following example.

A =

(
0 1
0 0

)
, λ1 = λ2 = 0.

The algebraic multiplicity is 2 but the geometric multiplicity is 1.
The more general result that can be proved is that A is similar to a diagonal matrix if the

geometric multiplicity of each eigenvalue is the same as the algebraic multiplicity. To state a
very important theorem, we must now consider complex numbers.

The scalar product of two vectors x and y with complex entries is defined by

(x, y) =

n∑
i=1

xiyi,

where xi denotes the conjugate of xi ∈ �. AH denotes the conjugate transpose of A given
by (AH)i,j = aj,i. A complex matrix A which is orthogonal is called unitary. A matrix A is
Hermitian if and only if AH = A. Then we have the following result.

Theorem 1.19. For every matrix A there exists a unitary matrix U such that

UHAU = T,

where T is an upper triangular matrix.

Proof. For the proof we follow the lines of Strang [425]. Every matrix A has at least one
eigenvalue, say λ1 (which may be of algebraic multiplicity n) and at least one eigenvector x1

that we can assume has norm 1. From the Gram-Schmidt orthogonalization process, we can find
n− 1 vectors u2

(1), . . . , u
n
(1) such that

U1 = (x1, u2
(1), . . . , u

n
(1))

is a unitary matrix. Then,

AU1 = U1

λ1 ∗ · · · · · · ∗
0
... A(2)

0

 .

We can repeat the same process on A(2) which has at least one eigenvalue λ2 and an eigenvector
x2. So there exists a unitary matrix V2 of order n− 1 such that

A(2)V2 = V2

λ2 ∗ · · · ∗
0
... A(3)

0

 .

10 1. Introductory Material

Let us denote

U2 =

1 0 · · · 0
0
... V2

0

 ,

then,
λ1 ∗ · · · ∗
0
... A(2)

0

U2 =

λ1 ∗ · · · ∗
0
... A(2)V2

0

= U2

λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0
...

... A(3)

0 0

 .

The result follows by induction.

Corollary 1.20. Let A be an Hermitian matrix. Then, there exists a unitary matrix U such that

UHAU = Λ,

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A.

Let us now return to the real case. We have the following very useful result which is used in
many proofs in numerical linear algebra.

Theorem 1.21. Let A be a real symmetric matrix. Then, there exists an orthogonal matrix Q
such that

QHAQ = QTAQ = Λ,

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A (which are real
numbers). QΛQT is said to be the spectral decomposition of A.

We have the following important definition.

Definition 1.22. The spectral radius ρ(A) of A is defined as

ρ(A) = max
1≤i≤n

|λi|,

where λi are the eigenvalues of A.

With this definition we can give the characterization of the Euclidean norm of a symmetric
matrix.

Proposition 1.23. Let A be a symmetric matrix. Then,

‖A‖ = ρ(A).

1.2. Eigenvalues 11

Proof. To prove this result, we note that the Euclidean norm is invariant under an orthogonal
transformation Q. This is because

‖x‖2 = (x, x) = (QTQx, x) = (Qx,Qx) = ‖Qx‖2.

Let us recall that

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

.

Theorem 1.21 shows that ‖Ax‖ = ‖QΛQTx‖ = ‖ΛQTx‖, so

‖A‖ = max
x6=0

‖ΛQTx‖
‖QTx‖

≤ ‖Λ‖ = ρ(A).

Let us order the eigenvalues as λ1 ≤ λ2 ≤ · · · ≤ λn and

Λ =

λ1

λ2

. . .
λn

 .

Suppose λ1 is the eigenvalue of maximum modulus. If we choose x such thatQTx = (0, . . . , 0, 1)T

then, ‖A‖ = ρ(A).
In the following chapters dealing with iterative methods, we shall frequently study the limit

of the sequence of powers Ak for k = 1, 2, . . . , of a given matrix A. The spectral radius of a
matrix plays an important role in the study of the powers of a matrix. We note that the sequence
of matrices A(k) = Ak converges to a limit A∞ as k tends to infinity, if and only if

lim
k→∞

a
(k)
i,j = a∞i,j , for all i, j.

This is equivalent to
lim
k→∞

‖A(k) −A∞‖ = 0.

The main result here is the following.

Theorem 1.24.
lim
k→∞

Ak = 0 if and only if ρ(A) < 1.

Proof. For the proof we follow Householder [290] and we need several lemmas before
proving the main result. Let us first remark that if ‖ · ‖p is a matrix norm and thus satisfies
‖AB‖p ≤ ‖A‖p‖B‖p then ‖A‖p < 1 implies lim

k→∞
Ak = 0 since ‖Ak‖p ≤ ‖A‖kp . We then have

an upper bound for the spectral radius.

Lemma 1.25. For every norm ‖ · ‖p,

ρ(A) ≤ ‖A‖p.

Proof. Let λ and x be an eigenvalue and an eigenvector of A, Ax = λx. Then,

‖λx‖p = |λ| · ‖x‖p = ‖Ax‖p ≤ ‖A‖p‖x‖p.

12 1. Introductory Material

Hence |λ| ≤ ‖A‖p for every eigenvalue.

Lemma 1.26. Let T be a triangular matrix (with possibly complex elements). For all ε > 0,
there exists a norm ‖ · ‖p such that

‖T‖p ≤ max
j
|tj,j |+ ε = ρ(T) + ε.

Proof. Let T be upper triangular and D be a diagonal matrix,

D =

1

δ
δ2

. . .
δn−1

 ,

with δ ∈ � and δ > 0. Now, consider D−1TD. It easily follows that this matrix has the same
diagonal as T , the second principal diagonal is multiplied by δ, the third by δ2 and so on. . . This
is because

(D−1TD)k,l = tk,l
δl−1

δk−1
for l ≥ k.

Hence, we can choose δ sufficiently small so that for fixed ε the sum along a row of the non-
diagonal terms of D−1TD is less than ε. Denote ‖T‖∞,D = ‖D−1TD‖∞. According to
Definition 1.12, this defines a norm. With the previous remarks and Proposition 1.9 we have

‖T‖∞,D ≤ ε+ max
j
|tj,j | = ε+ ρ(T).

Now, we are able to prove Theorem 1.24.
Proof. Assume that limk→∞Ak = 0 holds. Let λ and x be an eigenvalue and an eigenvector

of A. So, Akx = λkx, and
lim
k→∞

‖λkx‖ = 0.

Since x 6= 0 we have limk→∞ |λk| = 0 which implies |λ| < 1. This is true for any eigenvalue
of A, and therefore ρ(A) < 1.

Let us now assume that ρ(A) < 1. We first show that there exists a norm ‖ · ‖p such that

‖A‖p ≤ ε+ ρ(A).

From Theorem 1.19 we know that there exists a unitary matrix U such that

U−1AU = T,

where T is upper triangular. The matrix T has the same eigenvalues as A which are its diagonal
entries and ρ(A) = ρ(T). Then, ε being fixed with 0 < ε < 1 − ρ(A) we define a vector norm
by

‖x‖ε = ‖D−1U−1x‖∞,
where D is the matrix that arises in the proof of Lemma 1.26. Let ‖ · ‖ε be the induced matrix
norm

‖A‖ε = max
x

‖Ax‖ε
‖x‖ε

= max
x

‖D−1U−1Ax‖∞
‖D−1U−1x‖∞

= max
x

‖D−1U−1AUDD−1U−1x‖∞
‖D−1U−1x‖∞

.

1.3. Irreducibility and diagonal dominance 13

Let y = D−1U−1x then,

‖A‖ε = max
y

‖D−1U−1AUDy‖∞
‖y‖∞

,

= max
y

‖D−1TDy‖∞
‖y‖∞

,

= ‖T‖∞,D.

Therefore,
‖A‖ε ≤ ε+ ρ(T) = ε+ ρ(A).

But we have supposed that ε < 1− ρ(A) so,

‖A‖ε < 1.

By a preceding remark this implies limk→∞Ak = 0.
Now we consider series of matrices. We have the following result.

Theorem 1.27. The series I +A+A2 + · · · converges and the limit is (I −A)−1 if and only if
ρ(A) < 1.

Proof. Assume that ρ(A) < 1 and let λ be an eigenvalue of I−A then 1−λ is an eigenvalue
ofA and 1−λ < 1 because ρ(A) < 1. Therefore I−A is non-singular. Let us denote the partial
sums of the series by Sk.

Sk = I +A+A2 + · · ·+Ak,

(I −A)Sk = I −Ak+1,

Sk = (I −A)−1(I −Ak+1),

Sk − (I −A)−1 = −(I −A)−1Ak+1,

‖Sk − (I −A)−1‖ ≤ ‖(I −A)−1‖ ‖Ak+1‖.

But as ρ(A) < 1, limk→∞ ‖Ak+1‖ = 0 and so

lim
k→∞

‖Sk − (I −A)−1‖ = 0.

For the reciprocal note that if limk→∞ Sk exists, this implies limk→∞Ak = 0 and so, ρ(A) < 1
by Theorem 1.24.

The series I+A+A2 + · · · is said to be the Neumann series for (I−A)−1 and Sk (for small
k) is frequently used in numerical algorithms to approximate (I −A)−1 when ρ(A) < 1.

1.3 Irreducibility and diagonal dominance
In this Section we study the properties of some classes of matrices that will be useful for studying
convergence of iterative methods.

Definition 1.28. Let =n = {1, 2, . . . , n}. A matrix A is irreducible if

1) n = 1 and a1,1 6= 0 or

2) n > 1 and for every set of integers I1 ∈ =n and I2 ∈ =n

14 1. Introductory Material

with I1 ∩ I2 = ∅ and I1 ∪ I2 = =n there exists i ∈ I1, and j ∈ I2 such that ai,j 6= 0.

This definition seems complicated but the following result helps us to understand what it
means. When A is not irreducible, it is said to be reducible.

Proposition 1.29. A matrix A is reducible if and only if there exists a permutation matrix P such
that

P−1AP =

D1 0

F D2

 ,

D1, D2 being square matrices.

Proof. See Young [473].

Definition 1.28 is the negation of the last proposition. A being irreducible means that one
cannot solve the linear system Ax = b by solving two subproblems of smaller size.

Definition 1.30. A matrix A is
• diagonally dominant if

|ai,i| ≥
n∑

j = 1
j 6= i

|ai,j |, ∀i,

• strictly diagonally dominant if

|ai,i| >
n∑

j = 1
j 6= i

|ai,j |, ∀i,

• irreducibly diagonally dominant if

1) A is irreducible,

2) A is diagonally dominant,

3) there exists an i such that

|ai,i| >
n∑

j=1,j 6=i

|ai,j |.

Theorem 1.31. Let A be irreducibly diagonally dominant then A is non-singular and ai,i 6= 0
for all i.

Proof. We prove by contradiction that ai,i 6= 0. Assume that n > 1 and ai,i = 0 for some
i. Diagonal dominance implies that ai,j = 0 for all j but, this contradicts the irreducibility of A
because we can choose I1 = i, I2 = =n−{i} and have ai,j = 0 for all i ∈ I1 and for all j ∈ I2.
Let us now prove that A is non-singular. As ai,i 6= 0 for all i, we can define

B = I −D−1A,

1.3. Irreducibility and diagonal dominance 15

where D is a diagonal matrix with di,i = ai,i for all i (in abbreviated form D = diag(A)). It is
obvious that

bi,i = 0,

bi,j = −ai,j
ai,i

, i 6= j.

Since A is irreducibly diagonally dominant, we have

n∑
j=1

|bi,j | ≤ 1, for all i,

and there exists an i such that
∑n
j=1 |bi,j | < 1. Using Proposition 1.9, we obtain ‖B‖∞ ≤ 1.

So, ρ(B) ≤ 1. Let us assume there exists an eigenvalue λ of modulus 1 and let x be the
corresponding eigenvector,

n∑
j=1

bi,jxj = λxi.

We follow the lines of Young [473] to end the proof. Let i be such that |xi| = ‖x‖∞, then

n∑
j=1

|bi,j | ‖x‖∞ ≤ ‖x‖∞ ≤
n∑
j=1

|bi,j | |xj |.

The second inequality follows because

|λxi| = |λ| |xi| = |xi| = ‖x‖∞ ≤
n∑
j=1

|bi,j | |xj |.

Hence,
n∑
j=1

|bi,j |
(
|xj | − ‖x‖∞

)
≥ 0,

but
|xj | − ‖x‖∞ ≤ 0 for all j.

This implies that |xj | = ‖x‖∞ or bi,j = 0 but B is irreducible therefore, see [473], there exist
indices i1, . . . , ip such that

bi,i1 , bi1,i2 , . . . , bip,j 6= 0.

This shows that
|xi1 | = |xi2 | = · · · = |xj | = ‖x‖∞.

In all cases, we have |xj | = ‖x‖∞ for all j and therefore

‖x‖∞ = |xi| ≤
n∑
j=1

|bi,j | ‖x‖∞,

for all i. As ‖x‖∞ 6= 0,
∑n
j=1 |bi,j | ≥ 1 for all i. This contradicts the fact that there is at least

one index i such that
∑n
j=1 |bi,j | < 1. Thus we have proved that ρ(B) < 1 and by Theorem 1.27,

I −B = D−1A is non-singular.

16 1. Introductory Material

Corollary 1.32. Let A be strictly diagonally dominant then A is non-singular and ai,i 6= 0 for
all i.

We can characterize the properties of the eigenvalues of diagonally dominant matrices.

Theorem 1.33. Let A be irreducibly diagonally dominant and assume that ai,i > 0 for all i.
Then for every eigenvalue λ (possibly a complex number), Re(λ) > 0.

Proof. From Theorem 1.31, we know that A is non-singular. Let x be an eigenvector of A,
then we have

λxi =

n∑
j=1

ai,jxj ,

(λ− ai,i)xi =

n∑
j=1,j 6=i

ai,jxj .

Let us pick i such that |xi| = ‖x‖∞, then

|λ− ai,i| ≤
n∑

j=1,j 6=i

|ai,j |.

This proves that the eigenvalues belong to the union of the disks with centers ai,i and radius∑n
j=1,j 6=i |ai,j |. These are known as the Gerschgorin disks. We note that these disks contain

only complex numbers with positive real parts because if there is a b > 0 such that −b belongs
to the disk then

ai,i < ai,i + b = | − b− ai,i| ≤
n∑

j=1,j 6=i

|ai,j |.

This contradicts the diagonal dominance of A. Moreover, we cannot have λ = 0 because A is
non-singular.

The same result is true if A is strictly diagonally dominant. The definition of diagonal domi-
nance can be generalized as follows.

Definition 1.34.
• A matrix A is generalized diagonally dominant if there exists a vector d with di > 0 for all i
such that

|ai,i|di ≥
n∑

j = 1
j 6= i

|ai,j |dj .

• A is generalized strictly diagonally dominant if

|ai,i|di >
n∑

j = 1
j 6= i

|ai,j |dj .

Clearly, these definitions are equivalent to applying the classical definitions of diagonal dom-

1.4. M-Matrices and generalizations 17

inance to the matrix AD where

D =

d1

d2

. . .
dn

 .

Hence, we have the following result.

Proposition 1.35. LetA be generalized strictly diagonally dominant, thenA is non-singular and
ai,i 6= 0 for all i.

Note that the definition of generalized diagonal dominance can be expressed in the following
way. There exists a diagonal matrixD with strictly positive diagonal elements such thatD−1AD
is strictly diagonally dominant. To see this, write the definition in the following form

|ai,i| ≥
n∑

j = 1
j 6= i

|ai,j |
dj
di
.

This last definition is often more convenient. To end this section, we give a definition which has
some formal analogy with the one of irreducibility.

Definition 1.36. The matrix A has property A if there exist two sets of indices I1 and I2 that
partition the set =n and if i 6= j and ai,j 6= 0 or aj,i 6= 0 then i ∈ I1 and j ∈ I2 or j ∈ I2 and
j ∈ I1.

This definition was introduced by Young [473] who showed the following characterization
for matrices having property A.

Proposition 1.37. The matrix A has property A if and only if A is diagonal or there exists a
permutation matrix P such that

P−1AP =

D1 F

E D2

 ,

where D1 and D2 are diagonal square matrices.

1.4 M-Matrices and generalizations
We say that a matrix A is positive (resp. strictly positive) and we denote A ≥ 0 (resp. A > 0) if
ai,j ≥ 0 (resp. ai,j > 0) for all i and j.

Definition 1.38. A matrix A is monotone if and only if A is non-singular and A−1 ≥ 0.

This definition is important because this is the finite dimensional version of the maximum
principle: if b ≥ 0 then the solution of Ax = b is such that x ≥ 0.

18 1. Introductory Material

Definition 1.39. A is an L-matrix if and only if

ai,i > 0, for all i,

ai,j ≤ 0, i 6= j.

From the above definition, it is obvious that every L-matrix A can be written as

A = σI −B,

with σ ∈ �, σ > 0, and B ≥ 0. We then have the definition.

Definition 1.40. Every matrix A which can be written as A = σI − B with σ > 0, B ≥ 0 and
such that ρ(B) ≤ σ is said to be an M-matrix.

Note that under this definitionA can be singular. IfA is non-singular we have ρ(B) < σ. The
following result relates the last definition to the most frequently used definition of M-matrices.

Theorem 1.41. A is a non-singular M-matrix if and only if A is non-singular with ai,j ≤ 0 for
i 6= j and A−1 ≥ 0.

Proof. Let A be a non-singular M-matrix. Then,

A = σI −B, σ ∈ �, σ > 0, B ≥ 0, ρ(B) < σ.

All we have to show is that A−1 ≥ 0. Now ρ(Bσ) < 1 and by Theorem 1.27 1
σA = I − B

σ is
non-singular. The series

I +
B

σ
+
B2

σ2
+ . . .

converges and

σA−1 = I +
B

σ
+ . . .

Since B ≥ 0 and σ > 0, we have A−1 ≥ 0.
Conversely, let us suppose that A is non-singular with ai,j ≤ 0 for all i and j with i 6= j and

A−1 ≥ 0. Then we can write A = σI −B with B ≥ 0 and σ > 0.
Let Sk be defined by

Sk = I +
B

σ
+ · · ·+ Bk+1

σk+1
.

Then, (
I − B

σ

)
Sk = I − Bk+1

σk+1
,

σA−1 =

(
I − B

σ

)−1

= Sk +

(
I − B

σ

)−1
Bk+1

σk+1
.

but (I− B
σ)−1 ≥ 0 andBk+1 ≥ 0 hence Sk ≤ σA−1. Every entry of Sk is a decreasing bounded

sequence and so it converges. The series I+ B
σ + · · · converges, which by Theorem 1.27 implies

ρ

(
B

σ

)
< 1,

1.4. M-Matrices and generalizations 19

which proves that A is an M-matrix.
One can show that an M-matrix has positive diagonal entries and so does an L-matrix. Many

characterizations of non-singular M-matrices have been given; for example Berman and Plem-
mons [43] give 50 equivalent definitions. The following theorem gives a sufficient condition
which is often useful.

Theorem 1.42. Let A be an irreducibly diagonally dominant L-matrix, then A is a non-singular
M-matrix.

Proof. We know from Theorem 1.31 that A is non-singular. Now let D be a diagonal matrix
whose diagonal is the same as the diagonal of A, di,i > 0 and let B = I −D−1A. It is clear that
B ≥ 0,

D−1A = I −B, B ≥ 0.

In Theorem 1.31 we showed that ρ(B) < 1. This proves that D−1A is an M-matrix and so is A.

In fact, with the hypotheses of Theorem 1.42, we can prove that A−1 > 0. Note that if A is a
strictly diagonally dominant L-matrix, then A is a non-singular M-matrix. Along the same lines
we have the next theorem.

Theorem 1.43. A is a non-singular M-matrix if and only if ai,j ≤ 0 for all i 6= j and A is
generalized strictly diagonally dominant.

Proof. Let A be generalized strictly diagonally dominant. Then, we know that there exists a
diagonal matrix D, di,i > 0 such that AD is strictly diagonally dominant. It is obvious that the
diagonal entries of AD are positive and the off-diagonal ones are negative, and therefore AD is
a non-singular M-matrix and so is A.

Now let us suppose that A is a non-singular M-matrix. We have ai,j ≤ 0 for all i 6= j,
ai,i > 0 and A−1 ≥ 0. Let e be such that eT = (1, . . . , 1), and d = A−1e, then d > 0
because if we suppose there exists i such that di = 0 we have,

∑
j(A
−1)i,j = 0 which implies

(A−1)i,j = 0 for all j and hence, A−1 is singular. Let D be a diagonal matrix with diagonal
entries di. Of course, De = d so,

ADe = Ad = e > 0.

Componentwise we have

ai,idi +

n∑
j=1
j 6=1

ai,jdj > 0.

But, ai,j ≤ 0 for all i 6= j so |ai,j | = −ai,j . We can rewrite the previous inequality as

|ai,i|di >
n∑

j=1,j 6=i

|ai,j |dj ,

which proves that A is generalized strictly diagonally dominant.

Corollary 1.44. The matrix A is a non-singular M-matrix if and only if A is an L-matrix and
there exists a diagonal matrixD with di,i > 0 such thatD−1AD is strictly diagonally dominant.

Proof. This comes from the remark following Proposition 1.35.

20 1. Introductory Material

We have a result for M-matrices which is a generalization of Theorem 1.33 for irreducibly
diagonally dominant matrices.

Theorem 1.45. LetA be a matrix with ai,j ≤ 0 for all i 6= j. Then,A is a non-singular M-matrix
if and only if <(λ) > 0 for all eigenvalues λ of A.

Proof. See Berman-Plemmons [43].

Lemma 1.46. Let A be an M-matrix written in block form as

A =

(
B F
E C

)
,

where B and C are square matrices, then the Schur complement S = C − EB−1F is an M-
matrix.

Proof. It is obvious that the principal submatrices of an M-matrix are M-matrices. Therefore,
B is an M-matrix andB−1 > 0. Since, by definition, the entries ofE and F are non-positive, the
entries of EB−1F are non-negative. Therefore, the non-diagonal entries of S are non-positive.

Now, since A is an M-matrix, we know there is a diagonal matrix D with strictly positive
diagonal entries such that AD is (row) strictly diagonally dominant. Let

D =

(
D1 0
0 D2

)
,

AD being (row) strictly diagonally dominant means that if e = (1 . . . 1)T, then ADe > 0. But,

AD =

(
BD1 FD2

ED1 CD2

)
,

and let e =

(
e1

e2

)
. The Schur complement of AD is (row) strictly diagonally dominant (see

[119]). This means that

0 < [CD2 − ED1(BD1)−1FD2]e2 = SD2e
2.

This shows that S is (row) generalized strictly diagonally dominant. Hence, S is an M-matrix.
We now consider a generalization of M-matrices. Let A be a matrix, define M(A) as the

matrix having entries mi,j such that

mi,i = |ai,i|, mi,j = −|ai,j |

for all i 6= j. Clearly M(A) is an L-matrix. It is obvious that many different matrices A can lead
to the same M(A). So, we define the set

Ω(A) = {B | |bi,j | = |ai,j |} .

Ω(A) is called the equimodular set for A. Then, we have the definition of the most general class
of matrices we shall consider in this book.

Definition 1.47. A is an H-matrix if and only if M(A) is an M-matrix. Each definition of an
M-matrix gives a corresponding definition for H-matrices.

1.5. Splittings 21

Let us recall the following result which will be useful subsequently.

Theorem 1.48. A is a non-singular H-matrix if and only if A is generalized strictly diagonally
dominant.

1.5 Splittings
It is obvious that strictly diagonally dominant, irreducibly diagonally dominant and non-singular
M-matrices are non-singular H-matrices. Many iterative methods that we shall study use a de-
composition of the matrix A (which is also known as a splitting) in the form

A = M −N.

To prove some results about splittings, we have to be more specific about M and N .

Definition 1.49. A = M − N is a regular splitting of A if and only if M is non-singular,
M−1 ≥ 0 and N ≥ 0.

Regular splittings and M-matrices are closely related as the next result shows.

Theorem 1.50. Let A with ai,j ≤ 0 for all i 6= j. A is a non-singular M-matrix if and only if
there exists a regular splitting A = M −N with ρ(M−1N) < 1.

Proof. By definition of an M-matrix, there exists σ ∈ �, σ > 0 and B ≥ 0 such that
A = σI −B with ρ(B) < σ. This clearly is a regular splitting of A.

Now, suppose we have a regular splitting A = M −N with ρ(M−1N) < 1, then

M−1A = M−1(M −N) = I −M−1N

is non-singular. By Theorem 1.27

(I −M−1N)−1 = I +M−1N + (M−1N)2 + · · ·

Therefore, (I −M−1N)−1 ≥ 0 and A−1 ≥ 0.

It is often useful to compare two regular splittings. A useful result is given in the following
theorem.

Theorem 1.51. Let A be such that A−1 ≥ 0 and consider two regular splittings of A, A =
M1 −N1 and A = M2 −N2 with N2 ≤ N1. Then,

ρ(M−1
2 N2) ≤ ρ(M−1

1 N1) < 1.

Proof. See Varga [457].

1.6 Positive definite matrices
In this Section, we study the properties of another useful class of matrices.

22 1. Introductory Material

Definition 1.52. The matrix A is positive definite if and only if (Ax, x) > 0 for all x 6= 0.

These matrices are sometimes referred to as positive real. Note that ifA is symmetric positive
definite (SPD), we can define a vector norm ‖x‖A by

‖x‖2A = (Ax, x).

As we have seen before, this is usually called the energy norm. When A is symmetric we have
the well known characterization of positive definite matrices.

Proposition 1.53. Let A be a symmetric matrix. Then A is positive definite if and only if the
eigenvalues of A (which are real numbers) are positive.

For symmetric matrices we have a very important result, often called the Householder-John
theorem.

Theorem 1.54. Let A be a non-singular symmetric M-matrix such that A = M − N with M
non-singular and Q = M + MT − A = MT + N is positive definite. Then, ρ(M−1N) < 1 if
and only if A is positive definite.

Proof. Suppose that A is positive definite. Let x0 be given. We define a sequence of vectors
by

Mxk+1 = Nxk.

We need to prove that xk tends to 0 as k tends to∞, but,

xk+1 = M−1Nxk = (I −M−1A)xk.

SinceA is positive definite, (Ax, x) defines a norm (the energy norm) which we denote by ‖x‖2A.
Hence,

‖xk+1‖2A = (Axk+1, xk+1),

= ((A−AM−1A)xk, (I −M−1A)xk),

= (Axk, xk)− (AM−1Axk, xk)

−(Axk,M−1Axk) + (AM−1Axk,M−1Ax).

Denote yk = M−1Axk, then

‖xk+1‖2A − ‖xk‖2A = (Ayk, yk)− (Myk, yk)− (yk,Myk).

This is because (AM−1Axk, xk) = (M−1Axk, Axk) = (yk,Myk). So,

‖xk+1‖2A − ‖xk‖2A = ((A−MT −M)yk, yk) = −(Qyk, yk) < 0.

If yk = 0, this implies xk = 0 and then xk+1 = 0. Therefore ‖xk‖2A is a bounded decreasing
sequence and it must converge to some limit. Since we have

‖xk‖2A − ‖xk+1‖2A = (Qyk, yk),

(Qyk, yk)→ 0 and then yk → 0 and xk → 0 which proves that ρ(M−1N) < 1.

1.6. Positive definite matrices 23

For the converse, let us suppose now that ρ(M−1N) < 1 and that A is not positive definite.
We have already shown that

(Axk, xk)− (Axk+1, xk+1) > 0.

If A is not positive definite, there exists x0 such that (Ax0, x0) < 0. Then, by induction, the
sequence xk is such that

(Axk+1, xk+1) < (Axk, xk) < 0.

But this contradicts the fact that xk tends to 0.
We remark that the energy norms of iterates of the sequence xk are decreasing. The last

theorem can be generalized to non-symmetric matrices.

Theorem 1.55. Let A be a non-singular matrix A = M − N , M non-singular such that Q =
MTA−TA+N is positive definite. Then, ρ(M−1N) < 1 if and only if A is positive definite.

Proof. See Ortega and Plemmons [364].
We now consider the relationship between M-matrices, H-matrices and positive definite ma-

trices for the symmetric case.

Theorem 1.56. LetA be a symmetric matrix with ai,j ≤ 0 for all i 6= j. ThenA is a non-singular
M-matrix if and only if A is positive definite.

Proof. This result follows directly from Theorem 1.45.

Theorem 1.57. Let A be a symmetric non-singular H-matrix with ai,i > 0 for all i. Then A is
positive definite.

Proof. There exists a diagonal matrixD with di,i > 0 such thatD−1AD is strictly diagonally
dominant and (D−1AD)i,i = ai,i > 0. By Theorem 1.33 we know that D−1AD is positive
definite. Since D−1AD has the same eigenvalues as A, this proves the result.

However, the converse of this theorem is not true as the following example shows.
Let

A =

 a e e
e a e
e e a

 .

The eigenvalues of A are a+ 2e, a− e, a+ e. Let a > e > 0. Then A is positive definite. But, as

M(A) =

 a −e −e
−e a −e
−e −e a

 ,

the eigenvalues of M(A) are a + e, a + e and a − 2e. If we choose 0 < e < a < 2e then,
M(A) is not positive definite and by Theorem 1.56 is not an M-matrix. This A is an example of
a positive definite matrix which is not an H-matrix.

The following result is important for the study of direct and iterative methods.

Lemma 1.58. Let A be a symmetric positive definite matrix partitioned as

A =

(
A1,1 AT

2,1

A2,1 A2,2

)
,

24 1. Introductory Material

where the blocks A1,1 and A2,2 are square. Then,

S2,2 = A2,2 −A2,1A
−1
1,1A

T
2,1,

is symmetric and positive definite. S2,2 is the Schur complement (of A2,2 in A).

Proof. This result can be proved in many different ways. Perhaps, the simplest one is to
consider A−1 and to compute the bottom right hand block of A−1. Let(

A1,1 AT
2,1

A2,1 A2,2

)(
x1

x2

)
=

(
b1
b2

)
.

Then,
A1,1x1 +AT

2,1x2 = b1, ⇒ x1 = A−1
1,1(b1 −AT

2,1x2).

Therefore,
(A2,2 −A2,1A

−1
1,1A

T
2,1)x2 = b2 −A2,1A

−1
1,1b1.

This means that the inverse of A can be written as

A−1 =

(
X Y
Z S−1

2,2

)
.

With A being positive definite, the diagonal blocks of A and A−1 are also positive definite, so
S2,2 is positive definite.

We also have the useful following result.

Lemma 1.59. Let A be a symmetric positive definite matrix. Then,

max
i,j
|ai,j | = max

i
(ai,i).

Proof. It is obvious that the diagonal entries of A are positive. Suppose there are indices
i0, j0 such that |ai0,j0 | > |ai,j |, i0 6= j0, ∀i, j different from i0, j0. There are two cases:
i) suppose ai0,j0 > 0, then let

x = (0 . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T ,

the 1 being in position i0 and the −1 in position j0. We have,

(x,Ax) = ai0,i0 + aj0,j0 − 2ai0,j0 < 0.

Therefore, A is not positive definite which is a contradiction;
ii) suppose ai0,j0 < 0, we choose

x = (0 . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)T ,

and get
(x,Ax) = ai0,i0 + aj0,j0 + 2ai0,j0 < 0,

which, again, is a contradiction.

1.7. The graph of a matrix 25

1.7 The graph of a matrix
It is well known that a graph can be associated with every matrix. To a general non-symmetric
square matrix A of order n, we associate a directed graph (or digraph). A digraph is a couple
G = (X,E) where X is a set of nodes (or vertices) and E is a set of directed edges. For a given
matrix A of order n, there are n nodes in the graph and there is a directed edge from i to j if
ai,j 6= 0. Usually, self loops corresponding to ai,i 6= 0 are not included.

Let

A =

x x 0 x
0 x 0 0
x 0 x 0
0 x x x

 .

Then, the associated digraph is given in Figure 1.1.

1 2

3 4

Figure 1.1. A directed graph

Graphs are more commonly used in problems involving symmetric matrices. If ai,j 6= 0,
then aj,i 6= 0. Therefore, we can consider only undirected graphs and drop the arrows on the
edges. Let

A =

x x x 0
x x 0 x
x 0 x x
0 x x x

 ,

then, the graph of A is shown in Figure 1.2.

1 2

3 4

Figure 1.2. An undirected graph

Let us introduce a few definitions used for graphs. Let G = (X,E) be a (undirected) graph.
We denote the nodes of the graph by xi or sometimes i.

• G′ = (X ′, E′) is a subgraph of G if X ′ ⊂ X and E′ ⊂ E.

• Two nodes x and y of G are adjacent if {x, y} ∈ E. The adjacency set of a node y is defined
as

Adj(y) = {x ∈ X| x is adjacent to y}.

26 1. Introductory Material

If Y ⊂ X , then
Adj(Y) = {x ∈ X| x ∈ Adj(y), x 6∈ Y, y ∈ Y }.

• The degree of a node x of G is the number of its adjacent nodes in G,

deg(x) = |Adj(x)|.

• Let x and y ∈ X . A path of length l from x to y is a set of nodes {ν1, ν2, . . . , νl+1} such that
x = ν1, y = νl+1 and {νi, νi+1} ∈ E, 1 ≤ i ≤ l. A path {ν0, ν1, . . . , νl, ν0} is a (simple) cycle
of length l + 1.
• A graph is connected if for every x, y ∈ X , there exists a path from x to y. This corresponds
to the matrix being irreducible.
• A chord of a path is any edge joining two non-consecutive vertices in the path. A graph is
chordal if every cycle of length greater than three has a chord (see [48]).
• An important kind of graph is when there are no closed paths. A particular node is labeled as
the root. Then, there is a path from any node to the root. Such a (connected) graph is called a
tree. If it is not connected, we have a set of trees which is called a forest.
• Let Y ⊂ X , the section graph G(Y) is a subgraph (Y,E(Y)) with

E(Y) = {{x, y} ∈ E| x ∈ Y, y ∈ Y }.

• A set Y ⊂ X is a separator for G (a connected graph) if G(X/Y) has two or more connected
components.
• The distance d(x, y) between two nodes x and y of G is the length of the shortest path between
x and y. The eccentricity of a node e(x) is

e(x) = max{d(x, y)|y ∈ X}.

The diameter δ of G is
δ(G) = max{e(x)|x ∈ X}.

A node x is peripheral if e(x) = δ(G).
• A clique is a subset of nodes which are all pairwise connected.
• A level structure of a graph G is a partition L = {L0, L1, . . . , Ll} of X such that

Adj(Li) ⊂ Li−1 ∪ Li+1, i = 1, . . . , l − 1,

Adj(L0) ⊂ L1,

Adj(Ll) ⊂ Ll−1.

Note that each Li, i = 1, . . . , l − 1 is a separator for G. For each node x ∈ X , a level structure
L(x) can be defined as

L(x) = {L0(x), . . . , Le(x)(x)},

L0(x) = {x}
Li(x) = Adj(∪i−1

k=0Lk(x)), 1 ≤ i ≤ e(x)

where e(x) is the eccentricity of x. The width of a level structure L(x) is

w(x) = max{|Li(x)|, 0 ≤ i ≤ e(x)}.

1.8. Chebyshev polynomials 27

1.8 Chebyshev polynomials
We now review some facts about Chebyshev polynomials which will be important in studying
some iterative methods.

Definition 1.60. Chebyshev polynomials (of the first kind) Tn are defined for integer n and
x ∈ �, |x| ≤ 1, by

Tn(x) = cos(n arccosx).

We can extend this definition to an interval [a, b] by setting t = a+b
2 + b−a

2 x, then t ∈ [a, b] ⇔
x ∈ [−1,+1].

From the definition, it is not clear that Tn is a polynomial. However it follows from the
properties of Theorem 1.61.

Theorem 1.61. Let Tn be a Chebyshev polynomial. Then,
1) T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x);
2) For n ≥ 1, Tn is an n-degree polynomial whose leading coefficient is 2n−1;
3) Tn(−x) = (−1)nTn(x)
4) Tn has n zeros in [−1,+1], namely

xk = cos

(
2k + 1

n

π

2

)
, k = 0, 1, . . . , n− 1,

and n+ 1 extremas

x′k = cos

(
kπ

n

)
with Tn(x′k) = (−1)k, k = 0, 1, . . . , n.

5) The Chebyshev polynomials are orthogonal with respect to the scalar product

((f, g)) =

∫ +1

−1

f(x)g(x)√
1− x2

dx.

Moreover,

((Ti, Tj)) =

0 i 6= j
π
2 i = j 6= 0

π i = j = 0

6) For all n-degree polynomials with leading coefficient 1, Tn/2n−1 has the smallest maximum
norm, namely 1/2n−1.

Proof. See, for instance, Dahlquist and Björck [125].

Chebyshev polynomials are very useful especially when studying iterative methods. Their
most interesting property is that they have the smallest maximum norm (item 6)). It helps in
solving the following problem:

Let π1
n = { polynomials of degree n in t whose value is 1 for t = 0 }. We shall

frequently require the solution of the minimization problem

min
Qn∈π1

n

max
t∈[a,b]

|Qn(t)|.

28 1. Introductory Material

A solution to this problem is given by the shifted and normalized Chebyshev polynomial

min
Qn∈π1

n

max
t∈[a,b]

|Qn(t)| = max
t∈[a,b]

∣∣∣∣∣∣
Tn

(
2t−(a+b)
b−a

)
Tn

(
a+b
b−a

)
∣∣∣∣∣∣ =

1∣∣∣Tn (a+b
b−a

)∣∣∣ .
This solution is interesting because we know the roots of Qn,

τl =
a+ b

2
+
b− a

2
cos

(
2`− 1

n

π

2

)
` = 1, . . . , n.

Note that if a = −b then Tn
(
a+b
b−a

)
= 1 but in more general cases we need an upper bound for

1∣∣∣Tn (a+b
b−a

)∣∣∣ .
To obtain this bound, we use the following characterization.

Lemma 1.62.

Tn(x) =
1

2
[(x+

√
x2 − 1)n + (x−

√
x2 − 1)n], |x| ≤ 1.

Proof. Let ϕ = arccos(x) so Tn(x) = cos(nϕ). We can write

cos(nϕ) =
1

2
(cos(nϕ) + i sin(nϕ) + cos(nϕ)− i sin(nϕ)),

with i =
√
−1. Therefore,

cos(nϕ) =
1

2
[(cosϕ+ i sinϕ)n + (cosϕ− i sinϕ)n],

but,

x = cosϕ and i sinϕ =

√
− sin2 ϕ =

√
x2 − 1,

and this proves the result.
Using Lemma 1.62, we obtain the bound we are looking for.

Theorem 1.63. If 0 < a < b then

min
Qn∈π1

n

max
t∈[a,b]

|Qn(t)| ≤ 2

(
1−

√
a
b

1 +
√

a
b

)n
= 2

√

b
a − 1√
b
a + 1

n

.

Proof. We have x = b+a
b−a , so

x2 − 1 =
2
√
ab

b− a
,

x+
√
x2 − 1 =

(
√
b−
√
a)2

b− a
,

=

√
b+
√
a√

b−
√
a
,

1.9. Discretization methods for partial differential equations 29

and

x−
√
x2 − 1 =

√
b−
√
a√

b+
√
a
.

Therefore,

Tn

(
b+ a

b− a

)
≥ 1

2

(√
b+
√
a√

b−
√
a

)n
.

Chebyshev polynomials are one example of orthogonal polynomials which play a very im-
portant role in many areas of numerical analysis.

1.9 Discretization methods for partial differential
equations

Although they are not the only source of systems of linear equations, problems that arise from
discretization of elliptic and parabolic (systems of) partial differential equations (PDEs) are some
of the most important ones. Usually, non-linear problems are handled with iterative algorithms
like Newton’s method (or variants) which give a linear system to solve at each non-linear itera-
tion.

There are basically two main ways to discretize partial differential equations, namely finite
difference methods and finite element methods. Finite volumes can usually be interpreted as
finite elements. These two kinds of methods have many things in common and finite differences
can often be seen as particular cases of finite element methods.

Let us first focus on finite differences. Most often finite differences are used on a regular
(cartesian) mesh and yield matrices with a regular structure that are easy to store in the computer
memory. The model problem that was widely used for testing algorithms is Poisson equation on
the open unit square Ω = (0, 1)× (0, 1):

−∆u = −∂
2u

∂x2
− ∂2u

∂y2
= f in Ω,

u
∣∣
∂Ω

= 0,

where ∂Ω is the boundary of Ω and f is given in an appropriate functional space (for instance
L2(Ω) =

{
u
∣∣u measurable and

∫
Ω
u2dx < +∞

}
). Non-homogeneous boundary conditions can

be easily handled as well. To get an approximation to this infinite dimensional problem we cover
Ω with a regular mesh Ωh having m points in each direction. This gives a step size h = 1

m+1 as
in Figure 1.3.

We want to compute an approximate solution at each point (xi, yj) inside Ω and we already
know u on the boundary (for i and j equal 0 or m + 1). Denote by ui,j the approximation of u
at (xi, yj). Then we approximate ∂u

∂x at (i+ 1
2)h, jh by the finite difference(

∂u

∂x

)
i+ 1

2 ,j

' ui+1,j − ui,j
h

.

Hence, (
∂2u

∂x2

)
i,j

' 1

h

((
∂u

∂x

)
i+ 1

2 ,j

−
(
∂u

∂x

)
i− 1

2 ,j

)
,

=
ui−1,j − 2ui,j + ui+1,j

h2
.

30 1. Introductory Material

h

Figure 1.3. A regular mesh

Doing this for both directions we get an approximation of minus the Laplacian ∆ that we denote
(after multiplication by h2) by −∆5.

(−∆5u)i,j = −ui−1,j − ui,j−1 + 4ui,j − ui,j−1 − ui,j+1,

= h2f(xi, yj) i = 1, . . . ,m, j = 1, . . . ,m

The solution is already known for points on ∂Ω, that is for i = 0 or m + 1, j = 0 or m + 1, so
we have m2 equations with m2 unknowns and a linear system to solve. If we number the points
from left to right and from bottom to top and rename the unknowns from u to x to agree with the
notations that are traditionally used for linear algebra, the system can be written as

Ax = b

where
x = {u1,1, u1,2, . . . , um,m}T , b = h2{f1,1, f1,2, . . . , fm,m}T ,

fi,j being the value of f at point (i, j) and

A =

T −I
−I T −I

.
−I T −I

−I T

 ,

where I is the m×m identity matrix and T is a tridiagonal matrix of order m,

T =

4 −1
−1 4 −1

.
−1 4 −1

−1 4

 .

Of course if we use some other orderings for the mesh points, the structure of the matrix is
different.

One can show that ui,j → u(xi, yj) in some sense when h → 0. In this example, the
matrix coefficients are very simple, however one obtains a linear system with the same non-
zero structure when solving a (diffusion) problem with variable (and possibly discontinuous)

1.9. Discretization methods for partial differential equations 31

coefficients like

− ∂

∂x

[
λ1(x, y)

∂u

∂x

]
− ∂

∂y

[
λ2(x, y)

∂u

∂y

]
= f(x, y),

u
∣∣
∂Ω

= 0.

For this problem we get a system like
Ax = b,

where the matrix can be written blockwise as

A =

D1 AT2
A2 D2 AT3

.
An−1 Dn−1 ATn

An Dn

 .

Later on, we shall consider the following examples as test problems for iterative methods:

◦ Test problem 1 is the Poisson model problem we have just considered.

◦ Test problem 2 arises from the 5-point finite difference approximation of a diffusion equa-
tion in a unit square, with Dirichlet boundary conditions.The coefficients are such that
λ1(x, y) = λ2(x, y) and they take on the value 1000 in a square]1/4, 3/4[×]1/4, 3/4[and
to 1 otherwise.

◦ Test problem 3 is the same PDE but with different diffusion coefficients. The coefficient
in the x direction is 100 if x ∈ [1/4, 3/4], 1 otherwise. The coefficient in the y direction
is constant and equal to 1.

◦ Test problem 4 has a diffusion coefficient of 100 in the x direction and 1 in the y direction.

◦ Test problem 5 was suggested by S. Eisenstat. The PDE is

− ∂

∂x

(
λx
∂u

∂x

)
− ∂

∂y

(
λy
∂u

∂y

)
+ σu = f,

in the unit square with Neumann boundary conditions (∂u∂n |∂Ω = 0). The coefficients are
defined as follows:

in]0, 0.5[×]0, 0.5[,λx = 1, λy = 1,

in]0.5, 1.[×]0, 0.5[,λx = 100, λy = 1,

in]0, 0.5[×]0.5, 1.[,λx = 1, λy = 100,

in]0.5, 1.[×].50, 1.[,λx = 100, λy = 100,

and σ = 0.01.

With a five point discretization stencil the equation for the point (i, j) involves only the
unknowns at points (i, j), (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). The matrices Di are
tridiagonal and the matrices Ai are diagonal. Other types of boundary conditions give rise to
matrices that are only slightly different. Let us look at the modifications given by Neumann or
periodic boundary conditions on ∂Ω, Ω = (0, 1)× (0, 1) for the problem −∆u+ σu = f where
σ > 0 is a given coefficient.

32 1. Introductory Material

Figure 1.4. Shadow unknowns for Neumann boundary conditions

With Neumann boundary conditions ∂u
∂n = 0, n being the outward normal to the boundary,

we have m + 2 unknowns for each mesh line, i.e., (m + 2)2 unknowns in total. Difference
equations on the boundary are obtained using “shadow” unknowns as in Figure 1.4.

We set ui,−1 = ui,1 for handling ∂u
∂n = 0. Hence, the equation for the point (i, 0) becomes

−ui−1,0 − ui+1,0 + (4 + σh2)ui,0 − 2ui,1 = h2fi,0.

Putting together the results for the whole mesh, we get

A =

T −2I
−I T −I

.
−I T −I

−2I T

 ,

where

T =

4 + σh2 −2
−1 4 + σh2 −1

.
−1 4 + σh2 −1

−2 4 + σh2

 .

The matrixA is not symmetric but it can be symmetrized by multiplication by a suitable diagonal
matrix.

For periodic boundary conditions there are (m+ 1)2 unknowns and the matrix (for σ = 0) is

A =

T −I −I
−I T −I

.
−I T −I

−I −I T

 ,

where

T =

4 −1 −1
−1 4 −1

.
−1 4 −1

−1 −1 4

 .

Note that the matrix A is singular. This is linked to the fact that the solution of the continuous
problem is not unique. It is often important to make sure that b ∈ Range(A).

1.9. Discretization methods for partial differential equations 33

Parabolic problems solved with time implicit discretization methods are usually a little easier
to solve than elliptic problems. At each time step, we have to solve a linear system that looks
like an elliptic problem. However, due to the discretization of the time derivative, there is an
additional term (typically h2/∆t where ∆t is the time step) added to the diagonal of the matrix
giving better properties (for instance more diagonal dominance). Three dimensional problems
also give matrices with the same pattern as for two dimensional ones but then, the matrices Di

are themselves block tridiagonal corresponding to a two dimensional problem.
Convection-diffusion problems are an interesting source of non-symmetric linear systems. A

typical problem is

−ε∆u+ 2Px
∂u

∂x
+ 2Py

∂u

∂y
= f in Ω,

u
∣∣
∂Ω

= 0.

First order derivatives are approximated with centered or upwind finite differences. Test prob-
lem 6 is defined by ε = 1, Px = Py = 50. Test problem 7 uses ε = 1, Px = e2(x2+y2), Py = 0.
Both problems are discretized with an upwind scheme.

Dealing with sparse matrices, our aim is to be able to avoid storing the zero entries of the
sparse matrix A and to avoid doing operations on these zeros. Finite differences matrices can
be conveniently stored in the computer memory by diagonals (i.e., a diagonal is stored in a one
dimensional array). At least this is true if one wants to use an iterative method to solve the linear
system where only matrix-vector products are needed.

Another way to solve elliptic and parabolic partial differential equations is to use the finite
element method. Actually, there is a variety of different finite element methods. We now give
the flavor of the simplest one. Let Ω be a two dimensional domain and suppose we want to solve
again the Poisson model problem:

−∆u = f in Ω,

u
∣∣
∂Ω

= 0,

with f in L2(Ω).
It is well known (using the Green formulae) that u is also the solution of the so-called varia-

tional problem
a(u, v) = (f, v) for all v ∈ H1

0 (Ω),

where

H1
0 (Ω) =

{
u|u ∈ L2(Ω),

∂u

∂xi
∈ L2, u

∣∣
∂Ω

= 0

}
,

and a(u, v) is a given bilinear form

a(u, v) =

∫
Ω

∇u∇v dx, (f, v) =

∫
Ω

fv dx.

An idea to approximate the solution u is to define uh as the solution of

a(uh, vh) = (f, vh) ∀vh ∈ Vh,

where Vh ⊂ H1
0 (Ω) is a finite dimensional subspace. For example, one is given a triangulariza-

tion of Ω (Ω is supposed to be a polygon) as in Figure 1.5.
In the simplest method Vh is the set of continuous and piecewise polynomials of degree one

on each triangle. Hence, the unknowns can be taken as the values of uh at each vertex. A basis

34 1. Introductory Material

Figure 1.5. A finite element mesh in �2

for Vh is given by the functions wi ∈ Vh whose value is 1 at node i and 0 outside the triangles to
which i is a vertex of. Then, the discrete problem is

a(uh, wi) = (f, wi) for all basis functions wi.

But uh can be decomposed on the basis functions as, uh =
∑
j uh(i)wj . So, we get a linear

system whose unknowns are uh(i) with a matrix A for which ai,j = a(wi, wj). The structure
of the matrix depends on the numbering scheme which is used for the mesh nodes. Most often
these matrices cannot be stored by diagonals. The storage mode will depend on the method that
is used to solve the system (direct or iterative) and also on the type of computer that is used
(scalar, vector or parallel).

The most natural way is to store only the non-zero entries ai,j of A, together with the row
and column indices i and j. Therefore, if nz is the number of non-zeros of A, the storage needed
is nz floating point numbers and 2 nz integers. In most modern computers, integers use the same
number of bits as floating point numbers. In that case, the total storage is 3 nz words. However,
this mode of storage (which is sometimes called the coordinate scheme) is not very convenient
for direct methods as they usually require easy access to rows and/or columns of the matrix.

One common way to store a sparse matrix which is more suited to direct methods is to hold
the non-zeros of each row (resp. column) as a packed sparse vector AA, together with the column
(resp. row) index of each element in a vector JA. These two vectors have a length of nz words.
A third vector IA of integers of length n+ 1 is needed for pointing to the beginning of each row
in AA and JA. Let us look at this storage scheme on a small example.

Let

A =

a1 0 0 a2

a3 a4 a5 0
0 a6 a7 0
a8 0 0 a9

 ,

the stored quantities are

1 2 3 4 5 6 7 8 9
AA a1 a2 a3 a4 a5 a6 a7 a8 a9

JA 1 4 1 2 3 2 3 1 4
IA 1 3 6 8 10

Note that IA(n+1)=nz+1. This allows us to compute the length of row i by IA(i+1)-IA(i).
Equivalently, the lengths of rows can be stored in place of IA. Sometimes the diagonal elements
are treated in a special way. As they are often all non-zero, they are stored in an additional vector
of length n or the diagonal entry of each row could be stored in the first (or last) position of the
row. If the matrix is symmetric only the lower or upper part is stored.

Another storage scheme which is much used is linked lists. Here, each non-zero element
(together with the column index) has a pointer IPA to the location of the next element in the

1.10. Eigenvalues and Fourier analysis 35

row. To be able to add or delete entries easily in the list, it is sometimes handy to have a second
pointer to the location of the previous entry. Finally, we must know the beginning of the list for
each row in a vector IA. Going back to our small example, we have the following storage when
using only forward links. Note that the elements could be stored in any order,

1 2 3 4 5 6 7 8 9
AA a3 a2 a9 a1 a4 a8 a6 a5 a7

JA 1 4 4 1 2 1 2 3 3
IPA 5 0 0 2 8 3 9 0 0
IA 4 1 7 6

A zero value in IPA(.) indicates the end of the list for the given row.
Later on, we shall consider other schemes for storing sparse matrices that are more useful for

some particular algorithms. Other storage schemes exist that are more suited to iterative methods,
especially those which need only matrix vector products. Usually one tries to obtain something
which is close to the diagonal storage scheme for finite difference matrices. Algorithms were
devised to construct pseudo diagonals, see Melhem [338], Erhel [179]. One way is to collect the
non-zero elements in vectors. The non-zero elements are flagged with 0 or 1. Initially, they are
all 0. A pseudo diagonal is formed by collecting successively for each row the leftmost non-zero
element whose flag is 0. When collected, its flag is set to 1. We also need to store the column
index (and eventually the row index).

1.10 Eigenvalues and Fourier analysis
For the finite difference model problem (Poisson equation with Dirichlet boundary conditions)
we can explicitly compute the eigenvalues of A. We start by considering the problem arising
from a one dimensional periodic Poisson model problem on [0, 1], namely the Poisson equation
with periodic boundary conditions.

The matrix of interest is

AP =

2 −1 −1
−1 2 −1

.
−1 2 −1

−1 −1 2

 ,

but to compute the eigenvalues, we can restrict ourselves to

TP =

0 1 1
1 0 1

.
1 0 1

1 1 0

 ,

as λ(AP) = 2 − λ(TP), TP being of order n + 1 (this corresponds to h = 1/(n + 1)) and the
mesh points we consider are h, 2h, . . . , (n+ 1)h. We are interested in finding the eigenvalues λ
and eigenvectors u of TP . Looking at a generic row of TP , we guess that

uk = aei(k−1)θ + be−i(k−1)θ,

the kth component of the eigenvector, where i =
√
−1. It is easy to see, this gives directly

λ = eiθ + e−iθ = 2 cos(θ).

36 1. Introductory Material

To find θ and to satisfy the first and last equations, we look at the boundary conditions. For
j = 1, we have

a(einθ − e−iθ) + b(e−inθ − eiθ) = 0,

and for j = n+ 1,
a(1− ei(n+1)θ) + b(1− e−i(n+1)θ) = 0.

To have a non-trivial solution a, b we ask for∣∣∣∣ einθ − e−iθ e−inθ − eiθ
1− ei(n+1)θ 1− e−i(n+1)θ

∣∣∣∣ = 0.

This gives
2 sin(θ) + sin(nθ)− sin((n+ 2)θ) = 0.

It is easily verified that a solution is

θj =
2πj

n+ 1
, j = 0, . . . , n.

Thus, we have the eigenvalues of TP ,

λj = 2 cos

(
2πj

n+ 1

)
, j = 0, . . . , n.

Note that λ = 2 is always a simple eigenvalue (giving the 0 eigenvalue of A). Now, suppose that
n is odd (n + 1 = 2p even), then λ = −2 is a simple eigenvalue (corresponding to j = p), as
well as 2. Note that if λ is an eigenvalue, then−λ is also an eigenvalue. If p is even, 0 is a simple
eigenvalue. The eigenvector corresponding to λ = 2 is clearly

u0 = eT = (1, 1, . . . , 1)T ,

and the eigenvector for λ = −2 is

up = (1,−1, . . . , 1,−1)T .

For the double eigenvalues, we must select two independent vectors that span the eigenspace.
We can take a = 1 and b = 0 for the first eigenvector and a = 0 and b = 1 for the second.
But, we can also choose, for instance, a = eθj/2, b = e−θj/2 for the first eigenvector and
a = eθj/2i, b = −e−θj/2i for the second. This gives

cos

(
k
πj

p

)
, sin

(
k
πj

p

)
,

for the components of the eigenvectors. Note that when h → 0 (or n → ∞), then the com-
ponents of the eigenvectors converge to values of the functions cos(2πjx) and sin(2πjx). The
eigenvalues of 1

h2AP are

2

h2
(1− cos(2πjh)) , j = 0, . . . , n.

For j fixed, when h → 0 this eigenvalue is equal to 4π2j2 + O(h2). The values 4π2j2 are
eigenvalues of the continuous problem. For j = 0, we have the constant eigenfunction.

To understand the correspondence between the periodic and the Dirichlet boundary condi-
tions, it is important to note that the sine eigenvector has a component up = 0 corresponding

1.10. Eigenvalues and Fourier analysis 37

to abscissa x = 1/2 (because sin(pπj/p) = sin(πj) = 0). Moreover un+1 = 0, hence this
eigenvector satisfies the Dirichlet boundary conditions on]0, 1/2[and is also an eigenvector of
the Dirichlet problem of size p− 1, with matrix

TD =

0 1
1 0 1

.
1 0 1

1 0

 .

Thus for the Dirichlet problem, we have the (simple) eigenvalues coming from the p− 1 double
eigenvalues of the periodic problem as they are the only ones that can be associated with a
sine eigenfunction. In conclusion, when n is odd, the p − 1 double eigenvalues of the periodic
problem and (the restriction) of the sine eigenvectors are eigenvalues and eigenvectors of the
Dirichlet problem of size p − 1. This can be considered as a Dirichlet problem of size p − 1 on
[0, 1] with a mesh size hd = 2h. When h → 0, we have the same conclusion as for the periodic
boundary conditions, except there is no constant eigenfunction.

Now, we consider the two dimensional periodic problem for which we have the matrix:

T2 =

TP I I
I TP I

.
I TP I

I I TP

 ,

the matrix AP of the problem is AP = 4I−T2, T2 being of order (n+ 1)2 and TP as previously
defined for the one dimensional problem.

Since the matrix problem arises from a separable elliptic equation, the eigenvectors for T2

are tensor products of the one dimensional eigenvectors. If the mesh points are labeled by integer
couples (k, l) and if u and v are two eigenvectors of TP corresponding to λj and λm, then the
vector U defined, for example, as

Uk,l = ukvl = sin

(
kπj

p

)
sin

(
lπm

p

)
,

is an eigenvector of T2. We have to consider the tensor products of sines and cosines. U can also
be written blockwise as

UT = (uv1, uv2, . . . , uvn+1),

the blocks corresponding to mesh lines. Looking at one of the blocks of T2U , we have

(vl−1 + vl+1)u+ TPuvl

which is, as TPu = λju, equal to

(vl−1 + vl+1 + λjvl)u = (λj + λm)vlu,

as v is also an eigenvector of TP with eigenvalue λm. Consequently, the eigenvalues of the
two dimensional periodic problem are the (pairwise) sums of two of the eigenvalues of the one
dimensional periodic problem.

As an example, consider n = 7, then the one dimensional periodic problem has the following
eigenvalues with multiplicity ():

−2(1), −1.4142(2), 0(2), 1.4142(2), 2(1).

38 1. Introductory Material

We combine these eigenvalues 2 by 2 to get (note that from λ and −λ we get additional 0
eigenvalues) for the two dimensional periodic problem T2:

−4(1), −3.4142(4), −2.8284(4), −2(4), −1.4142(8), −0.5858(4), 0(14),

0.5858(4), 1.4142(8), 2(4), 2.8284(4), 3.4142(4), 4(1).

The multiplicity of 0 is 14 as we combine 0 with itself (twice because of the multiplicity) which
gives 4 eigenvalues, 1.4142 with −1.4142 and −1.4142 with 1.4142 which gives 8 eigenvalues.
Finally, we combine 2 with−2 and−2 with 2 which gives 2 eigenvalues for a total of 4+8+2 =
14. The multiplicity of the other eigenvalues can be computed in the same way.

The eigenvalues of AP are:

0(1), 0.5858(4), 1.1716(4), 2(4), 2.5858(8), 3.4142(4), 4(14),

4.5858(4), 5.4142(8), 6(4), 6.8284(4), 7.4142(4), 8(1).

The eigenvectors are tensor products of the one dimensional eigenvectors. In the eigenspaces,
there are eigenvectors of the form sine × sine, except for the 2 and −2 eigenvalues. These sine
eigenvectors satisfy the Dirichlet boundary conditions on [0, 1/2] × [0, 1/2]. Therefore as in
the one dimensional periodic problem, we can pick only the eigenvalues with sine eigenvectors
counting them only once and we combine them. In the example, we obtain for the matrix TD of
the two dimensional Dirichlet problem

−2.8284(1), −1.4142(2), 0(3), 1.4142(2), 2.8284(1).

Note that the multiplicity of the eigenvalues is smaller for Dirichlet boundary conditions than for
periodic boundary conditions. We have the same conclusion as for the 1D problem: some of the
eigenvalues of the periodic problem of size (n+ 1)2 are eigenvalues of the Dirichlet problem of
size (p− 1)2. We must exclude those eigenvectors with no sine function.

Note that the eigenspaces can also be generated by exponential functions. The invariant space
for an eigenvalue of multiplicity 4 of the periodic problem can be generated by vectors whose
components are

eikθjeilθm eikθje−ilθm e−ikθjeilθm e−ikθje−ilθm .

This space can also be generated by vectors whose components are

sin(kθj) sin(lθm) sin(kθj) cos(lθm) cos(kθj) sin(lθm) cos(kθj) cos(lθm).

When h → 0, the conclusions are the same as for the 1D problem. For the mode (j,m) the
eigenvalue of 1

h2AP for the periodic problem is

λ =
1

h2
(4− 2 cos(2πjh)− 2 cos(2πmh)) , j,m = 0, . . . , n.

When h is small, this is 4π2(j2 +m2)+O(h2), j,m = 0, . . . The eigenfunctions are functions
such as sin(2πjx) cos(2πmy), etc. . .

For the Dirichlet problem, the eigenvalues are

λp,q = 4− 2 cos(pπh)− 2 cos(qπh), h =
1

m+ 1

The couple (p, q) refers to the mode

1 ≤ p ≤ m, 1 ≤ q ≤ m.

1.10. Eigenvalues and Fourier analysis 39

The components of the corresponding (unnormalized) eigenvector are

up,qi,j = sin(ipπh) sin(jqπh)

where (i, j) refers to a point in the mesh. Figure 1.6 shows the eigenvalues of the model problem
with Dirichlet boundary conditions for m = 10.

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.6. The eigenvalues of the model problem, n = 100

We remark that the eigenvector associated with the smallest eigenvalue as seen as the dis-
cretization of a function on the given mesh is the smoothest one. This is why it is referred as
“low frequency”. The eigenvector associated with the largest eigenvalue is very oscillatory. This
is referred as “high frequency”. See Figure 1.7 which shows normalized eigenvectors.

0 2 4
6 8

10

0

5

10
0

0.1

0.2

smallest eigenvalue

0 2 4
6 8

10

0

5

10
-0.2

0

0.2

largest eigenvalue

Figure 1.7. The eigenvectors of the model problem, n = 100 for λmin and λmax

Fourier analysis has been used quite extensively in the past to analyze the performance of
discrete numerical methods. The main idea is to compute the effect of a discrete difference
operator on the Fourier modes. If the difference operator is periodic and has constant coefficients,
then its eigenfunctions are often precisely these Fourier modes (as we have just seen above for the
Laplacian operator) and its symbol can be easily computed and analyzed algebraically. Examples
are the classical Von Neumann stability analysis for difference schemes for time dependent PDEs,
see Richtmyer and Morton [383].

Rather surprisingly, the use of Fourier analysis for the study of iterative methods for elliptic
problems has not been widespread. This is because many matrices that we have to study for non-
periodic problems do not have constant coefficients, even if the original problem does. However,

40 1. Introductory Material

as is well known, the coefficients of the matrices involved in iterative methods (either splitting
methods or preconditioners) often approach constant values in the interior of the domain away
from the boundaries. These asymptotic values can often be easily computed by considering
the corresponding periodic problem. It is thus natural to expect the Fourier analysis to produce
interesting results for these problems as well.

We now illustrate the Fourier technique by applying it to several basic difference operators
which we shall employ later. Consider the unit square in two dimensions and a uniform grid with
m interior grid points in both the x and y directions. The Fourier modes on this grid are grid
functions u(s,t) extended periodically to the whole space whose (j, k)th component is given by:

(u(s,t))j,k = eikθseijφt

where θs = 2πs
m+1 and φt = 2πt

m+1 .
Consider as an example the difference operator T1(α, β) (a second order finite difference

operator in one direction) defined by

(T1(α, β)v)j,k = −βvj,k−1 + αvj,k − βvj,k+1.

The Fourier transform F (T1) (i.e. its symbol) can be computed by applying T1 to the Fourier
mode u(s,t) given earlier and we get

T1u
(s,t) = βeijφt(ei(k−1)θs + ei(k+1)θs) + αeikθseijφt ,

which after some simplifications yields

T1u
(s,t) = ((α− 2β) + 4β sin2(θs/2))u(s,t).

Thus,

F (T1(α, β)) = (α− 2β) + 4β sin2(θs/2).

Similarly, the Fourier transform of the following operators (which will be useful for studying
preconditioners):

(T2(α, β, γ)v)j,k = −βvj,k−1 + αvj,k − βvj,k+1 − γvj+1,k,

(T3(α, β, γ)v)j,k = −βvj,k−1 + αvj,k − βvj,k+1 − γvj−1,k,

are given by:

F (T2(α, β, γ)) = (α− 2β) + 4β sin2(θs/2)− γeiφt .

F (T3(α, β, γ)) = (α− 2β) + 4β sin2(θs/2)− γe−iφt .

Finally, the Fourier transform of the standard 5-point finite difference discrete Laplacian AP in
two dimensions is given by:

F (AP) = 4(sin2(θs/2) + sin2(φt/2)).

We also note the Fourier transform of a product (composition) of operators is the product of the
transforms of the individual factors and the transform of the inverse of an operator is the inverse
of the transform.

1.11. Floating point arithmetic 41

1.11 Floating point arithmetic
The coefficients and solution of linear systems are real or complex numbers. Unfortunately, for
solving these systems we use digital computers made of a finite number of parts and all real
(or complex) numbers cannot be exactly represented. In particular, registers and memory words
designed to store the data and the intermediate and final results have a finite length or capacity
and cannot store all real numbers. Moreover, when computations are performed on a computer,
each arithmetic operation (+,−, ∗, /) is generally affected by roundoff errors as only a finite
number of digits (or bits) can be retained.

The subject of roundoff error analysis is to try to understand the effects of these limitations
on the result of solving a problem. Before going into these problems in subsequent chapters, we
must define the floating point arithmetic model we are using. Here, we follow the expositions of
Forsythe and Moler [196] and Golub and Van Loan [241]. The numbers that can be represented
in the computer are a (finite) subset of the real numbers and are denoted by F . This set is
characterized by four integers: the base β, the number t of base-β digits in the fractional part
(also called the mantissa) and the exponent range [eL, eU]. Then, (normalized) numbers in F
consists of all real numbers f of the form

f = ±.d1d2 · · · dt βe, 0 ≤ di < β, d1 6= 0, eL ≤ e ≤ eU ,

where e is an integer, to which we add zero and a representation for results whose absolute value
will be smaller (resp. larger) than the smallest (resp. largest) absolute value of a non-zero number
in F . For a non-zero f ∈ F , we have

m = βeL−1 ≤ |f | ≤M = βeU (1− β−t).

On the real line, the elements of F are not equally spaced (see Figure 1.8 that shows the elements
of F for β = 2, t = 3, eL = 0, eU = 2).

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.8. Elements of F for β = 2, t = 3, eL = 0, eU = 2

A real number x that we wish to represent is approximated by a number fl(x) that can be
defined as an operator from

G = {x ∈ R,m ≤ |x| ≤M} ∪ {0},

into F , by

fl(x) =

{
nearest xR ∈ F to x if rounded arithmetic is used

nearest xC ∈ F s. t. |xC| ≤ |x| if chopped arithmetic is used

42 1. Introductory Material

Table 1.1.

t eL eU

CRAY single 48 -8192 8191
IEEE single 24 -125 128
IEEE double 53 -1021 1024

Today, most computers use β = 2, although in the past some computers used β = 8 or 16.
Typical values of the other parameters for some (1997) computers are given in the Table 1.1.

For more details on floating point arithmetic particularly IEEE formats, see Golberg [229].
The following results are proved in Forsythe and Moler [196].

Theorem 1.64. If x ∈ G, then

xR = x(1 + εR), |εR| ≤
1

2
β1−t,

xC = x(1 + εC), |εC| ≤ β1−t.

Next, we have to define the operations on elements of F . Let • be one of the four operations
+,−, ∗, / and � its implementation on a computer. We say that a computer arithmetic is correct
if

x, y ∈ F, fl(x • y) = x� y.

Not all arithmetics are correct. The one used on CRAYs Y-MP and C90 was not correct. The
IEEE norm defines a correct arithmetic. We define the unit round off u as,

u =

{
uR = 1

2β
1−t for rounded arithmetic

uC = β1−t for chopped arithmetic

For IEEE single precision arithmetic (32 bits), the unit roundoff (rounded arithmetic) is uR =
5.9605 10−8 and uR = 1.1102 10−16 for double precision (64 bits). We have,

fl(x) = x(1 + ε), |ε| ≤ u.

We have the following result,

fl(x • y) = (x • y)(1 + ε), |ε| ≤ u, (1.1)

and then
|fl(x • y)− (x • y)|

|x • y|
≤ u,

when |x • y| 6= 0. This shows there is a small relative error associated with each operation
(provided t is large enough). Note that (1.1) was not verified by CRAY arithmetic because of the
lack of guard digits. Relaxed assumptions need to be made. Fortunately, most of the following
results carry over to this case and CRAY switched to IEEE arithmetic. From this last result we
can construct some other error bounds. We use the following lemma from Forsythe and Moler
[196].

1.11. Floating point arithmetic 43

Lemma 1.65. If 0 ≤ u < 1 and n ∈ N ,

1− nu ≤ (1− u)n.

If 0 ≤ nu ≤ 0.01,
(1 + u)n ≤ 1 + 1.01nu.

Proof. The first statement follows from Taylor’s formula and the second one from

ex ≤ 1 + 1.01x for 0 ≤ x ≤ 0.01

Note that the largest n that satisfies the inequality 0 ≤ nu ≤ 0.01 is n ≈ 167772 for IEEE
single precision arithmetic and n ≈ 9 1013 for double precision.

Theorem 1.66. Let w = x− yz and e = fl(w)− w. If nu ≤ 0.01, then

|e| ≤ 3.02 umax(|x|, |w|).

Proof. fl(w) is defined as fl(x− fl(yz)). But, fl(yz) = yz(1 + ε1), |ε1| ≤ u and

fl(w) = (x− yz(1 + ε1))(1 + ε2), |ε2| ≤ u,
= x(1 + ε2)− yz(1 + ε1)(1 + ε2).

This can be written with the help of Lemma 1.65,

fl(w) = x(1 + θ2u)− yz(1 + 2.02 θ1u), |θi| < 1,

= x− yz + u(xθ1 − 2.02 yzθ1).

Therefore,
|e| ≤ u(|x|+ 2.02 |w − x|),

from which the result follows.

The last result can also be written as

|e| ≤ u(2.02|yz|+ |x|).

We have also
|e| ≤ u(2|yz|+ |x|) +O(u2).

The values of the constants involved in these inequalities such as 2.02 or 3.02 are not really
important. Therefore, in most statements of the results, we shall replace them by a generic
constant C or Ci. However, for the sake of completeness, we shall indicate their possible values.

Now, we shall be able to analyze the effect of roundoff errors in algorithms. There are several
different ways to approach this problem. The one that is more popular today is called inverse
or backward error analysis. It was introduced by W. Givens and developed, in particular for
Gaussian elimination, by J.H. Wilkinson [468]. In this type of analysis the roundoff errors are
related to the data. The result of floating point operations is interpreted as the exact result of
ordinary arithmetic on some perturbed data and some bounds are derived for the perturbations.
This allows us to be able to use ordinary arithmetic.

44 1. Introductory Material

1.12 Vector and parallel computers
Here, we make a few remarks about computers and algorithm complexity. From the first few
years after World War II with the advent of the first digital computers with stored programs,
there has been tremendous progress in the floating point performance of scientific computers.

In the past, people have considered the number of floating point operations involved in their
algorithms as a measure of efficiency (most often the integer operations associated with address
computations and loop overhead were neglected). This was supposed to give a good account of
what the computer time used when running the codes. A nice feature was that this operation
count was computer independent. But we cannot use the same hypothesis any more on vector
and parallel computers. To understand this issue, let us briefly describe some of these machines.

At the beginning of the seventies, top scientific computers like the IBM 360-91 were running
at an average of 1-2 Mflops (Millions of floating point operations per second). Roughly, one
can say that a traditional computer executes basic operations in a serial way: it waits for the
completion of an operation before beginning the execution of the next one. For this kind of
computer, that is to say the ones we used in the fifties, sixties and the beginning of the seventies,
the operation count gives a good idea of what is going on.

This was already no longer true for some computers of the seventies, for example, the CDC
7600. The 7600 was a pipelined computer. This means that a basic operation like addition or
multiplication is divided into a certain number of steps, say n. When one pair of operands has
moved from step 1 to step 2, step 1 is free to accept a new pair of operands. Of course, the second
pair must be independent of the results of the first operation. If we (or the compiler) are able to
continuously feed the pipeline with independent operations then the first result will take n cycles
to be produced but after that we shall get a new result each cycle. For example, if n = 6 we shall
produce 6 results in 12 cycles instead of 36 cycles on a serial computer. The problem for these
computers was that at that time, the available compilers were not smart enough to automatically
recognize that they had to do consecutive independent operations. So, there was only a slight
improvement over serial computers.

This was changed at the end of the seventies with the advent of vector computers, the first
one commercially available being the CRAY-1. Among other features, the CRAY-1 had 8 vector
registers of 64 words each. Roughly speaking, the compiler was able to recognize that we were
doing, for example, the addition of two one-dimensional arrays, that is, two vectors. It was then
able by using vector instructions to feed the addition pipeline efficiently by fetching the operands
from the memory into the vector registers. Moreover, this machine had independent functional
units, that is to say for example one for additions and one for multiplications, that can operate
simultaneously (of course on non-related data). For related operations there was a process called
chaining. If x and y are vectors and we are doing, for instance, x + αy, (α being a scalar), as
soon as the first element of αy was available it was sent to the addition functional unit together
with the first element of x. Doing this, the two operations were overlapped.

It is clear that with this kind of computer, the classical operation count means nothing. On
typical codes, there was a ratio of 10 to 40 between scalar and vectorized codes. To run fast, an
algorithm had to be expressed (if possible) in terms of vectors. Moreover, the longer the vector
length, the faster the speed of execution (although eventually the peak speed is reached). The
memory traffic issue is also very important in order to get good performance. Usually, the fastest
vector computers are the ones with the largest memory bandwidth and the speed of programs
depends also on the ratio of the number of floating point operations to the number of memory
references. Despite all of their impressive features, these machines were far from reaching the
speeds we need for very large scale scientific computations such as aerodynamic calculations or
weather forecasting.

The next step in getting more computer power was to use multiprocessor computers. Vector

1.13. BLAS and LAPACK 45

computers have evolved into machines with several vector processors sharing a common large
memory. Examples of these machines were the CRAY Y-MPs and C90s as well as computers
from Japanese manufacturers like Fujitsu, NEC or Hitachi. Most of these machines were running
(in the mid-nineties) at Gigaflops speeds on well designed programs.

Parallelism is in fact an old idea but only recently have very efficient multiprocessors been
developed. At the end of the eighties and beginning of the nineties a new kind of scientific
computers appeared on the market: parallel computers with a distributed memory. Almost all
these machines use off-the-shelf microprocessors. They have from a few tens to a few thousand
processors. Even though the memory is physically distributed, some of these machines use
a global addressing system either at the hardware level or by using software devices. Teraflops
speeds are reached on some applications (1997). Of course to be used efficiently, these computers
need algorithms that contain enough parallelism and suitable programming models to be able to
express the parallelism. It is likely that by the end of this century and the beginning of the next,
parallel architectures will be clusters of shared memory parallel computers. It may be that the
memory will be virtually sharable even though only a part of it is physically shared. This also
raises many problems of cache coherency. By 1996 there were some studies which considered
building Petaflops (1015 floating point operations per second) within the twenty first years of the
21st century.

Sometimes only a few modifications have to be made to classical algorithms to use them
on parallel computers. But, most of the time, completely new algorithms have to be derived.
Finding efficient and robust parallel algorithms is a serious challenge for numerical analysts. An
important issue that has to be considered is scalability. The most powerful scientific computers
are designed to solve large problems. The size of the problems that scientists and engineers want
to solve is (and probably will be) always too large for the available computers. Nevertheless, as
the size of the problem grows we would like, if we increase proportionally the number of proces-
sors, to keep the (elapsed) computer time constant. To obtain this, we need to have algorithms
whose (serial) complexity is proportional to the number of unknowns. Unfortunately, most of
the well known algorithms are not scalable.

1.13 BLAS and LAPACK
Software reusability and portability are important issues. In the seventies, Lawson et al [315]
described a set of basic routines commonly known as the BLAS (Basic Linear Algebra Sub-
programs) which defined the most used kernels in linear algebra. These routines can be imple-
mented efficiently by each manufacturer, possibly in assembly language, allowing both portabil-
ity through different computers and performance.

The set of operations described in 1979 is now referred as Level 1 BLAS or BLAS1. These
routines are mainly concerned with vector operations like

y = αx+ y, (Saxpy)

α = xTy, (Sdot)

x = αx, (Sscal)

x = y, (Scopy)

α = ‖x‖2, (Snrm2)

where x and y are vectors and α is a scalar, the S standing for single precision. For a complete list,
see Anderson et al [7]. The well known linear algebra package LINPACK (for linear systems
solutions and least square problems) was written using BLAS1 and published in 1979 [145].
BLAS1 involves O(n) floating point operations on O(n) data items, n being the length of the
vectors.

46 1. Introductory Material

At the time where the BLAS1 was defined and LINPACK was completed, vector computers
appeared on the market. One might think that BLAS1 would be very efficient on vector com-
puters since it precisely defines vector operations. But unfortunately this was not the case and
the BLAS1 and LINPACK performed poorly on early vector machines. The reason was that the
value of the ratio of floating point operations to data loads and stores was too low to keep the
processor busy all the time. The performance was lower (sometimes by a large amount) than the
peak theoretical speed. Moreover, in BLAS1, there are very few possibilities of data reuse in
vector registers or memory caches.

An additional set of routines called the Level 2 BLAS (BLAS2) was then designed, (Don-
garra et al [147]) to overcome these problems and published in 1988. They are based on
matrix×vector operations. Examples are

y = αAx+ βy,

x = Tx,

A = αxyT +A,

x = T−1x,

where α, β are scalars, x, y are vectors, A and T are matrices, T being triangular. Most algo-
rithms of linear algebra operating on dense matrices can be coded using Level 2 BLAS including
Gaussian elimination. Level 2 BLAS involves O(n2) floating point operations on O(n2) data
items. Therefore, the ratio of Level 1 BLAS is not improved. But data locality is better than with
BLAS1.

To improve further on this point and to increase the data locality, a level 3 BLAS (BLAS3)
was proposed in 1990, see Dongarra et al [146], that defines matrix×matrix operations. Typical
examples are

C = αAB + βC,

C = αAAT + βC,

C = αABT + αBAT + βC,

B = αTB,

B = αT−1B,

where α, β are scalars, A,B,C, T are matrices, T being triangular. Now we haveO(n3) floating
point operations on O(n2) data items helping to improve the data reuse. BLAS3 performs very
well on vector supercomputers and computers with a memory hierarchy. Performance close to
the peak speed is frequently obtained.

At the end of the eighties, at the same time as the BLAS2 and BLAS3 appeared, a new soft-
ware project was developed. Its goal was to supersede both LINPACK and EISPACK (a well
known package for eigenvalues computations) and also to obtain better performances. The com-
puters targeted were parallel vector supercomputers with shared memory. Another (important)
goal was to improve the quality and accuracy of the algorithms, particularly for eigenvalue com-
putations. The first version of LAPACK (for Linear Algebra PACKage) appeared officially in
1992, see Anderson et al [7] and the second one in 1994. The strategy of LAPACK to obtain
portable codes that are also efficient is to construct the software as much as possible using calls
to the BLAS. The BLAS2 and 3 can achieve near peak performance on the target architectures.
Moreover, they exploit parallelism in a transparent way.

Partitioned block forms of the LU (and other) factorizations (where point algorithms are
used) in which operations have been grouped together are used in LAPACK in order to use Level
2 and 3 BLAS. Some routines also exist in LAPACK that return bounds on the componentwise
backward error (see Chapter 2).

1.14. Bibliographical comments 47

For distributed memory parallel computers, a new library known as ScaLAPACK [106] has
been developed. Again, the goal is portability and performance. By 1997, LAPACK and ScaLA-
PACK contained the state of the art for Gaussian elimination for dense matrices. They must be
used as much as possible.

The codes and literature about the BLAS, LAPACK and ScaLAPACK projects can be found
in Netlib on the World Wide Web at the address http://www.netlib.org.

1.14 Bibliographical comments
Most of the results given in this chapter can be found in the classical books of Householder [290],
Strang [425], Wilkinson [468], Varga [457] and Young [473].

Theorem 1.24, giving a necessary and sufficient condition for convergence of a matrix power
sequence, goes back to Hensel (1926) and Oldenburger (1940). Note that most of the proofs in
the literature use the Jordan normal form.

Irreducibility of a matrix was introduced by Frobenius (1912) and reintroduced by Geringer
(1949).

Diagonally dominant matrices have been studied for a very long time. Corollary 1.32 saying
that a strictly diagonally dominant matrix is non-singular has been proved by many mathemati-
cians. However, its origin seems to be in the works of L. Levy (1881) and J. Hadamard (1898).
This result was then forgotten and rediscovered by Gerschgorin (1931). Olga Taussky (1949)
proved that a strictly diagonally dominant matrix has eigenvalues with positive real parts.

Ostrowski (1937) introduced M and H-matrices. It is very difficult to trace where all the
characterizations of M-matrices come from. The book by Berman-Plemmons [43] is a good
summary of all these results.

The definition of a regular splitting comes from Varga (1960). Theorem 1.54 (Householder
(1955), John (1956)) is an extension of the Ostrowski-Reich theorem (1949-1954).

Fourier analysis has been used for quite a while. But, only recently it has received attention
for the analysis of iterative methods, see Chan and his co-workers [88].

The use of graphs for Gaussian elimination is due to Parter [372] and Rose [389].
The design of the IEEE standard for floating point arithmetic has been largely influenced by

W. Kahan, see Golberg [229] and Higham [282, 283].
The famous LINPACK package that implements direct methods for solving dense and banded

linear systems appeared in 1979. Its descendant LAPACK (1992) is largely due to the efforts of
Jack Dongarra.

48 1. Introductory Material

2

Gaussian elimination for
general linear systems

2.1 Introduction to Gaussian elimination
The problem we are concerned with in this chapter is obtaining by a direct method the numerical
solution of a linear system

Ax = b, (2.1)

where A is a square non-singular matrix (i.e. det(A) 6= 0) of order n, b is a given vector, x is the
solution vector. Of course, the solution x of (2.1) is given by

x = A−1b

where A−1 denotes the inverse of A. Unfortunately, in most cases A−1 is not explicitly known,
except for some special problems and/or for small values of n. But, it is well known that the
solution can be expressed by Cramer’s formulae (see [213]),

xi =
1

det(A)

∣∣∣∣∣∣∣∣
a1,1 · · · a1,i−1 b1 a1,i+1 · · · a1,n

a2,1 · · · a2,i−1 b2 a2,i+1 · · · a2,n

... · · ·
...

...
... · · ·

...
an,1 · · · an,i−1 bn an,i+1 · · · an,n

∣∣∣∣∣∣∣∣ , i = 1, . . . , n. (2.2)

The computation of the solution x by (2.2) requires the evaluation of n+ 1 determinants of order
n. This implies that this method will require more than (n+ 1)! operations (multiplications and
additions) to compute the solution. Fortunately, there are much better methods than Cramer’s
rule which is almost never used.

As we said in Chapter 1, direct methods obtain the solution by making some combinations
and modifications of the equations. Of course, as computer floating point operations are only
performed to a certain precision (see Chapter 1), the computed solution is generally different
from the exact solution. We shall return to this point later.

The most widely used direct methods for general matrices belong to a class collectively
known as Gaussian elimination. There are many variations of the same basic idea and we shall
describe some of them in the next sections.

2.1.1 Gaussian elimination without permutations

In this Section we describe Gaussian elimination without permutations. We give the necessary
and sufficient conditions for a matrix to have an LU factorization where L (resp. U) is a lower
(resp. upper) triangular matrix. Then we shall introduce permutations to handle the general case.

49

50 2. Gaussian elimination for general linear systems

The first step of the algorithm is the elimination of the unknown x1 in the equations 2 to n.
This can be done through n − 1 steps. Suppose that a1,1 6= 0, a1,1 is then called the first pivot.
To eliminate x1 from the second equation, we (left) multiply A by an elementary matrix,

E2,1 =

1
−a2,1a1,1

1
0 0 1
...

...
.

0 0 1

 .

This corresponds to do a linear combination of the first two rows of A. More generally, to
eliminate x1 from the ith equation, we (left) multiply by

Ei,1 =

1
0 1
...

. . .

0
. . .

− ai,1
a1,1

0 . . . 0 1

0
. . .

...
. . .

0 0 1

,

the non–zero terms of the first column of Ei,1 being in positions (1, 1) and (i, 1). All these
elementary matrices can be combined easily as it is shown in the following lemma.

Lemma 2.1. Let j > i, then

Ei,1Ej,1 =

1
0 1
...

. . .

0
. . .

− ai,1
a1,1

. . .

0
. . .

...
. . .

0
. . .

− aj,1
a1,1

. . .

0
. . .

...
. . .

0 1

,

and
Ej,1Ei,1 = Ei,1Ej,1.

Proof. The result is obtained by straightforward matrix multiplication. Note that we also
have

Ei,1Ej,1 = Ei,1 + Ej,1 − I.

2.1. Introduction to Gaussian elimination 51

Let us denote L1 = En,1En−1,1 · · ·E2,1 and A2 = L1A. Obviously L1 is lower triangular.
The elements of A2 will be denoted by a(2)

i,j . The matrix A2 has the following structure,

A2 =

a1,1 x . . . x

0 x . . . x
...

...
...

0 x . . . x

 ,

the x’s corresponding to (eventually) non-zero elements that are defined in the following lemma.

Lemma 2.2.

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
, 2 ≤ i ≤ n, 1 ≤ j ≤ n,

a
(2)
1,j = a1,j , 1 ≤ j ≤ n.

Proof. This is simply the result of the multiplication of A by L1.
Let us describe the kth step of the algorithm. Let Ak be the matrix that has been obtained by

zeroing the elements below the diagonal in the k − 1 first columns,

Ak =

a
(k)
1,1 a

(k)
1,n

. . .
...

a
(k)
k,k a

(k)
k,n

a
(k)
k+1,k a

(k)
k+1,n

...
...

...
...

a
(k)
n,k a

(k)
n,n

and suppose a(k)

k,k 6= 0. The element a(k)
k,k is known as the kth pivot. For i > k, let

Ei,k =

1
. . .

1
0 1
...

. . .

0
. . .

− a
(k)

i,k

a
(k)

k,k

. . .

0
. . .

...
. . .

0 1

,

where the element − a
(k)

i,k

a
(k)

k,k

is in row i and column k. The non-diagonal elements that are not

explicitly shown are 0. Let Lk = En,kEn−1,k · · ·Ek+1,k and Ak+1 = LkAk. Then, as for the
first column, we can characterize this product of matrices.

52 2. Gaussian elimination for general linear systems

Lemma 2.3.

Lk =

1
. . .

1

−a
(k)

k+1,k

a
(k)

k,k

1

...
. . .

−a
(k)

n,k

a
(k)

k,k

1

,

and Ak+1 has the following structure

Ak+1 =

a
(k+1)
1,1 a

(k+1)
1,n

. . .
...

a
(k+1)
k,k a

(k+1)
k,n

0 a
(k+1)
k+1,k+1 . . . a

(k+1)
k+1,n

...
...

...
0 a

(k+1)
n,k+1 . . . a

(k+1)
n,n

.

Proof. Straightforward.
The elements of the jth column of Ak+1 are given by the following expressions.

Lemma 2.4.

a
(k+1)
i,j = a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

, k + 1 ≤ i ≤ n, k ≤ j ≤ n,

a
(k+1)
i,j = a

(k)
i,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n

and k + 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1.

Proof. This is the formula we obviously get when multiplying by Lk.
It is useful to study some properties of the matrices Lk, characterizing their inverses.

Lemma 2.5. Lk is non-singular and

L−1
k =

1
. . .

1
a
(k)

k+1,k

a
(k)

k,k

1

...
. . .

a
(k)

n,k

a
(k)

k,k

1

Proof. Let

lk =

(
0 . . . 0

a
(k)

k+1,k

a
(k)

k,k

. . .
a
(k)

n,k

a
(k)

k,k

)T
.

2.1. Introduction to Gaussian elimination 53

Obviously, Lk = (I − lkekT) where ek = (0 . . . 0 1 0 . . . 0)
T with the 1 in the kth

position. Then, we have
L−1
k = I + lkek

T
,

because,

L−1
k Lk = (I + lkek

T
)(I − lkekT),

= I − lkekT lkekT ,

and ekT lk = 0.

Therefore, the inverses of matrices Lk can be obtained very easily. The preceding results can
be summarized in the following proposition.

Proposition 2.6. If for all k, 1 ≤ k ≤ n− 1, a(k)
k,k 6= 0, then there exists a factorization

A = LU,

where L is lower triangular with a unit diagonal and U is upper triangular.

Proof. The elimination process is defined as follows,

A1 = A,

A2 = L1A1,

...
An = Ln−1An−1.

The last matrix An is upper triangular and is therefore denoted by U . Hence,

Ln−1Ln−2 · · ·L1A = U.

The matrices Li, 1 ≤ i ≤ n− 1 are non-singular. Then,

A = (L−1
1 · · ·L

−1
n−1)U.

The product of unit lower triangular matrices being unit lower triangular, we have

L = L−1
1 · · ·L

−1
n−1

which is a lower triangular matrix with a unit diagonal. Moreover, it is easy to show that

L =

1
a
(1)
2,1

a
(1)
1,1

. . .

...
. . . 1

...
a
(k)

k+1,k

a
(k)

k,k

1

...
...

.
a
(1)
n,1

a
(1)
1,1

. . .
a
(k)

n,k

a
(k)

k,k

. . .
a
(n−1)
n,n−1

a
(n−1)
n−1,n−1

1

.

54 2. Gaussian elimination for general linear systems

Since L−1
i L−1

i+1 = I + liei
T

+ li+1ei+1T , we obtain

L = L−1
1 · · ·L

−1
n−1 = I + l1e1T + · · · ln−1en−1T

Theorem 2.7. If the factorization A = LU exists, it is unique.

Proof. The proof is by contradiction. Suppose there exist two such factorizations, A =
L1U1 = L2U2, then

L−1
2 L1 = U2U

−1
1 .

The matrix on the left hand side is lower triangular with a unit diagonal and the matrix on the
right hand side is upper triangular. Therefore, they are both diagonal and

L−1
2 L1 = U2U

−1
1 = I

which shows that the decomposition is unique.
Let us derive the conditions under which there exists an LU factorization. For this, we have

to identify when all the pivots are non-zero.

Theorem 2.8. A non-singular matrix A has a unique LU factorization if and only if all the
principal minors of A are non-zero. That is,

A

(
1 2 . . . k
1 2 . . . k

)
6= 0, k = 1, . . . , n

where

A

(
i1 i2 . . . ip
k1 k2 . . . kp

)
=

∣∣∣∣∣∣∣∣∣
ai1,k1 ai1,k2 . . . ai1,kp
ai2,k1 ai2,k2 . . . ai2,kp

...
...

...
aip,k1 aip,k2 . . . aip,kp

∣∣∣∣∣∣∣∣∣ .

Proof. Suppose that there exists an LU factorization. From the proof of Proposition 2.6, we
have

Ak+1 = Lk . . . L1A.

Therefore,
A = L−1

1 . . . L−1
k Ak+1,

and we have also
A = LU.

In block form, this is written as

A =

(
A1,1 A1,2

A2,1 A2,2

)
, L =

(
L1,1 0
L2,1 L2,2

)
, U =

(
U1,1 U1,2

0 U2,2

)
,

and from Proposition 2.6,

L−1
1 . . . L−1

k =

(
L1,1 0
L2,1 I

)
, Ak+1 =

(
U1,1 U1,2

0 W2,2

)
,

2.1. Introduction to Gaussian elimination 55

where all the matrices in block position (1, 1) are square of order k. By equating blocks, we have

A1,1 = L1,1U1,1

A2,2 = L2,1U1,2 + L2,2U2,2

A2,2 = L2,1U1,2 +W2,2

Therefore, L1,1U1,1 is the LU factorization of the leading principal submatrix of order k of A
and L2,2U2,2 is the factorization of the matrix W2,2 in the bottom right hand corner of Ak+1 as
we have W2,2 = L2,2U2,2.

Note that det(A) = det(Ak+1). We have det(L1,1) = 1 and det(A1,1) = det(U1,1).
Since the matrix U1,1 is upper triangular, its determinant is equal to the product of the diagonal
elements. Therefore, for all k,

det(A1,1) = a
(1)
1,1 · · · a

(k)
k,k.

This shows that the principal minors are non-zero. The converse of the proof is easily derived by
induction.

2.1.2 Gaussian elimination with permutations (partial pivoting)

In this Section, we allow for the possibility of having zero pivots and we show that nevertheless,
a factorization can be computed by exchanging rows. This is known as pivoting. If the first pivot
a1,1 is zero, we permute the first row with a row p such that ap,1 6= 0. Finding such a p is always
possible, otherwise we shall have det(A) = 0. The row interchange is done by left multiplication
of A by a permutation matrix P1. P1 is equal to the identity matrix except that rows 1 and p have
been exchanged, that is,

P1 =

0 0 . . . 0 1 0 . . . 0

0 1 0 . . . 0 . . .
...

...
.

...
0 . . . 0 1 0 . . .
1 0 . . . 0 0 0 . . .

0 0 1
. . .

...
...

...
. 0

0 0 . . . 0 1

.

Note that P−1
1 = P1. Then we proceed with the previous elimination algorithm on the permuted

matrix. We construct L1 such that A2 = L1P1A. Let us describe the kth step. The main
difference from what we have done before is that the possibility exists that the pivot is zero.
If this is the case, it is possible to find a row p such that a(k)

p,k 6= 0. The reason for this being
that det(Ak) = det(A) 6= 0 and the determinant det(Ak) is equal to the product of the first
k − 1 (non–zero) pivots and the determinant of the matrix in the right hand bottom corner.
Therefore, this matrix is non-singular. In fact, we choose a non-zero element a(k)

p,k, p > k which
has the maximum modulus. This strategy of choosing the pivot in the kth column is called
partial pivoting. Then, we multiply Ak by the corresponding permutation matrix Pk and apply
the elimination algorithm,

Ak+1 = LkPkAk.

Finally, we obtain
U = Ln−1Pn−1 · · ·L2P2L1P1A.

56 2. Gaussian elimination for general linear systems

It may appear that we have lost the good properties of the Gaussian algorithm as permutation
matrices have appeared in between the lower triangular matrices, even if some of them are equal
to the identity matrix (when there is no need for pivot interchange). However, we have the
following result.

Lemma 2.9. Let Pp be a permutation matrix representing the permutation between indices p
and q > p then, ∀k < p

LkPp = PpL
′
k.

where L′k is deduced from Lk by the permutation of entries in rows p and q in column k.

Proof. Note that P−1
p = Pp and Lk = I − lkekT ,

L′k = PpLkPp = Pp(I − lkek
T

)Pp = I − Pplkek
T
Pp.

As p > k, Ppek = ek, therefore

L′k = I − lk′ekT

where lk′ = Ppl
k. The same kind of result is true for L−1

k as L−1
k = I + lkek

T .

With these preliminaries, we can characterize the LU decomposition of a given matrix.

Theorem 2.10. Let A be a non–singular matrix, there exists a permutation matrix P such that

PA = LU,

where L is lower triangular with a unit diagonal and U is upper triangular.

Proof. We have seen that

A = P1L
−1
1 P2 · · ·Pn−1L

−1
n−1U.

From Lemma 2.9,
A = P1P2 · · ·Pn−1(L′′1)−1 · · · (L′′n−1)−1U,

where (L′′k)−1 = Pn−1 · · ·Pk+1L
−1
k Pk+1 · · ·Pn−1, corresponding to a permutation of the coef-

ficients of column k.

Usually, the permutation matrix P is stored as a vector of indices since row permutations are
not explicitly performed during the factorization. The linear system Ax = b is transformed into

PAx = LUx = Pb,

and is solved in two steps by

Ly = Pb,

Ux = y.

These two triangular solves are known as the forward and backward sweeps. For general systems,
pivoting is used even when a(k)

k,k 6= 0. Systematically, a permutation is done with the row p giving

maxp>k |a(k)
p,k|.

2.1. Introduction to Gaussian elimination 57

2.1.3 Gaussian elimination with other pivoting strategies

Pivoting strategies which differ from partial pivoting may also be used. For instance, we can
search for the pivot not only in the lower part of the kth column but in all the remaining columns
in the submatrix. The chosen pivot is an element that realizes maxi,j |a(k)

i,j |,∀i, j ≥ k. This
algorithm is known as complete pivoting. Then, we not only have to do row permutations but
also column permutations to bring the pivot into position (k, k). This is achieved by multiplying
on the right by a permutation matrix. Finally, we obtain two permutation matrices P and Q such
that

PAQ = LU.

The solution of the linear system is obtained through

Ly = Pb,

Uz = y,

x = QT z.

We shall see that complete pivoting has some advantages regarding stability. However, the cost
of finding the pivot is much larger than for partial pivoting. Other pivoting strategies can be used,
see for instance [376].

2.1.4 Operation counts

Despite what we said in Chapter 1, it is interesting to compute the number of floating point
operations that must be done to obtain the LU factorization of A.

For computing the kth column of L, we need 1 division by the pivot and n − k multipli-
cations. To compute the updated matrix Ak+1, we need (after having computed the multipliers
−a(k)

i,k /a
(k)
k,k which are the elements of L) (n− k)2 additions and the same number of multiplica-

tions. To get the total number of operations, we sum these numbers from 1 to n− 1

n−1∑
k=1

(n− k) = n(n− 1)− 1

2
n(n− 1) =

1

2
n(n− 1),

n−1∑
k=1

(n− k)2 = n2
n−1∑
k=1

1− 2n

n−1∑
k=1

k +

n−1∑
k=1

k2,

=
1

3
n(n− 1)(n− 1

2
).

Theorem 2.11. To obtain the factorization PA = LU of Theorem 2.10, we need

2n3

3
− n2

2
− n

6

floating point operations (multiplications and additions) and n − 1 divisions. The solutions of
the triangular systems to obtain the solution x give n(n− 1) floating point operations for L and
n(n− 1) + n for U . Note that this is an order less than that needed for the factorization.

58 2. Gaussian elimination for general linear systems

2.2 Gaussian elimination for symmetric systems
The factorization of symmetric matrices is an important special case that we shall consider in
more detail. Let us specialize the previous algorithms to the symmetric case. We are considering
a factorization slightly different from what we have seen,

A = LDLT ,

where L is lower triangular with a unit diagonal and D is diagonal. There are several possible
ways to compute this factorization. We shall study three different algorithms that will lead to six
ways of programming the factorization.

2.2.1 The outer product algorithm

The first method to construct the LDLT factorization is the one we used for non-symmetric
systems, column by column. Suppose a1,1 6= 0 and

L1 =

(
1 0
l1 I

)
, D1 =

(
a1,1 0

0 A2

)
,

and

A =

(
a1,1 aT1
a1 B1

)
= L1D1L

T
1 .

By equating blocks, we obtain expressions for l1 and A2,

l1 =
a1

a1,1
,

A2 = B1 −
1

a1,1
a1a

T
1 = B1 − a1,1l1l

T
1 .

The matrixA2 is a obviously symmetric. If we suppose that the (1, 1) element ofA2 is non–zero,
we can proceed further and write

A2 =

(
a

(2)
2,2 aT2
a2 B2

)
=

(
1 0
l2 I

)(
a

(2)
2,2 0
0 A3

)(
1 lT2
0 I

)
.

Similarly,

l2 =
a2

a
(2)
2,2

,

A3 = B2 −
1

a
(2)
2,2

a2a
T
2 = B2 − a(2)

2,2l2l
T
2 .

We remark that if we denote,

L2 =

 1 0 0
0 1 0
0 l2 I

 ,

then,

D1 =

(
a1,1 0

0 A2

)
= L2

 a1,1 0 0

0 a
(2)
2,2 0

0 0 A3

LT2 = L2D2L
T
2 .

2.2. Gaussian elimination for symmetric systems 59

Therefore, after two steps, we have A = L1L2D2L
T
2 L

T
1 . We note that

L1L2 =

(
1 0

l1

(
1 0
l2 I

))
.

The product of L1 and L2 is a lower triangular matrix. If all the pivots are non–zero, we can
proceed and at the last step, we obtain

A = A1 = L1L2 · · ·Ln−1DL
T
n−1 · · ·LT1 = LDLT ,

where L is unit lower triangular and D is diagonal. There is a variant of this algorithm where a
decomposition

A = L̄D̄−1L̄T

is obtained with L̄ being lower triangular, D̄ diagonal and diag(L̄) = diag(D̄). We can obtain
this variant from the first algorithm by writing

A = LDLT = (LD)D−1(DLT),

and D̄ = D, L̄ = LD.
The matrix L has been constructed column by column. This method is called the outer

product algorithm as, at each step, an outer product aaT is involved.

2.2.2 The bordering algorithm

We can partition the matrix A in a different way as

A =

(
Cn an
aTn an,n

)
,

Suppose that Cn has already been factored as

Cn = Ln−1Dn−1L
T
n−1,

Ln−1 being unit lower triangular and Dn−1 diagonal. We can write,

A =

(
Ln−1 0
lTn 1

)(
Dn−1 0

0 dn,n

)(
LTn−1 ln

0 1

)
.

Then equating yields

ln = D−1
n−1L

−1
n−1an,

dn,n = an,n − lTnDn−1ln.

By induction, we can start with the decomposition of the 1× 1 matrix a1,1, adding one row at a
time and obtaining at each step the factorization of an enlarged matrix. The main operation we
have to perform at each step is solving a triangular system. In order to proceed to the next step,
we need the diagonal entries of Dn to be non–zero. For obvious reasons, this method is called
the bordering algorithm.

60 2. Gaussian elimination for general linear systems

2.2.3 The inner product algorithm

A third way of computing the factorization is explicitly writing down the formulas for the matrix
product,

A = LDLT .

Suppose i ≥ j, we have

ai,j =

j∑
k=1

li,klj,kdk,k.

If we consider i = j in this formula then since li,i = 1, we obtain

dj,j = aj,j −
j−1∑
k=1

(lj,k)2dk,k,

and for i > j,

li,j =
1

dj,j
(ai,j −

j−1∑
k=1

li,klj,kdk,k).

As, locally, we have to consider the product of the transpose of a vector times a vector, this
method is called the inner product algorithm or sometimes the scalar product algorithm.

The number of floating point operations required for these three variants is about 1
2 of the

number of operations for the general algorithm, that is, about n
3

6 multiplications and the same
number of additions.

2.2.4 Coding the three factorization algorithms

First we consider the outer product algorithm. The matrixL is constructed column by column. At
step k, column k is constructed by multiplying by the inverse of the pivot and then, the columns
at the right of column k are modified using the values of the entries of column k. This can be
done by rows or by columns and this leads to the two programs given below. We store the matrix
D in a vector denoted by d and L in a separate matrix although in practice it can be stored in the
lower triangular part of A (if A is not to be saved). The array temp is a temporary vector whose
use can sometimes be avoided. We use it mainly for clarity of presentation. Note that the codings
are slightly different from those given in Dongarra, Gustavson, Karp [148]. They are arranged
such that in the main loop, i is a row index, j is a column index and k can eventually be both.
The strictly lower triangular part of L is initialized to that of A.

Outer product kij algorithm

function [l,d]=kij(a)
[m,n]=size(a);
d=zeros(n,1);
temp=zeros(n,1);
d(1)=a(1,1);
l(1,1)=1;
for k=1:n-1
dki=1./d(k);
for i=k+1:n
temp(i)=l(i,k)*dki;

2.2. Gaussian elimination for symmetric systems 61

end
for i=k+1:n
for j=k+1:i
l(i,j)=l(i,j)-temp(i)*l(j,k);

end
end
for i=k+1:n
l(i,k)=temp(i);
end
d(k+1)=l(k+1,k+1);
l(k+1,k+1)=1.;

end

To reflect the way the three loops are nested, this algorithm is called the kij form. We can
eliminate the temporary vector temp by using the upper part of the matrix l. However, we think
the coding is clearer using temp. Modifying by rows (interchanging the loops on i and j) we get

Outer product kji algorithm

function [l,d]=kji(a)
[m,n]=size(a);
d=zeros(n,1);
temp=zeros(n,1);
l=init(a);
d(1)=a(1,1);
l(1,1)=1;
for k=1:n-1
dki=1/d(k);
for i=k+1:n
temp(i)=l(i,k)*dki;
end
for j=k+1:n
for i=j:n
l(i,j)=l(i,j)-temp(i)*l(j,k);

end
end
for i=k+1:n
l(i,k)=temp(i);
end
d(k+1)=l(k+1,k+1);
l(k+1,k+1)=1.;

end

Now we consider the bordering algorithm. For each row i, we have to solve a triangular
system. There are two algorithms to do this. One is column oriented, the other is row oriented.

Bordering ijk algorithm

function [l,d]=ijk(a)
[m,n]=size(a);

62 2. Gaussian elimination for general linear systems

d=zeros(n,1);
temp=zeros(n,1);
l=init(a);
d(1)=a(1,1);
l(1,1)=1.;
for i=2:n
for k=1:i
temp(k)=a(i,k);
end
for j=1:i
if j ∼= i
l(i,j)=temp(j)/d(j);

end
for k=j+1:i
temp(k)=temp(k)-l(k,j)*temp(j);

end
end
d(i)=temp(i);
l(i,i)=1;

end

There are too many divisions in the previous coding as they are in a k loop. These divisions
can be avoided by storing the inverses of d as they are computed.

Bordering ikj algorithm

function [l,d]=ikj(a)
[m,n]=size(a);
d=zeros(n,1);
temp=zeros(n,1);
l=init(a);
d(1)=a(1,1);
l(1,1)=1;
for i=2:n
for k=1:i
temp(k)=a(i,k);
end
for k=1:i
for j=1:k-1
temp(k)=temp(k)-temp(j)*l(k,j);

end
if k ∼= i
l(i,k)=temp(k)/d(k);

else
d(i)=temp(i);
l(i,i)=1;

end
end

end

Finally we consider the inner product algorithm.

2.2. Gaussian elimination for symmetric systems 63

Inner product jik algorithm

function [l,d]=jik(a)
[m,n]=size(a);
l=init(a);
for j=1:n
for k=1:j-1
l(j,k)=l(j,k)/d(k);

end
d(j)=a(j,j);
for k=1:j-1
d(j)=d(j)-l(j,k) ^ 2*d(k);

end
for i=j+1:n
for k=1:j-1
l(i,j)=l(i,j)-l(i,k)*l(j,k);
end

end
l(j,j)=1.;

end

In the computation of ai,j−
∑j−1
k=1 li,klj,kdk,k, one can compute ai,j− li,klj,kdk,k for a fixed

value of k looping on i provided that the division by dj,j is done afterwards. Then we obtain the
following algorithm.

Inner product jki algorithm

function [l,d]=jki(a)
[m,n]=size(a);
l=init(a);
for j=1:n
for k=1:j-1
l(j,k)=l(j,k)/d(k);

end
d(j)=a(j,j);
for k=1:j-1
d(j)=d(j)-l(j,k) ^ 2*d(k);

end
for k=1:j-1
for i=j+1:n
l(i,j)=l(i,j)-l(i,k)*l(j,k);
end

end
l(j,j)=1.;

end

We have derived six different ways to program theLDLT factorization of a symmetric matrix
A. The same can be done for the LU factorization of a non-symmetric matrix. Of course, we are
interested in finding the best implementation, that is the one requiring the smallest computing
time. Unfortunately, this is dependent on the computer architecture and also on the languages
used for coding and running the algorithm. It also depends on the data structure chosen for

64 2. Gaussian elimination for general linear systems

storing L since for current (1998) computers, the performance depends mainly on the way the
data is accessed in the computer memory.

Suppose first that L is to be stored in a two-dimensional array or in the lower triangular part
of A. In Fortran, two dimensional arrays are stored by columns, that is, consecutive elements
in a column of an array have consecutive memory addresses. Therefore, it is much better to use
algorithms that access data by columns. This may be different for other languages. For instance,
in C two-dimensional arrays are stored by rows. Moreover, in computers with data caches, it is
advantageous to perform operations on data in consecutive memory locations. This increases the
cache hit ratio as data is moved into the cache by blocks of consecutive addresses.

The data access is by columns for algorithms kji and jki, by rows for ikj and jik and by
rows and columns for kij and ijk. This favors algorithms kji and jki. Form kji accesses the
data by columns and the involved basic operation is known as a SAXPY (for single precision a
times x plus y), that is,

y = y + αx,

where x and y are vectors and α is a scalar. Note that the vector y is stored after it is computed.
This particular form was used in the famous LINPACK package [145]. Form jki also accesses
that data by columns and the basic operation is also a SAXPY. However, the same column (j) is
successively accessed many times. This is known as a generalized SAXPY or GAXPY. This can
sometimes be exploited when coding in assembly language (one can keep the data in registers
or in caches). These algorithms were analyzed for a vector computer in Dongarra, Gustavson
and Karp [148], their notations being slightly different from ours. On vector architectures, the
GAXPY jki form is generally the best one.

If L is not stored in the lower triangular part of A, it is better to store it in a one dimensional
array of dimension n(n − 1)/2. Consecutive elements can be chosen by rows or columns. If
consecutive elements are chosen by rows, it is better to use algorithms ikj and jik as the data
accesses will be in consecutive addresses. kji and jki forms will be chosen if the data is stored
by columns.

So far, we have assumed it was not necessary to do pivoting for a symmetric system. We now
describe some particular cases where it can be shown that pivoting is not needed, at least to be
able to run the algorithm to completion.

2.2.5 Positive definite systems

In this part, we assume A is symmetric and positive definite. We seek an LDLT factorization. If
we examine the outer product algorithm, we see that for the first step, A2 = B1 − (1/a1,1)a1a

T
1

is a Schur complement, the matrix A being partitioned as

A =

(
a1,1 aT1
a1 B1

)
.

Therefore by using Lemma 1.58, if A is positive definite, A2 is also positive definite and the
next pivot is non-zero. The process can be continued until the last step. All the square matrices
involved are positive definite and so the diagonal elements are positive. All the pivots are non-
zero and the algorithm can continue without any need for pivoting. This is summarized in the
following result.

Theorem 2.12. A matrix A has a factorization A = LDLT , where L is a unit lower triangular
matrix and D is a diagonal matrix with positive diagonal elements, if and only if A is symmetric
and positive definite.

2.2. Gaussian elimination for symmetric systems 65

Proof. Lemma 1.58 and the previous discussion have shown that if A is positive definite, it
can be factored as LDLT . Conversely, if A = LDLT , then of course A is symmetric and if
x 6= 0, then

xTAx = xTLDLTx = yTDy,

where y = LTx 6= 0. Note that

yTDy =

n∑
i=1

di,iy
2
i > 0,

since the diagonal elements of D are positive.

Thus we can introduce a diagonal matrix S such that si,i =
√
di,i, i = 1, . . . , n. Therefore,

S2 = D and let L̄ = LS. Then,

A = LDLT = LSSLT = L̄L̄T .

Usually this decomposition is called the Cholesky factorization of A. However, this form of
factorization is not often used today as the computation involves square roots. On modern com-
puters, computing square roots is much slower than multiplications and additions and should be
avoided whenever possible. Factorizations like LDLT have sometimes been called the square
root free Cholesky. We shall use the generic name Cholesky for any LDLT factorization.

An interesting property of positive definite matrices is that there is no growth of the entries
of the reduced matrices during the factorization.

Theorem 2.13. Let A be symmetric positive definite. Consider the matrices Di, i = 1, . . . , n of
the outer product algorithm, then,

max
k

(max
i,j
|(Dk)i,j |) ≤ max

i,j
|ai,j | = max

i
(ai,i).

Proof. By Lemma 1.58, we know that the matrices Dk are positive definite. Therefore, by
Lemma 1.59, it is sufficient to consider the diagonal to find the maximum of the absolute values
of the entries. We only consider the first step, since the proof is the same for the other steps. As
the diagonal entries are positive, we have

diag(A2) ≤ diag(B1).

Therefore, either maxi(ai,i) = a1,1 and then, maxi(D1)i,i = a1,1 or the maximum is on the
diagonal of B1 and then,

max
i

(D1)i,i = max(a1,1,max
i

[diag(A2)i,i]),

with maxi[diag(A2)i,i] ≤ maxi[diag(B1)i,i]. In both cases,

max
i

(D1)i,i ≤ max
i,j
|ai,j |.

66 2. Gaussian elimination for general linear systems

2.2.6 Indefinite systems

When factorizing an indefinite matrix (that is, one that is neither positive or negative definite),
there can be some problems as shown in the following example,(

ε 1
1 0

)
=

(
1 0

1/ε 1

)(
ε 0
0 −1/ε

)(
1 1/ε
0 1

)
,

If ε is small, 1/ε can be very large and the factorization can be unstable. Indeed is ε = 0 the
decomposition does not exist. One can use pivoting to avoid this. However, if symmetry is to be
preserved, pivoting must be done on the diagonal but this does not always solve the problems.
Moreover, zero pivots can sometimes be the only alternative. A method to solve these problems
was introduced in Bunch and Parlett [78] and further developed in Bunch and Kaufman [77].
The remedy is to use diagonal pivoting with either 1× 1 or 2× 2 pivots. Suppose

P1AP
T
1 =

(
A1,1 A1,2

AT1,2 A2,2

)
,

where A1,1 is of order s with s = 1 or 2, det A1,1 6= 0 and P1 is a permutation matrix. Then,
this matrix can be factored as

P1AP
T
1 =

(
Is 0

AT1,2A
−1
1,1 In−s

)(
A1,1 0

0 A2,2 −AT1,2A−1
1,1A1,2

)(
Is A−1

1,1A1,2

0 In−s

)
.

The algorithm works provided thatA1,1 is non-singular. It can be shown that ifA is non-singular,
it is always possible to find a non-zero pivot (s = 1) or a non–singular 2 × 2 block (s = 2). A
strategy was devised by Bunch and Kaufman [77], see also [241] to find the block pivots. Another
method that may be used for indefinite systems is due to Aasen [1].

2.3 Gaussian elimination for H-matrices
There are types of matrices (not necessarily symmetric) other than positive definite matrices
for which there is no necessity to use pivoting (at least to obtain a factorization without per-
mutations). Let us first consider matrices A which are diagonally dominant (see Chapter 1 for
definition).

Theorem 2.14. If A is (row or column) diagonally dominant, then

A = LU,

where L is unit lower triangular and U is upper triangular.

Proof. Suppose A is (row) diagonally dominant. Then, a1,1 6= 0, otherwise all the elements
in the first row are 0 and A is singular. We shall prove that A2 is also (row) diagonally dominant
and then, the proof can proceed by induction. The case of the first row has already been handled.
For a general row, we have

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
, 2 ≤ i ≤ n, 2 ≤ j ≤ n, a

(2)
i,1 = 0, 2 ≤ i ≤ n,

∑
j,j 6=i

|a(2)
i,j | =

∑
j,j 6=i,j 6=1

|a(2)
i,j | ≤

∑
j,j 6=i,j 6=1

|ai,j |+
∣∣∣∣ ai,1a1,1

∣∣∣∣ ∑
j,j 6=i,j 6=1

|a1,j |.

2.3. Gaussian elimination for H-matrices 67

But,
|a1,1| ≥

∑
j,j 6=i,j 6=1

|a1,j |+ |a1,i|.

Therefore, ∑
j,j 6=i

|a(2)
i,j | ≤

∑
j,j 6=i,j 6=1

|ai,j |+
∣∣∣∣ ai,1a1,1

∣∣∣∣(|a1,1| − |a1,i|),

≤
∑
j,j 6=i

|ai,j | −
|ai,1a1,i|
|a1,1|

,

≤ |ai,i| −
|ai,1a1,i|
|a1,1|

,

≤
∣∣∣∣ai,i − ai,1a1,i

a1,1

∣∣∣∣ = |a(2)
i,i |.

The reduced matrix is also diagonally dominant. This shows that all the pivots are non-zero and
the computations can continue. IfA is column diagonally dominant, the same proof goes through
with AT .

We then consider M-matrices. The following result has been proved by Fiedler and Ptàk
[190].

Theorem 2.15. If A is an M-matrix, then

A = LU,

where L is unit lower triangular and U is upper triangular.

Proof. See Fiedler’s book [189] or Berman and Plemmons [43]. The proof uses Lemma 1.46.

We now consider H-matrices. Let B be an M-matrix, we define

ΩB = {A|B ≤M(A)}.

That is,

|ai,i| ≥ bi,i, 1 ≤ i ≤ n,
|ai,j | ≤ |bi,j |, i 6= j, 1 ≤ i, j ≤ n.

Note that the matrix A is at least as diagonally dominant as the matrix B.

Lemma 2.16. Let B be an M-matrix. Each matrix A ∈ ΩB is (row) generalized strictly diago-
nally dominant.

Proof. There exists a diagonal matrix D (with diag(D) > 0) such that BD is strictly diago-
nally dominant. Let A ∈ ΩB . We have

BD ≤M(A)D = M(AD).

Therefore,
0 < BDe ≤M(AD)e,

68 2. Gaussian elimination for general linear systems

which implies that AD is (row) strictly diagonally dominant.

Theorem 2.17. Let B be an M-matrix. For each A ∈ ΩB ,

A = LU,

where L is unit lower triangular and U is upper triangular. In particular, for every H-matrix,
there exists an LU factorization.

Proof. We have seen in the proof of Lemma 2.16 that AD is (row) strictly diagonally dom-
inant. Then, by Theorem 2.14, there exist L̄ and Ū , lower and upper triangular matrices such
that

AD = L̄Ū .

We have,
A = L̄ŪD−1,

and the result follows.
Let

βD =
maxi(di,i)

mini(di,i)
.

Then,

|li,j | ≤ βD,
|ui,j | ≤ 2βD max

i
|ai,i|.

We define the growth factor gA as

gA =
maxi,j,k |a(k)

i,j |
‖A‖∞

.

Sometimes, gA is defined as

gA =
maxi,j,k |a(k)

i,j |
maxi,j |ai,j |

.

For an H-matrix, we have gA ≤ 2βD and for an M-matrix, Funderlic, Neumann and Plemmons
[211] proved that gA ≤ βD.

2.4 Block methods
Block methods are obtained by partitioning the matrix A into blocks (submatrices). Consider,
for instance, a 3× 3 block partitioning. Then A is written as

A =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 .

The matrices Ai,i are square of order ni, 1 ≤ ni ≤ n,
∑
ni = n. A block LU factorization can

be derived. We can do exactly the analog of the point case, provided the blocks that arise on the
diagonal are non-singular. One way to proceed is the following,

A =

 I
L2,1 I
L3,1 L3,2 I

U1,1 U1,2 U1,3

U2,2 U2,3

U3,3

 .

2.5. Tridiagonal and block tridiagonal systems 69

The stability is investigated in Demmel, Higham and Schreiber [138]. Block LU factorization
(without pivoting) is unstable in general, although it has been found to be stable for matrices
which are block diagonally dominant by columns, that is,

‖A−1
j,j ‖
−1 ≥

∑
i 6=j

‖Ai,j‖.

2.5 Tridiagonal and block tridiagonal systems
Tridiagonal matrices arise quite often in algorithms for solving PDEs. So, it is worth investigating
their factorization. Let T be a symmetric tridiagonal matrix,

T =

a1 −b2
−b2 a2 −b3

.
−bn−1 an−1 −bn

−bn an

 .

We suppose bi 6= 0,∀i. The minus sign in front of the bis is a technical convenience. Suppose
the Cholesky factorization of T exists. It is easily obtained as,

T = LD−1
L LT ,

L =

δ1
−b2 δ2

.
−bn−1 δn−1

−bn δn

 , DL =

δ1

δ2
. . .

δn−1

δn

 .

By inspection, we have

δ1 = a1, δi = ai −
b2i
δi−1

, i = 2, . . . , n.

This requires only n− 1 additions, multiplications and divisions. Extensions are easily obtained
to non-symmetric tridiagonal matrices as long as pivoting is not needed. A UL factorization is
also easily obtained,

T = UD−1
U UT ,

with

U =

d1 −b2

d2 −b3
.

dn−1 −bn
dn

 , DU =

d1

d2

. . .
dn−1

dn

 .

By inspection, we obtain

dn = an, di = ai −
b2i+1

di+1
, i = n− 1,

These factorizations of tridiagonal matrices have been used by Meurant [347] to characterize the
inverse of such matrices. We have the following result.

70 2. Gaussian elimination for general linear systems

Theorem 2.18. The inverse of T is characterized as

(T−1)i,j = bi+1 · · · bj
dj+1 · · · dn
δi · · · δn

, ∀i, ∀j > i,

(T−1)i,i =
di+1 · · · dn
δi · · · δn

, ∀i.

In these products, terms that have indices greater than n must be taken equal to 1.

Proof. From [36], [347], it is known that there exist two sequences {ui}, {vi}, i = 1, n such
that

T−1 =

u1v1 u1v2 u1v3 . . . u1vn
u1v2 u2v2 u2v3 . . . u2vn
u1v3 u2v3 u3v3 . . . u3vn

...
...

...
. . .

...
u1vn u2vn u3vn . . . unvn

 .

Moreover, every non-singular matrix of the same form as T−1 (the matrices of this class have
been called “matrices factorisables” in Baranger and Duc-Jacquet, [36]) is the inverse of an
irreducible tridiagonal matrix. So to find all the elements of T−1, it is sufficient to compute
its first and last column. In fact it is enough to know 2n − 1 quantities as u1 can be chosen
arbitrarily (note that 2n − 1 is the number of non–zero terms determining T). The elements ui
and vi can be computed in the following stable way. Let us first compute v. The {ui}, {vi} are
only defined up to a multiplicative constant. So, for instance, u1 can be chosen as u1 = 1. Then
let v = (v1, . . . , vn)

T . Since u1 = 1 the first column of T−1 is v, so

Tv = e1,

where e1 = (1, 0, . . . , 0)
T . Because of the special structure of the right hand side, it is natural to

use a UL factorization of T = UD−1
U UT for solving the linear system for v. We have

v1 =
1

d1
, vi =

b2 · · · bi
d1 · · · di−1di

, i = 2, . . . , n.

Let u = (u1, . . . , un)
T , the last column of T−1 is vnu and therefore

vnTu = en,

where en = (0, . . . , 0, 1)
T . To solve this system, with the special structure of the right hand side,

it is easier to use the LU factorization of T = LD−1
L LT ,

un =
1

δnvn
, un−i =

bn−i+1 · · · bn
δn−i · · · δnvn

, i = 1, . . . , n− 1.

Note that

u1 =
b2 · · · bn
δ1 · · · δnvn

=
d1 · · · dn
δ1 · · · δn

,

but d1 · · · dn = δ1 · · · δn = det T , so u1 = 1, as the values of {vi} were computed with this
scaling.

This result for inverses of tridiagonal matrices has been extended to non-symmetric matrices
by Nabben [352]. It gives a computationally stable and simple algorithm for computing elements

2.5. Tridiagonal and block tridiagonal systems 71

of the inverse of T as it involves only Cholesky decompositions that are stable when the matrix
T possesses enough properties such as, for instance, being diagonally dominant.

We are also interested in characterizing the decrease of the elements of T−1 along a row or
column starting from the diagonal element. In Concus, Golub and Meurant [119], it is proven
that if T is strictly diagonally dominant, then the sequence {ui} is strictly increasing and the
sequence {vi} is strictly decreasing. From Theorem 2.18, we have

(T−1)i,j
(T−1)i,j+1

=
dj+1

bj+1
,

and, therefore

(T−1)i,j =
dj+1 · · · dj+l
bj+1 · · · bj+l

T−1
i,j+l.

Theorem 2.19. If T is strictly diagonally dominant (ai > bi + bi+1, ∀i) then the sequence di
is such that di > bi. Hence, the sequence T−1

i,j is a strictly decreasing function of j, for j > i.
Similarly, we have δi > bi+1.

Proof. We prove the result by induction. We have dn = an > bn. Suppose di+1 > bi+1.
Then

di = ai −
b2i+1

di+1
> ai − bi+1 > bi,

and this proves the theorem.

At this point, it is interesting to introduce another factorization, which in fact can be obtained
from the LU and UL factorizations: the twisted factorization. This has also been called the
BABE (burn at both ends) algorithm. To perform this factorization, we must first select an
integer j, 1 ≤ j ≤ n. Let

T = (φ+ L)φ−1(φ+ LT),

where φ is a diagonal matrix and L is twisted

L =

0
−b2 0

.
−bj 0 −bj+1

.
0 −bn

0

,

where the two non-zero terms are in the jth row. By inspection, we have

φi = δi i = 1, . . . , j − 1,

φi = di i = n, . . . , j + 1,

φj = aj − b2jδ−1
j−1 − b

2
j+1d

−1
j+1.

Thus, the first j − 1 terms come from the LU factorization and the last n − j come from the
UL factorization. Therefore, every twisted factorization for any j can be computed with the
knowledge of both the LU and UL factorizations. Only the jth term requires special treatment.

72 2. Gaussian elimination for general linear systems

Note that this twisted factorization leads naturally to a nice parallel method for a two processor
computer. If we wish to solve Tx = c, we solve in sequence

(φ+ L)y = c, (I + φ−1LT)x = y.

In parallel, we can compute

φ1y1 = c1

φiyi = ci + biyi−1, i = 2, . . . , j − 1,

and

φnyn = cn

φiyi = ci + bi+1yi+1, i = n− 1, . . . , j + 1.

Then we have
φjyj = cj + bjyj−1 + bj+1yj+1.

From there, we obtain the solution as xj = yj and in parallel we compute

φiwi = bi+1xi+1, xi = yi − wi, i = j − 1, . . . , 1,

φiwi = bixi−1, xi = yi − wi, i = j + 1, . . . , n.

The twisted factorization can be used to prove the following result.

Theorem 2.20. The diagonal entries of the inverse are

(T)−1
j,j = φ−1

j .

Proof. This comes about from solving a system with ej as the right hand side and using the
twisted factorization.

This result can be used to easily derive the structure of the inverse of the tridiagonal matrix
introduced at the beginning of this section. Let us specialize the previous results to the Toeplitz
case that will be useful for separable problems. The interesting thing is that we are then able to
solve analytically the recurrences arising in the Cholesky factorization. Let

Ta =

a −1
−1 a −1

.
−1 a −1

−1 a

 .

Lemma 2.21. Let
α1 = a, αi = a− 1

αi−1
, i = 2, . . . , n.

Then if a 6= 2,

αi =
ri+1
+ − ri+1

−
ri+ − ri−

,

where r± = a±
√
a2−4
2 are the two solutions of the quadratic equation r2−ar+ 1 = 0. If a = 2,

then αi = i+1
i .

2.5. Tridiagonal and block tridiagonal systems 73

Proof. We set

αi =
βi
βi−1

.

Therefore, we now have a recurrence on βi,

βi − aβi−1 + βi−2 = 0, β0 = 1, β1 = a.

The solution of this linear second order difference equation is well known,

βi = c0r
i+1
+ + c1r

i+1
− .

From the initial conditions we have c0 + c1 = 0. Hence the solution can be written as

βi = c0(ri+1
+ − ri+1

−).

When a = 2 it is easy to see that βi = i+ 1 and the result follows.
From Lemma 2.21, the solutions of the recurrences involved in the Cholesky factorization of

Ta can be deduced. When a 6= 2 we have,

dn−i+1 =
ri+1
+ − ri+1

−
ri+ − ri−

.

Solving for v the following result is obtained.

Proposition 2.22. For the sequence vi in T−1
a ,

vi =
rn−i+1
+ − rn−i+1

−

rn+1
+ − rn+1

−
, ∀i.

Note in particular, that

vn =
r+ − r−

rn+1
+ − rn+1

−
.

It is obvious that for the Toeplitz case, we have the relation δi = dn−i+1. Solving for u, the
following result is obtained.

Proposition 2.23. For the sequence ui in T−1
a ,

ui =
ri+ − ri−
r+ − r−

, i = 1, . . . , n.

Now we are able to compute the elements of the inverse.

Theorem 2.24. For j ≥ i and when a 6= 2,

(Ta
−1)i,j = uivj =

(ri+ − ri−)(rn−j+1
+ − rn−j+1

−)

(r+ − r−)(rn+1
+ − rn+1

−)
,

74 2. Gaussian elimination for general linear systems

where r± are the two solutions of the quadratic equation r2 − ar + 1 = 0.
For a = 2, we have

(Ta)
−1
i,j = i

n− j + 1

n+ 1
.

Regarding the decay of the elements of T−1
a , in this simple case we can obtain useful bounds.

Suppose that a > 2, then we have

uivj
uivj+1

=
rn−j+1
+ − rn−j+1

−

rn−j+ − rn−j−
=
rn−j+1
+

rn−j+

(
1− rn−j+1

1− rn−j

)
> r+ > 1,

and

uivj < ri−j−1
+

(1− ri)(1− rn−j+1)

(1− r)(1− rn+1)
, j ≥ i+ 1,

where r = r−
r+

< 1.
From this, the following result can be deduced.

Theorem 2.25. If a > 2, we have the bound

(Ta
−1)i,j < (r−)

j−i
(Ta
−1)i,i, ∀ i, ∀j ≥ i,

(Ta
−1)i,j <

rj−i+1
−
1− r

, ∀ i, ∀j ≥ i+ 1.

The following estimate holds, let ε1 > 0 and ε2 > 0 be given. Then

(Ta
−1)i,j

(Ta
−1)i,i

≤ ε1 if j − i ≥ log ε−1
1

log r+
,

and

(Ta
−1)i,j ≤ ε2 if j − i+ 1 ≥ log [ε2(1− r)]−1

log r+
.

As an example, Figure 2.1 shows the inverse of T4.
The previous factorizations are easily extended to block tridiagonal symmetric matrices. Let

A =

D1 −AT2
−A2 D2 −AT3

.
−Am−1 Dm−1 −ATm

−Am Dm

 ,

each block being of order m. Denote by L the block lower triangular part of A then, if such a
factorization exists, we have

A = (∆ + L)∆−1(∆ + LT),

2.5. Tridiagonal and block tridiagonal systems 75

0

5

10

15

20

25

30

0

10

20

30

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2.1. The inverse of T4

where ∆ is a block diagonal matrix whose diagonal blocks are denoted by ∆i. By inspection we
have

∆1 = D1, ∆i = Di −Ai(∆i−1)−1ATi , i = 2, . . . ,m

Therefore, obtaining this block factorization only involves solving linear systems with matrices
∆i and several right-hand sides. Whatever the structure of the matrices Di, matrices ∆i, i =
2, . . . ,m are dense matrices.

This block factorization (as well as the block twisted factorization) can also be used (see
Meurant [347]) to characterize the inverse of block tridiagonal matrices. Let us write the block
factorizations as

A = (∆ + L) ∆−1 (∆ + LT) = (Σ + LT) Σ−1 (Σ + L),

where ∆ and Σ are block diagonal matrices whose diagonal blocks are denoted by ∆i and Σi.
They are given by block recurrences{

∆1 = D1,
∆i = Di −Ai (∆i−1)

−1
(Ai)

T

{
Σm = Dm,

Σi = Di − (Ai+1)
T

(Σi+1)
−1

Ai+1.

A block twisted factorization can be defined for each j = 2, . . . ,m− 1 as

A = (Φ + L)Φ−1(Φ + LT)

where Φ is a block diagonal matrix and L has the following twisted block structure

L =

0
−A2 0

.
−Aj 0 −ATj+1

.
0 −ATm

0

,

76 2. Gaussian elimination for general linear systems

where the row with two non-zero terms is the jth block row. By inspection we have

Φi = ∆i i = 1, . . . , j − 1,

Φi = Σi i = m, . . . , j + 1,

Φj = Dj −Aj∆−1
j−1A

T
j −ATj+1Σ−1

j+1Aj+1.

With the block twisted factorization at hand, the block jth column X of the inverse can be
computed in a straightforward way.

Theorem 2.26. The jth block column X of A−1 is given by

Xj = Φ−1
j ,

Xj−l = ∆−1
j−l A

T
j−l+1 ∆−1

j−l+1 · · ·∆
−1
j−1 A

T
j Φ−1

j , l = 1, . . . , j − 1

Xj+l = Σ−1
j+l Aj+l Σ−1

j+l−1 · · ·Σ
−1
j+1 Aj+1 Φ−1

j , l = 1, . . . ,m− j.

These expressions are valid for any symmetric block tridiagonal matrix. When matrices Ai
are non–singular, A is said to be proper; in this case, the formulas can be simplified. Using the
uniqueness of the inverse, we can prove the following result.

Proposition 2.27. If A is proper, then

Φ−1
j = A−1

j+1 Σj+1 · · ·A−1
n Σm ∆−1

m Am · · ·∆−1
j+1 Aj+1 ∆−1

j

= A−Tj ∆j−1 · · ·A−T2 ∆1 Σ−1
1 AT2 · · ·Σ−1

j−1 A
T
j Σ−1

j .

From these relations, we deduce alternate formulas for the other elements of the inverse.

Theorem 2.28. If A is proper,

Xj−l = (A−Tj−l∆j−l−1 · · ·A−T2 ∆1)(Σ−1
1 AT2 · · ·ATj Σ−1

j), l = 1, . . . , j − 1

Xj+l = (A−1
j+l+1Σj+l+1 · · ·A−1

m Σm)(∆−1
m Am · · ·∆−1

j+1Aj+1∆−1
j), l = 1, . . . ,m− j.

As before, the elements of the inverse can be computed in a stable way using the block
Cholesky factorization when the matrix is diagonally dominant or positive definite. These for-
mulas are the block counterpart of those for tridiagonal matrices. They give a characterization of
the inverse of a proper block tridiagonal matrix.

Theorem 2.29. If A is proper, there exist two (non-unique) sequences of matrices {Ui}, {Vi}
such that for j ≥ i

(A−1)i,j = UiV
T
j ,

with Ui = A−Ti ∆i−1 · · ·A−T2 ∆1 and V Tj = Σ−1
1 AT2 · · ·ATj Σ−1

j .

2.6. Roundoff error analysis 77

In other words, A−1 can be written as

A−1 =

U1V

T
1 U1V

T
2 U1V

T
3 . . . U1V

T
m

V2U1
T U2V

T
2 U2V

T
3 . . . U2V

T
m

V3U1
T V3U2

T U3V
T
3 . . . U3V

T
m

...
...

...
. . .

...
VmU1

T VmU2
T VmU3

T . . . UmV
T
m

 .

The inverse of the matrix of the Poisson model problem is shown on Figure 2.2.

0

5

10

15

20

25

0

5

10

15

20

25

0

0.1

0.2

0.3

0.4

0.5

Figure 2.2. The inverse of the matrix of the Poisson problem, m = 5

2.6 Roundoff error analysis
Let us consider a small example to see some of the difficulties that can happen when solving a
linear system using Gaussian elimination. We suppose that the arithmetic is such that β = 10,
t = 3 (we ignore limits on the exponent range) and, for the sake of simplicity, we use chopped
arithmetic. The system we solve is

3x1 + 3x2 = 6

x1 + δx2 = δ + 1

where δ is a given parameter. The exact solution is obviously x1 = x2 = 1.
Choosing 3 as the pivot and noticing that the computed value of the multiplier 1/3 is 0.333 100,

we obtain for the second equation

(δ − 0.999 100)x2 = δ + 1− 6× (0.333 100) = δ − 0.990 100.

Therefore, if δ = 0.990, then x2 = 0 and x1 = 0.199 101 ! This system is far from being
singular, as the determinant is

det(A) = 3× 0.99− 3 = −0.03

Note that even though the solution is wrong, the residual b − Ax is small, being (0.03 0)T .
Remark also that the pivot is not small.

78 2. Gaussian elimination for general linear systems

Let us now consider the kth step of standard Gaussian elimination algorithm using backward
error analysis. We denote the computed quantities that we consider by the same notations as in
exact arithmetic as there will be no ambiguity. Also, following Wilkinson [468], we do not pay
too much attention to the values of the constants involved in the bounds. They are all independent
of the order of the matrix and are of the order of 1.

Theorem 2.30. At step k we have

LkAk = Ak+1 + Ek,

where
|(Ek)i,j | ≤ Cu max(|a(k+1)

i,j |, |a(k)
i,j |),

u being the unit round off.

Proof. The multipliers (e.g. the elements of L) that we denote by li,k are

li,k = fl

(
a

(k)
i,k

a
(k)
k,k

)
, i ≥ k + 1,

a
(k+1)
i,j =

0 i ≥ k + 1, j = k,

fl(a
(k)
i,j − li,ka

(k)
k,j) i ≥ k + 1, j ≥ k + 1,

a
(k)
i,j otherwise

Let us first consider i ≥ k + 1,

li,k =
a

(k)
i,k

a
(k)
k,k

(1 + εi,k), |εi,k| ≤ u.

This translates into
a

(k)
i,k − li,ka

(k)
k,k + a

(k)
i,k εi,k = 0.

If we denote by e(k)
i,k , the elements of Ek, this shows that

e
(k)
i,k = a

(k)
i,k εi,k, i ≥ k + 1.

For i ≥ k + 1 and j ≥ k + 1, we have

a
(k)
i,j = fl(a

(k)
i,j − fl(li,ka

(k)
k,j)).

From Chapter 1, we have
|e(k)
i,j | ≤ Cu max(|a(k+1)

i,j |, |a(k)
i,j |).

This bound is also true for e(k)
i,k . Therefore we have

|e(k)
i,j | ≤ Cu max(|a(k+1)

i,j |, |a(k)
i,j |), i ≥ k + 1, j ≥ k,

and the other entries of Ek are zero.

We have the following useful technical lemma.

2.6. Roundoff error analysis 79

Lemma 2.31. If Bk is a matrix whose first k rows are zero, then

LiBk = Bk, i ≤ k.

Similarly, (Li)
−1Bk = Bk.

Proof. Remember that Lk = I − lkekT . Then

LiBk = (I − lieiT)Bk = Bk − liei
T
Bk = Bk,

as eiTBk = 0.

With this last result we can prove the following theorem on LU factorization.

Theorem 2.32. Let F be defined as

F = F1 + · · ·+ Fn−1,

where

(Fk)i,j =

{
1 i ≥ k + 1, j ≥ k,
0 otherwise

Then
A = LU + E,

with
|E| ≤ Cu max

k,i,j
|a(k)
i,j | F,

Proof. We have

LkAk = Ak+1 + Ek =⇒ Ak = L−1
k Ak+1 + Ek.

By Lemma 2.31,

(L1)−1 . . . (Lk−1)−1Ak = (L1)−1 . . . (Lk)−1Ak+1 + Ek.

We sum these equalities for k = 1 to n− 1. Most of the terms cancel and we obtain,

A = (L1)−1 . . . (Lk−1)−1An + E1 + . . .+ En−1.

Therefore, A = LU + E with E = E1 + . . .+ En−1. Finally, it is easy to see that

|E| ≤ Cu max
k,i,j
|a(k)
i,j | F.

This result shows that matrices L and U are the exact factors of the factorization of a per-
turbed matrix A − E. The elements of F are bounded by n − 1. Therefore |E| being small
depends on maxi,j,k |a(k)

i,j |. Using the growth factor (that we still denote by gA for the computed
quantities), this bound can be written as

|E| ≤ CugA‖A‖∞F.

80 2. Gaussian elimination for general linear systems

Taking norms, we have
‖E‖∞ ≤ CugA n2‖A‖∞.

We also have to take into account errors made in solving the triangular systems that arose from the
factorization. The following result is taken from Higham [281] but it is mainly due to Wilkinson.

Theorem 2.33.
(L+K)y = b,

with

|K| ≤ Cu

|l1,1|
|l2,1| 2|l2,2|
2|l3,1| 2|l3,2| 2|l3,3|

...
...

...
. . .

(n− 1)|ln,1| (n− 1)|ln,2| (n− 2)|ln,3| . . . 2|ln,n|

 ,

and

|K| ≤ Cnu|L|,

‖K‖∞ ≤
n(n+ 1)

2
Cu max

i,j
|li,j |.

With these results, we can obtain bounds for the solution of a linear system.

Theorem 2.34. The computed solution x satisfies

(A+H)x = b,

with
|H| ≤ C1umax

k,i,j
|a(k)
i,j |F + C2nu|L||U |+O(u2).

Proof.
(L+K)(U +G)x = (LU +KU + LG+KG)x = b,

and
LU = A− E.

Then, if we introduce H as
H = KU + LG+KG− E,

we have (A+H)x = b and

|H| ≤ |E|+ |K||U |+ |L||G|+ |K||G|,
|H| ≤ C1umax

k,i,j
|a(k)
i,j |F + C2nu|L||U |+ C3n

2u2|L||U |,

‖H‖∞ ≤ (C3n
3 + C4n

2)ugA‖A‖∞,

and this proves the result.

2.7. Perturbation analysis 81

Pivoting techniques are not only used to avoid zero pivots, but also to reduce the growth
factor. For instance, if partial pivoting is used, we have |li,j | ≤ 1. From this and denoting
ρk = maxi,j |a(k)

i,j |, it is not difficult to prove that

|a(k+1)
i,j | ≤ |a(k)

i,j |+ εmax(|a(k+1)
i,j |, |a(k)

i,j |),

ρk+1 ≤ 2(1 + ε)ρk.

By recurrence, this gives a bound for ρn,

ρn ≤ 2n−1(1 + ε)n−1ρ1.

Wilkinson [468] gave contrived examples where such an exponential growth is observed. How-
ever, more recently, linear systems arising from practical problems for which an exponential
growth is obtained have appeared in the literature, see Wright [469] and Foster [199]. The av-
erage case stability of Gaussian elimination with partial pivoting was studied in Trefethen and
Schreiber [440]. Random matrices of order ≤ 1024 have been looked at. The average growth
factor was approximately n3/2 for partial pivoting and n1/2 for complete pivoting. Although
Gaussian elimination with partial pivoting gives accurate results in most cases, these examples
show that when using this algorithm we must carefully analyze the results.

Another possible (but more costly) choice is complete pivoting where the pivot is searched in
i, j > k. Wilkinson [468] showed that the growth factor is bounded (in the absence of roundoff)
by as

|a(k)
i,j | ≤ k

1
2 (2 · 3 1

2 · · · k
1
k−1)

1
2 max

i,j
|ai,j |.

It was conjectured that in this case gA ≤ n. Cryer [122] proved that this is true for n ≤ 4.
However, the conjecture has been shown to be false for n > 4 if roundoff error is allowed by
Gould [249]. Edelman and Ohlroch [170] modified the Gould counterexample to show that the
conjecture is also false in exact arithmetic. N. Higham and D. Higham [284] have given some
matrices of practical interest which have a growth factor of at least n2 for complete pivoting.

2.7 Perturbation analysis
It is interesting to study what the effects of perturbation are on the data (the coefficients of the
matrix and the right-hand side). There are different ways to do this that differ mainly in the way
perturbations are measured (for a thorough treatment of this topic, see Higham [282, 283]). The
oldest way is known as normwise error analysis. Let x and y be such that

Ax = b,

(A+ ∆A)y = b+ ∆b.

∆A and ∆b are chosen such that

‖∆A‖ ≤ αω, ‖∆b‖ ≤ βω,

ω is given, α (resp. β) will be 0 or ‖A‖ (resp. ‖b‖) depending on whether A, or b, or both are
perturbed. ω defines the normwise relative perturbation. Then, we can bound the solution of the
perturbed system.

Lemma 2.35. If ξ = αω‖A−1‖ < 1, then

‖y‖
‖x‖
≤ 1

1− ξ

(
1 +

ξβ

α‖x‖

)
.

82 2. Gaussian elimination for general linear systems

Proof. First, we must show that A+ ∆A is non–singular. We note that

A+ ∆A = A(I +A−1∆A),

and, with the hypothesis of the lemma,

‖A−1∆A‖ ≤ αω‖A−1‖ = ξ < 1.

Then, A+ ∆A is non-singular by Lemma 2.3.3 of Golub and Van Loan [240]. We have

(I +A−1∆A)y = A−1(b+ ∆b) = x+A−1∆b.

Taking norms,

‖y‖ ≤ 1

1− αω‖A−1‖
(‖x‖+ βω‖A−1‖).

But,

ω ≤ 1

α‖A−1‖
=⇒ ‖y‖ ≤ 1

1− αω‖A−1‖

(
‖x‖+ ξ

β

α

)
.

Therefore,
‖y‖
‖x‖
≤ 1

1− αω‖A−1‖

(
1 + ξ

β

α‖x‖

)
.

Note that if α = ‖A‖ and β = ‖b‖, then

‖y‖
‖x‖
≤ 1 + ξ

1− ξ
.

The relative difference with the exact solution can also be bounded.

Theorem 2.36. Under the hypothesis of Lemma 2.35,

‖x− y‖
‖x‖

≤ ω
(
‖A−1‖α‖x‖+ β

‖x‖

)(
1

1− ξ

)
.

Proof. We have,
y − x = A−1∆b−A−1∆Ay.

By taking norms, the result follows easily.

If α = ‖A‖ and β = ‖b‖, then

‖y − x‖
‖x‖

≤ 2ω‖A‖ ‖A−1‖
(

1

1− ξ

)
.

The normwise condition number of the problem is defined as

KT (A, b) = ‖A−1‖α‖x‖+ β

‖x‖
.

Note that, when β = 0, this reduces to KT (A) = ‖A−1‖ ‖A‖. The subscript T refers to
A. Turing who first introduced this condition number. It measures the sensitivity of the solution

2.7. Perturbation analysis 83

to perturbations. Let us now introduce the normwise backward error. It measures the minimal
distance to a perturbed problem which is solved exactly by the computed solution y. Let

ηT = inf{ω| ω ≥ 0, ‖∆A‖ ≤ ωα, ‖∆b‖ ≤ ωβ, (A+ ∆A)y = b+ ∆b}.

The normwise backward error has been characterized by Rigal and Gaches [384] in the following
result.

Theorem 2.37. Let r = b−Ay be the residual. Then

ηT =
‖r‖

α‖y‖+ β
.

Proof. See Rigal and Gaches [384].

We remark that the bound on the forward error, ‖y−x‖‖x‖ , is approximately the product of the
condition number and the backward error.

Another type of analysis has considered componentwise perturbations. This was introduced
by F.L. Bauer and R. Skeel (see, Skeel [406]]. This allows to study perturbations on individual
elements of A and b. It is particularly useful for sparse matrices. The same kind of results as for
the normwise analysis can be proved. We consider perturbations ∆A and ∆b such that

|∆A| ≤ ωE, |∆b| ≤ ωf.

Theorem 2.38. If ω‖ |A−1|E‖∞ < 1,

‖y − x‖∞
‖x‖∞

≤ ω ‖ |A
−1|(E|x|+ f)‖∞
‖x‖∞

1

1− ω‖ |A−1|E‖∞
.

The componentwise condition number is defined as

KBS(A, b) =
‖ |A−1|(E|x|+ f)‖∞

‖x‖∞
.

The subscript BS refers to Bauer and Skeel. As before, we introduce the backward error,

ηBS = inf{ω|, ω ≥ 0, |∆A| ≤ ωE, |∆b| ≤ ωf, (A+ ∆A)y = b+ ∆b}.

Oettli and Prager [361] proved the following characterization of ηBS .

Theorem 2.39.
ηBS = max

i

|(b−Ay)i|
(E|y|+ f)i

.

An algorithm is said to be backward stable when the backward error is of the order of the
machine precision u. Gaussian elimination with partial pivoting is both normwise and com-
ponentwise backward unstable. There are examples where ηT or ηBS are large compared to
machine precision. Despite this fact, Gaussian elimination can be used safely on most practical
examples. Moreover, there are some remedies to this (potential) backward instability; see the
section on iterative refinement.

84 2. Gaussian elimination for general linear systems

2.8 Scaling
Scaling is a transformation of the linear system to be solved trying to give a better behaved system
before using Gaussian elimination. Let D1 and D2 be two non-singular diagonal matrices. The
system Ax = b is transformed into

A′y = (D1AD2)y = D1b,

and the solution x is recovered by x = D2y. Note that left multiplication by D1 is a row
scaling and right multiplication byD2 is a column scaling. The element ai,j ofA is changed into
d1
i d

2
jai,j where dli, l = 1, 2 are the diagonal entries of Dl.
Note that if one uses Gaussian elimination with partial pivoting to solve the scaled system,

row scaling influences the choice of the pivot. Classical strategies can be found in Curtis and
Reid [123]. Other proposals were described by Hager [274]. A common strategy for row scaling
is to divide the entries of a row by the maximum norm of the row. Skeel [406] showed that a
good scaling matrix is made by choosing the diagonal elements of D1 as di = (|A| |y|)i where y
is the computed solution. Of course, this is impractical as the solution y depends on the scaling.
However, if an approximation c of the solution is known, then A could be scaled by (|A| |c|)i.

No scaling strategy has been shown to give consistently better results than not using any
scaling although many different strategies have been proposed over the years. It has been argued
that the real role of scaling is to alter the pivoting sequence. This can result in a better or worse
solution. The rule of thumb given in [377] is that if scaling can lead to a system which is more
diagonally dominant, it may be useful but otherwise it should be avoided.

2.9 Iterative refinement
From the roundoff error analysis, we have shown that the computed solution satisfies

(A+H)y = b,

with
‖H‖∞ ≤ u C‖A‖∞,

if the growth factor is bounded. Let r = b−Ay be the residual. Then obviously

‖r‖∞ ≤ ‖H‖∞ ‖y‖∞ ≤ uC‖A‖∞ ‖y‖∞.

Hence, if C is not too large, Gaussian elimination usually produces a small residual. But, unfor-
tunately, small residuals do not always imply high accuracy in the solution. Let e = x− y, then
Ae = b−Ay = r. Therefore, a natural idea to improve the computed solution is to solve

Ae = r.

This will produce a computed solution ẽ, satisfying

(A+ H̃)ẽ = r

and we can set x̃ = y+ ẽ as the new approximation to the solution. If we like, we can iterate this
process. This algorithm is known as iterative refinement (or iterative improvement). Of course,
iterative refinement is just one example of a very simple iterative method. More sophisticated
ones will be studied in subsequent chapters.

Here, the main question is to decide to which precision the residual r has to be computed
as we are not able to get the exact answer. If we have r̃ = fl(b − Ay) and (A + H̃)ẽ = r̃,

2.10. Parallel solution of general linear systems 85

Skeel [406] has shown that computing the residual vector to the same precision as the original
computation is enough to make Gaussian elimination with partial pivoting backward stable. This
is shown in the following theorem.

Theorem 2.40. If u|A| |A−1| is sufficiently small, one step of iterative refinement with single
precision residual computation is componentwise backward stable.

However, one step of iterative refinement only gives a small backward error. It does not
guarantee better accuracy. If this is desired, the residual must be computed in double precision
and then rounded to single precision.

2.10 Parallel solution of general linear systems
We start by considering the parallel solution of triangular linear systems on distributed memory
architectures. Although this accounts only for a small fraction of the overall computing time
when solving general linear systems, it is an interesting challenge for parallel computing. At first
sight, solving triangular systems might seem a very sequential task. Nevertheless, many parallel
algorithms have been devised for solving triangular systems, see Heller [276]. However, several
of the oldest algorithms assumed that O(n3) processors were available and are not of practical
interest on present machines that have at most a few thousand processors. We mainly follow
expositions by Heath and Romine [275] and Eisenstat, Heath, Henkel and Romine [174].

For solving Lx = b, where L is lower triangular, on a serial computer, there are basically two
methods. In the first one, components of x are computed in a natural way, one after the other,
for i=1:n
for j=1:i-1
b(i)=b(i)-l(i,j)*x(j);
end
x(i)=b(i)/l(i,i);

end

This is known as the scalar product algorithm as the operation in the central loop is computing
a scalar product. The other algorithm modifies the right hand side as soon as each component of
x has been computed,
for j=1:n
x(j)=b(j)/l(j,j);
for i=j+1:n
b(i)=b(i)-l(i,j)*x(j);
end

end

This is known as the Saxpy algorithm by reference to the operation in the central loop. We
first look at parallel implementations where the data is distributed by rows or by columns. We
define a mapping map giving the processor number to which a row or column is mapped. The
most commonly used one is known as the wrap mapping. It is defined as,(

j : 1 2 3 . . . p p+ 1 . . . 2p 2p+ 1 . . . n
map(j) : 1 2 3 . . . p 1 . . . p 1 . . . p

)
This mapping can be generalized by considering blocks of consecutive rows or columns instead
of individual rows or columns. Doing so decreases communication time but increases load im-

86 2. Gaussian elimination for general linear systems

balance. Methods using these mappings are called panel methods in Rothberg’s Ph.D. thesis
[390].

Consider first the Saxpy algorithm. It is obvious that the modifications of the components
of b can be computed in parallel if the data is distributed by rows. Suppose that each processor
has a set { myrows } containing the indices of rows (and solution components) the memory of
the processor is storing. As soon as the xj component of the solution is computed by processor
number j, it must be broadcast to all other processors. This is done in a fan-out operation.
Fan-out(x,proc) means that processor proc sends x (located in its local memory) to all other
processors. The algorithm (the code running on one processor) is the following (Heath and
Romine [275]),

for j=1:n
if j ∈ { myrows }
x(j)=b(j)/l(j,j);
fan-out(x(j),map(j))

else
wait for x(j)

endif
for i ∈ { myrows }
b(i)=b(i)-l(i,j)*x(j);

end
end

The implementation of the fan-out operation depends on the computer architecture, particu-
larly the topology of the communication network. It provides the necessary synchronization as
one processor sends data and all the others wait to receive it. One problem is that only one word
(xj) is sent at a time. Usually, sending a message of l words costs t = t0 + τ l, t0 is the start–up
time (or latency). The efficiency depends on the value of t0 relatively to τ and l. For sending
only one word, the cost is essentially the start-up time. Therefore this algorithm can be efficient
only on computers with a small latency.

For the scalar product algorithm, to obtain parallelism in the inner loop, the data has to be
distributed by columns. Then, each processor can compute the l(i,j)*x(j) term for j in its
column index set { mycolumns }. These partial contributions must be added to those of the
other processors. This is done in the fan-in operation: Fan-in(x,proc) means that processor
proc receives the sum of all the x’s over all processors. Other algorithms were devised that look
for parallelism in the outer loop, such as Wavefront algorithms or cyclic algorithms (see Heath
and Romine [275], Li and Coleman [319, 320]).

Let us now consider the LU factorization. Many parallel algorithms have been devised over
the years. They can be mainly classified by the way the matrix is stored in processor memories.
If we suppose the matrix is stored by rows, then a possible algorithm is the following,

for k=1:n-1
find pivot row r
if r ∈ { myrows }
broadcast pivot row
else
receive pivot row
end
for i>k & i ∈ { myrows }
m(i,k)=a(i,k)/a(k,k);
for j=k+1:n-1
a(i,j)=a(i,j)-m(i,k)*a(k,j);

2.10. Parallel solution of general linear systems 87

end
end

end

The drawback with this algorithm is that, as the columns are scattered amongst processors,
there will be communications to find which row is the pivot row. We can also store the matrix
by columns. Then, finding the pivot can be done in one processor without additional communi-
cations. But this pivot search is a sequential process. The code is the following,
for k=1:n-1
if k ∈ { mycolumns }
find pivot row r
for i=k+1:n
m(i,k)=a(i,k)/a(k,k)

end
broadcast m and pivot index
else
receive m and pivot index
end
for j> k & j ∈ { mycolumns }
for i=k+1:n
a(i,j)=a(i,j)-m(i,k)*a(k,j)

end
end

end

More efficient algorithms can be obtained if the data is partitioned by blocks, see Dongarra
and Walker [149]. Independent data distributions are used for rows and columns. An object m
(a piece of row or column) is mapped to a couple (p, i), p being the processor number and i the
location in the local memory of this processor. By using wrapping as before, we have

m −→ (m modp, bm/pc).

Blocking consists of assigning contiguous entries to processors by blocks,

m −→ (bm/Lc,m modL), L = dm/pe.

The block cyclic distribution is a combination of both. Blocks of consecutive data are distributed
by wrapping,

m −→ (q, b, i),

where q is the processor number, b the block number in processor q and i the index in block b. If
there are r data objects in a block, then

m −→
(⌊

m modT

r

⌋
,
⌊m
T

⌋
,m modr

)
, T = rp.

To distribute the matrix, independent block cyclic distributions are applied for the rows and
columns. The processors are supposed to be (logically) arranged in a two dimensional mesh
and referred by couples (q1, q2). For general data distributions, communications are required for
the pivot search and the computation of the multipliers. The communications to be done are a
broadcast to all processors and a broadcast to all processors in the same row (or column) in the
2D mesh of processors. Finally, the logical arrangement of processors has to be mapped to the
physical layout, see Dongarra and Walker [149] and also Rothberg [390] for details.

88 2. Gaussian elimination for general linear systems

2.11 Bibliographical comments
Thousands of papers have been written on Gaussian elimination over the years. Elimination
for solving linear systems is in fact an old idea. In the second century A.D., the Chinese were
solving linear systems of very small order (see [294]). For an account of the work of Gauss
on elimination, we refer to the translations of some of his papers by G.W. Stewart, although
according to Stewart [421] Lagrange was already using what we call Gaussian elimination.

Some years ago there were some questions on NA-net about Cholesky and the spelling of
his name, as some authors write Choleski and some others Cholesky. It turns out that there is no
choice as Cholesky was not Russian or Polish but French. André Louis Cholesky was born on
October 15, 1875 in Montguyon a small village in the district of Charente Maritime in the west
of France. He was the son of André Cholesky, a butler born in 1842 in the same village of French
parents. Cholesky did part of his studies in Bordeaux and he attended Ecole Polytechnique in
1895. From then on he was in the military. In 1903, he was sent to the geographical service of the
army. This is where he worked on his method for the solution of least squares problems. He died
during the first World War on August 31, 1918. All these details were found in an interesting
report written by C. Brezinski from Lille University.

When the first computers were developed after World War II, it was not obvious to every-
one that Gaussian elimination could be used safely for computing solution of linear systems, see
[460]. It is mainly through the work of Wilkinson, summarized in his book [468], that the prop-
erties of Gaussian elimination were carefully studied and it became widely known that Gaussian
elimination may be successfully used. Wilkinson also developed some software to be used on
the early computers available at that time.

Modern versions of Gaussian algorithms were incorporated in LINPACK (1979). Codes
more suited to vector computers were developed for LAPACK (1992). Through the work of
Jack Dongarra, efficient versions of these libraries were made available on all the best scientific
computers in the eighties and nineties. For a summary of the work on the stability of Gaussian
elimination, see Higham [282, 283].

The new challenge facing numerical analysts at the end of the nineties is finding efficient
implementations of Gaussian elimination on parallel architectures with a large number of pro-
cessors. This has been the subject of hundreds of papers during the last ten years and efficient
solutions are beginning to be available.

3

Gaussian elimination for
sparse linear systems

3.1 Introduction
In Chapter 2, we addressed several properties of the matrices we considered such as symmetry
or positive definiteness, but we did not examine the numerical values of the coefficients in the
matrix. In this chapter we shall look at special techniques developed for handling Gaussian
elimination on sparse matrices. A sparse matrix is one with many zero entries. However, there is
no precise definition of what a sparse matrix is, that is, how many zeros entries there are or the
percentage of zeros. We have seen in Chapter 1 that special techniques are used to store sparse
matrices. Special algorithms have been defined in order to minimize the storage and the number
of operations during Gaussian elimination. A definition that has sometimes been given is that a
matrix is sparse when it is beneficial (either in computer storage or in computer time) to use these
special sparse techniques as opposed to the more traditional dense (or general) algorithms that
we have described. Exploiting sparsity allows the solution of very large problems with millions
of unknowns.

There are several good books about direct methods for sparse linear systems. We mention
those of George and Liu [221] for symmetric positive definite systems and Duff, Erisman and
Reid [161] for more general sparse systems.

A potential problem with most sparse techniques is that they are in general quite complex
(actually much more complex than algorithms for dense matrices) and sometimes difficult to
optimize. It is usually not feasible for the average user to write a sparse code from scratch.
Fortunately, there are good packages available containing well tuned codes such as the Harwell
Library, Duff and Reid [163, 164, 165, 166, 167], or SPARSPAK, George and Liu [221], to
mention just a few. See also Gilbert et al. [137] and Davis [128].

3.2 The fill-in phenomenon
At the kth step of Gaussian elimination, we compute

a
(k+1)
i,j = a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

.

From this formula we see that, even if a(k)
i,j = 0, a(k+1)

i,j can be non-zero if a(k)
i,k 6= 0 and a(k)

k,j 6= 0.
Non-zero entries in the L and U factors in positions (i, j) for which ai,j = 0 are known as fill-
ins. In general, there will be more non-zero entries in L+ U than in A. The storage scheme for

89

90 3. Gaussian elimination for sparse linear systems

L and U must be designed to account for this.
Consider the small example below where the matrix is symmetric and the x’s stand for the

non-zero entries,

A =

x x 0 x 0
x x x 0 0
0 x x 0 x
x 0 0 x 0
0 0 x 0 x

 .

Let us look at the different steps of Gaussian elimination. Fill-in is denoted by •,

A2 =

x x 0 x 0
0 x x • 0
0 x x 0 x
0 • 0 x 0
0 0 x 0 x

 , A3 =

x x 0 x 0
0 x x • 0
0 0 x • x
0 0 • x 0
0 0 x 0 x

 .

Note that the fill-in in position (4, 3) has been created by the fill-in in position (4, 2) at the
previous step,

A4 =

x x 0 x 0
0 x x • 0
0 0 x • x
0 0 0 x •
0 0 0 • x

 , A5 =

x x 0 x 0
0 x x • 0
0 0 x • x
0 0 0 x •
0 0 0 0 x

 .

Finally,

L =

x
x x
0 x x
x • • x
0 0 x • x

 .

In this example, three elements which were initially zero in the lower triangular part of A are
non-zero in L. The number of fill-ins depends on the way the pivots are chosen if pivoting is
allowed. As the following well known example shows, there can be large differences in the
number of fill-ins with different pivoting strategies. Consider

A =

x x x x
x x
x x
x x

 .

Then,

L =

x
x x
x • x
x • • x

 ,

that is, all the zero entries are filled. But, we can define a permutation matrix P such that the first
element is numbered last and then

PAPT =

x x

x x
x x

x x x x

 .

3.3. Graphs and fill-in for symmetric matrices 91

In this case there is no fill-in at all. This is called a perfect elimination.
The aim of sparse Gaussian elimination is to avoid doing operations on zero entries and there-

fore to try to minimize the number of fill-ins. This will have the effect of both minimizing the
needed storage and the number of floating point operations. The way this is achieved depends
on the properties of the matrix. If the matrix is symmetric and, for instance, positive definite,
we do not need to pivot for numerical stability (see Chapter 2). This gives us the freedom to
choose symmetric permutations only to minimize the fill-in as we did in the previous example.
Moreover, the number and indices of fill-ins can be determined before doing the numerical fac-
torization as this depends only on the structure of the matrix and not on the value of the entries.
Everything can be handled within a static data structure that is constructed in a pre-processing
phase called the symbolic factorization.

If the matrix is non-symmetric (and without any special properties), we have seen that we
generally need to pivot to achieve an acceptable numerical accuracy. If in addition the matrix is
sparse, we now have another requirement which is to minimize the fill-in. Therefore, these two
(sometimes conflicting) goals have to be dealt with at the same time. This implies that the data
structure for the L and U factors cannot be determined before the numerical factorization, as the
pivot rows and therefore the potential fill-ins are only known when performing the numerical
factorization.

It has been shown that finding an ordering that minimizes the fill-in is an NP complete prob-
lem, see Yannakakis [471]. Therefore, all the algorithms rely on heuristics to find a “good”
ordering producing a low level of fill-in.

3.3 Graphs and fill-in for symmetric matrices
The connection between sparse Gaussian elimination and graphs for symmetric matrices was
first studied by Parter [372], see also Rose [389]. We define a sequence of graphs G(i), i =
1, . . . , n,G(1) = G being the graph of A, corresponding to the steps of Gaussian elimination.

Theorem 3.1. Consider a sequence of graphs where G(1) = G and G(i+1) is obtained from G(i)

by removing the node xi from the graph as well as all its incident edges and adding edges such
that all the remaining neighbors of xi in G(i) are pairwise connected. Then, proceeding from
G(i) to G(i+1) corresponds to the ith step of Gaussian elimination.

Proof. Let us prove this for the first step, eliminating the node x1 (or the corresponding
unknown in the linear system). Then,

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
.

The element a(2)
i,j is non-zero if either ai,j 6= 0 or ai,j = 0 and ai,1 and a1,j are non-zero. The

last possibility means that xi and xj are neighbors of x1 in the graph. When x1 is eliminated,
they will be connected by an edge representing the new element and a(2)

i,j 6= 0. This occurs for
all the neighbors of x1. We do not consider zeros that arise by cancellation. In this way, G(2)

is obtained corresponding to the submatrix obtained from A(2), by deleting the first row and the
first column. The same obviously occurs for every step of Gaussian elimination.

Starting from the graph G(A) of A and adding the edges that are created in all the G(i)s
during the elimination, we obtain a graph GF , (F = L + LT) which is called the filled graph

92 3. Gaussian elimination for sparse linear systems

GF = (X,EF). A small example of an elimination graph is given below. Let

A =

x x x x x
x x
x x x
x x x x x x

x x
x x x

x x x x

.

Figure 3.1 displays the graph G(A). The graph G(2) is given in Figure 3.2.

1

2

3

4 5

6

7

Figure 3.1. The graph G(A)

5

6

2

3

4

7

Figure 3.2. The graph G(2)

The edges corresponding to fill-ins are denoted by grey lines. The graph G(2) corresponds to
the matrix,

A(2) =

x x x x x
x x • • •
x • x x •
x • x x x x x

x x
x x x

x • • x x x

.

The filled graph GF is given in figure 3.3.

3.4. Characterization of the fill-in 93

1

2

3

4 5

6

7

Figure 3.3. The filled graph GF

In total there are six fill-ins in the elimination. Note that, in this example, a perfect elimination
can be obtained by ordering the unknowns as

2, 5, 3, 6, 1, 4, 7

With this ordering, the permuted matrix is

A′ = PAPT =

x x
x x

x x x
x x x

x x x x x
x x x x x x

x x x x

.

One thing that we note is that the more fill-ins we create in the early stages, the more fill-ins we
shall get later on, as fill-ins usually create fill-ins. Thus, an heuristic rule is that it is likely to be
beneficial to start by eliminating nodes that do not create much fill-in. These are the nodes with
a small number of neighbors or nodes in cliques.

3.4 Characterization of the fill-in
Let us introduce a few definitions.
• The elimination tree of A, symmetric matrix of order n, is a graph with n nodes such that the
node p is the parent of node j, if and only if

p = min{i|i > j, li,j 6= 0}

where L is the Cholesky factor of A. The elimination tree of A will be denoted by T (A) or
simply T if the context makes it clear that we refer to the matrix A. Clearly, p is the index of the
first non-zero element in column j of L. In the previous example of Figure 3.1, T (A′) is given
in Figure 3.4 (renumbering the unknowns according to P).

This tree exhibits the fact that x′1, x
′
2, x
′
3, x
′
4 (corresponding to x2, x5, x3, x6 in the initial or-

dering) can be eliminated in any order (or even in parallel) as there are no dependencies between
these variables.

94 3. Gaussian elimination for sparse linear systems

1 23 4

5

6

7

Figure 3.4. An elimination tree

• Let S ⊂ X and x ∈ X,x 6∈ S, x is said to be reachable from y 6∈ S through S if there exists a
path (y, v1, . . . , vk, x) from y to x in G such that vi ∈ S, i = 1, . . . , k. We define

Reach(y, S) = {x|x 6∈ S, x is reachable from y through S}

There can be a fill-in between xj and xk only if at some step m, they are not already connected
together and both neighbors of xm,m < j, m < k. Therefore, either they were already neigh-
bors of xm in G or they were put in this situation by the elimination of other nodes xl, l < m.
Recursively, we see that at some stage, xj was a neighbor of one of these nodes and the same for
xk with another of these nodes. This means that in G, there is at least one path between xj and
xk and that all nodes on this path have numbers smaller than j and k. If there is no such path,
there will not be a fill-in between xj and xk. This can be formalized in the following results. We
first prove a lemma due to Parter [372].

Lemma 3.2. {xi, xj} ∈ EF if and only if {xi, xj} ∈ E or {xi, xk} ∈ EF and {xk, xj} ∈ EF
for some k < min{i, j}.

Proof. If {xi, xk} ∈ EF (filled graph) and {xk, xj} ∈ EF for some k < min{i, j}, then the
elimination of xk will create a fill-in between xi and xj . Therefore, {xi, xj} ∈ EF . Conversely,
if {xi, xj} ∈ EF and {xi, xj} 6∈ E, then we have seen in the previous discussion that at some
stage, xi and xj must be neighbors of a node, say xk, that will be eliminated before xi and xj .
Thus, k < min{i, j}.

The fill-in was characterized by A. George (see [221]).

Theorem 3.3. Let k > j, there will be a fill-in between xj and xk if and only if

xk ∈ Reach(xj , {x1, . . . , xj−1}).

Proof. Suppose xk ∈ Reach(xj , {x1, . . . , xj−1}). There exists a path {xj , v1, . . . , vl, xk} ∈
G with vi ∈ {x1, . . . , xj−1}, 1 ≤ i ≤ l. If l = 0 or l = 1, the result follows from Lemma 3.2.
If l > 1, it is easy to show that {xk, xj} ∈ EF by induction.

Conversely, we assume {xi, xj} ∈ EF , j < k. The proof is by induction on j. For j = 1,
{x1, xk} ∈ EF implies {x1, xk} ∈ E as there is no fill-in with the first node. Moreover, the

3.5. Band and envelope numbering schemes for symmetric matrices 95

set {x1, . . . , xj−1} is empty. Suppose the result is true up to j − 1. By Lemma 3.2, there exists
some l ≤ j − 1 such that {xj , xl} ∈ EF and {xl, xk} ∈ EF . By the assumption, there exists a
path between xj and xl and another one from xl to xk. Clearly, this implies that there is a path
from xj to xk whose nodes have numbers ≤ l ≤ j − 1.

George demonstrated that reachable sets can be efficiently implemented by using quotient
graphs, see [221]. The fill-in can also be characterized using elimination trees.

We denote by T [x], the subtree of T (A) rooted at node x. y ∈ T [x] is a descendant of x and
x is an ancestor of y. From the definition of T (A), we have that if xi is a proper ancestor of xj
in T (A), then i > j.

Theorem 3.4. For i > j, the numerical values of columns i of L (L∗,i) depend on column j of L
(L∗,j) if and only if li,j 6= 0.

Proof. See Liu [327].

3.5 Band and envelope numbering schemes for symmetric
matrices

The first attempts to exploit sparsity used band or envelope storage schemes, trying to minimize
the storage. Let us introduce a few definitions.
• fi(A) = min{i|ai,j 6= 0}. fi(A) is the index of the column with the first non-zero element of
row i.
• βi(A) = i− fi(A) is the bandwidth of row i. The bandwidth of A is defined as

β(A) = max
i
{βi(A), 1 ≤ i ≤ n},

and
band(A) = {(i, j)|0 < i− j ≤ β(A), i ≥ j}.

• Env(A) = {(i, j)|0 < i− j ≤ βi(A), i ≥ j} is the envelope of A. The profile of A, denoted
by Pr(A) is given by

Pr(A) = |Env(A)| =
n∑
i=1

βi(A).

These definitions have led to ideas for storing the matricesA and L as if βi(A) is almost constant
as a function of i, then it makes sense to store the entries corresponding to all the indices in
band(A). However, most of the time this is not practical as there are often a few rows with a
larger bandwidth than the other ones and then, too much storage is wasted by the band scheme.
Then, one can use the variable band or envelope storage scheme, see Jennings [298]. This simple
storage scheme is obtained by storing for each row all the elements of the envelope in the same
vector. We only need another vector of integers to point to the start of each row. The interest in
this storage scheme was motivated by the following result.

Theorem 3.5. Let Fill(A) = {(i, j)|i > j, ai,j = 0, li,j 6= 0} be the index set of the fill-ins,
then

Fill(A) ⊂ Env(A).

Proof. This is a consequence of Theorem 3.3 as there cannot be any fill-in from a node xi
to a node xj whose number is smaller than the smallest number of the neighbors of xi. All the
paths going from xi to xj will have a node with a number larger than xj .

96 3. Gaussian elimination for sparse linear systems

Using these storage schemes, it was natural to try to devise orderings that minimize the
bandwidth or the profile of the matrix. Unfortunately, this is an NP-complete problem. But there
are some heuristics that help to obtain low profile orderings.

3.5.1 The Cuthill-McKee and reverse Cuthill-McKee orderings

The Cuthill-McKee (CMK) algorithm is a local minimization algorithm whose aim is to reduce
the profile of A. It is clear that if at some stage of the numbering process, we would like to
minimize βi(A), then we must immediately number all the non-numbered nodes in Adj(xi).
The algorithm due to Cuthill and McKee is the following.
Algorithm CMK
1) choose a starting node,
2) for i = 1, . . . , n − 1 number all the (non-numbered) neighbors of xi in G(A) in increasing
order of degree,
3) update the degrees of the remaining nodes.

The profile resulting from this ordering is quite sensitive to the choice of the starting node.
A good choice for a starting node will be to choose a peripheral node, that is one whose eccen-
tricity equals the diameter of the graph as this will generate a narrow level structure where the
difference in number for a node and its neighbors is minimal. Peripheral nodes are not easy to
find quickly. Therefore, heuristics were devised to find “ pseudo-peripheral” nodes, that is, nodes
whose eccentricities are close to the diameter of the graph. Such an algorithm was proposed by
Gibbs, Poole and Stockmeyer [224].
Algorithm GPS
1) choose a starting node r,
2) build the level structure L(r)

L(r) = {L0(r), . . . , Le(r)(r)},

3) sort the nodes x ∈ Le(r)(r) in increasing degree order,
4) for all nodes x ∈ Le(r)(r) in increasing degree order build L(x). If the height of L(x) is
greater than the height of L(r), choose x as a starting node (r = x) and go to step 2).

This algorithm will eventually converge as eccentricities are bounded by the diameter of the
graph. However, it can be very costly. George and Liu [220] proposed to shorten the computing
time by eliminating structures with large width as soon as possible. Step 4) of the algorithm is
modified as,
4′) let w(x) be the width of L(x). For all x ∈ Le(r)(r) in order of increasing degree, build

L(x) = {L0(x), . . . , Le(r)(x)}.

At each level i if |Li(x)| > w(r), we drop the current node and we pick another x. If w(x) ≤
w(r) and e(x) > e(r), we choose x as a starting node (r = x) and go to 2).

George and Liu [221] also proposed to use the following simple algorithm,
1) choose a starting node r,
2) build L(r),
3) choose a node x of minimum degree in Le(r)(r),
4) build L(x). If e(x) > e(r), choose x as a starting node and go to 2).

Rather than using CMK, George and Liu [221] proposed to reverse the Cuthill-McKee order-
ing.
Algorithm Reverse Cuthill-McKee (RCM),

3.5. Band and envelope numbering schemes for symmetric matrices 97

1) find a pseudo-peripheral starting node,
2) generate the CMK ordering,
3) reverse the numbering. Let x1, . . . , xn be the CMK ordering, then the RCM ordering {yi} is
given by yi = xn+i−1, i = 1, . . . , n.

We shall show that in terms of number of fill-ins, RCM is always as good as CMK. So, there is
no reason to use CMK.

Theorem 3.6. Let A be an irreducible matrix and ACM be the matrix corresponding to reorder-
ing (the graph of) A by the Cuthill-McKee scheme. Then,

∀i, j, i ≤ j, fi ≤ fj .

Moreover, fi < i if i > 1.

Proof. Suppose that the conclusion does not hold. Then, there exist a column k and rows
p, l,m, p < l < m such that

fp ≤ k, fl > k, fm ≤ k.

This means that

ap,k 6= 0 =⇒ xp ∈ Adj(xk),

am,k 6= 0 =⇒ xm ∈ Adj(xk),

al,k = 0 =⇒ xl 6∈ Adj(xk).

But this is impossible as the Cuthill-McKee algorithm has numbered successively all nodes in
Adj(xk).

Let us introduce a new definition.

• Tenv(A) = {(i, j)| j ≤ i, ∃k ≥ i, ak,j 6= 0}.

x

x

x

x

x

x

x

x

x

x

x

x

x

Env(A)

x

x

x

x

x

x

x

x

x

x

x

x

x

Tenv(A)

Figure 3.5. Env(A) and Tenv(A)

Tenv(A) is the “ transpose envelope” of A. Let us consider the example in Figure 3.5. If we
use the reverse Cuthill-McKee algorithm, we have to reverse the ordering. Thus, we obtain the
matrix of Figure 3.6. The rows of ARCM are the columns of ACM .

Lemma 3.7.
|Env(ARCM)| = |Tenv(ACM)|.

Proof. Straightforward.

98 3. Gaussian elimination for sparse linear systems

x

x

x

xxxx

x

xxx

xx

Figure 3.6. The envelope for RCM

Theorem 3.8.
Tenv(ACM) ⊆ Env(ACM).

Proof. Suppose we have (i, j) ∈ Tenv(ACM) and (i, j) 6∈ Env(ACM). Then, ∃k ≥ i such
that ak,j 6= 0. Either
1) ai,j 6= 0 =⇒ (i, j) ∈ Env(ACM), or
2) ai,j = 0. If (i, j) 6∈ Env(ACM) =⇒ ∀l ≤ j, ai,l = 0 =⇒ fi > j.

On the other hand, we have fk ≤ j. This implies fk < fi which is impossible as k ≥ i by
Theorem 3.6.

Obviously, we have
|Env(ARCM)| ≤ |Env(ACM)|.

A. George proved the following result.

Lemma 3.9. If ∀i > 1, fi < i, the envelope Env(A) fills completely.

This implies
|Fill(ARCM)| ≤ |Fill(ACM)|.

There are cases for which equality holds. Note that the previous results are true for every ordering
such that k ≥ i =⇒ fk ≥ fi. It has been shown that RCM can be implemented to run in O(|E|)
time. For a regular N × N grid and P1 triangular finite elements, the storage for RCM varies
as O(N3), (≈ 0.7N3) that is O(n

3
2). Figure 3.7 shows the structure of the matrices of two

examples. The matrix on the left arises from the Poisson model problem on a 6× 6 square mesh
with a lexicographic ordering. The matrix on the right is a “Wathen” matrix from Higham’s
matrix toolbox. The matrix A is precisely the “consistent mass matrix” for a regular 10 × 10
grid of 8-node (serendipity) elements in two space dimensions. Figure 3.8 shows the structure
of those matrices reordered by the Matlab RCM algorithm. For the Wathen matrix, the number of
non-zeros in the Cholesky factor is 2311 for the original ordering and 2141 with RCM.

Several other algorithms have been proposed which reduce the profile of a symmetric matrix,
for example the King algorithm, see George and Liu [221].

3.5. Band and envelope numbering schemes for symmetric matrices 99

0 10 20 30

0

5

10

15

20

25

30

35

nz = 156

0 50 100

0

20

40

60

80

100

120

nz = 1789

Figure 3.7. The structure of the original matrices

0 50 100

0

20

40

60

80

100

120

nz = 1789

0 10 20 30

0

5

10

15

20

25

30

35

nz = 156

Figure 3.8. The structure of the matrices reordered by RCM

3.5.2 Sloan’s algorithm

One of the drawback of the CMK algorithm is that it is a local algorithm using information about
the neighbors of the last numbered nodes. Sloan [413] has suggested an algorithm that tries to
overcome this problem. The first step is the selection of pseudo-peripheral nodes.

Sloan’s algorithm
• Step 1 (selection of a pseudo-diameter)
1) choose a node s with minimum degree,
2) build the level structure L(s) = {L0(s), . . . , Lk(s)},
3) sort the nodes of Lk(s) by increasing degree, let m be the number of elements in Lk(s) and
Q be the bm+2

2 c first elements of the sorted set,
4) Let wmin = ∞ and kmax = k. For each node i ∈ Q in order of ascending degree, generate
L(i) = {L0(i), . . . , Lk(i)}. If k > kmax and w = maxi≤j≤k |Lj(i)| < wmin, then we set s = i
and go to step 3). Otherwise, if w < wmin, we set e = i and wmin = w.

We exit this algorithm with a starting node s and an end node e which define a pseudo-
diameter. The difference of this procedure with GPS is the shrinking strategy of step 3). This is
performed as it has been observed that nodes with high degrees are not often chosen as starting
nodes. The second modification is similar to what is done in the George and Liu algorithm.

• Step 2 (node labeling)
The nodes are classified in four categories according to their status, nodes which have been

already assigned a label are postactive. Nodes which have not been assigned a number but are
adjacent to postactive nodes are active. Nodes without a number adjacent to active nodes are
preactive. All other nodes are inactive. The current degree ni of a node i is defined as

ni = mi − ci + ki,

100 3. Gaussian elimination for sparse linear systems

where mi is the degree of i, ci is the number of postactive or active nodes adjacent to i and
ki = 0 if i is active or postactive and ki = 1 otherwise. The inputs of the algorithm are the two
nodes s and e selected in Step 1). The algorithm maintains a list of eligible nodes each with a
priority related to the current degree and the distance from the end node. Nodes with low current
degree and large distance to the end have high priorities.
1) for all nodes, compute the distances d(e, i) from i to e, initialize all nodes as inactive and set

Pi = (nmax − ni)W1 + d(e, i)W2,

where nmax = maxi ni and W1,W2 are integer weights. The queue of eligible nodes is initial-
ized with s which is assigned a preactive status.
2) as long as the queue is not empty,

2.1) select the node i with highest priority in the queue (ties are broken arbitrarily),
2.2) delete i from the queue. If it is not preactive, go to 2.3). Else, consider each node j

adjacent to i and set Pj = Pj +W1. If j is inactive, insert j in the queue and declare it preactive,
2.3) label node i and declare it postactive,
2.4) Examine every node j adjacent to i. If j is preactive, set Pj = Pj + W1, declare j as

active and examine each node k adjacent to j. If k is active or preactive, set Pk = Pk + W1,
otherwise if k is inactive, set Pk = Pk +W1, insert k in the queue and declare it as preactive.

The values of the weights W1 and W2 determine the balance between the local information
(the current degree) and the global one (the distance to the end). Sloan [413] recommended
W1 = 2 and W2 = 1. He performed numerical experiments showing that on certain sets of
matrices his algorithm gives lower profiles than RCM and other algorithms. Figure 3.9 gives the
structures for the examples with the Sloan algorithm. For the Wathen matrix, the number of
non-zeros in the Cholesky factor is 1921, slightly less than with RCM. For the finite difference
example both RCM and Sloan give the same profile.

0 10 20 30

0

5

10

15

20

25

30

35

nz = 156

0 50 100

0

20

40

60

80

100

120

nz = 1789

Figure 3.9. The structure of the matrices reordered by Sloan

Duff, Reid and Scott [168] have improved the Sloan algorithm by allowing it to work with
weighted graphs where nodes with the same adjacency set are collapsed. Kumfert and Pothen
[311] have also used the Sloan algorithm combined with other techniques. We shall come back
to this in one of the following sections.

3.6 Spectral schemes
3.6.1 The basic idea

The Laplacian matrix L(G) of a symmetric matrix A (or the associated graph G) is defined as
follows: Li,j = −1 if node j is a neighbor of node i in the graph G (or equivalently if ai,j 6= 0).

3.6. Spectral schemes 101

The diagonal term Li,i is minus the sum of the other entries in row i. Clearly, L is a singular
M-matrix. Therefore its smallest eigenvalue is zero. However, the eigenvector u2 corresponding
to the smallest positive eigenvalue λ2 has interesting properties. This has been investigated by
Fiedler [188].

The Laplacian matrix has been used both for envelope reduction and for graph partitioning.
The rationale for using u2 in envelope reducing algorithms is the following. We have seen that
the profile of A is defined as

Pr(A) =

n∑
i=1

βi(A) =

n∑
i=1

max
j∈row(i)

(i− j),

if we define row(i) = {j|ai,j 6= 0, 1 ≤ j ≤ i}. There is a related quantity, the 1-sum σ1,

σ1(A) =

n∑
i=1

∑
j∈row(i)

(i− j).

The work in the Cholesky factorization is proportional to W ,

W =

n∑
i=1

max
j∈row(i)

(i− j)2.

This is related to the 2-sum:

σ2
2(A) =

n∑
i=1

∑
j∈row(i)

(i− j)2.

The following theorem is from George and Pothen [223].

Theorem 3.10. Let p be the maximum number of off diagonal non-zeros in a row of A (or the
maximum vertex degree in G), then

W ≤ σ2
2(A) ≤ pW,

The spectral ordering is obtained by sorting the components of u2 in increasing order. This
induces a permutation vector which gives the requested ordering. In order to justify this we
consider σ2(A) instead of W as the quantity to minimize over all the orderings. Suppose for
the sake of simplicity that n is even and let P be the set of vectors whose components are
permutations of {−n/2, . . . ,−1, 0, 1, . . . , n/2}. Then,

min
x∈P

n∑
i=1

∑
j∈row(i)

(xi − xj)2 =
1

2
min
x∈P

∑
ai,j 6=0

(xi − xj)2.

Then the condition on x is relaxed to obtain an easier continuous problem. We now consider the
setH of vectors x such that

∑
xi = 0 and (x, x) given. We have

1

2
min
x∈H

∑
ai,j 6=0

(xi − xj)2 = min
x∈H

(x,Lx) = λ2(u2, u2).

Barnard, Pothen and Simon [37] have shown that the permutation vector induced by u2 is the
closest (in the Euclidean norm) vector in P to u2. Figure 3.10 shows the result for the two
examples. For the Wathen matrix the number of non-zeros in the Cholesky factor is slightly
higher being 2571.

102 3. Gaussian elimination for sparse linear systems

0 10 20 30

0

5

10

15

20

25

30

35

nz = 156

0 50 100

0

20

40

60

80

100

120

nz = 1789

Figure 3.10. The structure of the matrices reordered by the spectral ordering

3.6.2 The multilevel spectral algorithm

Even if the eigenvalue and eigenvector do not have to be computed very accurately, the spectral
algorithm as formulated above is too costly compared to other profile reduction algorithms for
large examples. To overcome this problem, Barnard, Pothen and Simon proposed using the
algorithm on a contracted graph with much fewer vertices than G,
1) construct a series of coarser and coarser graphs that retains the structure of the original graph,
2) compute the second eigenvector of the coarsest graph,
3) interpolate this vector to the next finer graph,
4) refine the interpolated vector (by Rayleigh Quotient Iteration, see Parlett [370]) and go to 3)
until we are back to the original graph.

There are many ways to define graph contraction. The one proposed by Barnard, Pothen
and Simon was to find a maximal independent set of vertices which are to be the vertices of the
contraction. The edges are found by growing domains from the selected vertices adding an edge
when two domains intersect. Good results were reported in [37]. A similar algorithm has been
introduced independently by Paulino, Menezes, Gattass and Mukherjee [373].

3.6.3 The Kumfert and Pothen hybrid algorithm

Kumfert and Pothen [311] have suggested using a combination of the spectral and the Sloan
algorithms. In this scheme the multilevel spectral algorithm is used to find the end nodes of a
pseudo-diameter and then a modified version of the Sloan algorithm is used to number the nodes.

Kumfert and Pothen provide examples for which the spectral algorithm performs poorly.
Then they introduce a variant of the Sloan algorithm for weighted graphs. They denote by
Size(i) the weight of a multi-vertex i. The degree of this node is the sum of the sizes of the
neighboring multi-vertices. The generalization of the current degree Cdeg(i) denotes the sum of
the sizes of the neighbors of i for preactive or inactive vertices. Then, they define

Incr(i) =

{
Cdeg(i) + Size(i) if i is preactive,

Cdeg(i) if i is active.

Let ∆ be the maximum degree in the unweighted graph, the new priority function is defined as

P (i) = −W1bd(s, e)/∆cIncr(i) +W2 d(i, e).

Considering the choices of weights, Kumfert and Pothen identify two classes of problems, one
for which W1 = 2 and W2 = 1 gives good results, another that needs high values of W2 to
obtain small envelopes. Moreover, they implement the priority queue as a binary heap contrary

3.7. The minimum degree ordering 103

to Sloan’s implementation as an array. It turns out that this new implementation is much faster
(by a factor of about 5) on selected sets of examples.

In the hybrid algorithm, the start and end nodes are chosen to be the first and last nodes in
the spectral ordering and the priority function is given by

P (i) = −W1bn/∆cIncr(i) +W2 d(i, e)−W3 i,

this function being sensitive to the initial ordering through the third term. The weight W3 is
chosen by considering the eigenvector corresponding to the first non-zero eigenvalue. If the
component giving the maximum of the absolute values of the components is negative, thenW3 =
−1 and the starting and end nodes are exchanged, otherwise W3 = 1. The other weights are
W1 = W2 = 1. However, there are problems for which W1 = 1,W2 = W3 = 2 give good
results. Numerical results show that the hybrid algorithm gives better envelope sizes than both
RCM and the Sloan algorithm.

3.6.4 The Boman-Hendrickson multilevel algorithm

In this approach [50], the original problem is approximated by a sequence of coarser ones. The
vertices of the coarsest problem are then labeled and the results are interpolated back to the larger
graphs with some refinement steps if needed.

The coarsening of graphs is done by edge contraction by coalescing adjacent vertices and
assigning weights to the edges of the coarse graph. If two vertices are adjacent to the same
neighbor then, the new edge is given a weight equal to the sum of the two old edges. In the first
step, a maximum matching is found. This is a maximal set of edges for which no two edges are
incident to the same vertex. The coarsest graph is numbered by the spectral ordering algorithm.
The uncoarsening is done by numbering the vertices of the larger graph preserving the coarse
graph ordering. A local refinement scheme is then used to improve this ordering. It is a variant
of the Kernighan and Lin algorithm [307], the weighted 1-sum being the objective function. We
shall explain this algorithm in more detail later on.

3.7 The minimum degree ordering
This technique was introduced in Tinney and Walker [435]. It is one of the ordering schemes
that are most often used today. Its aim is to locally minimize fill-in. The minimum degree (MD)
ordering works with the elimination graphs G(i) = (Xi, Ei). The ith step of the algorithm is
described as,
Algorithm MD
1) in G(i), find a node xj such that

deg(xj) = min
y∈Xi
{deg(y)},

and number it at the ith node.
2) form G(i+1) by eliminating xj and update the degrees,
3) if i+ 1 < n go to 1) with i← i+ 1.

The biggest problem arising from the minimum degree algorithm is that, quite often, there
are several nodes of minimum degree. This situation must be resolved using a tie breaking
strategy. Unfortunately, the final number of fill-ins is quite sensitive to the tie breaking strategy,
see George and Liu [222].

Being a local minimization algorithm, the minimum degree does not always give a globally
minimum fill-in ordering. There are cases, like trees, for which it gives no fill-in at all, but

104 3. Gaussian elimination for sparse linear systems

there are examples for which it generates fill-in that is more than a constant time greater than the
minimum fill-in, see Berman and Schnitger [44].

Over the years many improvements have been suggested to the basic algorithm, mainly to
shorten the computer time needed rather than to improve the ordering. A summary of these
results can be found in George and Liu [222]. The main points are the following.
◦ Mass elimination

When xi is eliminated, often there are nodes in AdjG(i)(xi) that can be eliminated immedi-
ately. This is because, when xi is eliminated, only the degrees of nodes in AdjG(i)(xi) change
and some of them can be deg(xi) − 1. For instance, if a node in a clique is eliminated, then
the degree of all the other nodes in the clique decreases by 1. Therefore, all these nodes can be
eliminated at once, before the degrees are updated thereby saving some degree updates. This
leads to the concept of indistinguishable nodes.
• Two nodes u and v are indistinguishable in G if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}.

George and Liu [222] proved the following result.

Theorem 3.11. Let z ∈ AdjG(i)(xi), then degG(i+1)(z) = degG(i)(xi)− 1 if and only if

AdjG(i)(z) ∪ {z} = AdjG(i)(xi) ∪ {xi}.

By merging indistinguishable nodes, we need only to update the degrees of the representa-
tives of these nodes.
◦ Incomplete degree update

Let us introduce a new definition.
• v is said to be outmatched by u in G if

AdjG(u) ∪ {u} ⊆ AdjG(v) ∪ {v}.

Theorem 3.12. If v is outmatched by u in G(i), it is also outmatched by u in G(i+1).

Proof. See George and Liu [222].
The consequence of this theorem is that if v becomes outmatched by u, it is not necessary to

update the degree of v until u is eliminated.
◦ Multiple elimination

This slight variation of the basic scheme was proposed by Liu [325]. When xi has been
chosen, we select a node with the same degree as xi inG(i)/(AdjG(i)(xi)∪{xi}). This process is
repeated until there are no nodes of the same degree and then the degrees are updated. Therefore,
at each step, an independent set of minimum degree nodes is selected. Note that the ordering that
is produced is not the same as for the basic algorithm. However, it is generally as good as the
genuine minimum degree ordering.
◦ Tie breaking

An important issue is the choice of a tie breaking strategy. Unfortunately, not much is known
about how to decide which nodes to choose at a given stage. Some experiments (George and
Liu, [222]) show that there can be large differences in the number of non-zeros and factorization

3.8. The nested dissection ordering 105

times when several random tie breakers are chosen. Most often, the initial ordering determines
the way ties are broken. It has been suggested that one could use another ordering scheme such
as the Reverse Cuthill-McKee algorithm, before running the minimum degree.
◦ Approximate minimum degree

Amestoy, Davis and Duff [6] proposed to use some bounds on the degree of nodes instead of
the real degree. This allows a faster update of the information when nodes are eliminated. The
quality of the orderings that are obtained are comparable to those from the genuine minimum
degree algorithm although the algorithm is much faster, see the performances in [6].

Figure 3.11 shows the result for the two examples using the Matlab minimum degree order-
ing. For the Wathen matrix the number of non-zeros in the Cholesky factor is 1924.

0 10 20 30

0

5

10

15

20

25

30

35

nz = 156

0 50 100

0

20

40

60

80

100

120

nz = 1789

Figure 3.11. The structure of the matrices reordered by the minimum degree ordering

3.8 The nested dissection ordering
Nested dissection was introduced by Alan George [217] for finite element problems and then
generalized to general sparse matrices. It is very close to an old idea used in Mechanics known
as substructuring and also to what is now called domain decomposition (although there are some
slight differences). This technique is based on Theorem 3.3 that essentially says that there cannot
be any fill-in between xi and xj if, on every path from xi to xj inG, there is a node with a number
greater than xi and xj .

Consider the graph of Figure 3.12 (arising, for instance, from a finite element matrix) and its
partitioning given in the right hand side of the picture.

1

2

3

Figure 3.12. Dissection partitioning

The graph is split into three pieces. The diagonal 3 is called a separator. From Theorem 3.3,
it is clear that, if we first number the nodes in part 1, then the nodes in part 2 and finally the nodes
of the separator 3, there cannot be any fill-in between nodes in sets 1 and 2. With this ordering

106 3. Gaussian elimination for sparse linear systems

and obvious notations, the matrix has the following block structure

A =

 A1 0 AT
3,1

0 A2 AT
3,2

A3,1 A3,2 A3

 .

The Cholesky factor L has the following block structure

L =

 L1

0 L2

L3,1 L3,2 L3

 ,

matrices L1 and L2 being the factors of A1 and A2 respectively. This means that blocks A1 and
A2 can be factored independently. The basis of the nested dissection algorithm is to apply this
idea recursively to sets 1 and 2. There are basically two ways to partition a rectangular mesh
over a rectangle. The first one is to partition the graph into vertical (or horizontal) stripes. This
is known as one-way dissection. The other way is to alternate between vertical and horizontal
partitioning obtaining a partition into small rectangles. This is called nested dissection.

George [218] considered a mesh graph consisting of an m by l rectangular grid. It is par-
titioned by σ vertical grid lines. He then showed that the required storage for storing the LU
factors using the one-way dissection ordering is (if m ≤ l)

S(σ) =
ml2

σ
+

3σm2

2
.

This (as a function of σ) is approximately minimized by

σ = l

(
2

3m

) 1
2

,

giving Sopt =
√

6 m
3
2 l+O(ml). By comparison, numbering the graph by columns would yield

a storage of m2l +O(ml). The operation count for the factorization is approximately

θ =
ml3

2σ2
+

7σm3

6
+

2m2l2

σ
.

This is approximately minimized by

σ = l

(
12

7m

) 1
2

,

yielding θopt =
(

28
3

) 1
2m

5
2 l +O(m2l).

One-way dissection can be generalized to any sparse matrix by using level structures of the
graph, see George and Liu [219].

Consider nested dissection for a square mesh. A partition function Π is defined for integers i
from 0 to N (= 2l) as

Π(0) = 1

Π(N) = 1

Π(i) = p+ 1, if i = 2p(2q + 1).

For example, for N = 16, we obtain

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Π(i) 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

3.9. Generalization of dissection algorithms 107

For k = 1, . . . , l we define sets Pk of mesh nodes (i, j) as

Pk = {(i, j)|max(Π(i),Π(j)) = k}.

For a 17× 17 mesh we obtain the partition of Figure 3.13 where the numbers refer to the set Pk
to which the nodes belong and the lines separate these sets. Nodes in P1 are numbered first, then
nodes in P2, etc. . . up to nodes in Pl. George [217] proved that

S = O(N2 log2N),

θ = O(N3).

1 2 3 41

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2

2 2

2

2

2

2

2 2

2

2

2

2

2 2 2

1

1

1

3

3

3

3

3

3

3

4

4

4

1 2 3 41 1 1 1 1 1 1 12 2 2 13

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2 2 2

1

1

3

3

3

3

3

3

4

4

4

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2 2 2

1

1

3

3

3

3

3

3

4

4

4

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2 2 2

1

1

3

3

3

3

3

3

4

4

4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44

4

Figure 3.13. Nested dissection partitioning

Duff, Erisman and Reid [160] generalized the partition function when N 6= 2l.
It should be noted that the storage schemes that we have described in Chapter 1 are not well

suited for nested dissection orderings. For nested dissection for mesh problems, there is a natural
block structure that arises, each block corresponding to subsets of each Pk. Diagonal blocks
are stored by rows in a one dimensional array together with an integer pointer that gives the
position of the diagonal element. Non-diagonal blocks are stored in a one dimensional array.
It is necessary to know pointers to the beginning of each block. Experiments show that for an
N × N 2D grid, the storage for nested dissection is smaller than the one for RCM for N > 37.
Figure 3.14 shows the Poisson model problem matrix reordered with nested dissection and the
corresponding Cholesky factor.

3.9 Generalization of dissection algorithms
For a general sparse matrix there is no underlying mesh, we have to work directly on the graph
of the matrix and it is not so obvious to find a small separator that partitions the graph in two
or more components of almost an equal number of nodes. There are many ways to handle this
problem.

3.9.1 General dissection algorithms

General theorems have been proved using graph theory about the existence of good separators,
see Lipton, Rose and Tarjan [324], Roman [388], Charrier and Roman [104, 105]. Given a graph

108 3. Gaussian elimination for sparse linear systems

0 10 20 30

0

5

10

15

20

25

30

35

nz = 156

0 10 20 30

0

5

10

15

20

25

30

35

nz = 195

Figure 3.14. The model problem matrix with nested dissection

with weights either for the vertices or the edges, the problem is to find a vertex (or edge) small
separator. Over the years many methods have been devised to solve this problem. Most of these
methods proceed by recursive bisection. Geometric (or greedy) algorithms can be used that start
from the nodes on the “boundary” of the graph accumulating nodes until about one half of the
vertices are collected in a subset, see Ciarlet and Lamour [112, 113, 114], Farhat [184, 185].
Then, usually a refinement algorithm is used to improve the found partition.

The Kernighan and Lin [307] algorithm is one of the most used methods for partitioning
graphs dating back to 1970. The goal of this heuristic algorithm is to approximately minimize
the number of edges joining vertices in both subsets. Let us suppose that we have two sets of
vertices V1 and V2. The algorithm is iterative. At every iteration, we move vertices from one set
to the other as long as we cannot improve the gain which is defined as the number of edges joining
V1 to V2. If the algorithm moves vertices from V1 to V2, then at the next iteration it tries to move
vertices from V2 to V1 to improve the balance in the number of vertices in both sets. However,
this process can converge to a local minima. To avoid this situation, the algorithm uses moves
with negative gain for a given number of iterations. The best partition found so far is recorded
and the algorithm returns to it if the negative moves do not give an improvement after a while.
Fiduccia and Mattheyses [187] gave an efficient implementation of this algorithm inO(|E|) time
where E is the set of edges. The main problem is to find an efficient way to update the gains.
The results of the Kernighan and Lin algorithm depend very much on the initial partition. This
is why it is now used more as a refinement step in other methods.

Recently, the spectral ordering algorithm has been much used to find a partition of a graph.
Once again, the goal is to minimize the number of cutting edges. Let L be the Laplacian matrix
of the graph and x a vector such that xi = 1 if i ∈ V1 and xi = −1 if i ∈ V2. Then,∑

(i,j)∈E

(xi − xj)2 =
∑

i ∈ V1, j ∈ V2
(i, j) ∈ E

(xi − xj)2 = 4|S(V1, V2)|,

where S is the edge separator between V1 and V2. Note that

(x,Lx) =
∑

(i,j)∈E

(xi − xj)2.

Therefore, the problem is to find a vector x for which

min
xi = ±1∑
i
xi = 0

(x,Lx).

This problem is too complicated, but if we relax the constraint that xi = ±1, it is solved by
the second eigenvector u2 of the Laplacian matrix. The partition is then given by sorting the

3.9. Generalization of dissection algorithms 109

components of u2 relative to the median component value. This algorithm is used recursively
to partition the graph. Extensions have been proposed to directly generate partitions into four or
eight pieces.

3.9.2 Graph bisection improvement techniques

The Kernighan and Lin algorithm is a technique to improve the partition of a graph in two do-
mains. Therefore, it improves an edge separator. However, we are more interested in looking for
improving a vertex separator. Powerful graph techniques were used and extended by Aschraft
and Liu [15]. The main tool is the Dulmage-Mendelsohn decomposition which has often been
used to extract a vertex separator from an edge separator (see [378]). In order to describe the
work in [15] we need a few more definitions,
• a bisector is a vertex separator S whose removal gives two componentsB andW ,Adj(B) ⊆

S, Adj(W) ⊆ S. The partition is denoted [S,B,W]. A cost function γ is defined as

γ(S,B,W) = |S|
(

1 + α
max{|B|, |W |}
min{|B|, |W |}

)
,

where α is a constant whose choice allows to switch between the separator size |S| and the other
term measuring the imbalance of the partition.
• Let Y be a subset of vertices. The interior of Y is Int(Y) = {y ∈ Y |Adj(y) ⊆ Y }.

The boundary of Y is the set of nodes not in Y that are adjacent to Y . The border of Y is the
boundary of the interior of Y .

Ashcraft and Liu tried to improve the partition by moving subsets Z that reduce the cost
function. This is done by moving a subset from S to the smaller portion W . If this cannot be
done, the algorithm tries to move a subset to the larger portion B. The algorithm stops when no
more reduction can be obtained.

The choice of which subset of the separator to move is done by using graph matching tech-
niques. When we move a subsetZ from S toW , the separator size becomes |S|−|Z|+|Adj(Z)∩
B|. Therefore, if we are able to find a subset Z such that |Z| > |Adj(Z)∩B|, the separator size
will be improved. Liu used bipartite graph matching to choose the subset Z. In a bipartite graph
the vertices can be divided into two subsetsX and Y such that every edge had one endpoint inX
and one in Y . A matching is a subset of edges such that no two edges in this subset have a node
in common. A vertex that is incident to an edge in this subset is said to be covered, otherwise it
is exposed. The number of edges in the subset is the size of the matching. A maximum matching
is of the largest possible size. A complete matching is one with a size equal to the size of the
smaller of the two sets X and Y .

For the partition [S,B,W], suppose that B is the largest subset and consider the bipartite
graph H = (S, border(B), EH) where EH is the set of edges between the vertices in S and
those in border(B). There is a result stating that there exists a subset Z of S satisfying |Z| ≤
|Adj(Z) ∩ B| if and only if the bipartite graph H has a complete matching. Therefore, we
are able to find a move that improves the size of the separator if there are exposed vertices
in a maximum matching. Liu introduced the notion of an alternating path. For a matching
M this is a path with no repeated vertices if the alternate edges belong to the matching. Liu
proved the following result: if x ∈ S is an exposed vertex in a maximum matching of H , let
Sx = {s ∈ S|s is reachable from x via alternating paths}, then |Sx| − |Adj(Sx ∩ B)| = 1. Sx
can be found by a breadth-first search starting from x.

The Dulmage-Mendelsohn decomposition is the partition of S into three disjoint subsets:
S = SI ∪ SR ∪ SX with

SI = {s ∈ S|s is reachable from some exposed vertices in S via alternating paths },
SX = {s ∈ S|s is reachable from some exposed vertices in B via alternating paths },

110 3. Gaussian elimination for sparse linear systems

SR = S \ (SI ∪ SX).
This decomposition is independent of the maximum matching used for the definition of the

paths. It has been proved that SI is the smallest subset of S with the maximum reduction of the
separator size and SI ∪ SR is the largest subset with the maximum reduction. Moving SI or
SI ∪ SR give the same reduction but the balance of the sizes may be different.

When a reduction of the separator size is not possible, there is still some hope of improving
the cost function by reducing the imbalance. When SI is empty, SR can be used to reduce the
imbalance, see [15].

Ashcraft and Liu [15] extended the Dulmage-Mendelsohn decomposition to work with weighted
graphs. This is useful when working with compressed graphs saving some computing time. They
also relate the Dulmage-Mendelsohn decomposition to the solution of a maximum network flow
problem. Solving a max flow-min cut problem can be used to improve the partition. Numerical
experiments in [15] support the fact that these powerful graph techniques are in fact efficient to
refine partitions.

3.9.3 The multisection algorithm

It is generally recognized that both minimum degree and nested dissection produce good order-
ings. However, the results are not uniformly good. We have already seen that the minimum
degree algorithm can produce results far from optimal. Optimal results are given by the nested
dissection ordering on grid problems. But there are more general problems for which the recur-
sive ordering of the separators can be improved.

In the approach of Ashcraft and Liu [16], nested dissection algorithms are used to find re-
cursive bisectors. However, the numbering is different as all the vertices in the union of the
separators are numbered last. This is referred as a multisector. The constrained minimum de-
gree algorithm is used to order the vertices in the remaining domains. To order the vertices in
the multisector Ashcraft and Liu considered the elimination graph after the elimination of the
vertices in the domains. The vertices of this graph are ordered by the multiple minimum degree.
Even though the multisector is found by applying the dissection algorithm recursively, it is then
smoothed by using the tools we have seen in the previous section. Experimental results in [16]
show that this method performs uniformly well on large sets of examples, at least better than
both the minimum degree and nested dissection.

3.10 The multifrontal method
The multifrontal method was introduced by Duff and Reid [164, 165] as a generalization of
the frontal method developed by Irons [295] for finite element problems. The basis of the frontal
method was that in finite element problems the two phases, assembly of the matrix (from integral
computations) and factorization of the matrix, can be mixed together. However, a variable can
be eliminated only when it has been fully assembled.

The main goal of the multifrontal method is to be able to use dense matrix technology for
sparse matrices. A possible drawback of the method is that technical details are quite complex
and many refinements are necessary to make the method efficient. A nice exposition of the

3.10. The multifrontal method 111

principles of the method has been given in Liu [328]. We shall just look at a small example.

A =

1 2 3 4 5 6

1 x x x x
2 x x
3 x x x
4 x x x
5 x x x x x
6 x x x x x

.

The graph of the matrix A is given on Figure 3.15.

1

2

3

4

5

6

Figure 3.15. The graph of A

Gaussian elimination on A yields

L =

1 2 3 4 5 6

1 x
2 x
3 x
4 x x
5 x x x • x x
6 x x x x x

.

The elimination tree T (A) is shown on Figure 3.16.

1

2 34

5

6

Figure 3.16. The elimination tree of A

From the elimination tree, it is clear that we can eliminate 1, 2 and 3 independently. If we
consider 1, we can restrict ourselves to the following matrix (rows and columns where there are

112 3. Gaussian elimination for sparse linear systems

non-zeros in the first row and first column),

F1 =

1 4 5 6

1 a1,1 a1,4 a1,5 a1,6

4 a4,1

5 a5,1

6 a6,1

.
Eliminating 1 will create contributions in a reduced matrix Ū4,

Ū4 =

4 5 6

4 x • x
5 • x x
6 x x x

,
where the • represents a fill-in. In parallel, we can eliminate 2, defining

F2 =

(2 5

2 a2,2 a2,5

5 a5,2

)
.

Elimination of 2 will create a contribution to the (5, 5) term,

Ū2
5 =

(5

5 x
)
.

We can also eliminate 3,

F3 =

3 5 6

3 a3,3 a3,5 a3,6

5 a5,3

6 a6,3

.
Elimination of 3 will create contributions,

Ū3
5 =

(5 6

5 x x
6 x x

)
.

Then we eliminate 4. To do this, we have to consider the matrix resulting from the elimination
of 1, that is

F4 =

4 5 6

4 a4,4 0 a4,6

5 0
6 a6,4

+ Ū4.

Elimination of 4 creates contributions,

Ū4
5 =

(5 6

5 x x
6 x x

)
.

Now, before eliminating node 5, we must sum the contributions from the original matrix and
what we get from the eliminations of nodes 2, 3 and 4. To do this, we must extend Ū2

5 to the

3.11. Non-symmetric sparse matrices 113

proper set of indices, that is, 5, 6. We do this as in Liu [328] by considering an operator that we
denote by ◦. For two matrices A and B, A ◦B takes as the set of indices of the result, the union
of the sets of indices of A and B and whenever they coincide, the result is the sum of the entries.
Let

Ū5 = Ū2
5 ◦ Ū3

5 ◦ Ū4
5 ,

then

F5 =

(
a5,5 a5,6

a6,5 0

)
+ Ū5.

Elimination of 5 gives a matrix of order 1 that is added to a6,6 to give the last term of the
factorization.

In this example, we have seen that all the elimination steps can be carried out by working on
small dense matrices of different orders, extending and summing these matrices by looking at the
elimination tree. This has been nicely formalized by Liu [328]. Software packages are available
that implement the multifrontal method, for example in the Harwell Scientific Library.

3.11 Non-symmetric sparse matrices
In Chapter 2 we saw that for non-symmetric matrices we need to pivot to improve numerical
stability. When dealing with sparse symmetric positive definite systems, the ordering of the
unknowns can be chosen only for the purpose of maintaining sparsity as much as possible during
elimination. This is not true for non-symmetric problems except in special cases.

If we choose the pivots as for dense systems (for instance, using partial pivoting), there is no
room for preserving sparsity. Therefore, for sparse matrices, we have to relax the constraints for
choosing the pivot. The usual strategy is to consider candidate pivots satisfying the inequality,

|a(k)
i,j | ≥ ω max

l
|a(k)
l,j |,

where ω is a user defined parameter such that 0 < ω ≤ 1. This will limit the overall growth as

max
i
|a(k)
i,j | ≤

(
1 +

1

ω

)pj
max
i
|ai,j |,

where pj is the number of off diagonal entries in column j of U , see Duff, Erisman and Reid
[161]. From these candidates, one is selected that minimizes

(r
(k)
i − 1)(c

(k)
j − 1),

where r(k)
i is the number of non-zero entries in row i of the remaining (n− k)× (n− k) matrix

in Ak. Similarly, c(k)
j is the number of non-zeros in column j. This is known as the Markowitz

criterion, see [334].
This method modifies the smallest number of entries in the remaining submatrix. Note that

if A is symmetric, this is exactly the minimum degree algorithm that was introduced historically
after the Markowitz criterion. Many variations of the Markowitz criterion have been studied over
the years. For a summary, see Duff, Erisman and Reid [161]. However, most of these other
methods are generally not as efficient as the Markowitz criterion.

One possibility is to choose the entry (which is not too small) that introduces the least amount
of fill-in at step k. Unfortunately, this is much more expensive than the Markowitz criterion.
Moreover, having a local minimum fill-in does not always gives a globally optimal fill-in count.
There are even some examples where the Markowitz criterion is better at globally reducing the
fill-in.

114 3. Gaussian elimination for sparse linear systems

As for the minimum degree algorithm, the tie-breaking strategy is quite important for the
result when using the Markowitz algorithm. Details of the implementation of the Markowitz
algorithm are discussed in Duff, Erisman and Reid [161]. A switch to dense matrix techniques
is made when the non-zero density is sufficiently large.

The structures of the triangular factors of a non-symmetric matrix (without pivoting) can be
characterized, see Gilbert and Liu [225]. This starts by considering a triangular matrix L and its
digraph G(L) which is acyclic (that is, there is no directed cycles). An acyclic digraph is called
a dag. Let w = (w1, . . . , wn)T, then we define

Struct(w) = {i ∈ {1, . . . , n}|wi 6= 0}.

Theorem 3.13. If Lx = b then Struct(x) is given by the set of vertices reachable from vertices
of Struct(b) in the dag G(LT).

An economical way to represent the information contained in a dag G is to consider its
transitive closure G0. Then, in Theorem 3.13, we can replace G(LT) by G0(LT). The transitive
closure G∗ of a directed graph G is a graph that has an edge (u, v) whenever G has a directed
path from u to v.

Let A be factored as A = LU without pivoting. G0(L) and G0(U) are called the lower and
upper elimination dags (edags) of A. For a symmetric matrix, G0(L) and G0(U) are both equal
to the elimination tree.

IfB andC are two matrices with non-zero diagonal elements thenG(B)+G(C) is the union
of the graphs of B and C that is, the graph whose edge set is the union of those of G(B) and
G(C). G(B) · G(C) is the graph with an edge (i, j) if (i, j) is an edge of G(B) or (i, j) is an
edge of G(C) or if there is a k such that (i, k) is an edge of G(B) and (k, j) is an edge of G(C).
Gilbert and Liu [225] proved the following result.

Theorem 3.14. If A = LU and there is a path in G(A) from i to j, then there exists a k, 1 ≤
k ≤ n such that G0(U) has a path from i to k and G0(L) has a path from k to j. That is

G∗(A) ⊆ G0∗(U) ·G0∗(L).

If there is no cancellation in the factorization A = LU , then

G(L) ·G(U) = G(L) +G(U).

From these results, the row and column structures of L and U can be derived.

Theorem 3.15. If li,j 6= 0, then there exists a path from i to j in G0(L). Let i > j. Then li,j 6= 0
if and only if there exists k ≤ j such that ai,k 6= 0 and there is a directed path in G0(U) from k
to j.

Struct(L∗,j) = Struct(A∗,j) ∪
⋃
{Struct(L∗,k)|k < j, uk,j 6= 0} − {1, . . . , j − 1}.

3.12. Numerical stability for sparse matrices 115

In the last statement,“k < j, uk,j 6= 0” can be replaced by “(k, j) is an edge of G0(U)”. The
structure of U can be characterized in the same way. From these results, an algorithm can be
derived for the symbolic fill computation when there is no pivoting, see [225]. When pivoting is
required for stability, edags can also be useful, this time to symbolically compute the fill at each
stage of Gaussian elimination.

3.12 Numerical stability for sparse matrices
The study of componentwise error analysis for sparse systems has been considered in Arioli,
Demmel and Duff [11]. They consider how to compute estimates of the backward error. The
perturbation f of the right hand side is computed a posteriori and is not equal to |b| to keep the
perturbation on A sparse and the iterative refinement algorithm convergent (see [11]).

Let w = |A| |y| + |b|, y being the computed solution. A threshold τi is chosen for each wi
such that if wi > τi, then fi = |bi|. Otherwise if wi ≤ τi, fi is chosen larger. The value of τi
suggested in [11] is τi = 1000 n u(‖Ai,∗‖∞‖y‖∞ + |bi|) where Ai,∗ is the ith row of A.

Let f (2) be the components of f for which wi ≤ τi, then f (2) is defined as f (2) = ‖b‖∞e
where e is the column vector of all ones. With this choice, we can compute an estimate of the
backward error

|b−Ay|i
(|A||y|+ f)i

.

Recall that the condition number is

KBS(A, b) =
‖ |A−1|(E|x|+ f)‖∞

‖x‖∞
.

But we may use the estimate ‖ |A−1| |A| ‖∞ = | |A−1| |A|e‖∞. This can be estimated by an
algorithm due to Hager [274] that uses multiplications by the matrix and its transpose. This is
obtained by forward and backward solves using the LU factorization of A.

Numerical experiments in [11] using iterative refinement show that it is possible to guarantee
solutions of sparse linear systems that are exact solutions of a nearby system with a matrix of
the same structure. Estimates of the condition number and of the backward error can be easily
obtained using the previous strategies giving estimates of the error.

3.13 Parallel algorithms for sparse matrices
For parallel computers, it is easier to consider sparse matrices rather than dense ones since, in
the sparse case, there is more natural parallelism. Data dependencies are weaker in the sparse
case as, in the factorization process, some columns are independent of each other. However, it is
more difficult to obtain significant performances than for dense matrices since the granularity of
independent tasks is often quite small and indirect addressing could lead to a lack of data locality.

Let us first consider symmetric matrices when there is no need to pivot for stability. Gaussian
elimination proceeds in three phases: ordering, symbolic factorization and numerical factoriza-
tion. The problem we are faced with is to have parallel implementations of these three phases.
Therefore, for the first phase, not only do we have to find an ordering that reduces the fill-in and
gives a good degree of parallelism during the solution phase, but also ideally, we need to be able
to compute this ordering in parallel.

The most widely used algorithm for reducing fill-in is the minimum degree algorithm. Un-
fortunately, this method is rather sequential. It must be modified to run efficiently on parallel
computers. Several attempts have been made in this direction. One idea is to look for multi-
ple elimination of independent nodes of minimum degree, see Liu [325]. Another possibility is

116 3. Gaussian elimination for sparse linear systems

to relax the constraint of finding a node of minimum degree and to look only for nodes whose
degrees are within a small additive constant from the minimum degree.

An ordering that is more promising regarding parallelism is nested dissection. Although it
is a “divide and conquer” algorithm it is not easy to implement it efficiently for general sparse
matrices on parallel computers.

Let us now consider the problem of finding an ordering generating some parallelism during
the factorization phase. The current approach of this problem is to separate the two conflicting
goals. First an ordering minimizing the fill-in is chosen. Then it is modified by restructuring the
elimination tree to introduce more parallelism.

This approach has been described by Jess and Kees [300]. Their method starts by looking at
PAPT , where the permutation P was chosen to preserve sparsity. Then the natural ordering is
a perfect elimination one for F = L+ LT . The goal is now to find a permutation matrix Q that
gives also a perfect elimination but with more parallelism.

A node in GF whose adjacency set is a clique is called simplicial. Such a node can be
eliminated without causing any fill-in. Two nodes are independent if they are not adjacent in
GF . The Jess and Kees algorithm is the following.
• Until all nodes are eliminated, choose a maximum set of independent simplicial nodes, number
them consecutively and eliminate these nodes.

It has been shown, see Liu [326], that the Jess and Kees method gives an ordering that has
the shortest elimination tree over all orderings that yield a perfect elimination of F . The problem
is to implement this algorithm in parallel. This question was not really addressed by Jess and
Kees. A proposal using clique trees was described in Lewis, Peyton and Pothen [318]. Another
implementation was proposed in Liu and Mirzaian [329].

Heuristically, it can be seen that larger elimination trees (having more leaf nodes) introduce
more parallelism. The number of nodes being fixed, larger trees mean shorter trees. Therefore,
it seems that finding an ordering that gives a shorter tree would increase the level of parallelism.
Liu [326] has proposed to use tree rotations to reach this goal. The purpose of this algorithm is
to find a reordering by working on the structure of PAPT , namely the elimination tree.

A node x in a tree T (B) is eligible for rotation if

AdjG(B)(T [x]) 6= Anc(x),

where Anc(x) is the set of ancestors of x in T and

AdjG(B)(T [v]) = Anc(v), ∀v ancestor of x.

A tree rotation at x is a reordering of G(B) such that the nodes in AdjG(B)(T [x]) are labeled
last while keeping the relative order of the nodes.

Let hT (v) be the height of T [v] and h̄T be defined as−1 if every subtree of T intersects T [v]
or otherwise,

h̄T = max{hT (w)|T [w] ∩ T [v] = ∅}.
The algorithm proposed by Liu [326] is the following,
• If x is an eligible node with h̄T (x) < hT (x), then apply a tree rotation at x relabeling the
nodes.

Results are proved in Liu [326] that support this choice. The implementation details and
experimental results are given in [326]. However, tree rotations do not always give a tree of
minimum height. More than the height of the elimination tree, it will be better to minimize the
parallel completion time. This was defined by Liu as,
• Let time[v] be the execution time for the node v in T (for instance, a constant times the number
of operations).

3.13. Parallel algorithms for sparse matrices 117

Then,

level[v] =

{
time[v] if v is the root,

time[v] + level[parent of v] otherwise.

The parallel completion time is maxv∈T level[v].
Liu and Mirzaian [329] proposed an implementation of the Jees and Kees algorithm. In their

method, the cost of detecting simplicial nodes is O(nν(F)) where ν(F) is the number of off
diagonal elements in L+ LT. However, the tree rotation heuristic is faster than that. The clique
implementation of Lewis, Peyton and Pothen [318] is about as fast as the tree rotation heuristic.

For the numerical factorization, the first algorithms that were studied were column oriented.
Traditionally, the two main operations of Gaussian elimination are denoted,
• cmod(j, k): modification of column j by column k, k < j
• cdiv(j): division of column j by a scalar (the pivot).
In the fan-out and fan-in algorithms (see Chapter 2), data distribution is such that columns

are assigned to processors. As in the dense case, column k is stored on processor p = map(k).
Leaf nodes of the elimination tree are independent of each other and can be processed first. Let
mycols(p) be the set of columns owned by processor p and

procs(L∗,k) = {map(j)|j ∈ Struct(L∗,k)}.

The fan-out algorithm is the following,

for j ∈ mycols(p)
if j is a leaf node
cdiv(j)
send L∗,j to p

′ ∈ procs(L∗,j)
mycols(p)=mycols(p)-{ j}
end
while mycols(p) 6= ∅
receive column L∗,k
for j ∈ Struct(L∗,k)∩ mycols(p)
cmod(j,k)
if all cmods are done for column j
cdiv(j)
send L∗,j to p

′ ∈procs(L∗,j)
mycols(p)=mycols(p)-{ j}

end
end
end

end

When columns are sent to other processors, it is also necessary to send their structures to be
able to complete the cmods operations. There is too much communication in this algorithm. This
has been improved in the fan-in algorithm Ashcraft, Eisenstat and Liu [14],

• Processing column j, processor p computes the modification u(j, k) for k ∈ mycols(p) ∩
Struct(Lj,∗). If p does not own column j, it sends u(j, k) to processor map(j). If p owns
column j, it receives and processes the aggregated modifications and then completes the cdiv(j)
operation.

An important issue in these column oriented algorithms is the mapping of columns to the pro-
cessors. Most implementations have used a static mapping of computational tasks to processors.
This can lead to load balancing problems. In the fan-out or fan-in algorithms, the assignment of

118 3. Gaussian elimination for sparse linear systems

columns to processors is guided by the elimination tree. The goals are good load balancing and
low processor communications.

The first implementations were based on wrap mapping of the levels of the elimination tree
starting from the bottom up. This gives good load balancing properties but too many commu-
nications. Another technique that has been much used is the subtree to subcube mapping. This
was specifically designed for hypercube architectures but can be easily generalized to other dis-
tributed memory architectures.

This is illustrated on the following example, see figure 3.17, distributing the tree on 4 pro-
cessors.

0

1

2

31

1

1

1

1 1

0

0

0

0 0

0

2

2

2

2

22

3

3

3

3 3

Figure 3.17. The subtree to subcube mapping

Karypis and Kumar [306] suggested a subforest to subcube mapping which seems to improve
on the subtree to subcube mapping. Another algorithm that is in favor is the multifrontal algo-
rithm. We have already seen that there is a natural parallelism in the early (bottom) stages of the
multifrontal method. Dense frontal matrices are assigned to one processor. The problem is that
when moving towards the root of the tree, there is less and less parallelism. However, frontal
matrices are getting larger and larger and dense techniques used to handle these matrices can be
distributed on several processors (using BLAS3 primitives).

The multifrontal method was implemented by Kapyris and Kumar [306] using the subforest
to subcube mapping and very good efficiencies were reported. In this scheme, many subtrees of
the elimination tree are assigned to each subcube. They are chosen in order to balance the work.
Algorithms are given in Kapyris and Kumar [306] to obtain this partitioning.

All these mappings are based on column distribution of the matrix to the processors. Roth-
berg and Gupta [391] proposed using a block oriented approach of sparse Gaussian elimination.
These partitionings have good communication performances. The non-symmetric version of the
multifrontal method was studied by Hadfield and Davis [272] for parallel computing. As for the
symmetric case, different levels of parallelism must be used. Experimental results are given in
[272].

3.14 Bibliographical comments
The study of sparse matrices started in the sixties. Efficient sparse techniques were mainly de-
veloped through the work of Duff and Reid that gave rise to the sparse codes of the Harwell
Subroutine Library for symmetric positive definite and indefinite matrices.

3.14. Bibliographical comments 119

The main reordering techniques to minimize the bandwidth or the fill-in became popular in
the seventies, see Cuthill [124], Tinney and Walker [435]. At the same time, Alan George and his
co-workers developed the dissection algorithms. These results are summarized in the book by
George and Liu [221]; these methods are optimal for rectangular meshes. However, extensions
for general graphs were not so obvious and less successful.

The envelope schemes and algorithms for storing sparse matrices are mainly due to A. Jen-
nings, see [298]. J.W.-H. Liu studied several improvements of the minimum degree algorithm
which is probably the most used renumbering algorithm, for a summary, see [222].

Recently, there was a renewal of interest in reordering methods, mainly through the use of
spectral methods and the work of H. Simon and his co-workers [37]. Combinations of dissection
techniques and variants of the minimum degree seem to give good results, see Kumfert and
Pothen [311], Ashcraft and Liu [16].

Another important development was the multifrontal algorithm which was devised by Duff
and his team for symmetric matrices following ideas from Irons for the frontal method devised
for finite element problems. The situation is not so good for non-symmetric matrices as for the
symmetric case. However, progress is being made, see Davis and Duff [129].

In the last ten years, there has been much research devoted to the implementation of sparse
techniques on parallel computers. Good results have been achieved for symmetric positive defi-
nite matrices.

120 3. Gaussian elimination for sparse linear systems

4

Fast solvers for
separable PDEs

4.1 Introduction
In Chapter 1 we introduced the finite difference discretization of the Poisson equation in a square
domain with Dirichlet boundary conditions,

−∆u = f in Ω = (0, 1)× (0, 1), u
∣∣
∂Ω

= 0. (4.1)

As we have seen, this gives rise to a system of linear equations

Ax = b,

where A is a block tridiagonal matrix,

A =

T −I
−I T −I

.
−I T −I

−I T

 ,

with I the identity matrix and T a tridiagonal matrix,

T =

4 −1
−1 4 −1

.
−1 4 −1

−1 4

 .

This is the model problem for the equations we wish to solve with fast direct methods in this
chapter.

The most general problem we shall consider is the following separable elliptic partial differ-
ential equation

a(x)
∂2u

∂x2
+ b(x)

∂u

∂x
+ c(x)u+ d(y)

∂2u

∂y2
+ c(y)

∂u

∂y
+ f(y)u = g(x, y)

in a rectangle Ω with Dirichlet, Neumann (that is, ∂u
∂n = 0) or periodic boundary conditions.

These problems are said to be separable as the coefficients of the partial derivatives with respect

121

122 4. Fast solvers for separable PDEs

to x (resp. y) depend only on x (resp. y). This allows us to use separation of variables. In
Chapter 1, we saw the modifications introduced by Neumann or periodic boundary conditions on
∂Ω, Ω = (0, 1)× (0, 1) for the problem−∆u+σu = f . Three dimensional separable problems
can also be handled with these techniques. In this chapter, we shall study three methods to solve
problems like (4.1),

• the Fourier/tridiagonal method

• the cyclic reduction method

• the FACR(l) method which is a blend of the two previous ones.

For the sake of simplicity we shall only consider the model problem most of the time. However,
we shall give indications of possible extensions for more general problems.

For the Poisson model problem we explicitly know the eigenvalues of the matrix A, see
Chapter 1. Since A is symmetric, the eigenvectors form an orthonormal basis (Theorem 1.21)
and we have the spectral decomposition

A = QΛQT ,

where Λ is a diagonal matrix whose diagonal coefficients are the eigenvalues of A, and Q is
orthogonal QTQ = I . Hence, an obvious way to solve Ax = b is given by writing

QΛQTx = b.

Left multiplying by QT gives

ΛQTx = QT b,

and, of course,

x = QΛ−1QT b.

The algorithm is described in three steps,

1) b̂ = QT b,

2) x̂ = Λ−1b̂,

3) x = Qx̂.

Looking at the values of Λ and Q for the model problem, this method is simply the Fourier
analysis (sometimes called DFA, Double Fourier Analysis, as it corresponds to a Fourier decom-
position in each direction). We shall see that this method, although it is the most natural, is not
the most efficient. We start by introducing this method because in steps 1) and 3) we have to
compute sums such as

xj =

n∑
k=1

aj sin
jkπ

n+ 1
, 1 ≤ j ≤ n.

In the next section we study the Fast Fourier Transform (FFT) showing how to efficiently compute
these sums.

4.2. Fast Fourier Transform 123

4.2 Fast Fourier Transform
4.2.1 The basics of the FFT

Let us first look at a more general problem. Let a(k) be a sequence of complex numbers and w
be the nth root of unity, that is,

w = e
2iπ
n , i =

√
−1.

We wish to compute n numbers

xj =

n−1∑
k=0

a(k)wjk, 0 ≤ j ≤ n− 1. (4.2)

Doing this computation in the obvious way, each sum requires n operations. So, n2 operations
are needed to compute the n sums, each operation being one complex multiplication and one
complex addition. This gives of the order of 8n2 real operations. In 1965 Cooley and Tukey
[121] published an algorithm known as the Fast Fourier Transform (FFT) which allows us the
computation of the n sums more efficiently. Let us suppose that we can factor the integer n as
n = n1n2, n1 and n2 being integers greater than 1. We shall show that we can compute the sums
in (4.2) with n(n1 + n2) operations. To accomplish this, we use the following decompositions
of the two indices j and k

j = j1n1 + j0

k = k1n2 + k0.

This implies that j0 (resp. k0) takes integer values in [0, n1 − 1](resp. [0, n2 − 1]) and j1 (resp.
k1) in [0, n2 − 1] (resp. [0, n1 − 1]). Then, we can simplify the computation of wjk as

wjk = w(j1n1+j0)(k1n2+k0) = w(j1n1+j0)k0wj0k1n2wj1k1n

but wn = 1, hence wj1k1n = 1. Then,

xj =
∑
k0,k1

a(k)wjk =
∑
k0

w(j1n1+j0)k0a1(j0, k0),

where a1 is defined as
a1(j0, k0) =

∑
k1

a(k0, k1)wj0k1n2 .

We have n values of a1 to compute, each of which is a sum over k1 and requires n1 operations.
Knowing a1 we have n sums over k0 to compute. This needs nn2 operations. Summing these
results we get n(n1 + n2) operations to compute the sums (4.2). With n1 and n2 ≥ 2 we always
have n1 + n2 ≤ n1n2. This way of computing the sums can be applied recursively if we can
further decompose n1 or n2. In most FFT codes, n is decomposed as

n = 2p3q4r5st.

4.2.2 The complex FFT

For the sake of simplicity we shall look at the method of computation when n = 2m (Cooley and
Tukey [121]). We use the binary decomposition of j and k,

j = jm−12m−1 + jm−22m−2 + · · ·+ j12 + j0,

k = km−12m−1 + km−22m−2 + · · ·+ k12 + k0,

124 4. Fast solvers for separable PDEs

where jv and kv take values 0 or 1. Then,

xj = x(jm−1, jm−2, . . . , j0)

=
∑
k0

∑
k1

. . .
∑
km−1

a(km−1, . . . , k0) wjkm−12m−1+···+jk0 .

But, as before
wjkm−12m−1

= wj0km−12m−1

,

all other terms being powers of wn = 1.
So, the sum over km−1 depends only on j0, km−2, . . . , k0. Let us denote

a1(j0, km−2, . . . , k0) =
∑
km−1

a(km−1, . . . , k0)wjkm−12m−1

.

With this notation

xj =
∑
k0

· · ·
∑
km−2

a1(j0, km−2, · · · , k0) wjkm−22m−2+···+jk0 .

The sum over km−2 depends only on j0, j1, km−3, · · · , k0. More generally, let us denote

al(j0, j1, . . . , jl−1, km−l−1, . . . , k0)

=
∑
km−1

al−1(j0, . . . , jl−2, km−l, . . . , k0)w(jl−12l−1+···+j0)km−l2
m−l

.

But km−l takes only values 0 and 1 and the sum reduces to

al = al−1(j0, . . . , jl−1, 0, km−l−1, . . . , k0)

+al−1(j0, . . . , jl−2, 1, km−l−1, . . . , k0)w(jl−12m−1+···+j02m−l)

which we can rewrite as,

al = al−1(j0, . . . , jl−1, 0, km−l−1, . . . , k0)

+ (−1)jl−1al−1(j0, . . . , jl−2, 1, km−l−1, . . . , k0) (4.3)

× wjl−32m−3+···+j02m−l .

This follows from

wjl−12m−1

=

{
1 if jl−1 = 0,

−1 if jl−1 = 1.

wjl−22m−2

=

{
1 if jl−2 = 0,

i if jl−2 = 1.

When coding the algorithm on a computer, intermediate results are stored in an array whose
elements are indexed by the binary representation of the indices. For example, al is stored in
locations j0j1 · · · jl−1 · km−l−1 · · · k0 where the indices take all the possible values. In formula
(4.3) j0, . . . , jl−2, km−l−1, . . . , k0 being fixed, we combine two elements whose locations differ
from 1 bit in the lth position and we obtain two new elements that can be stored in the same
locations.

4.2. Fast Fourier Transform 125

After m steps, we get

x(jm−1, . . . , j0) = am(j0, . . . , jm−1).

Note that with the storage scheme we use, the components of x are not in the natural order. We
need to do a permutation which is called a bit reversal,

(j0, j1, . . . , jm−1)→ (jm−1, jm−2, . . . , j0)

We illustrate the algorithm graphically for n = 23 in Figure 4.1. At the left of Figure 4.1 we
see the binary decomposition of the indices for the locations of the array used to store interme-
diate results. The integer in the diamond gives the power of w by which we multiply, that is
jl−32m−3 + · · ·+ j02m−l. We note that when using the FFT for solving PDEs two permutations
are required and they can be omitted.

000

001

010

011

100

101

110

111

0

0

0

0

0

0

2

2

0

2

1

3

a a1 a2 a3 x

combination of

elements differing

by the left bit

combination of

elements differing

by the middle bit

combination of

elements differing

by the right bit

bit

reversal

Figure 4.1. The FFT for n = 8

What is the complexity of this algorithm? At each step we compute two values with one
multiplication and two complex additions, that is, n2 (1M + 2A). Within the m steps we have

mn

2
(1M + 2A) complex operations.

A complex multiplication is 4M + 2A (note that it can also be computed with 3 multiplications
and 5 additions), a complex addition is 2 real additions. Finally we get mn(2M + 3A) or 5mn
real operations. As m = log2 n, this is 5n log2 n real operations. This assumes that the powers
of w are precomputed. At the end of this section we shall look at the use of this algorithm on
vector and parallel computers. Note that many other algorithms for FFT have been derived, see
for instance Temperton [432].

4.2.3 The real transforms

We have not yet solved our problem. So, let us now look at real transforms. Most of the following
is taken from Swarztrauber [427]. Suppose that the numbers ak are real and we would like to

126 4. Fast solvers for separable PDEs

compute

zj =
1

n

n−1∑
k=0

akw
jk, 0 ≤ j ≤ n− 1 (4.4)

The factor 1
n is simply a normalization (regarding the inverse transforms) and is of no importance

here. Note that

zn−j =
1

n

n−1∑
k=0

akw
(n−j)k =

1

n

n−1∑
k=0

akw
−jk.

This implies
zn−j = zj ,

where the bar denotes the complex conjugate of a complex number. For the sake of simplicity,
let us suppose n is odd and let xj and yj denote (up to a scaling factor) the real and imaginary
parts of zj (note that z0 is real)

z0 =
1

2
x0,

zj =
1

2
(xj + iyj), j = 1, . . . ,

n− 1

2
.

We have seen that zn−j = 1
2 (xj − iyj). By equating, we have

xj =
2

n

n−1∑
k=0

ak cos
jk2π

n
j = 0, . . . ,

n− 1

2
, (4.5)

yj =
2

n

n−1∑
k=0

ak sin
jk2π

n
j = 1, . . . ,

n− 1

2
,

which are the real and imaginary parts of the complex transform. To get xj and yj we just need
to compute the complex transform of half length and then

x0 = 2z0 , xj = 2Re(zj), yj = 2Im(zj).

Similar expressions exist for n even.

Let us now look at the transform we need for the Poisson equation. Suppose that n is odd
and we wish to compute

cj =
2

n

n−1∑
k=1

ak sin
jkπ

n
, j = 1, . . . , n− 1. (4.6)

It is easy to see that the inverse transform is given by

ak =

n−1∑
j=1

cj sin
jkπ

n
. (4.7)

To compute cj , let us define a sequence dk given by

dk =
1

2
(ak − an−k) + sin

kπ

n
(ak + an−k), k = 1, . . . , n− 1. (4.8)

4.2. Fast Fourier Transform 127

Note that knowing ak, we need (n − 1)[2A + 0.5M] real operations to compute dk. This is
because if we change k to l = n− k, then

sin
kπ

n
(ak + an−k)→ sin

lπ

n
(al + an−l). (4.9)

Hence, we need only to compute half of these expressions. In (4.9) we replace ak by its value
(4.7),

dk =
1

2

n−1∑
j=1

cj

(
sin

jkπ

n
− sin

j(n− k)π

n

)
,

+ sin
kπ

n

n−1∑
j=1

cj

(
sin

jkπ

n
+ sin

j(n− k)π

n

)
.

But, as sin(jπ − θ) = sin θ if j is odd, the odd terms of the first sum are equal to zero. We can
rewrite it as

n−1
2∑
j=1

c2j sin
jk2π

n
.

Similarly for j even, the terms of the second sum are zero. Therefore, we get

2

n−1
2∑
j=0

c2j+1 sin
kπ

n
sin

(2j + 1)kπ

n
.

Using the trigonometric identities sin 2θ = 2 sin θ cos θ and cos 2θ = 1 − 2 sin2 θ, we can
transform this to

2
∑
j

c2j+1 sin ω (sin 2jω cosω + cos 2jω sinω)

=
∑
j

c2j+1

(
sin 2jω sin 2ω + cos 2jω

(
1− cos 2ω

))
,

= c1 +

n−1
2∑
j=1

(c2j+1 − c2j−1) cos 2jω.

where ω = kπ
n . Finally we obtain

dk = c1 +

n−1
2∑
j=1

[
(c2j+1 − c2j−1) cos 2j

kπ

n
+ c2j sin 2j

kπ

n

]
.

This is a transform of the same kind as (4.4)-(4.5). We have seen how, knowing dk, we can
compute xj and yj satisfying

dk =
1

2
x0 +

n−1
2∑
j=1

(xj cos 2j
kπ

n
+ yj sin 2j

kπ

n
), k = 1, . . . , n− 1.

128 4. Fast solvers for separable PDEs

By equating we get

c1 =
1

2
x0,

c2j = yj ,

c2j+1 − c2j−1 = xj .

Hence the algorithm is as follows,

1) compute dk by (4.8),

2) transform dk (complex transform of half length),

3) compute ck (0.5(n− 1) real additions).

The total number of real operations is 1.5n log2 n + 2.5n additions and n log2 n + 0.5n multi-
plications if n is a power of 2.

4.2.4 FFT on vector and parallel computers

The operation counts we gave are appropriate for a serial computer. Let us consider what can
be done on a vector computer. The Cooley-Tukey FFT is obviously trivially vectorizable or
parallelizable because all the operations at each step are independent of each other. But, we note
that the vector length (or the amount of parallelism) decreases from n

2 to 1 which is poor for the
efficiency of the computation.

One can derive other FFTs where the vector length is fixed equal to
√
n. But it appears that

the best way to vectorize or parallelize is to transform m sequences in parallel, the operations
being done in scalar mode on each sequence. Having to transformm sequences is common when
solving partial differential equations. For the FFT on vector computers, see the summary papers
by Swarztrauber [428, 429]. For parallel and vector implementations, see Hockney and Jesshope
[289].

4.2.5 Stability of the FFT

Errors bounds for the computation were considered in early seventies. For a clear and concise
treatment, we refer to the book by Higham [282, 283].

Theorem 4.1. Let x and x̃ be the exact and computed FFT of a sequence of length n = 2m. If
all the weights w are such that

w̃ = w + ε, |ε| ≤ µ,

then
‖x− x̃‖
‖x‖

≤ n 1
2

mη

1−mη
, η = µ+

4u

1− 4u
(1 + µ).

Proof. See Higham [282].

This theorem proves that the FFT is a stable algorithm provided the weights are computed
properly.

4.3. The Fourier/tridiagonal Method 129

4.2.6 Other algorithms

Many variants of the FFT algorithm have been proposed over the years. For instance, self sorting
algorithms were developed. Another type of algorithm is known as the prime factor algorithm
(PFA), see Good [247, 248]. In these algorithms, the length n is decomposed as the product of
integers that must be mutually prime. This severely limits the set of lengths that can be used.
This is unfortunate as for a given value of n, the PFA has a lower operation count than the
Cooley-Tukey method. However, Temperton [434] generalized the PFA to lengths of the form
n = 2p3q5r. This generalization is also self sorting, the operation count being lower than for
Cooley-Tukey.

4.2.7 Double Fourier analysis

Having derived the FFT, we can solve the Poisson model problem with the DFA algorithm. For
instance, QT b reduces to computing the sums∑

i,j

bi,j sin(ipπh) sin(jqπh), p, q fixed

with
1 ≤ p, q, i, j ≤ m.

To compute QT b we need 2m FFTs. The same is true for Qx̂, so the number of operations
is 6m2 log2m + 10m2 additions, 4m2 log2m + 2m2 multiplications and m2 divisions that is,
a total of order 10m2 log2m operations which seems very low. However, we shall see in the
following sections that there are more efficient methods. But, this method is very easy to use as
there are good FFT packages in most scientific computing libraries (see also in Netlib). For a fast
implementation in C, see Frigo and Johnson [208, 209].

4.3 The Fourier/tridiagonal Method
In this section we shall solve the linear system

Ax = b,

where

A =

T B
B T B

.
B T B

B T

 .

Here, B and T are symmetric matrices of order m which commute that is, BT = TB. The
following theorem will allow us to use spectral decomposition.

Theorem 4.2. Let B and T be symmetric matrices such that BT = TB. Then there exists an
orthogonal matrix Q such that

T = QΛQT , B = QΩQT ,

where Λ and Ω are diagonal matrices whose diagonal elements λi and ωi are the eigenvalues of
T and B.

130 4. Fast solvers for separable PDEs

Proof. The proof of this theorem can be found in Bellman [38].
For the sake of simplicity, we shall take B = −I in the remainder of this section. However,

the method works for the more general case described above. For the model problem, we know
that

λi = 4− 2 cos
iπ

m+ 1
, ωi = −1.

The jth component of the ith eigenvector is given by√
1

m+ 1
sin

ijπ

m+ 1
.

To solve the linear system, we use the formulation of Meurant [339] and a block factorization of
A. Let A be factorized as

∆1

−I ∆2

.
−I ∆n

∆−1
1

∆−1
2

. . .
∆−1
n

∆1 −I

∆2
. . .
. . . −I

∆n

 (4.10)

where the matrices ∆i, i = 1, . . . , m are square symmetric matrices of order m. By equating,
we see that

∆1 = T,

∆i = T −∆−1
i−1, i = 2, . . . ,m.

Since we know the eigenvalues of T , we can compute those of ∆i.

Lemma 4.3. For all i, ∆i has the same eigenvectors as T . The eigenvalues σji of ∆i are given
by

σj1 = λj , 1 ≤ j ≤ m,

σji = λj −
1

σji−1

, 1 ≤ j ≤ m, 2 ≤ i ≤ m.

Proof. Let
∑
i be the diagonal matrix with diagonal elements σji . Then, since

∆1 = T = QΛQT ,

and
∑

1 = Λ we have,

∆i = QΛQT −QΣ−1
i−1Q

T

= Q(Λ− Σ−1
i−1)QT

= QΣiQ
T .

This shows that Σi = Λ− Σ−1
i−1.

Let

b =

b1
b2
...
bm

 , x =

x1

x2
...
xm

 , bi, xi ∈ <m.

4.3. The Fourier/tridiagonal Method 131

With the decomposition e48, we can solve the system by a forward and a backward block sweeps.{
∆1y1 = b1,

∆iyi = yi−1 + bi, i = 2, . . . ,m yi ∈ <m,{
xm = ym,

xi −∆−1
i xi+1 = yi, i = m− 1, . . . , 1.

Since we know the eigenvalues of ∆i, we can give another formulation of the algorithm. Denote

b̂i = QT bi, ŷi = QT yi, x̂i = QTxi.

Then { ∑
1 ŷ1 = b̂1,∑
i ŷi = ŷi−1 + b̂i,{

x̂m = ŷm,

x̂i =
∑−1
i x̂i+1 + ŷi.

The algorithm is the following,

Algorithm Fourier/Tridiag

0) Precomputation of Σ−1
i by Σ1 = Λ, Σi = Λ− Σ−1

i−1,

1) computation of b̂i = QT bi,

2) ŷ1 = Σ−1
1 b̂1, ŷi = Σ−1

i (ŷi−1 + b̂i),

3) x̂m = ŷm, x̂i = Σ−1
i x̂i+1 + ŷi,

4) computation of xi = Qx̂i for all i.

Step 0) is called precomputation since it does not depend on the right-hand side b. Thus if
we have several systems to solve with the same matrix A but with different right hand sides, the
precomputation has to be done only once. Hence, we do not include it in the operation count.

Steps 2) and 3) require 2m2 −m multiplications and 2m2 − 2m additions. If we solve the
model problem, we can use the FFT for steps 1) and 4). This can also be true for slightly more
general problems. In that case and ifm is a power of 2, for steps 1) and 4) we get 3nm2 log2m+
5nm2 additions and 2m2 log2m+m2 multiplications. Summing for all the steps, the operation
count is

3m2 log2m+ 7m2 − 2m additions,
2m2 log2m+ 3m2 −m multiplications.

This is clearly much better than the number of operations needed by the Double Fourier Analysis
(approximately half). The method is obviously completely vectorizable, but the vector length is
only m because there are two first order block recurrences. This method was used in a different
formulation by Hockney in 1965, see [287]. It is equivalent to making a Fourier analysis in
one direction, and to solve the tridiagonal systems we obtain by Gaussian elimination after a
renumbering.

132 4. Fast solvers for separable PDEs

4.4 The cyclic reduction method
We first introduce the cyclic reduction method for solving a tridiagonal linear system. Let

a −1
−1 a −1

.
−1 a −1

−1 a

x = b, (4.11)

the matrix being of order n = 2l+1−1. The idea behind this method is to use the matrix structure
to first eliminate the odd unknowns. We have,

−xi−2 + axi−1 − xi = bi−1,
− xi−1 + axi − xi+1 = bi,

− xi + axi+1 − xi+2 = bi+1.
(4.12)

Multiplying the middle equation by a and summing, the odd unknowns xi−1, xi+1 disappear and
we get

−xi−2 + (a2 − 2)xi − xi+2 = bi−1 + abi + bi+1.

The new system we obtain has the form

a2 − 2 −1
−1 a2 − 2 −1

.
−1 a2 − 2 −1

−1 a2 − 2

x2

x4
...
...

x2l+1−2

 =

b
(1)
2

b
(1)
4
...
...

b2l+1−2

 ,

the matrix is now of order 2l − 1. So, we can apply the same reduction in a recursive way. To
summarize, we define sequences of tridiagonal matrices whose diagonal elements are a(r), and
off diagonal elements −1 and sequences of right hand sides b(r) given by

a(0) = a, b
(0)
i = bi,

a(r+1) = (a(r))2 − 2, r = 0, . . . , l − 1, (4.13)

b
(r+1)
i = b

(r)
i−2r + a(r)b

(r)
i + b

(r)
i+2r ,

i = 2r, 2× 2r, 3× 2r, . . . , n+ 1− 2r.

At step l the tridiagonal linear system reduces to a single scalar equation

a(l)x2l = b
(l)

2l
.

With this equation we compute the component x2l of the solution. We then go back and at
each step we use the equations we eliminated in the forward sweep. For instance, as we know
xi−2, xi, xi+2 we use the first equation in (4.12) to compute xi−1 and the third one to compute
xi+1. For l = 3 the computation is summarized in Figure 4.2. In the forward sweep we circle
the unknowns we keep. In the backward sweep we show the unknowns we can compute by an
arrow.

This method, known as the cyclic reduction method, is simply the block Gaussian elimination
if we number the unknowns as,

4.4. The cyclic reduction method 133

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

14

12

10

8

6

4

2

4

8

12

8

4

12

2

6

10

14

15

13

11

9

7

5

3

1

r=0 r=1 r=2 r=3

forward sweep backward sweep

Figure 4.2. The cyclic reduction algorithm

odd multiples of 20 = 1,
odd multiples of 2,
odd multiples of 22,

and so on.
Using this numbering scheme, the system (4.11) can be written blockwise as

 aIp L

LT aIp−1

 y1

y2

 =

 c1

c2

 ,

with y1 = (x1, x3, · · ·)T , y2 = (x2, x4, · · ·)T and p = 2l. Then eliminating y1, we get

(aIp−1 −
1

a
LTL)y2 = c2 −

1

a
LT c1. (4.14)

One can easily verify that the product LTL has the following structure,

 2Iq L1

LT1 2Iq−1

 ,

with q = p
2 . For example, with p = 23 we have

 aI8 L

LT aI7

 ,

134 4. Fast solvers for separable PDEs

and

L =

−1
−1 −1

−1 −1
−1 −1

−1 −1
−1 −1

−1 −1
−1

.

Then we can check that

LTL =

2 1
2 1 1

2 1 1
2 1

1 1 2
1 1 2

1 1 2

.

Hence the new system (4.14) has the same structure as the original one and we can apply the
same process recursively.

Unfortunately, we cannot directly use the cyclic reduction as defined by (4.13) because for
a > 2, a(r) is a very rapidly increasing sequence and the use of (4.13) leads to overflow on all
computers (for instance if a = 4 then a(10) ∼ −5 × 10585). Of course, for a tridiagonal system
we can scale the equations (as we did in fact in (4.14) but we cannot generalize the method for a
block tridiagonal system. We must use another stable way to compute a(r). This is provided by
the result in the next lemma.

Lemma 4.4. a(r) defined by (4.13) is a 2r degree polynomial in a, whose zeros are

2 cos
2j − 1

2r+1
π, j = 1, . . . , 2r.

Proof. The proof is by induction on r. The result is clearly true for r = 0. Let us suppose
that it is true for r − 1, that is to say, a(r−1) is a 2r−1 degree polynomial which we denote by
pr−1(a). Then

a(r) = (a(r−1))2 − 2 = (pr−1(a))2 − 2.

Hence a(r) is a 2r degree polynomial. Now we are looking for the zeros of pr(a). We begin by
looking in [−2,+2] and we define ϕ by

a = 2 cosϕ.

Then, a(1) = a2 − 2 = 2(2 cos2 ϕ− 1) = 2 cos 2ϕ. By induction, let a(r−1) = 2 cos 2r−1ϕ,

a(r) = (a(r−1))2 − 2 = 2(2 cos2(2r−1ϕ)− 1) = 2 cos 2rϕ.

This proves that
a(r) = 2 cos(2r arccos

a

2
),

a(r) is zero for ϕ = ϕj such that 2rϕj = (2j − 1)π2 , that is, ϕj = (2j − 1) π
2r+1 , j taking the

values 1, . . . , 2r. We found in this way all the zeros of a(r), there is no zero outside [−2,+2] and

4.4. The cyclic reduction method 135

a(r) can be written as

a(r) =

2r∏
j=1

(a− 2 cos
2j − 1

2r+1
π),

which proves the result.
We can now generalize the cyclic reduction method to block tridiagonal systems. Consider

the problem
T −I
−I T −I

.
−I T −I

−I T

x = b,

where T is a symmetric tridiagonal matrix of order m.
The use of the cyclic reduction method corresponds to defining a sequence of matrices T (r)

and of right hand sides b(r) by

T (0) = T, b
(0)
i = bi, i = 1, . . . ,m,

T (r+1) = (T (r))2 − 2I, (4.15)

b
(r+1)
i = T (r)b

(r)
i + b

(r)
i−2r + b

(r)
i+2r ,

i = 2r, 2× 2r, 3× 2r, . . . , n+ 1− 2r.

For the model problem, T is tridiagonal, so T (1) is a five diagonal matrix and so on . . . the
matrices T (r) are denser and denser. However, in the same spirit as for the point case, we do not
need to compute T (r) explicitly.

Lemma 4.5.

T (r) =

2r∏
j=1

(T − 2 cos
2j − 1

2r+1
π I).

Proof. The proof is similar to that of the point case since as T is symmetric, we can use spectral
decomposition.

T (r) is a product of tridiagonal matrices. To solve a linear system with T (r), it is enough to
solve 2r tridiagonal systems. For the right-hand side in (4.15) we have to compute T (r)b

(r)
i . This

can be done by the following recursive algorithm. Let

η0 = 2b
(r)
i , η1 = Tb

(r)
i , ηs = Bηs−1 − ηs−2.

It is easy to prove the following result.

Lemma 4.6.
η2r = T (r)b

(r)
i .

Unfortunately, as we suspect from the point version, this method is unstable.

136 4. Fast solvers for separable PDEs

Theorem 4.7. For the model problem, the cyclic reduction method is unstable.

Proof. We take the following analysis from Buzbee, Golub, Nielson [81]. Due to roundoff
errors, we compute the sequence

η0 = 2b
(r)
i , η1 = Tb

(r)
i + δ0, ηs = Bηs−1 − ηs−2 + δs−1,

δs being perturbations accounting for the roundoff errors. We know that T = QΛQT , Λ = (λj).
Let us denote

b̄ = QT b
(r)
i , ξs = QT ηs, τs = QT δs.

Then for the components ξj,s of ξs we get

ξj,s+1 = λjξj,s − ξj,s−1 + τj,s,

ξj,0 = 2b̄j ,

ξj,1 = λj b̄j + τj,0.

The solutions to these recurrences are well known. Let γj and βj be the two solutions of the
characteristic equation

α2 − λjα+ 1 = 0.

Then

ξj,s =
βsj − γsj
βj − γj

ξj,1 − βjγj
βs−1
j − γs−1

j

βj − γj
ξj,0 +

s−1∑
k=1

βs−kj − γs−kj

βj − γj
τj,k,

if βj 6= γj . For the model problem, we have λj = 4− 2 cos jπ
n+1 . To simplify we set

λi = 2 cosh zj .

The discriminant of the second degree equation is 4 sinh2 zj . Hence

βj = cosh zj + sinh zj = ezj ,

γj = cosh zj − sinh zj = e−zj ,

and
βjγj = 1, βj − γj = 2 sinh zj .

The term which multiplies b̄j in ξj,s is

βsj − γsj
βj − γj

λj − 2βjγj
βs−1
j − γs−1

j

βj − γj
,

which we can write as

2

sinh zj
(sinh szj cosh zj − cosh(s− 1)zj) = 2 cosh szj .

Therefore

ξj,s = 2b̄j cosh szj +

s−1∑
k=0

sinh((s− k)zj)

sinh zj
τj,k.

Consider the polynomial such that ps(λj) = 2 cosh szj . We have

cosh szj = 2 cosh zj cosh(s− 1)zj − cosh((s− 2)zj),

ps = λjps−1 − ps−2,

4.4. The cyclic reduction method 137

and clearly p0 = 2, p1 = λj . ξs can be written as

ξs = ps(Λ)b̄+

s−1∑
k=0

Ss−kτk,

where Ss−k is a diagonal matrix whose entries are sinh((s−k)zj)
sinh zj

. But ξs = QT ηs so

ηs = ps(T)b
(r)
i +

s−1∑
k=0

QSs−kQ
T δk.

Because of the recurrence verified by ps, the first term is what we would have had if there were no
roundoff errors. The second one is the effect of roundoff errors. The ratio sinh(s−k)z

sinh(z) is a rapidly
increasing function of z. Therefore, some components of ξs can be large and as ηs = Qξs, they
can dominate in ηs. This explains the observed instability of the method.

We have seen that this instability comes from the multiplication by T used to form the right
hand side. O. Buneman [79] gave an algorithm to compute the right hand side in a stable way,
the trick being to replace multiplication by solving tridiagonal systems. Note that

b
(1)
i = Tbi + bi−2r + bi+2r ,

= (T 2 − 2I)T−1bi + bi−2r + bi+2r + 2T−1bi,

= T (1)T−1bi + bi−2r + bi+2r + 2T−1bi.

Denote
p

(1)
i = T−1bi, q

(1)
i = bi−2r + bi+2r + 2p

(1)
i .

Then, b(1)
i = T (1)p

(1)
i + q

(1)
i . More generally, we set

b
(r)
i = T (r)p

(r)
i + q

(r)
i .

Putting this definition in (4.15), we get

p
(r+1)
i = p

(r)
i + (T (r))−1(p

(r)
i−2r + p

(r)
i+2r + q

(r)
i),

q
(r+1)
i = q

(r)
i−2r + q

(r)
i+2r + 2p

(r+1)
i . (4.16)

At the last step of the cyclic reduction algorithm, we have

T (l)x2l = b
(l)

2l
= T (l)p

(l)

2l
+ q

(l)

2l
.

This means that we do not have to multiply by T (l) as we write

T (l)(x2l − p
(l)

2l
) = q

(l)

2l
.

In the backward step we solve

T (r)xi = b
(r)
i + xi−2r + xi+2r ,

that is,
T (r)(xi − p(r)

i) = q
(r)
i + xi−2r + xi+2r .

One can show that the Buneman algorithm is stable, see Buzbee, Golub and Nielson [81]. There
are no more multiplications by T (r), but for computing the right hand side by (4.16) we have

138 4. Fast solvers for separable PDEs

to solve tridiagonal systems. To obtain the number of operations for the algorithm we must
know how many systems we have to solve for m = 2l+1 − 1. In the final step we solve 2l − 1
systems with matrix T (0), at the second step 2l−1 systems with T (1) which is the product of two
tridiagonal matrices. In the last step we solve one system with a matrix which the product of
2l−1 tridiagonal matrices. Summing these results, we get

l−1∑
j=0

(2l−j − 1)2j = l2l − 2l + 1

systems to solve. Solving each system by Gaussian elimination requires 2m multiplications and
2m additions if we store some coefficients. Thus we have an operation count which is of the
order of 4m2 log2m; more precisely

2m2 log2m+ 5m2 additions,
2m2 log2m− 5m2 multiplications.

This method can be used easily on a vector or parallel computer because at each step we have
to solve independent tridiagonal systems. The vector length or the degree of parallelism is the
number of systems we solve; unfortunately it decreases to 1 during the algorithm.

For point tridiagonal systems the cyclic reduction method is often used but the problems are:

- the degree of parallelism decreases during the algorithm,

- access to the variables is with a stride of 2l; this leads to memory bank conflicts on com-
puters where the memory is divided into 2k banks.

However, we are able to cure these problems. For the first one, we can apply the reduction
process to all the variables. This will allow us to bypass the backward solve. At the first step the
ith equation involves unknowns i, i − 2, i + 2, at step r the ith equation involves unknowns i,
i− 2r, i+ 2r. At the last step we have a diagonal matrix and we can compute all the unknowns
at once. For the second problem the remedy is to store the variables in a different way.

One of the advantages of the cyclic reduction method over classical Gaussian elimination is
that it can be easily extended to periodic boundary conditions without any fill-in.

Let

Ax =

T −I −I
−I T −I

.
−I T −I

−I −I T

x = b.

We only have to consider separately the first and last equations. At the first step we have

−xi−2 + (T 2 − 2I)xi − xi+2 = bi−1 + Tbi + bi+1,

i = 2, . . . ,m− 1

(T 2 − 2I)x2 − x4 − xm = b1 + Tb2 + b3,

−x2 − xm−2 + (T 2 − 2I)xm = bm−2 + Tbm−1 + bm.

The matrix we get at the lth step is
T (l−1) −I 0 −I
−I T (l−1) −I 0
0 −I T (l−1) −I
−I 0 −I T (l−1)

 .

4.4. The cyclic reduction method 139

One more step of reduction gives(
T (l) −2I
−2I T (l)

)(
x2l

x2l+1

)
=

(
b
(l)

2l

b
(l)

2l+1

)
.

We eliminate x2l+1 to get

((T (l))2 − 4I)x2l = T (l)b
(l)

2l
+ 2b

(l)

2l+1 .

Thus far, we have considered the cyclic reduction method for matrices of order 2l−1. The method
was extended to any order by R. Sweet [430]. One has to consider the last equation differently
and there are different formulas for even and odd orders. Moreover, we have considered only a
very simple problem. Swarztrauber [427] extended the method to general separable equations
which give matrices such as

B1 C1

A2 B2 C2

.
An−1 Bn−1 Cn−1

An Bn

 .

Unfortunately, the formulas are much more complicated.
The cyclic reduction method and the Fourier/tridiagonal method may seem to be very differ-

ent. But there is a way to see that there is some relationship between the two methods. Note that
the recurrences defining the cyclic reduction methods are

T (r+1) = (T (r))2 − 2I

p
(r+1)
i = p

(r)
i + (T (r))−1(p

(r)
i−2r + p

(r)
i+2r + q

(r)
i),

q
(r+1)
i = q

(r)
i−2r + q

(r)
i+2r + 2p

(r)
i .

Obviously, it is easy to compute the eigenvalues of T (r).

Lemma 4.8. The eigenvalues λ(r) of T (r) are given by

λ
(0)
i = λi,

λ
(r+1)
i = (λ

(r)
i)2 − 2,

where the λis are the eigenvalues of T . The eigenvectors are the same as those of T .

Denoting p̂ = QT p, q̂ = QT q, the cyclic reduction method can be written,

1. b̂i = QT bi
2. p̂

(1)
i = Λ−1,

q̂
(1)
i = b̂i−1 + b̂i+1 + 2p̂

(1)
i ,

p̂
(r+1)
i = p

(r)
i + (Λ(r))−1(p̂

(r)
i−2r + p̂

(r)
i+2r + q̂

(r)
i),

q̂
(r+1)
i = q̂

(r)
i−2r + q̂

(r)
i+2r + 2p̂

(r+1)
i ,

3. x̂2l = p̂
(l)

2l
+ (Λ(l))−1q̂

(l)

2l
,

x̂i = p̂
(r)
i + (Λ(r))−1(q̂

(r)
i + x̂i+2r + x̂i−2r),

4. xi = Qx̂i.

140 4. Fast solvers for separable PDEs

where Λ = (λi), Λ(r) = (λ
(r)
i) are diagonal matrices. The method is equivalent to doing a

Fourier analysis in one direction and then solving the tridiagonal systems by the Buneman algo-
rithm. However, as we have seen, for solving point tridiagonal linear systems we can stabilize
the method by normalization of the diagonal coefficient. This means that there are other ways
than the Buneman algorithm to stabilize the cyclic reduction method.

4.5 The FACR(l) method
In this section we combine the algorithms of the last two sections to obtain a more efficient
one. This method uses l steps of cyclic reduction and then, gets a block tridiagonal system of
smaller dimension that is solved with the Fourier/tridiagonal method. This means that we trade
a reduction in the length of the FFT against solving tridiagonal systems. This method was first
used in 1965 by Hockney [287] with l = 1. However, we shall see that l = 1 is usually not the
optimal value. This algorithm, known as FACR, can be described as the following. For r = 1 to
l − 1 compute

p
(r+1)
i = p

(r)
i + (T (r))−1(p

(r)
i−2r + p

(r)
i+2r + q

(r)
i),

q
(r+1)
i = q

(r)
i−2r + q

(r)
i+2r + 2p

(r+1)
i .

Then, we get a block tridiagonal system whose generic equation is

−xi−2l + T (l)xi − xi+2l = T (l)p
(l)
i + q

(l)
i .

Setting yi = xi − p(l)
i , gi = q

(l)
i + p

(l)

i−2l
+ p

(l)

i+2l
, we have

−yi−2l + T (l)yi − yi+2l = gi, i = 2l, 2× 2l, 3× 2l, . . .

Then we compute ĝi = QT gi and ŷi by the Fourier/tridiagonal method. At the last step we get
yi = Qŷi to obtain xi = yi+p

(l)
i , i = 2, 2×2l,. . . The missing xis are computed by l backward

steps of cyclic reduction.
In order to determine the optimal value for l, we must compute the number of operations as

a function of l. A rough estimate shows that we have to solve lm2 tridiagonal systems. The
order of the system we get after the reducing steps is m2

2l
. The Fourier transform accounts for

approximately 2m
2

2l
log2m multiplications. A precise count was given by Temperton [433],

(2l + 7 + 2−l(3 log2 n))n2 additions,
(2l + 2−l(2 log2 n))n2 multiplications.

This operation count is approximately minimized (note that l must be an integer) by choosing
l = log2 log2 n. Then, we have

2m2 log2 log2m+ 10m2 additions,
2m2 log2 log2m+ 2m2 multiplications.

For practical dimensions the number of operations is almost proportional to the total number
of unknowns n = m2, that is to say, close to the best possible one. As a summary, we give the
number of operations for the model problem in the Table 4.1. Herem is the number of unknowns
on each side of the square. Of course, it is easy to vectorize FACR(l) as we know how to vectorize
the cyclic reduction algorithm and the Fourier method.

4.6. The capacitance matrix method 141

Table 4.1. Number of operations for the model problem

m FFT/tridia Buneman Cyclic Reduction FACR(l)

l = 2

64 25m2 A 17m2 A 14m2 A
13m2 M 7m2 M 6m2 M

l = 5

4096 43m2 A 29m2 A 20m2 A
25m2 M 19m2 M 12m2 M

4.6 The capacitance matrix method
So far, the methods we have studied in this chapter are restricted to separable partial differential
equations on rectangular domains whose boundaries are parallel to coordinate axes. We shall
see that we can extend, in some way, these methods to more general domains. For the sake of
simplicity, suppose we want to solve

−∆u = f in Ω,

u = g on ∂Ω,

where Ω is the domain shown in Figure 4.3.

x x x x x x x x x

x

x

x

xxxxxxxxx

x

x

x

Figure 4.3. An example of embedding

To apply our previous methods, the domain Ω is embedded in a rectangle R, f is extended to
0 outside Ω and we define

◦ Ωh: mesh points in Ω whose four nearest neighbors are in Ω (white dots).

◦ ∂Ωh: mesh points in Ω that are not in Ωh. They are called boundary or irregular points.
They are black dots in Figure 4.3.

◦ Ch: mesh points in R but not in Ωh ∪ ∂Ωh (crosses).

The discrete problem is then defined by using the standard five point scheme for each point in
Ωh ∪ Ch (with zero Dirichlet boundary conditions). For ∂Ωh points, we write special equations
using, for instance, the Shortley-Weller formula (see Forsythe and Wasow [198]). These formulas
use only points in Ωh ∪ ∂Ωh. That is to say, in equations for points in Ωh ∪ ∂Ωh, there is no
connection with points in Ch. The points in Ch have relationships with the other points in ∂Ωh
but this does not matter. Solving the problem just defined in R will give us the solution of our
initial problem on Ωh ∪ ∂Ωh. We have to solve a linear system

Ax = b, (4.17)

142 4. Fast solvers for separable PDEs

which represents the problem in R. Suppose there are p points in ∂Ωh and let B be the matrix
for the model problem on R. It is clear that B differs only from A by p lines, that is, the equation
for the points in ∂Ωh. For convenience, let S be the set of indices of points in ∂Ωh. For solving a
linear system with matrix B, we can apply one of the fast methods of the previous sections. We
are looking for a right hand side w such that

Bx = w,

where x is the solution of (4.17).
Since A and B have identical ith rows for i /∈ S, we set

wi = bi, i /∈ S.

We can look for w by writing w = b +
∑
i∈S βie

i where (ei)T = (0, . . . , 0, 1, 0, . . . , 0). We
have

x = B−1b+
∑
i∈S

βiB
−1ei.

To find the p unknowns βi, we need to satisfy the remaining p equations,

bj = (Ax)j = (AB−1b)j +
∑
i∈S

βi(AB
−1ei)j . (4.18)

This is a linear system of order p. Let C be the matrix whose elements are

(ej)TAB−1ei, i, j ∈ S.

Usually C is called the capacitance matrix. Equation (4.18) is a linear system

Cβ = δ.

For the problem we are dealing with we can show that C is non-singular.

Lemma 4.9. C is non-singular and

detC =
detA

detB
.

The algorithm is as follows,
0) Compute

Bqi = ei, i ∈ S,
by solving p problems with a fast method. Knowing the g’s, we can then form C and factor it.
1) Bx̂ = b,
2) δj = bj − (Ax̂)j , j ∈ S,
3) Bx = b+

∑
i∈S βie

i.
If we store the gis, step 3) can be replaced by x = x̂ +

∑
i∈S βigi. Note that step 0) does

not depend on b; it has to be done just once to solve several systems with the same matrix and
different right hand sides. For this method to be efficient, p has to be relatively small. Note that
if we use the FFT/tridiagonal method to solve systems in step 0) there are some simplifications
because we do not need to use the FFT to compute QT ei.

Variations of the capacitance matrix method have been studied by Proskurowski and Wid-
lund [379]. This method is also called the fictitious domain method in the Russian literature.
Sometimes, it is also called domain embedding.

4.7. Bibliographical comments 143

4.7 Bibliographical comments
The discovery of the Fast Fourier Transform by Cooley and Tukey in 1965 [121] was a break-
through in the area of numerical computation. This allowed the development of many applica-
tions and particularly fast solvers for separable elliptic PDEs on rectangles. The history of the
FFT is discussed by Cooley in [120]. For a description of the different versions of the FFT, see
the book by Van Loan [453].

The Fourier tridiagonal method was described by Hockney [287, 288]. Following suggestion
by Golub, the cyclic reduction was developed at the same time, see Buzbee, Golub and Nielson
[81]. Cyclic reduction was generalized by Swarztrauber and Sweet through a series of papers
leading to the distribution of the FISHPACK package. The stable computation of the right hand
side was proposed by O. Buneman [79] even though this important paper was never published in
a journal. The general principle of embedding was described in Buzbee, Dorr, George and Golub
[80]. For the capacitance matrix method, see the works of Proskurowski and his co-workers
[379, 380]. This was also considered by the Russian school, see for instance [191].

144 4. Fast solvers for separable PDEs

5

Classical iterative
methods

5.1 Introduction
Suppose we want to solve a linear system

Ax = b, (5.1)

where A is non-singular and b is given. An iterative method constructs a sequence of vectors
{xk}, k = 0, 1, . . ., which is expected to converge towards x which is the solution of (5.1), x0

being given. The method is said to be convergent if limk→∞ ‖x − xk‖ = 0. Most classical
iterative methods use a splitting of the matrix A, denoted as

A = M −N,

where M is a non-singular matrix. Then, the sequence xk is defined by

Mxk+1 = Nxk + b, (5.2)

and x0 is given. It is obvious that if this method is convergent, it converges towards the unique
solution of (5.1). An interesting question is to determine conditions for this sequence of vectors
to converge.

Let εk = x− xk be the error at iteration number k. As obviously Mx = Nx+ b, we get

M(x− xk+1) = N(x− xk),

εk+1 = M−1Nεk.

Iterating this result, we obtain the equation for the error

εk+1 = (M−1N)k+1ε0. (5.3)

From equation (5.3), the iterative method converges for all starting vectors if and only if

lim
k→∞

(M−1N)k = 0.

This was characterized in Theorem 1.24 using the spectral radius. We then have the following
fundamental result.

Theorem 5.1. The iterative method (5.2) converges for every x0 if and only if

ρ(M−1N) < 1.

145

146 5. Classical iterative methods

Proof. This results from applying Theorem 1.24.

Of course, it is not easy to check if ρ(M−1N) < 1 since for most problems the eigenvalues
of M−1N are not explicitly known. Hence, we shall have to rely mainly on sufficient conditions
for convergence. Let us now examine some very well known iterative methods.

5.2 The Jacobi method
Suppose A = D + L + U where D is a diagonal matrix which has the same diagonal as A,
L (resp. U) is the strictly lower (resp. upper) triangular part of A. The simplest choice for the
splitting of A is to take M = D, N = −(L+U). Then, the method (5.2) is known as the (point)
Jacobi method. The iteration matrix of this method is usually denoted by J(A),

J(A) = M−1N = −D−1(L+ U). (5.4)

It is easy to solve the linear system with matrix M in (5.2) as M is diagonal. Writing (5.2)
componentwise, we get

xk+1
i =

1

ai,i

(
bi −

n∑
j = 1
j 6= i

ai,jx
k
j

)
. (5.5)

We can easily obtain sufficient convergence conditions for the Jacobi method to converge.

Theorem 5.2. If A is strictly diagonally dominant, then the Jacobi method converges.

Proof. (
D−1(L+ U)

)
i,j

=
ai,j
ai,i

∀i 6= j and 0 otherwise.

Hence,

‖D−1(L+ U)‖∞ = max
i

∑
j 6=i

|ai,j |
|ai,i|

.

Since A is strictly diagonally dominant,
∑
j 6=i

|ai,j |
|ai,i| < 1, for all i. Then

‖D−1(L+ U)‖∞ < 1.

This is a sufficient condition to have

lim
k→∞

J(A)k = 0,

and the method converges.

We can generalize this result for strictly diagonally dominant matrices to H-matrices.

Theorem 5.3. Let A be an H-matrix then the Jacobi method converges.

Proof. From Theorem 1.48 and Definition 1.34, we know that there exists a diagonal matrix
E with positive diagonal elements such that E−1AE is strictly diagonally dominant. We can
write the iteration matrix J(A) as,

J(A) = −D−1(L+ U) = −D−1(A−D) = I −D−1A.

5.2. The Jacobi method 147

But E−1AE has the same diagonal as A, hence

J(E−1AE) = I −D−1(E−1AE) = E−1(I −D−1A)E = E−1J(A)E.

This is because two diagonal matrices commute: E−1D−1 = D−1E−1. Hence J(A) and
J(E−1AE) are similar, therefore they have the same eigenvalues. The matrix E−1AE being
strictly diagonally dominant, we have

ρ(J(A)) = ρ(J(E−1AE)) < 1.

From this theorem, we can derive the following results which are useful in practical cases.

Corollary 5.4. Let A be a matrix having one of the two following properties,

1) A is irreducibly diagonally dominant,

2) A is an M-matrix.

Then, the Jacobi method converges.

Proof. Each of the two conditions implies that A is an H-matrix, so we can readily apply
Theorem 5.3.

When A is an L-matrix, we have a stronger result which is also a characterization of an
M-matrix.

Theorem 5.5. Let A be an L-matrix. Then, A is an M-matrix if and only if ρ(J(A)) < 1.

Proof. If A is an M-matrix, Corollary 5.4 shows that ρ(J(A)) < 1. For the converse, we
note that A being an L-matrix, we have

L ≤ 0, U ≤ 0, di,i > 0,

so
M−1 = D−1 ≥ 0, N = −(L+ U) ≥ 0.

By Definition 1.49, A = M − N is a regular splitting with ρ(M−1N) < 1. Hence, by Theo-
rem 1.50, A is an M-matrix.

The (point) Jacobi method is one of the simplest iterative methods we can think of. There
are very few operations per iteration. For the general case of a dense matrix of order n, we
have n2 multiplications and n(n − 1) additions per iteration provided we store the inverses of
the diagonal terms. For the finite difference model problems described in Chapter 1, we have
5n multiplications and 4n additions per iteration. Moreover, this method is very well suited for
vector and parallel processing. Everything can be expressed in a natural way in terms of vectors
if the sparse matrix is stored by diagonals (or pseudo diagonals). The method is also inherently
parallel as the computation of the components of xk+1 depends only on xk. Therefore, the
computation can be split into as many tasks as we need depending on how the matrix is stored
and partitioned between processors.

This method looks satisfactory but unfortunately the convergence can be very slow. For the
Poisson model problem we are able to compute the spectral radius ρ(J(A)) as

D = 4I, J(A) = I − 1

4
A.

148 5. Classical iterative methods

The eigenvalues µp,q of J(A) are

µp,q =
1

2
(cos pπh+ cos qπh), p, q = 1, . . . ,m,

where h = 1
m+1 , n = m2. It is easy to see that maxp,q |µp,q| = |µ1,1| = |µm,m| and that

ρ(J(A)) = cosπh.

So, unfortunately limh→0 ρ(J(A)) = 1. As we take more discretization points, the convergence
slows down and the number of iterations becomes larger and larger as

ρ(J(A)) = 1− π2h2

2
+O(h4).

An heuristic explanation for this slow convergence is obtained by considering a constant vector
y (having all its components equal). Then, most components of Ay are zero. This means that
the Jacobi method makes very small modifications to smooth modes of the error vector. The
situation is the same for every matrix that arises from discretization of elliptic partial differential
equations. For example, consider the problem of solving Ax = 0 where

A =

2 −1
−1 2 −1

.
−1 2 −1

−1 2

 ,

is a matrix of order 100. By today standards this is a very small problem. Starting from a random
vector with components in [0, 1], it takes about 28000 iterations to obtain maxi |xki | < 10−6.

One may try to improve the performance using the Jacobi method in block form. Suppose
A corresponds to a two dimensional PDE,

A =

D1 AT2
A2 D2 AT3

.
Am−1 Dm−1 ATm

Am Dm

 ,

of order m2 where, for instance, Di is tridiagonal and Ai diagonal. Then let

D =

D1

D2

. . . 0

0
. . .

Dm

 , L =

0
A2 0

A3
. . .
.

Am 0

 ,

A = D + L+ LT .

We can use method (5.2) with M = D, N = −(L+ LT).

This describes the block (or line) Jacobi method. Observe that for each iteration we have
m independent tridiagonal systems to solve. If x = (x1, . . . , xm)T and b = (b1, . . . , bm)T

5.2. The Jacobi method 149

blockwise,

D1x
k+1
1 = b1 −AT2 xk2 ,

Dix
k+1
i = bi −Aixki−1 −ATi+1x

k
i+1, i = 2, . . . ,m− 1,

Dmx
k+1
m = bm −Amxkm−1.

Of course, the block Jacobi method can also be defined for non-symmetric matrices too. This
method is not in vector form because solving tridiagonal systems is not a genuine vector oper-
ation. But, fortunately there are methods like cyclic reduction (see Chapter 4) that allow us to
solve tridiagonal systems in vector mode. For the line Jacobi method there is another way of
vectorizing since we havem independent systems to solve. So, we can use the standard Gaussian
elimination algorithm vectorizing on a number of systems. The vectors are then composed of all
the first components of xis, all the second components of xis and so on. Obviously, the method
contains a lot of parallelism. Regarding convergence, we can show the following.

Theorem 5.6. Let A be strictly diagonally dominant. Then the block Jacobi method is conver-
gent.

Proof. The proof uses the same technique as the more general proof used for Theorem 5.25.
Hence, we refer the reader to this proof.

As a consequence, we have

Theorem 5.7. Let A be an H-matrix. Then the block Jacobi method is convergent.

Proof. The proof is the same as for Theorem 5.3.
For the case of symmetric matrices, results can be given both for point and block Jacobi

methods.

Theorem 5.8. Let A be a symmetric positive definite matrix. If 2D −A is positive definite, then
the Jacobi method is convergent.

Proof. This a straightforward application of Theorem 1.54. In this caseQ = M+MT −A =
2D −A.

However, even the block Jacobi method is not really efficient since, for the model problem,
ρ(M−1N) = 1 − π2h2 + O(h4). A common technique for improving the convergence is
relaxation, that is, taking an average between the last iterate and the previous one. In our case,
we get

Dx̃k+1 = −(L+ U)xk + b,

xk+1 = ωx̃k+1 + (1− ω)xk,

where ω is a real parameter, ω > 0. When ω = 1, we recover the Jacobimethod. We can easily
eliminate x̃k+1 in these relations,

Dxk+1 = −ω(L+ U)xk + ωb+ (1− ω)xk,

1

ω
Dxk+1 = b− (L+ U)xk +

1− ω
ω

Dxk. (5.6)

Obviously, the corresponding splitting is

M =
1

ω
D, N =

1− ω
ω

D − (L+ U).

150 5. Classical iterative methods

The iteration matrix is denoted by Jω(A). For the relaxed Jacobimethod we have similar results
to the case ω = 1.

Theorem 5.9. Let A be symmetric positive definite. If 2
ωD − A is positive definite, then the

relaxed Jacobi method (5.6) converges.

Proof. This is a straightforward application of Theorem 1.54.
The problem is knowing when 2

ωD−A is positive definite. The answer was given by Young
[473] in his famous book.

Proposition 5.10. LetA be symmetric withD positive definite. Then, 2
ωD−A is positive definite

if and only if 0 < ω < 2
1−µmin

where µmin is the smallest eigenvalue of J(A).

Proof. One notes first that J(A) = −D−1(L + LT) is similar to −D− 1
2 (L + LT)D−

1
2

which is a symmetric matrix and so has real eigenvalues µi. Let us order them as µ1 ≤ µ2 ≤
· · · ≤ µn. The diagonal elements of J(A) are zero. So, trace[J(A)] = µ1 + µ2 + · · ·+ µn = 0.
This implies that µn ≥ 0 and µ1 ≤ 0. The matrix 2

ωD − A is positive definite if and only if
D−

1
2 (2
ωD −A)D−

1
2 is positive definite. But,

D−
1
2 (

2

ω
D −A)D−

1
2 =

2

ω
I −D− 1

2AD
1
2 = (

2

ω
− 1)I +D

1
2 J(A)D−

1
2 ,

because D−1A = I − J(A). The eigenvalues of (2
ω − 1)I +D

1
2 J(A)D−

1
2 are 2

ω − 1 +µi, i =
1, . . . , n. Clearly they are all positive if ω < 2

1−µmin
.

One may ask what is the optimal value for ω. Here, we define optimal as the value of ω for
which the spectral radius is minimum. Let µωi be the eigenvalues of Jω(A)

Jω(A) = ωD−1(
1− ω
ω

D − (L+ U)),

= (1− ω)I + ωJ(A),

µωi = (1− ω) + ωµi = 1− ω(1− µi).

We must study |µωi | as a function of ω, see Figure 5.1.

1 - µmin

1

1

1 - µi

1 1

1 - µmax

ω opt ω

ωµ
i

Figure 5.1. |µω
i | as a function of ω

Clearly, the optimal value ωopt is given by the intersection of the graphs of the functions
1− ω(1− µn) and ω(1− µ1)− 1. This gives us

ωopt =
2

2− (µ1 + µn)
.

5.3. The Gauss-Seidel method 151

We also find again that the method converges for 0 < ω < 2
1−µmin . The drawback of this method

is that we are required to know the extreme eigenvalues of J(A) in order to compute the optimal
parameter. Usually we do not know the eigenvalues. It is interesting to note that for the model
problem,

µ1 = cos(πh), µn = − cos(πh),

hence ωopt = 1 and the Jacobi method is optimal! This is the case for all matrices which have
property A.

5.3 The Gauss-Seidel method
Note that in the Jacobi method we use xk to compute all the components of xk+1. Since (at
least on serial computers) we compute the elements one at a time, it is a very natural idea to use
components of xk+1 as soon as they become available. This leads to the (point) Gauss-Seidel
method,

xk+1
i =

1

ai,i

(
bi −

i−1∑
j=1

ai,jx
k+1
j −

n∑
j=i+1

ai,jx
k
j

)
, i = 1, . . . , n. (5.7)

Expressing this method in matrix form, we have

(D + L)xk+1 = b− Uxk. (5.8)

This formula also defines the block (or line) Gauss-Seidelmethod ifD is thought of as a block
diagonal matrix. The iteration matrix, traditionally denoted by L, is

L = −(D + L)−1U.

As for the Jacobimethod, we can give sufficient conditions to have the Gauss-Seidelmethod
converging.

Theorem 5.11. Let A be strictly diagonally dominant. Then, the point Gauss-Seidel method
converges for every x0.

Proof. Let εk = x− xk. We have

εk+1
i = −

i−1∑
j=1

ai,j
ai,i

εk+1
j −

n∑
j=i+1

ai,j
ai,i

εkj ,

|εk+1
i | ≤

i−1∑
j=1

∣∣∣∣ai,jai,i

∣∣∣∣ · ‖εk+1‖∞ +

n∑
j=i+1

∣∣∣∣ai,jai,i

∣∣∣∣ · ‖εk‖∞.
Suppose ‖εk+1‖∞ = maxi |εk+1

i | is given for i = I , then(
1−

I−1∑
j=1

∣∣∣∣aI,jaI,I

∣∣∣∣)‖εk+1‖∞ ≤
n∑

j=I+1

∣∣∣∣aI,jaI,I

∣∣∣∣ · ‖εk‖∞.
But, A being strictly diagonally dominant, we have

0 <

n∑
j=I+1

∣∣∣∣aI,jaI,I

∣∣∣∣ < 1−
I−1∑
j=1

∣∣∣∣aI,jaI,I

∣∣∣∣ .

152 5. Classical iterative methods

This implies that
‖εk+1‖∞ < ‖εk‖∞ < · · · < ‖ε0‖∞,

and εk is a converging sequence with limit ε. But, as A is non-singular, Aε = 0. Hence ε = 0.

As before for the Jacobi method, it is easy to generalize this result for H-matrices.

Theorem 5.12. Let A be an H-matrix. Then, the (point) Gauss-Seidel method converges for
every x0.

Proof. There is a positive diagonal matrix E with positive diagonal elements such that
E−1AE is strictly diagonally dominant. We note that

L(E−1AE) = E−1L(A)E.

This proves that the Gauss-Seidel method converges.

As a corollary, we find that Gauss-Seidel converges ifA is irreducibly diagonally dominant
or if A is an M-matrix. As for the Jacobi method, it is easy to give sufficient conditions for the
convergence of the block Gauss-Seidel method.

Theorem 5.13. Let A be a strictly diagonally dominant matrix. Then the block Gauss-Seidel
method is convergent.

Proof. The proof uses the same technique as Theorem 5.25 to which we refer the reader.

Theorem 5.14. Let A be an H-matrix. Then the block Gauss-Seidel method is convergent.

Proof. Identical to the proof of Theorem 5.12.

In the symmetric case, we have an interesting characterization of positive definite matrices.

Theorem 5.15. Let A be symmetric with D positive definite. Then A is positive definite if and
only if the Gauss-Seidel method converges.

Proof. Once again, this is a straightforward consequence of Theorem 1.54. Here,

M = D + L and Q = M +MT −A = D.

For the model problem, it is easy to compute the eigenvalues λp,q and eigenvectors wp,q of
L. Recall that the eigenvalues µp,q of J(A) are

µp,q =
1

2
(cos pπh+ cos qπh),

and the components of the corresponding (unnormalized) eigenvector up,q are

up,qi,j = sin ipπh sin jqπh.

For the sake of simplicity we drop indices p and q. Then, λ and w must satisfy

λ(D + L)w = −Uw,

5.3. The Gauss-Seidel method 153

which is written componentwise as

λwi,j =
1

4
(wi+1,j + wi,j+1 + λwi−1,j + λwi,j−1).

Now let us introduce u such that wi,j = λ
i+j
2 ui,j . Substituting, we get that λλ

i+j
2 ui,j is equal to

1

4

(
λ
i+1+j

2 ui+1,j + λ
i+j+1

2 ui,j+1 + λλ
i+1+j

2 ui−1,j + λλ
i+j−1

2 ui,j−1

)
.

Suppose λ 6= 0 then, dividing by λ i+1+j
2 ,

λ
1
2ui,j =

1

4
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1).

This specifies that λ
1
2 is an eigenvalue of J(A). Conversely, if µ is an eigenvalue of J(A), µ2 is

an eigenvalue of L. Therefore, the spectral radius of L is

ρ(L) = (cosπh)2 = 1− π2h2 +O(h4).

This shows that, for this particular example, the Gauss-Seidel method converges twice as fast
as the Jacobi method. This result is true for a larger class of matrices, namely matrices with
property A (Definition 1.36); see Young [473]. For some problems, we have benefited by using
Gauss-Seidel instead of Jacobi but, we also lost something since Gauss-Seidel seems not
vectorizable or parallelizable. To compute the component xk+1

i of xk+1 we need all the previous
components xk+1

j , j < i. We can compute one component at a time, a sequential process.
Fortunately, there are ways to partly recover the vector form. The Gauss-Seidel iterates

clearly depend on the numbering of the unknowns. The trick for parallelization is to use a
numbering scheme that decouples the unknowns. For problems arising from five point difference
approximations, we can use the so-called Red Black ordering. To describe this ordering let us
look at a small example on a square domain, see Figure 5.2. One notes that the Red points ◦ (resp.
Black points x) are only connected to Black points (resp. Red points). Using this ordering, the
linear system can be written blockwise asDR F

FT DB

 xR

xB

 =

(
bR
bB

)
, (5.9)

where DR and DB are diagonal matrices. F represents the coupling between Red and Black
points. The Gauss-Seidel method can then be written in block form as

DRx
k+1
R = bR − FxkB ,

DBx
k+1
B = bB − FTxk+1

R . (5.10)

It is clear that we can first compute all the components of xk+1
R simultaneously and then, all

the components of xk+1
B . Thus, this method can be used on a vector computer or even a parallel

machine. The problem is knowing the convergence properties of the method defined by (5.10).
The interesting fact is that for a large class of matrices, the eigenvalues of the iteration matrix
for (5.10) are the same those for the natural ordering. Let us compute the eigenvalues of the
Gauss-Seidel iteration matrix, (

0 −D−1
R F

0 D−1
B FTD−1

R F

)
.

154 5. Classical iterative methods

x x x x x

x x x x x

x x x x x

x x x x x

xxxxx

x x x x x

xxxxx

x x x x x

xxxxx

x x x x x

Figure 5.2. The Red-Black ordering

Note that 0 is a multiple eigenvalue of this matrix and that there are a set of linearly independent
eigenvectors associated with the eigenvalue 0. Let

x =

(
xR
xB

)
,

be an eigenvector. Then

−D−1
R FxB = λxR, D−1

B FTD−1
R FxB = λxB .

Therefore, λ is an eigenvalue of D−1
B FTD−1

R F . Let

y =

(
yR
yB

)
,

be an eigenvector of the Jacobi iteration matrix for (5.9) corresponding to an eigenvalue µ,

D−1
R FyB = µyR, D−1

B FT yR = µyB .

Eliminating yR gives
D−1
B FTD−1

R FyB = µ2yB .

This shows that µ2 is an eigenvalue of the Gauss-Seidel iteration matrix. Now, we must note
that the Jacobi iterates are independent of the numbering of the unknowns. Therefore, Red-
Black Jacobi has the same eigenvalues as the natural ordering Jacobi matrices. For the model
problem, we have proved that the squares of the Jacobi eigenvalues are eigenvalues ofL. Hence,
the Red-Black Gauss-Seidel matrix has the same eigenvalues as the matrix L. This is more
generally true for matrices having a consistent ordering in the terminology of Young [473]. For
problems with larger stencils or finite element problems, more than two colors may be used to
introduce parallelism; see Adams and Jordan [2] for convergence properties.

5.4 The SOR Method
A great improvement over the Jacobi and Gauss-Seidel methods is given by the Successive
Over Relaxation (SOR) method. This method gave rise to a great interest and a lot of research in
the fifties; see Young [473]. The (point) SOR method is defined by

xk+1
i =

ω

ai,i
(bi −

i−1∑
j=1

ai,jx
k+1
j −

n∑
j=i+1

ai,jx
k
j) + (1− ω)xki , (5.11)

5.4. The SOR Method 155

where ω is a real parameter, ω > 0. Writing (5.11) in matrix form we have

(D + ωL)xk+1 = ωb− ωUxk + (1− ω)xk. (5.12)

Relation (5.12) also defines the block SORmethod if D, L and U are in block form. The iteration
matrix is denoted by Lω and is given by

Lω = (
1

ω
D + L)−1[

1− ω
ω

D − U].

We have the following necessary condition for convergence of the method.

Proposition 5.16. If the SOR method converges then, 0 < ω < 2.

Proof. A short manipulation shows the iteration matrix can be written as

Lω = (I + ωD−1L)−1[(1− ω)I − ωD−1U].

Obviously, I+ωD−1L is a lower triangular matrix with 1’s on the diagonal, (1−ω)I−ωD−1U
is an upper triangular matrix with 1− ω on the diagonal. Therefore,

detLω = (1− ω)n.

As detLω is the product of the eigenvalues of Lω , we obtain

|1− ω|n ≤ ρ(Lω)n.

So, |1 − ω| ≤ ρ(Lω). If SOR converges, ρ(Lω) < 1. This implies that |1 − ω| < 1, which
translates into

0 < ω < 2.

It is easy to show that if A is strictly diagonally dominant and 0 < ω ≤ 1 then the SOR
method converges. This implies that if A is an H-matrix and 0 < ω ≤ 1 the SOR method is
convergent. However, this can be slightly improved by the following result.

Theorem 5.17. Let A be an H-matrix. The SOR method converges if

0 < ω <
2

1 + ρ(|J(A)|)
,

Proof. To prove this theorem, we first need several lemmas.

Lemma 5.18. Let A = M −N be a regular splitting. The following statements are equivalent,

1) A−1 ≥ 0,

2) A−1N ≥ 0,

3) ρ(M−1N) = ρ(A−1N)
1+ρ(A−1N) < 1.

156 5. Classical iterative methods

Proof. See Varga [457].

Lemma 5.19. If |A| ≤ B then ρ(A) ≤ ρ(B).

Proof. See Varga [457]. This is a consequence of the Perron-Frobenius theorem.

Proof of Theorem 5.17
Let A = D + L+ U . We know that J(A) = I −D−1A. Let M(A) = |D| − |L| − |U | and

J(M(A)) = I − |D|−1(|D| − |L| − |U |). Matrices |J(A)| and J(M(A)) have zero diagonal
terms and the non-diagonal elements are |ai,jai,i

|. Therefore |J(A)| = J(M(A)), but M(A) is an
M-matrix and by Theorem 5.3, we have

ρ(|J(A)|) = ρ(J(M(A))) < 1.

Let Mω = 1
ωD + L, Nω = 1−ω

ω D − U , then

Lω = M−1
ω Nω.

Denote

M̃ω =
1

ω
|D| − |L|, Ñω =

|1− ω|
ω
|D|+ |U |,

and

L̃ω = M̃−1
ω Ñω, Ãω = M̃ω − Ñω =

1− |1− ω|
ω

|D| − |L| − |U |.

It is obvious that Ñω ≥ 0 and |Nω| ≤ Ñω . Moreover

|M−1
ω | ≤

∣∣∣∣(1

ω
D + L)−1

∣∣∣∣ = |(I + ωD−1L)−1ωD−1|.

But since D−1L is a strictly lower triangular matrix, we have (D−1L)n = 0 and

(I + ωD−1L)−1 = I − ωD−1L+ · · ·+ (−1)n−1(ωD−1L)n−1,

so

|M−1
ω | ≤ ω|I − ωD−1L+ · · ·+ (−1)n−1(ωD−1L)n−1| · |D−1|,
≤ ω(I + ω|D−1L|+ · · ·+ ωn−1|D−1L|n−1) · |D−1|.

But, as D−1 is diagonal, |D−1L| = |D−1| · |L| and

0 ≤ |M−1
ω | ≤ (

|D|
ω
− |L|)−1 = M̃−1

ω .

This proves that Ãω = M̃ω − Ñω is a regular splitting. We want to conclude using Lemma 5.18.
Let us consider under which conditions we have Ã−1

ω ≥ 0.

Lemma 5.20. Ã−1
ω ≥ 0 if 0 < ω < 2

1+ρ(|J(A)|) .

Proof.

Ãω =
1− |1− ω|

ω
|D| − |L| − |U |,

= |D|
(

1− |1− ω|
ω

I − |D|−1(|L|+ |U |)
)
,

= |D|
(

1− |1− ω|
ω

I − |J(A)|
)
.

5.4. The SOR Method 157

Firstly we consider the case when 0 < ω < 1. Then, 1−|1−ω|
ω = 1, so Ãω = |D|(I − |J(A)|).

But, as A is an H-matrix, ρ(|J(A)|) = ρ(J(M(A))) < 1. This, by Theorem 1.27 proves that
Ã−1
ω exists and

Ã−1
ω = (I + |J(A)|+ · · ·)|D|−1 ≥ 0.

Now, suppose 1 < ω < 2. Then

Ãω = |D|(2− ω
ω

I − |J(A)|).

The matrix 2−ω
ω I − |J(A)| is non-singular if

ω

2− ω
ρ(|J(A)|) < 1,

and this implies

ω <
2

1 + ρ(|J(A)|)
.

Again, by Theorem 1.27, Ã−1
ω ≥ 0.

Returning to the proof of Theorem 5.17, by Lemma 5.18 we know that Ã−1
ω ≥ 0 implies

ρ(M̃−1
ω Ñω) < 1. But, we have also shown that

|Lω| = |M−1
ω Nω| ≤ |M−1

ω ||Nω| ≤ M̃−1
ω Ñω = L̃ω.

By Lemma 5.19, this shows that
ρ(Lω) ≤ ρ(L̃ω) < 1,

if 0 < ω < 2
1+ρ(|J(A)|) .

Neumann and Varga [356] have shown that this bound is sharp. They gave examples of H-
matrices for which if ω = 2

1+ρ(|J(A)|) then ρ(Lω) = 1. These results imply that SOR converges
for all H-matrices if and only if 0 < ω ≤ 1. If we now suppose that A is symmetric, we have the
following result.

Theorem 5.21. LetA be symmetric withD positive definite. Then, SOR converges for 0 < ω < 2
if and only if A is positive definite.

Proof. This theorem is known under the name of Ostrowski and Reich. It is a straightforward
consequence of the more general Theorem 1.54 (Householder-John) since

Q =
2− ω
ω

D.

Regarding vector and parallel computers, SOR has just the same drawbacks as Gauss-Seidel.
Therefore, we must use the same devices as for Gauss-Seidel if we want to use the method
with some efficiency. An important problem is the choice of the relaxation parameter ω. Obvi-
ously, we would like to choose the ω that minimizes ρ(Lω). This problem was solved for a large
class of matrices by Young (1950) in his Ph.D. thesis and is explained in great detail in his book
[473]. Young proves that, under some hypothesis, there exists an optimal value ωb,

ωb =
2

1 + (1− ρ(J(A))2)
1
2

.

158 5. Classical iterative methods

Moreover, ρ(Lωb) = ωb− 1. Young’s theory relies on the fact that for matrices with a consistent
ordering there is a relationship between the eigenvalues λ of Lω and µ of J(A), namely

(λ+ ω − 1)2 = ω2µ2λ.

For ω = 1, we recover the relation that we proved for Gauss-Seidel for matrices having
property A. It is unfortunate we need ρ(J(A)) to compute ωb because in many practical problems
we do not know ρ(J(A)). Trying to find approximate values of ωb was the subject of many
research papers. Some people devised very clever schemes to try to get an approximation of ωb
during the SOR computation. For more details, see the book by Hageman and Young [273]. For
the model problem it is easy to compute ωb. We get

ωb =
2

1 + sin(πh)
and ρ(Lω) =

1− sin(πh)

1 + sin(πh)
.

Therefore, ρ(Lωb) = 1 − 2πh + O(h2). We recall that for ω = 1, that is, the Gauss-Seidel
method, we have ρ(L) = 1 − π2h2 + O(h4). So, for small h, SOR with ωb is a very large
improvement over Gauss-Seidel. This explains the great interest for this method in the fifties
and sixties.

Figure 5.3 shows the log10 of the maximum norm of the error when solving the Poisson
model problem on a 20 × 20 mesh for Jacobi, Gauss-Seidel and SOR with the optimal pa-
rameter. Figure 5.4 shows the spectral radius of the SOR iteration matrix as a function of ω for a
10× 10 mesh. Note the spectral radius if non-differentiable for ω = ωb.

0 50 100 150 200 250 300
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 5.3. Poisson problem on a 20 × 20 mesh, solid: Jacobi, dashed: Gauss-Seidel, dot-
dashed: SOR with optimal ω

5.5 The SSOR method
We have seen in previous sections that the results of SOR are ordering dependent. If we choose
the natural ordering for systems arising for the discretization of elliptic partial differential equa-
tions (in particular diffusion equations) it may happen that this ordering is not well suited to the
physical problem and it is better, for instance, to use a reverse ordering scheme. So, a natural
idea is to change the ordering during the computation. That is SORwith numbering the unknowns
from 1 to n and then from n to 1. This trick gives a symmetric iteration matrix. This method is
denoted by SSOR (Symmetric SOR). An iteration is defined by

(D + ωL)xk+ 1
2 = ωb+ (1− ω)Dxk − ωUxk,

(D + ωU)xk+1 = ωb+ (1− ω)Dxk+ 1
2 − ωLxk+ 1

2 . (5.13)

5.5. The SSOR method 159

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5.4. Spectral radius of the SOR iteration matrix as a function of ω for the Poisson problem
on a 10× 10 mesh

To get the expression of the iteration matrix we eliminate xk+ 1
2 . We then have

xk+1 = (
1

ω
D + U)−1(

1− ω
ω

D − L)(
1

ω
D + L)−1(

1− ω
ω

D − U)xk

+(
1

ω
D + U)−1(

2− ω
ω

)D(
1

ω
D + L)−1b. (5.14)

Thus, we have a splitting of A = M − N where M = ω
2−ω (1

ωD + L)D−1(1
ωD + U) and

N = ω
2−ω (1

ωD + L)D−1(1−ω
ω D − L)(1

ωD + L)−1(1−ω
ω D − U). The iteration matrix denoted

by Sω is

Sω = (
1

ω
D + U)−1(

1− ω
ω

D − L)(
1

ω
D + L)−1(

1− ω
ω

D − U).

As before, for the Gauss-Seidel and SOR methods, it can be shown that if A is strictly diag-
onally dominant and if 0 < ω ≤ 1, then the method converges. This result can be extended to
H-matrices. Alefeld and Varga [4] proved a stronger result.

Theorem 5.22. Let A be an H-matrix. Then the SSOR method converges if

0 < ω <
2

1 + ρ(|J(A)|)
.

Proof. The proof is similar to Theorem 5.17.
Neumaier and Varga [355] proved the following result which gives insight on the convergence

or divergence of the method. Let ν such that 0 ≤ ν < 1, Hν = {A| A is an H-matrix with
ρ(|J(A)|) = ν} and

ω̂(ν) =

{
2, if 0 ≤ ν ≤ 1

2 ,
2

1+
√

2ν−1
, if 1

2 < ν < 1.

Then, for each matrix A in Hν , for every ω with 0 < ω < ω̂(ν), ρ(Sω) < 1. For every ω with
ω ≤ 0 or ω > ω̂(ν), there exists a matrix inHν for which ρ(Lω) ≥ 1.

Of course one can also define block SSOR methods. We shall not comment further on these.
Let us now consider the case of symmetric positive definite matrices.

Theorem 5.23. Let A be a symmetric positive definite matrix with D positive definite. Then, the
SSOR converges for 0 < ω < 2.

160 5. Classical iterative methods

Proof. This is a consequence of Theorem 1.54, because M is symmetric and it is easy to
compute that

Q = 2M −A =
ω

2− ω
(A+ 2LD−1LT).

Since D is positive definite, LD−1LT is positive semi-definite and Q is positive definite.
We noted that the SOR iteration matrix is not symmetric even when A is and consequently

may have complex eigenvalues. This will cause difficulties when we try to accelerate this method,
see the following sections. One nice property of the SSOR method is that Sω has real positive
eigenvalues as the next theorem shows.

Theorem 5.24. Let A be symmetric with D positive definite. Then the eigenvalues of Sω are real
and non-negative.

Proof.

Sω = (
1

ω
D + LT)−1(

1− ω
ω

D − L)(
1

ω
D + L)−1(

1− ω
ω

D − LT).

Let L = D−
1
2LD−

1
2 , then

Sω = D−
1
2 (

1

ω
I + L

T
)−1(

1− ω
ω

I − L)(
1

ω
I + L)−1(

1− ω
ω

I − LT)D
1
2 .

We note that as L is strictly lower triangular, (1
ω I + L)−1 is a polynomial in L (since by the

Cayley-Hamilton theorem L
n

= 0), so it commutes with (1−ω
ω I − L) and we may rewrite the

iteration matrix as

Sω = D−
1
2 (

1

ω
I + L

T
)−1(

1

ω
I + L)−1(

1− ω
ω

I − L)(
1− ω
ω

I − LT)D
1
2 .

The matrix

S ′ω = (
1

ω
I + L

T
)D

1
2SωD−

1
2 (

1

ω
I + L

T
)−1,

= (
1

ω
I + L)−1(

1− ω
ω

I − L)(
1− ω
ω

I − LT)(
1

ω
I + L

T
),

has the same eigenvalues as Sω . If we denote G(ω) = (1
ω I + L)−1(1−ω

ω I − L), then

S ′ω = G(ω)G(ω)T

so, Sω is similar to a symmetric positive definite matrix.
Since A is symmetric positive definite, it can be shown (Young [474]) that there exists an

optimal parameter but, unlike for SOR, the analytical form of this optimal value is not known.
However, Young [474] showed that a “good” parameter is

ω =
2

1 +
√

2(1− ρ(J(A)))2
.

With this parameter the convergence speed is almost twice as fast as with SOR. But, unfortunately,
an SSOR iteration cost is twice that of an SOR iteration, therefore the benefits are not so obvious.
However, there are two facts which are nice with SSOR. First, the number of iterations is less
sensitive to the value of ω than it is with SOR and second, as we shall see later on, SSOR can
be used in combination with acceleration methods. Figure 5.5 shows the spectral radius for the
model problem as a function of ω for a 10× 10 mesh.

Regarding vector or parallel computing, the problem with SSOR is clearly the same as with
SOR.

5.6. Alternating direction methods 161

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5.5. Spectral radius of the SSOR iteration matrix for the Poisson problem on a 10× 10 mesh

5.6 Alternating direction methods
These methods originated in the fifties for solving linear problems arising from elliptic PDEs on
rectangles. If one uses block methods like line Jacobi or line Gauss-Seidel, these methods
emphasize one space direction over the other. So, once again, a natural idea is to switch (or
alternate) directions.

Let us look again at the model problem. Let D be diagonal with di,i = 4 and a blockwise
splitting,

H =

C 0
0 C 0

0
.
. 0

0 C

 , where C =

0 −1
−1 0 −1

. −1
.

−1 0

 ,

and

V =

0 −I
−I 0 −I

.
−I

−I 0

 .

Then,
A = D +H + V.

Peaceman and Rachford defined the following method which is denoted by ADI (Alternating
Direction Implicit),

(
1

2
D +H + ρk+1I)xk+ 1

2 = b− (
1

2
D + V − ρk+1I)xk,

(
1

2
D + V + ρ′k+1I)xk+1 = b− (

1

2
D +H − ρ′k+1I)xk+ 1

2 , (5.15)

where ρk+1 and ρ′k+1 are real positive parameters. It is easy to see that at the first step we have
to solve as many point tridiagonal systems as there are rows in the mesh and at the second, as
many tridiagonal systems as there are columns in the mesh.

162 5. Classical iterative methods

If ρ′k+1 = ρ, ρ′k+1 = ρ′, the method is called the stationary Peaceman-Rachford method.
This latter method is a special case of a class of methods which can be written as

(D +H + F)xk+ 1
2 = b+ (F − V)xk,

(D + V +G)xk+1 = b+ (G−H)xk+ 1
2 . (5.16)

The decomposition of A, A = D +H + V and matrices F , G can be chosen as needed as long
as D +H + F and D + V +G are non-singular. Different choices of F and G lead to some of
the methods we have described before or to some variants,

◦ F = ρI − 1
2D, G = ρ′I − 1

2D gives the stationary Peaceman-Rachford method,

◦ F = G = 0 gives the (line) Jacobi alternating method,

◦ if H = HL + HU where HL (resp. HU) is the lower (resp. upper) triangular part of H
and the same for V = VL + VU . With F = VL, G = HL, this is the (line) Gauss-Seidel
alternating method,

◦ F = −H , G = −V this is the (point) Jacobi method.

We shall prove that the line Gauss-Seidel alternating method is convergent. For a matrix B,
we denote by Ii(B) = {j| bi,j 6= 0} the index set of columns for which there are non-zero
coefficients in row i.

Theorem 5.25. Let A be strictly diagonally dominant, suppose H and V have zero diagonals
and

Ii(VU) ∩ Ii(H + VL) = ∅, Ii(HU) ∩ Ii(V +HL) = ∅.

Then the block Gauss-Seidel alternating method is convergent.

Proof. The hypothesis on the index sets simply means that a coefficient of A is either in H
or in V , but not split between the two. Let εk = x− xk, then

(D +H + VL)εk+ 1
2 = (−VU)εk,

(D + V +HL)εk+1 = (−HU)εk+ 1
2 .

Therefore,
εk+1 = (D + V +HL)−1HU (D +H + VL)VUε

k = Tεk.

Let λ, u be an eigenvalue and the related eigenvector of the iteration matrix T , Tu = λu. Then,

(D +H + VL)−1VUu = v,

(D + V +HL)−1HUv = λu.

Let us show that ‖v‖∞ < ‖u‖∞. We have,

(D +H + VL)v = VUu.

Componentwise, this can be written as

vi =
∑

j∈Ii(VU)

ai,juj
ai,i

−
∑

j∈Ii(H+VL)

ai,jvj
ai,i

,

5.6. Alternating direction methods 163

|vi| ≤ ‖u‖∞
(∑
j∈Ii(VU)

|ai,j |
|ai,i|

)
+ ‖v‖∞

(∑
jßIi(H+VL)

|ai,j |
|ai,i|

)
.

Suppose that ‖u‖∞ ≤ ‖v‖∞, then

|vi| ≤ ‖v‖∞
(∑
j∈Ii(H+V)

|ai,j |
|ai,i|

)
< ‖v‖∞.

This is a contradiction, therefore ‖v‖∞ < ‖u‖∞. In the same way we can show that

‖λu‖∞ < ‖v‖∞ < ‖u‖∞.

Hence |λ| < 1 and the method converges.
Remark

- With the same technique it can be shown that the block Gauss-Seidel and Jacobimeth-
ods are convergent.

- If the diagonals of F and G are 0 and matrices A+ 2F and A+ 2G are strictly diagonally
dominant, then the method (5.16) is convergent.

- The stationary Peaceman Rachford method is not covered by this theorem because of
the diagonal terms.

Theorem 5.26. Let A be an H-matrix. Suppose H and V have zero diagonals and

Ii(VU) ∩ Ii(H + VL) = ∅, Ii(HU) ∩ Ii(V +HL) = ∅.

Then the block Gauss-Seidel alternating method converges.

Proof. As we did with other methods, we can prove that there exists a diagonal matrix E
with a positive diagonal such that

T (E−1AE) = E−1T (A)E.

Again this proves that the method converges.
Let us now consider the case of the stationary Peaceman-Rachford method. This method

can be cast in the following way,

(D +DF +H)xk+1/2 = (DF − V)xk + b,

(D +DG + V)xk+1 = (DG −H)xk+1/2 + b, (5.17)

where DF and DG are diagonal matrices with positive diagonals. To prove a convergence result,
we are going to use the same techniques as in Theorem 5.17.

Theorem 5.27. Let A be an H-matrix with a positive diagonal and let DF and DG be two
diagonal matrices with positive diagonals. Suppose that the diagonals of H and V are 0 and
Ii(H) ∩ Ii(V) = ∅. Then the method defined by (5.17) is convergent.

Proof. Let
M1 = D +DF +H, N1 = DF − V.

164 5. Classical iterative methods

Then,
|N1| = |DF − V | ≤ DF + |V | = Ñ1,

|M−1
1 | = |[I + (D +DF)−1H](D +DF)−1|.

But,
|(D +DF)−1H| ≤ (D +DF)−1|H|.

By Lemma 5.19,
ρ((D +DF)−1H) ≤ ρ((D +DF)−1|H|).

But (D+DF , |H|) is a regular splitting of D+DF − |H| which by hypothesis is an M-matrix.
Therefore ρ((D+DF)−1|H|) < 1. This implies that [I+ (D+DF)−1H]−1 exists and is equal
to the sum of the series of matrices

I − (D +DF)−1H + ((D +DF)−1H)2 − · · ·

Bounding the absolute value of the series we get,

| [I + (D +DF)−1H]−1| ≤ (I − (D +DF)−1|H|).

Hence,
|M−1

1 | ≤ (D +DF − |H|)−1 = M̃−1
1 ,

and
M̃1 − Ñ1 = D +DF − |H| −DF − |V | = D − |H| − |V |.

In the same way, if we denote

M2 = D +DG + V, N2 = DG −H.

Then,

|M−1
2 | ≤ (D +DG − |V |)−1 = M̃−1

2 ,

|N2| ≤ DG + |H| = Ñ2,

M̃2 − Ñ2 = D +DG − |V | − |DG| − |H| = D − |H| − |V |.

By hypothesis D − |H| − |V | is an M-matrix. To conclude we need the two following lemmas.

Lemma 5.28. Let B be a non-singular matrix and for all k, (Mk, Nk) be a regular splitting of
B. Then the following statements are equivalent

1) B−1 ≥ 0,

2) the sequence defined by xk+1 = xk −M−1
k (Bxk − c) tends to a solution of Bx = c.

Proof. See Moré [350].

Lemma 5.29. With the same hypothesis as the preceding lemma, let M̃k (non-singular) and Ñk
such that

|M−1
k | ≤ M̃

−1
k , |Nk| ≤ Ñk,

and let B̃ = M̃k − Ñk for all k. If the sequence defined by

xk+1 = xk − M̃−1
k (B̃xk − c),

5.6. Alternating direction methods 165

converges, then the sequence yk such that

yk+1 = yk −M−1
k (Byk − c)

converges also.

Proof. Let x̃ be the solution of B̃x̃ = c, y be the solution of By = c and εk = x̃ − xk,
εk = y − yk. Then,

M̃kε
k+1 = Ñkε

k,

Mkε
k+1 = Nkε

k.

Choose ε0 such that |ε0| = ε0, then

|ε1| = |M−1
0 N0ε

0| ≤ |M−1
0 ||N0||ε0| ≤ M̃−1

0 Ñ0ε
0 = ε1.

By induction, we show that
|εk| ≤ εk

But εk → 0 as k →∞ therefore εk → 0.

To conclude the proof of Theorem 5.27, we first apply Lemma 5.28 as D − |H| − |V | is an
M-matrix, its inverse is positive and therefore the sequence defined by M̃k, Ñk is convergent.
Then, as |M−1

i | < M̃−1
i , |Ni| ≤ Ñi i = 1, 2 by Lemma 5.29, the method (5.17) is convergent.

As a consequence of the last result, we get a convergence theorem for the Peaceman-Rachford
method.

Corollary 5.30. Let A be a matrix satisfying the hypothesis of Theorem 5.27. If ρ and ρ′ are
such that

ρ ≥ 1

2
max
i
aii,

ρ′ ≥ 1

2
max
i
aii,

then the stationary Peaceman-Rachford method is convergent.

Remark

- Using the same techniques, Alefeld [3] showed that the Peaceman-Rachford method is
convergent. The problem with this method is to find the optimal parameters. This question
is only solved for the model problem (see Young [473]),

- Regarding vectorization and parallelization the situation is the same for the block Gauss--
Seidel alternating method as for the ordinary block Gauss-Seidel method. It can even
be worse because the data on the mesh has to be accessed by rows and by columns and that
may cause conflicts on some computers. The situation is simpler for the Peaceman-Rachford
since all the tridiagonal systems to be solved are independent of each other and can be
solved in vector or parallel mode.

Let us now look at the alternating Gauss-Seidel method when the matrix is symmetric. To
study this method, we need the following result which is interesting in itself.

166 5. Classical iterative methods

Lemma 5.31. Let A be a symmetric positive definite matrix and A = M − N = P − Q two
splittings of A. Consider the iterative method defined by

Mxk+ 1
2 = Nxk + b,

Pxk+1 = Qxk+ 1
2 + b. (5.18)

Suppose MT +N and PT +Q are positive definite. Then the method (5.18) is convergent.

Proof. This is a direct generalization of the Householder-John theorem 1.54. It can be proved
using exactly the same technique.

Theorem 5.32. Let A be a symmetric positive definite matrix, H and V being symmetric. Sup-
pose D+H and D+V are positive definite. Then the alternating block Gauss-Seidel method is
convergent.

Proof. In this case, we have

M = D +H + VL, N = −VU , MT +N = D +H + V TL − VU = D +H,

P = D + V +HL, Q = −HU , PT +Q = D + V +HT
L −HU = D + V.

Alternating directions methods are not frequently used as they are closely related to finite
difference approximations on rectangular meshes. However, recently there was a renewal of
interest for these methods as they can be used as preconditioners in a more general framework,
see Mathew, Polyakov, Russo and Wang [335]. We shall return to this point later in the chapter
on preconditioning.

5.7 Richardson methods
We now consider a method which is seldom used, but that will be useful for theoretical purposes
when we look at acceleration techniques and at multigrid methods in the following chapters. This
method is very simple to implement and in some cases can be shown to reduce to the Jacobi
iteration. Let α be a strictly positive real number and consider the sequence defined by

xk+1 = xk + α(b−Axk). (5.19)

This method, known as the stationary Richardson method, is based upon a splitting of A as,

1

α
xk+1 =

(
1

α
I −A

)
xk + b.

HenceM = 1
αI andN = 1

αI−A. For the method (5.19) to converge, we must have ρ(I−αA) <
1.

Theorem 5.33. Let A be symmetric and positive definite and 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be
the eigenvalues of A. Then the stationary Richardson method (5.19) converges if and only if
α < 2

λn
.

Proof. It is obvious that |1− αλi| < 1 for all i if and only if α < 2
λn

.

5.7. Richardson methods 167

As with every other method depending upon a parameter, the problem is to find the optimal
value of α giving the smallest spectral radius.

Theorem 5.34. The optimal value of α for the stationary Richardson method is αopt = 2
λ1+λn

.

Proof. The optimal value is determined by 1 − αλ1 = −(1 − αλn). Hence αopt = 2
λ1+λn

and

ρ(I − αoptA) = 1− 2

λ1 + λn
λ1 =

λn − λ1

λ1 + λn
=
κ(A)− 1

κ(A) + 1
,

where κ(A) = λn
λ1

is the condition number of A. The closer κ(A) is to 1, the faster the conver-
gence.

Of course, the drawback of this method (as with relaxed Jacobi or SOR) is that we have to
know the maximum and minimum eigenvalues of A to get the optimal parameter. A straightfor-
ward way of generalizing this method is to allow the parameter to change at every iteration,

xk+1 = xk + αk(b−Axk). (5.20)

Once again, the problem is to choose the sequence of parameters αk’s. One way is to minimize
a norm of the residual at each iteration. Let µ be an integer. If A is symmetric and positive
definite, then A−µ has the same properties. So, let us introduce the norm

‖rk‖2µ = (rk, A−µrk),

and suppose we want to minimize ‖rk‖2µ. Obviously,

rk+1 = rk − αkArk.

Therefore,

(rk+1, A−µrk+1) = (rk, A−µrk)− 2αk(rk, A1−µrk) + α2
k(rk, A2−µrk).

Hence

αk =
(rk, A1−µrk)

(rk, A2−µrk)
.

Of course, we need to be able to compute αk, so usually one chooses µ = 1 and in that case, we
obtain,

αk =
(rk, rk)

(rk, Ark)
. (5.21)

This method is called the gradient or steepest descent method.

Theorem 5.35. Let A be symmetric positive definite. Then, the steepest descent method
(5.20), (5.21) is convergent.

Proof. We have

(rk+1, A−1rk+1) = (rk, A−1rk)− (rk, rk)2

(rk, Ark)
,

(rk+1, A−1rk+1)

(rk, A−1rk)
= 1− (rk, rk)2

(rk, Ark)(rk, A−1rk)
.

168 5. Classical iterative methods

We then apply the Kantorovitch inequality which shows that

(rk, Ark)(rk, A−1rk)

(rk, rk)2
≤
(√

κ(A) + (
√
κA)−1

2

)2

.

Therefore
(rk+1, A−1rk+1)

(rk, A−1rk)
≤
(
κ(A)− 1

κ(A) + 1

)2

< 1,

0 < ‖rk+1‖2−1 < ‖rk‖2−1,

and rk → 0.

Note that in this method we have the orthogonality relation (rk+1, rk) = 0. One may ask if
the steepest descent method is optimal. The answer is negative as we shall show below.

Consider εk = x− xk, then

εk+1 = (I − αkA)εk,

and

εk =

k−1∏
i=0

(I − αiA)ε0 = Pk(A)ε0,

where Pk(t) is a polynomial of degree k whose value is 1 for t = 0. Of course,

‖εk‖ ≤ ‖Pk(A)‖ ‖ε0‖,

and we may try to minimize ‖Pk(A)‖ to get the smallest value of ‖εk‖ for a given ε0. Suppose
that A has l distinct eigenvalues λ1, . . . , λl, then the characteristic polynomial of A is

l∏
i=1

(λi − λ).

By the Cayley-Hamilton theorem, we have
∏l
i=1(λiI −A) = 0. So, if we choose

αi =
1

λi+1
,

we have Pl(A) = 0 and εl = 0. Of course, as we said before, there is usually no way to easily
obtain the eigenvalues of A. But, suppose that A is symmetric, then there exists an orthogonal
matrix Q and a diagonal matrix Λ such that A = QTΛQ. Then, Pk(A) = QTPk(Λ)Q, and

‖Pk(A)‖ = ‖QTPk(Λ)Q‖ = ‖Pk(Λ)‖ = max
i
|Pk(λi)|.

An upper bound of ‖Pk(A)‖ can be found by considering that, if for all i, λi ∈ [a, b], then

max
i
|Pk(λi)| ≤ max

λ∈[a,b]
|Pk(λ)|.

Therefore,
‖εk‖ ≤ max

λ∈[a,b]
|Pk(λ)| ‖ε0‖,

5.8. Acceleration techniques 169

and the problem amounts to find the polynomial of degree k with Pk(0) = 1 minimizing
maxλ∈[a,b] |Pk(λ)|. The solution to this problem was given in Chapter 1,

Pk(λ) =

Tk

(
a+b−2λ
b−a

)
Tk

(
a+b
b−a

) .

With this choice, we get

‖εk‖ ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖ε0‖,

if
1

αi
=
a+ b

2
+
b− a

2
cos

(
2i− 1

k

π

2

)
, 1 ≤ i ≤ k.

Note that the αi’s depend on k. Usually, one chooses an integer d and uses cyclically the param-
eters αk for k = 1, . . . , d. This method is clearly better than the stationary Richardson method
regarding theoretical convergence but, unfortunately, it was noticed very early that it is very sen-
sitive to roundoff errors. The potential instability is linked to the order we use for the parameter.
Anderssen and Golub [8] studied an ordering due to Lebedev and Finoguenov for which one can
show that the method is stable. The αk’s are used in the order defined by the permutation

χk = (i1, i2, . . . , ik).

Suppose d = 2p, then χ1 = 1. If χ2p−1 = (j1, j2, . . . , j2p−1), we take,

χ2p = (j1, 2
p + 1− j1, j2, 2p + 1− j2, . . . , j2p−1 , 2p + 1− j2p−1).

For example,

χ2 = (1, 2), χ4 = (1, 4, 2, 3), χ8 = (1, 8, 4, 5, 2, 7, 3, 6),

χ16 = (1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11).

The problem of finding the optimal polynomial when A is not positive (or negative) definite was
solved by De Boor and Rice [134]. Opfer and Schober [363] studied the problem when A is
non-symmetric.

This kind of method can be extended in two ways. First, one can introduce a non-singular
matrix M and define

Mxk+1 = Mxk − α(b−Axk). (5.22)

As we have shown that the convergence depends on the condition number, it is natural to choose
M to minimize κ(M−1A). M is called the preconditioning matrix or preconditioner. Different
choices forM will be studied in Chapter 8. The second possible generalization is to seek methods
which use more than one previous iterate.

5.8 Acceleration techniques
Consider the usual splitting method,

Mxk+1 = Nxk + b,

or
xk+1 = Bxk + c,

170 5. Classical iterative methods

where B = M−1N and c = M−1b. We have seen that εk = Bkε0. To accelerate the conver-
gence, a common technique is to average the iterates xk to get another sequence which, hopefully,
will converge faster. Let

yk =

k∑
l=0

αl,kx
l.

We demand
∑k
l=0 αl,k = 1, since if xl = x for all l, we require yk = x. Let

ηk = x− yk =

k∑
l=0

αl,k(x− xl) =

k∑
l=0

αk,lB
lε0 = Pk(B)ε0,

where Pk(t) is a polynomial of degree k with Pk(1) = 1. Once again, we would like to minimize
‖Pk(B)‖. Suppose that B has real eigenvalues belonging to [−ρ, ρ], ρ > 0. The solution of this
minimization problem is

Pk(t) =
Tk(t/ρ)

Tk(1/ρ)
.

When Pk is known, one can compute the coefficients αl,k but it is much better to use the recur-
rence relations of Chebyshev polynomials to avoid storing all the xl vectors. We know that

Tk(t/ρ) = Tk(1/ρ)Pk(t),

but,
Tk+1(x) = 2xTk(x)− Tk−1(x).

Therefore,

Tk+1

(
1

ρ

)
Pk+1(t) =

2t

ρ
Tk

(
1

ρ

)
Pk(t)− Tk−1

(
1

ρ

)
Pk−1(t),

and post multiplying by ε0,

Tk+1

(
1

ρ

)
ηk+1 =

2

ρ
Tk

(
1

ρ

)
Bηk − Tk−1

(
1

ρ

)
ηk−1,

or

yk+1 − x =
2Tk(1

ρ)

ρTk+1(1
ρ)

(Byk − x+ c)−
Tk−1(1

ρ)

Tk+1(1
ρ)

(yk−1 − x).

Noting that [
2Tk(1

ρ)

ρTk+1(1
ρ)
−
Tk−1(1

ρ)

Tk+1(1
ρ)

]
x = x,

we obtain

yk+1 =
2Tk(1

ρ)

ρTk+1(1
ρ)

(Byk + c)−
Tk−1(1

ρ)

Tk+1(1
ρ)
yk−1.

Therefore, the vectors yk can be computed without any knowledge of the xls. Now, one further
simplification can be achieved since

yk+1 =
2Tk(1

ρ)

ρTk+1(1
ρ)

(Byk + c− yk−1) +

(
2Tk(1

ρ)

ρTk+1(1
ρ)
−
Tk−1(1

ρ)

Tk+1(1
ρ)

)
yk−1.

5.9. Stability of classical iterative methods 171

So, this can be written as

yk+1 = ωk+1(Byk + c− yk−1) + yk−1,

with

ωk+1 =
2Tk(1

ρ)

ρTk+1(1
ρ)
, ω1 = 1.

But,

ωk+1 =
2Tk(1

ρ)

2Tk(1
ρ)− ρTk−1(1

ρ)
=

1

1− ρTk−1(1
ρ)

2Tk(1
ρ)

=
1

1− ρ2

4 ωk
.

This shows that we do not need to compute the Chebyshev polynomials to get the coefficients of
the method. This algorithm can be rewritten as

yk+1 = ωk+1(zk + yk − yk−1) + yk−1, (5.23)

Mzk = rk = b−Ayk.

The method is known as the Chebyshev semi-iterative method, see Golub and Varga [243,
244]. When the eigenvalues belongs to [a, b], straightforward modifications show that the method
becomes

yk+1 =
ωk+1

2− (a+ b)
[2zk + (2− (a+ b))(yk − yk−1)] + yk−1,

Mzk = rk,

with

ωk+1 =
1

1− ωk
4w2

, ω2 =
2w2

2w2 − 1
, ω1 = 1, w =

2− (a+ b)

b− a
.

When the matrix A is non-symmetric the parameters can be estimated dynamically by enclosing
the eigenvalues in ellipses (see Manteuffel [331, 332]), although the Chebyshev polynomials
over ellipses are not necessarily optimal.

5.9 Stability of classical iterative methods
The stability of classical iterative methods has not been completely studied. For a summary of
the results, one may refer to Higham [282]. There are (well conditioned) examples for which,
because of roundoff errors, SOR may diverge or stagnate when it is supposed to converge. For
methods derived from a splitting of A, an almost straightforward error analysis can be done, see
Higham [282, 283]. Let

Mxk+1 = Nxk + b− ξk,

be the computed iterates. For the methods we have been examining,

|ξk| ≤ cu(|M | |xk+1|+ |N | |xk|+ |b|) = µk,

where c is a constant. Then the error satisfies

εk+1 = (M−1N)k+1ε0 +

k∑
i=0

(M−1N)iM−1ξk−i.

172 5. Classical iterative methods

From this equation normwise bounds can be derived, see Higham [282, 283]. Let

γx = supk
‖xk‖
‖x‖

,

and q = ‖M−1N‖∞ < 1, then

‖εk+1‖∞ ≤ ‖(M−1N)k+1ε0‖∞ + cu(1 + γx)(‖M‖∞ + ‖N‖∞)‖x‖∞
‖M−1‖∞

1− q
.

Componentwise bounds can also be obtained. Let

θx = supk max
i

(|M |+ |N |)|xk|)i
(|M |+ |N |)|x|)i

,

and c(A) be the smallest ε such that

∞∑
i=0

|(M−1N)iM−1| ≤ ε|A−1|.

Then
|εk+1| ≤ |(M−1N)k+1ε0|+ cu(1 + 2θx)c(A)|A−1|(|M |+ |N |)|x|.

If M−1 ≥ 0, N ≥ 0 then, c(A) = 1. This is the case if M −N is a regular splitting of A. From
this bound, we can deduce, for instance, that ifA is an M-matrix, Jacobi and Gauss-Seidel are
componentwise forward stable. For a backward error analysis, see Higham [282]. The stability
of the steepest descent method was studied by Bollen [49]. The algorithm is backward stable as
long as the condition number is not too large.

5.10 Bibliographical comments
The use of iterative methods for solving linear systems goes back at least to Gauss (1823). Gauss
used iterations to solve small least squares problems. He was not computing the unknowns in
a given a priori order. Jacobi used this method as well as his student Seidel. Seidel refers to
the Gauss-Seidel method in 1874 but advised against its use. Block iterative methods were
introduced at about the same time; Gerling (1843), Seidel (1862, 1874). The relaxation methods
used by Southwell and his co-workers are in the same spirit; they corrected the component having
the largest residual.

Sufficient conditions for convergence of the Gauss-Seidelmethod were given by Nekrasov
in 1885. The theorem proving that Gauss-Seidel converges for a positive definite matrix was
proved at the end of the nineteenth century and was rediscovered by Von Mises and Geiringer
(1929). The converse was proved by Reich (1949). The SOR method was studied by Frankel
(1950) and Young (1950, 1954). Since then there have been many research papers about this
method that is more efficient than Jacobi and Gauss-Seidel methods. This was summarized
in the seminal books by Varga [457] and Young [473].

Aitken (1950) introduced the symmetric Gauss-Seidel method (SSOR with ω = 1). The
SSOR method was described by Sheldon (1955). The block SSOR method was studied by Ehrlich
(1963).

The alternating direction methods were introduced by Peaceman and Rachford (1955) and
also by Douglas and Rachford (1956). For convergence results, see Birkhoff, Young and Varga
(1962).

For the acceleration techniques, see Golub and Varga [243, 244] and Manteuffel [331, 332].

6

The conjugate gradient
and related methods

6.1 Derivation of the method
In Chapter 5 we saw how to accelerate a basic linear iterative method. Suppose now that we start
from a slight generalization of the Richardson method

Mxk+1 = Mxk + α(b−Axk),

where M is a non-singular preconditioning matrix to be chosen later on (see Chapter 8). The
standard Richardson method corresponds to M = I . Then, we get by (5.23),

yk+1 = ωk+1(αzk + yk − yk−1) + yk−1,

Mzk = rk, rk = b−Axk.

A formal generalization of this method is to allow the parameter α to vary with the iteration
number,

xk+1 = ωk+1(αkz
k + xk − xk−1) + xk−1,

Mzk = rk. (6.1)

Let us suppose A and M to be symmetric positive definite. The problem we have to solve
is to choose ωk+1 and αk to get a converging sequence. We develop another method to start
with and compute ωk+1, αk, k = 0, 1, . . . such that the generalized residuals zk are mutually
orthogonal for the scalar product defined by the positive definite matrix M . Independently of the
convergence problem, this is of interest because of the following well known result.

Lemma 6.1. Let M be SPD and zk, k = 0, 1, . . . , n be a sequence in �n such that

(zi,Mzj) = 0, i 6= j. (6.2)

Then, zn = 0.

Proof. The proof is obvious. Since the vectors zk, k = 0, 1, . . . , n− 1 are orthogonal in the
scalar product defined by M , they form a basis of the whole space. Therefore,

zn =

n−1∑
j=0

βjz
j , (zn,Mzn) =

n−1∑
j=0

βj(z
j ,Mzn) = 0.

173

174 6. The conjugate gradient and related methods

Since M is positive definite, this implies that zn = 0.
Of course, this will give us a direct method because (in absence of roundoff errors) since

zn = 0, we have rn = 0 and xn = x, the exact solution of the linear system. But, we shall see in
the following sections that we can efficiently use this method as an iterative one, obtaining (most
of the time) a good approximation of the solution in many fewer than n iterations. Let us now
show that we can construct ωk and αk to satisfy (6.2). We do this by induction. Suppose

(zi,Mzj) = 0, i 6= j, 0 ≤ i, j ≤ k.

From (6.1) it is easy to see that

rk+1 = rk−1 − ωk+1(αkAz
k − rk + rk−1). (6.3)

This can be rewritten as

Mzk+1 = Mzk−1 − ωk+1(αkAz
k −Mzk +Mzk−1). (6.4)

Lemma 6.2. If αk is chosen as

αk =
(zk,Mzk)

(zk, Azk)
,

then, (zk,Mzk+1) = 0.

Proof. Multiplying (6.4) by zk, we have,

(zk,Mzk+1) = (zk,Mzk−1)− ωk+1[αk(zk, Azk)− (zk,Mzk) + (zk,Mzk−1)].

But, by the induction hypothesis (zk,Mzk−1) = 0, so

(zk,Mzk+1) = −ωk+1[αk(zk, Azk)− (zk,Mzk)],

which gives the result if ωk+1 6= 0.

Lemma 6.3. If ωk+1 is chosen as

ωk+1 =
1

1 + αk
(zk−1,Azk)

(zk−1,Mzk−1)

, (6.5)

then, (zk−1,Mzk+1) = 0.

Proof. We multiply (6.4) by zk−1. Then

(zk−1,Mzk+1) = (zk−1,Mzk−1)

−ωk+1

[
αk(zk−1, Azk)− (zk−1,Mzk) + (zk−1,Mzk−1)

]
.

Therefore,

ωk+1 =
(zk−1,Mzk−1)

αk(zk−1, Azk) + (zk−1,Mzk−1)
.

6.1. Derivation of the method 175

Note that if zk 6= 0, then (zk, Azk) 6= 0, so αk can always be computed. For ωk+1 defined
by (6.5), this is not so obvious. We shall prove this in the next section. Moreover, so far we have
not used the hypothesis that A and M are symmetric to compute the coefficients. Let us now
give a cheaper computational expression for ωk+1. Let us split A as A = M −N , then

(zk−1, Azk) = (zk−1, (M −N)zk),

= −(zk−1, Nzk).

By writing (6.4) at iteration k,

Mzk = Mzk−2 − ωk(αk−1(M −N)zk−1 −Mzk−1 +Mzk−2).

Multiplying by zk and using the induction hypothesis, we get

(zk,Mzk) = ωkαk−1(zk, Nzk−1).

But, N is a symmetric matrix (note here the hypothesis comes in) so,

(zk−1, Nzk) =
(zk,Mzk)

ωkαk−1
.

Therefore,

ωk+1 =
1

1− αk(zk,Mzk)
ωkαk−1(zk−1,Mzk−1)

. (6.6)

Formula (6.6) is more efficient than (6.5) since we do not have to compute the additional scalar
product (zk−1, Azk). As the method (6.1) involves two levels of iterations, we need x0 and x−1

to start with. This is overcome by taking ω1 = 1, then

x1 = α0z
0 + x0,

Mz0 = r0,

and we need only to define x0. The first step is only a steepest descent iteration. Now, we must
show that the induction hypothesis about orthogonality holds at level k+1, that is the new vector
is orthogonal not only to the last two, but to all the previous ones.

Theorem 6.4. The induction hypothesis holds at iteration k + 1,

(zk+1,Mzj) = 0, 0 ≤ j < k − 1.

Proof. Multiplying (6.4) by zj , 0 ≤ j < k − 1, we have,

(zj ,Mzk+1) = (zj ,Mzk−1)

−ωk+1[αk(zj , (M −N)zk)− (zj ,Mzk) + (zj ,Mzk−1)].

But, since j < k − 1,
(zj ,Mzk+1) = ωk+1αk(zj , Nzk).

Now, we use the same technique as before and writing (6.4) at iteration j + 1, we get

Mzj+1 = Mzj−1 − ωj+1(αj(M −N)zj −Mzj +Mzj−1).

176 6. The conjugate gradient and related methods

Multiplying by zk and taking into account that j + 1 < k,

ωj+1αj(z
k, Nzj) = 0.

This is where we need the hypothesis that N is symmetric to imply (Nzk, zj) = 0. This shows
that (zj ,Mzk+1) = 0 for all j such that j < k − 1.

This method is known as the preconditioned conjugate gradient (PCG) method. The compu-
tational steps in PCG are,
Let x0 be given for k = 0, 1, . . . until convergence

Mzk = rk(= b−Axk),

αk =
(zk,Mzk)

(zk, Azk)
,

ωk+1 =
1

1− αk
ωkαk−1

(zk,Mzk)
(zk−1,Mzk−1)

, ω1 = 1, (6.7)

xk+1 = xk−1 + ωk+1(αkz
k + xk − xk−1).

Note that rk+1 is usually computed by (6.3) and not as b − Axk. Doing this, we only need
to compute two scalar products and a matrix×vector product at each iteration plus 10n floating
point operations.

So far, we have only shown that zn = 0 and thus xn = x. This particular form of the
method has been popularized by Concus, Golub and O’Leary [118]. We shall see in the following
sections that a certain norm of the error is decreasing as a function of the iteration number and
therefore the method could be used as an iterative one. Before going to that point, let us consider
some extensions and other forms of the method.

6.2 Generalization and second form of PCG
In (6.7), we use the Euclidean scalar product but the method can be easily generalized to any
other scalar product. Let ((., .)) be such a scalar product. The algorithm can be formulated as

Mzk = rk = b−Axk,

αk =
((rk, rk))

((AM−1rk, rk))
,

ωk+1 =
1

1− αk
ωkαk−1

((rk,rk))
((rk−1,rk−1))

, ω1 = 1, (6.8)

xk+1 = xk−1 + ωk+1(αkz
k + xk − xk−1).

We have the following result that gives conditions for (6.8) to compute the solution.

Theorem 6.5. Let A and M be non-singular matrices and suppose AM−1 is self adjoint e.g.,
((AM−1x, y)) = ((x,AM−1y)), ∀x, y and positive definite e.g., ((AM−1x, x)) > 0, ∀x 6= 0
with respect to the given scalar product. Then, using algorithm (6.8) we have xn = x.

Proof. Similar to the proof of Lemmas 6.2, 6.3 and Theorem 6.4.
Note that in Theorem 6.5, the matrix A is not assumed to be symmetric. Supposing M to

be symmetric and using ((x, y)) = (M−1x, y) the method (6.7) is recovered. In the previous
section, PCG was constructed as a formal generalization of acceleration techniques and like an

6.2. Generalization and second form of PCG 177

orthogonalization method. However, PCG can also be viewed as a minimization method. For the
sake of simplicity, let us take M = I . Then, as the matrix A is assumed to be symmetric, it is
well known that finding the solution x of Ax = b is equivalent to minimizing the functional

ϕ(x) =
1

2
(Ax, x)− (x, b).

It is easy to see that the gradient of ϕ is δϕ(x) = Ax − b (this is minus the residual). Let
{p1, p2, ...} be a sequence of vectors and suppose that we already have an approximation xk

for the exact solution x. Then, to improve the approximation, we may try to minimize ϕ in the
direction pk e.g., we look for γ minimizing ϕ(xk + γpk), where γ ∈ �.

Lemma 6.6. The minimum of ϕ(xk + γpk) as a function of γ is given by

γ = γk =
(pk, rk−1)

(pk, Apk)
, rk = b−Axk.

Proof.

ϕ(xk + γpk) =
1

2
(xk + γpk, Axk + γApk)− (xk + γpk, b),

= ϕ(xk) +
1

2
γ2(pk, Apk) + γ(xk, Apk)− γ(pk, b),

= ϕ(xk) +
1

2
γ2(pk, Apk)− γ(rk, pk),

where rk = b − Axk. Therefore, we look at the minimum of this quadratic functional (as a
function of γ) and we get

γk =
(pk, rk)

(pk, Apk)
.

Let xk+1 = xk + γkp
k. Then,

ϕ(xk+1) = ϕ(xk)− 1

2

(pk, rk)2

(pk, Apk)
.

This implies that if we want to obtain a decrease in ϕ, we must have (pk, rk) 6= 0. So far we have
just done a local minimization. The problem we need to solve is the choice of pk to achieve the
global minimization of ϕ. Solution to this problem can be found for instance in Golub-Van Loan
[240]. If the search directions are independent and xk+1 = x0 +span(p0, . . . , pk), the functional
is globally minimized. Let us write

xk+1 = x0 + Pk−1y + γpk,

where the matrix Pk−1 = [p0, . . . , pk−1]. By putting this in the functional, we have

ϕ(xk+1) = ϕ(x0 + Pk−1y) +
γ2

2
(pk, Apk)− γ(pk, r0),

if pk is orthogonal to span(Ap0, . . . , Apk−1). Then, the minimization over y and γ are decou-
pled. The solution of the problem for γ was given in Lemma 6.6. To construct theseA-orthogonal
directions, see [240]. Finally, the algorithm is,

178 6. The conjugate gradient and related methods

Let x0 be given, r0 = b−Ax0. For k = 0, 1, . . .

Mzk = rk, (6.9)

βk =
(zk,Mzk)

(zk−1,Mzk−1)
, β0 = 0,

pk = zk + βkp
k−1,

γk =
(zk,Mzk)

(pk, Apk)
, (6.10)

xk+1 = xk + γkp
k,

rk+1 = rk − γkApk.

We note that we need to compute two scalar products, a matrix-vector product plus 6n floating
point operations at each iteration. We shall show that the two expressions of γk are equivalent
by eliminating pk in (6.10). This minimization method has very interesting properties.

Proposition 6.7. The vectors generated by the method (6.10) are such that

1) (pi, Apj) = 0, i 6= j,

2) (zi,Mzj) = 0, i 6= j,

3) (pi, rj) = 0, i < j.

Proof. The proof is by induction. Suppose that the properties holds for i, j ≤ k − 1,

rk = rk−1 − γk−1Ap
k−1.

Multiplying by pi,
(rk, pi) = (rk−1, pi)− γk−1(Apk−1, pi).

If i < k − 1 then (rk−1, pi) = 0 and (Apk−1, pi) = 0 gives (rk, pi) = 0. If i = k − 1 then

γk−1 =
(rk−1, pk−1)

(Apk−1, pk−1)
,

so (rk, pk−1) = 0. Therefore, (rk, pi) = 0, i ≤ k − 1 proving the third property. Now, we have

pi = zi + βip
i−1,

with i ≤ k − 1. Multiplying by rk gives

(pi, rk) = (zi, rk) + βi(p
i−1, rk).

But, (pi, rk) = 0 and (pi−1, rk) = 0, giving (zi, rk) = 0 for i ≤ k − 1. This proves that
(zi,Mzk) = 0, i < k. Multiplying the definition of pi by ri it is obvious that (pi, ri) = (zi, ri).
Since pk = zk + βkp

k−1, multiplying by rk−1 yields

βk =
(pk, rk−1)

(zk−1, rk−1)
.

Therefore,
(pk, rk−1) = (rk, zk) = (pk, rk) =⇒ (pk, rk−1 − rk) = 0.

6.3. Optimality of PCG 179

But rk = rk−1 − γkApk−1. This shows that (pk−1, Apk) = 0.
The most important fact to note is that the method (6.10) is equivalent to the method (6.7).

Theorem 6.8. Methods (6.7) and (6.10) generate the same iterates (in exact arithmetic).

Proof. This is obvious for k = 0. Then, for k > 0 we can eliminate pk from (6.10) as

pk =
1

γk
(xk+1 − xk).

Therefore,
1

γk
(xk+1 − xk) = zk +

βk
γk−1

(xk − xk−1).

A short manipulation gives

xk+1 = xk−1 + γkz
k +

(
1 +

γkβk
γk−1

)
(xk − xk−1).

So, we can identify both expressions for xk+1,

ωk+1 = 1 +
γkβk
γk−1

,

αk =
γk

1 + γkβk
γk−1

.

With this expression for ωk+1, since γk > 0 and βk > 0, it follows that ωk+1 > 1 and it is
always well defined.

Method (6.10) is usually preferred computationally (as it is less expensive) although, as we
shall see, method (6.7) is of value on parallel computers.

6.3 Optimality of PCG
In this section we shall show that PCG is optimal in a certain sense. Let us use the method in the
form (6.7). Recall that

Mzk+1 = Mzk−1 − ωk+1(αkAz
k −Mzk +Mzk−1).

Since A = M −N , this gives

zk+1 = zk−1 − ωk+1(αk(I −M−1N)zk − zk + zk−1).

Then we have

Lemma 6.9. zk+1 is a polynomial in K,

zk+1 = [I −KPk(K)]z0,

where K = M−1A = I −M−1N and Pk is a kth degree polynomial satisfying

Pk(λ) = αkωk+1 + ωk+1(1− αkλ)Pk−1(λ)− (ωk+1 − 1)Pk−2(λ),

P0(λ) = α0,

P1(λ) = ω2(α0 + α1 − α0α1λ).

180 6. The conjugate gradient and related methods

Proof. The proof is straightforward by induction on k.

Proposition 6.10. Let Pk be the polynomial defined in Lemma 6.9. The iterates of PCG satisfy

xk+1 = x0 + Pk(K)z0.

Proof. We have
xk+1 = xk−1 + ωk+1(αkz

k + xk − xk−1).

By induction and with the help of Lemma 6.9 this is written as

xk+1 = x0 + Pk−2(K)z0

+ωk+1

(
αk[I −KPk−1(K)]z0 + Pk−1(K)z0 − Pk−2(K)z0

)
,

xk+1 = x0 + Pk(K)z0,

because of the recurrence relation satisfied by Pk.
The matrix A being symmetric positive definite, let us introduce the measure of the error in

the energy norm.

E(xk+1) = (A(x− xk+1), x− xk+1) = (rk+1, A−1rk+1) = ‖rk+1‖2A−1 .

Then the main result is the following.

Theorem 6.11. Consider all the iterative methods that can be written as

xk+1 = x0 +Qk(K)z0, x0 = x0, Mz0 = b−Ax0, (6.11)

where Qk is a kth degree polynomial. Of all these methods, PCG is the one which minimizes
E(xk) at each iteration.

Proof. The proof of this very important result requires a few lemmas. Denote the polynomial
Qk as

Qk(λ) =

k∑
j=0

βk+1
j λj .

First, we shall show that the coefficients βk+1
j which minimize E(xk+1) are uniquely defined

and how to compute them. By (6.11),

rk+1 = r0 −A
k∑
j=0

βk+1
j Kjz0.

Hence, if Mzk = rk,

zk+1 = z0 −K
k∑
j=0

βk+1
j Kjz0.

If we denote uj = Kjz0, then

E(xk+1) = (Mz0 −
k∑
j=0

βk+1
j Auj ,K−1z0 −

k∑
l=0

βk+1
l ul) (6.12)

6.3. Optimality of PCG 181

Let us assume the following induction hypothesis,

∀j ≤ k, ∀l < k, l 6= j, (Mzj , ul) = 0,

∀j ≤ k, ∀l ≤ k, l 6= j, (zj ,Mzl) = 0,

∀j ≤ k, rj 6= 0.

Lemma 6.12. The vectors uj , 0 ≤ j ≤ k are linearly independent.

Proof. Suppose there exist αj ∈ �, 0 ≤ j ≤ k such that

k∑
j=0

αju
j = 0.

Multiplying by Mzk, we get αk(Mzk, uk) = 0. But, zk = z0 −
∑k−1
j=0 β

k
j u

j+1 and

(Mzk, zk) = −βkk−1(Mzk, uk).

As (Mzk, zk) 6= 0, βkk−1 6= 0 and (Mzk, uk) 6= 0. Therefore, αk = 0. To show that the other
coefficients are zero, we multiply by Mzk−j , j = 1, . . . , k.

Lemma 6.13. The coefficients βk+1
j which yields the minimum of E(xk+1) are uniquely defined.

Proof. Expanding (6.12) gives

E(xk+1) = (Mz0,K−1z0)− 2

k∑
j=0

βk+1
j (uj ,Mz0) +

k∑
j=0

k∑
l=0

βk+1
j βk+1

l (Auj , ul).

Denote by G the matrix with entries gj,l = (Auj , ul) and by h the vector whose components
are hj = (uj ,Mz0), βk+1 the vector with (βk+1)j = βk+1

j . Then, with these notations we can
rewrite

E(xk+1) = (Mz0,K−1z0)− 2(βk+1, h) + (Gβk+1, βk+1).

We are looking for βk+1 minimizing E(xk+1). This is a quadratic functional and we have
already seen that the solution is given by solving

Gβk+1 = h.

Let us show that G is positive definite which will imply that the minimum is unique. We have

(Gγ, γ) =

k∑
j=0

k∑
l=0

γjγl(Aū
j ūl) =

(
A

(k∑
j=0

γj ū
j

)
,

k∑
l=0

γlū
l

)
.

Since A is positive definite, G is positive definite because if
∑k
j=0 γj ū

j = 0, γj = 0 by
Lemma 6.12 and therefore γ = 0.

Now, we must show that the induction hypothesis holds at level k + 1. We have,

k∑
l=0

(Aūj , ūl)βk+1
l = (ūj ,Mz̄o),

182 6. The conjugate gradient and related methods

because this equation is just the jth row of Gβk+1 = h. So,

(Mz̄o −
k∑
l=0

βk+1
l Aūl, ūj) = 0.

That is to say, (Mz̄k+1, ūj) = 0 ∀j ≤ k. Moreover, ∀j ≤ k,

(z̄k+1,Mz̄j) = (Mz̄k+1, z̄j) = (Mz̄k+1, z̄0 −
j−1∑
l=0

βjl ū
l+1) = 0.

If r̄k+1 = 0, we already get the solution. Now that we have constructed an optimal method we
shall show that it is similar to PCG.

Proof of Theorem 6.11
The proof is by induction. We have x̄0 = x0, suppose that x̄j = xj , j ≤ k. By Proposition 6.10,
PCG gives

zk+1 = z0 −
k∑
j=0

δk+1
j Kuj , uj = Kjz0,

and (6.11) gives

z̄k+1 = z0 −
k∑
j=0

βk+1
j Kuj ,

since ūj = uj . Then,

z̄k+1 − zk+1 = −
k∑
j=0

(βk+1
j − δk+1

j)Kuj .

Since the zj’s are orthogonal, they are linearly independent and we have span (u0, . . . , uk) =
span (z0, . . . , zk). Then, it is obvious that

K−1(z̄k+1 − zk+1) =

k∑
j=0

cjz
j .

By the properties of both methods,

(M(z̄k+1 − zk+1), zj) = 0, ∀j ≤ k.

So,

(M(z̄k+1 − zk+1),

k∑
j=0

cjz
j) = 0,

(M(z̄k+1 − zk+1),K−1(z̄k+1 − zk+1)) = 0.

Since Mzk = rk, we have

(r̄k+1 − rk+1, A−1(r̄k+1 − rk+1)) = 0.

But A−1 is positive definite so r̄k+1 = rk+1. This proves Theorem 6.11.
The proof of Theorem 6.11 could have been done using the form (6.10) of PCG. Recall that

ϕ(xk) =
1

2
(Axk, xk)− (xk, b).

6.4. The convergence rate of PCG 183

But,

E(xk) = (b−Axk, A−1b− xk) = (b, A−1b)− 2(b, xk) + (xk, Axk),

= (b, A−1b) + 2ϕ(xk).

So, if xk minimizes ϕ, it does the same for E. We note that even when preconditioned, PCG
minimizes the A-norm of the error.

6.4 The convergence rate of PCG
Denote the error by εk = x − xk. Then, Aεk = b − Axk = rk = Mzk, hence Kεk = zk ∀k,
and with Lemma 6.9

εk+1 = [I −KPk(K)]ε0,

because,
K[I −KPk(K)] = [I −KPk(K)]K.

The matrix K = M−1A is not symmetric, but we have the following result.

Lemma 6.14. The eigenvalues λi of K are real and positive.

Proof. M being positive definite,M
1
2 is well defined andK is similar to K̂ = M

1
2KM−

1
2 =

M−
1
2AM−

1
2 .

The matrix K̂ is symmetric positive definite by Theorem 1.21. There exists an orthogonal
matrix Q and a diagonal matrix Λ, (Λ)i,i = λi > 0, such that

K̂ = QΛQT , QTQ = I.

Theorem 6.15. Let
ε̄j = Λ

1
2QTM

1
2 εj , ∀j.

Then

E(xk+1) =

n∑
i=1

(1− λiPk(λi))
2(ε̄0

i)
2, (6.13)

where the λi’s are the eigenvalues of K.

Proof.
εk+1 = [I −KPk(K)]ε0,

and
Pk(K) = M−

1
2Pk(K̂)M

1
2 .

Therefore,
εk+1 = M−

1
2 [I − K̂Pk(K̂)]M

1
2 ε0.

Since Pk(K̂) = QPk(Λ)QT ,

εk+1 = M−
1
2QΛ−

1
2 [I − ΛPk(Λ)]Λ

1
2QTM

1
2 ε0.

With the notation we introduced, this is simply

ε̄k+1 = [I − ΛPk(Λ)]ε̄0.

184 6. The conjugate gradient and related methods

Let us compute (ε̄k+1, ε̄k+1). By definition

(ε̄k+1, ε̄k+1) = (Λ
1
2QTM

1
2 εk+1,Λ

1
2QTM

1
2 εk+1),

= (M
1
2 K̂M

1
2 εk+1, εk+1) = (Aεk+1, εk+1).

Therefore,
([I − ΛPk(Λ)]ε̄0, [I − ΛPk(Λ)]ε̄0) = E(xk+1).

Theorem 6.15 is important because it allows us to see PCG as an iterative method. The
polynomial Pk characterizes the method. Note that for k = 0, . . . , n it defines a family of
orthogonal polynomials. From this expression, we can obtain bounds on theA-norm of the error.

Theorem 6.16.
E(xk+1) ≤ max

1≤i≤n
(Rk+1(λi))

2E(x0), (6.14)

for all polynomials Rk+1 of degree k + 1 such that Rk+1(0) = 1

Proof. In Theorem 6.11, we show that the PCG polynomial Pk minimizes E(xk+1). There-
fore, replacing the polynomial Pk in (6.13) by any other kth degree polynomial, we shall get a
greater value. This can be written as

E(xk+1) ≤
n∑
i=1

(Rk+1(λi))
2(ε̄0

i)
2,

for all polynomials Rk+1 of degree k + 1, such that Rk+1(0) = 1, equality holding only if
Rk+1(λ) = 1− λPk(λ). Therefore,

E(xk+1) ≤ max
1≤i≤n

(Rk+1(λi))
2

n∑
i=1

(ε̄0
i)

2.

But, we have already noted that (ε̄0, ε̄0) = E(x0), which proves the result.
Theorem 6.16 has many interesting consequences since we are free to choose the polynomial

Rk+1.

Proposition 6.17.

1) E(xn) = 0,

2) If K has only p distinct eigenvalues then, E(xp) = 0.

Proof. The first item is the finite termination property (in exact arithmetic) that was proven
in Lemma 6.1. To prove this again, we choose

Rk(λ) =

k∏
i=1

(
1− λ

λi

)
.

Hence, Rn(λi) = 0, ∀i, 1 ≤ i ≤ n, so E(xn) = 0. To prove the other assertion, we simply
take into account the distinct eigenvalues in Rk and the result follows.

6.4. The convergence rate of PCG 185

The next result is the most well known bound on theA-norm of the error. It uses the condition
number of K.

Theorem 6.18.
E(xk) ≤ 4(

√
κ− 1√
κ+ 1

)2kE(x0),

where κ = λmax(K)
λmin(K) is the condition number ofK, λmax (resp. λmin) being the greatest (resp. small-

est) eigenvalue of K.

Proof. max1≤i≤n(Rk(λi))
2 is bounded by maxλmin≤λ≤λmax

(Rk(λ))2. For Rk we choose
the kth degree polynomial such that Rk(0) = 1, which minimizes maxλmin≤λ≤λmax

(Rk(λ))2.
The solution to this problem was given in Chapter 1, Theorem 1.63,

Rk(λ) =
Tk(λmin+λmax−2λ

λmax−λmin
)

Tk(λmin+λmax

λmax−λmin
)
.

where Tk are the Chebyshev polynomials. By Theorem 1.63,

max
λmin≤λ≤λmax

|Rk(λ)| ≤ 2

(√
κ− 1√
κ+ 1

)k
.

This proves the theorem.
Therefore, E(xk) is bounded above by a decreasing sequence that converges to 0. As k

tends to infinity, E(xk) which is the square of the A-norm of the error, tends to 0. Moreover
the decrease is monotone. This explains why the method can be regarded as an iterative one. In
practical problems (with suitable preconditioning) one usually gets a very good approximation
to the solution in much fewer than n iterations, see Figure 6.1. Note that the closer κ is to one,
the faster the convergence of the method. Therefore, as a first recommendation, we can try to
construct the preconditioner M such that κ is as close as possible to one. However, we have seen
that the distribution of the whole spectrum influences the convergence of the method. This will
give us also hints for the choice of the preconditioner.

0 10 20 30 40 50 60 70 80
-12

-10

-8

-6

-4

-2

0

Figure 6.1. log10 of the maximum norm of the error with CG for the Poisson problem on a 20× 20 mesh

That the convergence depends on the distribution of all the eigenvalues was already obvious
in Theorem 6.15, but now we are able to obtain bounds for some particular distributions. The
following result was proven by Axelsson [18, 24].

186 6. The conjugate gradient and related methods

0 10 20 30 40 50 60 70 80
-12

-10

-8

-6

-4

-2

0

2

Figure 6.2. log10 of the A-norm of the error with CG for the Poisson problem on a 20× 20 mesh
and bound of Theorem 6.18

Proposition 6.19. Suppose

a ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−m ≤ b ≤ λn−m+1 ≤ · · · ≤ λn,

and let k ≥ m, then

E(xk) ≤ 4

(√ b
a − 1√
b
a + 1

)2(k−m)

.

Proof. In (6.14), we choose

Rk(λ) =

m∏
i=1

(
1− λ

λn−i+1

)Tk−m(a+b−2λ
b−a

)
Tk−m

(
a+b
b−a

) .

Obviously Rk(λi) = 0 for all λi, i = n, n− 1, . . . , n−m+ 1, hence

max
i

(Rk(λi))
2 = max

i=1,...,n−m
(Rk(λi))

2 ≤ max
a≤λ≤b

(Rk(λ))2.

Note that when λ ∈ [a, b], ∣∣∣∣1− λ

λn−i+1

∣∣∣∣ < 1, ∀i = 1, . . .m.

Therefore,

max
a≤λ≤b

(Rk(λ))2 ≤ max
a≤λ≤b

∣∣∣∣Tk−m
(
a+b−2λ
b−a

)
Tk−m

(
a+b
b−a

) ∣∣∣∣,
and the result follows.

This result is useful when a few of the largest eigenvalues are well separated from the others.
In this case, m is small, so we do not lose too much in the exponent and b

a can be much less than
κ = λn

λ1
. The ratio b

a appears as an effective condition number. However, this distribution does

6.4. The convergence rate of PCG 187

not occur too often in problems arising from the discretization of partial differential equations.
But it can be useful when some special preconditioners (the so called modified factorizations)
are used.

If we have a few of the smallest eigenvalues separated from the others, we can try to obtain
the same kind of bounds. Let

0 < λ1 ≤ λ2 ≤ · · · ≤ λp < a ≤ λp+1 ≤ · · · ≤ λn < b.

Then,

E(xk) < 4 max
a≤λ≤b

{ p∏
j=1

|1− λ

λj
|2
}(√ b

a − 1√
b
a + 1

)2(k−p)

E(x0).

Unfortunately for λ ∈ [a, b],
∏p
j=1 |1 −

λ
λj
| can be large. So, this result does not give useful

bounds. H. van der Vorst and A. van der Sluis [448] studied the case of the smallest eigenvalues.
They proved the following result. Let us suppose first that we have one isolated eigenvalue.

Theorem 6.20. Suppose 0 < λ1 < a ≤ λ2 ≤ · · · ≤ λn ≤ b, and let l be an integer l ≤ k which
will be chosen later on. Then,

E(xk) ≤ 4

[
1

Tl(
β
α)

]2(√ b
a − 1√
b
a + 1

)2(k−l)

E(x0),

with β = b− α,

α =
b− λ1

1 + cos(π2l)
.

Proof. For this proof we are looking for a polynomial Ql of degree l for which λ1 is a root,
with Ql(0) = 1 and whose maximum over [λ1, b] is small. From Chapter 1, we can see that the
solution is given by

Ql(λ) =
Tl(

β−λ
α)

Tl(
β
α)

,

with β = b− α and α = b−λ1

1+cos(π2l)
. Since

β =
b cos(π2l) + λ1

1 + cos(π2l)
,

β − λ
α

=
cos(π2l)(b− λ) + λ1 − λ

b− λ1
,

we have

Ql(λ1) =

Tl

(
cos(π2l)

)
Tl(

β
α)

= 0.

Let us take as a polynomial,

Rk(λ) = Ql(λ)

Tk−l

(
a+b−2λ
b−a

)
Tk−l

(
a+b
b−a

) .

188 6. The conjugate gradient and related methods

We are interested in maxi(Rk(λi))
2. Clearly Rk(λ1) = 0. So,

max
i

(Rk(λi))
2 ≤ max

λ∈[λ1,b]
(Ql(λ))2

(√ b
a − 1√
b
a + 1

)2(k−l)

.

But,

max
λ∈[λ1,b]

|Ql(λ)| ≤ 1

Tl(
β
α)
.

To see if we have made an improvement, we need a bound for 1

Tl(
β
α)

. We shall suppose that

λ1 is much less than b (a� b).

Proposition 6.21. When λ1 � b, 1

Tl(
β
α)

is of the order of (b
λ1

) 1
l .

Proof. Let ρ = β
α =

cos θ+
λ1
b

1−λ1b
where θ = π

2l . Then, with our hypothesis,

ρ =
λ1

b
+

(
1 +

λ1

b

)
cos θ +O

((
λ1

b

)2
)

= cos θ +O

(
λ1

b

)
.

So,

Tl(ρ) = Tl(cos θ) + (ρ− cos θ)T ′l (cos θ) +O

((
λ1

b

)2
)
.

But,

ρ− cos θ =
λ1

b
(1 + cos θ) +O

((
λ1

b

)2
)
,

and Tl(cos θ) = 0.
From the properties of the Chebyshev polynomials, it is easy to check that,

(1− cos2 θ)T ′l (cos θ) = lTl−1(cos θ),

so

T ′l (cos θ) =
lTl−1(cos θ)

sin2 θ
,

and

Tl(ρ) =
λ1

b

1 + cos θ

sin2 θ
lTl−1(cos θ) +O

((
λ1

b

)2
)
.

But,

Tl−1(cos θ) = cos((l − 1) arccos(cos θ) = cos((l − 1)θ),

= cos

(
l − 1

l

π

2

)
= sin

(
π

2l

)
= sin θ.

Hence,

Tl(ρ) =
λ1

b

1 + cos θ

sin θ
l +O

((
λ1

b

)2
)
.

6.4. The convergence rate of PCG 189

Since 0 ≤ sin θ
1+cos θ ≤ 1,

E(xk) ≤ 4

[(
b

λ1

)2
1

l2
+O

((
λ1

b

)2)](√ b
a − 1√
b
a + 1

)2(k−l)

E(x0).

This gives us an idea of what the bound looks like when the condition number b
λ1

is large. It is
easily seen that if we allow l to be a real number, the value of l that minimizes the upper bound

is 1
2

√
b
a when b� a. So, this suggests we take l as the closest integer to 1

2

√
b
a . With this value,

the upper bound is almost

16
ab

λ2
1

(√ b
a − 1√
b
a + 1

)2(k−l)

E(x0).

Note that a
λ1

is not necessarily very large. The important thing to note is that the convergence
rate depends on the separation of the two first eigenvalues. This result can be generalized to the
p smallest eigenvalues. The following theorem is due to H. van der Vorst.

Theorem 6.22. Let

0 < λ1 < λ2 < · · · < λp ≤ a ≤ λp+1 ≤ · · · ≤ λn ≤ b

and let lj be integers such that l =
∑p
j=1 lj ≤ k. Then,

E(xk) ≤ 4

(
1∏p

j=1 Tlj (ρj)

)2(√ b
a − 1√
b
a + 1

)2(k−l)

E(x0),

where,

ρj =
b cos π

2lj
+ λj

b− λj
.

A detailed study of the case of isolated eigenvalues has also been done by Axelsson and
Lindskog [24]. These bounds are interesting to understand how PCG works but they are of little
help to predict the number of iterations. We shall see later on that one can compute numerically
bounds of the norm of the error.

Figure 6.3 shows the eigenvalue distributions of four matrices of order 30. The one at the top
(a) is uniform between 0.1 and 100. The second one (b) has one isolated small eigenvalue, 100
has multiplicity five. The third one (c) has one isolated large eigenvalue and 0.1 has multiplicity
five. The last one (d) is a combination of (b) and (c). Figure 6.4 shows the log10 of the A-
norm of the error for this four matrices. One can see that the convergence is faster with isolated
eigenvalues.

It has been observed experimentally that CG exhibits what may be called a superlinear rate
of convergence, that is to say, the convergence becomes faster and faster as CG proceeds, see
Figure 6.1. The explanation of this phenomenon is that the components of the error on the
eigenvectors corresponding to the extreme eigenvalues are rapidly dampened during the iterations
and then, the convergence is faster because the “effective” condition number gets smaller. To

190 6. The conjugate gradient and related methods

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

Figure 6.3. Eigenvalue distributions, top: (a), second: (b), third: (c), bottom: (d)

0 5 10 15 20 25 30
-16

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 6.4. log10 of the A-norm of the error with CG, solid: (a), dashed: (b), dot-dashed: (c), dotted: (d)

make this statement more precise, we shall show that we can derive an approximation of the
extreme eigenvalues as CG proceeds. We have seen before that,

zk+1 = zk−1 − ωk+1(αkKz
k + zk−1 − zk).

This can be rewritten as

Kzk = ck−1z
k−1 + akz

k + bk+1zk+1, (6.15)

with

ck−1 =
1

ωk+1αk
− 1

αk
, ak =

1

αk
, bk+1 = − 1

ωk+1αk
.

Denote by Zk+1 the matrix whose columns are z0, z1, . . . , zk and

Tk+1 =

a0 c0
b1 a1 c1

.
bk−1 ak−1 ck−1

bk ak

 .

6.4. The convergence rate of PCG 191

Lemma 6.23. The relation (6.15) can be rewritten for j = 0, . . . k as

KZk+1 = Zk+1Tk+1 −
1

ωk+1αk
zk+1(ek+1)T ,

where (ek+1)T = (0, 0, · · · , 1).

Proof. This result follows straightforwardly from (6.15).
We have shown that CG gives zn = 0, soKZn = ZnTn. Matrices Zk are of full rank because

vectors zj are mutually orthogonal with respect to M , then

K = ZnTn(Zn)−1.

This proves that K and Tn are similar and therefore have the same eigenvalues. Let Dk be a
diagonal matrix of order k, whose elements are (zj ,Mzj)

1
2 . Then,

(Zk)TMZk = (Dk)2.

Denote Z̃k = M
1
2Zk(Dk)−1. Then,

KZk = KM−
1
2 Z̃kDk.

But,

KZk = ZkTk −
1

ωkαk−1
zk(ek)T .

Multiplying this relation by (Z̃k)TM
1
2 , we get

(Z̃k)TM
1
2KM−

1
2 Z̃kDk = (Z̃k)TM

1
2 (M−

1
2 Z̃kDk)Tk

− 1

ωkαk−1
(Z̃k)TM

1
2Zk(ek)T .

But (Z̃k)TM
1
2 zk = 0 and therefore,

(Z̃k)TM
1
2KM−

1
2 Z̃kDk = DkTk, (6.16)

because (Z̃k)T Z̃k = I . The matrix Tk is similar to (Z̃k)TM−
1
2AM−

1
2 Z̃k which is the projec-

tion of M−
1
2AM−

1
2 onto the space generated by the orthonormal vectors z̃j .

As we shall see in the following sections, (6.16) describes essentially the Lanczos algorithm
(see Parlett [370]). It has been proved by Paige [365] that the eigenvalues µkj of Tk approximate
those ofK as the computation proceeds beginning by the extreme ones. Van der Sluis and van der
Vorst [448] showed that as soon as one of the µkj converges, even moderately, to some eigenvalues
of K, then it behaves as if the component of the error along the corresponding eigenvector does
not exist. This explains the superconvergence property of CG, convergence is better and better
as the algorithm proceeds. Moreover, what is usually most important is the distribution of the
smallest eigenvalues. Figure 6.5 uses the example (b) of Figure 6.3 with one isolated eigenvalue.
It shows the component of the error on the eigenvector corresponding to the smallest eigenvalue
(solid) and on the eigenvector corresponding to the largest eigenvalue (dashed).

On the same example, Figure 6.6 shows at the top, the component of the error on the eigen-
vector corresponding to the smallest eigenvalue and at the bottom the approximate smallest
eigenvalue that can be computed at each CG iteration. We can see that we start getting rid of
this component of the error when the eigenvalue converges (to 0.1 in this case).

192 6. The conjugate gradient and related methods

0 5 10 15 20 25 30
-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 6.5. log10 of the components of the error with CG, solid: smallest eigenvalue, dashed:
largest eigenvalue

0 5 10 15 20 25 30
-20

-15

-10

-5

0

0 5 10 15 20 25 30
0

20

40

60

80

100

Figure 6.6. Top: log10 of the component of the error with CG, bottom: convergence of the smallest
eigenvalue

Bonnet and Meurant [51] proved that if we only assume exact local orthogonality, then CG
still converges and as fast as steepest descent. For the sake of simplicity let us suppose M = I
and that we have

βk =
(rk, rk)

(rk−1, rk−1)
,

(pk, rk+1) = 0,

(pk, rk) = (rk, rk),

(rk+1, rk) = 0.

Lemma 6.24. Supposing only the previous relations, we have

(Apk, pk) = (Ark, rk)− β2
k(Apk−1, pk−1)

and so (Apk, pk) ≤ (Ark, rk).

Proof. We have
Apk = Ark − βkApk−1.

6.5. The Lanczos algorithm 193

Therefore,
(Apk, pk) = (Ark, rk) + 2βk(Ark, pk−1) + β2

k(Apk−1, pk−1),

but
(Ark, pk−1) = (rk, Apk−1) = (pk − βkpk−1, Apk−1).

This shows that (Ark, pk−1) = −βk(Apk−1, pk−1). Therefore, the result holds.

Theorem 6.25. Using local orthogonality, CG converges and we have

E(xk) ≤
(
κ(A)− 1

κ(A) + 1

)2k

E(x0).

Proof. We have
A−1rk+1 = A−1rk − γkpk.

Therefore

E(xk+1) = (A−1rk+1, rk+1)

= (A−1rk, rk+1)− γk(pk, rk+1)

= (A−1rk, rk+1)

= (A−1rk, rk − γkApk)

= (A−1rk, rk)− γk(rk, pk).

Hence

E(xk+1) = E(xk)− ‖rk‖4

(Apk, pk)
≤ E(xk)− ‖rk‖4

(Ark, rk)
.

The proof is ended by using the Kantorovitch inequality.
Note that when using only local orthogonality the upper bound involves κ(A) and not

√
κ(A).

This result shows that if we preserve local orthogonality, the convergence rate could be at worst
that of steepest descent.

6.5 The Lanczos algorithm
Almost as the same time Hestenes and Stiefel developed the CG algorithm [279], Cornelius Lanc-
zos introduced the method that now bears his name (see Lanczos [313, 314]). This method is
well known for computing a few of the extreme eigenvalues of sparse matrices. However, the
Lanczos method can also be used to solve linear systems and, as it turns out, CG is nothing else
than a particular case of the Lanczos method. This algorithm is explained in full details in Par-
lett’s book [370]. We shall mainly follow the exposition of Simon [403]. In this section for the
sake of simplicity, we do not consider preconditioning (M = I).

A being a symmetric matrix, we consider Krylov spaces

Kk(A, b) = span(b, Ab, . . . , Ak−1b).

Generally, Kk(A, b) is of dimension k, {b, Ab, . . . , Ak−1b} being a basis. Unfortunately, this
basis is not well conditioned and it is much better to construct an orthonormal basis of Kk(A, b).
We can use the Gram-Schmidt orthogonalization method to achieve this goal. Suppose we al-
ready have orthogonal vectors {q1, . . . , qk} as a basis for Kk(A, b), then we have to orthogonal-
ize Akb against q1, . . . , qk. This is the same as orthogonalizing Aqk against q1, . . . , qk. It turns

194 6. The conjugate gradient and related methods

out that Aqk is already orthogonal to q1, . . . , qk−2 because of the symmetry of A. We simply
have to orthogonalize Aqk against qk−1 and qk. Let us denote

q̄k = Aqk − δkqk − ηkqk−1,

with δk = (qk, Aqk), ηk = (qk−1, Aqk). To obtain qk+1 the vector q̄k has to be normalized and
it turns out that ‖q̄k‖ = ηk+1. Let

T̄k =

δ1 η2

η2 δ2 η3

.
ηk−1 δk−1 ηk

ηk δk

 ,

then, denoting Qk = [q1, · · · , qk], the relation defining the vectors qk can be written in matrix
form as

AQk −QkT̄k = ηk+1q
k+1(ek)T .

Note the similarity of this relation with the equation in Lemma 6.23. This can also be written as

AQk = Qk+1T̃k,

where

T̃k =

(
T̄k

ηk+1(ek)T

)
,

is a (k + 1) × k upper Hessenberg matrix. Of course, we have QTkAQk = T̄k. T̄k is the
orthogonal projection of A onto Kk(A, b). Therefore, it is natural to compute an approximation
of the solution in Kk(A, b) as xk = QkT̄

−1
k QTk b. That is, we project the right hand side b onto

Kk(A, b), we solve in Kk(A, b) with the projection of A and we take the solution back to the
original space. Note that to compute the approximation we need all the previous basis vectors.
However, we do not have to compute xk at each iteration because we note that QTk b = η1e

1

where e1 is the first column of the identity matrix. Therefore T̄−1
k QTk b is η1 times the first

column of the inverse of the tridiagonal matrix T̄k and the residual is

rk = b−Axk = b−AQkT̄−1
k QTk b = −ηk+1φkq

k+1,

where φk is the kth (last) component of T̄−1
k QTk b (that is η1 times the last component of the first

column of the inverse of T̄k). This implies that

‖rk‖ = ηk+1|φk|.

This gives a handy way of computing the norm of the residual without even computing the vectors
xk. We remark that the vector xk has its residual rk orthogonal to Kk. Let us now consider the
connection with CG. We write the relation AQk −QkT̄k = ηk+1q

k+1(ek)T as

AQk −QkT̄k = Gk,

where the matrix Gk has only the last column being non-zero and proportional to qk+1. Now,
suppose that A is not only symmetric but also positive definite. Then, T̄k = QTkAQk is also
positive definite and there exists a Cholesky factorization T̄k = LkDkL

T
k where Lk is lower

bidiagonal with ones on the diagonal and Dk is diagonal. Then, with a little algebra, we have

AQkL
−T
k D−1

k −QkLk = GkL
−T
k D−1

k .

6.6. A posteriori error bounds 195

We denote Pk = QkL
−T
k . This can be computed as solving PkLTk = Qk. With this notation we

write
APkD

−1
k −QkLk = GkL

−T
k D−1

k .

The matrixL−Tk is an upper triangular matrix with ones on the diagonal, thereforeGkL−Tk = Gk.
If we write the last column of the previous relation, we see that since rk is a scalar multiple of
qk+1, it is a linear combination of rk−1 and Apk (which means that xk is a linear combination of
xk−1 and pk). Moreover, writing LkPTk = QTk , we see that pk is a linear combination of pk−1

and rk. Therefore, up to a scaling, the Lanczos algorithm is identical to CG (without precondi-
tioning). On a more careful examination, we can see that we have the following relationship. In
CG we have

Ark =
1

γk
(rk − rk+1)− βk

γk−1
(rk−1 − rk)

= − 1

γk
rk+1 +

(
1

γk
+

βk
γk−1

)
rk − βk

γk−1
rk−1.

As βk = ‖rk‖/‖rk−1‖, we divide by the norm of rk to get

Aqk+1 =

√
βk+1

γk
qk+2 +

(
1

γk
+

βk
γk−1

)
qk+1 +

√
βk

γk−1
qk,

where

qk+1 = (−1)k
rk

‖rk‖
.

This shows that

δk =
1

γk−1
+
βk−1

γk−2
, β0 = 0, γ−1 = 1,

ηk =

√
βk

γk−1
.

This relationship of the two methods shows why (in principle) we cannot use CG for indefinite
matrices. In that case, it may happen that the Cholesky factorization of T̄k does not exist. We
shall see how to deal with this problem in the following sections.

There is also another interpretation of the Lanczos algorithm. Let B be the matrix whose
columns are Ajb, j = 1, . . . , n − 1. As Lanczos is nothing other than orthogonalizing the
columns of B, we can recursively compute the columns of Qn from those of B. Hence, we
can write Qn = BL−TΠ−1 where L is lower triangular with ones on the diagonal and Π is a
diagonal matrix whose diagonal entries are η1, η1η2, . . . Then, we can write

BTB = LΠ2LT .

It is easy to see that (BTB)i,j = (b, Ai+jb). Therefore, BTB is the matrix of the moments of
A and the Lanczos algorithm is nothing other than the Cholesky factorization of the matrix of
moments in disguise.

6.6 A posteriori error bounds
We have seen that

E(xk) = ‖εk‖2A = (A(x− xk), x− xk) ≤ 4

(√
κ− 1√
κ+ 1

)2k

‖ε0‖2A,

196 6. The conjugate gradient and related methods

where κ is the condition number. However, this is not a very sharp bound and it cannot be used
for stopping the CG iterations as it is usually much too pessimistic. As we have seen εk = A−1rk,
therefore

‖εk‖2A = (rk, A−1rk).

If we want upper and lower bounds on ‖εk‖A, we have to compute bounds for the quadratic
form (rk, A−1rk). This is a special instance of a more general problem that has been considered
by several authors in the past (for a bibliography, see Golub and Meurant [233]) namely: A
being symmetric and positive definite, f being a smooth function and u and v being two given
vectors, compute bounds for a bilinear form (u, f(A)v). In our problem we have u = v = r and
f(x) = 1/x. Let us consider for a while the general problem, following the lines of Golub and
Meurant [233]. Since A = AT , we write A as A = QΛQT , where Q is the orthonormal matrix
whose columns are the normalized eigenvectors of A and Λ is a diagonal matrix whose diagonal
elements are the eigenvalues λi. By definition, we have f(A) = Qf(Λ)QT . Therefore,

uT f(A)v = uTQf(Λ)QT v,

= αT f(Λ)β,

=

n∑
i=1

f(λi)αiβi.

This last sum can be considered as a Riemann-Stieltjes integral

I[f] = uT f(A)v =

∫ b

a

f(λ) dα(λ),

where the measure α is piecewise constant and defined by

α(λ) =

0, if λ < a = λ1,∑i
j=1 αjβj , if λi ≤ λ < λi+1,∑n
j=1 αjβj if b = λn ≤ λ.

When u = v, we note that α is an increasing positive function. A way to obtain bounds for
the Stieltjes integral is to use Gauss, Gauss-Radau and Gauss-Lobatto quadrature formulas, see
Dahlquist, Eisenstat and Golub [126], Golub [230, 231]. The general formula we shall use is

∫ b

a

f(λ) dα(λ) =
N∑
j=1

wjf(tj) +

M∑
k=1

vkf(zk) +R[f],

where the weights [wj]
N
j=1, [vk]Mk=1 and the nodes [tj]

N
j=1 are unknowns and the nodes [zk]Mk=1

are prescribed, see Davis and Rabinowitz [127], Gautschi [215, 216], Golub and Welsch [245].
When u = v, it is known (see for instance Stoer and Bulirsch [424]) that

R[f] =
f (2N+M)(η)

(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)

 N∏
j=1

(λ− tj)

2

dα(λ), a < η < b.

If M = 0, this leads to the Gauss rule with no prescribed nodes. If M = 1 and z1 = a or z1 = b
we have the Gauss-Radau formula. If M = 2 and z1 = a, z2 = b, this is the Gauss-Lobatto
formula. Let us briefly recall how the nodes and weights are obtained in the Gauss, Gauss-Radau

6.6. A posteriori error bounds 197

and Gauss-Lobatto rules. For the measure α, it is possible to define a sequence of polynomials
p0(λ), p1(λ), . . . that are orthonormal with respect to α,∫ b

a

pi(λ)pj(λ) dα(λ) =

{
1, if i = j,

0, otherwise

and pk is of exact degree k. Moreover, the roots of pk are distinct, real and lie in the interval [a, b].
We shall see how to compute these polynomials later on. This set of orthonormal polynomials
satisfies a three term recurrence relationship,

ηj+1pj(λ) = (λ− δj)pj−1(λ)− ηjpj−2(λ), j = 1, 2, . . . , N

p−1(λ) ≡ 0, p0(λ) ≡ 1,

if
∫
dα = 1.
In matrix form, this can be written as

λp(λ) = JNp(λ) + ηN+1pN (λ)eN ,

where
p(λ)T = [p0(λ) p1(λ) · · · pN−1(λ)],

(eN)T = (0 0 · · · 0 1),

JN =

δ1 η2

η2 δ2 η3

.
ηN−1 δN−1 ηN

ηN δN

 .

The eigenvalues of JN (which are the zeros of pN) are the nodes of the Gauss quadrature rule
(i. e. M = 0). The weights are the squares of the first elements of the normalized eigenvectors
of JN , see [245]. We note that all the eigenvalues of JN are real and simple. For the Gauss
quadrature rule (renaming the weights and nodes wGj and tGj) we have

∫ b

a

f(λ) dα(λ) =

N∑
j=1

wGj f(tGj) +RG[f],

with

RG[f] =
f (2N)(η)

(2N)!

∫ b

a

 N∏
j=1

(λ− tGj)

2

dα(λ),

and the next theorem follows.

Theorem 6.26. Suppose f is such that f (2n)(ξ) > 0, ∀n, ∀ξ, a < ξ < b, and let

LG[f] =

N∑
j=1

wGj f(tGj).

Then, ∀N , ∃η ∈ [a, b] such that
LG[f] ≤ I[f],

198 6. The conjugate gradient and related methods

I[f]− LG[f] = RG[f].

Proof. See [424]. The main idea of the proof is to use a Hermite interpolatory polynomial
of degree 2N − 1 on the N nodes which allows us to express the remainder as an integral of
the difference between the function and its interpolatory polynomial and to apply the mean value
theorem (as the measure is positive and increasing).

How can we construct the orthogonal polynomials related to the measure α since we do not
know the distribution of the eigenvalues of A but only a lower bound a and an upper bound b?

For u = v, the solution of this problem is given by the Lanczos algorithm that we restate
below with a slightly different notation. Let h−1 = 0 and h0 be given such that ‖h0‖ = 1. The
Lanczos algorithm is defined by the following relations,

ηj+1h
j = h̄j = (A− δjI)hj−1 − ηjhj−2, j = 1, . . .

δj = (hj−1, Ahj−1),

ηj+1 = ‖h̄j‖.

As we have already seen, the sequence {hj}lj=0 is an orthonormal basis of the Krylov space
Kk(A, h0).

Proposition 6.27. The vector hj is given by hj = Pj(A)h0, where pj is a polynomial of degree
j defined by the three term recurrence

ηj+1pj(λ) = (λ− δj)pj−1j(λ)− ηjpj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1.

Proof. η2h
1 = (A − δ1I)h0 is a first order polynomial in A. Therefore, the proposition is

easily obtained by induction.

Theorem 6.28. If h0 = u, we have

(hk, hl) =

∫ b

a

pk(λ)pl(λ)dα(λ).

Proof. Since the hj’s are orthonormal, we have

(hk, hl) = h0TPk(A)TPl(A)h0

= h0TQPk(Λ)QTQPl(Λ)QTh0

= h0TQPk(Λ)Pl(Λ)QTh0

=

n∑
j=1

pk(λj)pl(λj)(ĥ
j)2,

where ĥ = QTh0. Therefore, the pj’s are the orthonormal polynomials related to α that we
were looking for. For generating the matrix JN that will give us the nodes and weights, we shall
just have to run some steps of the Lanczos algorithm starting with the vector u (normalized if
needed).

To obtain the Gauss-Radau rule (M = 1), we should extend the matrix JN in such a way
that it has one prescribed eigenvalue, see Golub [230]. Assume z1 = a; we wish to construct a

6.6. A posteriori error bounds 199

polynomial pN+1 such that pN+1(a) = 0. From the three-term recurrence relation satisfied by
the polynomials, we must have

0 = ηN+2pN+1(a) = (a− δN+1)pN (a)− ηN+1pN−1(a).

This gives

δN+1 = a− ηN+1
pN−1(a)

pN (a)
.

We have also
(JN − aI)p(a) = −ηN+1pN (a)eN .

Let us denote ω(a) = [ω1(a), · · · , ωN (a)]T with

ωl(a) = −ηN+1
pl−1(a)

pN (a)
l = 1, . . . , N.

This gives δN+1 = a+ ωN (a) and

(JN − aI)ω(a) = η2
N+1e

N .

From these relations we obtain the solution of the problem as: 1) we generate ηN+1 by the
Lanczos process, 2) we solve the tridiagonal system for ω(a) and 3) we compute δN+1. Then
the augmented tridiagonal matrix ĴN+1 defined as

ĴN+1 =

(
JN ηN+1e

N

ηN+1(eN)T δN+1

)
,

will have a as an eigenvalue and gives the weights and the nodes of the corresponding quadrature
rule. Therefore the recipe is to compute as for the Gauss quadrature rule and then to modify the
last step to obtain the prescribed node. For Gauss-Radau the remainder RGR is

RGR[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a

(λ− z1)

 N∏
j=1

(λ− tj)

2

dα(λ).

Again, this is proved by constructing an interpolatory polynomial for the function and its deriva-
tive on the tjs and for the function on z1.

Theorem 6.29. Suppose f is such that f (2n+1)(ξ) < 0, ∀n, ∀ξ, a < ξ < b. Let UGR be defined
as

UGR[f] =

N∑
j=1

waj f(taj) + va1f(a),

waj , v
a
1 , t

a
j being the weights and nodes computed with z1 = a and let LGR be defined as

LGR[f] =

N∑
j=1

wbjf(tbj) + vb1f(b),

wbj , v
b
1, t

b
j being the weights and nodes computed with z1 = b. Then, ∀N we have

LGR[f] ≤ I[f] ≤ UGR[f],

200 6. The conjugate gradient and related methods

and

I[f]− UGR[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a

(λ− a)

 N∏
j=1

(λ− taj)

2

dα(λ),

I[f]− LGR[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a

(λ− b)

 N∏
j=1

(λ− tbj)

2

dα(λ).

Proof. With our hypothesis the sign of the remainder is easily obtained. It is negative if we
choose z1 = a, positive if we choose z1 = b.

Now, consider the Gauss-Lobatto rule (M = 2), with z1 = a and z2 = b as prescribed nodes.
Again, we should modify the matrix of the Gauss quadrature rule, see Golub [230]. Here, we
would like to have

pN+1(a) = pN+1(b) = 0.

Using the recurrence relation for the polynomials, this leads to a linear system of order 2 for the
unknowns δN+1 and ηN+1,(

pN (a) pN−1(a)
pN (b) pN−1(b)

)(
δN+1

ηN+1

)
=

(
a pN (a)
b pN (b)

)
.

Let ω and µ be defined as vectors with components

ωl = − pl−1(a)

ηN+1pN (a)
, µl = − pl−1(b)

ηN+1pN (b)
,

then
(JN − aI)ω = eN , (JN − bI)µ = eN ,

and the linear system can be written(
1 −ωN
1 −µN

)(
δN+1

η2
N+1

)
=

(
a
b

)
,

giving the unknowns that we need. The tridiagonal matrix ĴN+1 is then defined as in the Gauss-
Radau rule. Having computed the nodes and weights, we have∫ b

a

f(λ)dα(λ) =

N∑
j=1

wGLj f(tGLj) + v1f(a) + v2f(b) +RGL[f],

where

RGL[f] =
f (2N+2)(η)

(2N + 2)!

∫ b

a

(λ− a)(λ− b)

 N∏
j=1

(λ− tj)

2

dα(λ).

Then, we have the following obvious result.

Theorem 6.30. Suppose f is such that f (2n)(η) > 0, ∀n, ∀η, a < η < b and let

UGL[f] =

N∑
j=1

wGLj f(tGLj) + v1f(a) + v2f(b).

6.6. A posteriori error bounds 201

Then, ∀N
I[f] ≤ UGL[f],

I[f]− UGL[f] =
f (2N+2)(η)

(2N + 2)!

∫ b

a

(λ− a)(λ− b)

 N∏
j=1

(λ− tGLj)

2

dα(λ).

We remark that we need not always compute the eigenvalues and eigenvectors of the tridiag-
onal matrix. Let YN be the matrix of the eigenvectors of JN (or ĴN) whose columns we denote
by yi and ΛN be the diagonal matrix of the eigenvalues ti which give the nodes of the Gauss
quadrature rule. It is well known that the weights wi are given by (see Wilf [467])

1

wi
=

N−1∑
l=0

p2
l (ti).

It can be easily shown that

wi =

(
(yi)1

p0(ti)

)2

,

where (yi)1 is the first component of yi. But, since p0(λ) ≡ 1, we have wi = ((yi)1)2 =
((e1)T yi)

2.

Theorem 6.31.
N∑
l=1

wlf(tl) = (e1)T f(JN)e1.

Proof.
N∑
l=1

wlf(tl) =

N∑
l=1

(e1)T ylf(tl)y
T
l e

1

= (e1)T

(
N∑
l=1

ylf(tl)y
T
l

)
e1

= (e1)TYNf(ΛN)Y TN e
1

= (e1)T f(JN)e1.

The same statement is true for the Gauss-Radau and Gauss-Lobatto rules. Therefore, in those
cases where f(JN) (or the equivalent) is easily computable (e.g. f(x) = 1/x), we do not need
to compute the eigenvalues and eigenvectors of JN . Generalizations of these results to the case
u 6= v and to block algorithms were introduced in Golub and Meurant [233].

Now, we have most of the necessary machinery to compute lower and upper bounds for the
A-norm of the error. What remains to be seen is how to compute the (1, 1) element of the inverse
of a symmetric tridiagonal matrix. We have

JN =

δ1 η2

η2 δ2 η3

.
ηN−1 δN−1 ηN

ηN δN

 .

202 6. The conjugate gradient and related methods

Let xTN = (0 . . . 0 ηN+1), so that

JN+1 =

(
JN xN
xTN δN+1

)
.

Letting

J̃ = JN −
xNx

T
N

δN+1
,

the upper left block of J−1
N+1 is J̃−1. This can be obtained through the use of the Sherman-

Morrison formula (see Golub and Van Loan [240]),

J̃−1 = J−1
N +

(J−1
N xN)(xTNJ

−1
N)

δN+1 − xTNJ
−1
N xN

.

Let jN = J−1
N eN be the last column of the inverse of JN . With this notation, we have

J̃−1 = J−1
N +

η2
N+1jN j

T
N

δN+1 − η2
N+1(jN)N

.

Therefore, it is clear that we only need the first and last elements of the last column of the inverse
of JN . This can be obtained using the Cholesky factorization of JN . It is easy to check that if
we define

d1 = δ1, di = δi −
η2
i

di−1
, i = 2, . . . , N

then
(jN)1 = (−1)N−1 η2 · · · ηN

d1 · · · dN
, (jN)N =

1

dN
.

Thus, the (1, 1) element of the inverse of JN can be obtained incrementally and it can be com-
bined with the Lanczos iterates. Putting all this together, we have the following,
Algorithm GQL[A, u, l]

Suppose ‖u‖ = 1, the following formulas yield a lower bound bj of uTA−1u by the Gauss
quadrature rule, a lower bound b̄j and an upper bound b̂j through the Gauss-Radau quadrature
rule and an upper bound b̆j through the Gauss-Lobatto quadrature rule.

Let h−1 = 0 and h0 = u, δ1 = uTAu, η2 = ‖(A − δ1I)u‖, b1 = δ−1
1 , d1 = δ1, c1 = 1,

d̂1 = δ1 − a, d̄1 = δ1 − b, h1 = (A− δ1I)u/η2.
Then for j = 2, . . . , l we compute

δj = hj−1TAhj−1,

h̃j = (A− δjI)hj−1 − ηjhj−2,

ηj+1 = ‖h̃j‖,

hj =
h̃j

ηj+1
,

bj = bj−1 +
η2
j c

2
j−1

dj−1(δjdj−1 − η2
j)
,

dj = δj −
η2
j

dj−1
,

6.6. A posteriori error bounds 203

cj = cj−1
ηj
dj−1

,

d̂j = δj − a−
η2
j

d̂j−1

,

d̄j = δj − b−
η2
j

d̄j−1
,

δ̂j = a+
η2
j+1

d̂j
,

δ̄j = b+
η2
j+1

d̄j
,

b̂j = bj +
η2
j+1c

2
j

dj(δ̂jdj − η2
j+1)

,

b̄j = bj +
η2
j+1c

2
j

dj(δ̄jdj − η2
j+1)

,

δ̆j =
d̂j d̄j

d̄j − d̂j

(
b

d̂j
− a

d̄j

)
,

η̆2
j+1 =

d̂j d̄j

d̄j − d̂j
(b− a),

b̆j = bj +
η̆2
j+1c

2
j

dj(δ̆jdj − η̆j+1

2

).

Note that the bulk of the computations in Algorithm GQL is located in the matrix×vector product
Ahj−1. This algorithm can be used not only with iterative methods but whenever we have an
approximation x̄ of the solution of Ax = b. We compute the residual r = b − Ax̄, normalize
it u = r/‖r‖ and run CGQL. Numerical experiments in Golub and Meurant [234] show that
this method is quite efficient. However, this algorithm does not make much sense when the
approximate solution is computed by CG. As the Lanczos algorithm and CG are equivalent, it
would be strange to use the Lanczos method starting from CG residuals. Instead, it was proposed
in Golub and Meurant [234] to use the following formula,

‖εk‖2A = ‖x− xk‖2A = (r0, A−1r0)− ‖r0‖2(J−1
k)1,1

= ‖r0‖2((J−1
n)1,1 − (J−1

k)1,1). (6.17)

where Jk is the tridiagonal matrix of the Lanczos coefficients. Formula (6.17) was already used
in Golub and Strakoš [238] for reconstructing theA-norm of the error when CG has converged but
the (1, 1) element of the inverse of the tridiagonal matrix was computed by means of continued
fractions. A round off error analysis given in [238] shows that below a certain value of ‖εk‖2A,
no more useful information can be obtained from this algorithm. Formula (6.17) has also been
used in Fischer and Golub [193] but there, the computations of ‖εk‖A were not done below 10−5

and the same difficulties arise as in [6]. It has been shown in Golub and Meurant [234] that these
difficulties can be overcome and that reliable estimates of ‖εk‖A can be computed whatever the
value of the norm is.

204 6. The conjugate gradient and related methods

Of course, (6.17) cannot be used directly as, at CG iteration k, we do not know (J−1
n)1,1.

But it is known that (J−1
k)1,1 → (J−1

n)1,1. So, we shall use the current value of (J−1
k)1,1 to

approximate the final value. Let bk be the computed value of (J−1
k)1,1. This is obtained in an

additive way by using the Sherman-Morrison formula. Let d1 = δ1 and

di = δi −
η2
i

di−1
, i = 2, . . . , k

then, let

(jk)1 = (−1)k−1 η2 · · · ηk
d1 · · · dk

, (jk)k =
1

dk
.

Using these results, we have

fk =
η2
kc

2
k−1

dk−1(δkdk−1 − η2
k)
, bk = bk−1 + fk.

Note that by using the definition of dk, fk can be computed as c2k/dk. Since Jk is positive
definite, this shows that fk > 0. Let sk be the estimate of ‖εk‖2A we are seeking and d be a
positive integer (to be named the delay), at CG iteration number k, we set

sk−d = ‖r0‖2(bk − bk−d).

This will give us an estimate of the error d iterations before the current one. However, it was
shown in Golub and Meurant [234] that if we compute bk and use this formula straightforwardly,
there exists a kmax such that if k > kmax then, sk = 0. This happens because, when k is large
enough, ηk+1/dk < 1 and ck → 0 and consequently fk → 0. Therefore, when k > kmax, bk =
bkmax. But, we can compute sk−d in another way as we just need to sum the last d values of fj .
The algorithm computing the iterates of CG and estimates from the Gauss (sk−d), Gauss-Radau
(sk−d and s̄k−d) and Gauss-Lobatto (s̆k−d) rules is the following (with slight simplifications
from [234]),
Algorithm CGQL

let x0 be given, r0 = g −Ax0, p0 = r0, β0 = 0, γ−1 = 1, c1 = 1,
for k = 1, . . . until convergence

γk−1 =
(rk−1, rk−1)

(pk−1, Apk−1)
,

δk =
1

γk−1
+
βk−1

γk−2
,

if k = 1 —————————————————–

f1 =
1

δ1
,

d1 = δ1,

d̄1 = δ1 − a,

d1 = δ1 − b,

else ——————————————————–

ck = ck−1
ηk
dk−1

,

6.6. A posteriori error bounds 205

dk = δk −
η2
k

dk−1
,

fk =
η2
kc

2
k−1

dk−1(δkdk−1 − η2
k)

=
c2k
dk
,

d̄k = δk − a−
η2
k

d̄k−1
= δk − δ̄k−1,

dk = δk − b−
η2
k

dk−1

= δk − δk−1

end ———————————————————

xk = xk−1 + γk−1p
k−1,

rk = rk−1 − γk−1Ap
k−1,

βk =
(rk, rk)

(rk−1, rk−1)
,

ηk =

√
βk

γk−1
,

pk = rk + βkp
k−1,

δ̄k = a+
η2
k

d̄k
,

δk = b+
η2
k

dk
,

δ̆k =
d̄kdk
dk − d̄k

(
b

d̄k
− a

dk

)
,

δ̆2
k =

d̄kdk
dk − d̄k

(b− a),

f̄k =
η2
kc

2
k

dk(δ̄kdk − η2
k)
,

f
k

=
η2
kc

2
k

dk(δkdk − η2
k)
,

f̆k =
η̆2
kc

2
k

dk(δ̆kdk − η̆2
k)
,

if k > d —————————————————–

tk =

k∑
j=k−d+1

fj ,

sk−d = ‖r0‖2tk,

s̄k−d = ‖r0‖2(tk + f̄k),

sk−d = ‖r0‖2(tk + f
k
),

206 6. The conjugate gradient and related methods

s̆k−d = ‖r0‖2(tk + f̆k)

end ———————————————————–
In this algorithm a and b are lower and upper bounds of the smallest and largest eigenvalues

of A. Note that the value of sk is independent of a and b, s̄k depends only on a and sk only on
b. Let us now prove that this algorithm does give lower and upper bounds for the A-norm of the
error.

Lemma 6.32. Let Jk, Jk, J̄k and J̆k be the tridiagonal matrices of the Gauss, Gauss-Radau
(with b and a as prescribed nodes) and the Gauss-Lobatto rules. Then, if 0 < a ≤ λmin(A)
and b ≥ λmax(A), ‖r0‖(J−1

k)1,1, ‖r0‖(J−1
k)1,1 are lower bounds of ‖ε0‖2 = (r0, A−1r0),

‖r0‖(J̄−1
k)1,1 and ‖r0‖(J̆−1

k)1,1 are upper bounds of (r0, A−1r0).

Proof. See Golub and Meurant [234]. The proof is obtained easily as we know the sign of
the remainder in the quadrature rules.

Note that Jk and J̄k are of order k + 1 and J̆k is of order k + 2. We have that f̄k > f
k

and
therefore, δ̄k < δk.

Theorem 6.33. At iteration number k of CGQL, sk−d and sk−d are lower bounds of ‖εk−d‖2A,
s̄k−d and s̆k−d are upper bounds of ‖εk−d‖2A.

Proof. We have
‖εk−d‖2A = ‖r0‖2((J−1

n)1,1 − (J−1
k−d)1,1)

and
sk−d = ‖r0‖2((J−1

k)1,1 − (J−1
k−d)1,1).

Therefore,
‖εk−d‖2A − sk−d = ‖r0‖2((J−1

n)1,1 − (J−1
k)1,1) > 0,

showing that sk−d is a lower bound of ‖εk−d‖2A. The same kind of proof applies for the other
cases since, for instance,

s̄k−d = ‖r0‖2((J̄−1
k)1,1 − (J−1

k−d)1,1).

Therefore, the quantities that we are computing in CGQL are indeed upper and lower bounds
of the A-norm of the error. It turns out that the best bounds are the ones computed by the Gauss-
Radau rule. Figure 6.7 shows the estimates computed for the Poisson model problem.

The lower bound sk is independent of the extreme eigenvalues a and b. However, to compute
the upper bound s̄k we need an estimate of the smallest eigenvalue ofA. We can see that s̄k →∞
if a→ 0. Therefore, if we take a value of a that is too small, we could obtain a large overestimate
of the A-norm. Of course, there are cases where we can obtain good analytic estimates of the
smallest eigenvalue, for example if the matrix A arises from finite element methods. However,
as we are using CG we can obtain numerical estimates of the smallest eigenvalue when running
the algorithm. The extreme eigenvalues of Jk are approximations of the extreme eigenvalues of
A that get closer and closer as k increases. Therefore, we propose the following algorithm. We
start the CGQL iterations with a = a0 an underestimate of λmin(A). An estimate of the smallest
eigenvalue can be easily obtained by inverse iteration (see Golub and Van Loan [240]) as, for
computing the bounds of the norm, we already compute incrementally the Cholesky factorization
of Jk. The smallest eigenvalue of Jk is obtained by repeatedly solving tridiagonal systems. We

6.6. A posteriori error bounds 207

0 50 100 150
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 6.7. log10 of the A-norm of the error (dotted line) and the estimate of the Gauss rule
(solid) for d = 2

use a fixed number na of (inner) iterations of inverse iteration at every CG iteration, giving an
estimate µk. When µk is such that

|µk − µk−1|
µk

≤ εa,

with a prescribed εa, we switch by setting a = µk, we stop computing the eigenvalue estimate
and we go on with CGQL. Numerical experiments in Golub and Meurant [234] and Meurant [348]
show that these algorithms are really efficient at computing lower and upper bounds that can be
used to reliably stop the CG iterations.

0 50 100 150
-14

-12

-10

-8

-6

-4

-2

0

2

4

Figure 6.8. log10 of the A-norm of the error (solid), example 2, dashed: adaptive algorithm, d = 20

This method is easily extended to PCG by using the formula

‖εk‖2A = (r0, z0)((J−1
n)1,1 − (J−1

k)1,1).

The computation of the Euclidean norm (l2-norm) is more complicated as there is no such for-
mula as (6.17) for the l2-norm. It can be computed by looking at the elements of J−2

N . However,
we shall use another technique introduced by Bai and Golub [32] for computing estimates of the
trace of the inverse of a matrix. Consider a given iteration k of CG and for simplicity let r = rk

and

µp =

∫ b

a

λp dα(λ) = (r,Apr).

208 6. The conjugate gradient and related methods

Note that we know µ1, µ0. The moment µ1 can be computed during CG iterations by computing
Ark. Then, Apk is computed recursively by Apk = Ark + βkAp

k−1 to save a matrix multiply
at the expense of storing one more vector. Moreover, we know upper and lower bounds of µ−1.
We are interested in computing estimates of µ−2. We use a one point Gauss-Radau formula to
compute an estimate µ̃−2. We have

µ̃p = w0t
p
0 + w1t

p
1,

where t0 = a or b is the prescribed node. Moreover,

cµ̃p + dµ̃p−1 − µ̃p−2 = 0,

t0 being a solution of cξ2 + dξ− 1 = 0. In fact, we know the exact values of µ̃1 = µ1 = (r,Ar)
and µ̃0 = µ0 = (r, r). Then, (

c
d

)
=

(
µ1 µ0

t20 t0

)−1(
µ̃−1

1

)
.

This gives

c =
1

µ1t0 − µ0t20
(t0µ̃−1 − µ0),

d =
1

µ1t0 − µ0t20
(µ1 − t20µ̃−1).

Finally,

µ̃−2 =
1

µ1t0 − µ0t20
[(t0µ̃−1 − µ0)µ0 + (µ1 − t20µ̃−1)µ̃−1].

If we knew the exact value µ−1, setting t0 = a would give an upper bound and t0 = b a lower
bound. We can compute two estimates of µ−2 by taking t0 = a and an upper bound of µ−1 from
the Gauss-Radau rule for (r,A−1r) as well as t0 = b and a lower bound of µ−1. Numerical
experiments are given in Meurant [348].

6.7 The Eisenstat’s trick
As we shall see in Chapter 8, there are many preconditioners that can be written as

M = (∆ + L)∆−1(∆ + LT),

where A = D + L+ LT , D and ∆ being diagonal matrices and L being the strictly lower trian-
gular part of A. S.C. Eisenstat [172] took advantage of this to derive an efficient implementation
saving many floating point operations. The linear system Ax = b is equivalent to

[(∆ + L)−1A(∆ + L)−T](∆ + LT)x = (∆ + L)−1b,

which we denote as Âx̂ = b̂. Applying PCG to Ax = b with M as a preconditioner is the same
as using it on Âx̂ = b̂ with a preconditioner M̂ = D̂−1. The trick is used for computing Âp̂k as
we have

Âp̂k = (∆ + L)−1[(∆ + L) + (∆ + L)T − (2∆−D](∆ + L)−T p̂k,

= (∆ + L)−1p̂k + (∆ + L)−1[p̂k − D̃(∆ + L)−T p̂k].

6.8. The Conjugate Residual method 209

with D̃ = 2∆−D. Therefore, if we define t̂k = (∆ + L)−T p̂k, we have

Âp̂k = t̂k + (∆ + L)−1(p̂k − D̃t̂k).

This requires 2n+ nz(A) floating point operations, where nz(A) is the number of non-zeros in
A. The total cost for this PCG implementation is 8n+nz(A) versus 6n+2nz(A) for the classical
implementation. An additional n words of storage is also required. The savings depend on the
structure of A. If nz(A) = cn, the larger is c, the larger the savings.

6.8 The Conjugate Residual method
This method (CR) is constructed by requiring the residuals to beA-orthogonal, (ri, Arj) = 0, i 6=
j. It turns out that the corresponding iterates xk minimize the Euclidean norm (l2-norm) of the
residual

‖b−Axk‖ = min{‖b−Ay‖, y ∈ x0 +Kk(A, r0)}.

Note that here we minimize the l2-norm of the residual when CG deals with the A-norm of the
error, that is the A−1-norm of the residual. For the derivation of the algorithm, see Chandra
[103], Golub and Van Loan [240] or Fischer [192]. For the sake of simplicity, we do not include
a preconditioner. The algorithm is the following,

Let x0 be given, r0 = b−Ax0. For k = 0, 1, . . .

βk =
(rk, Ark)

(rk−1, Ark−1)
, β0 = 0,

pk = rk + βkp
k−1,

Apk = Ark + βkAp
k−1,

γk =
(rk, Ark)

(Apk, Apk)
,

xk+1 = xk + γkp
k,

rk+1 = rk − γkApk.

This algorithm is well defined ifA is positive definite. Otherwise, there can be problems comput-
ing the denominator of βk. In the case whereA is indefinite, we shall see a stable implementation
later on. The conjugate residual method can be generalized by minimizing ‖rk‖Aµ−1 , see Chan-
dra [103].

6.9 SYMMLQ
We have seen that CG can be derived from the Lanczos algorithm when A is symmetric and
positive definite by using the Cholesky factorization of the tridiagonal matrix T̄k. When A is
symmetric but not positive (or negative) definite (that is, A has some negative and some positive
eigenvalues), the Cholesky factorization may or may not exist and we can eventually get a zero
pivot. In any case, the factorization may be unstable. One way to obtain a stable factorization of
T̄k would be to use eventually 2× 2 pivots. This gives rise to a method known as SYMMBK. Paige
and Saunders [366, 367] proposed instead using an LQ factorization of T̄k. They named their
algorithm SYMMLQ. Remember that the “CG” solution is obtained by

T̄ky
k = η1e

1, xkCG = Qky
k.

210 6. The conjugate gradient and related methods

Let us write the factorization as

T̄k = L̄kZk, ZTk Zk = I,

with L̄k being lower triangular. The matrix Zk is not constructed explicitly but as the product of
matrices of plane rotations. We have

T̄k =

δ1 η2

η2 δ2 η3

.
ηk−1 δk−1 ηk

ηk δk

 ,

Let us look at the first steps of the reduction to triangular form. For the sake of simplicity, we
consider T̄4,

T̄4 =

δ1 η2

η2 δ2 η3

η3 δ3 η4

η4 δ4

 .

To zero the element in position (1, 2), we multiply by a rotation matrix we denote by Z1,2:

Z1,2 =

c1 s1

s1 c2
1

1

 .

To annihilate the (1, 2) element, we must have: s1δ1 = c1η2. Let γ1 =
√
δ2
1 + η2

2 , we take
s1 = η2/γ1, c1 = δ1/γ1 and then

T̄4Z1,2 =

γ1

ω2 γ̄2 η3

π3 ω̄3 δ3
η4 δ4

 ,

with γ̄2 = (η2δ1δ2)/γ1, π3 = s1η3, ω̄3 = −c1η3. Note that we have created a fill-in in position
(3, 1). For the next step, we multiply by

Z2,3 =

1

c2 s2

s2 −c2
1

 .

As a result, we obtain

T̄4Z1,2Z2,3 =

γ1

ω2 γ2

π3 ω3 γ̄3

π4 ω̄4 δ4

 ,

γ2 =
√
γ̄2

2 + η2
3 , s2 = η3/γ2, c2 = γ̄2/γ2, γ̄3 = (η3ω̄3 − γ̄2δ3)/γ2, ω̄4 = −c2η4, π4 =

s2η4. Now, the process is clear, Zj,j+1 differs from the identity only in the elements zj,j =
−zj+1,j+1 = cj = cos θj , zj,j+1 = zj+1,j = sj = sin θj and

T̄kZ1,2 · · ·Zk−1,k = TkZ
T
k = L̄k =

γ1

ω2 γ2

π3 ω3 γ3

.
πk ω4 γ̄k

 .

6.9. SYMMLQ 211

The last rotation is defined by

γk =
√
γ̄2
k + η2

k+1, sk =
ηk+1

γk
, ck =

γ̄k
γk
.

We have also ω̄k+2 = −ckηk+2, ωk+1 = ω̄k+1ck + skδk+1, πk+2 = skηk+2. Let us define
Lk as being identical to L̄k except for the (k, k) element which is replaced by γk. Note that the
principal minor of order k − 1 of L̄k is Lk−1. Following Paige and Saunders [366], we denote

W k = [w1 · · ·wk−1 w̄k] = [Wk−1 w̄
k] = QkZ

T
k ,

z̄k = (ζ1, . . . , ζk−1, ζ̄k)T = ((zk−1)T , ζ̄k)T = Zky
k.

With this notation,
L̄kz̄

k = η1e
1, xkCG = W̄kz̄

k.

As we have L̄kz̄k = η1e
1 and Lkzk = η1e

1 we get

ζk = ζ̄k
γ̄k
γk

= ζ̄kck.

By looking at the last two columns of the matrix equality W̄k+1 = Qk+1Z
T
k+1, we see that, as

W̄k+1 = [Wk w̄
k+1],

[w̄k qk+1]

(
ck sk
sk −ck

)
= [wk w̄k+1], w̄1 = q1.

We do not want to compute xkCG at each iteration since L̄k can be singular. However, Lk is
non-singular as long as ηk+1 6= 0, so Zk is always well defined. Therefore Paige and Saunders
chose to compute and update xkS = Wkz

k. Clearly, we have the update formula

xkS = xk−1
S + ζkw

k,

wk is obtained by applying the plane rotation to w̄k and qk+1. The CG iterate can be obtained (if
it exists) through

xk+1
CG = xkS + ζ̄k+1w̄

k+1.

Paige and Saunders [366] proved that the residual rkCG = b−AxkCG is given by

rkCG = −η1s1 · · · sk
ck

qk+1.

Therefore, the norm of the residual is available to stop the iteration and we can compute xk+1
CG

from xkS . The Paige and Saunders implementation of the algorithm is the following.
Let x0 be given, r0 = b − Ax0, d1 = ‖r0‖, q1 = r0/d1, δ1 = (q1, Aq1), θ = δ1, ν = 0,

q̄ = Aq1 − δ1q1, w1 = Aq1, η2 = ‖q̄‖, q2 = q̄/η2, γ̄ = δ1, ω̄ = η2,
for k = 2, . . .

δk = (Aqk, qk),

q̄ = Aqk − δkqk − ηkqk−1,

ηk+1 = ‖q̄‖, qk+1 = q̄/ηk+1,

γ =
√
γ̄2 + η2

k, c = γ̄/γ, s = ηk/γ,

ω = cω̄ + sδk, γ̄ = sω̄ − cδk, π = sηk+1, ω̄ = −cηk+1,

212 6. The conjugate gradient and related methods

ζ = θ/γ, σ = cζ, τ = sζ,

xk+1 = xk + (σwk + τqk+1),

wk+1 = swk + cqk+1,

θ = ν − ωζ, ν = −πζ.
A similar algorithm is discussed in Fischer [192] using a QR factorization instead of the LQ
factorization of the Paige and Saunders method. Both methods are theoretically equivalent.

6.10 The minimum residual method
We shall use the Lanczos vectors to derive an implementation of the CR algorithm when the
matrix A could be indefinite in the same way as we derive SYMMLQ from CG. One way to do this
is to write xk = x0 +Qky and

‖rk‖ = ‖b−A(x0 +Qky)‖ = ‖r0 −AQky‖
= ‖Qk+1(η1e

1 − T̃ky)‖ = ‖η1e
1 − T̃ky‖.

Then, one can use a QR factorization of the (k + 1) × k matrix T̃k to obtain the solution. A
generalization of this will be considered later on in Chapter 7 when A is non-symmetric. For the
time being, let us consider the approach of Paige and Saunders [366]. The minimum residual
l2-norm can also be found by solving the projected normal equations,

QTkA
2Qky

k = QTkAb, xk = Qky
k.

However, using the orthogonality of the Lanczos vectors, we have

QTkA
2Qk = T̄ 2

k + η2
k+1e

k(ek)T ,

QTkAb = η1T̄ke
1.

Using the LQ factorization of T̄k, we have T̄ 2
k + η2

k+1e
k(ek)T = LkL

T
k . Then,

LkL
T
k y

k = η1L̄kZke
1.

But L̄k differs only from Lk in the (k, k) element. Thus we can write L̄k = LkDk where Dk is
equal to the identity matrix of order k except for the (k, k) element which is ck. Then,

LTk y
k = η1DkZke

1.

Let us denote tk = η1DkZke
1. As Zk = Zk−1,k · · ·Z1,2, it can be shown easily that

tk1 = η1c1, tkj = η1s1s2 · · · sj−1cj , j = 2, . . . , k

Then, the approximation is computed in the following way. Let Vk = QkL
−T
k . Clearly, Vk can

be computed column by column starting from the first one and

xkM = Qky
k = QkL

−T
k LTk y

k = Vkt
k.

It is also clear that
xkM = QkL

−T
k (η1DkZke

1).

This implementation is known as MINRES. The conjugate gradient iterates (when they exist) can
be computed from the minimum residual ones as xkCG = QkL

−T
k LTk y

k = MkL
T
k y

k. Some
other methods were developed for indefinite linear systems for instance, the methods devised by
Fridman and Fletcher, see Fischer [192] for details.

6.11. Hybrid algorithms 213

6.11 Hybrid algorithms
Hybrid methods were introduced by Brezinski and Redivo-Zaglia [65]. The principle is quite
simple. Suppose we have two approximations x1 and x2 of the solution of Ax = b (slightly
changing our standard notations), we would like to combine them as

y = αx1 + (1− α)x2

to obtain a better approximation. This is done by requiring the parameter α to minimize the norm
of the residual r = b−Ay. If r1 and r2 are the corresponding residuals, it is easy to see that we
must choose

α = − (r1 − r2, r2)

(r1 − r2, r1 − r2)
.

This choice gives

(r, r) ≤ min{(r1, r1), (r2, r2)},

as

(r, r) = (r1, r1)− (r1 − r2, r1)2

(r1 − r2, r1 − r2)
,

(r, r) = (r2, r2)− (r1 − r2, r2)2

(r1 − r2, r1 − r2)
.

Many different applications were proposed in [65] (see also [64]). Suppose we have two se-
quences of approximations xk1 and xk2 , the combination being denoted by yk then, according to
[65], we can

- compute xk1 and xk2 by two different iterative methods. The cost is the sum of the costs of
both methods or sometimes lower if both methods are related,

- compute xk1 and take xk2 = xk−1
1 . If a splitting method is used, this leads to semi-iterative

algorithms. If CG is used, then

‖rk‖ ≤ min{‖rk1‖, ‖rk−1‖},

- compute xk1 and take xk2 = yk−1. Then, the norm of the residual is monotonely decreasing
and the algorithm is called a smoothing procedure. This was introduced by Schönauer and
his co-workers, see Weiss [465],

- compute xk1 from yk−1 and take xk2 = yk−1. In this case, if xk1 is the Gauss-Seidel
sequence we obtain the SOR iterates (with a non-optimal parameter),

- compute xk1 by some method and xk2 from xk1 .

Numerical experiments in [64] show that smoothing methods are efficient in getting rid of the
wriggles in the convergence histories of some methods. Moreover, there are cheap and easy to
implement, so they must be considered as interesting complements to most iterative methods.
However, it is useless to apply residual smoothing to algorithms that minimize the norm of the
residual.

214 6. The conjugate gradient and related methods

6.12 Roundoff errors of CG and Lanczos
It has been known since the discoveries of CG and Lanczos in the beginning of the fifties that
these methods are prone to instabilities. There are plenty of examples (even of small sizes) for
which CG takes much more than n iterations to reach an acceptable level of convergence. In
fact, it is this problem that caused CG to be discarded as a direct method. In exact arithmetic the
CG residuals (or the Lanczos vectors) are constructed to be orthogonal. What happens in finite
precision computation is that the orthogonality of the residuals is gradually lost and moreover
things get worse and worse as the algorithm proceeds. However, we have seen in Theorem 6.25
that using only local orthogonality (which must be verified up to working precision) then CG
converges as fast as steepest descent (whose roundoff properties have been analyzed by Bollen
[49]). Figure 6.9 shows the convergence curve with CG for an example designed by Z. Strakoš.
The matrix is diagonal with eigenvalues given by

λi = a+
i− 1

n− 1
(b− a)ρn−i, i = 1, . . . , n

The computation uses n = 48, a = 0.1, b = 100 and ρ = 0.875. One can see that it takes many
more than 48 iterations to get a small error.

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

Figure 6.9. log10 of the A-norm of the error with CG for the Strakoš example: n = 48, a =
0.1, b = 100, ρ = 0.875

As CG is a non-linear algorithm (because of the scalar products), it is not easy to analyze
finite precision CG. So far, the most complete analysis of finite precision CG has been given by
A. Greenbaum [255], see also Greenbaum and Strakoš [259]. Her analysis relies on results
proved by C.C. Paige [365] concerning the convergence of the Lanczos algorithm. This is too
technical to be reported here. To just get a rough sketch, A. Greenbaum proved that a slightly
perturbed Lanczos recurrence (by the local roundoff errors at step k) can be (hypothetically)
continued making small additional perturbations (f̃ j) up to an iteration n + m where the coef-
ficient ηk will be zero. If the norm of the perturbations is less than ξ‖A‖, then the eigenvalue
approximations generated by a perturbed Lanczos recurrence for A are equal to those generated
by an exact Lanczos recurrence for a matrix Ã whose eigenvalues lie within intervals of size
σ(n+m)3 max(u‖A‖, ξ‖A‖) where σ is a constant. From these results on Lanczos recurrences,
the behavior of CG can be studied. The norms of the CG residuals are equal to the norms of resid-
ual vectors generated by an exact CG recurrence for the matrix Ã. Moreover, as long as the norms
of the residuals are larger than the sum of the norms of the perturbations the computed residuals
approximate well the true residuals. A. Greenbaum was also able to relate the A-norm of the
true error to the Ã-norm of the error corresponding to the computed quantities. Both decrease at

6.12. Roundoff errors of CG and Lanczos 215

approximately the same rate. Numerical experiments in Greenbaum and Strakoš [259] suggest
that the behaviour of finite precision CG is close to the exact algorithm applied to any matrix Â
of larger size whose eigenvalues are located in tiny intervals about the eigenvalues of A. The
sizes of these intervals are small multiples of machine precision. In [256] bounds are given for
the relative differences between the exact and computed residuals. The same line of analysis has
been followed by Notay [358] who studied the case of isolated eigenvalues at both ends of the
spectrum in presence of roundoff errors. He showed that the number of iterations necessary to
get rid of the (components of the error related to) large eigenvalues is more sensitive to roundoff
errors than for the other parts of the spectrum. Moreover, most of the bounds we have in exact
arithmetic hold if we use the condition number of Ã.

H.D. Simon [403, 405, 404] also studied the finite precision Lanczos algorithm. He made
some assumptions (which are more often true) that simplify considerably the analysis. The
perturbed Lanczos recurrence is written as

ηk+1q
k+1 = Aqk − δkqk − ηkqk−1 − fk,

where fk represents the local roundoff errors. Let Fk be the matrix whose columns are the
vectors f j , j = 1, . . . , k. It has been observed experimentally that ‖Fk‖ ≤ u‖A‖, so Simon
used that as hypothesis. Let Wk = QTkQk, this matrix is equal to the identity in exact arithmetic.
But this is not true in finite precision computation. If

|(qi, qj)| ≤ ωj , i = 1, . . . , k j = 1, . . . , k i 6= j

the smallest ωj is called the level of orthogonality ω. If ωj = 0, the vectors are orthogonal, if
ωj =

√
u the vectors are said to be semiorthogonal. Simon supposed that the Lanczos vectors

are exactly normalized and that local orthogonality is preserved: |(qj+1, qj)| ≤ ε1,∀j, with
1 � ε1 > u. He also assumed that all ηj’s do not become negligible. According to Simon
(see also Grcar [252]) the loss of orthogonality comes from an amplification of the local errors
because of the recurrence formula of the Lanczos algorithm. Once an error is introduced, it is
propagated through the recurrence to future Lanczos vectors.

Lemma 6.34. The elements of Wk satisfy the following recurrences:

wj,j = 1, j = 1, . . . , k

wj,j−1 = ε1, j = 2, . . . , k

ηk+1wk+1,j = ηj+1wk,j+1 + (δj − δk)wk,j + ηjwk,j−1

−ηkwk−1,j + (qk, f j)− (qj , fk), 1 ≤ j < k,

wk,j+1 = wj+1,k

Proof. See Simon [403].
This formula shows that the growth of the elements of Wk depends on the coefficients ηk’s

and δk’s and is initiated by the local errors. These recurrences can also be written in matrix form.
If Rk is the strictly upper triangular part of Wk and w̄j its columns, we have

ηk+1‖wk+1‖ ≤ 2‖A‖max(‖w̄k‖, ‖w̄k−1‖) +O(u‖A‖).

This implies that a small ηk+1 could cause a great loss of orthogonality. The coefficients ηk and
δk depend on the eigenvalue distribution of A and the initial vector q1. Let TkSk = SkΘk be the

216 6. The conjugate gradient and related methods

spectral decomposition of the computed Tk, Θk being a diagonal matrix and yj = Qks
j , the sj’s

being the columns of Sk. Let σk,j be the bottom element of the eigenvector sj . Then, Simon
obtained that

(yj , qk+1) =
φj,j

ηk+1σk,j
,

where φj,j = (sj , Gks
j) and Gk is the strictly upper triangular part of FTk Qk − QTk Fk. The

element φj,j is of the order of u‖A‖, so orthogonality between the Ritz vectors and the Lanczos
vectors can only be lost if σk,j is small. This occurs when a Ritz value has converged to an
eigenvalue of A. Strangely enough, loss of orthogonality goes hand in hand with convergence of
a Ritz value.

Theorem 6.35. If

ω ≤ 1

2

1

k − 2
,

then the computed T̄k is similar to a matrix T̂k which is a perturbation of the orthogonal projec-
tion of A onto span(Qk).

Proof. See Simon [403].

Theorem 6.36. If ω is less than O(
√
u),

NT
k ANk = T̄k + Vk,

where the elements of Vk are O(u‖A‖) and Nk is a matrix with orthonormal columns in the QR
factorization of Qk.

Proof. See Simon [403].
A way to cure the loss of orthogonality among the Lanczos vectors is to reorthogonalize

them. For the CG residuals, this requires computing

rk = rk − (rk, rj)

(rj , rj)
rj , j = 1, . . . , k − 1.

Figure 6.10 compares CG and CG with full reorthogonalization for the Strakoš example of Fig-
ure 6.9

However, as we have seen before, full reorthogonalization (whose goal is to maintain or-
thogonality to working precision) is not necessary as it is enough to maintain semiorthogonality.
Selective reorthogonalization was introduced by Parlett and Scott [371] to keep semiorthogonal-
ity. Reorthogonalization works the following way for the Lanczos algorithm. Let

q̄k = Aqk − δkqk − ηkqk−1 − fk,

and suppose we decide to reorthogonalize. Then,

ηk+1q
k+1 = q̄k −

k−1∑
j=1

ξjq
j − (fk)′.

Ideally, we would like qk+1 to be orthogonal to working precision to the previous vectors.
However, if we only need to maintain semiorthogonality, it is enough to have |(qj , qk+1)| ≤
O(u‖A‖). We also need to have ‖(fk)′‖ ≤ u‖A‖. Of course, the coefficients ξj are given by

6.13. Solving for several right-hand sides 217

0 10 20 30 40 50 60 70 80 90 100
-12

-10

-8

-6

-4

-2

0

2

Figure 6.10. log10 of the A-norm of the error with CG, solid: CG, dashed: CG with full reorthog-
onalization

ξj = (q̄k, qj). Simon [403] introduced partial reorthogonalization to maintain semiorthogonality.
Suppose we are able to compute an estimate of wk+1,j . This will indicate against which previous
Lanczos vectors orthogonality has been lost. Then, it is enough to orthogonalize against these
particular vectors. Of course, it is not trivial to compute estimates of wk+1,j as we do not know
the local roundoff errors. Simon [403] suggested replacing the unknown quantities by random
values appropriately chosen. Numerical experiments in [403] show that this is an effective way
to monitor the loss of orthogonality and to maintain semiorthogonality. Regarding solving the
linear system, if semiorthogonality is maintained then, everything is fine as long as the required
accuracy is not less than

√
u.

Sleijpen, Van der Vorst and Modersitzki [411, 412] analyzed the norms of the residuals and
the departure of the computed residuals from the true ones for some methods that we have de-
scribed before. The error in the residual ∆rk due to the floating point computation of the solution
is bounded by

‖∆rk‖
‖r0‖

≤ C
√
kuκ(A)2 for MINRES

where C is a constant and

‖∆rk‖
‖r0‖

≤ C(4
√
k + 2‖A 1

2Qk‖)uκ(A) for CR.

Other results are given in [411] for CG and SYMMLQ.

6.13 Solving for several right-hand sides
It happens quite often that we have to solve a series of linear systems with the same matrixA and
different right-hand sides bi, i = 1, . . . ,m. In that case if we use Gaussian elimination, we have
to factor the matrix only once (with a cost proportional to n3) and then we use the LU factors to
solve all the systems (with a cost proportional to mn2). With iterative methods, it seems difficult
to exploit the fact that the matrix is the same for all systems. One thing that we can easily do is
to choose the starting vectors by using solutions of the previous systems if they represent “close”
physical problems. However, it turns out that we can sometimes speed up the solution when
several systems are to be solved with CG. This problem has been studied by Joly [302], Chan
and Wan [101] and Erhel and Guyomarc’h [181]. We follow the exposition of Joly. This uses a
general formulation for non-symmetric matrices that was introduced in Joly and Meurant [303]

218 6. The conjugate gradient and related methods

for matrices with complex coefficients. This general formulation allows us to derive several of
the methods we have already introduced in this chapter.

Suppose we have a symmetric matrix H that defines a scalar product and another matrix K
such that its symmetric part K∗ = 1/2(K + KT) is either positive or negative definite and let
N = ATHA. The general algorithm for a single right hand side is the following,

Let x0 be given, r0 = b−Ax0, g0 = ATHr0, p0 = Kg0, for k = 0, 1, . . .

αk =
(gk, pk)

(pk, Npk)
,

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk,

gk+1 = gk − αkNpk,

βlk+1 = − (Kgk+1, Npl)

(pl, Npl)
, 0 ≤ l ≤ k

pk+1 = Kgk+1 +

k∑
l=0

βlk+1p
l.

Different methods are recovered from appropriate choices of H and K. For instance, when A is
symmetric positive definite, CG is obtained by choosing H = A−1, K = I . A CR algorithm is
given by H = I and K = A−T .

Theorem 6.37. The vectors defined by the previous algorithm are such that,

(pk, Npl) = 0, ∀k 6= l

(gk, pl) = 0, 0 ≤ l < k

(gl, pk) = (g0, pk), 0 ≤ l ≤ k
(gk, pk) = (gk,Kgk),

(Kgk, Npk) = (pk, Npk),

(gk,Kgl) = 0, 0 ≤ l < k,

span(p0, p1, . . . , pk) = span(Kg0,Kg1, . . . ,Kgk) = span(p0,KNp0, . . . , (KN)kp0).

Proof. See Joly and Meurant [303].

Moreover, we have gn = 0 and many things simplify if we suppose K symmetric as then we
have βlk+1 = 0, 0 ≤ l < k and

βkk+1 =
(gk+1,Kgk+1)

(gk,Kgk)
.

This method minimizes the functional J(r) = (r,Hr) over the space x0 + span(p0, . . . , pk). In
the H-norm the residuals are monotonically decreasing and if K = LTL and M = LTNL we
have

(rk, Hrk) ≤ (r0, Hr0)

(√
κ(M)− 1√
κ(M) + 1

)2k

.

6.13. Solving for several right-hand sides 219

If we have several right-hand sides bi, i = 1, . . . ,m we try to minimize (rki , Hr
k
i) over x0

i +
span(p0, . . . , pk). In other words, we want to use the same basis of the Krylov space for all
systems. We set

xk+1
i = xki + α

(i)
k pk,

rk+1
i = rki − α

(i)
k Apk.

If gki = ATHrki , the coefficients are given by

α
(i)
l =

(gli, p
l)

(pl, Npl)
, 1 ≤ i ≤ m, 0 ≤ l ≤ k.

The vectors pk are computed in the same way as for a single right-hand side. The first (or a
chosen) linear system with right-hand side b1 is denoted as the seed system. The same kind of
orthogonality properties that were given in Theorem 6.37 arise in the case of multiple right-hand
sides.

Theorem 6.38. We have

(gki , p
l) = 0, 0 ≤ l < k, 1 ≤ i ≤ m

(gli, p
k) = (g0

i , p
k), 0 ≤ l ≤ k, 1 ≤ i ≤ m

(gki , p
k) = (gki ,Kg

k),where gk is associated with the seed system

Proof. See Joly [302].
Note that only one matrix×vector product is needed per iteration whatever is the number

of right-hand sides. The main question is knowing what to do when the iterations for the seed
system have converged (for instance at iteration k′). Then, it might be that convergence has not
yet been attained for the other systems. From the remaining linear systems a new seed system
has to be chosen. Joly [302] suggested choosing the system s with the largest residual norm
‖rks‖. The new search direction is computed as

pk
′

= Kgk
′

s +

k′−1∑
l=0

βlk′p
l,

βlk′ = − (Kgk
′

s , Np
l)

(pl, Npl)
.

This choice preserves the orthogonality properties before and after the restart. Then, it can be
proved that the restarted algorithm converges at least in n iterations (in exact arithmetic) whatever
is the number of right-hand sides. To summarize the algorithm in the case where K is symmetric
positive definite, we have,

Let x0
i , 1 ≤ i ≤ m be given, r0

i = bi − Ax0
i , g0

i = ATHr0
i , s = 1, p0 = Kg0

s , for
k = 0, 1, . . .

α
(i)
k =

(gki , p
k)

(pk, Npk)
,

xk+1
i = xki + α

(i)
k pk,

rk+1
i = rki − α

(i)
k Apk,

220 6. The conjugate gradient and related methods

gk+1
i = gki − α

(i)
k Npk,

Stop the iterations for systems which have converged. If the seed system has converged, then we
set sold = s, s is such that ‖rk+1

s ‖ is maximum and

βk+1 =
(gk+1
s ,Kgk+1

sold
)

(gksold ,Kg
k
sold

)
,

pk+1 = Kgk+1
s + βk+1p

k.

Numerical experiments in Joly [302] show that this method is quite effective. An analysis is
also given in Chan and Wan [101] where a block seed method is proposed. These methods are
particularly effective when the different right-hand sides are related to each other (“close” in
some sense) which is the case in many physical problems. If this is not the case the block CG
method of O’Leary that we shall study in the following section may be more suitable.

6.14 Block CG and Lanczos
In this section we are considering block generalizations of the Lanczos and CG algorithms. We
start with the Lanczos algorithm.

6.14.1 The block Lanczos algorithm

For the sake of simplicity let us consider the case of 2 × 2 blocks. Let Q0 be an n × 2 given
matrix, such that QT0 Q0 = I . Let Q−1 = 0 be also an n× 2 matrix. Then, let us define

Ωj = QTj−1AQj−1,

Rj = AQj−1 −Qj−1Ωj −Qj−2ΓTj−1,

QjΓj = Rj

The last step is the QR factorization of Rj such that Qj is n×2 with QTj Qj = I and Γj is 2×2.
The matrix Ωj is 2× 2 and Γj is upper triangular. It may happen that Rj is rank deficient and in
that case Γj is singular. The solution of this problem was given in Golub and Underwood [239].
One of the columns of Qj can be chosen arbitrarily. To complete the algorithm, we choose this
column to be orthogonal to the previous block vectors Qk. We can, for instance, choose another
vector (randomly) and orthogonalize it against the previous ones. This block algorithm generates
a sequence such that QTj Qi = δi,jI where I is the 2× 2 identity matrix.

Proposition 6.39. The matrices Qi can be written as

Qi =

i∑
k=0

AkQ0C
(i)
k ,

where C(i)
k are 2× 2 matrices.

Proof. The proof is easily obtained by induction.
Let us look at the relation with matrix polynomials and computing estimates of WT f(A)W

where W is an n× 2 matrix. We define a matrix polynomial pi(λ), a 2× 2 matrix, as

pi(λ) =

i∑
k=0

λkC
(i)
k .

6.14. Block CG and Lanczos 221

Then, we have the following result.

Theorem 6.40.

QTi Qj =

∫ b

a

pi(λ)T dα(λ)pj(λ) = δi,jI,

where α = WTQ is a 2× n matrix.

Proof. Using the orthogonality of the Qi’s and the spectral decomposition of A, we can write

δi,jI = QTi Qj =

(
i∑

k=0

(C
(i)
k)TQT0 A

k

)(
j∑
l=0

AlQ0C
(j)
l

)
=
∑
k,l

(C
(i)
k)TQT0 QΛk+lQTQ0C

(j)
l

=
∑
k,l

(C
(i)
k)TαΛk+lαTC

(j)
l

=
∑
k,l

(C
(i)
k)T

(
n∑

m=1

λk+l
m αmα

T
m

)
C

(j)
l

=

n∑
m=1

(∑
k

λkm(C
(i)
k)T

)
αmα

T
m

(∑
l

λlmC
(j)
l

)
.

The pjs can be considered as matrix orthogonal polynomials for the (matrix) measure α. The
following recurrence relation holds.

Theorem 6.41. The matrix valued polynomials pj satisfy

pj(λ)Γj = λpj−1(λ)− pj−1(λ)Ωj − pj−2(λ)ΓTj−1,

p−1(λ) ≡ 0, p0(λ) ≡ I,

where λ is a scalar.

Proof. From the previous definition, it is easily shown by induction that pj can be generated
by the given (matrix) recursion.

This block recurrence can be written as

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN + [0, . . . , 0, pN (λ)ΓN],

and as P (λ) = [p0(λ), . . . , pN−1(λ)]T ,

JNP (λ) = λP (λ)− [0, . . . , 0, pN (λ)ΓN]T ,

with JN defined as

JN =

Ω1 ΓT1
Γ1 Ω2 ΓT2

.
ΓN−2 ΩN−1 ΓTN−1

ΓN−1 ΩN

 ,

222 6. The conjugate gradient and related methods

is a block tridiagonal matrix of order 2N and a banded matrix whose half bandwidth is 2 (we
have at most 5 non-zero elements in a row). The eigenvalues of JN are approximations of those
of A. One of the advantages of the block method over the (scalar) Lanczos method is that we can
obtain multiple eigenvalues. It is interesting to note the following proposition.

Proposition 6.42. The eigenvalues of JN are the zeros of det[pN (λ)].

Proof. Let µ be a zero of det[pN (λ)]. As the rows of pN (µ) are linearly dependent, there
exists a vector v with two components such that

vT pN (µ) = 0.

This implies that

µ[vT p0(µ), . . . , vT pN−1(µ)] = [vT p0(µ), . . . , vT pN−1(µ)]JN .

Therefore µ is an eigenvalue of JN . det[pN (λ)] is a polynomial of degree 2N in λ. Hence, there
exist 2N zeros of the determinant and therefore all eigenvalues are zeros of det[pN (λ)].

The eigenvalues of JN can be computed by first reducing the matrix to tridiagonal form.
The block Lanczos is useful to compute eigenvalues for matrices having multiple eigenvalues. It
can also be used to compute the solution of linear systems with several right-hand sides. These
results can be used to define block quadrature rules that allow to obtain estimates of bilinear
forms in the same way it was done for a posteriori error estimates, see Golub and Meurant [233].

6.14.2 The Block CG algorithm

D.P. O’Leary [362] proposed several block methods including a block CG algorithm. The “Hestenes
and Stiefel”(two-term recurrence) version of the method for solving AX = B where X and B
are n by s is the following.

Let X0 be an n× s matrix, R0 = B −AX0, P 0 = R0γ0 where γ0 is s× s, for k = 0, 1, . . .

αk = ((P k)TAP k)−1γTk (Rk)TRk,

Xk+1 = Xk + P kαk,

Rk+1 = Rk −AP kαk,

βk = γk
−1((Rk)TRk)−1(Rk+1)TRk+1,

P k+1 = (Rk+1 + P kβk)γk.

The block matrices satisfy
(Rk)TRj = 0, j 6= k

(P k)TAP j = 0, j 6= k

The matrices γk can be chosen to reduce roundoff. We can also derive a three-term recurrence
version of block CG and a block minimum residual algorithm. O’Leary has shown that the rate
of convergence is governed by the ratio λn/λs. The block CG method can be derived from the
block Lanczos algorithm by using a block LU factorization of the block tridiagonal matrix that
is generated. Block CG can be used when solving systems with different right-hand sides which
are not related to each other.

6.15. Inner and outer iterations 223

6.15 Inner and outer iterations
When we introduced PCG we supposed that the preconditioner M is constructed in such a way
that we can exactly solve the linear systems Mzk = rk at each CG iteration. This is the case
when M = LLT . However, it can be the case that either the preconditioner is not explicitly
computed or not in a form such that Mz = r can be easily solved. Then, this system can be
approximately solved by another iterative method. These iterations will be denoted as inner
iterations as opposed to the CG iterations which are the outer iterations. The problem is to know
if the algorithm is still converging and when the inner iterations have to be stopped.

This problem was studied for the Richardson and Chebyshev methods by Golub and Overton
[236, 237] and by Munthe-Kaas for the steepest descent algorithm [351]. Golub and Ye [246]
proved results for CG. They modified CG in the following way.

Let x0 be given, r0 = b−Ax0. For k=0,1,. . .

Mzk = rk + yk, ‖yk‖M−1 ≤ ε‖rk‖M−1

βk =
(zk, rk − rk−1)

(zk−1, rk−1)
, β0 = 0,

pk = zk + βkp
k−1,

γk =
(zk, rk)

(pk, Apk)
,

xk+1 = xk + γkp
k,

rk+1 = rk − γkApk.

This form of PCG allows to maintain local orthogonality properties, that is (pk−1, rk+1) = 0,
(pk, rk+1) = 0, (zk, rk+1) = 0, (pk, Apk+1) = 0. This implies that the algorithm converges
as fast as the inexactly preconditioned steepest descent method. For both theoretical and experi-
mental reasons, Golub and Ye [246] suggested using

ε =
1

2
√
κ(M−1A)

,

if this is computable. A CG method with variable (even non-linear) preconditioner was proposed
by Axelsson and Vassilevski [30]. They show that if

(y,AM(y)y) ≥ δ1(y, y),∀y, ‖AM(y)‖ ≤ δ2‖y‖,∀y,

the algorithm converges and

‖rk‖ ≤

√
1−

(
δ1
δ2

)2

‖rk−1‖.

6.16 Constrained CG
R. Nicolaides [357] proposed a variant of CG where the residuals verify linear constraints. This
method was named “deflation” by Nicolaides, however deflation has another meaning for eigen-
value computations and we prefer to call it constrained CG. Similar methods have been developed
for Krylov methods for non-symmetric systems by Wallis, Kendall and Little [464]. The method
was formulated for the three-term recurrence form of CG. LetC be a given n×mmatrix (m < n)
of rank m. We would like to modify CG to have

CT rk = 0, ∀k

224 6. The conjugate gradient and related methods

Let
xk+1 = ωk+1x

k + (1− ωk+1)xk−1 + αkωk+1(rk − Cuk),

where uk is to be defined. It follows that the residuals are defined by

rk+1 = ωk+1r
k + (1− ωk+1)rk−1 + αkωk+1A(rk − Cuk).

The vector uk is defined by minimizing

(A(rk − Cuk), rk − Cuk).

The solution of this problem is given by solving an order m linear system

CTACuk = CTArk.

Denoting AC = CTAC, the equation for the residuals becomes

rk+1 = ωk+1r
k + (1− ωk+1)rk−1 + αkωk+1A(I − CAC−1CTA)rk.

Theorem 6.43. If CT r0 = 0, then CT rk = 0,∀k.

Proof. This is easily proved by induction.
The matrix PC = I − CAC−1CTA is the projector onto span((AC)⊥) along span(C). Let

AC = A(I − PC), this matrix is symmetric and singular. The coefficients of CG are determined
by requiring that rk+1 is orthogonal to rk and rk−1. This gives

αk =
(rk, rk)

(rk, ACrk)
.

The formula for ωk+1 is the same as for CG. Note that at each iteration, we must solve an m×m
linear system. Constrained CG can also be combined with preconditioning. The initial constraint
CT r0 = 0 can be satisfied in the following way: let u be an arbitrary vector, s = b−Au and

CTACt = CT s.

We set x0 = u+Ct. This gives r0 = b−A(u+Ct) and CT r0 = CT b−CTAu−CTACt =
CT b− CTAu− CT (b−Au) = 0.

The matrix of constraints C can be chosen in many different ways. Nicolaides’ suggestion
is related to problems arising from discretization of PDEs. It uses a coarse mesh as if the set of
unknowns is partitioned into m disjoint subsets Ωk, k = 1, . . . ,m, then

ci,j =

{
1, if i ∈ Ωj ,

0, if i 6∈ Ωj

Wallis, Kendall and Little [464] used C to enforce column sums constraints.

6.17 Vector and parallel PCG
Usually the form which is computationally preferred for PCG is (6.10). Remember that for one
iteration we have

1) Mzk = rk,

6.17. Vector and parallel PCG 225

2) βk = (zk,rk)
(zk−1,rk−1)

,

3) pk = zk + βkp
k−1,

4) γk = (zk,rk)
(pk,Apk)

,

5) xk+1 = xk + γkp
k,

6) rk+1 = rk − γkApk.

The operations that are involved in one iteration are

i) two scalar products (sdots),

ii) three times a vector multiplied by a scalar and added to a vector (saxpys),

iii) a matrix×vector product,

iv) solving a linear system with matrix M .

PCG is very well suited to vector computers. It is obvious that ii) is a vector operation. Of course,
fast routines for scalar products involved in i) are available on vector computers that allow us to
do these operations at almost vector speed. The operation to perform is

(x, y) =

n∑
i=1

xiyi.

Clearly the multiplication of the components of the two vectors is a vector operation that gives
us a vector w. Summing the components wi of vector w is a reduction operation that can be done
in the following way. Suppose, for the sake of simplicity, that the vector length is n = 2p. Then
one can sum (in vector mode) odd and even components of w, i.e., w2i and w2i+1, this leads to
a vector of length n

2 = 2p−1 and we can apply the same method to the resulting vector. After
p = loge n steps we shall get the desired scalar product. Of course, the problem is that at each
step the vector length is halved.

The vectorization of the multiplication by A depends on the nature of the problem we are
solving and more precisely on the storage scheme which is used for A (see Chapter 1). For
problems arising from discretization of partial differential equations, finite difference methods
(on regular or structured meshes) yield systems with a regular pattern that can be stored by diag-
onals. Then, the multiplication is done by diagonals giving an optimal vector length. Matrices
arising from finite element methods (on distorted or unstructured meshes) are stored keeping only
the non-zero elements and their column numbers. Then, to compute the matrix×vector product,
we need indirect addressing and the vector lengths are small, typically the number of elements
in a row. Hence the speeds reached with these problems are much smaller than with structured
meshes. But, of course, the situation can change with progress in computers and accesses to
memories. This problem can also be solved by using other storage schemes which define pseudo
diagonals. Good computing speeds can be reached in this way, see Erhel [179], Melhem [338].
One may also think of finding orderings of the unknowns that give some structure to an unordered
matrix.

The last problem is solving Mz = r at each iteration. The vectorizability depends evidently
on the choice of M , this will be studied in Chapter 8. Regarding parallelism, the situation is
not quite as satisfactory especially on today’s distributed memory supercomputers because we
need to split the algorithm into pieces that must be large enough because of the overhead of the
synchronization procedures. Unfortunately PCG (in its usual form) is a very sequential process.

226 6. The conjugate gradient and related methods

Regardless of step 1 and assuming that part of the scalar product (zk, rk) can be computed when
solving Mzk = rk, we need to have completed the (scalar) step 2 before beginning step 3. After
this, we need to compute Apk and (pk, Apk) and even if it depends on the storage used for A, it
is likely that we have to wait for the completion of step 3 to do that. Then we need to finish step
4 before computing steps 5 and 6. So in an obvious way, only steps 5 and 6 can be executed in
parallel. There are at least three synchronization points and more likely five, regardless of what
will be needed for step 1. Moreover, the number of operations that can be done in parallel is very
small.

This is very unsatisfactory. Therefore, many people have been looking for ways to modify
the algorithm to increase the degree of parallelism. There are many directions for doing this
(see [131], Chronopoulos and Gear [108]). The idea is to reduce the data dependencies trying to
compute scalars βk and γk at once.

We have

zk+1 = zk − γkM−1Apk,

rk+1 = rk − γkApk.

So,
γ2
k(M−1Apk, Apk) = (zk+1 − zk, rk+1 − rk).

But, we show in Proposition 6.7 that (ri, zj) = 0 i 6= j, therefore,

γ2
k(M−1Apk, Apk) = (zk+1, rk+1) + (rk, zk).

A natural idea would be to compute (rk, zk) by recurrence. However, we have to be a little
careful to preserve the stability of the algorithm. One way to do this is to use a predictor-corrector
method computing one more scalar product [341]. Rearranging the preconditioned algorithm we
get,

Mvk = Apk,

compute (vk, Apk), (Apk, pk), (rk, zk),

γk =
(rk, zk)

(Apk, pk)
,

sk+1 = γ2
k(vk, Apk)− (rk, zk),

βk+1 =
sk+1

(rk, zk)
,

xk+1 = xk + γkp
k,

rk+1 = rk − γkApk,
zk+1 = zk − γkvk,
pk+1 = (zk − γkvk) + βk+1p

k.

We see that once the three scalar products have been computed everything can be computed in
parallel. The scalar sk+1 is a prediction of the value of (rk+1, zk+1). It is corrected at the next
iteration to preserve stability. The cost of the algorithm is 3 scalar products, a matrix×vector
product and 8n floating point operations. The overhead is thus 4n operations, but there are
much more parallelism. The gain over the standard algorithm really depends on the cost of the
matrix×vector product. If it is large relative to the 8n operations not much can be saved. On the
other hand if A is really sparse some gains may be expected.

6.18. Bibliographical comments 227

However, it turns out that we do not need to use all these tricks. The solution to this problem
is simply to use the three-term recurrences that we used to introduce CG. Remember that the
algorithm is,

Let x0 be given for k = 0, 1, . . . until convergence

Mzk = rk = b−Axk,

αk =
(zk,Mzk)

(zk, Azk)
,

ωk+1 =
1

1− αk
ωkαk−1

(zk,Mzk)
(zk−1,Mzk−1)

, ω1 = 1,

xk+1 = xk−1 + ωk+1(αkz
k + xk − xk−1),

rk+1 = rk−1 − ωk+1(αkAz
k − rk + rk−1).

Clearly, we see that the two scalar products can be computed in parallel. Moreover, there is
also natural parallelism in the computation of xk+1. Therefore, this version is perfectly parallel.
However, this may be counterbalanced by the fact that the number of floating point operations
is larger. We have 10n operations plus two scalar products, a matrix×vector operation and the
solve for the preconditioner. This is to be compared to 6n operations plus the same operations
for the two-term recurrence version. Moreover it has been shown that the three-term version is
less stable.

6.18 Bibliographical comments
A very interesting account of the history of CG from the beginning up to 1976 is given in the
Golub and O’Leary paper [235]. The origin of CG is the Hestenes and Stiefel paper [279] which
is still very interesting to read. Many of the ideas that were developed later, including precon-
ditioning, are already described in this paper, see also Hestenes [277] and the Hestenes’ book
[278]. Also of interest is the Lanczos paper [314].

The authors of CG did know about the problems due to loss of orthogonality and it was also
known very early that the method could be used as an iterative one, see Forsythe [195]. However,
the method was not much used and was almost forgotten. We should give credit to J.K. Reid [382]
for having shown that the method could be interesting for iteratively solving “large” sparse linear
systems.

What makes the success of CG in the seventies was its coupling to efficient precondition-
ers (see Chapter 8) which gave favorable eigenvalue distributions for fast convergence. A very
influential paper in this respect was the Concus, Golub and O’Leary paper [118].

The behaviour of CG in finite precision arithmetic was mainly investigated by Greenbaum and
her co-workers [254, 253, 255, 259], starting in 1980. The behaviour of the Lanczos algorithm
was considered by Grcar [252] and Simon [403, 405, 404].

The methods for indefinite matrices were mainly studied by Paige and Saunders [366, 367],
see also Chandra [103] and the book by Fischer [192].

228 6. The conjugate gradient and related methods

7

Krylov methods for
non-symmetric systems

In Chapter 6 we studied CG and CG-like algorithms for solving linear systems for which the
matrixA is symmetric either positive definite or indefinite. In this chapter we are concerned with
the case where A is non-symmetric. Of course, this is such a large class of matrices that there
exist many methods for solving such systems. We have already seen the “classical” methods like
Jacobi, Gauss-Seidel, etc. . . in Chapter 5. Here we are going to concentrate on methods using
Krylov spaces and we shall only study the most popular ones. As we shall see, there is a great
similarity in the way these methods are derived and what we have seen for symmetric matrices
in Chapter 6. Most methods construct orthogonal bases of some spaces and then, solve the
projected equation directly or try to minimize some norm of the residual or the error. However,
the situation for non-symmetric matrices is much less satisfactory than for the symmetric case.
Unfortunately today there is no method for which we can say that it is always much better than
the others. On the contrary, one can always find examples (although sometimes contrived ones)
for which a given method is either the best or the worst, see for example Nachtigal, Reddy and
Trefethen [353].

We are going to start by considering the normal equations approach. This has been used for
quite a long time to solve non-symmetric systems of equations. Although the rate of convergence
is sometimes rather low, these methods are robust. They are also related to solving least squares
problems, see Björck [46].

7.1 The normal equations
In Chapter 6, we have seen that in its general form CG is not restricted to symmetric matrices.
The algorithm has been written as

Mzk = rk(= b−Axk),

αk =
((rk, rk))

((AM−1rk, rk))
,

ωk+1 =
1

1− αk
ωkαk−1

((rk,rk))
((rk−1,rk−1))

, ω1 = 1,

xk+1 = xk−1 + ωk+1(αkz
k + xk − xk−1).

We have convergence if AM−1 is self adjoint for the given scalar product i.e., ((AM−1x, y)) =
((x,AM−1y)), ∀x, y and positive definite e.g., ((AM−1x, x)) > 0, ∀x 6= 0. The scalar product

229

230 7. Krylov methods for non-symmetric systems

((., .)) can be chosen at our will. Let us suppose we have two symmetric positive definite matrices
S and P . Then, we use P to define the scalar product as

((x, y)) = (Px, y), ∀x, y (7.1)

and we choose M = (SATP)−1. With these notations and choices, we have the following
result.

Proposition 7.1. Let M = (SATP)−1. Then AM−1 is self adjoint and positive definite for the
scalar product ((., .)) defined by (7.1).

Proof. By definition M−1 = SATP . Thus, AM−1 = ASATP and

((AM−1x, y)) = (PASATPx, y) = (Px,ASATPy) = ((x,AM−1y)).

In the same way,
((AM−1x, x)) = (SATPx,ATPx) > 0, ∀x 6= 0.

This shows that AM−1 is positive definite.
Now, we have to choose the two matrices S and P . The only thing required is that they must

be symmetric positive definite. So, there are many possibilities. To give some examples, let
LU be an incomplete factorization of A (A = LU + R, L (resp. U) being lower (resp. upper)
triangular, see Chapter 8), then we can use
i) P = I and S = (UTLTLU)−1.

At each iteration we have to solve UTLTLUzk = AT rk.
ii) P = (LUUTLT)−1 and S = I .

At each iteration we have to solve zk = AT (LUUTLT)−1rk.
iii) P = (LLT)−1 and S = (UTU)−1.

Then, LLTA−TUTUzk = rk.
Clearly for each of these algorithms we have to solve four triangular systems and to perform

a matrix×vector multiply by the transpose of A. In fact, it is easy to see that we are solving the
normal equations

ATAx = AT b (7.2)

with PCG. Method i) corresponds to a left preconditioning, ii) to a right one and iii) to a sort of
“symmetric” preconditioning. This method of using CG on the normal equations (7.2) is often
denoted as CGNR. We have the following result.

Theorem 7.2. At each iteration CGNR minimizes the Euclidean norm (l2-norm) of the residual in
x0 +Kk(ATA,AT r0).

Proof. From Chapter 6, we know that CG minimizes the norm of the error in the norm given
by the matrix of the system. But,

‖εk‖2ATA = (ATAεk, εk) = (rk, rk) = ‖rk‖2.

Figure 7.1 shows the behaviour of the norm of the error as a function of the number of floating
point operations (flops) using CGNR without preconditioning for problem 7 on a 20× 20 mesh.

If we wish we can use another variant of the normal equations, namely

AAT y = b, x = AT y. (7.3)

7.2. The Concus and Golub non-symmetric CG 231

0 2 4 6 8 10 12 14 16 18

x 10
6

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 7.1. log10 of the error with CGNR, 20× 20 mesh

If we use CG on these equations, the method is denoted as CGNE.

Theorem 7.3. At each iteration CGNE minimizes the Euclidean norm (l2-norm) of the error in
x0 +ATKk(AAT , r0).

Proof. The iterates xk are given by xk = AT yk where yk is the CG iterate with the matrix
AAT . Then, x− xk = AT (y − yk) where AAT y = b and

‖εk‖2 = (x− xk, x− xk) = (AT (y − yk), AT (y − yk)) = ‖y − yk‖2AAT .

Moreover yk ∈ y0 +Kk(AAT , r0).
A drawback of the normal equations approach is that the condition number is worse than in

the original problem; we have κ(ATA) = κ(A)2 where

κ(A) =
σn
σ1
,

σ1 (resp. σn) being the smallest (resp. largest) singular value ofA. Another possibility is to write
the normal equations ATAx = AT b as a linear system of order 2n,

A
(
x
y

)
=

(
0 AT

A −I

)(
x
y

)
=

(
AT b

0

)
.

The matrix A is symmetric and indefinite as it has positive and negative eigenvalues, hence we
can apply the CG-like methods we saw in Chapter 6 (SYMMLQ or MINRES) to this system as the
eigenvalues λ are such that ATAu = λ(λ + 1)u. The drawback of solving the problem in this
way is that the scalar products and vector updates are twice as expensive to compute as in PCG.

7.2 The Concus and Golub non-symmetric CG
There is one case where we can use CG on non-symmetric equations. This is when linear systems
with the symmetric part of A are easy to solve. This algorithm was introduced by Concus and
Golub [117], see also Widlund [466]. Let A = M −N with

M = AS =
A+AT

2
, N =

AT −A
2

232 7. Krylov methods for non-symmetric systems

being the symmetric and antisymmetric parts of A. We apply for instance the three-term recur-
rence form of PCG with M as a preconditioner,

Mzk = rk,

xk+1 = xk−1 + ωk+1(αkz
k + xk − xk−1).

Then, simplifications occur since we have (Nx, x) = 0 ∀x. The choiceαk = 1 gives (zk,Mzk+1) =
0 and to get (zk,Mzk+1) = 0, we have

ωk+1 =

(
1 +

(zk,Mzk)

(zk−1,Mzk−1)

1

ωk

)−1

.

It is easy to see, [466], that this implies (zj ,Mzk+1) = 0, ∀j ≤ k − 2. Of course, for this
method to be interesting the problems with the symmetric part of A have to be easy to solve as
this must be done every iteration.

This algorithm is a particular answer to a more general question that was raised by Gene
Golub. The problem was to know under which conditions there exists a three-term recurrence CG
method that is optimal in the same way CG is for symmetric matrices. The problem was solved
by Faber and Manteuffel [183] in a more general setting. Roughly speaking, the answer is that
such a method exists if the eigenvalues of the matrix are located on a straight line in the complex
plane. The exact result is the following. Suppose we have a symmetric positive definite matrix
H such that H−1A is definite, we define a Conjugate Gradient method to be an iterative method
such that

xk ∈ x0 +Kk(A, r0),

Hεk = H(x− xk) ⊥ Kk(A, r0).

It is easy to see that this implies a monotone convergence of the error in the H-norm. If A is
symmetric positive definite and H = A we get CG. If we write

xk+1 = xk + γkp
k,

let CG(A, s) be the set of Conjugate Gradient methods such that we have (Apk, Hpj) = 0, k ≥
j + s − 1. This implies that the method can be written with s-term recurrences, (CG being a
three-term recurrence method). Faber and Manteuffel [183] proved the following result.

Theorem 7.4. CG(A, s) is not empty if and only if
1) s is larger than the degree of the minimum polynomial of A
or
2) H−1ATH is a polynomial in A of degree less or equal to s− 2.

Proof. See Faber and Manteuffel [183].

If s is 3, we see that there exist α and β such that H−1ATH = αA + βI . If λi are the
eigenvalues of A, we have

(α− 1)λi + β = 0, ∀i

that is, the eigenvalues are located on a straight line in the complex plane.

7.3. Construction of bases for Krylov spaces 233

7.3 Construction of bases for Krylov spaces
7.3.1 The Arnoldi algorithm

The Krylov methods that we shall study all use a Krylov space Kk(H, v) where

Kk(H, v) = span(v,Hv, . . . ,Hk−1v).

GenerallyH = A and v = r0 = b−Ax0 as the iterates are sought in x0 +Kk(A, r0). Therefore,
there is no problem in choosing x0 = 0. Note that by the Cayley-Hamilton theorem, there exists
an m ≤ n such that x = A−1b ∈ Km(A, b). Unfortunately, the natural basis of the Krylov
space Kk(A, b) which is {b, Ab, . . . , Ak−1b} is ill conditioned. Moreover, the vectors Aib tend
to be linearly dependent when k increases because they converge to a multiple of the eigenvector
associated with the dominant eigenvalue (the one with the largest modulus). If we consider, for
example, A to be the matrix of the Poisson model problem with n = 100 and a random vector b,
the rank returned by Matlab 4.1 for the Krylov matrix of dimension 100 × 20 is 19. From then
on, the vectors in the Krylov space are linearly dependent.

If v is a given vector, an idea is to try to construct an orthogonal basis of Kk(A, v) in the
same way as we did in the Lanczos algorithm for symmetric matrices. Up to roundoff errors, this
basis will be perfectly conditioned. So, we look for vectors vi such that

span(v1, . . . , vk) = span(v,Av, . . . , Ak−1v),

Vk = [v1 · · · vk], V Tk Vk = I.

To motivate the derivation of the algorithm we can use the following presentation due to C. Vuik.
Let Kk = [v,Av, · · · , Ak−1v] be the Krylov matrix, then it follows that

AKk = Kk

0

1
. . .
.

1 0

+Akv(ek)T .

Now, consider the QR factorization of the n × k matrix, Kk = QR with Q orthogonal and R
being k × k upper triangular. Then,

QTAQ = QTAKkR
−1,

= QT [Kk

0

1
. . .
.

1 0

+Akv(ek)T]R−1, (7.4)

= R

0

...

1
. . . R−1QTAkv
.

...

1
...

R−1.

Since R is upper triangular, this shows that QTAQ is an upper Hessenberg matrix. Therefore,
the columns of Q span the Krylov space Kk(A, v) and we can take Vk = Q. Computing the
orthogonal basis of Kk(A, v) is equivalent to computing the QR factorization of Kk. This can

234 7. Krylov methods for non-symmetric systems

be done in many different ways, particularly column by column using the Gram-Schmidt orthog-
onalization algorithm. This is known as the Arnoldimethod. Let us denote by hi,j the elements
of the Hessenberg matrix and let

v1 =
v

‖v‖
.

The algorithm for computing column j is

hi,j = (Avj , vi), i = 1, . . . , j

v̄j = Avj −
j∑
i=1

hi,jv
i,

hj+1,j = ‖v̄j‖, vj+1 =
v̄j

hj+1,j
.

Generally, for stability reasons one prefers using the modified Gram-Schmidt form of the algo-
rithm. This amounts to computing hi,j and vj by using

wj = Avj ,

and for i = 1, . . . , j
hi,j = (wj , vi), wj = wj − hi,jvi,

Theorem 7.5. Using the Arnoldi algorithm we have (vi, vj+1) = 0, i < j + 1.

Proof. The proof by induction is straightforward.
If we run this algorithm for j = 1, . . . , k we construct a k + 1× k matrix H̃k such that

AVk = Vk+1H̃k = VkHk + hk+1,kv
k+1(ek)T ,

where Hk denotes the upper Hessenberg square matrix constructed with the first k rows of H̃k.
This implies, as we have seen,

V Tk AVk = Hk.

We note that if A is symmetric then Hk must also be symmetric. A symmetric upper Hessenberg
matrix is tridiagonal and in this case, the Arnoldi algorithm reduces to the Lanczos method.
The symmetry allows us to orthogonalize only against the last two vectors. When the matrix is
non-symmetric we need to explicitly orthogonalize against all the previous vectors. Thus, un-
fortunately in the Arnoldi method we have to keep these vectors and the storage grows linearly
with k. Note that if hk+1,k = 0, we have computed an invariant subspace for A. The orthogonal
basis will be used in the following sections to construct iterative methods.

We have seen that the Arnoldi algorithm has some relationship with the QR factorization of
the Krylov matrix. It is also very close to the QR algorithm for computing the eigenvalues of A,
for a detailed account of this, see Lehoucq [317].

7.3.2 The Hessenberg algorithm

Hessenberg described a method to compute a basis of the Krylov space Kk(A, v), see Wilkinson
[468]. We follow the lines of Sadok [400]. For any n× k, n > k matrix C we define

C =

(
C1

C2

)
,

7.3. Construction of bases for Krylov spaces 235

where C1 is a matrix of order k. If C1 is non-singular, CL (k × n) is defined as CL =
((C1)−1 0). Let Kk be the Krylov matrix, Kk = [v,Av, · · · , Ak−1v], then we can define
an LU factorization Kk = LkUk where Lk is a lower trapezoidal n × k matrix and Uk is a unit
upper triangular matrix of order k. If the principal minors are non-zero the factorization exists,
L1
k is non-singular and K1

k = L1
kUk, K2

k = L2
kUk.

Theorem 7.6. Let Kk = [k1 . . . kk] be the Krylov matrix and suppose the principal minors are
non-zero. Let lj be the columns of Lk. Then

lj = kj −Kj−1K
L
j−1k

j = Alj−1 − Lj−1L
L
j−1Al

j−1, ∀j, l1 = v

span(l1, . . . , lk) = Kk(A, v),

ALk−1 = LkH̃k−1,

where H̃k−1 is an upper Hessenberg k × k − 1 matrix. The upper parts of the columns of H̃k−1

denoted by hj (∈ �j) are given by hj = (L1
j 0)Alj .

Proof. The fact that span(l1, . . . , lk) = Kk(A, v) is obvious by construction. For the other
parts, see Sadok [400].

The algorithm is the following.
l1 = v, for k = 1, . . . , n

uk = Alk,

βj =
(uk)j
(lj)j

, hj,k = (uk)j , (uk)j = 0,

(uk)l = (uk)l − βj(lj)l, quadl = j + 1, . . . , n j = 1, . . . , k

hk+1,k = 1, lk+1 = uk.

Note that since we do not have to store the uk’s we can use a temporary vector u. The algorithm
can break down if (lj)j = 0 or we can get problems if some components are small. As in
Gaussian elimination, this can be eliminated by introducing pivoting, see Sadok [400]. To pivot
we may choose the component of u of largest modulus. This Hessenberg basis will be used later
on to construct an iterative method.

7.3.3 The generalized Hessenberg process

These two previous constructions of basis for the Krylov space Kk(A, v) are special cases of the
general following algorithm (see Heyouni and Sadok [280]). The basis vectors are defined as

v1 = v, vj+1 = Avj −
j∑
i=1

hi,jv
i.

The coefficients are obtained by an orthogonality condition. Let {y1, . . . , yj} be another set of
linearly independent vectors. The orthogonality condition that we enforce is

vj+1 ⊥ Yj = [y1 · · · yj].

In matrix form, this is written as

AVj = Vj+1H̃j , Y Tj Vj = Lj ,

236 7. Krylov methods for non-symmetric systems

where Lj is an order j lower triangular matrix and H̃j is a (j + 1)× j upper Hessenberg matrix
with 1’s on the subdiagonal. Note that this method can be further generalized by defining the
orthogonality relative to another matrix S. The elements of H̃j are computed by

v1 = v, η1 = (y1, v1),

for j = 1, . . . ,m
u = Avj ,

for i = 1, . . . , j

hi,j =
(yi, u)

ηi
, u = u− hi,jvi,

end i
hj,j+1 = 1, vj+1 = u, ηj+1 = (yj+1, u).

end j
If the vectors yi are chosen as the columns of the identity matrix, we obtain the Hessenberg

process. Breakdowns can be avoided by choosing the vectors in a different order. Note that as
the vectors yi do not have to be known in advance, they can be computed on the fly. If we choose
yi = vi, we recover the Arnoldi algorithm with a slightly different scaling.

7.4 FOM and GMRES
7.4.1 Definition of FOM and GMRES

Let us suppose x0 = 0. Once we have constructed an orthogonal basis of the Krylov space
Kk(A, b), k = 1, . . . there are two different things we can do. The first one is defining xk = Vky

k

(this characterizes xk as an element of Kk(A, b)) and solving the projected equation of order k

V Tk AVky
k = V Tk b,

to find yk. Note that, because Vk defines an orthonormal basis and v1 = b, we have V Tk b =
‖b‖e1. Moreover, V Tk AVk is an upper Hessenberg matrixHk. This is also true for the generalized
Hessenberg basis and the right-hand side is also proportional to e1. Therefore, the problem of
computing yk reduces to solving a linear system of order k

Hky
k = ‖b‖e1, (7.5)

whose matrix is upper Hessenberg. The solution is a scalar multiple of the first column of the
inverse ofHk. This method is known as the Full Orthogonalization method (FOM) or the Arnoldi
method. In FOM the linear system (7.5) is solved by a QR factorization that is updated at each
iteration. This is quite easy as we just have to zero the lower diagonal of Hk. At each iteration a
new Givens rotation is computed to annihilate the last element hk+1,k.

The solution may also be computed by the following shooting method. Let us scale the matrix
such that the subdiagonal elements hj,j−1 = 1, j = 1, We write the solution y of Hky = e1

as y = αu, α ∈ �. Notice that now we have k + 1 parameters. We fix the value of uk say
uk = 1, then we are able to compute uk−1 using the last equation

uk−1 + hk,kuk = 0.

This gives uk−1 = −hk,k. Recursively, we compute uk−i, i = 2, . . . , 1 using equations k− 1 to
2:

uk−i = −
k∑

j=k−i+1

hk−i+1,juj .

7.4. FOM and GMRES 237

Of course with these values, the first equation is only satisfied if we choose appropriately the
value of α, that is

α =
1

h1,1u1 + · · ·+ h1,kuk
.

It is well known that this algorithm is potentially dangerous as, in some cases, we can get over-
flows and instability. This can be handled in two ways. First of all, we can make another choice
than uk = 1 and secondly, we can monitor the size of the uj’s and rescale them if they grow too
much but this needs additional multiplications. Therefore, for numerical computations it is bet-
ter to use Givens rotations but the shooting method gives the explicit solution of the Hessenberg
system as a function of the elements hi,j which are (Avj , vi) properly scaled. Moreover, when
we increase the size of the problem, the solution can be updated by using the Sherman-Morrison
formula.

Notice that if Hk is singular, then the algorithm breaks down as we are not able to compute
yk. In FOM, the residual is orthogonal to the Krylov space Kk(A, b) since the definition of yk

implies V Tk r
k = V Tk (b− Axk) = 0. The l2-norm of the residual can be easily computed as we

have the following result.

Proposition 7.7. Let ykk be the last component of the solution vector yk. Then,

‖rk‖ = ‖b−Axk‖ = hk+1,k|ykk |.

Proof. In FOM the residual is given by

rk = b−Axk = −hk+1,kv
k+1(ek)T yk,

which gives the result.
The second possibility we have is to minimize the Euclidean norm (l2-norm) of the residual

by using the relation AVk = Vk+1H̃k where the last matrix is a (k + 1) × k upper Hessenberg
matrix. As in FOM, we set xk = Vky

k. Then,

‖rk‖ = ‖b−Axk‖,
= ‖b−AVkyk‖,
= ‖ ‖b‖Vk+1e

1 − Vk+1H̃ky
k‖,

= ‖ ‖b‖e1 − H̃ky
k‖.

Hence, we have a least squares problem to solve with a (k+1)×k matrix. This method is known
as GMRES (Generalized Minimum RESidual), see Saad and Schultz [399]. Mathematically, the
solution of this problem is written as

yk = ‖b‖(H̃k)+e1,

where (H̃k)+ = (H̃T
k H̃k)−1H̃T

k . In a practical way, as in FOM, we solve the least squares
problem by using a QR factorization. This means that we have to use orthogonal transformation
to reduce the Hessenberg matrix to upper triangular form. One way to do this is to use Givens
rotations. Suppose the current matrix is

x x . . . x
. . .

...
. . .

x x
0 r
0 h

.

238 7. Krylov methods for non-symmetric systems

The problem we have now is to eliminate the h entry to get an upper triangular matrix. This is
done by left multiplying with the Givens matrix

1
. . .

1
c −s
s c

 .

The coefficients s and c which are sine and cosine of the angle of rotation are given by

c =
r√

r2 + h2
, s = − h√

r2 + h2
.

LetQTk be the product of all the Givens rotation matrices, thenQTk H̃k = Rk and the least squares
solution is obtained by solving a triangular system with matrix Rk. Note that to compute and
use Rk we have to store and apply all the previous rotations to the last column of H̃k and to
the right-hand side. Other implementations have been proposed, for instance, using Householder
transformations to generate the orthogonal basis, see Walker [463]. We shall see that this gives
a much more stable algorithm. However, Householder requires about twice as many flops as
Gram-Schmidt.

Figure 7.2 shows the behaviour of the norm of the error as a function of the number of floating
point operations (flops) using GMRES without preconditioning for problem 7 on a 20× 20 mesh.

0 2 4 6 8 10 12 14

x 10
6

-12

-10

-8

-6

-4

-2

0

Figure 7.2. log10 of the error with GMRES, 20× 20 mesh

The preconditioned GMRES is the following.
Let x0 be given, Mr0 = b−Ax0,

v1 =
r0

‖r0‖
, f = ‖r0‖e1,

for k = 1, . . .
Mw = Avk,

for i = 1, . . . , k
hi,k = (w, vi), w = w − hi,kvi,

end i
hk+1,k = ‖w‖, vk+1 =

w

hk+1,k
,

7.4. FOM and GMRES 239

-apply the rotations of iterations 1 to k − 1 on (h1,k . . . hk+1,k)T . Compute the rotation Rk+1,k

to eliminate hk+1,k, f = Rk+1,kf , solve the triangular system for yk,
-compute the norm of the residual (which is the last component of f properly scaled), if it is

small enough compute xk = x0 + Vky
k and stop

end k.
There are some relationships between the iterates of FOM that we denote by xkF and those of

GMRES denoted by xkG.

Theorem 7.8. Let sk and ck represent the rotation acting on rows k and k + 1. We have the
following relations,

‖rkG‖
‖rk−1
G ‖

= |sk|,

‖rkG‖ = |ck| ‖rkF ‖.

Proof. See Brown [75].
These relations imply that

‖rkG‖ =

√
1−

‖rkG‖
‖rk−1
G ‖

‖rkF ‖.

If sk is small, GMRES reduces significantly the norm of the residual and we see that the same is
true for FOM. If FOM breaks down, then GMRES stagnates.

7.4.2 Convergence results

The most well known result about convergence of GMRES was proved by Saad and Schultz [399].
Let AS be the symmetric part of A. We have the following result.

Theorem 7.9. Suppose A is similar to a diagonal matrix (A = XΛX−1), then the residual of
the GMRES algorithm is such that

‖rk‖ ≤ εk‖X‖‖X−1‖‖r0‖.

where εk is the minimum of maxλ |pk(λ)| over polynomials pk of degree k that satisfy the con-
straint pk(0) = 1 and λ is an eigenvalue of A. If the symmetric part of A is positive definite,
then

‖rk‖ ≤
(

1− λmin(AS)

σmax(A)

)k
‖r0‖,

where σmax(A) = λmax(ATA) is the largest singular value of A.

Proof. See Saad and Schultz [399]. We shall give another proof in one of the following
theorems.

Hochbruck and Lubich [286] proved the following upper bound on the norm of the error.

Theorem 7.10. Let εk be the error,

‖εk‖ ≤ ‖A−1Pk‖ min
pk(0)=1

‖pk(A)b‖

240 7. Krylov methods for non-symmetric systems

where the minimum is taken over polynomials of degree less than or equal to k and Pk = I −
Vk+1H̃kH̃

+
k V

T
k+1.

Proof. See Hochbruck and Lubich [286].
In particular cases the minimum can be bounded independently of b. The rate of convergence

of GMRES was also studied by van der Vorst and Vuik [451].

Theorem 7.11. If the matrix A is diagonalizable by a matrix X ,

‖rk+l
G ‖ ≤ Fk

|ck|
κ(X)εl‖rkG‖,

where

Fk =
|σ(k)

1 |
|λ1|

max
λj 6=λ1

∣∣∣∣∣ λj − λ1

λj − σ(k)
1

∣∣∣∣∣ ,
where the λj are the eigenvalues of A, σ(k)

1 is the smallest eigenvalue of Hk and

εl = min
q

max
λi 6=λ1

|q(λi)|,

q being a polynomial of degree less than l and such that q(0) = 1.

Proof. See van der Vorst and Vuik [451].
This helps explaining the superlinear rate of convergence that is sometimes observed with

GMRES, see [451]. Campbell, Ipsen, Kelley and Meyer [82] studied the convergence of GMRES
from another perspective. They use the spectral projectors

Xj =
1

2πi

∫
Γj

(zI −A)−1 dz, 1 ≤ j ≤ d

where Γj is a circle around λj with no other eigenvalue inside. Suppose there are d distinct
eigenvalues. The index kj of λj is the smallest integer k such that ker(λjI −A)k = ker(λjI −
A)k+1. The minimal polynomial pmin is defined as

pmin(λ) =

d∏
j=1

(λ− λj)kj .

They studied the case where there are d − l eigenvalues in a disk of center 1 and radius ρ and l
eigenvalues outside (called outliers).

Theorem 7.12. Suppose the last eigenvalues are inside the disk. Let g =
∑l
j=1 kj and δ is such

that |λj − λ| < δ|λj |, |λ− 1| = ρ for the outliers, then

‖rk+g‖ ≤ Cρk‖r0‖,

with C = ρδg max|z−1|=ρ ‖(zI −A2)−1‖ and A2 = (I − (
∑l
j=1Xj))A.

Proof. See Campbell, Ipsen, Kelley and Meyer [82].
Note that C is independent of k. In this case, after g iterations the rate of convergence

depends essentially on the size of the cluster of eigenvalues. However, C can be large if the
matrix is non-normal. This result has been generalized to several clusters of eigenvalues in [82].

7.4. FOM and GMRES 241

Sadok [401] related the convergence of FOM and GMRES to the singular values of the matrices
Hk (the so called Ritz values) and H̃k. First of all, the norms of the residuals of FOM and GMRES
are related to determinants of the Krylov matrices Kk. Let Ck = AKk, then

Proposition 7.13. The residuals of GMRES and FOM are such that

‖rkG‖2 =
det(CTk+1Ck+1)

det(CTk Ck)
,

‖rkF ‖2 =
det(KT

k Kk)det(KT
k+1Kk+1)

det(KT
k Ck)

, if det(KT
k Ck) 6= 0.

Proof. See Sadok [401]. The proof uses the orthogonality relations for the residuals and
Cramer’s rule.

As a consequence of this result, we have

‖rkG‖2

‖rk−1
G ‖2

= s2
k, ‖rkG‖2 = c2k‖rkF ‖2,

where c2k = 1− s2
k, c2k being the ratio of determinants,

c2k =
det(KT

k Ck)2

det(CTk Ck)det(KT
k Kk)

.

If we look at the way the Hessenberg matrix is computed in GMRES, it turns out that we have

h2
k+1,k =

det(KT
k+1Kk+1)det(KT

k−1Kk−1)

det(KT
k Kk)

.

This gives a proof of Brown’s result [75]. Let α(k)
j and β(k)

j , i = 1, . . . , k be the singular values
of Hk and H̃k in ascending order. Because Hk is made of the k first rows of H̃k, there are
some interlacing properties between the α’s and β’s. If AS , the symmetric part of A, is positive
definite, then α(k)

1 ≥ λ1(AS) > 0,∀k.

Theorem 7.14. The norms of the residuals are related to the singular values by

‖rkG‖
‖rk−1
G ‖

=

∏k−1
j=1 β

(k−1)
j∏k

j=1 β
(k)
j

√√√√ k∑
j=1

(β
(k)
j)2 − (α

(k)
j)2

=

√√√√1−
k∏
j=1

(α
(k)
j)2

(β
(k)
j)2

,

‖rkF ‖
‖rk−1
F ‖

=

∏k−1
j=1 α

(k−1)
j∏k

j=1 α
(k)
j

√√√√ k∑
j=1

(β
(k)
j)2 − (α

(k)
j)2,

‖rkG‖
‖rkF ‖

=

∏k−1
j=1 α

(k)
j∏k

j=1 β
(k)
j

,

242 7. Krylov methods for non-symmetric systems

if the denominators are different from 0.

Proof. See Sadok [401]. The proof uses the result of Proposition 7.13 and relates the deter-
minants of KT

k Kk and CTk Ck to those of H̃T
k H̃k.

Moreover, we can see that

ck =

∏k−1
j=1 α

(k)
j∏k

j=1 β
(k)
j

.

If the smallest singular value α(k)
1 is bounded below by η independently of k, we have

‖rkG‖
‖rk−1
G ‖

≤

√
1− η2

σ2
n

,
‖rkF ‖
‖rkG‖

≤ σn
η
,

where σn is the largest singular value of A.

Greenbaum, Ptàk and Strakoš [257] proved a very interesting result about GMRES namely that
given a function f such that f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) it is possible to construct a matrix
A and a vector r0 with ‖r0‖ = f(0) such that ‖rk‖ = f(k), k = 1, . . . , n − 1 where rk is the
residual of GMRES with an initial residual r0. Moreover, the matrix A can be chosen to have any
desired (complex) eigenvalues. They also characterize the set of these matrices. Their results
show that the eigenvalues are not the relevant quantities to understand the behaviour of GMRES
for non-normal matrices (that is when ATA 6= AAT). It has been argued (see Trefethen [439])
that the pseudo spectra is the right tool to understand GMRES convergence when A is not normal.
This is not contradictory to the results of Campbell, Ipsen, Kelley and Meyer [82] since (as is
usual for upper bounds) the constants involved may be large when A is non-normal.

7.4.3 Truncated and restarted versions

The main problem with FOM and GMRES compared to CG and MINRES (for symmetric matrices)
is that the storage grows linearly with k. When solving large problems this is not tolerable.
Therefore something has to be done to keep low storage requirements. The simplest remedy is
to periodically restart the algorithm. Let m be a given integer, after m GMRES (or FOM) iterations,
we throw away the basis already computed and we restart the iteration with x0 = xm. This
algorithm is denoted as GMRES(m). So far, we are only able to prove that GMRES(m) converges
if the symmetric part of A is positive definite. Actually, there are examples for low values of m
(= 1, 2, . . .) where GMRES(m) does not converge or so slowly that it is not of practical interest.

Figure 7.3 shows the norm of the error as a function of the number of floating point operations
(flops) using GMRES(m) with different values of m without preconditioning for problem 7 on a
20× 20 mesh.

Another solution is to truncate the methods by orthogonalizing only against the lastm vectors
of the basis and to throw away the earlier vectors. Then, the matrix that is computed is banded
Hessenberg. However, the basis of the Krylov space computed by the truncated Arnoldimethod
is not orthogonal anymore. This variant will be more appropriate for some other algorithms
which are mathematically equivalent to GMRES.

7.4.4 Methods equivalent to GMRES

Over the years, many (Krylov) methods have been proposed to solve non-symmetric systems. It
turns out that most of these methods belong to two classes and within each class all the meth-
ods are mathematically equivalent. This means that in exact arithmetic they compute the same

7.4. FOM and GMRES 243

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

-12

-10

-8

-6

-4

-2

0

Figure 7.3. Problem 7: log10 of the error with GMRES(m), 20×20 mesh, solid: m = 20, dashed:
m = 10, dash-dotted: m = 5, dotted: m = 2

approximation although the implementations could be different. Of course, this is not true in
finite precision arithmetic and it can be that some implementations are more stable than others.
The first class we are interested in here minimizes the l2-norm of the residual. We have seen
that GMRES belongs to this class. Other methods are the Generalized Conjugate Residual (GCR),
ORTHOMIN and ORTHODIR as well as some least squares methods derived by Axelsson, see Saad
and Schultz [398]. In most methods the iterates are written as

xk+1 = xk +

k∑
j=0

α
(k)
j pj ,

where the pj’s are constructed to span the Krylov space. Then,

rk+1 = rk −
k∑
j=0

α
(k)
j Apj .

We minimize the l2-norm of the residual over x0 + Kk if and only if the space spanned by the
residuals is A-orthogonal to Kk. This implies that α(k)

j = 0, j 6= k. Hence, we can rewrite

xk+1 = xk + αkp
k.

The value of αk minimizing the norm is

αk =
(rk, Apk)

(Apk, Apk)
.

In GCR (see Eisenstat, Elman and Schultz [173]) the vectors pj spanning the Krylov space are
given by

pk+1 = rk+1 +

k∑
j=0

β
(k+1)
j pj .

The coefficients are computed as

β
(k+1)
j =

(Ark+1, Apj)

(Apj , Apj)
.

244 7. Krylov methods for non-symmetric systems

Proposition 7.15. With the choices of GCR, we have

(Apk, Apj) = 0, ∀k 6= j

(rk, Apj) = 0, 0 ≤ j < k

(rk, Apk) = (rk, Ark),

(rk, Arj) = 0, 0 ≤ j < k

Proof. The proof is easily obtained by induction.
Generally, GCR is used in its restarted version that we denote by GCR(m). Every m iterations,

the pj’s are thrown away and the iteration is restarted with the current value of xk+1. This way
the storage is kept constant. The method ORTHOMIN(m) was introduced by Vinsome [459]. It is
a truncated version of GCR where only the last m vectors pj are kept (so, GCR=ORTHOMIN(∞)).
The new direction is defined as

pk+1 = rk+1 +

k∑
j=k−m+1

β
(k+1)
j pj ,

The coefficients are computed with the same formulas as for GCR. It can be proved that this
method converges if the symmetric part of A is positive definite.

Figure 7.4 shows the norm of the error as a function of the number of floating point operations
(flops) using ORTHOMIN without preconditioning for problem 7 on a 20× 20 mesh.

0 1 2 3 4 5 6

x 10
6

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Figure 7.4. Problem 7: log10 of the error with ORTHOMIN, 20× 20 mesh

Figure 7.5 gives the norm of the error as a function of the number of floating point operations
(flops) using ORTHOMIN(m) with different values of m without preconditioning for problem 7 on
a 20× 20 mesh.

This method can be further generalized if we introduce a definite matrix K and consider
orthogonality related to (K., .). LetM be a preconditioner, then the algorithm ORTHOMIN(K,M)
is

r0 = b−Ax0, Mp0 = r0,

for k = 0, 1, . . .
ψk = (Kpk, pk), αk = (Kεk, p

k)/ψk,

xk+1 = xk + αkp
k,

7.4. FOM and GMRES 245

0 1 2 3 4 5 6 7

x 10
6

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Figure 7.5. Problem 7: log10 of the error with ORTHOMIN(m), 20 × 20 mesh, solid: m = 20,
dashed: m = 10, dash-dotted: m = 5, dotted: m = 2

rk+1 = rk − αkApk,

Mzk+1 = rk+1,

β
(k+1)
j = −

(Kzk+1, pj) +
∑j−1
l=0 (Kpl, pj)

ψj
, j = 0, . . . , k

pk+1 = zk+1 +

k∑
j=0

β
(k+1)
j pj .

If K is symmetric, then the formula for the β(k+1)
j ’s simplifies and

β
(k+1)
j = − (Kzk+1, pj)

ψj
.

The (unknown) error εk appears in these formulas. To be able to compute the coefficients we
choose K = ATM−1A and then Kεk = ATM−1Aεk = ATM−1rk.
ORTHODIR has been introduced by Young and Jea (see [297, 475]). The new direction is

computed as

γ
(k+1)
k+1 pk+1 = Apk +

k∑
j=0

γ
(k+1)
j pj ,

where the coefficients γ(k+1)
j , 0 ≤ j ≤ k are defined such that (Apk+1, Apj) = 0, 0 ≤ j ≤ k

and γ(k+1)
k+1 is a scaling coefficient. Therefore, the same properties hold as in GCR. Note that

to compute the vectors pj’s we do not need the residuals (except for p0 = r0). The truncated
version of the algorithm is denoted as ORTHODIR(m). ORTHODIR can also be generalized and
preconditioned. We just replace the computation of zk+1 by Mzk+1 = Apk.

Axelsson [19] defined his method by

pk+1 = rk+1 + βk+1p
k,

with

βk+1 = − (Ark+1, Apk)

(Apk, Apk)
.

246 7. Krylov methods for non-symmetric systems

Then, to minimize the norm of the residual over the Krylov space, we must modify the definition
of xk. This is done by

xk+1 = xk +

k∑
j=0

α
(k)
j pj ,

rk+1 = rk −
k∑
j=0

α
(k)
j Apj .

The coefficients α(k)
j are computed by solving a linear system of order k whose matrix entry

(i, j) is (Api, Apj) and the ith component of the right-hand side is (rk, Api). This algorithm can
also be restarted or truncated. It is slightly more expensive than GCR per iteration.

It is unlikely that these methods which are mathematically equivalent to GMRES could be
far better than GMRES. However, methods like ORTHOMIN are still popular as they can be easily
truncated. Note that we can generalize the “truncation” by keeping m vectors different from the
last m ones. Unfortunately, there is no theory that can help us decide which vectors must be kept
to enhance the rate of convergence.

7.4.5 Methods equivalent to FOM

ORTHORES was introduced by Young and Jea [475]. In the symmetric case, it gives the three-term
form of CG (with some different scaling). The method is defined as

r0 = b−Ax0, Mz0 = r0,

for k = 0, 1, . . .
ξk = (zk, zk),

σ
(k+1)
j =

(Kzk, zj)

ξj
, j = 0, . . . , k

λk = (

k∑
j=0

σ
(k+1)
j)−1,

xk+1 = λk(zk +

k∑
j=0

σ
(k+1)
j xj),

rk+1 = λk(

k∑
j=0

σ
(k+1)
j rj −Azk), Mzk+1 = rk+1.

In practice we choose K = M−1A. Note that this algorithm computes a set of orthogonal
generalized residuals zk. The basis update has been replaced by a long recurrence for the iterates.
This sum may also be truncated to define an ORTHORES(m) algorithm.

7.5 Roundoff error analysis of GMRES
So far there have not been many results concerning roundoff error analysis for GMRES or FOM.
There are several questions that can be raised: is GMRES backward stable? Which is the best vari-
ant of GMRES regarding stability of the computation? How different are the computed residuals
from the “true” residuals computed by b−Axk?

7.5. Roundoff error analysis of GMRES 247

There are several ways by which roundoff errors might be introduced (and eventually prop-
agated) in GMRES. The first one is the construction of the “orthogonal” basis using Arnoldi.
One can use the (modified) Gram-Schmidt orthogonalization algorithm (eventually with iterative
improvement) or Householder transformations. The outcome of that phase (as for the Lanczos
algorithm we have studied in Chapter 6) is that the basis vectors might lose orthogonality. Then
comes the reduction of the Hessenberg matrix to triangular form. Using Givens rotations, not
many problems could arise from this phase. The last part of the algorithm is solving the triangu-
lar system. Then, again some roundoff errors may be introduced.

Z. Strakoš and al. [155] have studied these questions. The first step is to look at the finite pre-
cision Arnoldi algorithm. This is an extension of what was done for the three-term recurrence
form of the Lanczos algorithm. The computation of the orthogonal basis can be seen as

[r0 AVk] = Vk+1Rk+1,

where Rk+1 is an upper triangular matrix. Then, we are able to use known results about the QR
factorization of the matrix [r0 AVk]. This translates into

AVk = Vk+1H̃k + Fk,

with ‖Fk‖ ≤ C1n
3u‖A‖, C1 being a constant. Concerning the loss of orthogonality, for House-

holder, we have
‖I − V Tk Vk‖ ≤ C2k

3u.

For Householder and modified Gram-Schmidt, there exists an orthogonal matrix V̂k+1 such that

AVk = V̂k+1H̃k + F̂k,

with ‖F̂k‖ ≤ C3n
3u‖A‖. For Householder, ‖Vk+1 − V̂k+1‖ ≤ C4k

3u. For modified Gram-
Schmidt ‖Vk+1 − V̂k+1‖ ≤ C5n

3uκ([r0 AVk]). Regarding residuals, Strakoš and al. showed
that

‖(b−Axk)− Vk+1(‖b‖ − H̃ky
k)‖ ≤ 2C1n

3u‖A‖ ‖yk‖
+u‖b‖+ (n

3
2 + 3)u‖A‖ ‖x0‖.

Note that we can consider that ‖x0‖ = 0. Looking at how yk is computed through Givens
rotations,

‖yk‖ ≤ ‖b‖(1 + C6n
3
2u)[σ1(H̃k)− 2C6n

3
2uσk(H̃k)]−1.

Theorem 7.16. Assuming x0 = 0 and σ1(H̃k) > 2C6n
3
2u‖H̃k‖, we have

‖b−Axk‖
‖b‖

≤ (k + 1)
1
2
‖ ‖b‖e1 − H̃ky

k‖
‖b‖

+2C1n
3u
‖A‖

σ1(H̃k)
[1− 2C6n

3
2uκ(H̃k)]−1 + u.

Proof. See Strakoš and al. [155]. The factor (k + 1)
1
2 is a bound for ‖Vk+1‖ but because of

the local orthogonality, this is probably a crude overestimate. Then, if the second term is not too
large (that is, if σ1(H̃k)� 2C6n

3
2uσk(H̃k)) the true residual is a small multiple of the Arnoldi

residual.

248 7. Krylov methods for non-symmetric systems

This analysis can be made a little more precise for the Householder implementation if we
make some hypothesis on the way orthogonality is lost, see Strakoš and al. [155]. It has been
shown that the Householder implementation is backward stable, the computed upper Hessen-
berg matrix is equal to the one generated by an exact Arnoldi recurrence applied to a slightly
perturbed matrix.

A. Greenbaum [256] has studied a problem which may seem a little different, what is the
attainable accuracy of recursively computed residuals? She considered methods that can be
written as

xk+1 = xk + αkp
k, rk+1 = rk − αkApk.

This cannot be readily applied to GMRES but to some variants, particularly those based on GCR.
She proved that

‖b−Axk − rk‖
‖A‖ ‖x‖

≤ (u+O(u2))[k + 1 + (1 + c+ k(10 + 2c)) max
j≤k

‖xj‖
‖x‖

],

where c is the constant involved in the matrix×vector multiply, the computing result beingApk+
dk with

‖dk‖ ≤ cu‖A‖ ‖pk‖.
This shows that the residual computed by recurrence could be different from the “true” one if
some of the intermediate iterates grow much larger than the solution x. This has been checked
experimentally, for instance for CG and CGNR.

The roundoff effects in GMRES(m) have been studied experimentally by R. Karlson [305] on
simple examples. Three sources of errors are identified: type 1 comes from loss of orthogonality,
type 2 arises from solving the least squares problem, type 3 from updating the solution. Examples
displaying the different types of roundoff errors are given. It is stated that for the chosen examples
and modified Gram-Schmidt, stagnation arises from a decrease of the smallest singular value of
Vk. For Householder, stagnation may also occur despite a very moderate loss of orthogonality.
However, the results are usually much better using the Householder implementation.

7.6 Extensions to GMRES
In some cases, it is interesting to be able to use a different preconditioner at each iteration. This
is the case, for instance, if an inner iterative method is used to solve Mw = Avk.

7.6.1 Flexible GMRES

Saad has proposed a modification of GMRES denoted as Flexible GMRES (in short FGMRES), see
[397].

Let x0 be given, r0 = b−Ax0,

v1 =
r0

‖r0‖
, f = ‖r0‖e1,

for k = 1, . . .
Mkz

k = vk, w = Azk,

for i = 1, . . . , k
hi,k = (w, vi), w = w − hi,kvi,

end i
hk+1,k = ‖w‖, vk+1 =

w

hk+1,k
,

7.6. Extensions to GMRES 249

Apply the rotations of iterations 1 to k − 1 on (h1,k . . . hk+1,k)T . Compute the rotation Rk+1,k

to eliminate hk+1,k, f = Rk+1,kf , solve the triangular system for yk. Compute the norm of
the residual which is related to the last component of f , if it is small enough compute xk =
x0 + Zky

k, where Zk = [z1 · · · zk] and stop
end k.

The main difference with GMRES is that we have to store the vectors zj . We have

AZk = Vk+1H̃k.

Theorem 7.17. The approximate solution xk of FGMRESminimizes the Euclidean norm (l2-norm)
of the residual over x0 + span(z1, . . . , zk).

Proof. See Saad [397].
It must be noted that convergence results of GMRES do not carry over to FGMRES because the

space where the solution is sought is not a Krylov space.

7.6.2 GMRES*

C. Vuik and H. van der Vorst [452] described an extension of GMRES that can be considered a
recursive variant of GMRES. The idea is to precondition the linear system by an approximation
of the inverse that can be derived from the first iterations. This idea comes from variants of the
Broyden’s method (for solving minimization problems) where approximations of the Hessian are
updated at each iteration. The basic method uses iterations of GMRES itself as the preconditioner,
hence the name GMRESR, the R standing for recursive. The algorithm is the following,

Let x0 be given, r0 = b−Ax0,
for k = 0, 1, . . .

uk(0) = Pm,krk, ck(0) = Auk(0),

for i = 0, . . . , k − 1

αi = (ci, c
k
(i)),

ck(i+1) = ck(i) − αici,

uk(i+1) = uk(i) − αiui,

end i

ck =
ck(k)

‖ck(k)‖
,

uk =
uk(k)

‖ck(k)‖
,

xk+1 = xk + (ck, r
k)uk,

rk+1 = rk − (ck, r
k)ck.

end k
Pm,k is the polynomial representing m steps of GMRES starting with rk. This is the inner

iteration. The previous algorithm may seem far from GMRES. However it is based on a variant
described by van der Vorst and Vuik. If the polynomial Pm,k is taken to be the identity matrix,

250 7. Krylov methods for non-symmetric systems

then we obtain an algorithm which is equivalent to GCR as it can be seen by collapsing the inner
i loop (which is also mathematically equivalent to GMRES). We see immediately that Pm,k can
represent any other iterative method. This leads to the class of algorithms GMRES*, where the *
stands for the inner iterative algorithm. Notice that the value of m may also be different in each
outer iteration.

Unfortunately, the inner iteration may eventually stagnate. Then, van der Vorst and Vuik
suggested replacing the inner iteration by one step of LSQR, see Paige and Saunders [368]. They
showed that if the inner iteration is one step of GMRES(m), then the algorithm does not break
down and, in exact arithmetic, the residual rk = 0 for some k < n. This method may also be
restarted (for the outer iteration) or truncated. Numerical experiments comparing GMRESR to full
GMRES were provided in C. Vuik and H. van der Vorst [452]. Further experiments and hints for
choosing the number of inner iterations are given in Vuik [461].

We remark that FGMRES is much easier to implement than GMRESR but it may break down.
Note also that it can only be restarted. GMRESR can be either restarted or truncated. The behaviour
of both algorithms is almost the same. In [462], Vuik defined another method denoted as FFOM, a
flexible FOM algorithm and showed that the search directions of FGMRES are constructed from the
FFOM residuals. Different cheaper variants of FGMRES and GMRESR can be constructed by mixing
the search directions.

De Sturler [135] proposed preserving the orthogonality relations of GCR in the inner GMRES
iterations of GMRESR. Let Uk and Ck be the matrices whose columns are the vectors ui and ci,
i = 1, . . . k. Of course, we have Ck = AUk. In GCR the matrices are constructed such that
range(Uk) is equal to Kk(A, r0). Then, the method minimizes the l2-norm of the residual over
range(Uk). In GCR the choice uk = rk−1 is made. The best choice for uk will be uk = εk−1

where εk−1 is the error. GMRESR replaces this by a GMRES polynomial applied to rk−1. At
iteration k + 1 in the inner GMRES iteration we solve

min
y
‖rk −AVmy‖.

However, it would have been better to solve

min
y
‖rk − (I − CkCTk)AVmy‖.

Therefore, it seems better to use the matrix (I−CkCTk)A in the inner iteration. This implies that
we have a globally optimal method that uses both inner and outer search vectors to compute the
minimum of the norm of the residual. This is formally proved in [135]. If we solve this problem,
it can be seen that

xk+1 = xk + (I − UkCTk A)Vmy,

and

ck+1 =
(I − CkCTk)AVmy

‖(I − CkCTk)AVmy‖
,

uk+1 =
(I − UkCTk A)Vmy

‖(I − CkCTk)AVmy‖
.

Since we are using a singular operator, the inner GMRES can possibly break down. However, it is
shown in [135] that this is indeed a rare event and moreover some cures exist to the breakdowns.
Good implementations of this algorithm are described in [135] where numerical experiments are
also given. For the set of problems that were studied in [135], this algorithm (denoted as GCRO)
always converges in fewer iterations than GMRESR. In fact, most of the time, the convergence was
not far away from those of full GMRES. However, the computing time was not always smaller than
for GMRESR. GCRO is more attractive when the matrix×vector product is expensive.

7.7. Hybrid GMRES algorithms 251

7.7 Hybrid GMRES algorithms
Some hybrid methods have been defined where the (Arnoldi) GMRESmethod is used, then eigen-
value estimates are extracted from the Hessenberg matrices and a Chebyshev iteration is started
after an ellipse enclosing the eigenvalue estimates have been computed. Polygonal regions may
also be used with optimal polynomials for different norms.

Another kind of hybrid algorithm has been defined by Nachtigal, Reichel and Trefethen
[354]. There, GMRES is run for some iterations and then, the GMRES polynomial is reapplied
cyclically. The GMRES polynomial is explicitly constructed by using the relation between the or-
thogonal matrix Vk and the Krylov matrix. They are related by an upper triangular matrix which
can be constructed column by column from the previous columns and the Hessenberg matrix.
The vector of the coefficients of the GMRES polynomial is found by solving a linear system with
this triangular matrix. After this first phase is completed, the polynomial is reapplied. There are
several ways to do this. The simplest one is to use the Horner’s scheme. However, it is well
known that this method is not stable enough. Nachtigal, Reichel and Trefethen proposed using a
Richardson iteration after computing the roots of the polynomial. For the first order Richardson
iteration, it is important to choose a good ordering of the roots to get a stable algorithm. Nachti-
gal, Reichel and Trefethen used a Leja ordering, see [354]. To make this algorithm practical we
need a switching criterion. It was proposed to balance the work in the two phases. Nachtigal,
Reichel and Trefethen introduced the ratio δ of the cost of one matrix×vector multiplication to
the cost of a vector operation. The convergence criterion being

‖rk‖
‖r0‖

≤ ε,

they proposed switching from phase 1 to phase 2 when

k + 3 + δ ≥ (1 + δ)

(
log ε

log τ
− 1

)
,

where τ is the reduction of the residual norm relative to the norm of the initial residual in the first
phase. Numerical experiments show that, in some cases, this method is better than just restarting
GMRES at the switching point. Note that the two processes are not the same since the GMRES
polynomial depends on the starting vector.

7.8 The non-symmetric Lanczos algorithm
We have seen that if we want to keep short (that is, mostly three-term) recurrences, then we
cannot construct an optimal method and the sequence of residuals is not orthogonal. However, we
shall see that we can construct biorthogonal sequences. Note that in the generalized Hessenberg
process we can use an additional sequence yk that is constructed in the same way as vk but using
AT instead of A. This leads to an algorithm that is known as “non-symmetric Lanczos” (or
two-sided Lanczos).

7.8.1 Definition of the non-symmetric Lanczos algorithm

We use the same notation as for the Lanczos algorithm. We choose two starting vectors q1 and
q̃1 such that (q1, q̃1) = 1. We set q−1 = q̃−1 = 0. Then for k = 0, 1, . . .

zk = Aqk − δkqk − ηkqk−1,

wk = AT q̃k − δkq̃k − η̃kq̃k−1,

252 7. Krylov methods for non-symmetric systems

the coefficient δk being computed as

δk = (q̃k, Aqk).

ηk and η̃k are chosen such that
ηk+1η̃k+1 = (zk, wk),

then

qk+1 =
zk

η̃k+1
,

q̃k+1 =
wk

ηk+1
.

These relations can be written in matrix form. Let

Tk =

δ1 η2

η̃2 δ2 η3

.
η̃k−1 δk−1 ηk

η̃k δk

 ,

and
Qk = [q1 · · · qk], Q̃k = [q̃1 · · · q̃k].

Then, we can write

AQk −QkTk = η̃k+1q
k+1(ek)T ,

AT Q̃k − Q̃kTTk = ηk+1q̃
k+1(ek)T .

This can also be written as

AQk = Qk+1T̄k,

Q̃TkAQk = Tk,

where

T̄k =

(
Tk

η̃k+1(ek)T

)
,

is a (k + 1)× k matrix.

Theorem 7.18. If the non-symmetric Lanczos algorithm does not break down, it computes
biorthogonal vectors, that is, such that

(q̃i, qj) = 0, i 6= j, i, j = 1, . . . , k

The vectors q1, . . . , qk span Kk(A, q1) and q̃1, . . . , q̃k span Kk(AT , q̃1). The two sequences of
vectors can be written as

qk = Pk(A)q1, q̃k = Pk(AT)q̃1,

where Pk is a polynomial of degree k.

Proof. Obvious from the definition.

7.8. The non-symmetric Lanczos algorithm 253

Notice that the non-symmetric Lanczos algorithm can be slightly generalized by using an-
other scalar product or a different scaling, see Gutknecht [264]. The matrix Tk is an oblique
projection of A onto Kk(A, q1) orthogonally to Kk(AT , q̃1). The algorithm breaks down if at
some step we have (zk, wk) = 0. Either,
a) qk = 0 and/or q̃k = 0. In both cases we have found an invariant subspace. If qk = 0 we
can compute the “exact” solution of the linear system. If only q̃k = 0, almost the only way to
deal with this situation is to restart the algorithm with another vector q̃1. Usually using a random
initial vector is enough to avoid this kind of breakdown.
b) The more dramatic situation (which is called a “serious breakdown”) is when (zk, wk) = 0
with zk and wk 6= 0. Then, a way to solve this problem is to use a look-ahead strategy. We shall
study this in one of the following sections, the solution being to construct also the vectors qk+1

and q̃k+1 at step k maintaining bi-orthogonality in a blockwise sense. If this is not possible, we
try constructing also vectors qk+2 and q̃k+2 and so on. The worst case is when we reach the
dimension of the system without being able to return to the normal situation. This is known as
an incurable breakdown.

In finite precision arithmetic, it is unlikely that we get (zk, wk) = 0 with zk and wk 6= 0.
However, it may happen that (zk, wk) is small. This is known as a near breakdown and it is
really this problem that look-ahead strategies must deal with.

7.8.2 Variants of the non-symmetric Lanczos algorithm

Saad [395] remarked that we have some freedom in constructing the vectors q̃k. All that is needed
is that they must spanKk(AT , q̃1) as the Lanczos vectors qk are determined by the condition that
qk must be orthogonal to Kk(AT , q̃1). Therefore, we just need q̃k to be tk(A)q̃1 where tk is a
polynomial of exact degree k. Of course, as then bi-orthogonality does not exist anymore, we
must change the formula giving the coefficients of the method. The polynomial tk need not be
given a priori. It has been suggested by Gutknecht [264] that we use a two-term recurrence such
as

wk = AT q̃k − (q̃k, AT q̃k)q̃k − (q̃k−1, AT q̃k)q̃k−1,

or the modified Gram-Schmidt implementation of this formula. This is a kind of truncated
Arnoldi applied to AT . This can be further generalized by using more terms in the sum.

Another variant is constructed by using coupled two-term recurrences instead of three-term
recurrences. This form of the algorithm is based on using the LU factorization of the matrix Tk.
We give the algorithm in the form described by Gutknecht [264],

Let q1 and q̃1 be given such that δ1 = (q1, q̃1) 6= 0 and δ′1 = (q̃1, Aq1) 6= 0, p1 = q1,
p̃1 = q̃1. For k = 1, . . . choose γk 6= 0 and γ̃k 6= 0 and

φk = δ′k/δk,

qk+1 = (Apk − φkqk)/γk,

q̃k+1 = (AT q̃k − φkq̃k)/γ̃k,

δk+1 = (q̃k+1, qk+1),

ψk = γ̃kδk+1/δ
′
k,

ψ̃k = γkδk+1/δ
′
k,

pk+1 = qk+1 − ψkpk,
p̃k+1 = q̃k+1 − ψ̃kp̃k,
δ̃k+1 = (p̃k+1, Apk+1).

It can be proved that the sequences qk and q̃k are biorthogonal and the sequences pk and p̃k are
A-biconjugate. It turns out that this particular form of the algorithm may break down earlier

254 7. Krylov methods for non-symmetric systems

than the three-term recurrence form if δ′k = 0. This is linked to the non-existence of the LU
factorization of Tk.

7.8.3 Maintaining semi bi-orthogonality

In Chapter 6 we have seen how to maintain semi orthogonality in the Lanczos algorithm for
symmetric matrices. D. Day [130] considered how to extend this to non-symmetric Lanczos. As
the term semi bi-orthogonality is a little too long, he chose to call this maintaining semi-duality.
He considered a variant of non-symmetric Lanczos where we compute Lanczos vectors of norm
1. The algorithm is the following.

γk+1q
k+1 = Aqk − αk

ωk
qk − βk

ωk−1
qk−1,

βk+1q̃
k+1 = Aq̃k − αk

ωk
q̃k − γk

ωk−1
q̃k−1.

The coefficients γk and βk are computed to get ‖qk‖ = ‖q̃k‖ = 1. In matrix form this is written

AQk −QkΩ−1
k Tk = γk+1q

k+1(ek)T ,

AT Q̃k − Q̃kΩ−1
k TTk = βk+1q̃

k+1(ek)T ,

Tk is tridiagonal and Ωk is diagonal. If the algorithm produces candidate vectors which we
denote as qk+1

c and q̃k+1
c and if we decide that they are not orthogonal “enough” to the previous

vectors (that is ‖Q̃kqk+1
c ‖ and ‖(q̃k+1

c)TQk‖ are “too large”), then we use Gram-Schmidt to
correct this situation. Let qk+1

G and q̃k+1
G be the new candidates after correction. Then, the

correction step may be written as

|Ωk|−
1
2QTk q̃

k+1
G = |Ωk|−

1
2 (I −QTk Q̃kΩ−1

k)QTk q̃
k+1
c

= (sign(Ωk)− |Ωk|−
1
2 sign(Ωk)|Ωk|

1
2QTk Q̃k|Ωk|−

1
2)QTk q̃

k+1
c ,

|Ωk|−
1
2 Q̃kq

k+1
G = (sign(Ωk)− |Ωk|−

1
2 Q̃TkQk|Ωk|−

1
2)

×sign(Ωk)|Ωk|−
1
2 Q̃Tk q

k+1
c .

Therefore, the interesting matrix after applying Gram-Schmidt is

Mk = sign(Ωk)− |Ωk|−
1
2 Q̃TkQk|Ωk|−

1
2 .

The measures of bi-orthogonality will be

‖ |Ωk|−
1
2 Q̃kq

k+1‖1, ‖ |Ωk|−
1
2QTk q̃

k+1‖∞.

From these considerations, D. Day [130] defines semi-duality as being

max(‖Ωk|−
1
2QTk q̃

k+1
c ‖∞, ‖Ωk|−

1
2 Q̃Tk q

k+1
c ‖1 ≤ u

1
2 |ωk+1|

1
4 .

Local duality is said to hold at step k if

max
1≤i≤k

(|(q̃iqi−1|), |(q̃i−1, qi)|) ≤ 4u.

D. Day proved that local duality is maintained by the following algorithm,

rk = AT q̃k − γkωk
ωk−1

q̃k−1, sk = Aqk − βkωk
ωk−1

qk−1,

7.9. The BiConjugate Gradient Algorithm 255

αk = (q̃k, qk) or (rk, qk),

rk = rk − αk
ωk
q̃k, sk = sk − αk

ωk
qk,

αlk = (rk, qk), αrk = (q̃k, sk),

rk = rk − αlk
ωk
q̃k, sk = sk − αrk

ωk
qk,

βk+1 = ‖rk‖, γk+1 = ‖sk‖,

q̃k+1 =
rk

βk+1
, qk+1 =

sk

γk+1
,

ωk+1 = (q̃k+1, qk+1).

Let Dl
k and Dr

k be the diagonal matrices with non-zero elements αli and αri . At the end of a step
we compute

xk = QTk−1q̃
k+1
c , yk = Q̃k−1q

k+1
c .

Then we reorthogonalize, getting

q̃k+1
G = q̃k+1

c − Q̃Tk−1Ω−1
k−1x

k,

qk+1
G = qk+1

c −Qk1Ω−1
k1
yk.

Correction steps are applied in steps in two successive iterations to the last two pairs of Lanczos
vectors. To monitor the loss of duality, recurrences are derived forQTk q̃

k+1 and Q̃kqk+1. Q̃kqk+1

is estimated by hk+1 defined by

γk+1h
k+1 = (TkΩ−1

k −
αk
ωk
I)

(
hk

0

)
− βkωk
ωk−1

hk−1

0
0

αrke
k−2.

If a correction step is done, u diag(|Ω−1
k Tk|) is added to the right hand side. A similar re-

currence is obtained for the estimate of QTk q̃
k+1. Using these corrections implements a robust

non-symmetric Lanczos algorithm. It can be used in all algorithms using the non-symmetric
Lanczos algorithm as a first step.

7.9 The BiConjugate Gradient Algorithm
Methods for solving linear systems can be derived from the non-symmetric Lanczos algorithm in
the same way CG was derived from the Lanczos algorithm for the symmetric case. The solution
can be written as

xk = x0 +QkT
−1
k (‖b‖e1).

Notice that when using the non-symmetric Lanczos algorithm, we are implicitly solving also a
system with AT , whose solution we are generally not interested in. To derive algorithms that use
short recurrences we have to use the LU factorization of the non-symmetric tridiagonal matrix
Tk (without permutations). Depending on the version of non-symmetric Lanczos we use, we
shall get different versions of the BiConjugate Gradient (BiCG) algorithm, see Gutknecht [264].
BiCG may also be considered as a method for solving(

0 A
AT 0

)(
y
x

)
=

(
b
c

)
,

256 7. Krylov methods for non-symmetric systems

where c is arbitrarily chosen. The classical version of BiCG (Fletcher [194]) is the following.
Let x0 be given, r0 = b−Ax0, r̃0 = r0, p0 = r0, p̃0 = r̃0, for k = 0, 1, . . .

αk =
(r̃k, rk)

(p̃k, Apk)
,

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk,
r̃k+1 = r̃k − αkAT p̃k,

βk+1 =
(r̃k+1, rk+1)

(r̃k, rk)
,

pk+1 = rk+1 + βk+1p
k,

p̃k+1 = r̃k+1 + βk+1p̃
k.

There are two reasons for which the algorithm may break down: (r̃k, rk) = 0 or (p̃k, Apk) = 0.
We may get near breakdowns if one or both of the scalar products is small. This question will be
treated in one of the following sections.

Theorem 7.19. If BiCG does not break down we have the following properties for k 6= l,

(r̃k, rl) = 0,

(p̃k, Apl) = 0,

(r̃k, pl) = 0,

(rk, p̃l) = 0.

Proof. The method of proof is the same as with CG for symmetric systems.
Note that we can also choose another vector as the starting vector and residual for the auxil-

iary system. If the matrix A is SPD, we recover CG. Even though this algorithm has somewhat of
a bad reputation, it is very simple to implement and most of the time its convergence rate is quite
fast. Moreover, it is straightforward to precondition BiCG.

Figure 7.6 shows the norm of the error as a function of the number of floating point operations
(flops) using BiCG without preconditioning for problem 7 on a 20× 20 mesh.

0 0.5 1 1.5 2 2.5

x 10
6

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 7.6. Problem 7: log10 of the error with BiCG, 20× 20 mesh

7.10. Roundoff error analysis of BiCG 257

To generate other forms of the algorithm we can also consider the indefinite matrix(
0 A
AT 0

)
and use one of the methods for indefinite systems we considered in Chapter 6. We can also use
a biorthogonal algorithm with three-term recurrences.

7.10 Roundoff error analysis of BiCG
Not much is known about the roundoff error analysis of BiCG. Obviously, this is linked to the
analysis of the non-symmetric Lanczos algorithm. Paige’s results for the symmetric Lanczos
algorithm were generalized to the non-symmetric case by Z. Bai [31]. C. Tong and Q. Ye [438]
have developed bounds for the finite precision computation of BiCG. Their work relies closely on
the Lanczos algorithm as they eliminate the variables p. Then, if we denote Rk = [r0, . . . , rk],

ARk = RkTk −
1

αk
rk+1(ek)T .

We suppose that the matrix×vector product is such that the computed value is Ax + ug with
|g| ≤ n|A| |x|+O(u).

Theorem 7.20. The computed quantities in BiCG satisfy

ARk = RkTk −
1

αk
rk+1(ek)T + u∆k,

where ∆k = [δ0, . . . , δk] with

|δi| ≤ ((n+ 6)|A|+ 1

|αi|
+
|βi|
|αi−1|

)|ri|+ (2n+ 7)|A| |pi|+O(u).

Proof. See C. Tong and Q. Ye [438].
Let Xk be the matrix of the residual vectors scaled by their l2-norms. C. Tong and Q. Ye

[438] also proved some bounds for the norms of the residuals.

Theorem 7.21. If the residuals are linearly independent,

‖rk+1‖ ≤ (1 + Ck) min
p
‖p(A+ δAk)r0‖,

where the minimum is taken over polynomials of degree k such that p(0) = 1 andCk = ‖(AXk−
u∆k)T−1

k Wk‖, the matrix Wk being the first k columns of the generalized inverse X+
k+1 of

Xk+1. The perturbation matrix δAk is −u∆kX
+
k , Xk being the matrix of the vectors xk.

Proof. See C. Tong and Q. Ye [438].
Notice that the right-hand side is related to the GMRES method for A + δAk. This result

proves that convergence will still occur in finite precision arithmetic as long as the polynomial
term balances the growth of the constant Ck. C. Tong and Q. Ye proved that

Ck ≤ (
√
n‖A‖+ u‖∆k‖)‖T−1

k ‖ ‖X
+
k+1‖,

hence Ck must not be too large.

258 7. Krylov methods for non-symmetric systems

7.11 Handling of breakdowns
We have seen that the Lanczos biorthogonalization algorithm (as well as the biconjugate gradient
method) may suffer from breakdowns and near breakdowns. Solutions to this problem have been
studied by many people. The cure of the breakdown problem can be obtained by using the
connection of the Lanczos algorithm to other mathematical problems. As we shall see later on,
non-symmetric Lanczos is related to computing formal orthogonal polynomials (FOP). It is also
related to the computation of Padé approximants and Padé tables. Solutions to the breakdown
problem were already known or can be derived more easily by looking at Lanczos from these
perspectives. We can also cure the breakdown problem by maintaining bi-orthogonality only in
a blockwise sense. Finally, the Lanczos basis can be modified by introducing new vectors in the
Krylov basis. Another goal is to find a solution of the breakdown problem which uses the least
possible number of additional matrix×vector multiplies and scalar products. There are different
solutions to the breakdown problem which are more or less equivalent as regards the algorithmic
complexity.

7.11.1 FOP

We follow the exposition of Brezinski, Redivo Zaglia and Sadok [71, 72]. We have seen that the
residuals are written as rk = Pk(A)r0 and are orthogonal to Kk(AT , r̃0). Therefore

(rk, (AT)ir̃0) = (Airk, r̃0) = (AiPk(A)r0, r̃0) = 0, i = 0, . . . , k − 1

Let c be a linear functional defined over the space of polynomials as

c(ξi) = ci = (Air0, r̃0), i = 0, 1, . . .

The bi-orthogonality requirements are written as

c(ξiPk(ξ)) = 0, i = 0, . . . , k − 1

Such a family of polynomials is called formal orthogonal polynomials with respect to c. The
polynomials are normalized such that Pk(0) = 1. It can be shown that Pk exists and is unique if
and only if

dk =

∣∣∣∣∣∣
c1 · · · ck
...

...
ck · · · c2k−1

∣∣∣∣∣∣ 6= 0.

A polynomial which exists is called regular. Formal orthogonal polynomials (FOP) satisfy three-
term recurrences

Pk+1(ξ) = (αk+1ξ + βk+1)Pk(ξ)− γk+1Pk−1(ξ).

A linear system for the coefficients αk+1, βk+1, γk+1 is obtained by enforcing the orthogonality
conditions and Pk+1(0) = 1. The polynomial Pk+1 is computable if the 3 × 3 determinant for
the coefficients is non-zero and if dk+1 6= 0. If the breakdown is due to the three-term relation,
we can compute the polynomial using some other relations. For instance, we can define another
functional c1 such that c1(ξi) = ci+1 and compute the polynomials P 1

k such that c1(ξiP 1
k) = 0,

the leading coefficient of P 1
k being 1. These polynomials lead to the ORTHORES implementation

of the non-symmetric Lanczos algorithm.
We denote by nk the degrees of regular polynomials, meaning that Pnk exists and the next

regular polynomial is Pnk+1
of degree nk+1, nk+1 = nk + mk,mk ≥ 1. The polynomials in

7.11. Handling of breakdowns 259

between do not exist and we are interested in jumping from Pnk to Pnk+1
. Draux [154] proved

that mk is given by

c1(ξiP 1
nk

(ξ)) = 0, i = 0, . . . , nk +mk + 2

6= 0, i = nk +mk + 1.

We have an incurable breakdown if we cannot compute the next polynomial before reaching the
dimension of the linear system. These P 1

nk
polynomials can be computed by

P 1
nk+1

(ξ) = (α0 + · · ·+ αmk−1ξ
mk−1 + ξmk)P 1

nk
− γk+1P

1
nk−1.

The coefficients are computed by solving a non-singular triangular system (see [71]),

γk+1 = c1(ξnk+mk−1P 1
nk

)/c1(ξnk−1P 1
nk−1),

αmk−1c
1(ξnk+mk−1P 1

nk
) + c1(ξnk+mkP 1

nk
) = γk+1c

1(ξnkP 1
nk−1),

and so on until

α0c
1(ξnk+mk−1P 1

nk
) + · · ·+ αmk−1c

1(ξnk+2mk−2P 1
nk

)

+ c1(ξnk+2mk−1P 1
nk1)=γk+1c1(ξnk+mk−1Pnk−1

).

The polynomials Pk needed in the Lanczos algorithm are recovered by

Pnk+1
= Pnk − ξ(β0 + · · ·+ βmk−1ξ

mk−1)P 1
nk
.

The coefficients βi are the solution of a non-singular triangular system,

βmk−1c
1(ξnk+mk−1P 1

nk
= c(ξnkPnk),

and so on, the last equation being

β0c
1(ξnk+mk−1P 1

nk
) + · · ·+ βmk−1c

1(ξnk+2mk−2P 1
nk

) = c(ξnk+mk−1Pnk).

An implementation of the Lanczos algorithm using these recurrences has been defined in Brezin-
ski, Redivo Zaglia and Sadok [70]. Of course, what is really interesting is avoiding near break-
downs. In that case we must also jump over regular polynomials that may be badly computed.
Recurrences for computing the regular polynomials are given in [68, 69]. The main problem is in
fact to define when we have a near breakdown situation. One way would be to check |c1(ξiP 1

nk
)|

relative to a given ε. However, the numerical results are then too sensitive to the choice of ε.

7.11.2 Padé approximation

The relation of Padé approximation to the non-symmetric Lanczos algorithm was studied by
Gutknecht [262]. The computation of Padé tables and the relation to Lanczos methods is con-
sidered in detail in Hochbruck [285]. Starting from algorithms for computing the Padé table, she
proposed the following look-ahead Lanczos algorithm.

Let m = 0, l = 0, v0 = 0, w0 = 0, ε0 = 1 and q0, q̃0 be given. While qm 6= 0 and q̃m 6= 0,

k = 1, δm,m = (qm, q̃m), Dl = δm,m

260 7. Krylov methods for non-symmetric systems

while σmin(Dl) < ε and m+ k ≤ n

γmk−1 = −δm,m+k−1

εm
,

qm+k = Aqm+k−1 + γmk−1v
m,

q̃m+k = AT q̃m+k−1 + γmk−1w
m,

δm+k−1,m+k−1 = (qm+k−1, q̃m+k−1), δm+k,m+k = (qm+k, q̃m+k),

extend the Hankel matrix Dl by one row and one column, k = k + 1
end while

θm+k =
δm,m+k−1

εm
,

Solve Dldm = −z, z = ((q̃m, Aqm+k−1), . . . , (q̃m+k−1, Aqm+k−1))T ,

qm+k = Aqm+k−1 + (qm, . . . , qm+k−1)dm + θm+kv
m,

q̃m+k = AT q̃m+k−1 + (q̃m, . . . , q̃m+k−1)dm + θm+kw
m.

if k = 1, vm+1 = vm, wm+1 = wm, εm+1 = δm,m else εm+k = 1, solve Dld̃m = ek−1

vm+k = (vm, . . . , vm+k−1)d̃m,

wm+k = (wm, . . . , wm+k−1)d̃m

end if
m = m+ k, l = l + 1

In this algorithm σmin(Dl) is the smallest singular value of Dl. However, for this algorithm to
be of practical interest strategies must be defined to determine the length of the look-ahead jump.

7.11.3 Block bi-orthogonality

Another perspective to solve the breakdown problem is to enforce only block bi-orthogonality.
Note this is what we implicitly did in the previous subsections. We want to enforce the bi-
orthogonality conditions

qnk ⊥ Knk(AT , q̃0), q̃nk ⊥ Knk(A, q0)

for the regular indices. For the other vectors (denoted as inner vectors) we would like to have

qk ⊥ Knk(AT , q̃0), q̃k ⊥ Knk(A, q0), nk ≤ k < nk+1

As Gutknecht [264] we denote

Qk = (qnk qnk+1 · · · qnk+1−1) , Q̃k = (q̃nk q̃nk+1 · · · q̃nk+1−1) .

Let Dk = (Q̃k)TQk. We require (Q̃i)
TQj = 0 if i 6= j. Let

Qk,l = (qnk qnk+1 · · · ql) , Q̃k,l = (q̃nk q̃nk+1 · · · q̃l) ,

the last block being eventually incomplete. We denote

Qk+1 = (Q0 · · · Qk−1 Qk,l) , Q̃k+1 = (Q̃0 · · · Q̃k−1 Q̃k,l)

7.12. The Conjugate Gradient Squared algorithm 261

Then, (Q̃k+1)TQk+1 = Dk+1 where this last matrix is block diagonal with diagonal blocks Di.
The basis we are looking for can be defined by

AQk = Qk+1Tk, AT Q̃k = Q̃k+1T Tk .

The matrix Tk is shown to be block tridiagonal, the diagonal blocks being upper Hessenberg. It
is easy to see how to compute the elements of Tk by enforcing the orthogonality conditions, all
we need is to have the blocks Di well conditioned as they must be inverted to get the solution.

As indicated, the difficulty is finding a strategy to determine whether a vector is regular or
not. Monitoring the smallest singular value is generally not sufficient. Other possibilities have
been considered in Freund, Gutknecht and Nachtigal [206]. It is required that the l1 norms of
(parts) of columns of Tk be bounded by a given prescribed tolerance for the given step of the
algorithm to be considered regular. All these strategies are based on heuristics and might not
work on every problem.

7.11.4 Modified Krylov spaces

Another solution to the breakdown problem has been proposed by Q. Ye [472], see also Tong
and Ye [437]. If we decide that we have a breakdown at step k, a new start vector q̃k+1 is
chosen to be orthogonal to Kk(A, q0). The subspace Kk−1+2m(AT , q̃0) is replaced by a sum
of Kk−1+m(AT , q̃0) and Km(AT , q̃k+1) for some m. Then from iteration k + 2 the Lanczos
recurrences will involve four terms, adding a term for qk−2. At the next breakdown a fifth term
is added and so on. Finally, we obtain biorthogonal sequences and a banded upper Hessenberg
matrix whose bandwidth is 3 plus the number of previous breakdowns. So, we get something in
between Lanczos and Arnoldi. It has been shown that the new start vector can be chosen by
enforcing only local orthogonality and we shall still have the same properties.

7.12 The Conjugate Gradient Squared algorithm
In BiCG it is easy to see that the residuals are polynomials applied to the initial residuals. This is
formalized in the next proposition.

Proposition 7.22. Let φk and θk be polynomials of degree less or equal to k defined by

φk+1(A) = φk(A)− αkAθk(A),

θk+1(A) = φk+1(A) + βk+1θk(A).

Then the vectors defined in BiCG satisfy

rk = φk(A)r0, pk = θk(A)r0,

r̃k = φk(AT)r0, p̃k = θk(AT)r0.

Proof. The proof is obvious by induction.
Note that (rk, r̃k) = (φk(A)r0, φk(AT)r0) = (φk(A)2r0, r0). This leads P. Sonneveld

[419] to construct an algorithm whose residual is given by φk(A)2r0 instead of φk(A)r0, the
idea being that if φk(A) is a contraction for k large, then φk(A) will be a contraction of smaller
norm. Another positive point is that the transpose matrix would not be needed anymore. To
derive this method recurrences must be sought for the quantities implied in BiCG. For instance,
we have

φ2
k+1(t) = φ2

k(t)− 2αktθk(t)φk(t) + α2
kt

2θ2
k(t).

262 7. Krylov methods for non-symmetric systems

The term φk+1θk is used as a new unknown in the algorithm and additional recurrences can be
found for the other cross term as

φk(t)θk(t) = φ2
k(t) + βkφk(t)θk−1(t).

The “squared” method has been named CGS for Conjugate Gradient Squared, although it might
have been better to name it BiCGS. The CGS algorithm is the following.

Let x0 be given, r0 = b−Ax0, q0 = p0 = r0, for k = 0, 1, . . .

αk =
(rk, r0)

(Aqk, r0)
,

uk = pk − αkAqk,
xk+1 = xk + αk(pk + uk),

rk+1 = rk − αkA(pk + uk),

βk+1 =
(rk+1, r0)

(rk, r0)
,

pk+1 = rk+1 + βk+1u
k,

qk+1 = pk+1 + βk+1(uk + βk+1q
k).

Note that even though AT is not needed anymore there are still two matrix×vector products for
each iteration.

Figure 7.7 shows the norm of the error as a function of the number of floating point operations
(flops) using CGS without preconditioning for problem 7 on a 20× 20 mesh.

0 2 4 6 8 10 12 14 16 18 20

x 10
5

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 7.7. Problem 7: log10 of the error with CGS, 20× 20 mesh

When introducing a preconditioner M , we have to modify the algorithm such that

q̂k = M−1qk,

q̃k = Aq̂k,

αk =
(rk, r0)

(q̃k, r0)
,

uk = pk − αkq̃k,
ûk = M−1(pk + uk),

7.13. Extensions of BiCG 263

xk+1 = xk + αkûk,

rk+1 = rk − αkAûk,

βk+1 =
(rk+1, r0)

(rk, r0)
,

pk+1 = rk+1 + βk+1u
k,

qk+1 = pk+1 + βk+1(uk + βk+1q
k).

The potential problem with this method is that if there are some oscillations in BiCG, they will be
amplified in CGS. Therefore, in some cases the behaviour of CGSmay be more erratic than that of
BiCG. This leads some researchers to generalize Sonneveld’s idea to using product of different
polynomials to get a smoother behaviour. Note that this may also be obtained by smoothing
procedures. CGS could also have breakdown (or near breakdown) problems as with BiCG and we
may have to use look-ahead techniques, see for instance Brezinski and Sadok [73] and Brezinski
and Redivo Zaglia [66].

7.13 Extensions of BiCG
For the BiCG method, the vectors are computed by

pk = rk−1 − βkpk−1, xk+1 = xk + αkp
k, rk+1 = rk − αkApk

with rk and Apk being orthogonal to Kk(AT , r̃0). For any polynomial ψk of degree k and
leading coefficient θk, we have

βk =
θk−1

θk

ρk
σk−1

, αk =
ρk
σk
,

where
ρk = (rk, ψk(AT)r̃0) = (yk, r̃0)

with yk = ψk(A)rk and
σk = (Apk, ψk(AT)r̃0).

We are free to choose the polynomial ψk as long as ψ0(AT)r̃0, . . . , ψk−1(AT)r̃0 span the Krylov
space Kk(AT , r̃0). As the convergence of CGS could be very irregular, H. van der Vorst [450]
suggested using another product of polynomials. He looked for residuals of the form rk =
ψk(A)φk(A)r0 where φ is the BiCG polynomial. For ψ he chose a product of degree one minimal
residual polynomials in order to smooth the residuals. Therefore,

ψk+1(t) = (1− ωkt) · · · (1− ω1t),

and the polynomial ψk can be computed by the simple recurrence

ψk+1(t) = (1− ωkt)ψk(t).

As with CGS, we can find recurrences for ψkφk and ψkθk. Then, we set

rk = φk(A)ψk(A)r0,

pk = ψk(A)θk(A)r0.

The computation of the coefficients is a little more tricky than for CGS but it can also be done.
Parameters ωk are chosen as to minimize the Euclidean norm of the residual (i.e. a steepest
descent or GMRES(1) step). This leads to the BiCGSTAB algorithm, see van der Vorst [450].

264 7. Krylov methods for non-symmetric systems

Let x0 be given, r0 = b−Ax0, p0 = r0, r̃0 arbitrary for k = 0, 1, . . .

αk =
(rk, r̃0)

(Apk, r̃0)
,

sk = rk − αkApk,

ωk =
(Ask, sk)

(Ask, Ask)
,

xk+1 = xk + αkp
k + ωks

k,

rk+1 = sk − ωkAsk,

βk+1 =
(rk+1, r̃0)

(rk, r̃0)

αk
ωk
,

pk+1 = rk+1 + βk+1(pk − ωkApk).

Figure 7.8 shows the norm of the error as a function of the number of floating point operations
(flops) using BiCGSTAB without preconditioning for problem 7 on a 20× 20 mesh.

0 2 4 6 8 10 12 14 16

x 10
5

-15

-10

-5

0

Figure 7.8. Problem 7: log10 of the error with BiCGSTAB, 20× 20 mesh

We can see on Figure 7.8 that the convergence is smoother than with CGS (at least on this
example). The preconditioned version is

p̂k = M−1pk,

p̃k = Ap̂k,

αk =
(rk, r̃0)

(p̃k, r̃0)
,

sk = rk − αkp̃k,
ŝk = M−1sk,

s̃k = Aŝk,

ωk =
(s̃k, sk)

(s̃k, s̃k)
,

xk+1 = xk + αkp̂
k + ωkŝ

k,

rk+1 = ŝk − ωks̃k,

7.13. Extensions of BiCG 265

βk+1 =
(rk+1, r̃0)

(rk, r̃0)

αk
ωk
,

pk+1 = rk+1 + βk+1(pk − ωkp̃k).

Usually BiCGSTAB has much smoother convergence behaviour than CGS. However, the algorithm
can break down if ωk = 0 or we can have troubles if ωk is small. For recipes to avoid break-
downs, see Brezinski and Redivo Zaglia [67]. Another problem is that the minimal residual
polynomial has only real roots and this can be a poor approximation for matrices with complex
eigenvalues. Gutknecht [263] proposed a method denoted as BiCGSTAB2 to solve this poten-
tial problem. This was further generalized by Sleijpen and Fokkema [407] who proposed the
BiCGSTAB(l) algorithm. In this method the polynomial ψ is constructed as the product of factors
of degree l, ψk = ψml+l = sksk1 · · · s0, where the polynomials si are of degree l, such that
si(0) = 1 and sk minimizes ‖sk(A)ψk−l(A)rk‖. For k = ml the operator acting on the initial
residual is the product of the BiCG operator and a GMRES(l) (or more exactly a GCR(l)) operator.
BiCGSTAB(l) computes the solution xk for k = l, 2l, . . . These are the outer iterations of the
algorithm. To proceed from k = ml to k = (m+ 1)l first the BiCG part computes implicitly the
BiCG vectors, then the algorithm computes a minimum residual on a subspace of dimension l.
Let us show the implementation of BiCGSTAB(l) given by Sleijpen and Fokkema [407].

Let k = −l, x0 and r̃0 be given, r0 = b−Ax0, u−1 = 0, α = 0, ω = 1.
Then we repeat until convergence

k = k + l

û0 = uk−1, r̂0 = rk, x̂0 = xk

ρ0 = −ωρ0

for j = 0, . . . , l − 1

ρ1 = (r̂j , r̃0), β = βk+j = α
ρ1

ρ0
, ρ0 = ρ1

ûi = r̂i − βûi, i = 0, . . . , j

ûj+1 = Aûj

γ = (ûj+1, r̃0), α = αk+j =
ρ0

γ

r̂i = r̂i − αûi+1, i = 0, . . . , j

r̂j+1 = Ar̂j , x̂0 = x̂0 + αû0

end j
for j = 1, . . . , l

τi,j =
(r̂j , r̂i)

σi
, r̂j = r̂j − τi,j r̂i, i = 1, . . . , j − 1

σj = (r̂j , r̂j), γ′j =
(r̂0, r̂j)

σj
end j

γl = γ′l, ω = γl

γj = γ′j −
l∑

i=j+1

τi,jγi, j = l − 1, . . . , 1

γ̃j = γj+1 −
l−1∑
i=j+1

τi,jγi+1, j = 1, . . . , l − 1

266 7. Krylov methods for non-symmetric systems

x̂0 = x̂0 + γ1r̂
0, r̂0 = r̂0 − γ′1r̂l, û0 = û0 − γlûl

for j = 1, . . . , l − 1

û0 = û0 − γj ûj

x̂0 = x̂0 + γ̃j r̂
j

r̂0 = r̂0 − γ′j r̂j

end j
uk+l−1 = û0, rk+l = r̂0, xk+l = x̂0

Usually BiCGSTAB(l) is used with small values of l. For most problems l = 2 gives good results
and improves on BiCGSTAB.

Figure 7.9 shows the norm of the error as a function of the number of floating point operations
(flops) using BiCGSTAB(2) without preconditioning for problem 7 on a 20× 20 mesh.

0 2 4 6 8 10 12 14 16 18

x 10
5

-15

-10

-5

0

Figure 7.9. Problem 7: log10 of the error with BiCGSTAB(2), 20× 20 mesh

A possible problem with the previous implementation is that it uses the standard (ill condi-
tioned) basis of the CGR part. This could cause the computed residuals to differ from the “true”
residuals. For large values of l it is better to use more stable (orthonormal) basis. More ef-
ficient implementations of BiCGSTAB(l) have been considered by Sleijpen and van der Vorst
[408, 409, 410]. One strategy that has been proposed to improved the accuracy of computed
residuals is to group the updates to the solution, that is to accumulate only the corrections for
several steps,

xk = xj + qj , qj = αjr
j + αj+1r

j+1 + · · ·+ αk−1r
k−1.

If we choose the values of k − j well and/or compute the partial sums cleverly we can expect
more accurate residuals. It has been suggested that we update the residuals when k is the first
integer greater than j such that the norm of the residual at step k is strictly smaller than the
norm of the residual at step j. Another idea is to compute the true residual from time to time,
without restarting uk, ωk, σk. Sleijpen and van der Vorst [409] tried to avoid small values of ωk
in BiCGSTAB by modifying the computation as

ωk =
ω̂k
|ω̂k|

max(|ω̂k|, 0.7)
‖r‖
‖Ar‖

,

where

ω̂k =
(r,Ar)

‖r‖ ‖Ar‖
.

7.14. The Quasi Minimal Residual algorithm 267

Similar solutions could be applied for BiCGSTAB(l), see [409]. Moreover, the value of l can be
changed during the course of the algorithm. We can increase the value of l when we get small
values of ωk. Criteria defining when to increase l are given in [409].

Many other product type methods can be defined but, so far, there is not one method that has
been proved to be really better than all the others. T. Chan and Q. Ye [102] defined an algorithm
which mixes CGS and BiCGSTAB. At each iteration either a CGS or BiCGSTAB step is taken. This
is done without restart which would have spoiled the convergence rate. When we apply BiCG we
have

rk = φk(A)r0, pk = θk(A)r0,

where

φk+1(A) = φk(A)− αkAθk(A),

θk+1(A) = φk+1(A) + βk+1θk(A).

In the mixed method the residual is constructed as

rk = πk(A)φk(A)r0, πk(t) = ψl(t)φn−k(t).

When constructing rk+1 = πk+1(A)φk+1(A)r0 Chan and Ye [102] choose from ψl(t)φk+1−l(t)
or ψl+1(t)φk−l(t). See the formulas in Chan and Ye [102].

7.14 The Quasi Minimal Residual algorithm
In the non-symmetric Lanczos algorithm we construct a basis ofKk(A, r0) which is (bi)orthogonal
to Kk(AT , r̃0). Therefore, we cannot do what we did with the output of the Arnoldi algorithm
to derive the GMRES algorithm by minimizing the Euclidean norm (l2-norm) of the residual. Now,
we have that

AQk = Qk+1T̄k.

The norm of the residual is

‖rk‖ = ‖b−Axk‖
= ‖b−AQkyk‖
= ‖ ‖b‖Qk+1e

1 −Qk+1T̄ky
k‖.

Unfortunately, the matrix Qk+1 is not orthogonal and cannot be taken out of the norm. It was
suggested by Freund and Nachtigal [207] that we compute yk by minimizing

‖ ‖b‖e1 − T̄ky‖.

This method is known as QMR (Quasi Minimum Residual). In fact in the Freund and Nachtigal
proposal there was also a diagonal scaling matrix involved but, so far, nobody has given a way
to cleverly determine this matrix, so we do not use it. Mathematically, the solution is

yk = ‖b‖(T̄k)+e1, (T̄k)+ = (T̄Tk T̄k)−1T̄Tk .

Numerically the least squares problem is solved in the same way as for GMRES but everything is
simpler here because of the structure of T̄k. Givens rotations are computed at each iteration and
applied to the matrix and the right-hand side.

Figure 7.10 shows the norm of the error as a function of the number of floating point op-
erations (flops) using QMR without preconditioning and without look-ahead for problem 7 on a

268 7. Krylov methods for non-symmetric systems

0 2 4 6 8 10 12 14

x 10
7

-10

-8

-6

-4

-2

0

2

Figure 7.10. Problem 7: log10 of the error with QMR, 20× 20 mesh

20 × 20 mesh. It should be noted that in order to produce the plot, the least squares problem
was solved at each iteration which is not necessary when the goal is just to compute the solu-
tion. Therefore, the number of operations cannot be directly compared with those for the other
methods.

As there are relations between the FOM and GMRES residuals, equivalently there are relations
between the BiCG and QMR residuals and iterates. The solution can be written as

xk = xk−1 + τkp
k,

where τk = ck τ̃k, ck being the cosine of the Givens rotation, τ̃k being the norm we minimize,
pk is the kth column of QkR−1

k , Rk being the upper triangular matrix obtained by applying the
Givens rotations. Note that pk can be computed by short recurrences.

Theorem 7.23. Let sk and ck be the sine and cosine of the Givens rotations. We have

‖rk‖ ≤ ‖r0‖
√
k + 1|s1s2 · · · sk|,

xkBiCG = xkQMR +
τk|sk|2

c2k
pk.

Proof. See Freund and Nachtigal [207].
It has also been shown by Zhou and Walker [476] that

xkQMR = xk−1
QMR +

η2
k

ρ2
k

(xkBiCG − xk−1
QMR),

with

ηk =

√
1∑k

j=0 1/ρ2
j

, ρj = ‖rjBiCG‖.

Therefore, the BiCG iterates can be computed from the QMR ones and vice versa. Usually, QMR
has a much smoother convergence curve than BiCG. QMR residuals (if Lanczos does not break
down) can also be compared to GMRES residuals as

‖rkQMR‖ ≤ κ(Qk+1)‖rkGMRES‖.

In the same spirit as what was developed for CGS, Freund [205] created a transpose free QMR
method (known as TFQMR).

7.15. CMRH 269

7.15 CMRH
GMRES can be interpreted as solving the problem

min
w∈�k+1,z∈Kk(A,r0)

‖w‖, Az = r0 + Vk+1w.

Sadok [400] introduced CMRH as solving

min
w∈�k+1,z∈Kk(A,r0)

‖w‖, Az = r0 + Lk+1w,

where Lk is the matrix computed by the Hessenberg process of section 7.4. This method pro-
duces an upper Hessenberg matrix Hk. Then, the CMRH algorithm is similar to GMRES, the differ-
ences being that

xk = x0 + Lky
k,

where yk is the solution minimizing ‖ ‖r0‖∞e1−Hky‖. This is very similar to GMRES. However,
a CMRH iteration is cheaper than a GMRES iteration.

Theorem 7.24. If we start from the same vectors, we have that

‖rkCMRH‖ ≤ κ(Lk+1)‖rkGMRES‖.

Proof. See Sadok [400].
Figure 7.11 shows the norm of the error as a function of the number of floating point opera-

tions (flops) using CMRH(10) without preconditioning and without look-ahead for problem 7 on a
20× 20 mesh.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

-7

-6

-5

-4

-3

-2

-1

0

Figure 7.11. Problem 7: log10 of the error with CMRH(10), 20× 20 mesh

7.16 Which method to use?
We have seen that there are many different methods for solving non-symmetric systems. It is also
likely that many new methods (or variants) will be introduced in the next few years. It would
be nice for users to know which method to choose. Unfortunately, it is very difficult to give a
general answer to this question. We have already said that it is always possible to find (sometimes
contrived) examples for which a given method is either the best one or the worst one. However,

270 7. Krylov methods for non-symmetric systems

methods which work well on average are GMRES and BiCG. The nice thing with GMRES is that it
must converge, the disadvantage is that the storage may be too high. The nice thing with BiCG is
that it is simple and easy to code, moreover the storage is low; the disadvantage is that sometimes
the convergence is erratic. In this respect BiCGSTAB(2) often gives better results. An extensive
set of numerical comparisons was given by C.H. Tong [436].

7.17 Complex linear systems
Most of the time in this book we have been working with real arithmetic. However, there are
interesting problems where the matrix is complex. For instance, when solving some electromag-
netic problems, the matrix is complex and symmetric but not Hermitian. Special algorithms can
be derived to handle these cases, see Freund [203, 204],. Other algorithms have been proposed
by Joly and Meurant [303]. They used the general framework we have already introduced in
Chapter 6. Let A be a complex matrix and b a complex vector. For any vector r, we introduce
the functional

J(r) = (r,Hr)C ,

H being an Hermitian matrix and (x, y)C being the usual complex scalar product
∑n
i=1 xiȳi.

The functional J is strictly convex therefore there exists a unique minimum which is rm =
0 since J(r) ≥ 0. We define a general minimization algorithm introducing a set of vectors
{p0, . . . , pk} orthogonal in the scalar product related to the Hermitian matrix N = AHHA, AH

being the Hermitian transpose of A. Let K be a definite matrix, we minimize J over subspaces
x0 + span(Kg0, . . . ,Kgk), gk being the gradient of J .

Let x0 be given, r0 = b−Ax0, g0 = AHHr0, p0 = Kg0, for k = 0, 1, . . .

αk =
(gk, pk)C

(pk, Npk)C
,

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk,

gk+1 = gk − αkNpk,

βlk+1 = − (Kgk+1, Npl)C
(pl, Npl)C

, 0 ≤ l ≤ k

pk+1 = Kgk+1 +

k∑
l=0

βlk+1p
l.

The directions pk areN -conjugate and the same orthogonality properties as those stated in Chap-
ter 6 are verified. Many algorithms can be generated by an appropriate choice of the matrices
H and K. For instance, we obtain a complex GCR by choosing H = I , K = A−H . Complex
BiCG does not fit into this framework. However, it can be obtained formally from the formulas
by using,

H =

(
0 AH

A 0

)−1

, K =

(
0 I
I 0

)
.

We can see that in this case H is not Hermitian, hence we shall not get all the properties of the
general algorithm: in particular there could be breakdowns of the algorithm. The algorithm we
obtain is the following.

7.18. Krylov methods on parallel computers 271

Let x0 be given, r0 = b−Ax0, r̃0 = r̄0, p0 = r0, p̃0 = r̃0, for k = 0, 1, . . .

αk =
Re(r̃k, rk)

Re(p̃k, Apk)
,

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk,
r̃k+1 = r̃k − αkAH p̃k,

βk+1 =
Re(r̃k+1, rk+1)

Re(r̃k, rk)
,

pk+1 = rk + βk+1p
k,

p̃k+1 = r̃k + βk+1p̃
k+1.

In the important case where A is complex symmetric (A = AT), we have r̃k = r̄k, p̃k = p̄k

for all k and the algorithm is as cheap as CG for real symmetric matrices. Notice that another
complex generalization of BiCG was given by D. Jacobs [296]. His algorithm is only slightly
different.

Let x0 be given, r0 = b−Ax0, r̃0 = r̄0, p0 = r0, p̃0 = r̃0, for k = 0, 1, . . .

αk =
(r̃k, rk)

(p̃k, Apk)
,

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk,
r̃k+1 = r̃k − ᾱkAH p̃k,

βk+1 =
(r̃k+1, rk+1)

(r̃k, rk)
,

pk+1 = rk + βk+1p
k,

p̃k+1 = r̃k + β̄k+1p̃
k+1.

These extensions of BiCG can also be squared giving extensions of CGS. Numerical results and
comparisons of methods were given in [303].

7.18 Krylov methods on parallel computers
Regarding vector and parallel computing, the problem is essentially the same for the Krylov
algorithms as it is for CG. For instance, for BiCG, we have the choice between two-term and three-
term recurrences. Although two-term recurrences are more stable, see Gutknecht and Strakoš
[265], three-term recurrences offer more parallelism since scalar products can be computed in
parallel.

The parallelization of GMRES has been studied by several authors but an interesting variant
was considered by J. Erhel [180]. The main problem in fact lies in the Arnoldi part of the
algorithm where the basis vectors are produced sequentially by the modified Gram-Schmidt al-
gorithm. One possible solution is to use another basis. In [180] a Newton basis was constructed
(see Bai, Hu and Reichel [33]) and then orthogonalized. The basis is chosen as

V̂k+1 = [σ0v, σ1(A− µ1I)v, . . . , σk

k∏
i=1

(A− µiI)v],

272 7. Krylov methods for non-symmetric systems

where the σk’s are scaling factors and the µi are the Leja points for the set S of (approximations
of) eigenvalues of A (computed in a first cycle of GMRES(m)). This is defined as

µ1 = max
λ∈S
|λ|,

j∏
i=1

|µj+1 − µi| = max
λ∈S

j∏
i=1

|λ− µi|, j = 1, 2, . . .

Then the basis is normalized and an orthonormal basis is computed by using a QR factoriza-
tion of the matrix. This approach introduces much more parallelism but, unfortunately, there
are examples for which convergence is considerably delayed although for many problems the
convergence rate is about the same as for standard GMRES.

7.19 Bibliographical comments
For the use of the normal equations in least squares problems, we can refer to Å. Bjorck’s book
[46]. The Concus and Golub method [117] has also been considered by Widlund [466]. It is a
special case of the theory by Faber and Manteuffel [183] for the existence of conjugate gradient
methods for non-symmetric matrices.

The development of methods for non-symmetric matrices mimics what has been done for the
symmetric case. A basis has to be computed for the Krylov space. In the symmetric case this
is done with the Lanczos algorithm and the basis is orthogonal. For non-symmetric matrices,
an orthogonal basis can be computed with the Arnoldi algorithm. This leads to the GMRES
algorithm which is due to Saad and Schultz [399]. Another possibility leads to FOM developed by
Saad [394]. Householder transformations for GMRES have been considered by H. Walker [463].
The equivalence of these methods with others such as GCRwas studied by Saad and Schultz [398].
For GMRES in finite precision precision arithmetic we refer to Strakoš and al. [155]. Flexible
GMRES is due to Saad [397]. Other extensions have been considered by van der Vorst and his
co-workers [452], Vuik [461].

The other possibility is based on the non-symmetric Lanczos algorithm which constructs
a biorthogonal basis. This leads to the biconjugate gradient algorithm that is mainly due to
Fletcher [194]. The acceleration of the methods by squaring the recurrences leading to CGS was
considered by Sonneveld [419]. This was further improved by van der Vorst with BiCGSTAB
[450]. Other variants were developed by Gutknecht [263] and Sleijpen and Fokkema [407].
QMR was inspired by GMRES to deal with the non-orthogonal basis. It was proposed by Freund

and his co-workers, see Freund, Gutknecht and Nachtigal [206]. A transpose free QMR was then
considered by Freund.

The breakdown problem has been handled by Freund, Gutknecht and Nachtigal [206] who
proposed a look-ahead algorithm following earlier algorithms by Parlett [369]. This was also
considered in detail by Brezinski and his co-workers [68]. They also considered extensions of
these techniques to CGS and BiCGSTAB.
CMRH was proposed by Sadok [400]. It is based on computing a Hessenberg basis for the

Krylov space.
Linear systems with complex coefficients were considered some time ago by Jacobs [296].

More recently algorithms were proposed by Freund [203] and Joly and Meurant [303].

8

Preconditioning

8.1 Introduction
We have seen in the previous chapters that the rate of convergence of many iterative methods for
solvingAx = b depends on the condition number κ(A) and/or the distribution of the eigenvalues
of A. Therefore, it is a natural idea to transform the original linear system so that the new
system has the same solution (or a solution from which the original one is easily recovered)
and the transformed matrix has a smaller condition number and/or a better distribution of the
eigenvalues. To formalize this idea, suppose that M is a non-singular matrix; we can transform
the linear system Ax = b into

M−1Ax = M−1b. (8.1)

Then we can use an iterative method to solve the system (8.1) instead of the original one. This
is usually called left preconditioning as we multiply matrix A from the left by M−1. We could
also transform the system by right preconditioning as

AM−1y = b, Mx = y. (8.2)

If the matrix A is symmetric positive definite, we might want to keep the transformed system
symmetric. In this case, we supposeM to be symmetric and positive definite and instead of (8.1)
or (8.2), we use

M−
1
2AM−

1
2 y = M−

1
2 b, (8.3)

and we recover the solution of the original system by M
1
2x = y. Of course, we do not want to

explicitly compute M−1 or M−
1
2 . But, we have already seen in previous chapters that, usually,

we can eliminate this problem by a change of variables and for all methods the only thing we
have to do is solving a linear system whose matrix is M at each iteration.

What are the properties that we may want the preconditioner M to have? Suppose that A is
symmetric positive definite and we are using preconditioned CG to solve the linear system. Then,
we might ask for

◦ M being symmetric and positive definite,

◦ if A is sparse, M being sparse, since we do not want to use much more storage for M than
for A,

◦ M being easy to construct as we do not want to spend most of the computing time building
M ,

273

274 8. Preconditioning

◦ M such that a linear system Mz = r is easy to solve

◦ M such that we have a “good” distribution of the eigenvalues of M−1A whatever that
means.

For most problems, it is almost impossible to construct preconditioners that fulfill all these cri-
teria. The ones that are mandatory for sparse SPD matrices are the first two. For the third one,
everything really depends on the rate of convergence that we get for the preconditioned system
(8.3) and the given iterative method as there is usually a trade off between spending more time
constructing a better preconditioner and having fewer iterations getting a better convergence rate.
It also depends on knowing if we want to solve a single system only or if we have several systems
with the same matrix and different right hand sides to solve, in which case we can spend more
time constructing a good preconditioner only once. The fourth item is also important as we do
not want to generate auxiliary problems that are as hard to solve as the original one. The condi-
tion about which we do not have too much control is the last one. For non-symmetric matrices
we only have to consider the last four items, the last one being even more difficult to fulfill.

Of course, the optimal preconditioner giving the best rate of convergence is always M = A,
but evidently this is not feasible as we won’t get any gain over the original problem. How-
ever, this tells us that we would like to find M such that M−1 is, in some sense, a good sparse
approximation to A−1.

In the following sections, we shall describe some preconditioners. We shall be consider-
ing mostly symmetric matrices and shall indicate how things can be extended to non-symmetric
matrices. We shall also consider at the end of the chapter the issue of parallelism. Again, this
introduces some additional difficulties as to be efficient on a parallel computer, we need a pre-
conditioner that gives a good improvement for the convergence rate and, at the same time, for
which linear systemsMz = r can be solved with a good degree of parallelism. Most of the time,
these are conflicting requirements.

We shall start from the most simple ideas, going gradually towards more sophisticated meth-
ods. Sometimes, we shall consider particular applications or matrix structures as there is a rule
of thumb that says that the more we know about the problem we want to solve, the easier it is
to construct a good preconditioner. Nevertheless, so far, constructing preconditioners is more an
art than a science and there is not much theory supporting the different choices which are mainly
based on numerical experiments. We shall study preconditioners using domain decomposition
ideas in Chapter 10.

Of course it is of interest to study the condition number κ(M−1A) and/or the eigenvalue
distribution of M−1A to see by how much we have improved the convergence rate. Most of
the time it is difficult to have precise results that apply to general matrices. Therefore, we shall
often use model problems that can be analyzed more easily. Another possibility is to rely on
Fourier analysis. However, strictly speaking this can only be used for problems with periodic
boundary conditions. Right now, there is no general mathematical theory allowing us to study
any preconditioner and completely explaining the numerical results.

8.2 The diagonal preconditioner
The simplest ideas (which unfortunately are by far not the most efficient ones) are based on
the classical iterative methods described in Chapter 5. Besides M = I , the simplest choice is
choosing M as a diagonal matrix whose diagonal elements are the same as the corresponding
ones ofA. We denote this preconditioner by DIAG. It corresponds to the Jacobimethod. In some
problems with varying coefficients, this scaling can improve the condition number and reduce
the number of iterations. Unfortunately, there are cases for which this choice does not give any
improvement at all in the convergence rate. Consider, for instance, the model problem (Poisson

8.2. The diagonal preconditioner 275

equation in a square). Then, the diagonal matrix is equal to 4 times the identity matrix and the
condition number is unchanged with a constant diagonal scaling. However, in many cases the
diagonal preconditioner provides some improvement and, as far as we know, it is harmless, so
we can recommend its use, sometimes combined with some other preconditioners.

One may ask why we choose the diagonal ofA and not another diagonal matrix? This choice
is supported by the following result.

Theorem 8.1. If A is symmetric and has property A, that is, it is similar to(
D1 F
FT D2

)
,

withD1 andD2 being square diagonal matrices, then the diagonal preconditioner that minimizes
the condition number is D such that di,i = ai,i,

κ(D−
1
2AD−

1
2) = min

D̂ diagonal
κ(D̂−

1
2AD̂−

1
2).

Proof. See Forsythe and Straus [197].
If A does not have property A, we have the following result which says that D is not too far

from being optimal when A is sparse.

Theorem 8.2. If A is symmetric positive definite, then

κ(D−
1
2AD−

1
2) ≤ pmin

D̂
κ(D̂−

1
2AD̂−

1
2),

where p is the maximum number of non-zero elements in any row of A.

Proof. See van der Sluis [447].
Note that these results do not tell by how much the condition number is improved (if there

is any improvement). For the Poisson model problem, the theory says that there is no diagonal
matrix that can improve the condition number. A numerical check of the Forsythe and Straus
result was done by Greenbaum and Rodrigue [258]. They use an optimization code to numeri-
cally compute the optimal diagonal preconditioners for several model problems. For the Poisson
problem, the code converges to the diagonal of A.

One of the main interests of the diagonal preconditioner is that it is perfectly parallel. It
has been argued by many people that the diagonal preconditioner is the best one on parallel
architectures as, even if the improvement in the convergence rate is not large, we can regain on
one hand (because of the perfect parallelism) what we have lost on the other one by using a
simple preconditioner. This is a misconception and other preconditioners with a smaller degree
of parallelism but better conditioning properties can be constructed (polynomial preconditioners,
sparse inverses or domain decomposition preconditioners) giving smaller computer times (of
course, this is problem and computer dependent). For an illustration of this point, see Perlot
[374].

One can also use a block diagonal preconditioner (which we denote by BDIAG) if the linear
systems with the chosen diagonal blocks as matrices are easy to solve. Theorem 8.2 has been
generalized to block diagonal preconditioners, in which case p is the number of blocks in a block
row. This result is a consequence of theorems by Demmel [136] and Eisenstat, Lewis and Schultz
[175]. Their equivalence has been shown by L. Elsner [178]. The problem of the best l2 scaling,
even for rectangular matrices, has also been considered by Golub and Varah [242].

276 8. Preconditioning

8.3 The SSOR preconditioner
We have seen in Chapter 5 that the iteration matrices of Gauss-Seidel and SOR are not symmet-
ric. Therefore, we cannot use these matrices as preconditioners in the symmetric case. However,
they can be considered as interesting candidates for the non-symmetric case. When A is sym-
metric, a preconditioner that has been much used is the SSOR preconditioner.

8.3.1 Definition of SSOR

This preconditioner has been proposed by Evans [182] and Axelsson [17, 18]. If the symmetric
matrix A is written as A = D + L + LT where D is diagonal and L strictly lower triangular,
then the preconditioner M is defined as

M =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT), 0 < ω < 2. (8.4)

The factor ω(2 − ω) is just a technical convenience (see Lemma 8.3) and does not change the
results (for the condition number). Note that M is straightforward to construct since it is directly
obtained from the entries of A. An added bonus is that no additional storage is needed for M .
Moreover, systems asMz = r are easy to solve by forward and backward sweeps computing the
solutions of two triangular systems,

(D + ωL)y = ω(2− ω)r,

(I + ωD−1LT)z = y.

Therefore, most of the conditions we have set for a good preconditioner are fulfilled. However,
it remains to be seen if the condition number is improved.

Note that SSOR can be straightforwardly generalized to non-symmetric matrices, A = D +
L+ U , setting

M =
1

ω(2− ω)
(D + ωL)D−1(D + ωU).

8.3.2 Convergence results for SSOR

Let us first study the eigenvalues of M−1A.

Lemma 8.3. Let A be symmetric positive definite and λi be the eigenvalues of M−1A, then
λi ∈]0, 1],∀i.

Proof. Since A is positive definite, the diagonal of D is strictly positive and M positive
definite. Then, M−1A is similar to a symmetric matrix and its eigenvalues are real. Let

B =
2− ω
ω

D, C =
ω − 1

ω
D + L.

With this notation, we can write M and A as

M = (B + C)B−1(B + CT), A = B + C + CT .

This implies that M = A+ CB−1CT . From this relation, we obtain, B being positive definite,

(Mx, x) = (Ax, x) + (B−1CTx,CTx) ≥ (Ax, x) > 0, ∀x 6= 0.

8.3. The SSOR preconditioner 277

This proves that the largest eigenvalue of M−1A is less than or equal to 1.
Remark

If ω = 1, then 1 is an eigenvalue of M−1A, the eigenvector being (1, 0, . . . , 0)T . If ω 6= 1,
then all the eigenvalues of M−1A are strictly less than 1.

The condition number κ(M−1A) was studied in the context of finite element methods by
Axelsson [18] who proved the following algebraic result.

Theorem 8.4. Let µ and δ ∈ � such that

max
x 6=0

(Dx, x)

(Ax, x)
≤ µ, max

x 6=0

(LD−1LTx, x)− 1/4(Dx, x)

(Ax, x)
≤ δ.

Then there exists
ωopt =

2

1 + 2
√

1
µ (1

2 + δ)
,

such that

κ(M−1A) ≤ 1

2
+

√
(
1

2
+ δ)µ.

For ω = 1, we have

κ(M−1A) ≤ 1

2
+
µ

4
+ δ.

Proof. See Axelsson [18].
If we apply this result to the Poisson model problem, we obtain

Proposition 8.5. For the Poisson model problem,

µ =
4

λmax(A)
, δ = 0.

Proof. Since D = 4I , we have

(Dx, x)

(Ax, x)
= 4

(x, x)

(Ax, x)
≤ 4

λmax(A)
.

Moreover,

(LD−1LTx, x) = (D−1LTx, LTx) =
1

4

n∑
i=1

(αixi+1 + βixi+m)2,

where αi and βi are 0 or −1 and m is the semi-bandwidth of A. Then it follows that

(L D−1LTx, x)− 1

4
(Dx, x) =

n∑
i=1

(
1

4
(αixi+1 + βixi+m)2 − x2

i

)
,

≤
n∑
i=1

1

4
(α2
ix

2
i+1 + β2

i x
2
i+m + 2αiβixi+1xi+m)− x2

i ,

≤
n∑
i=1

1

2
(α2
ix

2
i+1 + β2

i x
2
i+m)− x2

i ≤ 0.

278 8. Preconditioning

This proposition shows that for the model problem there exists an optimal ω (≈ 2/(1 + h))
for which we have

κ(M−1A) ≤ 1

2
+

1

2 sin
(
πh
2

) = O

(
1

h

)
.

We should remember that κ(A) = O
(

1
h2

)
, therefore we have gained an order of magnitude if

we are able to compute the optimal value of ω.

8.3.3 Fourier analysis of SSOR

To obtain some idea of the eigenvalue distribution, we consider the model problem,

−∆u = f in Ω = [0, 1]× [0, 1],

with periodic boundary conditions. This leads to a linear system with a matrix AP

AP =

TP −I −I
−I TP −I

.
−I TP −I

−I −I TP

 , with TP =

4 −1 −1
−1 4 −1

.
−1 4 −1

−1 −1 4

 .

Let

XP =

0 −1
−1 0

.
−1 0

−1 0

 , LP =

XP −I
−I XP

.
−I XP

−I XP

 ,

and DP the diagonal of AP . Then we define MP as

MP = (DP + ωLP)D−1
P (DP + ωLTP).

Note that we do not put the constant factor in front of the expression for MP , but this does not
change the condition number. The eigenvalues of MP are

ψst = (4− ω +
ω2

2
) + 4ω(sin2(θs/2) + sin2(φt/2)) +

ω2

2
cos(θs − φt).

In Chan and Elman [88] it is proved that if

ω =
2

1 + 2 sin(πhP)
,

then κ(M−1
P AP) = O

(
1
h

)
. Note that if we apply the rule hP = hD/2, this value coincides

asymptotically with the one we found for Dirichlet boundary conditions. Figure 8.1 shows the
distribution of the eigenvalues for the periodic problem for the optimal ω and Figure 8.2 for
ω = 1.

8.4. The block SSOR preconditioner 279

0

5

10

15

20

25

30

0

10

20

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8.1. Eigenvalues for the SSOR preconditioner, optimal ω, periodic b.c.

0

5

10

15

20

25

30

0

10

20

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8.2. Eigenvalues for the SSOR preconditioner, ω = 1, periodic b.c.

8.4 The block SSOR preconditioner
8.4.1 Definition of BSSOR

We suppose that A is symmetric positive definite and we partition the matrix in blockwise form
as

A =

A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
...

...
Ap,1 Ap,2 . . . Ap,p

 ,

where Ai,j is of order m, Aj,i = ATi,j and mp = n. We denote

D =

A1,1

A2,2

. . .
Ap,p

 , L =

0

A2,1 0
...

. . .
Ap,1 Ap,2 . . . 0

 ,

A = D + L+ LT .

Then we define the block SSOR (BSSOR) preconditioner as

M =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT), 0 < ω < 2.

280 8. Preconditioning

There are some possibilities of extensions such as having a different ω for each block, but we
won’t pursue these ideas here. BSSOR can also be easily generalized to non-symmetric matrices.

8.4.2 Analysis of BSSOR

We have the same kind of results as for the point case concerning the location of the eigenvalues
of the preconditioned matrix.

Lemma 8.6. The eigenvalues of M−1A are real, positive and located in]0, 1].

Proof. Same as the proof of Lemma 8.3.

We note that when ω = 1, 1 is an eigenvalue of multiplicity m of M−1A. This is different
from the situation of SSOR. Let us now specialize the results to block tridiagonal matrices.

Lemma 8.7. If A is block tridiagonal, then (2− ω)M −A is block diagonal.

Proof. We have

(2− ω)M = A+

(
1

ω
− 1

)
D + ωLD−1LT ,

and we see that

(LD−1LT)i,j =

0, if j 6= i,

0, if i = j = 1,

Ai,i−1A
−1
i−1,i−1Ai−1,i if j = i 6= 1.

Therefore, the matrix LD−1LT is block diagonal, the first block being 0, showing that M is
block tridiagonal.

If A = M −R, then M−1A has the same number of distinct eigenvalues as R.

Proposition 8.8. For the Poisson model problem, if ω = 1, then R has only m + 1 distinct
eigenvalues.

Proof. We have
R = M −A = LD−1LT ,

and we can see that the eigenvalues of R are 0 and the inverses of eigenvalues of the following
tridiagonal matrix of order m

4 −1
−1 4 −1

.
−1 4 −1

−1 4

 .

It can be shown that for the model problem and for ω = 1, the condition number can be
improved from

κ(M−1A) = 1 +
1

8 sin2(π2h)
,

8.4. The block SSOR preconditioner 281

for the point SSOR preconditioner to

κ(M−1A) ≤ 1 +
1

16(1 + 2 sin2(π2h)) sin2(π2h)
.

It can be also shown that for “quasi” optimal” values of ω using BSSORwe obtain an improvement
in the condition number of M−1A, see Chandra [103].

8.4.3 Fourier analysis of BSSOR

The following results are taken from Chan and Meurant [96]. We provide them as an example
of what can be done by using Fourier analysis. As before, we consider the model problem with
periodic boundary conditions. We denote

LP =

0 −I
−I 0

.
−I 0

 ,

and by DP the block diagonal of AP . Then, we define the preconditioner BSSOR as

MP =
1

ω(2− ω)
(∆ + ωLP) ∆−1 (∆ + ωLTP),

with

∆ = DP =

TP

. . .
. . .

TP

 .

In terms of the difference operators defined in Chapter 1,

MP =
1

ω(2− ω)
T3(4, 1, ω)T−1

1 (4, 1)T2(4, 1, ω).

We can compute the eigenvalues µst of M−1
P AP as,

µst =
ω(2− ω)F (T1(4, 1))F (AP)

F (T3(4, 1, ω))F (T2(4, 1, ω))
,

=
4ω(2− ω)(sin2(θs/2) + sin2(φt/2))(4 sin2(θs/2) + 2)

(4 sin2(θs/2) + 2− ωeiφt)(4 sin2(θs/2) + 2− ωe−iφt)

which “simplifies” to

µst =
4ω(2− ω)(sin2(θs/2) + sin2(φt/2))(4 sin2(θs/2) + 2)

(4 sin2(θs/2) + 2)
2

+ ω2 − 2ω cos(φt)(4 sin2(θs/2) + 2)
,

where
θs = 2πsh, s = 1, . . . , n; φt = 2πth, t = 1, . . . , n; h =

1

n+ 1
.

Using these values, it can be seen, for instance, that for ω = 1, κ(M−1
P AP) ≥ O(h−2), but we

have,

282 8. Preconditioning

Theorem 8.9. There exists an “optimal” value ω∗ = 2− 2
√

2πh+O(h2) of ω for which

κ(M−1
P AP) ≤ O(h−1).

Proof. We derive upper and lower bounds for the eigenvalues of the BSSOR preconditioned
matrix. This allows us to compute an “optimal” value of ω which minimizes an upper bound of
the condition number. The analytic expression of the BSSOR eigenvalues was given above.

Let x = sin2(θs/2), y = sin2(φt/2). Clearly x and y take values in [sin2(πh), 1], but for
convenience, we shall sometimes consider x, y ∈ [0, 1], excluding the zero eigenvalue as it does
not enter in the condition number.

We have

µst = µ(x, y) =
4ω(2− ω)(x+ y)(4x+ 2)

(4x+ 2)
2

+ ω2 − 2ω(4x+ 2)(1− 2y)
.

Our aim is to find lower and upper bounds for µ(x, y). Before concluding the proof, we need a
few technical lemmas analyzing the properties of the function µ.

Lemma 8.10. For a fixed value of x, µ(x, y) is either increasing or decreasing as a function of
y, so the minimum and maximum of µ are located on the boundaries with constant y in the x, y
plane.

Proof. Let D = (4x+ 2)
2

+ω2− 2ω(4x+ 2)(1− 2y). A little algebra shows that, for fixed
x,

∂µ

∂y
=

4ω(2− ω)(4x+ 2)

D2
[(4x+ 2)

2
+ ω2 − 2ω(4x+ 2)(1 + 2x)].

So the sign of ∂µ∂y is the same as that of (4x+ 2− ω)
2 − 4ωx which is independent of y. There-

fore, to find an upper bound for µ, it is sufficient to look at values for y = 0 and y = 1.

Lemma 8.11. On the vertical boundaries, we have

µ(x, 1) < 1,

µ(x, 0) ≤ 1.

Proof. At y = 1, we have:

µ(x, 1) =
4ω(2− ω)(1 + x)(4x+ 2)

(4x+ 2 + ω)
2 .

As ω ∈ [1, 2[, ω(2 − ω) is a decreasing function of ω and 4x + 2 + ω is an increasing function
of ω; and so µ(x, 1) is a decreasing function of ω with x fixed. Therefore,

µ(x, 1) ≤ 4(1 + x)(4x+ 2)

(4x+ 3)
2 < 1.

Now, at y = 0, we have,

µ(x, 0) =
4ω(2− ω)x(4x+ 2)

(4x+ 2− ω)
2

8.4. The block SSOR preconditioner 283

and
∂µ

∂x
|y=0=

8ω(2− ω)

(4x+ 2− ω)
3 [4(1− ω)x+ (2− ω)].

But, 4x+ 2−ω > 0, so the sign of ∂µ∂x |y=0 is the same as that of 4(1−ω)x+ (2−ω). If ω = 1,
∂µ
∂x |y=0> 0 and so µ(x, 0) is increasing and

µ(x, 0) ≤ 24ω(2− ω)

(6− ω)2
=

24

25
< 1.

If ω 6= 1, there is a zero of ∂µ∂x |y=0 for x = x̄ = 2−ω
4(ω−1) . Since at x = 0, ∂µ∂x |y=0> 0, the zero of

the derivative corresponds to a maximum as long as x̄ ∈ [0, 1] i.e. for ω ≥ 6
5 . For ω ∈]1, 6

5], the
same argument as before applies; the maximum is given for x = 1 and µ ≤ 1. For the remaining
case, the maximum occurs for x = 2−ω

4(ω−1) and the minimum occurs at the boundaries.

Since 4(1 − ω)x̄ + 2 − ω = 0, we have 4x̄ + 2 = ω(4x̄ + 1). Therefore, since ω > 6
5 , we

have,

µ(x̄, 0) =
4ω2(2− ω)x̄(4x̄+ 1)

(4ωx̄)
2 =

(2− ω)

4x̄
(4x̄+ 1) = 1,

since (4x̄ + 1)(ω − 1) = 1. It should be noted that there are values of x and ω for which µ is
equal to 1 or at least µ = O(1).

Now, we are interested in finding lower bounds of µ for

x, y,∈ [sin2(πh), sin2(
π

2

n

n+ 1
)].

Lemma 8.12. µ(x, 1) is an increasing function of x.

Proof. A little algebra shows that,

∂µ(x, 1)

∂x
=

4ω(2− ω)

(4x+ 2 + ω)3
[8(ω − 1)x+ 6ω − 4].

Since ω ≥ 1, µ(x, 1) is an increasing function.
To summarize at this point, we already know that,
(i) for 1 ≤ ω ≤ 6

5 , µ(x, 0) is an increasing function,
(ii) for 6

5 < ω < 2, µ(x, 0) is increasing and then decreasing.
Since the partial derivatives are continuous functions of y, the same is true (for small enough

h) for y = sin2(πh) and y = sin2(π2
n
n+1) = 1−O(h2).

In all cases, we only have three candidate points in the x, y plane to look for the minimum of
µ,

(sin2(πh), sin2(πh)),

(
sin2(

π

2

n

n+ 1
), sin2(πh)

)
and

(
sin2(πh), sin2(

π

2

n

n+ 1

)
.

Lemma 8.13. Let x = θ2 = sin2(πh) and ω2
0 = (

√
5θ2 + 2− θ)2

= 2 − 2
√

2πh + O(h2).
If ω < ω2

0 , µ(θ2, y) is an increasing function of y, the minimum of µ(θ2, y) occurs for y =
sin2(πh). If ω ≥ ω2

0 , µ(θ2, y) is a decreasing function of y, the minimum of µ(θ2, y) occurs for
y = sin2(π2

n
n+1) and a lower bound is obtained for y = 1.

284 8. Preconditioning

Proof. As we have seen before, the sign of the derivative is the sign of

(4θ2 + 2− ω)
2 − 4ωθ2 = (4θ2 + 2− ω − 2θ

√
ω)(4θ2 + 2− ω + 2θ

√
ω).

So, it is also the sign of 4θ2 + 2 − ω − 2θ
√
ω. Let ω̄ =

√
ω, we look at the sign of 4θ2 + 2 −

ω̄2 − 2θω̄. Therefore, if ω < ω2
0 , the derivative is positive and it is negative elsewhere.

Let us now distinguish between x = sin2(πh) and x = sin2(π2
n
n+1).

Lemma 8.14. For sufficiently small h,

µ(sin2(πh), sin2(πh)) ≤ µ(sin2

(
π

2

n

n+ 1

)
, sin2(πh)).

Proof. A Taylor expansion of sin(πh) and sin(π2
n
n+1) shows that the left hand side tends to

0 as h→ 0; as the right hand side is equal to

4ω(2− ω)
6− 4π2h2 +O(h4)

(6− 4π2h2)2 + ω2 − 2ω(6− 4π2h2 +O(h4))(1− 2π2h2 +O(h4))
.

This is equal to
24ω(2− ω)

(6− ω)2
+O(h2).

Hence, only two points remains as candidates for the minimum: x = sin2(πh) and either
y = sin2(πh) or y = sin2(π2

n
n+1). As the maximum value is bounded by 1, our final goal is to

find a value of ω which maximizes the lower bound.

Lemma 8.15. The lower bound of µmin is maximized at ω = ω∗ ≡ ω2
0 .

Proof. We know that
(i) for ω < ω2

0 ,

µmin = 4ω(2− ω)
2 sin2(πh)(4 sin2(πh) + 2)

4 sin2(πh)/2 + 4ω sin2(πh)
,

(ii) for ω ≥ ω2
0 ,

µmin ≥ 4ω(2− ω)
(1 + sin2(πh))(4 sin2(πh) + 2)

(4 sin2(πh) + 2 + ω)
2 ,

= 4ω(2− ω)
2 +O(h2)

(2 + ω)
2

+O(h2)
.

For the latter, the lower bound for µmin is a decreasing function of ω; so, its maximal value is
given for ω = ω2

0 . For ω ≤ ω2
0 , the lower bound for µmin is also a decreasing function whose

maximum value (for ω = 1) tends to 0 as h → 0; so, the value that maximizes the lower bound
is ω∗ = ω2

0 ,
ω∗ = 2− 2

√
2πh+O(h2).

8.5. The incomplete Cholesky decomposition 285

Then the lower bound is equal to

4(2− 2
√

2πh)2
√

2πh
2 +O(h2)

(4− 2
√

2πh)
2

+O(h2)
=

32
√

2πh+O(h2)

16− 8
√

2πh+O(h2)
= O(h).

This concludes the proof of Theorem 8.9.

In Chan and Meurant [96] the Fourier results were compared to numerical results for the
Dirichlet boundary conditions using hP = hD/2. Numerical results were given both for ω = 1
and ωopt = 2 −

√
2πhD. In all cases the agreements were quite good and the optimal value of

ω predicted by the Fourier analysis is quite close to the actual optimum. Figure 8.3 shows the
BSSOR eigenvalues for ω = 1.

0

5

10

15

20

25

30

0

10

20

30

0

0.2

0.4

0.6

0.8

1

Figure 8.3. Eigenvalues for the BSSOR preconditioner, ω = 1, periodic b.c.

8.5 The incomplete Cholesky decomposition
8.5.1 The general decomposition

We first recall the (complete) Cholesky outer product factorization that we studied in Chapter 2
using slightly different notations. Let

A = L̄Σ̄L̄T .

The first step is

L̄1 =

(
1 0
l̄1 I

)
, Σ̄1 =

(
a1,1 0

0 Ā2

)
,

and

A =

(
a1,1 āT1
ā1 B̄1

)
= L̄1Σ̄1L

T
1 .

By equating,

l̄1 =
ā1

a1,1
,

Ā2 = B̄1 −
1

a1,1
ā1ā

T
1 .

286 8. Preconditioning

Then

Ā2 =

(
ā

(2)
2,2 āT2
ā2 B̄2

)
=

(
1 0
l̄2 I

)(
ā

(2)
2,2 0

0 Ā3

)(
1 l̄T2
0 I

)
.

We have similar formulas as for the first step, and if we denote

L̄2 =

 1 0 0
0 1 0
0 l̄2 I

 ,

then,

Σ̄1 =

(
a1,1 0

0 Ā2

)
= L̄2

 a1,1 0 0

0 ā
(2)
2,2 0

0 0 Ā3

 L̄T2 = L̄2Σ̄2L̄
T
2 .

Therefore, after two steps, we have A = L̄1L̄2Σ̄2L̄
T
2 L̄

T
1 . Note that

L̄1L̄2 =

(
1 0

l̄1

(
1 0
l̄2 I

))
.

Finally, if all the pivots are non-zero, we obtain

A = L̄1 · · · L̄n−1Σ̄L̄Tn−1 · · · L̄T1 .

We saw in Chapter 2 that if A is symmetric positive definite, this algorithm can go through as
all the pivots are non-zero. At each step of this algorithm some fill-in may be generated. As we
know, the fill-in can only appear within the profile of the matrix A. For symmetric M-matrices
or positive definite matrices, there are also some properties of decay of the elements in the L
factor (see [347]). Therefore, if we want to generate an approximation of A, it is natural to
neglect a part or all the fill-in during the steps of the LU factorization. There are different ways
to accomplish this.

Let us suppose that we have a set of indices G = {(i, j), i > j} being given. We want to
construct a splitting,

A = LΣLT −R,

L being lower triangular with li,i = 1 and Σ diagonal. We shall construct L in such a way that
li,j = 0 if (i, j) 6∈ G. Let us look at the first steps of the algorithm.

A = A1 =

(
a1,1 aT1
a1 B1

)
=

(
a1,1 bT1
b1 B1

)
−
(

0 rT1
r1 0

)
= M1 −R1,

with
a1 = b1 − r1,

(b1)i = 0, if (i, 1) 6∈ G⇒ (r1)i = −(a1)i,

(b1)i = (a1)i, if (i, 1) ∈ G⇒ (r1)i = 0.

Then, we factorize M1 (if this is feasible)

M1 =

(
1 0
l1 I

)(
a1,1 0

0 A2

)(
1 lT1
0 I

)
= L1Σ1L

T
1 .

8.5. The incomplete Cholesky decomposition 287

By equating, we obtain

l1 =
b1
a1,1

,

A2 = B1 −
1

a1,1
b1b

T
1 .

Then, we use the same process on A2,

A2 =

(
a

(2)
2,2 aT2
a12 B2

)
=

(
a

(2)
2,2 bT2
b2 B2

)
−
(

0 rT2
r2 0

)
= M2 −R2,

where b2 is obtained from a2 by zeroing the elements (i, 2) whose indices do not belong to G.
We set

L2 =

(
1 0

0

(
1 0
l2 I

))
.

With these notations, at the end of the second step, we have

A = L1L2Σ2L
T
2 L

T
1 − L1

(
0 0
0 R2

)
LT1 −R1,

but

L1L2 =

(
1 0

l1

(
1 0
l2 I

))
and L1

(
0 0
0 R2

)
LT1 =

(
0 0
0 R2

)
.

Of course, it is not mandatory to have ones on the diagonal of L and we have the same variants
as for the complete decomposition.

This algorithm has constructed a complete decomposition of M = A+R, where the matrix
R is a priori unknown. The interesting question is to know the conditions under which such
a decomposition is feasible. We also note that the previous algorithm (which is generically
known as IC for Incomplete Cholesky) can be easily generalized to non-symmetric matrices
(ILU) provided all the pivots are non-zero.

8.5.2 Incomplete decomposition of H-matrices

Let us look for conditions under which the incomplete decomposition is feasible.

Theorem 8.16. Let A be an H-matrix with a positive diagonal. Then all the pivots of the
incomplete Cholesky decomposition are non-zero for any set of indices G.

Proof. We proceed in two steps. First, let us show that if we set to zero some non-diagonal
elements of an H-matrixA, we still have an H-matrix. LetA = B+R, R having a zero diagonal
and bi,j = ai,j or 0. We know that there exists a diagonal matrix E with a positive diagonal
(whose elements are denoted by ei) such that E−1AE is strictly diagonally dominant, that is to
say,

|ai,i| >
∑
i 6=j

|ai,j |
ej
ei
.

We claim that E−1BE is also strictly diagonally dominant since

|bi,i| = |ai,i| >
∑
i 6=j

|ai,j |
ej
ei
>
∑
i 6=j

|bi,j |
ej
ei
.

288 8. Preconditioning

The second step of the proof is to show that in one stage of the complete factorization, if we start
from an H-matrix, then we still obtain an H-matrix. Suppose that at step k, Ak is an H-matrix.
There exists a diagonal matrix Ek whose diagonal elements are denoted by e(k)

i > 0 and

a
(k)
i,i e

(k)
i >

∑
j 6= i
j ≥ k

|a(k)
i,j |e

(k)
j .

We have
a

(k+1)
i,j = a

(k)
i,j −

1

a
(k)
k,k

a
(k)
k,ia

(k)
k,j .

Therefore, ∑
j 6= i

j ≥ k + 1

|a(k+1)
i,j |e(k)

j =
∑
j 6= i

j ≥ k + 1

|a(k)
i,j −

1

a
(k)
k,k

a
(k)
k,ia

(k)
k,j |e

(k)
j ,

≤
∑
j 6= i

j ≥ k + 1

|a(k)
i,j |e

(k)
j +

|a(k)
k,i |

a
(k)
k,k

∑
j 6= i

j ≥ k + 1

|a(k)
k,j |e

(k)
j .

But, ∑
j 6= i

j ≥ k + 1

|a(k)
i,j |e

(k)
j =

∑
j 6= i
j ≥ k

|a(k)
i,j |e

(k)
j − |a

(k)
i,k |e

(k)
k ≤ a(k)

i,i e
(k)
i − |a

(k)
i,k |e

(k)
k .

We also have∑
j 6= i

j ≥ k + 1

|a(k)
k,j |e

(k)
j =

∑
j≥k+1

|a(k)
k,j |e

(k)
j − |a

(k)
k,i |e

(k)
i ≤ a(k)

k,ke
(k)
k − |a

(k)
k,i |e

(k)
i .

With these results, we obtain∑
j 6= i

j ≥ k + 1

|a(k+1)
i,j |e(k)

j ≤ ai,ie(k)
i − |a

(k)
i,k |e

(k)
k

+
|a(k)
k,i |

a
(k)
k,k

(a
(k)
k,ke

(k)
k − |a

(k)
k,i |e

(k)
i)

≤ (a
(k)
i,i −

1

a
(k)
k,k

|a(k)
k,i |

2)e
(k)
i = a

(k+1)
i,i e

(k)
i .

This shows two things: a(k+1)
i,i > 0 and the matrix at step k+1 of the factorization is an H-matrix.

Putting together the two results that we have just established, we have that at each step of the
incomplete factorization we are left with an H-matrix and the process can go on to completion
whatever the set of indices G is.

If we suppose that A is an M-matrix, we have a more precise result.

Theorem 8.17. Let A be a non-singular symmetric M-matrix. Then for all sets of indices G, the
incomplete Cholesky decomposition,

A = LΣLT −R,

is a regular splitting.

8.5. The incomplete Cholesky decomposition 289

Proof. With almost the same proof as for Theorem 8.16, we can show that starting from an
M-matrix, the matrices Ak are also M-matrices. Therefore, a(k)

i,i > 0 and a(k)
i,j ≤ 0, i 6= j. This

implies that Rk ≥ 0 and (lk)j ≤ 0. Then,(
1 0

0

(
1 0
lk I

))−1

=

(
1 0

0

(
1 0
−lk I

))
≥ 0.

Hence, R ≥ 0 and L−1 ≥ 0 and this shows that we have a regular splitting.

Corollary 8.18. Let A be a non-singular symmetric M-matrix and

A = LΣLT −R,

be the incomplete Cholesky decomposition of A. Then the iterative method

LΣLTxk+1 = Rxk + b

converges for all x0.

It is interesting to compare results for the incomplete decompositions of A and M(A). We
can see that the diagonal entries are larger and the absolute values of the non-zero off-diagonal
entries are smaller for A than for M(A).

Lemma 8.19. Let A be a non-singular symmetric H-matrix with a positive diagonal. Let

A = LΣLT −R,
M(A) = L̃Σ̃L̃T − R̃,

be the incomplete Cholesky decomposition of A and M(A) for the same set of indices G. Then

Σi,i ≥ Σ̃i,i > 0, ∀i,
l̃i,j ≤ −|li,j | ≤ 0, ∀i < j.

Proof. See Manteuffel [333]. The proof is obtained by induction.
With this lemma, we can prove the following result which is a generalization of Corol-

lary 8.18.

Theorem 8.20. Let A be a non-singular symmetric H-matrix with a positive diagonal. The
iterative method

LΣLTxk+1 = Rxk + b,

whereA = LΣLT−R is an incomplete decomposition ofA, converges to the solution ofAx = b.

Proof. We have seen that L = L1L2 · · ·Ln−1 with

Lk =

(
I 0

0

(
1 0
lk I

))
.

290 8. Preconditioning

Therefore,

L−1
k =

(
I 0

0

(
1 0
−lk I

))
.

From Lemma 8.19, |lk| ≤ −l̃k. Hence |L−1
k | ≤ L̃

−1
k and

|L−1| ≤ |L−1
n−1| · · · |L

−1
1 | ≤ L̃

−1
n−1 · · · L̃

−1
1 = L̃−1.

On the other hand, |Σ−1| ≤ Σ̃−1. Altogether, this proves that

|(LΣLT)−1| ≤ (L̃Σ̃L̃T)−1.

Moreover, it is easy to prove that |R| ≤ R̃. These results show that L̃Σ̃L̃T − R̃ is a regular
splitting of M(A) which is an M-matrix. Then, we have

ρ((LΣLT)−1R) ≤ ρ((L̃Σ̃L̃T)−1R̃) < 1,

and the given iterative method converges.

8.5.3 Incomplete decomposition of non-symmetric matrices

We have just seen that we can incompletely factorize H-matrices. However, there can be prob-
lems if we want to compute the ILU decomposition of a non-symmetric matrix which is not an
H-matrix. In that case, there is the possibility of getting a zero pivot or, at least, some small pivot
that can spoil the computation. Kershaw [308] proposed replacing the zero pivot by a positive
quantity. Another solution is to use numerical pivoting. This was considered by Saad.

Note that the preconditioner is even more important for non-symmetric matrices as, by suit-
able choices, we can change the properties of the matrix. For instance, we can make the matrix
symmetric or shift the spectrum to the positive half plane changing non-convergent iterative al-
gorithms to convergent ones.

8.5.4 Different incomplete decomposition strategies

The most widely used strategy for choosing the set of indices G for the non-zero entries in
L is to use a sparsity pattern of L identical to that of the lower triangular part of A. But, at
least for symmetric M-matrices, the larger the set G is, the smallest is the condition number of
(LΣLT)−1A and the fastest is the convergence of PCG. Therefore, more accurate and efficient
decompositions can be obtained by retaining a part of the fill-in that is generated.

There are several ways to enlarge the setG, starting from the structure of the lower triangular
part of A. One way is to associate a number called the level to any element computed in the
factorization. Elements which are non-zero in the structure of A are of level 0 and all the zero
elements are of level ∞. Then, in the steps of the decomposition, fill-ins generated by level 0
elements are said of to be of level 1, fill-ins generated by fill-ins are of level 2, etc. . . This can be
formalized in the following way. Let lev(k)

i,j be the level of fill-in of a(k)
i,j , then, after one step, the

new level is computed as

lev
(k+1)
i,j = min(lev

(k)
i,j , lev

(k)
i,k + lev

(k)
j,k + 1).

Then, the strategy for the incomplete decomposition is to keep only the fill-in having a level
which is below a given threshold p during the elimination. When the matrix is symmetric (say

8.5. The incomplete Cholesky decomposition 291

positive definite) we have seen that the structure of the factors can be determined in a prepro-
cessing phase. The same is true for the incomplete factorization where the level of fill-in and the
structure of the incomplete factor L can be computed before the numerical factorization takes
place. The rationale behind this strategy is that if some fill-ins are small, then, the fill-ins gen-
erated by the previous fill-ins will be even smaller and so on. Therefore, neglecting the fill-ins
beyond a certain level is supposed to drop only small elements.

Another strategy was introduced in the seventies by Tuff and Jennings [441] and others. In
this method, we not only look at the structure of the incomplete factors but also at the actual
values of the entries. At some step, the fill-in is computed and it is discarded or not according to
some dropping strategy. The most used one is to compare a(k+1)

i,j to some threshold and to drop
the fill-in if it is too small. Different ways of dropping the elements have been proposed over the
years. For instance, one can drop if

|a(k+1)
i,j | < ε[max

l≥k+1
|a(k)
i,l |, max

l≥k+1
|a(k)
j,l |].

Another way is to compare |a(k+1)
i,j | to the norm of the ith row of A. The main drawback of

these methods is that the structure of L is not known before the elimination as when factoring
non-symmetric sparse matrices with pivoting. Also, we do not know a priori how much storage
is needed. However, this kind of method can be slightly modified and, for instance, the fill-ins in
the kth column can be compared to a threshold, but only the p largest ones are kept provided they
satisfy the given criteria. In this way the amount of storage can be controlled. This last method
is one of the most efficient.

8.5.5 Finite difference matrices

Consider the pentadiagonal matrix (also to be considered as a block tridiagonal matrix) arising
from the finite difference discretization of an elliptic (or parabolic) partial differential equation
in a square,

A =

D1 AT2
A2 D2 AT3

.
Am−1 Dm−1 ATm

Am Dm

 .

where the matricesDi are tridiagonal and matricesAi are diagonal. Letm be the semi-bandwidth
of A. For a generic row i of A, ai,i−m, ai,i−1 and ai,i are the non-zero entries in the lower
triangular part of A. Let us consider the basic decomposition where no fill-in is kept outside the
structure of A. We use, for convenience, a slightly different version of the incomplete Cholesky
decomposition, M = LD−1LT , where D is diagonal and li,i = di,i. Then, by equating, we can
see that

di,i = ai,i −
a2
i,i−1

di−1,i−1
−

a2
i,i−m

di−m,i−m
,

li,i−1 = ai,i−1,

li,i−m = ai,i−m.

In these recurrences, entries in A with negative indices (or indices larger than n) must be taken
equal to 0 (and 1 for the entries of D). Clearly, for the incomplete Cholesky decomposition we
just need to compute the diagonal of D which can be stored in one vector. It is easy to see that
the remainder R has the structure that is shown in grey in Figure 8.4.

292 8. Preconditioning

Figure 8.4. Structure of R for IC(1,1)

This factorization is called IC(0) (as we do not allow for any fill-in) or IC(1,1) (to remind
us that the structure of L has one diagonal next to the main one and one outer diagonal). A
comparison of the spectra of A and M−1A using IC(1,1) for the model problem on a 10× 10
mesh is given in Figure 8.5. The details of the structure of the spectrum of IC(1,1) is given in
Figure 8.6.

0 1 2 3 4 5 6 7 8
-1

-0.5

0

0.5

1

Figure 8.5. Comparison of spectra without preconditioning (top), and IC(1,1) (bottom)

0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1

Figure 8.6. Spectrum of IC(1,1)

8.5. The incomplete Cholesky decomposition 293

For a nine point operator, the non-zero entries in the lower triangular part of A are

ai,i−m−1, ai,i−m, ai,i−m+1, ai,i−1, ai,i.

Then, we have

li,i−m−1 = ai,i−m−1,

li,i−m = ai,i−m −
li,i−m−1li−m,i−m−1

li−m−1,i−m−1
,

li,i−m+1 = ai,i−m+1 −
li,i−mli−m+1,i−m

li−m,i−m
,

li,i−1 = ai,i−1 −
li,i−m−1li−1,i−m−1

li−m−1,i−m−1
− li,i−mli−1,i−m

li−m,i−m
,

li,i = ai,i −
l2i,i−m−1

li−m−1,i−m−1
−

l2i,i−m
li−m,i−m

−
l2i,i−m+1

li−m+1,i−m+1
−

l2i,i−1

li−1,i−1
.

The next factorization for the five point scheme that was suggested by Meijerink and van der
Vorst [337] is obtained by keeping the fill-in in the union of the structure of L and the lower
triangular part of R in IC(1,1). This is denoted by IC(1,2) and the structure of L is shown in
Figure 8.7. The entries are computed columnwise as

di,i = ai,i −
l2i,i−1

di−1,i−1
−

l2i,i−m+1

di−m+1,i−m+1
−

l2i,i−m
di−m,i−m

,

li+1,i = ai+1,i −
ai+1,i−m+1li,i−m+1

di−m+1,i−m+1
,

li+m−1,i = −ai+m−1,i−1li,i−1

di−1,i−1
,

li+m,i = ai+m,i.

Figure 8.7. Structure of L for IC(1,2)

We need to store only three vectors for IC(1,2). The structure of the remainder is shown
in grey on Figure 8.8. Therefore, the next step will have one diagonal next to the main one and
three outer diagonals and will be called IC(1,3). One more step gives IC(2,4). The process
can be easily continued.

294 8. Preconditioning

Figure 8.8. Structure of R for IC(1,2)

8.5.6 Fourier analysis of IC(1,1)

An interesting question is to determine whether using IC(1,1) (or more generally any incom-
plete Cholesky decomposition) improves the condition number. Chandra [103] has proved that

1

17
κ(A) ≤ κ(M−1A) ≤ 17κ(A),

for the Poisson model problem and IC(1,1). This shows that the condition number of M−1A
is of the same order as the condition number of A. Here, we shall consider Fourier analysis
heuristics to answer this question, c.f. Chan [87]. We use the model problem with periodic
boundary conditions in the unit square. Then we know that the eigenvectors denoted by u(s,t)

are

(u(s,t))j,k = eijθs eikφt , θs =
2πs

n+ 1
, φt =

2πt

n+ 1
,

with i =
√
−1. The eigenvalues of AP are

λ(s,t) = 4

(
sin2 θs

2
+ sin2 φt

2

)
.

We cannot directly analyze the IC(1,1) preconditioner since the triangular factors of M do not
have constant diagonals. However, it can be seen that the values of di,i within a block converge
quite fast to a limit value, see Figure 8.9.

0 5 10 15 20 25 30
3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

Figure 8.9. Convergence of di,i for IC(1,1), Poisson model problem

8.5. The incomplete Cholesky decomposition 295

We consider the preconditioner where the di,i’s are replaced by the asymptotic value d of
di,i.

Theorem 8.21. For the model problem and periodic boundary conditions, the (constant diago-
nal) preconditioner IC(1,1) satisfies

κ(M−1
P AP) = O

(
1

h2

)
.

Proof. The asymptotic value of di,i is given by d satisfying

d = 4− 2

d
⇒ d = 2 +

√
2.

The stencil of LPD−1
P LTP is 1

d −1 0
−1 4 −1
0 −1 1

d

 .

Symbolically, we can write this as

MP = LPD
−1
P LTP = AP +

 1
d 0 0
0 0 0
0 0 1

d

 .

An eigenvector u(s,t) of MP satisfies

MPu
(s,t) = 4

(
sin2 θs

2
+ sin2 φt

2

)
u(s,t)

+
1

d
(ei(j−1)θs ei(k+1)φt + ei(j+1)θs ei(k−1)φt)u(s,t).

Since
(e−iθs eiφt + eiθs e−iφt)u(s,t) = 2 cos(θs − φt)u(s,t),

we have that the eigenvalues of M−1
P AP are

λ(s,t) =
4
(

sin2 θs
2 + sin2 φt

2

)
4
(

sin2 θs
2 + sin2 φt

2

)
+ 2

d cos(θs − φt)
.

where θs and φt take values in [0, 2π]. We can look at this function for continuous values of θ and
φ. The expression for the eigenvalues is invariant when we interchange θ and φ. The extremas
arise for θ = φ. Then,

λmax(θ) =
8 sin2 θ

2

8 sin2 θ
2 + 2

d

.

Figure 8.10 gives a plot of the eigenvalues.

We easily see that λmax ≤ 4d and also λ(1,1) = O(h2). This implies that κ(M−1A) =
O
(

1
h2

)
.

296 8. Preconditioning

0

5

10

15

20

25

30

0

10

20

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 8.10. Eigenvalues for the IC(1,1) preconditioner, periodic b.c.

8.5.7 Comparison of periodic and Dirichlet boundary conditions

In this section, we would like to investigate the relationship between Dirichlet and periodic
boundary conditions for which Fourier analysis is exact. For periodic boundary conditions we
have

LPD
−1
P LTP +D−1

P = 4I − TP ,

where

TP =

0 1 1
1 0 1

.
1 0 1

1 1 0

 .

Also,

−D−1LT =

−1 1/d

−1 1/d
.

−1 1/d
1/d −1

 = −I +
1

d
RT ,

with

RT =

0 1

0 1
.

0 1
1 0

 .

Thus, the remainderR (that we shall also denote when needed byRP) is defined as

MP = A+R, R =
1

d
R

andR has the structure

R =

0 R RT

RT 0 R
.

RT 0 R
R RT 0

 .

8.5. The incomplete Cholesky decomposition 297

We consider what happens to the invariant spaces ofAP . Let us define the vectors u+, u−, v+, v−
whose components are

(u+)k = eikθj , (u−)k = e−ikθj (v+)k = eilθm , (v−)k = e−ilθm .

The eigenspace is spanned by tensor products of these vectors. We consider the action of R and
RT on vectors u±. It is easy to see that

RTu+ = eiθju+, R
Tu− = e−iθju−, Ru+ = e−iθju+, Ru− = eiθju−.

Therefore, u± are eigenvectors of R and RT .
We must look at the tensor products of the us and vs. For one block, we have expressions

like
RTuvl−1 +Ruvl+1.

We have to compute this expression for the four combinations of + and −.
1) u+v+. We have (dropping the indices + and − for clarity)

RTuvl−1 +Ruvl+1 = (eiθje−iθm + e−iθjeiθm)uvl = a++uvl.

2) u+v−.
RTuvl−1 +Ruvl+1 = (eiθjeiθm + e−iθje−iθm)uvl = a+−uvl.

3) u−v+.
RTuvl−1 +Ruvl+1 = (eiθjeiθm + e−iθje−iθm)uvl = a+−uvl.

4) u−v−.
RTuvl−1 +Ruvl+1 = (eiθje−iθm + e−iθjeiθm)uvl = a++uvl.

This shows that this eigenspace, which is invariant for AP gives rise to two invariant spaces
with different eigenvalues for R. We have two double eigenvalues a++ = 2 cos(θj − θm) and
a+− = 2 cos(θj + θm).

This is the reason why the Fourier analysis is not exact for this preconditioner. Since the
eigenspace spanned by the tensor products of u+, u−, v+, v− is not invariant by R with only
one eigenvalue, we cannot consider eigenvectors with sine×sine components as for A. There is
no eigenvector whose components are zero on the boundary of the first quadrant. Therefore we
cannot reduce to the Dirichlet problem as we did for A.

The only preconditioners that can be exactly analyzed are the ones which leave invariant the
eigenspaces of A with only one eigenvalue. As we have seen, the eigenspaces of A are still
invariant forR but with more than one eigenvalue.

Let us look at the form of the matrix we get if we consider the action of R on the sine
and cosine eigenvectors of AP . To simplify the notation, we drop the indices k of the vector
components we consider and we denote by ss, sc, cs, cc the components of products of sine
and cosine. Trivially, we have

−4ss = u+v+ − u+v− − u−v+ + u−v−,

4isc = u+v+ + u+v− − u−v+ − u−v−,
4ics = u+v+ − u+v− + u−v+ − u−v−,
4cc = u+v+ + u+v− + u−v+ + u−v−.

Equivalently,

u+v+ = −ss+ i(sc+ cs) + cc,

u+v− = +ss+ i(sc− cs) + cc,

u−v+ = +ss+ i(−sc+ cs) + cc,

u−v− = −ss+ i(−sc− cs) + cc.

298 8. Preconditioning

Now, we can easily compute the action of R on ss, cc, sc, cs. For this eigenspace we obtain a
4× 4 matrix which is

α β
β α

α β
β α

 ,

with

α =
1

2
(a++ + a+−) = 2 cos(θj) cos(θm), β =

1

2
(a+− − a++) = −2 sin(θj) sin(θm).

Clearly this matrix has only two distinct eigenvalues a++ and a+− as we already know. In this
basis,R has a block diagonal representation. We have

θj =
2πj

n+ 1
, j = 0, . . . , n

and the eigenvalues ofR are

µj,m = 2 cos(θj − θm), j,m = 0, . . . , n

since the other set duplicates this one and we note that we have the right number of eigenvalues.
Therefore, the eigenvalues are

µj,m = 2 cos

(
2π

n+ 1
(j −m)

)
Since we have supposed that n+ 1 = 2p, the eigenvalues can be written

µj,m = 2 cos

(
π

p
(j −m)

)
, j,m = 0, . . . , n

or, as j −m =constant gives the same value

µj,m = 2 cos

(
π

p
q

)
, q = j −m = 0, . . . , n

The eigenvalues 2 and −2 have multiplicity n+ 1. The remaining (n− 1)/2 eigenvalues are of
multiplicity 2(n + 1). If p is even, 0 is an eigenvalue. Independently of the dimension of the
problem, the maximum and minimum eigenvalues are 2 and −2. When h → 0, the eigenvalues
tend to fill the whole interval [−2, 2]. Since we have to divide by h2, the maximum eigenvalue
increases as 2/h2. The important thing to note is that there are eigenvalues of order 1/h2. The
eigenspaces are spanned by the u+v+ and u−v− vectors or combinations of these; therefore, we
can take for instance

{sin
(

2π

n+ 1
(kj + lm)

)
, cos

(
2π

n+ 1
(kj + lm)

)
}.

When h→ 0, we get functions

{sin(2π(jx+my)), cos(2π(jx+my))}.

Let us consider an example with n = 7; the eigenvalues ofR are

−2(8) ,−1.4142(16), 0(16), 1.4142(16), 2(8)

8.5. The incomplete Cholesky decomposition 299

and those ofR are

−0.5858(8) ,−0.4142(16), 0(16), 0.4142(16), 0.5858(8),

where the multiplicity is given within the parentheses. We have the following eigenvalues for
MP = A+R by combining the appropriate eigenvalues

0.5858(1), 1(4), 1.1716(2), 1.7574(2), 2(4), 2.1716(4), 3(8)

3.4142(8), 4(4), 4.1716(4), 4.5858(2), 5(4), 5.8284(4)

6(4), 6.8284(2), 7.4142(2), 7.8284(4), 8.5858(1).

Note that MP is positive definite.
The eigenvalues of M−1

P AP (the ratios of eigenvalues of AP and MP) are

0(1), 0.5858(4), 0.6667(2), 0.8619(4), 0.8723(2), 0.9210(2),

0.9289(4), 0.9318(1), 0.9471(4), 1(16), 1.0828(4),

1.0993(4), 1.1381(4), 1.1716(8), 1.1907(4).

Now, consider the Dirichlet problem of size m = p− 1 with n+ 1 = 2p. In the example, p = 4,
so m = 3. From what we computed before, the eigenvalues of AD are

1.1716(1), 2.5858(2), 4(3), 5.4142(2), 6.8284(1).

LetRD be defined as

RD =

0 RD
RTD 0 RD

.
RTD 0 RD

RTD 0

 ,

with

RTD =

0 1

0 1
.

0 1
0

 .

The eigenvalues ofRD are

−1.4142(1), −1(2), 0(3), 1(2), 1.4142(1).

Note that two of these eigenvalues also belong to the spectrum of the periodic case.
We define the Dirichlet preconditioner MD as

MD = AD +RD,

with RD = 1/d RD. Note this is not the usual IC preconditioner for Dirichlet boundary condi-
tions, but we shall go back to that problem later on. Then, MD has simple eigenvalues which are
for the example

1.4560, 2.4318, 2.7247, 3.6007, 3.7071, 4.1080, 5.2753, 5.5682, 7.1282

300 8. Preconditioning

The eigenvalues of M−1
D AD are

0.7887(1), 0.9228(1), 0.9468(1), 1(3), 1.0790(1), 1.0913(1), 1.1165(1).

Excluding the zero eigenvalue (which does not have to be taken into account if we use the conju-
gate gradient), the condition number for the periodic problem (2.032) is an upper bound for that
of the Dirichlet problem (1.416).

Now, we shall explore the relationships betweenR andRD. We have the following result.

Theorem 8.22. LetRD be of dimension q2.
1) For q = 2, the eigenvalues ofRD are

−1(1), 0(2), 1(1).

2) Let Λ(q) = {λ| λ eigenvalue ofRD of dimension q2}. Then

Λ(q) = Λ(q − 1) ∪ {2 cos

(
jπ

q + 1

)
, j = 1, . . . , q}.

Proof. 1) For q = 2, we have

RD =

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 .

The determinant ofRD−λI is equal to λ2(λ2−1). Consequently, the eigenvalues are 0 and±1.
It is obvious that the eigenvectors corresponding to the 0 eigenvalue can be taken as (1 0 0 0)T

and (0 0 0 1)T . All the other eigenvectors have a zero first and last components. It can be
computed that the eigenvector associated with eigenvalue 1 is

(0, sin(π/4), sin(3π/4), 0)T

and that associated with −1 is

(0, sin(π/4), − sin(3π/4), 0)T .

2) Let us prove that
Λ(q − 1) ⊂ Λ(q).

To do this we have to analyze the relations which are verified by the components of the eigenvec-
tors. The eigenvectors associated with the eigenvalues of the system of dimension (q − 1)2 can
be constructed in the following way: suppose the eigenvector x(q−1) of size (q − 1)2 is divided
into q − 1 blocks of size q − 1

x(q−1) = (x1, x2, . . . , xq−1)T

with only one non-zero element in each block, two non-zero elements being separated by q − 2
zero elements. Then, up to a multiplication by a constant the eigenvector x(q) is constructed by
enlarging the size of each block of x(q−1) by adding a zero element at the end. In other words, if

x(q) = (y1, y2, . . . , yq)
T ,

8.5. The incomplete Cholesky decomposition 301

and
xi = (0, 0, x, 0, 0)T ,

then
yi = (0, 0, x, 0, 0, 0)T ,

with the same x element.
The last extra block is filled with zeros. Since the non-zero elements are in the same relative

position from the beginning of the block and since the distance between two non-zero elements
has increased by one, it is obvious that we still have an eigenvector. It is also straightforward to
see that if x is an eigenvector (of dimension q2) with components xi, then y defined as

yi = xq2−i+1,

is also an eigenvector for the same eigenvalue. This is because the matrix is persymmetric.
Now, we turn to the new eigenvalues that appear and are different from (or sometimes equal

to) the eigenvalues of the smaller dimension problem. We seek eigenvectors of the form

x(q) = (y1, y2, . . . , yq)
T ,

with
yi = (0, 0, . . . , 0, zi, 0, . . . , 0)T ,

zi being in position q− i+ 1. Note this corresponds to having only non-zero components on the
diagonal of the mesh points corresponding to (1, q), (q, 1): i.e. the equation k + l = q + 1.

Using the equation
RDx(q) = λx(q),

we obtain an eigenvalue problem of dimension q for the vector z made of the zis

z = (z1, z2, . . . , zq)
T .

This problem is
0 1
1 0 1

.
1 0 1

1 0

 z = λz,

the matrix being of order q. Note that this is precisely the problem for Dirichlet boundary con-
ditions in one dimension. Therefore we know the eigenvalues and eigenvectors of this problem.
The eigenvalues are

2 cos

(
jπ

q + 1

)
, j = 1, . . . , q

and the components of the eigenvectors are

sin

(
k
πj

q + 1

)
.

Note that these eigenvalues are simple, there are q of them and the eigenvectors also verify the
relation of persymmetry we found above.

If we count the eigenvalues, we can see that if l(q) is the number of eigenvalues and if o(q)
is the number of eigenvalues arising from dimension (q − 1)2, we have

l(q) = o(q) + q

302 8. Preconditioning

o(q + 1) = o(q) + 2q

with o(2) = 2. This shows that we have l(q) = q2 as it should. Therefore we have found all
the eigenvalues. Note that when q is odd, 0 is included in the “new” eigenvalues. If z(q) is the
multiplicity of the 0 eigenvalue, we have

z(2) = 2,

z(q) = z(q − 1) +

{
2, if q is even,
1, if q is odd.

Remark
1) Remember that for the periodic problem with matrixR of dimension (n+1)2 with n+1 =

2p the eigenvalues are

µj,m = 2 cos

(
π

p
k

)
, k = 0, . . . , n.

This implies that the “new” eigenvalues of RD for the Dirichlet problem of size (p − 1)2 are
eigenvalues of the periodic problem. All eigenvalues of the periodic problem, except 2 and −2,
are eigenvalues of the Dirichlet problem.

In particular, the maximum eigenvalue of R, 2 cos(π/p) is the penultimate to the maximum
eigenvalue of the periodic problem (the largest one being 2).

2) As for R, if λ is an eigenvalue of RD, then −λ is also an eigenvalue. The components of
the corresponding eigenvectors differ only in sign.

3) Note that when h→ 0, the maximum eigenvalue ofRD tends to 2 which is the maximum
eigenvalue of R. The same is true for the minimum eigenvalue. The “new” eigenvalues tend to
fill the interval [−2, 2]. Therefore, asymptotically the eigenvalues are the same in both cases.

The previous result shows that there is a simple relationship between the eigenvalues of
the remainder for the periodic and the corresponding Dirichlet problem. However such simple
relations for eigenvalues of M−1A do not hold.

Since we want to obtain information about the eigenvalues of M−1
D AD, we have several

possible methods. We remark that as we know the eigenvalues of AD and RD, we can use per-
turbation results to obtain bounds for the eigenvalues of M−1

D AD. First we show that MD is
positive definite. As we said before MD which was constructed directly from the knowledge of
MP is not the usual IC preconditioner. We saw previously how to directly construct an incom-
plete preconditioner with constant diagonals. We denote by M ′D this preconditioner. It is easy to
see that MD and M ′D differ only on the diagonal. All the blocks of the difference have a zero di-
agonal except for the first element which is 1/d. Only the first diagonal block is different, having
two non-zero elements on the diagonal 2/d since the first element and 1/d as the last. The dif-
ference is consequently a diagonal matrix P of rank 2. Therefore, we can bound the eigenvalues
of MD in terms of those of M ′D by perturbation theorems. We have as MD = M ′D + P ,

λmin(MD) ≥ λmin(M ′D) +
1

d
,

λmax(MD) ≤ λmax(M ′D) +
2

d
.

It is obvious that M ′D is positive definite, hence MD is also positive definite. Note that MD has
its smallest eigenvalue bounded from below independently of the dimension of the problem, but
unfortunately the Cholesky factors of MD are not sparse.

8.5. The incomplete Cholesky decomposition 303

Remembering that MD = AD +RD, we have

λi(AD)

λmax(MD)
≤ λi(M−1

D AD) ≤ λi(AD)

λmin(MD)
.

We have seen that
λmin(MD) ≥ 1

d
,

and as we also have

λmax(MD) ≤ λmax(AD) + λmax(RD) ≤ λmax(AD) +
2

2 +
√

2
≤ 8 +

2

2 +
√

2
.

Hence, we obtain
λi(AD)

6.243
≤ λi(M−1

D AD) ≤ 3.4142 λi(AD).

This shows that AD and M−1
D AD are spectrally equivalent and we have

κ(AD)

21.3137
≤ κ(M−1

D AD) ≤ 21.3137 κ(AD).

Another way to see this is the following. Let α = 1/d, then MD = AD + αRD. Hence,

M−1
D AD = (I + αA−1

D RD)−1,

and
λ(M−1

D AD) =
1

1 + αλ(A−1
D RD)

.

This implies that

8π2h2 +O(h4)

8π2h2 +O(h4) + αλi(RD)
≤ λi(M−1

D AD) ≤ 8− 8π2h2 +O(h4)

8− 8π2h2 +O(h4) + αλi(RD)
.

From this result we can conclude that κ(M−1
D AD) is bounded above by a quantity which behaves

as 1/([7 + 4
√

2]π2h2).

8.5.8 Axelsson’s results

O. Axelsson [21] proved some localization results for eigenvalues of M−1A using some pertur-
bation lemmas.

Theorem 8.23. Let A and M be SPD matrices and let µ1, µ2 > 0 ∈ � such that λmax(µ1M −
A) ≥ 0, λmin(µ2M −A) ≥ 0. Then,

µ1λi(A)

λi(A) + λmax(µ1M −A)
≤ λi(M−1A) ≤ µ2λi(A)

λi(A) + λmin(µ2M −A)
.

This result can be used to derive upper bounds for λmax(M−1A) and lower bounds for
λmin(M−1A). If A = gI + L + LT where g is a positive real, M = (X + L)X−1(X + LT)
with X being an M-matrix and x = λmin(X), then if 2x− g > 0,

λi(M
−1A) ≤

{
4xλi(A)

(2x−g+λi(A))2 , if λi(A) ≤ 2x− g,
x

2x−g , if λi(A) ≥ 2x− g.

304 8. Preconditioning

For IC(1,1) and the model problem x ≈ 2 +
√

2 and this gives

λmax(M−1A) ≤ 2 +
√

2

2
√

2
≈ 1.2071 . . .

Moreover, we have

λi(A)

λi(A) + 2
x

≤ λi(M−1A) ≤ 4(2 +
√

2)λi(A)

(2
√

2 + λi(A))2
.

This shows that λmin(M−1A) = O(h2). For the smallest eigenvalues we have

λi(M
−1A) =

2 +
√

2

2
λi(A) +O(λi(A)2).

This last result essentially says that the distribution of the smallest eigenvalues of M−1A is
almost the same as for the original problem.

8.6 The modified incomplete Cholesky decomposition
8.6.1 The DKR preconditioner

This preconditioner has its origin in a work of Dupont, Kendall and Rachford [169] following
some older ideas by Buleev and also Varga [456]. It was devised for matrices arising from finite
difference approximations of elliptic partial differential equations in rectangles. The idea was to
try to compensate for entries left in the remainder R by summing them up to the diagonal of M .
We require

M = LD−1LT = A+R+ δD̄,

with D̄ being a diagonal matrix such that d̄i,i = ai,i and R having non-zero entries in positions
(i, i−m+ 1), (i, i), (i, i+m− 1) on row i. The matrix R will be such that the sums of entries
of a row (this is denoted as rowsum) is zero for all rows. This implies that (generically)

ri,i = −(ri,i−m+1 + ri,i+m−1). (8.5)

By equating we get,

di,i = (1 + δ)ai,i −
ai,i−1

di−1,i−1
(ai,i−1 + ai+m−1,i−1),

− ai,i−m
di−m,i−m

(ai,i−m + ai−m+1,i−m).

For Dirichlet boundary conditions a value of δ = ch2 is recommended for reasons we shall
see below. This method is usually denoted as DKR. It can be extended straightforwardly to non-
symmetric matrices.

8.6.2 Analysis of DKR

The following results for the model problem were proved by I. Gustafsson [261].

Lemma 8.24. For the Poisson model problem, there exists a constant c1 such that

ri+m−1,i ≤
1

2(1 + c1h)
.

8.6. The modified incomplete Cholesky decomposition 305

Proof. We start by proving that di,i ≥ 2(1 + c1h). If c = 0, we have di,i ≥ 2. This is proved
by induction since d1,1 = 4 and generically, we have

di,i = 4− 2

di−1,i−1
− 2

di−m,i−m
.

Of course, one of the two negative terms may be zero. This shows that di,i ≥ 2. If c 6= 0, we
have

di,i ≥ 4(1 + ch2)− 2

1 + c1h
.

If we set c1 =
√

2c, we obtain di,i ≥ 2(1 + c1h). Even without this hypothesis we have that

di,i ≥ 2(1 + c1h) +O(h2).

It turns out that

ri+m−1,i =
ai+m−1,i−1ai,i−1

di−1,i−1
≤ 1

di−1,i−1
≤ 1

2(1 + c1h)
.

Lemma 8.25. For the Poisson model problem,

(Rx, x) ≤ 0.

Proof.

(Rx, x) = −
∑
i

(ri,i−m+1 + ri+m1,i)x
2
i + 2

∑
i

ri,i+m−1xi+m−1xi,

and we use the identity 2xi+m−1xi = x2
i+m−1 + x2

i − (xi+m−1 − xi)2 to get

(Rx, x) = −
∑
i

(ri,i−m+1 + ri+m−1,i)x
2
i +

∑
i

(ri,i+m−1x
2
i

+ri,i+m−1x
2
i+m−1)−

∑
i

ri,i+m−1(xi+m−1 − xi)2.

Since the sum of the first two terms is zero, we obtain the result.

Note that this result is true for all matrices verifying (8.5). The result of Lemma 8.25 shows
that the eigenvalues of M−1A are larger than 1.

Lemma 8.26. For the Poisson model problem,

−(Rx, x) ≤ 1

1 + c1h
(Ax, x).

Proof. From Lemma 8.25, we have

−(Rx, x) =
∑
i

ri,i+m−1(xi+m−1 − xi)2 ≤
∑
i

1

di−1,i−1
(xi+m−1 − xi)2.

306 8. Preconditioning

Using Lemma 8.24,

−(Rx, x) ≤
∑
i

1

2(1 + c1h)
(xi+m−1 − xi)2.

We have the equality (a− b)2 ≤ 2(a− e)2 + 2(e− b)2 that we use with e = xi−1,

−(Rx, x) ≤
∑
i

1

1 + c1h
[(xi+m−1 − xi−1)2 + (xi − xi−1)2].

With a change of variable, we have

−(Rx, x) ≤
∑
i

1

1 + c1h
[(xi+m − xi)2 + (xi+1 − xi)2] ≤ 1

1 + c1h
(Ax, x).

From these lemmas, we can bound the condition number of M−1A.

Theorem 8.27. For the Poisson model problem,

κ(M−1A) = O

(
1

h

)
.

Proof.
(Ax, x)

(Mx, x)
=

(Ax, x)

(Ax, x) + δ(D̄x, x) + (Rx, x)
.

But,

0 ≤ δ(D̄x, x)

(Ax, x)
= ch2 (x, x)

(Ax, x)
≤ c

c0
,

with a constant c0, since the smallest eigenvalue of A is written as c0h2. Note that this is where
we need δ = ch2 to cancel the h2 term in the lower bound. Therefore,

1

1 + c
c0

≤ (Ax, x)

(Mx, x)
≤ 1

1 + (Rx,x)
(Ax,x)

≤ 1

1− 1
1+c1h

= 1 +
1

c1h
,

which proves the result.
Note that we cannot conclude with this result for the case c = 0. For other boundary condi-

tions than pure Dirichlet, the value of δ can be different, see [169]. This analysis can be extended
to more general problems, see Gustafsson [261]. The DKR preconditioner is well defined for
diagonally dominant matrices. This can be extended with some modifications to M-matrices.

The previous theory says that a value of the perturbation parameter c 6= 0 is needed to obtain
a O(1/h) condition number. However, it has been observed in practice for many problems that
this is attained without any perturbation (in particular for the Poisson model problem with the
usual row ordering). Unfortunately, there exist some orderings of the unknowns for the Poisson
model problem for which the factorization with c = 0 fails (for example the Red-Black ordering).

8.6.3 Fourier analysis of DKR

As for IC we consider a variant of the preconditioner with a constant diagonal. With DKR, the
asymptotic value d of the diagonal coefficients for the model problem is the solution of

d = 4 + ch2 − 4

d
⇒ d = 2 +

ch2

2
+

1

2

√
8ch2 + (ch2)2 = 2 +

√
2ch+O(h2).

8.6. The modified incomplete Cholesky decomposition 307

Looking at the stencils, we have

MP = AP +
1

d

 1 0 0
0 0 0
0 0 1

+

(
ch2 − 2

d

)
I.

The eigenvalues of M−1
P AP are

λ(s,t) =
4
(

sin2 θs
2 + sin2 φt

2

)
4
(

sin2 θs
2 + sin2 φt

2

)
+ 2

d (cos(θs − φt)− 1) + ch2
.

The function of θ and φ is shown in Figure 8.11 for c = 8π2.

0

5

10

15

20

25

30

0

10

20

30

0

0.5

1

1.5

2

2.5

Figure 8.11. Eigenvalues for MIC(1,1), c = 8π2, periodic b.c.

Theorem 8.28. For the Poisson model problem with periodic boundary conditions, if c > 0,

κ(M−1
P AP) = O

(
1

h

)
.

Proof.

λmin = λ(1, 1) =
8 sin2(πh)

8 sin2(πh) + ch2
' 1

1 + c
8π2

= O(1),

λmax = λ(θ, 2π − θ) ' 1√
2ch

= O

(
1

h

)
,

with θ '
√

c
8h. The optimal value of c for the periodic problem is cP = 8π2 and the cor-

respondence between the values for periodic and Dirichlet boundary conditions is cP = 4cD.
Therefore, cD = 2π2.

8.6.4 Extensions of DKR

The DKR preconditioner is easily extended to more general sparse matrices. This is denoted as
MIC (MILU for non-symmetric matrices). Consider, for instance, a diagonally dominant symmet-
ric M-matrix and the first step of the incomplete decomposition. As before for IC, we define r1

308 8. Preconditioning

such that (r1)j = −aj,1 if (j, 1) 6∈ G. Moreover, let r(1)
1,1 = −

∑n
j=2(r1)j ≤ 0 and D(1)

R be a

diagonal matrix of order n− 1 such that (D
(1)
R)j,j = −(r1)j . Then,

A = A1 =

(
a1,1 + r

(1)
1,1 bT1

b1 B1 +D
(1)
R

)
−

(
r

(1)
1,1 rT1

r1 D
(1)
R

)
= M1 −R1.

Clearly, we have rowsum(R1) = 0 (this isR1e = 0 where e is the vector of all ones). Moreover,
sinceA is diagonally dominant, a1,1+r

(1)
1,1 > 0 andB1+D

(1)
R is diagonally dominant. Therefore,

we can proceed and we obtain that the matrices in all the steps are diagonally dominant. Adding
a small (O(h2)) term to the diagonal would give strict diagonal dominance. For more general M-
matrices which are generalized diagonally dominant with a vector d (Ad > 0), we could require
that Rd = 0.

8.7 The relaxed incomplete Cholesky decomposition
The relaxed incomplete Cholesky decomposition RIC (or RILU in the non-symmetric case) is
basically the same as MIC except that the (negative for M-matrices) values that are added to the
diagonal are multiplied by a relaxation parameter ω such that 0 ≤ ω ≤ 1. Generally, in this case,
one uses an unperturbed method taking c = 0. Therefore, ω = 0 gives IC, while ω = 1 gives the
unperturbed MIC. A Fourier analysis of the model problem (Chan [87]) has given that the optimal
parameter is ω = 1− 8 sin2(πhP /2). Then, the condition number is O(1/h).

For RIC the asymptotic value of the diagonal coefficients is d = 2 +
√

2(1− ω). The
eigenvalues of M−1

P AP are

λs,t =
4(sin2(θs/2) + sin2(φt/2))

4(sin2(θs/2) + sin2(φt/2)) + 2

2+
√

2(1−ω)
(cos(θs − φt)− ω)

.

The condition number has a minimum for ω close to 1, but there is a sharp increase when ω → 1,
so it is better practice to underestimate the optimal value of ω. In [87], it is shown that RIC is
equivalent to MIC for the periodic problem if the coefficient c is allowed to vary with h.

Bounds for the eigenvalues and the condition number with Dirichlet boundary conditions are
given in Axelsson [21].

8.8 More on the incomplete decompositions for the model
problem

All these variants of the incomplete decompositions applied to the model problem differ only by
the values of the diagonal coefficients. Therefore, it is interesting to see if we can find an optimal
value for these coefficients, for instance when we use a constant diagonal whose elements are
all equal to α. First, we ran some numerical experiments with Dirichlet boundary conditions
on a 30 × 30 mesh. The numbers of PCG iterations to reach ‖rk‖ ≤ 10−6‖r0‖ are given as a
function of α of Figure 8.12. There exists an optimal value of α which is between 2 and 2.5 for
this example. Note that for greater values of α, the number of iterations varies very slowly. The
limit value for DKR is very close to the optimal value of α.

Then, for periodic boundary conditions, we analytically compute the eigenvalues of MP . It
turns out that they are given by

λs,t = 4(sin2(θs/2) + sin2(φt/2)) + α+
2

α
− 4 +

2

α
cos(θs − φt).

8.8. More on the incomplete decompositions for the model problem 309

1.5 2 2.5 3 3.5 4
10

20

30

40

50

60

70

80

Figure 8.12. Number of PCG iterations as a function of α, Dirichlet b.c.

Now, we can look for the minimum of the condition number of M−1
P AP as a function of α.

The condition number of M−1
P AP is given for different values of α on Figure 8.13 for m = 30.

We can see that the value of α which gives the minimum value of the condition number for the
periodic problem agrees quite closely with the value giving the minimum number of iterations
for Dirichlet boundary conditions.

1.5 2 2.5 3 3.5 4

10

20

30

40

50

60

70

80

90

100

Figure 8.13. Condition number as a function of α, periodic b.c.

It is also interesting to see if we can find the parameter α that minimizes a norm of the
residual matrix R for Dirichlet boundary conditions. To do this we choose the Frobenius norm
which is easily computable. Let m be the size of the blocks in A, n = m2, then

‖R‖2F = (α− 4)2 + 2(m− 1)(α+
1

α
− 4)2 + (m− 1)2(α+

2

α
− 4)2

+2(m− 1)2 1

α2
.

When m is large, only the last two terms are relevant, therefore it is sufficient to minimize

(α+
2

α
− 4)2 +

2

α2
.

Using symbolic computation, it can be shown that the minimum of this expression is obtained
for α = 1 +

√
3 +
√

10 which is approximately 3.48239353 . . . For this value of α the function
value is 0.1681365259 . . . This has to be multiplied by (m− 1)2 to obtain ‖R‖2F . The complete

310 8. Preconditioning

function can also be minimized, the minimum being a function ofm. However, the expression of
α giving the minimum is quite complicated. The solution is a little larger than when neglecting
lower order terms. For instance, for m = 30, it gives 3.5019496 . . . (and a value of the square of
the norm of 141.403 . . .) and for m = 100 we obtain m = 3.48807645 . . . These values are very
close to what we obtain with IC(1,1) for which the limit value of the diagonal coefficients is
2 +
√

2 and for m = 30 the square of the Frobenius norm is 142.5. This shows that minimizing
the norm of the remainder does not lead to the optimal number of iterations.

Let us consider another possibility to compute an incomplete factorization. LetM = LD−1LT ,
L having the same non-zero structure as the lower triangular part of A, D being diagonal. We
denote the non-zero elements of the ith row of L as ci, bi, di; di is also the diagonal element of
D. Then, we know there are two additional diagonals in M compared to A and the elements of
the ith row of R = M −A are

ci − ai,i−m,
cibi−m+1

di−m
, bi − ai,i−1, di +

b2i
di−1

+
c2i

di−m
− ai,i,

bi+1 − ai,i+1,
ci+m−1bi
di−1

, ci+m − ai,i+m.

Suppose we have a set of vectors V = (v1, . . . , vk). We would like to compute the coefficients
of the incomplete decomposition in such a way that ‖RV ‖ is small. If v ∈ V then, the ith row
of Rv = 0 is

divi + bi+1vi+1 + ci+mvi+m = fi,

where fi only involves elements from the previous rows. Only the last block and the last row are
different since then ci+m and bi+1 do not exist. If we use k such vectors v with k > 3, we have
an overdetermined system with a k× 3 matrix. We compute the least squares solution of this set
of equations and this gives the preconditioner. The problem which remains is knowing how to
choose the set of vectors vi. We ran some numerical experiments for the Poisson model problem
by choosing some of the eigenvectors ofA or vectors of an orthonormal basis of the Krylov space
Kk(x,A) for some given (random) x. It turns out that in both cases the eigenvalue distributions
of M−1A are very close to that given by IC(1,1). Figure 8.14 shows a comparison of the
eigenvalues of IC and this least squares preconditioner when using a Krylov space of dimension
10 for a model problem of order 100.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8.14. Eigenvalues of IC(1,1) and the least squares preconditioner, solid: IC(1,1),
circles: least squares

Greenbaum and Rodrigue [258] have numerically computed an “optimal” preconditioner for
small problems with Dirichlet boundary conditions. The structure of the incomplete triangular

8.9. Stability of incomplete decomposition 311

factors was the same as the lower and upper triangular parts of A. Their results show that neither
IC or MIC are optimal with respect to minimizing the condition number.

8.9 Stability of incomplete decomposition
For incomplete decompositions it is interesting to examine the size of the pivots which govern
the stability of the algorithm. In this respect, Manteufell [333] has shown that for an H-matrix the
incomplete decomposition is more stable that the complete one. However, it has been noticed that
there can be trouble with non-symmetric problems. Elman [176, 177] has studied the stability of
the factorization and the triangular solves. He considered the following two dimensional model
problem in the unit square with Dirichlet boundary conditions,

−∆u+ 2P1
∂u

∂x
+ 2P2

∂u

∂y
= f,

which is approximated with finite difference methods. For the first order terms, two schemes can
be used: second-order centered or first-order upwind that depends on the signs of the coefficients
P1, P2. Both schemes give a non-symmetric linear system whose matrix has the same structure
as that of the Poisson model problem.

Elman considered numerically three problems: (P1 = 0, P2 = 50), (P1 = P2 = 50),
(P1 = −50, P2 = 50). It turns out that using a simple iterative method denoted as Orthomin(1),
ILU failed on the second problem and MILU failed on the third one with centered differences.
Elman did not directly study ILU and MILU but the constant coefficients variants in the same
manner as for the Fourier analysis. Then, he analyzed the triangular solves Lv = w,Uv = w
where L and U are the incomplete factors. This leads to studying recurrences such that

vj =
1

α
(wj − βvj−1 − γvj−m).

The lower triangular solve is said to be stable if all the roots of the characteristic polynomial
(αzm + βzm−1 + γ) are less or equal to 1 in modulus.

Theorem 8.29. Necessary and sufficient conditions for the stability of the lower triangular solve
are,

1) for β ≤ 0, γ ≤ 0, α+ β + γ ≥ 0,
2) for β ≥ 0, γ ≥ 0 and m odd, −α+ β + γ ≤ 0,
3) for β ≥ 0, γ ≤ 0 and m even, α− β + γ ≥ 0,
4) for β ≤ 0, γ ≥ 0 and m even, α− γ + β ≥ 0.

Proof. See Elman [176].

This translates into regions of stability in the (P1, P2) plane. For instance, for centered
differences and ILU when P1 ≥ 0, P2 ≥ 0, the condition for stability is p1p2 ≤ 1 where
pi = Pih, i = 1, 2. For the upwind scheme, both upper and and lower triangular solves are
always stable for ILU and MILU. Numerical examples in [176] show a high correlation between
these stability results and the behaviour of those preconditioners for several iterative methods.
Relaxed factorizations for these problems were studied in [177]. There, stabilized incomplete
factorizations were constructed that produce diagonally dominant lower and upper triangular
factors. In these methods, the modifications involving the row sums are done or not adaptively
based on the values of p1 and p2.

Bruaset, Tveito and Winther [76] studied the stability of the RIC preconditioner.

312 8. Preconditioning

8.10 The generalized SSOR preconditioner
In this section, we look again at the problem of finding good SSOR-like preconditioner. For
simplicity, we slightly change the notation. Consider the matrix A of an elliptic finite difference
problem. Let L be the strictly lower triangular part of the symmetric matrix A and ∆ be a
diagonal matrix, we define the generalized SSOR preconditioner (GSSOR) as

M = (∆ + L)∆−1(∆ + LT),

where ∆ is a diagonal matrix. The SSOR preconditioner is obtained by taking ∆i,i = ai,i. As we
have already seen before

M = ∆ + L+ LT + L∆−1LT = A+ (∆−D) + L∆−1LT = A+R,

where D is the diagonal matrix of A. This shows that for a pentadiagonal matrix arising from
finite differences approximations we have,

mi,i = ∆i,i +
a2
i,i−1

∆i−1,i−1
+

a2
i,i−m

∆i−m,i−m
,

mi,i−1 = ai,i−1,

mi,i−m = ai,i−m,

mi,i−m+1 =
ai,i−mai−m+1,i−m

∆i−m,i−m
.

For this type of matrix, it is clear that IC(1,1) and DKR are instances of GSSOR preconditioners
with different matrices ∆. Suppose that ∆i,i 6= 0 and let us introduce ωi and γi such that

ωi =
ai,i
∆i,i

, γi =
ai,i+1 + ai,i+m

ai,i
.

Lemma 8.30. Let A be a symmetric positive definite pentadiagonal matrix and δ ∈ �. If ωi > 0
is chosen such that

0 ≤ 1

ωi
+

1

ai,i
(ai,i−1ωi−1γi−1 + ai,i−mωi−mγi−m) ≤ 1 + δ,

then
(Mx, x) ≤ (Ax, x) + δ(Dx, x), ∀x 6= 0.

Proof. We have

(L∆−1LTx)i =
ai,i−1

∆i−1,i−1
(ai−1,ixi + ai−1,i+m−1xi−m+1)

+
ai,i−m

∆i−m,i−m
(ai−m,i−m+1xi−m+1 + ai−m,ixi).

With a change of variable, we get

(L∆−1LTx, x) ≤
∑
i

1

∆i,i
(a2
i,i+1x

2
i+1 + a2

i,i+mx
2
i+m + 2ai,i+1ai,i+mxi+1xi+m).

8.10. The generalized SSOR preconditioner 313

Using the identity 2xi+1xi+m = x2
i+1 +x2

i+m− (xi+1−xi+m)2, we show that (L∆−1LTx, x)
is less or equal than∑

i

1

∆i,i
[(a2

i,i+1 + ai,i+1ai,i+m)x2
i+1 + (a2

i,i+m + ai,i+1ai,i+m)x2
i+m.

With another change of variable,

(L∆−1LTx, x) ≤
∑
i

{ 1

∆i−1,i−1
(a2
i,i−1 + ai,i−1ai−1,i+m−1)

+
1

∆i−m,i−m
(a2
i,i−m + ai,i−mai−m,i−m+1)}x2

i .

With our notation, this can written as

(L∆−1LTx, x) ≤
∑
i

(ωi−1ai,i−1γi−1 + ωi−mai,i−mγi−m)x2
i .

Finally, we have

(Mx, x) ≤ (Ax, x) +
∑
i

(
1

ωi
− 1

+
1

ai,i
[ωi−1ai,i−1γi−1 + ωi−mai,i−mγi−m])ai,ix

2
i ,

≤ (Ax, x) + δ(Dx, x).

Note that we could have only required that

0 ≤ 1

ωi
+

1

ai,i
(ai,i−1ωi−1γi−1 + ai,i−mωi−mγi−m) ≤ 1 + δi

and then, we set δ = maxi δi. In this way, some of the δis could be zero.

Lemma 8.31. Let A be a symmetric positive definite pentadiagonal matrix. Then there exists
χ > 0 such that

(Mx, x) ≥ χ(Ax, x).

Proof.

(L∆−1LTx, x) =
∑
i

(
a2
i,i−1

∆i−1,i−1
+

a2
i,i−m

∆i−m,i−m
)x2
i

+
∑
i

ai,i−1ai−1,i+m−1

∆i−1,i−1
(x2
i + x2

i+m−1)

−
∑
i

ai,i−1ai−1,i+m−1

∆i−1,i−1
(xi − xi+m−1)2.

We can use the inequality

c1c2(a1 − a2)2 ≤ (c1 + c2)[c1(a1 − e)2 + c2(a2 − e)2], ∀e ∈ �,

314 8. Preconditioning

to obtain a lower bound of the third term. Here, we take e = βi−1xi−1, with βi to be chosen.
With a change of variable, we obtain

(L∆−1LTx, x) ≥
∑
i

(ωi−1ai,i−1γi−1 + ωi−mai,i−mγi−m)x2
i

−
∑
i

ωi−1γi−1[ai,i−1(xi − βi−1xi−1)2

+ ai−1,i+m−1(βi−1xi−1 − xi+m−1)2].

By expressing the squares and using a change of variable,

(L∆−1LTx, x) ≥ −
∑
i

ωiγ
2
i β

2
i ai,ix

2
i

+2
∑
i

βiωiγi(ai,i+1xixi+1 + ai,i+mxixi+m).

This shows that

(Mx, x) ≥ (Ax, x) +
∑
i

{
1

ωi
− 1− ωiγ2

i β
2
i

}
ai,ix

2
i

+ 2
∑
i

βiωiγi(ai,i+1xixi+1 + ai,i+mxixi+m).

But
(Ax, x) =

∑
i

ai,ix
2
i + 2

∑
i

(ai,i+1xixi+1 + ai,i+mxixi+m),

therefore since,

(Mx, x) ≥
∑
i

(
1

ωi
− ωiγ2

i β
2
i)ai,ix

2
i

+ 2
∑
i

(1 + βiωiγi)(ai,i+1xixi+1 + ai,i+mxixi+m),

if we choose βi such that

βiγi =
1

ωi
− 1,

both factors involving βi are equal and we have

(Mx, x) ≥ χ(Ax, x), χ = min
i

(2− ωi).

Theorem 8.32. Let A be a symmetric positive definite pentadiagonal matrix and let ωi satisfy
the conditions of Lemma 8.30. Then

κ(M−1A) ≤ 1

χ

(
1 +

δ

λmin(D−1A)

)
, χ = min

i
(2− ωi).

Proof. We use results of Lemmas 8.30 and 8.31.

8.11. Incomplete decomposition of positive definite matrices 315

Let us consider what we obtain for DKR and the Poisson model problem. In this case we
have equality with the upper bound of Lemma 8.30 and δ = ch2. The asymptotic value of ωi is
ω = 2− c0h. Then, χ = c0h and also λmin = O(h2). This shows that

κ(M−1A) ≤ 1

c0h
(1 + c1).

Unfortunately, with Theorem 8.32 we cannot conclude for the non-perturbed case (c = 0), since
we should get ω = 2 and χ = 0.

Note that we need only specify

0 ≤ 1

ωi
+

1

ai,i
(ai,i−1ωi−1γi−1 + ai,i−mωi−mγi−m) ≤ 1 + δi,

then the theory is the same as before with δ = maxi δi. We only need to take one δi equal to ch2.
In practice it is not too easy to make other choices than DKR since we need also to have ωi > 0
to get a positive definite preconditioner.

8.11 Incomplete decomposition of positive definite
matrices

It is easy to find examples of symmetric positive definite matrices which are not H-matrices for
which the Incomplete Cholesky decomposition fails. To solve this problem, it was suggested by
Manteuffel [333] that we factorize A(α) = (1 + α)D + L + LT instead of A, where α is a
positive real that is chosen such that A(α) is an H-matrix.

Varga, Saff and Mehrmann [458] have characterized the matrices that are incompletely fac-
torizable. Let Fn be this set and Hn be the set of non-singular H-matrices. We already know
thatHn ⊂ Fn. Let

Ω(A) = {B|M(B) = M(A)},
Ωd(A) = {B| |bi,i| = |ai,i|, |bi,j | ≤ |ai,j |, i 6= j},
Fdn = {A ∈ Fn,Ωd(A) ⊆ Fn}.

Varga et al. have shown thatHn = Fdn. Moreover, if

Fcn = {A ∈ Fn, Ω(A) ⊆ Fn},

then, Hn is strictly contained in Fcn which is also strictly contained in Fn. There exist matrices
that can be incompletely factorized which are not H-matrices.

Let us now see what can be done for general symmetric positive definite matrices. This
algorithm was proposed by Y. Robert [385] following ideas from Jennings and Malik [299]. As
before, we have

A =

(
a1,1 aT1
a1 B1

)
, a1 = b1 − r1.

However, the remainder is constructed in a different way as before. Let

R1 =

(
r1
1,1 rT1
r1 DR1

)
,

with DR1
diagonal such that (DR1

)j,j = |(r1)j | and r1
1,1 =

∑n−1
j=1 |(r1)j | > 0. We split A as

A = A1 =

(
a1,1 + r1

1,1 bT1
b1 B1 +DR1

)
−
(
r1
1,1 rT1
r1 DR1

)
= M1 −R1.

316 8. Preconditioning

Note that we add something to the (positive) diagonal element of A. Then we factorize M1,

M1 =

(
1 0
l1 I

)(
a1,1 + r1

1,1 0
0 A2

)(
1 lT1
0 I

)
.

By equating,

l1 =
b1

a1,1 + r1
1,1

, A2 = B1 +DR1
− 1

a1,1 + r1
1,1

b1b
T
1 .

We shall show that A2 is positive definite.

Lemma 8.33. R1 is semi positive definite.

Proof. R1 is the sum of matrices such as

|r| 0 . . . 0 r

0
. . . 0

...
. . .

...

0
. . . 0

r 0 . . . 0 |r|

 0

0 0

,

with only four non-zero entries. The eigenvalues of this matrix are 0 and 2|r|. Therefore, M1 is
semi positive definite.

Theorem 8.34. A2 is positive definite.

Proof. R1 being semi positive definite, M1 = A + R1 is positive definite. Let y be a vector
such that

y =

(
α
x

)
,

α ∈ �. We have (M1y, y) > 0 which gives

α2(a1,1 + r1
1,1) + 2α(b1, x) + ((B1 +DR1)x, x) > 0.

If we choose α = − (b1,x)
a1,1+r11,1

, then, we have

− (b1, x)2

a1,1 + r1
1,1

+ (x, (B1 +DR1
)x) > 0,

which means that A2 is positive definite.
Note that in this decomposition R is positive definite. So the eigenvalues of M−1A are less

than 1.

8.12 Different orderings for IC
IC has become one of the most popular preconditioners since it is relatively efficient on most
problems and easy to implement. In their original work, Meijerink and van der Vorst [336] only
consider a factorization where the unknowns are numbered in a rowwise (or columnwise) fash-
ion for finite difference approximations on rectangles. We have seen in Chapter 2 that for the

8.12. Different orderings for IC 317

direct method (Gaussian elimination), the issue of how the unknowns are ordered is of paramount
importance. Some strategies as the reverse Cuthill-McKee, the minimum degree or nested dis-
section can reduce the work and storage for the factorization of the matrix. The effect of the
ordering of the unknowns for incomplete factorizations has been studied experimentally by Duff
and Meurant [162]. These experimental results have been explained theoretically to some extent
by V. Eijkhout [171] and S. Doi [143, 144]. The ordering problem for incomplete factorizations
is also related, as we shall see later on, to the search for parallelism. Experimental results for non-
symmetric problems were given later on by Benzi, Szyld and Van Duin [40]. The conclusions
are only slightly different than for symmetric problems.

8.12.1 Experimental results

Seventeen different orderings have been considered in [162]. Here, we simply report results from
[162] for orderings we have already studied in Chapter 2. They are listed in Table 8.1 together
with the abbreviations used in the tables.

Table 8.1. Orderings

ordering Abbreviation

row ordering row
reverse Cuthill-McKee rcm

minimum degree mind
red black rb

nested dissection nest

The orderings are shown below for a 10× 10 grid.

Row ordering

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Reverse Cuthill-McKee ordering

100 98 95 91 86 80 73 65 56 46
99 96 92 87 81 74 66 57 47 37
97 93 88 82 75 67 58 48 38 29
94 89 83 76 68 59 49 39 30 22
90 84 77 69 60 50 40 31 23 16
85 78 70 61 51 41 32 24 17 11
79 71 62 52 42 33 25 18 12 7
72 63 53 43 34 26 19 13 8 4
64 54 44 35 27 20 14 9 5 2
55 45 36 28 21 15 10 6 3 1

318 8. Preconditioning

Minimum degree ordering

4 5 52 21 20 86 19 45 7 3
6 28 53 51 77 85 59 58 27 8
75 74 44 80 60 43 84 42 62 61
22 50 81 41 82 83 40 76 49 23
18 54 95 68 39 87 69 38 91 17
93 96 37 94 88 36 92 89 35 90
16 57 72 34 99 70 33 79 67 15
46 56 32 73 31 97 78 30 65 55
9 26 64 48 100 29 71 66 25 11
2 10 63 24 14 98 13 47 12 1

Red-Black ordering

1 51 2 52 3 53 4 54 5 55
56 6 57 7 58 8 59 9 60 10
11 61 12 62 13 63 14 64 15 65
66 16 67 17 68 18 69 19 70 20
21 71 22 72 23 73 24 74 25 75
76 26 77 27 78 28 79 29 80 30
31 81 32 82 33 83 34 84 35 85
86 36 87 37 88 38 89 39 90 40
41 91 42 92 43 93 44 94 45 95
96 46 97 47 98 48 99 49 100 50

Nested dissection ordering

3 4 13 1 91 21 22 33 17 18
5 6 14 2 92 23 24 34 19 20
11 12 15 10 93 31 32 35 29 30
7 8 16 9 94 25 26 36 27 28
87 88 89 90 95 82 83 84 85 86
39 40 52 37 96 61 62 77 57 58
41 42 53 38 97 63 64 78 59 60
50 51 54 49 98 75 76 79 73 74
43 44 55 47 99 65 66 80 69 70
45 46 56 48 100 67 68 81 71 72

In the following tables we give the number of PCG iterations to reach ‖rk‖ ≤ 10−6‖r0‖,
the number of modifications that would occur in the complete decomposition, the number of
entries in the remainder R, the Frobenius norm of R and maxi,j |ri,j |. Note that the number of
operations per iteration is the same for all orderings, therefore the number of iterations is a good
measure of the relative merits of the orderings. All examples use a 30× 30 grid, that is n = 900.

As one can see from these results, the number of conjugate gradient iterations is not related
to the number of fill-ins we are dropping but it is almost directly related (for a given problem and
a given factorization) to the norm of the remainder matrix R. The number of fill-ins is related
to the structure of the matrix but the incomplete decomposition is dependent on the value of
the entries. Some orderings like mind have very few fill-ins but a “large” matrix R and give a

8.12. Different orderings for IC 319

Table 8.2. Results for the Poisson problem (Example 1)

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 23 24389 841 142.5 0.293
rcm 23 16675 841 142.5 0.293

mind 39 7971 1582 467.3 0.541
rb 38 12853 1681 525.5 0.500

nest 25 15228 1012 157.1 0.293

Table 8.3. Results for the anisotropic problem (Example 4)

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 9 24389 841 0.12 104 0.87
rcm 9 16675 841 0.12 104 0.87

mind 48 7971 1582 0.18 107 49.51
rb 47 12853 1681 0.21 107 49.51

nest 26 15228 1012 0.43 106 49.51

Table 8.4. Results for the Eist problem (Example 5)

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 68 24389 841 0.73 106 38.03
rcm 69 16675 841 0.69 106 31.78

mind 108 7971 1582 0.32 107 62.34
rb 107 12853 1681 0.35 107 58.22

nest 83 15228 931 0.87 106 49.63

Table 8.5. Results for the Poisson problem (Example 1), MIC

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 18 24389 1741 1010. 0.979
rcm 18 16675 1741 1010. 0.979

mind >200 7971 2482 3568. 3.000
rb >200 12853 2581 4143. 3.000

nest 38 15228 1912 1107. 1.666

large number of iterations. Let us now consider the modified incomplete decomposition with no
perturbation (c = 0).

We see that ‖R‖F is much larger than for IC (although the number of iterations for the row
ordering is smaller) and some of the orderings do not even converge if the modified factorization
is used. Some other experiments were conducted keeping more fill-in. The first one uses a single
level of fill-in. In the table, we add a column giving the number of entries in L.

The second experiment uses a drop tolerance to keep or discard the fill-ins.

For the factorizations using one level of fill-in, the reduction in the number of iterations
does not quite compensate for the extra work for each iteration. The reverse is true of the drop
tolerance results where the greater reduction in iterations more than compensates the increased

320 8. Preconditioning

Table 8.6. Results for the Poisson problem (Example 1), IC, one level of fill-in

ordering # iter. # modifs # elts in R ‖R‖2F maxi,j |ri,j | # elts in L

row 17 24389 1653 2.43 0.087 3481
rcm 17 16675 1653 2.43 0.087 3481

mind 23 7971 2467 38.81 2.509 4282
rb 16 12853 2016 16.47 0.090 4321

nest 19 15228 2187 35.34 0.173 3652

Table 8.7. Results for the Poisson problem (Example 1), IC, tol=0.05

ordering # iter. # modifs # elts in R ‖R‖2F maxi,j |ri,j | # elts in L

row 12 24389 1595 4.26 0.039 4293
rcm 10 16675 1540 2.846 0.041 4293

mind 10 7971 1657 2.285 0.049 5531
rb 8 12853 1484 1.683 0.042 4699

nest 12 15228 2622 3.890 0.049 5574

storage and work. An interesting feature is that the relative performance of the different ordering
schemes has changed. For example, mind and rb do much better when some fill-in is allowed
in L. A reason for this is that many of the first level fill-ins for these orderings are quite large,
unlike row where the fill-ins rapidly decrease in value. For the complete factorization, this can
be explained in the following way.

Theorem 8.35. In the complete Cholesky factorization, the Frobenius norm of the Cholesky
factors is invariant under the choice of the ordering.

Proof. Suppose we have
A = LDLT .

Finding another ordering is computing a permutation matrix P , a permuted matrixAP = PAPT

and a factorization AP = LPDPL
T
P . The Frobenius norm of A is

‖A‖F =

∑
i,j

a2
i,j

 1
2

.

For any matrix B, we have

‖B‖2F = trace(BTB) = trace(BBT).

Therefore,
‖L
√
D‖2F = trace(LDLT) = trace(A),

but, since P is a permutation matrix, ‖PAPT ‖F = ‖A‖F . Hence,

‖LP
√
DP ‖F = ‖L

√
D‖F =

√
trace(A).

8.12. Different orderings for IC 321

This result shows that if we have many fill-ins, most of them must be small. On the other
hand, if we have a small number of fill-ins, the maximum of their absolute values is large. This
was illustrated in the experiments by rb and mind. We have, in fact, a stronger result as we can
consider the diagonal entries of A and AP ,

ai,i =
∑

j,li,j 6=0

dj,j l
2
i,j .

There is an index k for which (aP)k,k = ai,i. Therefore∑
j,li,j 6=0

dj,j l
2
i,j =

∑
j,(lP)k,j 6=0

(dP)j,j(lP)2
k,j .

For instance, for the Poisson model problem, we have∑
j,li,j 6=0

dj,j l
2
i,j =

∑
j,(lP)k,j 6=0

(dP)j,j(lP)2
k,j = 4,∀i.

For the incomplete decompositions M = LDLT is the complete decomposition of A + R.
Therefore ‖L

√
D‖2F = trace(A + R). But for IC we have that ri,i = 0, hence ‖L

√
D‖2F is

invariant under permutations and the same conclusion holds as for complete decompositions.

8.12.2 Theory for model problems

To explain the experimental results of Duff and Meurant, Eijkhout [171] considered the model
problem

−a∂
2u

∂2x
− b∂

2u

∂2y
= f,

in a square with Dirichlet boundary conditions. The five point finite difference stencil is

−b
−a 2(a+ b) −a

−b
.

For the natural row ordering the diagonal coefficients satisfy

di = 2(a+ b)− a2

di−1
− b2

di−m
,

the limit value being d = a+ b+
√

2ab. The fill-ins generated are of size ab/di, they converge
to the value

a2b+ ab2 − ab
√

2ab

a2 + b2
.

If one of the coefficients is much smaller than the other, the fill-in is of the order of the smallest
coefficient. With the Red-Black rb ordering, the row sum of R is

a2 + b2 + 4ab

2(a+ b)
.

When one coefficient goes to infinity, so does the rowsum showing that this ordering is sensitive
to anisotropy. Eijkhout [171] proved the following result.

322 8. Preconditioning

Theorem 8.36.
‖R‖rb ≥ C‖R‖row,

where C = (1 + b/a)(1 + a/b).

Therefore, the Red-Black ordering will give large fill-ins for problems with strong anisotropy.
More generally, Eijkhout considered the following. Let a+

i (resp. a−i) be defined by a+
i =

max{−ai,i−1,−ai,i+1} (resp. max replaced by min). Similarly let b+i = max{−ai,i−m,−ai,i+m}
with b−i defined accordingly.

Theorem 8.37. Eliminating a node i in the graph with at least one uneliminated neighbor in
both directions generates a fill-in f of size

f ∈
[

a−i b
−
i

a−i + a+
i + b−i + b+i

,
a+
i b

+
i

a−i + b−i

]
.

Eliminating a node i with two uneliminated neighbors in the vertical direction gives

f ∈
[

b+i b
−
i

a−i + a+
i + b−i + b+i

,
b−i b

+
i

b−i + b−i

]
.

Eliminating a node i with two uneliminated neighbors in the horizontal direction gives

f ∈
[

a−i a
+
i

a−i + a+
i + b−i + b+i

,
a−i a

+
i

a−i + a+
i

]
.

These results lead Eijkhout to the conclusion that there is a difference between orderings that
eliminate nodes between two uneliminated nodes and those that don’t. This is formalized by the
following definition: a node is naturally ordered if it does not have two neighbors in one direction
that both have a larger number. If all nodes are naturally ordered then the ordering is said to be
generalized naturally ordered. The natural ordering and the ordering by diagonals are generalized
naturally ordered. From what we have seen it is clear that orderings that are generalized naturally
ordered give a remainder matrix R with a smaller Frobenius norm than orderings which are not.

This problem of explaining the difference of behaviour of different orderings was also consid-
ered by Doi and Lichnewsky [143, 144]. Let P be a permutation matrix. Changing the ordering
is equivalent to considering Ã = PAPT . Let M be the IC factorization of A and M̃ the one for
Ã. We say that two orderings are equivalent if M̃ = PMPT . Then, the PCG number of iterations
is the same for both orderings. For instance, it can be shown that row and rcm are equivalent
explaining why we found the same number of iterations in the numerical experiments.

If A is an M-matrix and M = A+ R, it can be shown that denoting by ρ the spectral radius
of M−1R, λmin(M−1A) = 1− ρ and 1 < λmax(M−1A) < 1 + ρ. Therefore,

1

1− ρ
< κ(M−1A) <

1 + ρ

1− ρ
.

Hence, the smaller ρ is, the better is the condition number. A smaller R gives a better precondi-
tioner. Doi and Lichnewsky considered the model problem,

∂

∂x

(
kx
∂u

∂x

)
+

∂

∂y

(
ky
∂u

∂y

)
+ vx

∂u

∂x
+ vy

∂u

∂y
= 0.

8.12. Different orderings for IC 323

They computed the diagonal and remainder elements for a few orderings as a function of the pa-
rameters kx, ky, vx, vy and provided numerical experiments with non-symmetric problems that
complemented those of Duff and Meurant [162]. Doi and Lichnewsky got conclusions similar
to Eijkhout’s. Then, they introduced the definition of “compatibility”. An ordering is said com-
patible if R → 0 as any of the parameters kx, ky, |vx|, |vy| go to infinity. It is said partially
compatible if R→ 0 if either kx, |vx| or ky, |vy| goes to infinity. The row ordering is compatible
as well as cm and rcm. The orderings nest, mind and rb are incompatible. The following theo-
rems show how to characterize compatibility or partial compatibility by looking at the digraph of
L in the incomplete factorization assuming that the factorization has succeeded, that is di,i > 0.

Theorem 8.38. An ordering is compatible if and only if the digraph of L does not have the
patterns shown in Figure 8.15. This means that there is no node with four neighbors or two
neighbors on the horizontal or vertical axis with larger numbers.

(a) (b) (c)

Figure 8.15. Graphs which violate compatibility

Theorem 8.39. An ordering is partially compatible if and only if the digraph of L does not
have the patterns (b) and (c) shown in Figure 8.15. This means that there is no node with two
neighbors on the horizontal or vertical axis with larger numbers.

A compatible ordering is evidently partially compatible and partial compatibility is equiva-
lent to being naturally ordered. As a rule of thumb, the less incompatible nodes there are in an
ordering, the better are the results of PCG with IC.

8.12.3 Value dependent orderings

A characteristic of the orderings studied in the previous sections is that the values of the entries
of A (or L) have no influence on the numbering of the nodes of the graph of A. D’Azevedo,
Forsyth and W-P. Tang [132] developed an algorithm for constructing an ordering for general
sparse matrices that reduces the discarded fill-in during the incomplete factorization. This is
called the Minimum Discarded Fill (MDF) algorithm.

When we perform a step of IC, we would like the discarded matrix Rk to be as small as
possible. We shall try to find an ordering which minimizes ‖Rk‖F . At each step k of the
incomplete elimination for a node vm we define

discard(vm)2 =
∑

(vi,vj)∈F

(
a

(k−1)
i,m a

(k−1)
m,j

a
(k−1)
m,m

)2

,

where
F = {(vi, vj)|(vi, vj) 6∈ Ek−1, (vi, vm) ∈ Ek−1, (vm, vj) ∈ Ek−1},

324 8. Preconditioning

where Ek−1 is the set of edges of the elimination graph at step k − 1. In the incomplete MDF
factorization the condition lev(a

(k)
i,j) > l is added to the definition of F . The resulting algorithm

is denoted as MDF(l). The node that is labeled next is one that has a minimum discard(vm).
There are different ways for tie-breaking. For instance, one can choose the node giving the
smallest number of new fill-ins.

The data structures to be used are the same as those for general sparse Gaussian elimination
we saw in Chapter 2. The main drawback of MDF is that the ordering phase is quite costly,
even though discard is not recomputed but only updated when a node is eliminated. Based on
numerical experiments in [132], MDF(l) seems to be relatively efficient for small values of l,
typically l = 1 or l = 3. However, we have seen that keeping the fill-ins on the basis of level is
not as efficient as algorithms based on dropping by looking at the values of the coefficients and
using for instance mind as the ordering, therefore it remains to be seen if MDF is competitive with
these variants of IC. Attempts have been made to combine drop tolerances and MDF, see [133].

8.12.4 Multicolor orderings

In Duff and Meurant [162] the multicolor orderings that were considered were the Red-Black
ordering and a four-color ordering that is also not compatible. As predicted by the theory, the
numerical experiments show poor results when using the four-color ordering with IC(0) or
MIC(0). Multicolor orderings are those where a node in the graph of the matrix is only connected
to nodes of other colors. Multicolor orderings with a large number of colors were considered in
Doi and Hoshi [142] and Fujino and Doi [210]. In earlier studies like the one by Poole and Ortega
[375] only a small number of colors was considered. The conclusion was that the convergence
was slowed down. However, Doi and Hoshi considered large 3D problems (for instance using
half a million mesh points). From the numerical experiments they concluded that using a large
number of colors (say 75) is better than only using a small number (say 5). The explanation
for this phenomenon is that, with a large number of colors, the ratio of incompatibility, which
is defined as the number of incompatible nodes divided by the total number of nodes, is smaller
than with a small number of colors. However, we need large problems to be able to use a large
number of colors.

8.13 The repeated Red-Black decomposition
In this section, we are going to study a family of methods (first introduced by Brand [60]) where
we keep more storage than in the structure of A. We shall show that for finite difference approx-
imations of elliptic problems in rectangles this leads to very efficient preconditioners. Most of
what follows is taken from the Ph.D. thesis of P. Ciarlet Jr. [110, 111].

8.13.1 Description of the methods

These methods are based on an ordering of the unknowns (or the mesh points) that is derived
from the classical Red-Black ordering. In this ordering, the Red points and then the Black points
are labeled sequentially. This is no longer true in the Repeated Red-Black (RRB) ordering which
is based on a recursive process. At a given step k the set of nodes which have not been labeled
yet is split in two halves Rk and Bk. The nodes in Rk are labeled sequentially and the process is
reiterated on Bk. If the total number of nodes n is of the form n = 2l, then the last set has only
one element. But if this is not the case or if we choose to do so, we can stop the process after K
steps and label the remaining nodes sequentially.

The splitting of the nodes occurs alternately along diagonals and parallels to the x-axis. An
example is given in Figures 8.16 and 8.17.

8.13. The repeated Red-Black decomposition 325

(a) (b)

Figure 8.16. (a) extraction of R1 nodes, (b): B1 nodes

(a) (b)

Figure 8.17. (a): extraction of R2 nodes, (b): B2 nodes

Now, we produce (eventually modified) incomplete factorizations using these orderings in
the following way. It is actually easier to explain this factorization using graphs. At a given step,
the nodes of Rk are removed creating some fill-in as shown in Figure 8.18 (a). Of these fill-ins,
we only keep those corresponding to the structure given in Figure 8.18 (b).

(a) (b)

Figure 8.18. The fill-in that is (a): generated and (b): kept

Then, we go on to the end for the complete process or we stop after stepK. In the latter case,
a complete factorization is used for the last step. Clearly, the entries that are kept correspond
to a (twisted) five point scheme on Bk. This preconditioner is denoted by RRB1. If we want a
modified version, we just add the neglected fill-ins at each step to the diagonal giving RRBm1 . The
second preconditioner is the one used by Brand [60]. The difference is in the structure we keep
at each step which is shown in Figure 8.19.

Edges (fill-ins) are kept if they correspond to a five point scheme in Bk
′

for k′ > k. We de-
note this by RRB2 and RRBm2 for the modified version. It turns out that these four preconditioners
give matrices that have the same structure. The positions of the extra fill-ins that have been kept
in RRB2 are reintroduced in the next steps of RRB1 (the value of the coefficients being of course
different).

Let us consider first a fixed value of K. For example, if we choose K = 4, we have to store
the number of entries in Table 8.8, see [111],

326 8. Preconditioning

(a) (b)

Figure 8.19. The fill-in that is (a): generated and (b): kept

Table 8.8. Numbers of entries to be stored

n non-zeros non-zeros/n

256 1182 4.62
1024 5178 5.06
4096 23154 5.65
16384 109794 6.70

The ratio of non-zeros entries divided by n is not bounded as the last matrix is factorized
exactly. We could have lowered the number of non-zeros a little by using a different ordering
for the nodes remaining in the last step. However, there are other ways to obtain a smaller
storage. Therefore, we look for a varying K with the dimension of the problem to have a storage
proportional to n and to have the number of iterations only slowly growing.

Lemma 8.40. When eliminating the nodes of Rk, the number of fill-ins generated in M is less
that 5n.

Proof. Two nodes are adjacent in the graph of M if they belong to a five point scheme in one
of the steps. Since the number of nodes in ∪kRk is less than n, we get the result.

Lemma 8.41. During the complete factorization at step K, the number of fill-ins is of the order
of 2−

3K
2 n

3
2 .

Proof. The number of nodes in BK is 2−Kn. The semi-bandwith is 2−
K
n
√
n. Since the

profile fills completely, we get the result.

Theorem 8.42. If K is b 1
3 log2(n) + 4

3c, then the number of non-zero entries in M is at most 6n.

Proof. We use the two preceding lemmas that show that the number of non-zero entries is
less than 5.5n.

Note that the number of floating point operations to construct the preconditioner is n
4
3 . With

this choice of K, the storage is given in Table 8.9.

8.13.2 Analysis of RRB

We would like to establish bounds on the condition number of M−1A. For this, we use the
following perturbation result.

8.13. The repeated Red-Black decomposition 327

Table 8.9. Numbers of entries to be stored

n K non-zeros non-zeros/n

256 4 1182 4.62
1024 4 5178 5.06
4096 5 21424 5.23
16384 6 84083 5.13

Lemma 8.43. Let Mi, i = 1, 2, 3 be three symmetric positive definite matrices. Then,

κ(M−1
1 M3) ≤ κ(M−1

1 M2)κ(M−1
2 M3).

Proof. Note that

λmin(M−1
1 M3) = min

x 6=0

(M3x, x)

(M1x, x)
,

λmax(M−1
1 M3) = max

x 6=0

(M3x, x)

(M1x, x)
.

Since M−1
1 M3 = M−1

1 M2M
−1
2 M3, we obtain the result.

If the nodes of the Poisson model problem are ordered with a Red-Black ordering, we have
blockwise,

A =

(
4I −LT
−L 4I

)
,

where L corresponds to the stencil
1

1 0 1
1

except near the boundary. If we remove the red nodes (in R1), we factorize A as

A =

(
I
− 1

4L I

)(
4I

S

)(
I − 1

4L
T

I

)
.

Similarly, for the modified factorizations, we have

M1
i =

(
I
− 1

4L I

)(
4I

S1
i

)(
I − 1

4L
T

I

)
,

where the upper index corresponds to the value of K. Let B1 = R2 ∪ B2. The matrix S1
2

corresponds to a nine point operator in B2 and a five point operator in R2 like S and S1
1 ,

− 1
4

− 1
2 − 1

2
− 1

4 3 − 1
4

− 1
2 − 1

2
− 1

4

 ,

− 1
2 − 1

2
2

− 1
2 − 1

2

except near the boundary. Then, S, S1

1 and S1
2 are defined on B1,

S =

(
3I − 1

4N − 1
2M

T

− 1
2M 3I − 1

4N

)
, S1

1 =

(
2I − 1

2M
T

− 1
2M 2I

)
,

328 8. Preconditioning

S1
2 =

(
2I − 1

2M
T

− 1
2M 3I − 1

4N

)
,

where N and M correspond to

1
0

1 0 0 0 1
0
1

,
1 0 1
0 0 0
1 0 1

.

Then,

M2
i =

(
I
− 1

4L I

)(
4I

S2
i

)(
I − 1

4L
T

I

)
.

We have

S1
1 =

(
I
− 1

4M I

)(
2I

2I − 1
8MMT

)(
I − 1

4M
T

I

)
,

S2
1 =

(
I
− 1

4M I

)(
2I

I − 1
4N

)(
2I − 1

4M
T

I

)
=

(
2I − 1

2M
T

− 1
2M I − 1

4N + 1
8MMT

)
.

Moreover,

S2
2 =

(
I
− 1

4M I

)(
2I

2I − 1
2N

)(
I − 1

4M
T

I

)
=

(
2I − 1

2M
T

− 1
2M 2I − 1

2N + 1
8MMT

)
.

S2
2 corresponds to a five point operator on B2,

− 1
2

− 1
2 2 − 1

2

− 1
2

except near the boundary. The idea is to study the eigenvalues of [S2
i]−1(S−S2

i) since [S2
i]−1S =

I + [S2
i]−1(S − S2

i) and S − S2
i are block diagonal matrices. Let x = (xr, xb)

T be an eigen-
vector, (S − S2

i)x = λS2
i x. Then by eliminating xr, we obtain for the first preconditioner that

(2I − 1
8MMT)xb is equal to

λ

{
−λ

4
M([2λ− 1]I +

1

4
N)−1MT + (I − 1

4
N +

1

8
MMT)

}
xb. (8.6)

Both matrices are similar to five point operators, so it is easy to find out the eigenvectors and this
leads to the following result.

Lemma 8.44.
κ([M2

1]−1A) ≤ 4, κ([Mk+2
1]−1Mk

1) ≤ 4.

8.14. The block incomplete Cholesky decomposition 329

Proof. The proof is obtained by showing that the solutions λ of (8.6) are such that 0 < λ < 3,
see Ciarlet Jr. [111].

For the second preconditioner, we can show that 0 < λ < 1. Therefore κ([M2
2]−1A) ≤ 2,

κ([Mk+2
2]−1Mk

2) ≤ 2.

Theorem 8.45. For the Poisson model problem with h = 1/(m + 1) and choosing K =
b 1

3 log2(n) + 4
3c, we have

κ([MK
1]−1A) ≤ 3m

2
3 , κ([MK

2]−1A) ≤ 2m
1
3 .

Proof. We simply use Lemmas 8.43 and 8.44 with the given value of K.
The second preconditioner gives an interesting example where, keeping a small (< 6n) fill-

in, we can reach a condition number of O(h−
1
3). Therefore, for practical problems dimensions,

we see almost no dependence of h on the number of PCG iterations. Even, if the proof is only
obtained for the model problem, numerical examples show that the same is true for more general
problems, see Ciarlet Jr. [110].

8.14 The block incomplete Cholesky decomposition
8.14.1 Block tridiagonal matrices

Let us introduce a block decomposition of block tridiagonal matrices. We shall take advantage
of the special structure of the matrix to derive efficient preconditioners. Of course, they are less
general than the point incomplete Cholesky preconditioners which can be used for any sparse
matrix. Let

A =

D1 AT2
A2 D2 AT3

.
Am−1 Dm−1 ATm

Am Dm

 ,

each block being of order m, n = m2. Denote by L the block lower triangular part of A. In
Chapter 2, we saw that the block (complete) factorization of A can be written as

A = (Σ + L)Σ−1(Σ + LT),

where Σ is a block diagonal matrix whose diagonal blocks are denoted by Σi. By inspection, we
have

Σ1 = D1, Σi = Di −Ai(Σi−1)−1ATi , i = 2, . . . ,m

For instance, for finite difference approximations of elliptic (or parabolic) problems, the matrices
Di are tridiagonal and the matrices Ai are diagonal. This implies that Σ1 is tridiagonal, but all
the other matrices Σi, i = 2, . . . ,m are dense. The idea to obtain an incomplete decomposition
is to replace the inverses by sparse approximations. We set

M = (∆ + L)∆−1(∆ + LT),

where ∆ is a block diagonal matrix whose elements are computed generically as

∆1 = D1,

∆i = Di −Ai approx(∆−1
i−1)ATi ,

330 8. Preconditioning

where approx(∆−1
i−1) is a sparse approximation of ∆−1

i−1. This preconditioner was first proposed
in a slightly different form by R. Underwood [445] and then generalized by Concus, Golub
and Meurant [119]. There are many ways to define approx(∆−1

i−1), see [119]. One of the most
efficient, denoted by INV, just considers tridiagonal approximations of the inverses. We denote
by tridiag(B) the tridiagonal matrix whose non-zero entries are the same as the corresponding
ones of B. Then, ∆i is defined as

∆i = Di −Aitridiag(∆−1
i−1)ATi .

This choice was motivated by the case where the Di’s are tridiagonal. If A is a diagonally
dominant L-matrix, then it is easy to show that the entries of the inverses of the ∆i’s decay away
from the diagonal on a row. Therefore, the absolute values of the entries that we throw away are
smaller than the ones we keep. This preconditioner has been used with great success in many
different areas where block tridiagonal matrices arise. Note that to store the preconditioner we
need only two n vectors for the Cholesky factorizations of all the ∆i’s.

8.14.2 Pointwise equivalent decomposition

When they are feasible, block decompositions for block tridiagonal matrices are usually more ef-
ficient than point incomplete decompositions using the same amount of storage. An explanation
of this can be obtained by looking at the equivalent point decomposition of INV. Let

∆i = LiL
T
i ,

be the Cholesky factorization of ∆i, Li being a lower bidiagonal matrix and Wi = AiL
−T
i−1.

Then, the block decomposition can be written as

M =

L1

W2 L2

.
Wm−1 Lm−1

Wm Lm

LT WT

2

LT2 WT
3

.
LTm−1 WT

m

LTm

The matrices Wi are upper triangular, the upper triangle elements being non-zero. Then, the
non-zero structure of the Cholesky factor is the one shown on Figure 8.20.

Figure 8.20. The implicit non-zero structure of INV

Of course, this equivalent point factorization is never computed, but we see that in the block
factorization we implicitly keep more fill-in than in the point decomposition using the same
storage. Of course, we have to solve tridiagonal systems to apply the preconditioner. As an
example, Figure 8.21 shows the spectra for the model problem on a 10 × 10 mesh using INV
(compare with Figure 8.6).

8.14. The block incomplete Cholesky decomposition 331

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
-1

-0.5

0

0.5

1

Figure 8.21. Spectrum of INV

8.14.3 The modified incomplete block decomposition

As for their point counterpart, the block preconditioners can also be modified such that, for
instance, rowsum(R) = 0. The remainder R is easily computed,

R1 = 0,

Ri = ∆i −Di +Ai∆
−1
i−1A

T
i = Ai(∆

−1
i−1 − tridiag(∆−1

i−1))ATi .

Therefore, the rowsums of the remainder can be very easily computed and we can modify the
block decomposition in the following way,

∆1 = D1,

∆i = Di −Ai tridiag(∆−1
i−1)ATi

−rowsum(Ai(∆
−1
i−1 − tridiag(∆−1

i−1))ATi).

This preconditioner is known as MINV. Note that to compute the rowsums, we only need to
solve tridiagonal systems. Of course, we can also define a relaxed version where the rowsum is
multiplied by a parameter ω.

8.14.4 Block incomplete decomposition for H-matrices

As for point factorizations, it is interesting to know for which classes of matrices the block
decompositions are feasible. The only thing to check is that the matrices ∆i are non-singular.
It was shown in Concus, Golub and Meurant [119] that INV and MINV are well defined for M-
matrices. It turns out that these results can be extended to H-matrices.

8.14.5 Generalization of the block incomplete decomposition

The idea of block incomplete Cholesky decomposition that was developed in the previous sec-
tions for block tridiagonal matrices can be straightforwardly generalized to any block structure.
This was proposed by Axelsson [20]. However, there are not that many practical situations where
this has been used. For general sparse matrices, it is not so easy to exhibit a natural block struc-
ture except if the ordering has been devised to do so, as in domain decomposition methods that
we shall study in Chapter 10.

332 8. Preconditioning

8.14.6 Fourier analysis of INV and MINV

In the special case we consider in this section (Poisson model problem with periodic boundary
conditions), we shall use tridiagonal circulant matrices. To derive these approximations, we need
a few preliminary results, see Chan and Meurant [96].

Theorem 8.46. Let γ > 2 and

S =

γ −1 −1
−1 γ −1

. . .
. . .

. . .
−1 γ −1

−1 −1 γ

 ,

be a symmetric tridiagonal circulant matrix. Then
a)

S = LS D
−1
S LTS ,

where

DS =

d

d
. . .

d

 , LS =

d −1
−1 d

. . .
. . .
−1 d

 ,

with d =
γ+
√
γ2−4

2 .
b) S−1 is a symmetric circulant matrix.
c) The elements of the main diagonal of S−1 are all the same and equal to χ = d

d2−1

[
dn+1
dn−1

]
.

The second diagonal of S−1 is given by ξ = 1
2 (γχ− 1) = 1

d2−1

[
1 + γ d

dn−1

]
.

Proof. a) Since

S = LS D
−1
S LTS =

d+ 1

d −1 −1
−1 d+ 1

d −1
.

−1 d+ 1
d −1

−1 −1 d+ 1
d

 ,

d satisfies the equation:

d+
1

d
= γ,

or d2 − γd+ 1 = 0, the positive root of which is

d =
γ +

√
γ2 − 4

2
.

b) It is well known that the inverse of a symmetric circulant matrix is also symmetric circu-
lant.

c) We must determine some elements of S−1. The easiest way is to first compute L−1
S , where

LS =

d −1
−1 d

.
−1 d

 .

8.14. The block incomplete Cholesky decomposition 333

Let us solve LSx = (1, 0, . . . , 0)
T to compute the first column of L−1

S . It is easily seen that
xn = x1/d

n−1; since dx1 − xn = 1, we have

x1 =
dn−1

dn − 1
and xj =

dn−j

dn − 1
, j = 2, . . . , n.

More generally, to obtain the ith column of L−1
S , we solve

LSx = (0, 0, . . . , 0, 1, 0, . . . , 0)
T
,

where the 1 is in the ith position. As before, it can be seen that

xi−1 =
1

di−1
xn and xn =

1

dn−i
xi,

so xi−1 = xi/d
n−1; as dxi − xi−1 = 1, we have xi−1 = 1/(dn − 1). Therefore

xi =
dn−1

dn − 1
, xi+j =

dn−j−1

dn − 1
, xi−j =

dj

dn − 1
.

Hence, we explicitly know the inverse of LS ,

L−1
S =

1

dn − 1

dn−1 1 d . . . dn−2

dn−2 dn−1 1 . . . dn−3

dn−3 dn−2 dn−1 . . . dn−4

...
...

...
. . .

...
1 d d2 . . . dn−1

 .

From this, we can find the elements of L−1
S DSL

−T
S we need. For instance the (1, 1) entry is

χ =
1

(dn − 1)2
(d2n−1 + d2n−3 + . . .+ d3 + d)

=
1

(dn − 1)2

d(d2n−1 − 1)

d2 − 1

=
d

d2 − 1

dn + 1

dn − 1
.

The (1, 2) term is

ξ =
1

(dn − 1)2

(
dn +

d2

d2 − 1
(d2n−2 − 1)

)
.

This can also be expressed as

ξ =
1

2
(γχ− 1) =

1

d2 − 1

[
1 +

γd

dn − 1

]
.

From these results we can get the desired approximation. We define the following Ttrid(S−1)
operator as an approximation to the inverse of the circulant tridiagonal matrix S,

Ttrid(S−1) =

χ ξ ξ
ξ χ ξ

.
ξ χ ξ

ξ ξ χ

 ,

334 8. Preconditioning

with the values of χ and ξ given in Theorem 8.46. This definition can be extended by scaling to
a more general tridiagonal circulant matrix.

Let

S(α, β) =

α −β −β
−β α −β

.
−β α −β

−β −β α

 ,

with α > 2β. We define the operator Ttrid, which approximates the inverse of a circulant
tridiagonal matrix S(α, β) by a circulant tridiagonal matrix S(χ, ξ), by

Ttrid(S−1(α, β)) ≡ S(χ, ξ),

where

χ =
d

β(d2 − 1)

[
dn + 1

dn − 1

]
,

ξ =
1

β(d2 − 1)

[
1 +

α

β

d

dn − 1

]
,

and where

d =
α+

√
α2 − 4β2

2β
.

For periodic boundary conditions, the INV preconditioner is defined as

MP = (∆ + LP) ∆−1 (∆ + LTP),

with

∆ =

Λ

. . .
. . .

Λ

 ,

and Λ being a tridiagonal circulant matrix satisfying the following equation,

Λ = T − Ttrid(Λ−1).

With the definition of Ttrid, this equation can be solved for Λ.

Theorem 8.47. t-t835 The INV preconditioner defined by

MP = (∆ + LP) ∆−1 (∆ + LTP),

with Λ satisfying the condition Λ = T −Ttrid(Λ−1), can be given in the following explicit form,

MP ≡ T3(α, β, 1)T−1
1 (α, β)T2(α, β, 1),

where Λ = S(α, β), with

α = 4− d

β(d2 − 1)

[
dn + 1

dn − 1

]
,

β = 1 +
1

β(d2 − 1)

[
1 +

α

β

d

dn − 1

]
,

8.14. The block incomplete Cholesky decomposition 335

and where

d =
α+

√
α2 − 4β2

2β
.

Proof. See Chan and Meurant [96].

Theorem 8.48. The eigenvalues of INV are given by

µst =
4β(sin2(θs/2) + sin2(φt/2))(4 sin2(θs/2) + ζ)

(β[4 sin2(θs/2) + ζ]− eiφt)(β[4 sin2(θs/2) + ζ]− e−iφt)
,

with ζ = α/β − 2, which simplifies to

µst =
4η(sin2(θs/2) + sin2(φt/2))

η2 + 1− 2η cos(φt)
,

where η = β(4 sin2(θs/2) + ζ).

Proof. We compute the eigenvalues of the preconditioner by multiplying MP by u(s,t) and
use elementary algebra.

It can be shown that 4 > α > 2β > 2. Thus as n → ∞ (i.e. h → 0), α/β = O(1). From
this, we can deduce the following.

Theorem 8.49. For the INV preconditioner,

κ(M−1
P AP) ≥ O

(
1

h2

)
.

Proof. First consider µst for θs = φt = π. Then η = β(4 + ζ) = O(1),

µst =
8η

η2 + 2η + 1
= O(1).

Hence, λmax ≥ O(1). Now, consider θs = φt = 2πh. Then η = O(1), cos(φt) = O(1) and
µst = O(h2). Therefore λmin ≤ O(h2). This implies κ(M−1

P AP) ≥ O(h−2).
This result was first observed in numerical results for Dirichlet boundary conditions in Con-

cus, Golub and Meurant [119].
It is useful to consider the asymptotic case, when n → ∞, since this reflects what happens

inside the domain, far enough from the boundaries. Then, the values for α and β we obtain for
the constant coefficient periodic problem are the same as for the asymptotic interior values of the
Dirichlet problem. The limiting values of α and β are solution of the non-linear equations

α = 4− d

β(d2 − 1)
,

β = 1 +
1

β(d2 − 1)
.

By computation: α = 3.6539... and β = 1.1138....
The modified preconditioner MINV is expressed in the same way as for INV; the only dif-

ference being that the values of diagonal elements of MP are modified such that the sum of

336 8. Preconditioning

the elements of each row is equal to the sum of the elements of the corresponding row of AP
(plus possibly an O(h2) term). Hence, to be able to define the MINV preconditioner for periodic
boundary conditions, we must first compute the row sums of S−1(α, β) where S(α, β) has been
defined previously.

Lemma 8.50. Let r(S−1) be the vector of row sums of S−1 and e = (1, 1, . . . , 1)
T . Then

r(S−1(α, β)) =
1

α− 2β
e.

Proof. It is obvious that r(S−1) = S−1 e; but Se = (α− 2β) e, and hence

S−1e =
1

α− 2β
e,

giving the value of the row sums.

It is easy to see that LP∆−1LTP is a block diagonal matrix with all the blocks equal to Λ−1;
hence RP is also block diagonal with blocks R whose value is

R = Λ− T + Λ−1.

Let Λ = S(α, β) and Mtrid(Λ−1) be the circulant tridiagonal approximation we shall use for
Λ−1. Analogously to INV, Λ is defined by

Λ = T −Mtrid(Λ−1),

and therefore we have
R = Λ−1 −Mtrid(Λ−1).

The row sum condition we require is r(R) = ch2, where c is a constant independent of h. This
implies that

r(Mtrid(Λ−1)) = r(Λ−1)− ch2 =
1

α− 2β
− ch2.

Therefore, using the approximation Ttrid of Λ−1 and modifying its diagonal to satisfy the row
sum condition above, we arrive at the following approximation of the inverse of a circulant
tridiagonal matrix. We define the operatorMtrid, which approximates the inverse of the constant
coefficient circulant tridiagonal matrix as S(α, β) by a circulant tridiagonal matrix S(χ, ξ), by

Mtrid(S−1(α, β)) ≡ S(χ, ξ),

with

χ =
1

α− 2β
− 2

β(d2 − 1)

[
1 +

α

β

d

dn − 1

]
− ch2,

ξ =
1

β(d2 − 1)

[
1 +

α

β

d

dn − 1

]
,

and

d =
α+

√
α2 − 4β2

2β
.

The condition Λ = T −Mtrid(Λ−1) now gives a set of non-linear equations for α and β.

8.14. The block incomplete Cholesky decomposition 337

Theorem 8.51. The MINV preconditioner defined by

MP = (∆ + LP)∆−1(∆ + LTP),

with Λ satisfying the condition Λ = T −Mtrid(Λ−1) can be given in the following explicit
form,

MP ≡ T3(α, β, 1)T−1
1 (α, β)T2(α, β, 1),

where Λ = S(α, β) and α and β are the solutions of the following equations,

α = 4 +
2

β(d2 − 1)

[
1 +

α

β

d

dn − 1

]
− 1

α− 2β
+ ch2,

β = 1 +
1

β(d2 − 1)

[
1 +

α

β

d

dn − 1

]
,

where

d =
α+

√
α2 − 4β2

2β
.

Proof. See Chan and Meurant [96].

As before the limiting values of α and β when n → ∞ can be found numerically; for
example, α = 3.3431... and β = 1.1715... when c = 0. However, even without knowledge of
the actual values of α and β, we can deduce the following.

Theorem 8.52. For any n, the α and β computed by the MINV preconditioner satisfy the “MINV
condition”:

(α− 2β − 1)
2

= (α− 2β)ch2.

Proof. From Theorem 8.51, we have

α− 2β = 2− 1

α− 2β
+ ch2.

Define ν = α− 2β. Then ν2 = (2 + ch2)ν − 1 and therefore

(ν − 1)
2

= ν2 − 2ν + 1 = (2 + ch2)ν − 2ν = νch2.

It should be emphasized that this “MINV condition” arises independently of the approxima-
tion we choose for Λ−1, as long as the row sum criterion is satisfied. The expression for the
eigenvalues µst of M−1

P AP is exactly the same as for INV, the only difference being the actual
values of α and β. So we have

µst =
4η(sin2(θs/2) + sin2(φt/2))

η2 + 1− 2η cos(φt)
,

η = β(4 sin2(θs/2) + ζ), ζ =
α

β
− 2.

The main result is the following.

338 8. Preconditioning

Theorem 8.53. For the MINV preconditioner, with α, β being any values that satisfy the “MINV
condition”

(α− 2β − 1)
2

= (α− 2β)ch2,

then

κ(M−1
P AP) ≤ O

(
1

h

)
.

Proof. We recall that the eigenvalues are

µst =
4η(sin2(θs/2) + sin2(φt/2))

η2 + 1− 2η cos(φt)
,

η = β(4 sin2(θs/2) + ζ), ζ =
α

β
− 2

and that α and β satisfy the “MINV condition”: (α− 2β − 1)
2

= (α− 2β)ch2.
Let x = sin2(θs/2), y = sin2(φt/2). Clearly, C0h

2 ≤ x ≤ 1, and C0h
2 ≤ y ≤ 1. In this

proof, Ci denotes a generic constant independent of h. Now,

cos(φt) = 1− 2 sin2(φt/2) = 1− 2y and η = β(4x+ ζ) = 4βx+ C1,

so,

µ(x, y) =
4β(x+ y)(4x+ ζ)

η2 + 1− 2η(1− 2y)
=

4(x+ y)(4βx+ C1)

(η − 1)
2

+ 4ηy
.

But, because of the “MINV condition”

η − 1 = 4βx+ α− 2β − 1 = 4βx+ C2h.

Therefore

µ(x, y) =
4(x+ y)(4βx+ C1)

(4βx+ C2h)
2

+ 4y(4βx+ C1)
.

Our aim is to find upper and lower bounds for µ(x, y) in the range C0h
2 ≤ x, y ≤ 1.

For the lower bound, we have

µ ≥ 4C1(x+ y)

(4βx+ C2h)
2

+ 4y(4β + C1)
.

If 4βx ≥ C2h, then since x2 < x, we have

µ ≥ 4C1(x+ y)

(8βx)
2

+ 4y(4β + C1)
≥ 4C1(x+ y)

C3x+ C4y
≥ 4C1

max(C3, C4)
= C.

And if 4βx < C2h, then

µ ≥ 4C1(x+ y)

C5h2 + C6y
≥ 4C1y

C5h2 + C6y
.

The function on the right-hand side is an increasing function of y. Since y = C0h
2, this function

is bounded from below by a constant and we have

µ ≥ C.

That is to say, the eigenvalues are bounded away from zero when h→ 0.

8.14. The block incomplete Cholesky decomposition 339

Next we find an upper bound for µ. We first have

µ ≤ C7(x+ y)

C8x2 + C9y
≤ C10

x+ y

x2 + y
.

Let g(x, y) = x+y
x2+y ,

∂g

∂y
=
x2 + y − x− y

(x2 + y)
2 =

x2 − x
(x2 + y)

2 ≤ 0 as x ≤ 1.

Hence, in the range C0h
2 ≤ x, y ≤ 1, we have

g(x, y) ≤ x+ C0h
2

x2 + C0h2
≤ 2x

x2 + C0h2
.

Let m(x) = 2x
x2+C0h2 . The function m has a maximum for x = C0h; hence

g(x, y) ≤ 2C0h

C2
0h

2 + C0h2
=

2

C2
0 + C0

1

h
.

Altogether these results imply that

κ(M−1
P AP) ≤ O(h−1).

The bound on the condition number holds for any value of c ≥ 0, which is different from
the analogous situation with MIC whose behaviour depends on whether c = 0 or c > 0. The
important condition is the “MINV” condition, not the value of c, nor the values of α and β.
Comparing with numerical results for Dirichlet boundary conditions, Chan and Meurant [96]
show that the agreement for the condition number and the minimum and maximum eigenvalues
is excellent for INV. For MINV the agreement is quite good for c = 0, but less good for c 6=
0. However, the optimal value of c given by Fourier analysis is close to the optimal value for
Dirichlet boundary conditions.

8.14.7 Axelsson’s results

The perturbation theorems that have been used for point incomplete factorizations can also give
results for block methods, see [21]. In particular, upper bounds for the largest eigenvalue can be
obtained. Under certain hypotheses, it can be shown that λmax(M−1A) ≤ 2m where m is the
number of blocks. Bounds for the condition number were studied by Axelsson and Lu.

8.14.8 Block-size reduction

Chan and Vassilevski [100] described an extension of the block incomplete factorization algo-
rithm. They introduce matrices Ri that are restriction operators transforming vectors of the same
dimension as Di to a lower dimensional space. For PDE problems this corresponds to a restric-
tion to a coarser mesh. We use the same notation as for the block incomplete factorizations. Let
Z1 = D1, Z̃1 = R1Z1R

T
1 , and

Vi−1 = approx(Z̃−1
i−1),

Zi = Di −AiRTi−1Vi−1Ri−1A
T
i ,

Z̃i = RiZiR
T
i .

340 8. Preconditioning

This is not precisely the preconditioner of Chan and Vassilevski since they introduced another
level of approximation to compute an approximate inverse of ∆i for parallel computing purposes.
The main idea is that since the correction if of low rank, expressions of the inverses are provided
by the Sherman-Morrison-Woodbury formula. In [100], it is proved that if A is an M-matrix
and 0 ≤ Vi−1 ≤ Z̃−1

i−1, then Z̃i is an M-matrix and therefore the algorithm can go through to
completion. Numerical experiments are given using

Ri =

eT

eT

. . .
eT

 ,

where e is the vector of all ones of dimension m/p, p being the dimension of the coarse space.
Numerical results show that this gives some improvement over the classical block preconditioner.
For piecewise constant restrictions and the model problem, the condition number is O(H2/h2)
where H is the mesh size of the coarse mesh.

8.15 The block Cholesky decomposition for 3D problems
It is relatively easy to derive sparse approximations of the inverses involved in block factor-
izations when the matrices Di are tridiagonal and matrices Ai are diagonal. This corresponds
generally to the approximation of a two dimensional PDE problem. The situation is much more
complicated for systems arising from three dimensional problems. Consider for instance a finite
difference method in a cube using a seven point stencil. The matrix is again block tridiagonal of
order n = pqm and the diagonal blocks are

Di =

D1
i (B2

i)T

B2
i D2

i (B3
i)T

.
Bp−1
i Dp−1

i (Bpi)T

Bpi Dp
i

 , 1 ≤ i ≤ m

of order r = pq, Dj
i being of order q. With the seven point stencil, the matrices Ai and Bji are

diagonal. The matricesDj
i are tridiagonal. Each matrixDi corresponds to connections in a plane

and each Dj
i corresponds to connections on a mesh line.

The matrix A can be considered in three different ways,
- as a point seven diagonal matrix,
- as a block pentadiagonal matrix (using the “small” blocks corresponding to mesh lines),
- as a block tridiagonal matrix (using the “large” blocks corresponding to planes).
This leads to three ways of constructing incomplete Cholesky preconditioners. For the first,

we use the point incomplete Cholesky decomposition. We shall consider only IC(1,1,1). Such
a method can also be modified in order for the remainder R to have zero row sums (plus even-
tually an O(h2) term). In the second, we regard A as a block five diagonal matrix with q × q
blocks. Then, we can use the generalization of the block incomplete decomposition proposed by
Axelsson. Finally, we can consider A as a block tridiagonal matrix with pq × pq large blocks
corresponding to two dimensional problems in planes and try using INV-like preconditioners.

8.15.1 Point preconditioners

Let us consider A as a point matrix with seven diagonals. We denote the non-zero elements of
the ith line of the lower triangular part of A by ei, ci, bi, ai. We set M = LD−1LT with L

8.15. The block Cholesky decomposition for 3D problems 341

being a point lower triangular matrix with the same structure as the lower triangular part of A.
We denote the non-zero elements of the ith row of L by ẽi, c̃i, b̃i, ãi and the elements of D by
di with di = ãi. By equating, we find that

ẽi = ei, c̃i = ci, b̃i = bi,

di = ai −
b2i
di−1

− c2i
di−q

− e2
i

di−r
.

For obvious reasons, this method is denoted as IC(1,1,1). It can also be modified as was done
for MIC for two dimensional problems, denoting

M = A+R.

It is easy to compute the remainder R. For a generic row of R, there are six non-zero elements
in positions i − r + 1, i − r + q, i − q + 1, i + q − 1, i + r − q, i + r − 1. We compute these
elements and subtract their sum from the diagonal. Then, the formulas for MIC(1,1,1) are

ẽi = ei, c̃i = ci, b̃i = bi,

di = ai − bi
bi + ci+q−1 + ei+r−1

di−1
− ci

ci + bi−q+1 + ei+r−q
di−q

−ei
ei + ci−r+q + bi−r+1

di−r
.

8.15.2 1D block preconditioners

We consider the matrix A as a block five diagonal matrix with “small” q × q blocks that corre-
spond to lines in the mesh. For the sake of simplicity we slightly change the notation and we
denote the blocks in the lower part of the ith block row of A as Gi, Fi and Ei. We set

M = (D + L)D−1(D + LT),

where

L =

0
F̃2 0

.

G̃p+1
.

.
G̃s F̃s 0

, D =

Ẽ1

Ẽ2

. . .
Ẽs

 .

By equating,
F̃i = Fi, i = 2, . . . , s

G̃i = Gi, i = p+ 1, . . . , s

To compute D we have to deal with inverses of tridiagonal matrices. As for two dimensional
problems, we use tridiagonal approximations of these inverses. Then,

Ẽi = Ei − Fitridiag(Ẽ−1
i−1)FTi −Gitridiag(Ẽ−1

i−p)G
T
i , i = 1, . . . , s

342 8. Preconditioning

As for the two dimensional problem, we denote this preconditioner by INV. These formulas
can also be modified to yield a remainder R with zero row sums. The block structure of M is
the block analog of what we get for point two dimensional matrices. Comparing to the block
structure of A, we have an additional block diagonal next to the outer one. On the ith block row,
the non-zero blocks in the lower triangular part are Gi, Ki, Fi, Hi. It is easy to see that

Hi = Ẽi + FiẼ
−1
i−1F

T
i +GiẼ

−1
i−pG

T
i ,

Ki = GiẼ
−1
i−pF

T
i−p+1.

Hence, the remainder R has three block diagonals. To compute the row sums of R, we have to
compute

rowsum(GiẼ
−1
i−pF

T
i−p+1 + FiẼ

−1
i−1G

T
i+p−1

+Fi(Ẽ
−1
i−1 − tridiag(Ẽ−1

i−1))FTi +Gi(Ẽ
−1
i−p − tridiag(Ẽ−1

i−p)G
T
i)).

Since we explicitly know tridiag(Ẽ−1
j), it is easy to compute

rowsum(Fitridiag(Ẽ−1
i−1)Fi +Gitridiag(Ẽ−1

i−p)G
T
i).

To compute a term like rowsum(GiẼ
−1
i−pF

T
i−p+1), we have to compute GiẼ−1

i−pF
T
i−p+1e where

e is the vector of all ones. Then, let w = FTi−p+1e. We solve the tridiagonal system Ẽi−pz = w
and we obtain

rowsum(GiẼ
−1
i−pF

T
i−p+1) = Giz.

The other terms in the row sum are computed in the same way by solving tridiagonal systems.
As for the two dimensional problem, we denote this preconditioner by MINV.

8.15.3 2D point preconditioners

We consider the block incomplete Cholesky decomposition with “large” blocks corresponding
to two dimensional problems. So, we set

M = (∆ + L)∆−1(∆ + LT).

Then, similar to the two dimensional case,

∆1 = D1,

∆i = Di −Aiapprox(∆−1
i−1)ATi , i = 2, . . . ,m

The whole problem reduces to finding a sparse approximation to the inverse of the matrix repre-
senting a two dimensional problem. Some of the solutions that we shall consider in the following
section could do the job. But first, we shall look at some other solutions.

There are ways of computing the exact inverse of the matrix of a two dimensional finite
difference problem, see Meurant [347] but, as we only need a sparse approximation, let us first
try to use incomplete factorizations of ∆i to obtain the approximation of the inverse. Suppose ∆i

is a point five diagonal matrix, let us denote the elements of the jth row of the lower triangular
part of ∆i by cji , b

j
i , a

j
i . Then, we use the IC(1,1) decomposition of ∆i that we denote by

(D̃i + L̃i)D̃
−1
i (D̃i + L̃Ti),

8.15. The block Cholesky decomposition for 3D problems 343

where L̃i is the strictly lower triangular part of ∆i. D̃i is a diagonal matrix with diagonal ele-
ments d̃ji . We know that

d̃ji = aji −
(bji)

2

d̃j−1
i

− (cji)
2

d̃j−qi

.

The exact inverse of (D̃i + L̃i)D̃
−1
i (D̃i + L̃Ti) is (D̃i + L̃Ti)−1D̃i(D̃i + L̃i)

−1. But we only
need an approximation of this matrix with the same sparsity as ∆ − i. Thus, we approximate
(I + D̃iL̃i)

−1 by I − D̃−1
i L̃i, so the approximation we are looking for is

D̃−1
i − D̃

−1
i L̃iD̃

−1
i − D̃

−1
i L̃Ti D̃

−1
i + D̃−1

i L̃Ti D̃
−1
i L̃iD̃

−1
i .

The first three terms have the structure that we are looking for; therefore we simply add the
diagonal of the fourth term. Finally, the approximation we choose is

D̃−1
i − D̃

−1
i L̃iD̃

−1
i − D̃

−1
i L̃Ti D̃

−1
i + diag(D̃−1

i L̃Ti D̃
−1
i L̃iD̃

−1
i).

The lower triangular elements of this matrix are easy to compute. The elements of the outer
diagonal are

− cji
d̃j−qi d̃ji

.

The elements of the inner diagonal are

− bji
d̃j−1
i d̃ji

,

and the diagonal elements are

1

d̃ji
+

1

d̃j+1
i

(
bj+1
i

d̃ji d̃
j+1
i

)2

+
1

ãj+qi

(
cj+qi

d̃ji d̃
j+q
i

)2

.

We denote this preconditioner by BKIC. This method can also be easily modified (MBKIC).

8.15.4 2D block preconditioners

Here, we take the approximation as being the INV incomplete factorization and we approximate
its inverse. Let us denote the (block) matrix for which we want to approximate the inverse as ∆̄i,

∆̄i =

O1
i P 2

i

P 2
i O2

i P 3
i

.
P p−1
i Op−1

i P pi
P pi Opi

 ,

where P ji is diagonal and Oji is tridiagonal. Let Ni be the block strictly lower triangular part of
∆̄i and Σi a block diagonal matrix whose diagonal blocks are denoted by Σji . Let ∆i be the INV
incomplete block factorization of ∆̄i,

∆i = (Σi +Ni)Σ
−1
i (Σi +NT

i).

Matrices Σji are tridiagonal. We want to compute an approximation Λi of

∆−1
i = (Σi +NT

i)−1Σi(Σi +Ni)
−1.

344 8. Preconditioning

We proceed in the same way as for the point case. However, the approximations that we shall
derive involve inverses of tridiagonal matrices which are dense matrices. At the end of our
derivation, we shall replace these dense inverses by sparse approximations to avoid having too
much storage. We set

(Σi +Ni)
−1 '

I

−(Σ2
i)
−1P 2

i I
.

−(Σp−1
i)−1P p−1

i I
−(Σpi)

−1P pi I

Σ−1
i ,

and then

(Σi +NT
i)−1Σi(Σi +Ni)

−1 '

Y 1
i Z1

i

W 2
i Y 2

i Z2
i

.
W p
i Y pi

with

Y ji = Σji)
−1 + (Σji)

−1P j+1
i (Σj+1

i)−1P j+1
i (Σji)

−1,

Zji = −(Σji)
−1P j+1

i (Σj+1
i)−1,

W j
i = −(Σji)

−1P ji (Σj−1
i)−1,

Y pi = (Σpi)
−1.

We have to compute approximations of

(Σji)
−1 + (Σji)

−1P j+1
i (Σj+1

i)−1P j+1
i (Σji)

−1

and−(Σji)
−1P ji (Σj−1

i)−1. It is natural to replace (Σji)
−1 by a tridiagonal approximation tridiag((Σji)

−1)
and to keep only the non-zero elements corresponding to the structure of ∆̄i.

We recall that P ji is diagonal and let bl, al, bl+1 be the non-zero elements of the lth row of
tridiag((Σji)

−1), fl, el, fl+1 those of the matrix tridiag(P j+1
i (Σj+1

i)−1)P j+1
i). If we denote by

hl, gl, hl+1 the non-zero elements of the approximation of (Σji)
−1+(Σji)

−1P j+1
i (Σj+1

i)−1P j+1
i (Σji)

−1,
we have

gl = al + fl(blal−1 + albl) + 2albl+1fl+1 + elb
2
l + a2

l el + b2l+1el+1,

hl = bl + fl−1blbl−1 + fl(b
2
l + alal−1) + fl+1blbl+1 + blal−1el−1 + alblel.

For −(Σji)
−1P ji (Σj−1

i)−1, we simply compute a diagonal approximation using a similar for-
mula. We denote this preconditioner by BKINV. It can also be modified to have zero row sums
(MBKINV).

Other approximations of the inverse of the two dimensional problems are feasible. We can,
for instance, use BSSOR instead of INV to generate the approximation of the inverse. Another
possibility is to use polynomial approximation of the inverse. Analytic expressions for the inverse
of block tridiagonal matrices are known, see Meurant [347]. From these results, other sparse
approximations of the inverse can be derived. Let

A =

D1 AT2
A2 D2 AT3

.
Am−1 Dm−1 ATm

Am Dm

 ,

8.16. Nested factorization 345

and
Σ1 = D1, Σi = Di −AiΣ−1

i−1A
T
i , i = 2, . . . ,m

Σ̄m = Dm, Σ̄i = Di −ATi+1Σ̄−1
i+1Ai+1, i = m− 1, . . . , 1.

We define
Φi = Di −AiΣ−1

i−1A
T
i −ATi+1Σ̄−1

i+1Ai+1.

Then,

{A−1}i,i = Φ−1
i , {A−1}i,i−1 = Σ−1

i−1A
T
i Φ−1

i , {A−1}i,i+1 = Σ̄−1
i+1Ai+1Φ−1.

From these formulas, approximations can be computed. However, it is difficult to obtain positive
definite matrices in this way. A preconditioner that seems efficient is the following: let (∆ +
L)∆−1(∆ + LT) be the INV incomplete factorization of A. We set M−1 =M−T∆M−1 with
M lower block bidiagonal,

{M−1}i,i = ∆−1
i , {M−1}i,i−1 = ∆−1

i ATi ∆−1
i−1.

Of course, to apply this preconditioner or to use it for 3D problems, we have to solve tridiagonal
systems. Note thatM−1 is clearly positive definite. For numerical experiments, see Perlot [374].

8.16 Nested factorization
This preconditioner was derived at the beginning of the eighties by Appleyard, Cheshire and
Pollard (see [10, 9]) for block tridiagonal matrices arising from finite difference approximations
of three dimensional oil reservoir problems. They used the modified form of this preconditioner,
but let us first describe the unmodified one which we denote by ACP.

8.16.1 The ACP preconditioner for 3D problems

In this preconditioner we consider A with large blocks corresponding to two dimensional prob-
lems. Let L be the block strictly lower triangular part of A,

L =

0
A2 0

.
An−1 0

An 0

and ∆ be a block diagonal matrix with diagonal blocks ∆i. The ACP preconditioner M is chosen
as

M = (∆ + L)∆−1(∆ + LT).

Each ∆i is in turn chosen as

∆i = (θi +Mi)θ
−1
i (θi +MT

i),

where

Mi =

0
B2
i 0

.
Bp−1
i 0

Bpi 0

346 8. Preconditioning

and θi is a block diagonal matrix with diagonal blocks θji . In the unmodified method we choose
θji = Dj

i , i = 1, . . . , n, j = 1, . . . , p. We only need to compute the Cholesky factorization of
each Dj

i to use this preconditioner. We remark that if we define the same kind of preconditioner
for two dimensional problems, it reduces to BSSOR with ω = 1 (i.e. block symmetric Gauss-
Seidel).

8.16.2 The preconditioner of Appleyard, Cheshire and Pollard

They use the modified form of ACP that we denote by MACP. To define this preconditioner we
must compute the row sums of R. As before, we have

M = ∆ + L+ LT + L∆−1LT .

We know that L∆−1LT is block diagonal,

L∆−1LT =

0

A2∆−1
1 AT2

. . .
An−1∆−1

n−2A
T
n−1

An∆−1
n−1A

T
n

 ,

hence R is also a block diagonal matrix. Let us denote its block diagonal elements as Ri,i,

Ri,i = ∆i −Di +Ai∆
−1
i−1A

T
i .

Since ∆i = θi +Mi +MT
i +Miθ

−1
i MT

i and θi +Mi +MT
i = Di, we have

∆i −Di = Miθ
−1
i MT

i ,

and
Ri,i = Miθ

−1
i MT

i +Ai∆
−1
i−1A

T
i .

It is easy to see that the matrix Miθ
−1
i MT

i is
0

B2
i (θ1

i)
−1(B2

i)T

. . .
Bp−1
i (θp−2

i)−1(Bp−1
i)T

Bpi (θp−1
i)−1(Bpi)T

 .

To compute the row sums of R, after we have computed ∆i−1, we must solve ∆i−1wi = ATi e
where e = (1, . . . , 1)T . Then, rowsum(Ai∆

−1
i−1A

T
i) = si = Aiwi, where si = (s1

i , . . . , s
p
i)
T .

During the solve for each plane, we compute θj−1
i zji = (Bji)

T e and rowsum(Bji (θ
j−1
i)−1)(Bji)

T) =

tji = Bji z
j
i . When we compute the next block diagonal element, we have to subtract si+ tji from

the diagonal of θji .

8.16.3 Improvements of ACP

In ACP we set
M = (∆ + L)∆−1(∆ + LT)

8.17. Sparse approximate inverses 347

and then we choose a preconditioner for each plane problem (that is, the diagonal block ∆i).
The choice of nested factorization is a block symmetric Gauss-Seidel (BSSOR with ω = 1).
Of course, one may choose other preconditioners for the two dimensional problems that are
usually better (although less general) than BSSOR. In the following, we choose INV. The resulting
preconditioner will be denoted by ACPINV. We have

∆i = (θi +Mi)θ
−1
i (θi +MT

i), i = 1, . . . , n

and then

θji = Dj
i −B

j
i tridiag((θj−1

i)−1)(Bji)
T , j = 1, . . . , p.

This method can also be modified by computing the row sums of the remainder. Obviously, these
preconditioners are just examples among many other possibilities. We can use, for instance, more
refined two dimensional preconditioners using more storage or use variants specially designed
for vector or parallel computers. However, it must be understood that preconditioners like ACP
and ACPINV neglect the physical coupling that occurs between planes (except for the terms in L).
This means that for problems for which there is a strong coupling between planes, ACP and the
derived methods will probably give poor results. It also means that ACP is very sensitive to the
ordering of the unknowns. It is much better (if possible) to order the unknowns in such a way
that the strongest coupling is within planes (that is, the largest non-diagonal elements are in the
Bji matrices).

8.17 Sparse approximate inverses
We have seen that we would likeM−1A to behave like the identity matrix. Therefore it is natural
to try computing C = M−1 such that some norm of AC − I or CA− I is minimized. If we are
able to do this, then applying the preconditioner simply amounts to a matrix multiply. Huckle and
Grote [292] considered this type of preconditioner for non-symmetric matrices and the Frobenius
norm. This was also done earlier by Grote and Simon [260].

The Frobenius norm is specially interesting to choose because we have

‖AC − I‖2F =

n∑
k=1

‖(AC − I)ek‖2,

where ek is the kth column of the identity matrix. Therefore, we just have to consider minimizing
the l2-norms ‖Ack−ek‖, k = 1, . . . , n where the cks are the columns of C. Note that the n least
squares problems are independent of each other. Normally since A−1 is full, ck will be a full
vector but as we would like to compute a sparseC, we shall choose a given sparsity for the vectors
ck. Hence, we can just consider a vector ĉk which contains only the non-zero components of ck.
Accordingly let Âk be the matrix whose columns are the columns of A corresponding to the set
of indices Gk = {j|(ck)j 6= 0} and whose rows i are such that there exists ai,j 6= 0, j ∈ Gk.
Then, everything reduces to a set of (small) least squares problems,

min
ĉk
‖Âk ĉk − ek‖, k = 1, . . . , n

Since Â is of full rank, we solve the least squares problems with the QR algorithm, see for
instance Golub and Van Loan [240]. The main question is to know how to choose the set of
indices G. This is where different approaches can be used.

348 8. Preconditioning

8.17.1 The sparse inverses of Huckle and Grote

Huckle and Grote [292] proposed an incremental method for choosing the sparsity patterns.
They start from set of indices G0

k (usually corresponding to a diagonal C or to the structure of
the matrix A), they solve the least squares problems and then, iteratively, they enlarge the sets of
indices and solve again the least squares problems until some criteria are satisfied. Suppose we
are at iteration p, to extend the set of indices, we consider the residual r = Acpk − ek, the goal
being to reduce ‖r‖.

Let L = {j|(r)j 6= 0} and ∀l ∈ L let Nl = {j|al,j 6= 0, j 6∈ Gpk}. Then the candidates for
indices of new non-zero elements in the solution vector are chosen in ∪l∈LNl. For j in this set
of indices, we consider solving the problem

min
µj∈�

‖r + µjAej‖ =⇒ µj = − (r,Aej)

‖Aej‖2
.

It can be shown that the norm of the new residual is

‖r‖2 − (r,Aej)
2

‖Aej‖2
.

There exist indices such that (r,Aej) 6= 0. From these indices, we choose those which give the
smallest residuals. This is repeated until the norm of the residual is smaller than a prescribed
criterion or until we have reached the maximum storage that we have allowed for that column.
Note that putting new indices in the solution vector will add some columns and some rows to the
matrices of the least squares problems and we have to update the QR factorization and there are
some efficient techniques for doing this, see [240].

Huckle and Grote gave some bounds for a few norms of AC − I and also sufficient condi-
tions for C being non-singular (although they are difficult to use in practice) and provided some
numerical experiments. Their implementation is denoted as SPAI (Sparse Approximate Inverse).
Further details concerning the implementation (for instance the variants of the QR algorithm)
are discussed in Huckle [291]. The implementation of SPAI on a distributed memory parallel
computer is considered in Deshpande, Grote, Messmer and Sawyer [140].

8.17.2 The sparse inverses of Gould and Scott

Gould and Scott [250] described some improvements to the preceding algorithm. Let Â be the
matrix with the compressed set of column indices. Suppose we add a new column c, then the
new least squares problem becomes

σ+c = min
z,ξ
‖Âz + ξc− d‖2.

Huckle and Grote based the choice of the new column on the solution of the minimization of
‖ξc− r‖2 where r is the residual Âz − d. But the solution σ+c is known as

σ+c = σ −
(c, PÂd)2

‖PÂc‖2
= σ − (c, r)2

‖PÂc‖2
,

where σ is the previous solution and PÂ = I − Â(ÂT Â)−1ÂT . This can be computed from the
QR factorization of Â. It turns out that the value of ‖PÂc‖2 can be easily updated. Then, the
choice of the updating column is based on σ+c. Numerical results in [250] indicate that it is not
more costly to use the exact improvement formula to choose the new column and the quality of
the approximate inverse preconditioner is sometimes better on the basis of the computing time
for solving a set of non-symmetric problems. Numerical comparisons with ILU(0) are given in
[250].

8.17. Sparse approximate inverses 349

8.17.3 The sparse inverses of Chow and Saad

In [107] Chow and Saad proposed a few methods for computing sparse inverses. One of these
methods is to solve approximately Acj = ej by using an iterative method. Of course, this
problem is as hard to solve as the problem we would like to precondition, therefore only a crude
solution is sought. Some of the elements of this crude solution are dropped to preserve a given
sparsity structure of the approximate inverse. Chow and Saad also proposed to precondition the
iterations with the columns already computed although this has a negative impact on parallelism.
They also suggested to recursively compute preconditioners Mk that gives

min
Mi+1

‖I −M1M2 · · ·MiMi+1‖2F .

8.17.4 Sparse approximate inverses for symmetric matrices

If one of the preceding methods for generating sparse approximate inverses is used for a sym-
metric matrix, the sparse inverse it produces is generally not symmetric. Therefore something
special has to be done for symmetric matrices.

One way to solve the problem is to compute the columns of the sparse inverse recursively.
There is no change for the first column. When computing the second column, the entry in
position (1, 2) (if not zero) is known from the first column and is not anymore an unknown
of the problem. Then, for each column to be computed, the upper part is known from previous
solves. This effectively produces a symmetric sparse inverse. However, it is tricky to implement
this algorithm on a parallel computer. Moreover, if we start from an SPD matrix, there is no
guarantee that the result will be positive definite. This can be fixed if, for instance, dropping
some of the smallest elements (in absolute value) gives rise to a diagonally dominant sparse
inverse.

Another way to deal with this problem is to look for the sparse inverse in the form KKT ,
solving

min ‖AKKT − I‖2F .

If K has no particular structure, this is a non-linear least squares problem which is difficult to
solve. IfK is lower triangular, solving the columns one after another and setting some constraints
on the diagonal terms, the problem is not more difficult to solve than the non-symmetric one. If
K is non-singular, then the sparse inverse is positive definite. Another possibility is to minimize
‖I − LK‖2F where L is the Cholesky factor of A. It turns out that for doing this we do not need
the explicit knowledge of the entries of L. However, there are some other ways to compute the
sparse inverse in factored form as we shall see in the next section.

8.17.5 The sparse inverses of Benzi, Meyer and Tůma

The preconditioner of Benzi, Meyer and Tůma [39] for SPD matrices arises from the remark
that if Z = [z1, z2, . . . , zn] is a set of conjugate directions for A, we have ZTAZ = D a di-
agonal matrix with diagonal elements di = (zi, Azi). This gives an expression for the inverse
A−1 = ZD−1ZT . A set of conjugate directions can be constructed by a Gram-Schmidt or-
thogonalization like algorithm applied to a set of linearly independent vectors v1, v2, . . . , vn. If
V = [v1, v2, . . . , vn] = I , then Z is upper triangular. The algorithm from [39] is the following,

1) z(0)
i = ei, i = 1, . . . , n

2) for i = 1, . . . , n d
(i−1)
j = (ai, z

(i−1)
j), j = i, . . . , n where ai is the ith column (or

row) of A

if j 6= n, z(i)
j = z

(i−1)
j −

(
d
(i−1)
j

d
(i−1)
i

)
z

(i−1)
i , j = i+ 1, . . . , n

350 8. Preconditioning

3) zi = z
(i−1)
i , di = d

(i−1)
i , i = 1, . . . , n

This method is an application of the more general principle of biconjugation, see Chu, Fun-
derlic and Golub [109]. The idea to obtain a sparse approximate inverse is, as usual, to preserve
sparsity by dropping some fill-in (in Z) outside some prescribed positions or the fill-ins whose
absolute values are below a preset drop tolerance and by controlling the amount of storage used.
This method is denoted by AINV.

Benzi, Meyer and Tůma proved that AINV is feasible for H-matrices. The incomplete algo-
rithm is the same as the complete one applied to a matrix where some elements have been set to
zero. We have seen that the H-matrix class is invariant under this operation. Then, it is proved
that the pivots di produced by the incomplete algorithm for an M-matrix are larger than the pivots
for the complete decomposition. The last step is, for an H-matrix, to compare the factorizations
forA andM(A) which is an M-matrix. It turns out that the pivots forA are larger than the pivots
for M(A), see [39]. Numerical examples are given in [39] comparing AINV, dropping fill-ins by
values, to IC using the same strategy. Experiments show that for using approximately the same
amount of storage the number of iterations of both algorithms are not much different.

This method of constructing an approximate inverse was generalized to non-symmetric matri-
ces by Benzi and Tůma [41]. Here, two sets of vectors Z = [z1, . . . , zn] and W = [w1, . . . , wn]
are constructed, such that WTAZ = D diagonal. W and Z are constructed by a biconjugation
process applied to W (0) = Z(0) = I . The formulas are quite similar to the ones for the symmet-
ric case. Numerical experiments comparing SPAI and AINV are given in Benzi and Tůma [42].
Figure 8.22 shows the spectrum of AINV for the model problem on a 10× 10 mesh. The thresh-
old that is used (ε = 6 10−2) gives approximately the same fill-in as in IC(1,1). Figure 8.23
compares ε = 6 10−2 (top) and ε = 2 10−2 (bottom) which gives a better spectrum but uses
more storage.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-1

-0.5

0

0.5

1

Figure 8.22. Spectrum for AINV, ε = 6 10−2

8.18 Polynomial preconditioners
In this type of preconditioners, we look for the inverse of M to be a polynomial in A of a given
degree k,

M−1 = Pk(A) =

k∑
j=0

αjA
j .

This idea is both natural and “bizarre”. It is natural as, by the Cayley-Hamilton theorem, we
know there exists a polynomial Q of degree l, l ≤ n with coefficients βj , such that Q(A) = 0.

8.18. Polynomial preconditioners 351

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-1

-0.5

0

0.5

1

Figure 8.23. Spectrum for AINV, top: ε = 6 10−2, bottom: ε = 2 10−2

Q is known as the characteristic polynomial. Its roots are the distinct eigenvalues of A. By
multiplying Q(A) = 0 by A−1 we obtain that

A−1 = − 1

β0
(β1I + · · ·+ βlA

l−1).

ThereforeA−1 (which gives the best preconditioner!) is a polynomial inA. However, we usually
do not know the coefficients βj and the degree of the polynomial can be quite large since it is the
number of distinct eigenvalues.

On the other hand, this idea of using a polynomial as a preconditioner is strange since (for
SPD matrices) it is going to be used with CG and we know that the polynomial generated by CG
is, in some sense, optimal. Therefore, applying m iterations of CG to Pk(A)A will generate a
polynomial of degree k + m that will be less efficient than k + m iterations of CG for reducing
the A-norm of the error. But, in this approach it could be that there will be fewer scalar products
that are a bottleneck on certain computer architectures.

We note that for a polynomial preconditioner, since the polynomial commutes with A, ap-
plying the preconditioner from the left or from the right give the same results.

8.18.1 Truncated Neumann series

Let A be a symmetric positive definite matrix. We write A = D−L−LT where D is a diagonal
matrix, the minus signs being just a technical convenience. Then, we symmetrically scale A by
its diagonal,

A = D
1
2 (I −D− 1

2 (L+ LT)D−
1
2)D

1
2 ,

A−1 = D−
1
2 (I −D− 1

2 (L+ LT)D−
1
2)−1D−

1
2 .

We note that
D−

1
2 (L+ LT)D−

1
2 = I −D− 1

2AD−
1
2 ,

and
ρ(I −D− 1

2AD−
1
2) = ρ(I −D−1A).

If ρ(I−D−1A) < 1, then we can expand I−D− 1
2AD−

1
2 in Neumann series. The simplest idea

to generate a polynomial preconditioner is to use a few terms of the Neumann series. Generally,
only one or three terms are used. For instance, the first order Neumann polynomial NEUM1 is

M−1 = D−1 +D−1(L+ LT)D−1 = 2D−1 −D−1AD−1.

352 8. Preconditioning

Generally, polynomials of even degree are not used as it was shown in Dubois, Greenbaum and
Rodrigue [159] that a Neumann polynomial of odd degree k is more efficient than the Neumann
polynomial of degree k + 1. In practice, only degrees 1 and 3 (NEUM3) are used. Figure 8.24
plots the three first Neumann polynomials (xpk(x)) on [0, 8] corresponding to the interval of
eigenvalues for the Poisson model problem. We can see that the eigenvalues are mapped to a
larger interval for the even degree.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8.24. Three first Neumann polynomials, solid: degree 1, dashed: degree 2, dash-dotted: degree 3

8.18.2 The minmax polynomial

Since we haveM−1A = Pk(A)A, it is natural to consider the polynomial qk such that qk+1(λ) =
λpk(λ). Note that we have qk(0) = 0 as a constraint. The ideal situation would be to have
qk(λ) ≡ 1, ∀λ. Unfortunately this is not possible because of the constraint at the origin. The
eigenvalues of the preconditioned system are the images of the eigenvalues of A by qk+1. How-
ever, we do not know the minimum and maximum of the transformed eigenvalues (even if it
is likely that the smallest eigenvalue will be the image of λmin(A)). Johnson, Michelli and
Paul [301] defined a generalized condition number in the following way. Let a and b such that
λi(A) ∈ [a, b],∀i, we are interested in considering the “condition number”,

cond(q) =
maxλ∈[a,b] q(λ)

minλ∈[a,b] q(λ)
.

Let Qk = {polynomials qk|∀λ ∈ [a, b], qk(λ) > 0, qk(0) = 0}. The first constraint will give us
a positive definite preconditioner. Then we look for the solution of

Find qk ∈ Qk such that ∀q ∈ Qk, cond(qk) ≤ cond(q).
The solution of this problem was given by Johnson, Michelli and Paul [301], see also Ashby

[13]. First of all, we map [a, b] to [−1, 1] by defining

µ(λ) =
2λ− b− a
b− a

.

Theorem 8.54. Let

qk(λ) = 1− Tk(µ(λ))

Tk(µ(0))
,

where Tk is the Chebyshev polynomial of order k. Then, qk is the solution of the previous
minimization problem.

8.18. Polynomial preconditioners 353

Proof. Let θ = |Tk(µ(0))|. Then

cond(qk) =
θ + 1

θ − 1
,

since we have

cond(qk) =
maxλ∈[a,b]{Tk(µ(0))− Tk(µ(λ))}
minλ∈[a,b]{Tk(µ(0))− Tk(µ(λ))}

=
Tk(µ(0)) + 1

Tk(µ(0))− 1
,

because minTk = −1 and maxTk = 1. Moreover, |Tk(µ(λ))| ≤ 1 on [a, b] and Tk(µ(0)) > 1.
Let q ∈ Qk and v = minλ∈[a,b] q(λ), V = maxλ∈[a,b] q(λ). We would like to show that

θ + 1

θ − 1
≤ V

v
,

or equivalently
V + v

V − v
≤ θ.

Note that outside [−1, 1] the Chebyshev polynomials are the ones with the fastest increase. Let
uk be a polynomial of degree k. Then, for µ(λ) ≥ 1,

|uk(µ(λ))|
max|t|≤1 |u(t)|

≤ |Tk(µ(λ))|.

We use this result with uk(µ(λ)) = 1− 2q(λ)
V+v . Clearly,

max
|t|≤1
|uk(λ)| = V − v

V + v
.

Therefore,
V + v

V − v
≤ |Tk(µ(0))|.

We have also the following result that relates cond(qk) to the condition number of A.

Theorem 8.55. Let κ = b/a and ν =
√
κ−1√
κ+1

. Then, we have cond(qk) =
(

1+νk

1−νk

)2

.

Proof. See Perlot [374].
We denote this preconditioner by MINMAX. Figure 8.25 plots the minmax polynomial (xp(x))

using [a, 8] as the eigenvalue interval for different values of a. For the last three values a is
greater than the smallest eigenvalue of A. Clearly, λmin is not the optimal value for a.

Figure 8.26 shows the minmax polynomial over [0.1, 8] for different degrees.

8.18.3 Least squares polynomials

We wish to have the polynomial λpk(λ) as close as possible to 1 in some sense. One way of
achieving this is to look for the polynomial pk of degree k that minimizes∫ b

a

(1− λq(λ))2w(λ) dλ, q ∈ Qk,

354 8. Preconditioning

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8.25. The minmax polynomial over [a, 8], solid: a = 0.01, dashed: a = 0.1, dash-dotted:
a = 0.5, solid: a = 1

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 8.26. The minmax polynomial over [0.1, 8], degree= solid: 3, dashed: 5, dash-dotted: 10,
solid: 20

where w(λ) is a positive weight. Usually, one chooses the Jacobi weights,

w(λ) = (b− λ)α(λ− a)β , α ≥ β ≥ −1

2
,

because we know the orthogonal polynomials associated with these weights. Let si(λ) be this
normalized orthogonal polynomial and

Jk(σ, λ) =

k∑
j=0

sj(σ)sj(λ).

To derive the solution of this problem, let us prove a few technical results.

Lemma 8.56. Let r(λ) be a polynomial of degree ≤ k. Then

1− r(σ) =

∫ b

a

Jk(σ, λ)(1− r(λ))w(λ) dλ.

8.18. Polynomial preconditioners 355

Proof. We can write 1− r(λ) =
∑
l αlsl(λ), then∫ b

a

Jk(σ, λ)(1 − r(λ))w(λ) dλ

=
∑
j

sj(σ)
∑
l

∫ b

a

sj(λ)sl(λ)αlw(λ) dλ,

=
∑
j

sj(σ)
∑
l

αl

∫ b

a

sj(λ)sl(λ)w(λ) dλ,

=
∑
j

αjsj(σ) = 1− r(σ).

This result of Lemma 8.56 explains why J(σ, λ) is known as a reproducing kernel. The next
result gives a lower bound for Jk(0, 0).

Lemma 8.57. Let r(λ) be a polynomial of degree ≤ k such that r(0) = 0. Then

1 ≤ Jk(0, 0)

∫ b

a

(1− r(λ))2w(λ) dλ.

Proof. We apply the Cauchy-Schwarz inequality to the integral,

1 = (1− r(0))2 =

∫ b

a

Jk(0, λ)(1− r(λ))w(λ) dλ,

≤
∫ b

a

Jk(0, λ)2w(λ) dλ

∫ b

a

(1− r(λ))2w(λ) dλ.

But, ∫ b

a

Jk(0, λ)2w(λ) dλ =
∑
j

sj(0)2 = Jk(0, 0).

Theorem 8.58. The solution of the least squares minimization problem is

λq(λ) = rk(λ) = 1− Jk(0, λ)

Jk(0, 0)
.

Proof. 1− rk(λ) is collinear to Jk(0, λ) and equal to 1 in λ = 0, therefore we have equality
in the Cauchy-Schwarz inequality,

1

Jk(0, 0)
=

∫ b

a

(1− rk(λ))2w(λ) dλ,

which is the minimum values as Lemma 8.57 shows.
The solution can be rewritten as

qk(λ) =

k+1∑
j=0

bjtj(λ),

356 8. Preconditioning

where

bj =
sj(0)∑k+1
l=0 sl(0)2

, tj(λ) =
sj(0)− sj(λ)

λ
.

In the following, we shall consider two special cases of the Jacobi weights: the Chebyshev weight
α = β = − 1

2 (LSQUARE) and the Legendre weight α = β = 0 (LEG). For these weights, we can
derive bounds for the generalized condition number that was used in MINMAX. We denote by Pk
the space of real polynomials of degree less or equal to k.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 8.27. The least squares polynomial over [a, 8], solid: a = 0.01, dashed: a = 0.1,
dash-dotted: a = 0.5, solid: a = 1

Lemma 8.59. For all p ∈ Pk, for all λ ∈ [a, b],

|p(λ)|2 ≤ Ck
∫ b

a

|p(t)|2 dt,

with Ck = (k + 1)2/(b− a).

Proof. See [301] and [374].

Theorem 8.60. The polynomial preconditioner LEG satisfies√
cond(qk)− 1√
cond(qk) + 1

≤
√

2(k + 1)νk,

where ν is defined as ν =
√
κ−1√
κ+1

, κ = b/a.

Proof. See [374].
Now, we extend these results to LSQUARE.

Lemma 8.61. For all p ∈ Pk, for all λ ∈ [a, b] and the Jacobi weights ω,

|p(λ)|2 ≤ C̄k
∫ b

a

|p(t)|2 ω(t)dt,

with C̄k = (2k + 1)/π.

8.18. Polynomial preconditioners 357

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 8.28. The least squares polynomial over [0.1, 8], solid: 3, dashed: 5, dash-dotted: 10, solid: 20

Proof. See [374].

Theorem 8.62. The polynomial preconditioner LSQUARE satisfies√
cond(qk)− 1√
cond(qk) + 1

≤
√

4k + 2νk,

where ν is defined as in Theorem 8.60.

Proof. See [374].

These results give estimates of what we can expect when using these polynomial precondi-
tioners with PCG. Figure 8.27 plots the least squares polynomial over [a, 8] for different values of
a.

Figure 8.28 shows the least squares polynomial over [0.1, 8] for different degrees. Figure 8.29
compares polynomials of degree 5: MINMAX over [0.1, 8] and LSQUARE over [0, 8]. With the least
squares polynomial, the eigenvalue are more clustered around 1 than with MINMAX. However, the
smallest eigenvalues are less well separated.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

Figure 8.29. Solid: minmax polynomial over [0.1, 8], dashed: least squares over [0, 8]

358 8. Preconditioning

8.18.4 Stable evaluation of polynomials

Usually, for a polynomial pk(λ) =
∑
i αiλ

i, the Horner scheme is used to evaluate z = Pk(A)r:

bk = αkr,

bi = αir +Abi+1, i = k − 1, . . . , 0

then, z = b0. However, when the degree of the polynomial is large and when the computation
is done in single (IEEE) precision, there can be some stability problems in these evaluations.
Although the Horner scheme can be improved, it is of interest to have alternate ways of evaluating
the polynomials. This can be done by finding the recurrence relations for the various polynomials
we have defined. Let us start with MINMAX. It satisfies a three-term recurrence relation.

Lemma 8.63. The MINMAX polynomial pk satisfies

pk(λ) =
4

a− b
ck
ck+1

+ 2µ(λ)
ck
ck+1

pk−1(λ)− ck−1

ck+1
pk−2(λ),

with

p0(λ) =
2

a+ b
, p1(λ) =

8(a+ b− λ)

a2 + b2 + 6ab
,

and ck = Tk(µ(0)).

Proof. The Chebyshev polynomials satisfy

Tk+1µ(λ)) = 2µ(λ)Tk(µλ))− Tk−1(µ(λ)).

This translates also into
ck+1 = 2µ(0)ck − ck−1.

The MINMAX polynomial is given by

pk(λ) =
1

λ

(
1− Tk+1(µ(λ))

Tk+1(µ(0))

)
.

Conversely,
Tk(µ(λ))

λ
= ck

(
1

λ
− pk−1(λ)

)
.

Then,

pk(λ) =
1

λ
− 1

ck+1

(
2µ(λ)

Tk(µ(λ))

λ
− Tk−1(µ(λ))

λ

)
.

By substituting the values for Chebyshev polynomials, we get

pk(λ) =
1

λ

(
1− 2µ(λ)

ck
ck+1

+
ck−1

ck+1

)
+ 2µ(λ)

ck
ck+1

pk−1(λ)− ck−1

ck+1
pk−2(λ).

Finally,

1

λ

(
1− 2µ(λ)ckck+1 +

ck−1

ck+1

)
=

2

λ

ck
ck+1

(µ(0)− µ(λ)) =
4

a− b
ck
ck+1

.

It is also easy to compute the initial conditions.

8.18. Polynomial preconditioners 359

Theorem 8.64. The scheme for evaluating the MINMAX polynomial z = Pk(A)r is

zo =
2

a+ b
r,

z1 =
8

a2 + b2 + 6ab
((a+ b)I −A)r,

zj =
4

a− b
cj
cj+1

r +
2

b− a
cj
cj+1

(2A− (a+ b)I)zj−1 −
cj−1

cj+1
zj−2,

j = 2, . . . , k

and z = zk.

For the least squares polynomials, the situation is a little more complex and we have to use a
generalization of Clenshaw’s formula.

Lemma 8.65.
tj+1(λ) = δj+1 + αjν(λ)tj(λ)− γj−1tj−1(λ), ∀j ≥ 1,

with δj+1 = Kαjsj(0), K = ν(0)−ν(λ)
λ .

Proof. We have

tj+1(λ) =
sj+1(0)− sj+1(λ)

λ
,

=
1

λ
(αjν(0)sj(0)− γj−1sj−1(0)

−αjν(λ)sj(λ) + γj−1sj−1(λ)),

= αj
ν(0)− ν(λ)

λ
+ αjν(λ)

sj(0)− sj(λ)

λ

−γj−1
sj−1(0)− sj−1(λ)

λ
,

= Kαjsj(0) + αjν(λ)tj(λ)− γj−1tj−1(λ).

Theorem 8.66. For LSQUARE and LEG, we have

pk(λ) = t1(λ)η1(λ) + ω2(λ),

where ηj are defined by

ηj(λ) = bj + αjν(λ)ηj+1(λ)− γjηj+2(λ), j = k + 1, . . . , 1

and ηk+3 ≡ ηk+2 ≡ 0. ωj is defined by

ωj(λ) = δjηj(λ) + ωj+1(λ), j = k + 1, . . . , 2, ωk+2 ≡ 0.

Proof. Let Ak(λ) =
∑k
j=0 bjtj(λ) and let Hl denote the hypothesis that

pk(λ) = Ak−l(λ) + ωk−l+2(λ) + ηk−l+1(λ)tk−l+1(λ)− γk−lηk−l+2(λ)tk−l(λ).

360 8. Preconditioning

We know that pk(λ) = Ak+1(λ), therefore H−1 holds. Let us suppose that Hl is true, then we
show that Hl+1 holds.

pk(λ) = Ak−l−1(λ) + bk−ltk−l(λ) + ωk−l+2(λ)

+ ηk−l+1(λ)tk−l+1(λ)− γk−lηk−l+2(λ)tk−l(λ),

= Ak−l−1(λ) + bk−ltk−l(λ) + ωk−l+2(λ)− γk−lηk−l+2(λ)

+ ηk−l+1(λ)(δk−l+1αk−lν(λ)tk−l(λ)− γk−l−1tk−l−1(λ)),

= Ak−l−1(λ) + (bk−l + αk−lν(λ)ηk−l+1(λ)

− γk−lηk−l+2(λ))tk−l(λ) + ωk−l+2(λ) + ηk−l+1(λ)δk−l+1

− γk−l−1ηk−l+1(λ)tk−l−1(λ)

Ak−l−1(λ) + ηk−l(λ)tk−l(λ) + ωk−l+1(λ)

− γk−l−1ηk−l+1(λ)tk−l−1(λ).

Finally, using l = k, we have

pk(λ) = A0(λ) + ω2(λ) + η1(λ)t1(λ)− γ0η2(λ)t0(λ) = ω2(λ) + η1(λ)t1(λ).

Let us now apply this result to LSQUARE.

Theorem 8.67. For LSQUARE, z = Pk(A)r can be computed in the following way, let

s0(0) =
1√
π
, s1(0) =

√
2

π

a+ b

a− b
, s2(0) =

√
2

π

[
2

(
a+ b

a− b

)2

− 1

]
,

and
sj(0) = 2µ(0)sj−1(0)− sj−2(0), j = 3, . . . , k + 1

bj =
sj(0)∑k+1
i=0 s

2
i (0)

, j = 1, . . . , k + 1.

Then,

zk+1 = bk+1r, zk = bkr +
2

b− a
(2A− (a+ b)I)zk+1,

zj = bjr +
2

b− a
(2A− (a+ b)I)zj+1 − zj+2, j = k − 1, . . . , 1

and

uk+1 =
4

a− b
sk(0)zk+1,

uj+1 =
4

a− b
sj(0)zj+1 + uj+2, j = k − 1, . . . , 1

Finally

z =

√
2

π

2

a− b
z1 + u2.

8.18. Polynomial preconditioners 361

For the LEG polynomial, the recurrence relation is

sj(λ) =
(4j2 − 1)

1
2

j
µ(λ)sj−1(λ)− j − 1

j

(
2j + 1

2j − 3

) 1
2

sj−2(λ).

Theorem 8.68. For LEG, z = Pk(A)r can be computed in the following way,
let

φj =
(4j2 − 1)

1
2

j
, ψj =

j − 1

j

(
2j + 1

2j − 3

)
, j = 2, . . . , k + 1

s0(0) =

√
1

b− a
, s1(0) =

√
3

b− a
a+ b

a− b
,

sj(0) = φjµ(0)sj−1(0)− ψjsj−2(0), j = 2, . . . , k + 1

bj =
sj(0)∑k+1
i=0 s

2
i (0)

, j = 1, . . . , k + 1.

Then,

zk+1 = bk+1r, zk = bkr +
1

b− a
φk+1(2A− (a+ b)I)zk+1,

zj = bjr +
1

b− a
φj+1(2A− (a+ b)I)zj+1 − ψj+2zj+2, j = k − 1, . . . , 1

and

uk+1 =
2

a− b
φk+1sk(0)zk+1,

uj+1 =
2

a− b
φj+1sj(0)zj+1 + uj+2, j = k − 1, . . . , 1

Finally

z =
2

a− b

√
3

b− a
z1 + u2.

8.18.5 A polynomial independent of eigenvalue estimates

The drawback of most of these polynomial preconditioners is that they need estimates of the
smallest and largest eigenvalues of A. For our PDEs examples a scaling by the diagonal yields
b = 2. However, we still need an estimate a of the smallest eigenvalue. We shall see in the
next section that there are some adaptive methods to improve the eigenvalue estimate. Never-
theless it is desirable to look for polynomials whose coefficients are independent of the extreme
eigenvalues.

For MINMAX, it turns out that the exact smallest eigenvalue is not always the optimal value
regarding the number of iterations of PCG. Moreover, we cannot use a = 0 as then the number of
iterations blows up. For a given degree, the MINMAX polynomial oscillates more and more around
1 when a → 0. When a = 0, Pk(A)A is only positive semi definite. On the contrary, LSQUARE
is rather insensitive to the choice of a and a = 0 can also be chosen as the polynomial stays
positive definite. When a = 0, LSQUARE can be computed in a simpler way.

362 8. Preconditioning

Let d0 = 1, d1 = 3
2 and

dj+1 =
2j + 1

j + 1
dj −

(j + 1/2)(j − 1/2)

j(j + 1)
dj−1, j = 1, . . . , k.

Then the solution of z = M−1r is computed as

z0 =
2

3
r, z1 = −4

5
Ar + 2r,

zj =
2j + 1

j + 1

dj
dj+1

(r + (I −A)zj−1)− (j2 − 1/4)

j(j + 1)

dj−1

dj+1
zj−2, j = 2, . . . , k

finally, z = zk. This implementation is faster than the more general implementation of LSQUARE,
we denote it by NORM.

8.18.6 Adaptive algorithms for SPD matrices

This kind of algorithm tries to improve the estimates of the smallest and largest eigenvalues
during the PCG iterations. The algorithm is the following,

do every prescribed number of PCG iterations with an interval S = [a, b],
1) compute eigenvalues estimates of Pk(A)A by computing eigenvalues of a tridiagonal ma-

trix,
2) extract the eigenvalue estimates for A and update S,
3) compute the new polynomial,
4) resume (or restart) the iterations.

When an estimate µ for Pk(A)A is computed, we must obtain an eigenvalue estimate for
A by computing the inverse image(s) of µ. We must choose the one in [λmin, λmax]. This can
always be done for SPD matrices if k+1 is odd and if we use the MINMAX polynomial, see Ashby
[12]. Let ‖q‖S = maxλ∈S |q(λ)|. The image of S under qk+1(λ) = pk(λ)λ is Jε = [1−ε, 1+ε]
where ε = ‖1− qk+1‖S . If µ ∈ Jε then it must be discarded since the reciprocal of µ lies in S.
If µ < 1 − ε, there is a unique λ1 < a solution and S can be extended. Similarly, if µ > 1 + ε
there is a unique solution λ2 > b.

The problem of finding adaptive algorithms for non-positive definite matrices is much more
difficult, see Ashby [12].

8.18.7 Polynomials for symmetric indefinite problems

The problem of computing optimal polynomials for symmetric indefinite matrices is more dif-
ficult than for SPD matrices. Let us suppose that the spectrum is contained in [a, b] ∪ [c, d],
b < 0, c > 0. There are cases where the optimal polynomial is explicitly known, see Fischer
[192]. For the general case, DeBoor and Rice [134] formulated an algorithm for the numerical
computation of the optimal polynomial. For this reason, we shall refer to this polynomial as the
DR polynomial. This method is a Remez type algorithm. The classical Remez algorithm is an
iterative technique for computing the minimax polynomial approximation to a real function f on
a compact set S. It can be also modified to solve a constrained minimization problem. A detailed
description is given in Ashby [12]. Roughly speaking, it looks like the following.

Suppose we want to satisfy a constraint p(0) = 0. Let n = k + 1 where k is the degree
of the approximation polynomial and let X0 = {x0

1, . . . , x
0
n} ⊂ S, x0

1 < · · · < x0
n. The

discrete minimax approximation of f on X0 is denoted by p0. Then, either ‖f − p0‖X0 =
‖f − p0‖S = e0 or we are looking for a new set of points X1 = {x1

1, . . . , x
1
n}, x1

1 < · · ·x1
n

8.19. Double preconditioners 363

satisfying |(f − p0)(xl)| = e0 for some xl ∈ X1 and such that f − p0 alternates on X1. Such an
X1 can always be found and a new discrete minimax problem is solved on X1. Let us now look
at how this problem is solved on X = {x1, . . . , xn}. There is a characterization theorem stating
that the polynomial p satisfies

e(xi) = f(xi)− p(xi) = (−1)i−liε, i = 1, . . . , n

where li is the number of constraints between x1 and xi (in our case 0 or 1) and ε = ‖e‖X . We
are looking for ε and the coefficients of p. If we take p = xg where g(x) =

∑k−1
i=0 γix

i, the
problem reduces to the solution of a linear system,

x1 x2

1 . . . xn−1
1 −1

x2 x2
2 . . . xn−1

2 (−1)2−l2

...
...

...
...

xn x2
n . . . xn−1

n (−1)n−ln

γ0

γ1
...

γk−1

ε

 =

 f(x1)
...

f(xn)

 .

It remains to be seen how the set of points X is updated. In the simplest method, an extreme
point of f − p is found and exchanged for a point currently in X . To improve on this, several
points can be simultaneously exchanged. Zeros of Chebyshev polynomials are chosen to form
the initial set X0. Moreover, we usually choose a Chebyshev basis to expand g since it is more
stable, see Ashby [12] for details. There exist public domain implementations of this algorithm.
Other polynomials can be considered. For instance, an Hermite constraint p′(0) = 0 can be
added.

8.18.8 Polynomials for non-symmetric problems

Using polynomial preconditioners for non-symmetric matrices is much more difficult than for the
symmetric case as, now, the eigenvalues of A are complex numbers and we have first to locate
these eigenvalues and to find a region S of the complex plane that contains the eigenvalues.
This problem was considered by Manteuffel [331, 332] who suggested computing an ellipse (not
containing 0) that contains the convex hull of the spectrum. Then, the minimax polynomial can
(sometimes) be expressed in terms of Chebyshev polynomials. An algorithm for locating the
convex hull of the spectrum and for computing the best ellipse was proposed by Manteuffel.

Good eigenvalue estimates can be also obtained by enclosing the eigenvalues in polygonal
regions. Then, the approximation problem can be solved by a Remez algorithm. Least squares
polynomials may also be considered, see Smolarski and Saylor [418] and Saad [396].

8.19 Double preconditioners
So far in this chapter, we have described many different preconditioners. They are more or less
efficient depending on the problem we are solving (and on our definition of efficiency). It might
seem interesting to try to combine two of these preconditioners to achieve a better efficiency. In
fact, there is a preconditioner that can be combined with all the other ones as the matrix A can
always be diagonally scaled before constructing a preconditioner. That is, one can combine DIAG
with other preconditioners.

Polynomial preconditioners are particularly easy to combine with other ones. First of all we
can combine a polynomial Pk with a polynomial Ql by solving

Pk(Ql(A)A)Ql(A)Ax = Pk(Ql(A)A)Ql(A)b.

364 8. Preconditioning

This can be interesting for generating high degree polynomials for which we have seen that the
Horner scheme is unstable. Constructing the polynomial by products allows us to keep the degree
of the polynomial small and then the Horner scheme can be used safely. This may lead to some
computer time savings, see Perlot [374] for numerical experiments. For example, combining the
polynomial preconditioner MINMAX with itself gives some improvement.

As another example, we can combine IC and a polynomial preconditioner. We write the IC
preconditioner as M = LLT and we solve

Pk(L−1AL−T)L−1AL−T y = Pk(L−1AL−T)L−1b, LTx = y.

Perlot [374] combined IC and NORM. The numerical experiments show that low degree polyno-
mials give an improvement in the computer times over both IC and NORM, the number of PCG
iterations being much smaller. This can help on computers where the scalar products are costly.
Combining with block incomplete preconditioners will be even more efficient.

8.20 Other ideas
We have already described many preconditioners. However, many more ideas have been pub-
lished since this topic of preconditioning appeared in the seventies. Below, we briefly mention
some other ideas that can be useful in some particular context. We shall see other classes of
preconditioners in Chapter 10.

8.20.1 ADI preconditioner

Using the same notation as when we studied the Alternating Direction method, we have A =
D +H + V . Then, Chandra [103] proposed using the following ADI preconditioner,

M =
1

ρ+ ρ′
(
D

2
+H + ρI)(

D

2
+ V + ρ′I).

Note that M is symmetric only if H and V commute. However, this preconditioner can also be
used for non-symmetric problems.

8.20.2 ADDKR preconditioner

Since many preconditioners have been derived from classical direct or iterative methods (for
instance, Gaussian elimination or SSOR iterations), it is interesting to ask if we can obtain pre-
conditioners by using a sequence of different ordering algorithms. This has been considered by
Chan, Jackson and Zhu [92]. Using these methods, we are concerned with matrix problems aris-
ing from finite differences approximations in rectangles (for 2D problems). Then, we can look at
approximate factorizations corresponding to ordering the mesh nodes first in the row ordering;
the rows are ordered from bottom to top and on each row the mesh nodes are ordered left to right.
The other ordering considered by Chan et al. is to have the mesh nodes ordered from right to left
on each row. Considering DKR preconditioners for both orderings, we obtain incomplete factor-
izations (resp. remainders) L1U1 and L2U2 (resp. R1 and R2). Then, the ADDKR preconditioner
is defined as

M = L1U1(A+R1 +R2)−1L2U2.

Generally M is non-symmetric. If a symmetric preconditioner is sought, we can consider

M̃−1 =
1

2
[M−1 +M−T].

Chan et al. proved that if the modification term that is added to the diagonal elements of the DKR
factorizations is chp with p = 4

3 (versus ch2 for DKR), we have κ(M−1A) = O(h−
2
3).

8.20. Other ideas 365

8.20.3 Element by element preconditioner

This kind of preconditioner arises from the finite element community. Quite often, in finite
element methods, the matrix of the problem A is not fully assembled and is only known at the
element level. We can write this as

A =
∑
e

Ae,

where Ae is a very sparse matrix representing what happens on the element e. Of course, only
the non-zeros of Ae are stored. Therefore, there is no global representation of A. This does
not matter if we use CG to solve the problem since in this algorithm we do not need A but only
the action of A on given vectors. This can be computed at the element level without the need
to assemble A. However, the troubles arise when looking for a preconditioner. Most of the
different methods that we have seen require knowledge of A, excepting the diagonal and the
polynomial preconditioners. Therefore some researchers have tried to construct preconditioners
by only using information at the element level. There are several variants of these ideas. The
most well known element by element preconditioner was defined by Hughes, Levit and Winget
[293].

Let W be the diagonal of A and W e the diagonal of Ae. We define

Āe = I +W−
1
2 (Ae −W e)W−

1
2 .

This is called the Winget reguralization. Then, we introduce a Cholesky factorization of Āe =
LeDe(Le)T . This is easily computed at the element level. The element by element precondi-
tioner EBE is defined as

M = W−
1
2 [
∏
e

Le][
∏
e

De][
∏
e

(Le)T]W−
1
2 ,

where the products run on the number of elements. This preconditioner has been theoretically
studied by Wathen (see Lee and Wathen [266]). They show that the element by element pre-
conditioner M is spectrally equivalent to the diagonal preconditioner W . For a one dimensional
problem it is shown that asymptotically

κ(W−
1
2AW−

1
2) ≤ 9κ(M−1A).

Numerical results show that the same is true for 2D problems using distorted elements. The
condition number in experiments with discontinuous coefficients is strongly dependent on the
discontinuities.

8.20.4 Fast solvers

Fast solvers can only be used efficiently for separable problems with constant coefficients. When
we have more general problems to solve, fast solvers using the Fast Fourier Transform are not
directly usable. Concus and Golub [116] proposed using fast solvers as preconditioners. For
instance, average constant coefficients can be derived from the continuous problems and then,
FFTs can be used to rapidly solve systems with the preconditioners.

8.20.5 Wavelets

Chan, W.P. Tang and Wan [98] considered using wavelets to help define sparse inverse precon-
ditioners. Let W be the orthogonal matrix transforming vectors from the standard basis to the
wavelet basis. Then, Ā = WAWT is the representation of the matrix A in the wavelet basis.

366 8. Preconditioning

The transform of the inverse is the inverse of the transform. Chan, Tang and Wan defined the
following algorithm,

1) transform A to the wavelet basis Ā = WAWT ,
2) apply an approximate inverse (for instance SPAI or AINV) to Ā to obtain M̄ ,
3) use M̄ as a preconditioner to solve Āx̄ = Wb,
4) recover x = WT x̄.
Numerical results in [98] show that on some test problems, using this algorithm gives better

results than directly using the sparse inverses of A.

8.21 Vector and parallel computing
Vector computers came to the scientific computing market at about the same time as the interest
in preconditioning grew at the end of the seventies. Therefore, it was a natural question for
numerical analysts to ask which preconditioners were efficient on vector computers. Later on,
with the advent of parallel computers, particularly distributed memory parallel computers, the
question arose of which are the best parallel preconditioners.

Regarding vector or parallel computing, there are two issues to be considered. The first
one is the computation of the preconditioner itself. If this computation is not vectorizable or
parallelizable, this step can take much too long relative to the other steps of the computation.
However, if the preconditioner is going to be reused for solving many linear systems, then it is
less important to have an optimal coding of the preconditioner computation. The second issue
is the use of preconditioner at each iteration of the iterative method. In all cases, it is important
to vectorize or parallelize this part. Moreover, for parallel computing, we need to know if the
preconditioner solve is scalable or not when the problem size is increased. It is quite difficult to
devise good scalable preconditioners.

The preconditioners we have considered in this chapter can be classified into two categories:
implicit or explicit. The implicit preconditioners are those that need the solution of linear sys-
tems (generally triangular) when applying the preconditioner, the generic example being IC. The
explicit preconditioners are those where applying the preconditioner amounts to a (series of) ma-
trix multiply. Examples of explicit methods are the diagonal and polynomial preconditioners as
well as the sparse inverses. This second class of preconditioners is naturally vectorizable or par-
allelizable as a matrix multiply can be easily parallelized. The only problem is how to distribute
the data.

To be vectorized or parallelized, the implicit preconditioners have to be modified. Usually
this gives a new preconditioner different from the original one and we have to study its rate
of convergence. Generally, the modifications to introduce more parallelism lead to an increase
in the number of iterations and we have to check if the gains given by parallelization are not
canceled by the slower rate of convergence.

It should be mentioned that the domain decomposition methods we shall study in Chapter 10
give a natural framework for the development of efficient parallel preconditioners.

8.21.1 Vectorization of IC(1,1)

Let us consider the Incomplete Cholesky factorization IC(1,1) for 2D finite differences matri-
ces:

M = LD−1LT ,

where the non-zero elements of the diagonal matrix D are computed by

di,i = ai,i −
a2
i,i−1

di−1,i−1
−

a2
i,i−m

di−m,i−m
.

8.21. Vector and parallel computing 367

Of course, the computation of the preconditioner is mostly sequential but it represents a small
part of the computation. What is more interesting is to consider the two triangular solves that we
have to perform for every PCG iteration. This was handled by H. van der Vorst [449] whose goal
was to modify the IC preconditioner to achieve efficient implementations on vector computers.
First, we scale the two triangular matrices by writing Mz = r as

(D−
1
2LD−

1
2)(D−

1
2LTD−

1
2)D

1
2 z = D−

1
2 r.

The matrix involved in the first triangular solve can be written blockwise as

D−
1
2LD−

1
2 =

E1

B2 E2

.
Bm−1 Em−1

Bm Em

 ,

where the Ei are bidiagonal matrices with unit diagonals. Blockwise the triangular solve is

E1y1 = D
− 1

2
1 ,

Eiyi = −Biyi−1 +D
− 1

2
i ri, i = 2, . . . ,m.

If we solve these smaller systems exactly in sequence with matrices Ei we get the IC precon-
ditioner. Van der Vorst’s idea was to replace this by an approximate solve to obtain a better
efficiency on vector computers. So, we write Ei = I + Fi with Fi being a lower triangular ma-
trix with zero elements everywhere except on the diagonal next to the main one (that is i−j = 1.
The algorithm that we shall denote as ICVDV replaces E−1

i by three terms of the Neumann ex-
pansion

E−1
i ≈ I − Fi + F 2

i − F 3
i = (I − Fi)(I + F 2

i).

Therefore, we only need Fi and F 2
i . The latter matrix has also only one non-zero diagonal

(i − j = 2) and is computed once for all in the initialization phase. Note that we still have a
block recursion. Of course, using this trick we have modified the preconditioner and we won’t
get the same convergence rate. Usually it is a little worse than for IC. However, the differ-
ence depends on the degree of diagonal dominance of the matrices Ei. The larger the diagonal
dominance, the faster is the decrease of the elements in the true inverse and the better is the
approximation. Of course, the vectorization problem is exactly the same for MIC and the other
variants of the modified incomplete factorization. However, the remedy may not be so efficient
since the diagonal dominance is smaller for modified preconditioners.

8.21.2 Parallel orderings

As we have already seen, one way to use (point) incomplete factorizations on vector and parallel
computers is to use orderings for the nodes of the graph of the matrix that decouple the unknowns.
An example is multicolor orderings in which the graph nodes are labeled with colors in such a
way that any node of a given color is only connected to nodes of other colors. Then, the nodes of
one color are numbered sequentially. Using multicolor orderings for incomplete factorizations
have been considered, for instance, by Poole and Ortega [375].

When we considered the results of Duff and Meurant [162] on IC we saw that a four color
ordering gave a larger number of iterations for finite difference model problems. However, using
a larger number of colors the convergence rate is better. For instance, it is shown in Jones
and Plassmann [304] that many color orderings can be used efficiently on some finite element
problems.

368 8. Preconditioning

8.21.3 Vectorization of INV

This problem was considered by Meurant [340]. The preconditioner is defined in the block form

M = (∆ + L)∆−1(∆ + LT),

∆ being a block diagonal matrix with tridiagonal blocks ∆i. When we apply the preconditioner,
we have to solve in sequence tridiagonal systems like ∆iyi = ci. If we use standard Gaussian
elimination, this is a sequential process. However, there exist parallel algorithms to solve tridi-
agonal systems, but, as we are only looking for a preconditioner we do not need to solve those
systems exactly. Therefore again the idea is to use a sparse inverse and to replace ∆−1

i by an ap-
proximation. Since elements of inverses of tridiagonal matrices are easy to compute (see [347])
we have chosen to use the matrix Ω(j,∆i) which is a banded matrix constructed by using the
2j + 1 main diagonals of ∆−1

i . Then, we replace the tridiagonal solves by matrix multiplies,

yi = Ω(j,∆i)ci.

This preconditioner is denoted by INVV(j). Of course, we still have to choose the value of
j. For most problems j = 3 is fine. Computational speeds similar to those for the diagonal
preconditioner were obtain by Meurant and the number of iterations is only slightly larger than
for INV. This type of algorithms was also considered by Axelsson and his coworkers [25, 22].

8.21.4 Twisted incomplete block factorizations

Twisted factorizations can be used to introduce more parallelism in block preconditioners. Let
us introduce this kind of incomplete factorization. Suppose that we have a computer with only
two processors and that A is block tridiagonal with the number of block rows m being even. We
set M = Π∆−1ΠT , with

Π =

∆1 0
A2 ∆2 0

.
Am

2 −1 ∆m
2 −1 0

Am
2

∆m
2

ATm
2 +1

0 ∆m
2 +1 ATm

2 +2

.
0 ∆m−1 ATm

0 ∆m

.

Note that Π is block lower bidiagonal for the upper part and block upper bidiagonal for the lower
part. By equating, we can compute

∆1 = D1,

∆i = Di −Aitrid(∆−1
i−1)ATi , i = 2, . . . ,m/2

∆m = Dm,

∆i = Di −ATi+1trid(∆−1
i+1)Ai+1, i = n, . . . ,m/2− 1

Note that the term in the mth block row should have been computed as

∆m
2

= Dm
2
−Am

2
trid(∆−1

m
2 −1)ATm

2
−ATm

2 +1trid(∆−1
m
2 +1)Am

2 +1.

8.21. Vector and parallel computing 369

However, this does not make too much difference if m is large. We denote this preconditioner
by INV2P. From the structure of Π, it is clear that when solving Πy = c, we can start in parallel
from i = 1 and i = m (this kind of algorithm has been used for point tridiagonal matrices and
has been termed as “burn at both ends”). Therefore both “triangular” solves are parallel.

This method can be easily generalized. Suppose, for instance, that we want to split into four
parts and m is a multiple of 4. Then, we choose M = Θ∆−1ΘT , with

Θ =

L1 NT

2 0 0
0 LT2 0 0
0 N3 L3 NT

4

0 0 0 LT4

 , L1 =

∆1

A2 ∆2

.
Am

4
∆m

4

 ,

LT2 =

∆m

4 +1 ATm
4 +2

.
∆m

2 −1 ATm
2

∆m
2

 ,

L3 =

∆m

2 +1

Am
2 +2 ∆m

2 +2

.
A 3m

4
∆ 3m

4

 ,

LT4 =

∆ 3m

4 +1 AT3m
4 +2

.
∆m−1 ATm

∆m

 , NT
2 =

0 0 . . . 0
...

...
...

0 0 . . . 0
ATm

4 +1 0 . . . 0

 ,

N3 =

0 0 . . . Am

2 +1

0 0 . . . 0
...

...
...

0 0 . . . 0

 , NT
4 =

Am

4 +1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

 .

The formulas for computing the diagonal blocks are the following,

∆1 = D1,

∆i = Di −Aitrid(∆−1
i−1)ATi , i = 2, . . . ,m/4

∆m
2

= Dm
2
,

∆i = Di −ATi+1trid(∆−1
i+1)Ai+1, i = m/2− 1, . . . ,m/4 + 1

∆i = Di −Aitrid(∆−1
i−1)ATi , i = m/2 + 1, . . . , 3m/4

∆m = Dm,

∆i = Di −ATi+1trid(∆−1
i+1)Ai+1, i = n, . . . ,m/2− 1.

During the forward and backward solves, the four subsets can be computed in parallel. Using the
same technique, this preconditioner can be generalized to k processors. We denote it by INVkP; it
is very similar to domain decomposition methods that we shall describe in Chapter 10. The main
drawback of these techniques is that, of course, the larger k, the larger is the number of iterations
as some couplings between the blocks are discarded. Numerical experiments were described in
Meurant [341, 343, 344].

370 8. Preconditioning

8.21.5 Incomplete block cyclic reduction

Almost any direct method for solving linear systems can be turned into a preconditioner. There-
fore, it does not come as a surprise that block cyclic reduction was considered in this respect.
Rodrigue and Wolitzer [387] described an incomplete block cyclic reduction where inverses that
arise in this method are replaced by tridiagonal approximation. Numerical experiments in [387]
show that the number of iterations is about the same as for IC(1,1) but cyclic reduction has a
better degree of parallelism.

8.21.6 A massively parallel preconditioner

As an example of preconditioners that can be derived for parallel computers (having a large
number of processors) we consider the algorithm proposed by Alouges and Loreaux [5]. This
starts by considering a linear system (I − E)x = y, where E is strictly lower triangular and has
at most only one non-zero element per row, whose column index is denoted by j(i). Note that E
can be stored in a one dimensional array and also that the squares of E can be easily computed.
Then, the linear system is first transformed to

(I − E2)x = (I + E)y.

Then, we multiply by I + E2 and so on until k = dlog2 ne. Remarking that En = 0, we obtain

x = (I + E2k)(I + E2k−1

) · · · (I + E2)(I + E)y.

Note that from the Euler’s formula,

(I + E2k)(I + E2k−1

) · · · (I + E2)(I + E) = I + E + E2 + · · ·+ En−1.

Thus, the solve can be computed in parallel. If this method is applied to a tridiagonal matrix, this
is simply cyclic reduction (applied to all the unknowns). For a symmetric matrix A, Alouges and
Loreaux [5] considered preconditioners in the form

M = (I − E1) · · · (I − Ek)D(I − ETk) · · · (I − ET1),

where D is diagonal and the matrices Ei have at most only one non-zero element per row. It
remains to define the matrices Ei. The matrix A is decomposed as

A = D0 +D1 + · · ·+Dp +DT
1 + · · ·+DT

p ,

where Di is generalized subdiagonal as having only one non-zero element per row. D0 is the
diagonal of A. Let B be the lower triangular part of A, D1 is a strictly lower triangular matrix
whose non-zero element of row i is defined as ∀i, i > j, j = maxl((B−D0)i,l 6= 0. Recursively,
the column index of the non-zero element of Dm is j = maxl(B −

∑m−1
q=0 Dq)i,l 6= 0. We also

define operators Mi such that Di = Mi(A). This extracts from the matrix A the generalized
diagonals. To define the preconditioner, we start with

A1 = A = (I − E1)A2(I − ET1).

We require M1(A2) = 0. Applying M0 and M1, we obtain a system of matrix equations.
However, there are some terms which cannot be easily computed. Thus we use the following
approximate equations,

M0(A1) = M0(A2) +M1(A1)M0(A2)−1M1(A1)T ,

E1 = −M(A1)M0(A2)−1.

8.22. Bibliographical comments 371

The first equation gives the diagonal of A2. The other diagonals are (approximately) computed
by Mi(A2) = Mi(A1). Then, we repeat the process on A2. Parallel algorithms for solving the
matrix equations are given in [5].

The second algorithm proposed by Alouges and Loreaux attempts to directly compute a
sparse approximate inverse in the form

A−1 ≈ (I − ET1) · · · (I − ETk)D−1(I − Ek) · · · (I − E1).

As before, the computation is defined inductively,

A2 = (I − E1)A1(I − ET1).

The matrix equations we consider are the same as before,

M0(A2) = M0(A1)−M1(A1)M0(A2)−1M1(A1)T ,

E1 = M1(A1)M0(A2)−1.

The last matrix is approximated by its diagonal.
Numerical experiments show that both methods give results that can compare favorably with

polynomial preconditioners. However, so far there are no theoretical results characterizing the
class of matrices for which these methods are feasible and efficient. As some generalized diago-
nals are kept in the incomplete factorizations ofA or its inverse, it is likely that these methods are
efficient for matrices for which there is a strong enough decrease in the elements of the Cholesky
factors and/or the inverse ofA. Note that these preconditioners can be generalized in block form.

8.22 Bibliographical comments
There have been a huge number of research papers on preconditioning since the seventies. The
idea of preconditioning goes back at least to Gauss and Jacobi (after all, formulating the normal
equations is using some form of preconditioning). See also L. Cesari (1937). One may also
consider that preconditioning is already included in the 1952 paper of Hestenes and Stiefel.
Early contributions to incomplete decompositions are Varga (1960), Buleev (1960), Oliphant
(1962) and Stone (1968). SSOR preconditioners were proposed by Evans (1967) and Axelsson
(1974).

All these ideas lead to the development of the Incomplete Cholesky factorization of Mei-
jerink and Van der Vorst (1977) which was the starting point of the popularity of this type of
preconditioners. Block incomplete factorizations were first proposed by R. Underwood (1976)
and then developed by Concus, Golub and Meurant (1982-85). The modified variants of incom-
plete factorizations have their origin in the work of Dupont, Kendall and Rachford (1968). They
were further developed by Gustafsson (1978). The stability of the incomplete factorizations were
studied by H. Elman (1986). The effect of orderings on the performance of incomplete factor-
izations was demonstrated numerically by Duff and Meurant (1989) and explained theoretically
by Eijkhout (1991) and Doi (1990).

The most interesting contributions to sparse inverses are Huckle and Grote (1994) and Benzi,
Meyer and Tůma (1996).

Simple polynomial preconditioners were introduced by Dubois, Greenbaum and Rodrigue
(1979). Important contributions with more sophisticated preconditioners are Johnson, Michelli
and Paul (1983), Saad (1985) and Ashby (1987).

372 8. Preconditioning

9

Multigrid methods

9.1 Introduction
In this chapter we shall solve algebraic problems arising from the discretization of elliptic and
parabolic partial differential equations. We have already specifically addressed these problems in
Chapter 4 but there, we developed methods only for a restricted class of (separable) equations and
(rectangular) domains. The multigrid method can handle much more general problems and is (at
least asymptotically) faster than these specialized methods. However, for the sake of simplicity
and for expository purposes, we shall only look into details for simple problems.

Let n be the order of the linear system. To reach the level of truncation error the classical
iterative methods we studied in Chapter 5 need approximately the following number of operations
(the Greek letters being constants independent of n),

Jacobi: λn3

Gauss-Seidel: βn3

SOR with optimal ω: γn2

Some variants of the multigrid method will give us an operation count which is O(n), that
is, optimal (remember that the methods of Chapter 4 give at best O(n log logn) although the
constants are small).

Although some methods using several grids had been developed previously, the multigrid
method was first studied in the Soviet Union in the sixties (Fedorenko [186]) but the method
received very little attention and applications until A. Brandt popularized it in the seventies by
solving many different and difficult problems. Since that time the method has received consider-
able attention and has emerged almost as a new branch of numerical mathematics. This chapter
is only an introduction to the method. An excellent reference for both theory and application of
the method is the book edited by W. Hackbush and U. Trottenberg [271] and the books by Hack-
bush [267, 270] and Briggs [74]. We start by considering a method using two grids which is not
of practical interest but which allows us to introduce all the ideas that are used in the multigrid
method.

9.2 The two-grid method
Suppose we are solving a second order linear elliptic partial differential equation

Lu = f

373

374 9. Multigrid methods

in a domain Ω, say the unit square, with Dirichlet boundary conditions. Ω is discretized with
a regular mesh of stepsize h = 1

m+1 , m being odd. Only the values of u at interior points are
unknowns, so there are m2 such points. Suppose also that the equation is discretized using the
classical five point finite difference stencil. An example of such a problem is given by the Poisson
model problem we studied in the preceding chapters. Let

Ahuh = bh

be the resulting linear system. Each time where there is no ambiguity we shall drop the h index,
writing

Au = b.

This change of notation from x to u means we are solving a system arising from a continuous
problem and is motivated by using notation which is almost standard in the multigrid literature.
The two-grid method we are going to describe will use a coarse grid whose stepsize is H = 2h.
Basically the two-grid method can be introduced from two different viewpoints,

1) One can study why classical iterative methods like Jacobi or Gauss-Seidel have a poor
convergence rate and try to remedy this flaw by using the coarse grid.

2) Define a two-grid method, study why it does not work as well as we would like and correct
this using for instance Jacobi or Gauss-Seidel “smoothing”.

We shall use the second viewpoint since it leads to further generalizations. So, suppose that we
have an approximation uk of the solution u of Au = b. Let εk = u − uk be the error, then we
have already seen that

Aεk = Au−Auk = b−Auk = rk.

Knowing uk we are able to compute rk, but solving Aεk = rk is as difficult as solving the
original problem. However, if we know an approximation vk to εk, then vk + uk will probably
be a better approximation for u (this is the essence of iterative refinement).

The idea behind multigrid is to compute an approximation wk of εk on a coarser grid ΩH
consisting (for instance) of every other point in each direction. The fine grid Ωh has m2 points,
the coarse grid Ωh has p2 points, where p = m−1

2 .
The problem with the error being defined on Ωh is that we need a method to go from Ωh to

ΩH so we define a linear restriction operator R

R : Ωh → ΩH , (�m
2

→ �p
2

)

The representation of R is a p2 ×m2 rectangular matrix. When we have solved the problem on
ΩH , we need to go back to Ωh, so a linear prolongation (interpolation) operator P is defined.

P : ΩH → Ωh, (�p
2

→ �m
2

).

Now, we must define the problem we are going to solve on ΩH to compute wk. There are two
basic ways of finding a non-singular coarse grid matrix AH .

1) Use the same approximation as for Ah but on ΩH . In our example this leads to a five point
approximation.

2) AH = RAhP . With usual choices for R and P , this will give a nine point approximation
scheme.

9.2. The two-grid method 375

One step of the two-grid algorithm is now defined by
1) rk = b−Auk,
2) rkH = Rrk,
3) Solve exactly AHεkH = rkH ,
4) vk = PεkH ,
5) uk+1 = vk + uk. If no convergence, go to step 1.

It is easy to exhibit the iteration matrix of this iterative method as

vk = PεkH = PA−1
H rkH = PA−1

H R(b−Auk).

Hence,
uk+1 = (I − PA−1

H RA)uk + PA−1
H Rb.

The iteration matrix is K = I − PA−1
H RA. As we know, a necessary and sufficient condition

for convergence is ρ(I − PA−1
H R) ≤ 1. Unfortunately, this is usually not true.

Lemma 9.1. Let A be symmetric positive definite and suppose AH = RAP and P = RT , then
the eigenvalues of I − PA−1

H RA are 0 and 1.

Proof. I − PA−1
H RA is similar to I −A 1

2PA−1
H RA

1
2 which is symmetric. Let z 6= 0 and λ

be an eigenvector and an eigenvalue of this matrix, that is,

(I −A 1
2PA−1

H RA
1
2)z = λz.

Multiplying by RA
1
2 , we get

(RA
1
2 −RAPA−1

H RA
1
2)z = λRA

1
2 z,

but the left hand side matrix is zero so λRA
1
2 z = 0. Therefore, λ = 0, or RA

1
2 z = 0. The

question which arises is: does there exist z 6= 0 such that RA
1
2 z = 0? The answer is yes.

Denoting by Ran(B) the range of B, we have

dim ker(RA
1
2) + dimRan(RA

1
2) = m2,

so
dim ker(RA

1
2) ≥ m2 − p2 > 1 when m > 1.

Hence, there are z 6= 0 in ker(RA
1
2). But, when z 6= 0 and RA

1
2 z = 0, we have z = λz so

λ = 1. As a conclusion ρ(I − PA−1
H RA) = 1.

There is also a heuristic explanation for the non-convergence of the two-grid algorithm. Since
A is symmetric, the eigenvectors span a basis of �n. This basis corresponds to (or converges
towards when h→ 0) the eigenfunctions of L. Some of these eigenfunctions vary rapidly (high
frequencies), some others are more smooth (low frequencies). It is intuitive that components of
any vector on the high frequencies eigenvectors cannot be well approximated on the coarse grid.
Hence, to make the method work, we need smooth residuals such that rkH is a good approximation
of rk.

Generally (for elliptic problems) the operator L and the matrix A are regularizing operators
since rk = Aεk, a smooth error will give an even smoother residual. The natural idea now is to
add some features to the method to get smooth residuals. It is well known that classical iterative
methods such as relaxed Jacobi or Gauss-Seidel (which in the context of this chapter will be
called relaxation methods) give smoother and smoother errors as the iteration proceeds. A few

376 9. Multigrid methods

iterations of these methods can be used as a smoother for residuals. Conversely, if one considers
the Gauss-Seidel method, we see that the components of the error on high frequencies eigen-
vectors are very rapidly dampened and that the slow convergence is accounted for the smooth
eigenvectors. But, when the error is smooth, it is likely that the problem can be solved on a
coarser grid. We shall denote by S the iteration matrix of the chosen relaxation method.

The two-grid algorithm is now the following,

1) Do ν1 iterations of the iterative method whose iteration matrix is S. Let ūk be the resulting
vector.
2) r̄k = b−Aūk,
3) r̄kH = Rr̄k,
4) solve exactly AHεkH = r̄kH ,
5) vk = PεkH ,
6) starting from ūk + vk, do ν2 iterations of the method whose matrix is S. Let uk+1 be the
result.
7) if no convergence go to 1.

The iteration matrix of this method is

M = Sν2(I − PA−1
H RA)Sν1 = Sν2KSν1 .

Suppose S is non-singular. Then M is similar to

S−ν2MSν2 = KSν1+ν2

or Sν1+ν2K. Clearly convergence depends only on ν1 + ν2.

What we have just defined is only a general framework. To get a practical method, sev-
eral choices have to be made. By combining the different possibilities, many variants can be
generated. We have to choose

• the relaxation method S,

• the integers ν1 and ν2,

• how to construct the coarse grid,

• the restriction operator R,

• the prolongation operator P ,

• how to define AH .

We shall return to some of the possible choices. Before doing this, however, we shall look at
an example choosing the components of the method for the sake of the analysis. More efficient
choices will be discussed when we have understood how the method works.

9.3 A one dimensional example
We shall completely study a simple one dimensional example. Of course, this is not of any
practical use but will give us insight in how this method works. A similar analysis can be done
for the two dimensional model problem (see Stüben and Trottenberg [426]), but the technical

9.3. A one dimensional example 377

details are more involved and it does not lead to more knowledge for general problems. The
continuous problem is

−d
2u

dx2
= f in Ω = (0, 1),

u(0) = u(1) = 0.

Ω is divided into n+ 1 equal intervals, so the mesh Ωh has stepsize h = 1
n+1 . We suppose n odd

and n > 3 e.g., h ≤ 1/4 in order to be able to define a coarse grid with more than just one mesh
point. The coarse grid ΩH is defined with H = 2h. If we denote by ui the approximation of u
at point number i, then the finite difference approximation of the continuous problem is

−ui−1 + 2ui − ui+1

h2
= fi,

u0 = un+1 = 0.

The linear system of order n is

Au =
1

h2

2 −1
−1 2 −1

.
−1 2 −1

−1 2

u = b.

We already know that the eigenvalues ofA are λk = 1
h2 (2−2 cos(kπh)). The related eigenvector

φk is such that
(φk)i = sin(ikπh).

We must now define the components of the two-grid algorithm: S, ν1,ν2, R, P , AH .

9.3.1 The choice of the smoothing

We choose ν1 + ν2 = 1 and as a smoother the relaxed Jacobi method, but since the diagonal of
A is constant it is exactly the same as the Richardson method. Let

L =
1

h2

0
−1 0

−1 0
.

−1 0

 .

Then
A =

2

h2
I + L+ LT = D + L+ LT .

From Chapter 5 we know that the iteration matrix is

S = I − αD−1A = I − αh2

2
A.

The eigenvalues of S are µk = 1 − α(1 − cos(kπh)). The eigenvectors are the same as those
of A. Note that for the Richardson method to converge we must have α < 2

1+cos(πh) and
ρ(S) = 1 − α(1 − cos(πh)) = 1 − O(h2). The spectral radius ρ(S) is given by µ1 and
corresponds to the most “regular” eigenvector (in the sense that it approximates the smoothest

378 9. Multigrid methods

eigenfunction of L). We have already seen that for convergence the optimal value of α is 1.
But, now we are not interested in the convergence of the Richardson method but by smoothing
properties and more precisely at how the Richardson method smoothes the “high frequencies
eigenvectors”, that is, those which cannot be approximated on the coarse grid. Thus, we define
as

low frequencies: vectors ϕk with k < n
2 ,

high frequencies: vectors ϕk with n
2 ≤ k ≤ n.

Note that whatever h is, the values of ϕn+1
2

restricted to ΩH are always 0. Then, following
Stüben and Trottenberg [426], we define a quantity which is analogous to the spectral radius but
restricted to high frequencies,

µ(h, α) = max
k
{|λk|,

n

2
≤ k ≤ n}.

It is also interesting to know what we get when h becomes small. So, let

µ∗(α) = sup
h
{µ(h, α), h ≤ 1

4
}.

Obviously, we have the following.

Lemma 9.2. For our model example,

µ(h, α) = max{|1− α+ α cos(
n

2
πh)|, |1− α− α cos(πh)|}

µ∗(α) = max{|1− α|, |1− 2α|}.

The value of α which minimizes µ∗(α) is α = 2
3 and µ∗(2

3) = 1
3 .

Proof. We use the same techniques as in Chapter 5.

So, if µ is a good measurement of the smoothing properties, the best smoothing value of α
is different from the best value for the rate of convergence. The interesting feature is that the
limiting value when h → 0 is 1

3 strictly less than one. It means that the smoothing will be
efficient regardless of how h is chosen. The asymptotic convergence of the Richardson method
is only driven by the smooth eigenvectors which are not of interest for our purposes.

9.3.2 The choice of the restriction

The simplest choice would be to restrict a vector by taking the value on the coarse grid to be the
same as the corresponding value on the fine grid but we shall make a different choice here. We
choose a weighted average and denote

wH = Rw.

For the sake of simplicity, points on the coarse grid (that is, components of the vectors) keep the
same labels as they have on the fine grid. So, a vector v defined on ΩH will be (v2, v4, v6, . . .).
The restricted vector wH is defined as the average

(wH)2i =
1

4
(w2i−1 + 2w2i + w2i+1).

9.3. A one dimensional example 379

9.3.3 The choice of prolongation

We choose a linear interpolation to extend vectors from the coarse grid to the fine grid. Hence

w = PwH

with

(w)2i = (wH)2i,

(w)2i+1 =
1

2
((wH)2i + (wH)2i+2).

Lemma 9.3. For the previous choices of restriction and prolongation, we have

P = 2RT .

Proof. To prove this result, we just write P and R as rectangular matrices.

9.3.4 The choice of the coarse grid matrix

For the approximation on ΩH we choose to use the same stencil as on Ωh. Hence, at point 2i we
have

(AHv)2i =
−v2i−2 + 2v2i − v2i+2

H2
.

Let Φk be the eigenvectors of AH . It is obvious that

(Φk)2i = sin(ikπH) = sin(2ikπh) = (ϕk)2i.

Lemma 9.4. Let k be such that k < n
2 , then

(ϕn+1−k)2i = −(ϕk)2i,

(ϕn+1−k)2i+1 = (ϕk)2i+1,

(ϕn+1
2

)2i = 0.

Proof. Since h = 1
n+1 ,

(ϕn+1−k)2i = sin((n+ 1− k)2iπh)

= sin(2iπ − 2ikπh)

= − sin(2ikπh)

= −(ϕk)2i,

(ϕn+1−k)2i+1 = sin((n+ 1− k)(2i+ 1)πh),

= sin((2i+ 1)π − (2i+ 1)kπh)

= sin((2i+ 1)kπh)

= (ϕk)2i+1

(ϕn+1
2

)2i = sin(i(n+ 1)πh)

= sin(iπ) = 0,

380 9. Multigrid methods

and this proves the result.
We are now going to look at what happens to the eigenvectors of A when the operator K is

applied. We do this in four stages.
1) ϕk → Aϕk.

Since ϕk is an eigenvector ϕk → λϕk. As we noted before λk = 2
h2 ((1 − cos(kπh)) =

4
h2 sin2(kπh2). For k < n

2 ,

λn+1−k =
2

h2
(1 + cos(kπh)) =

4

h2
cos2(

kπh

2
).

2) Aϕk → RAϕk.

Lemma 9.5. Let k < n
2 ,

(Rϕk)2i = cos2(
kπh

2
)(Φk)2i,

(Rϕn+1−k)2i = sin2(
kπh

2
)(ϕn+1−k)2i = − sin2(

kπh

2
)(Φk)2i,

(Rϕn+1
2

)2i = 0.

Proof.

(Rϕ)2i =
1

4
sin((2i− 1)kπh) + 2 sin(2ikπh) + sin((2i+ 1)kπh),

=
1

4
(2 + 2 cos(kπh)) sin(2ikπh),

= cos2(
kπh

2
) sin(2ikπh).

The other formulas are also obtained by straightforward trigonometric identities.
3) RAϕk → A−1

H RAϕk.
The eigenvalues of AH are

2

H2
(1− cos(kπH)) =

1

2h2
(1− cos(2kπh)),

=
1

h2
sin2(kπh).

Lemma 9.6.
(A−1

H RA)ϕk = µΦk

with

µ =

1, if k < n+1

2 ,

−1, if k > n+1
2 ,

0 if k = n+1
2 .

Proof. Let k < n+1
2 . Starting with ϕk. Applying A multiplies by 4

h2 sin2(kπh2), applying
R we get Φk and multiplies by cos2(kπh2) and then we divide by the eigenvalue of AH , that is
1
h2 sin2(kπh). Therefore

(A−1
H RA)ϕk =

4
h2 sin2(kπh2) cos2(kπh2))

1
h2 sin2(kπh)

Φk.

9.3. A one dimensional example 381

Clearly, the multiplicative factor is 1. The proof is similar for k > n+1
2 .

4) Φk → PΦk.

Lemma 9.7.

(PΦk)2i = (ϕk)2i,

(PΦk)2i+1 = cos(kπh)(ϕk)2i+1.

Proof. The first equality is obvious and for the other one

(PΦk)2i+1 =
sin(2ikπh) + sin((2i+ 2)kπh)

2
= cos(kπh) sin((2i+ 1)kπh).

Putting all these four steps together, we get the following result.

Proposition 9.8.
(PA−1

H RA)ϕk = ψk.

Let k < n+1
2 . Then

(ψk)2i = (ϕk)2i,

(ψk)2i+1 = cos(kπh)(ϕk)2i+1,

ψn+1−k = −ψk,
ψn+1

2
= 0.

Proof. This proposition summarizes the previous lemmas if we note that

cos(kπh)(ϕk)2i+1 = cos(kπh)(ϕn+1−k)2i+1,

= − cos((n+ 1− k)πh)(ϕn+1−k)2i+1.

This shows that ψn+1−k = −ψk.
The problem that we face is that the subspace spanned by ϕk is not invariant under PA−1

H RA
but fortunately ψk can be expressed in a simple way from ϕk and ϕn+1−k.

Lemma 9.9. ψk is uniquely written as

ψk =
1 + ck

2
ϕk +

ck − 1

2
ϕn+1−k,

where ck = cos(kπh).

Proof. Suppose
ψk = βϕk + γϕn+1−k,

but
(ψk)2i = β(ϕk)2i − γ(ϕk)2i = (ϕk)2i.

Hence β − γ = 1 and

(ψk)2i+1 = (β + γ)(ϕk)2i+1 = ck(ϕk)2i+1.

382 9. Multigrid methods

Hence β + γ = ck, therefore β = 1+ck
2 and γ = ck−1

2 .
This decomposition is unique because ϕk and ϕn+1−k are independent as being eigenvectors

of A. As a consequence of this result we have the following proposition.

Proposition 9.10. Let k < n+1
2 . Then the subspace spanned by ϕk and ϕn+1−k is invariant

under K.

Proof.

Kϕk = ϕk − ψk = (1− 1 + ck
2

)ϕk −
ck − 1

2
ϕn+1−k,

Kϕn+1−k = ϕn+1−k + ψk =
1 + ck

2
ϕk + (1 +

ck − 1

2
)ϕn+1−k,

Kϕn+1
2

= ϕn+1
2
.

The ϕk’s are an orthonormal basis of the whole space soK can be written in that basis. Since
span(ϕk, ϕn+1−k) is invariant it is convenient to take the vector basis in the order ϕ1, ϕn, ϕ2,
ϕn−1, ϕ3, . . . , ϕn+1

2
. Then, the matrix representing K is block diagonal, all blocks being 2 by 2

except the last block which is one by one. The kth block is

1

2

(
1− ck 1 + ck
1− ck 1 + ck

)
.

The last block is equal to 1. In this form it is very easy to find the eigenvalues of K.

Proposition 9.11. The eigenvalues of K are 0 and 1.

Proof. By direct computation in this simple example we find the result that we have shown
for more general problems in Lemma 9.1.

To conclude for the two-grid algorithm, we must include the operator S and studyM = SK.
The ϕk’s being eigenvectors of S, we obtain

Sϕk = (1− α(1− ck))ϕk,

Sϕn+1−k = (1− α(1 + ck))ϕn+1−k,

Sϕn+1
2

= (1− α)ϕn+1
2
.

Proposition 9.12. M can be represented by a block diagonal matrix whose blocks are

Mk =
1

2

(
(1− ck)[1− α(1− ck)] (1 + ck)[1− α(1− ck)]
(1− ck)[1− α(1 + ck)] (1 + ck)[1− α(1 + ck)]

)
,

Mn+1
2

= 1− α.

The eigenvalues of Mk are 0 and 1− α(1 + c2k).

Proof. Because detK = 0, it is obvious that detMk = 0 and trace(Mk) = 1− α(1 + c2k).

This gives us conditions of convergence for the two-grid method.

9.3. A one dimensional example 383

Theorem 9.13. For our 1D example, the two-grid method converges if α < 2
1+c21

. The optimal

value of α is αopt = 2
2+c21

and ρ(M) =
c21

2+c21
≤ 1

3 .

Proof. The eigenvalues of M are 0, 1− α, 1− α(1 + c2k) for k = 1, . . . , n−1
2 .

We remark that as h → 0, αopt → 2
3 and ρ(M) → 1

3 . These two values were already
found for the smoothing operator. It means that, in this case, a study of the smoothing operator
alone gives a good insight into the final result. This fact is more generally true for the multigrid
method.

If one takes ν = 2, then αopt ≈ 2
3 and ρ(M) ≈ 1

9 . In these results the important thing to note
is that ρ(M) is bounded independently of h. The efficiency will be the same whatever the value
of h. The spectral radius gives insight into the asymptotic convergence but as it is interesting
to get bounds for the error reduction, we must study some norms of M . Let us consider, for
instance, the spectral norm

‖M‖ = ρ(MMT)
1
2

and ν1 = 1, ν2 = 0, so that M = KS. In the eigenvector basis M can be written, as before, as a
block diagonal matrix. A straightforward computation gives the following result.

Lemma 9.14. The eigenvalues of MkM
T
k are 0 and 1

2 [(1− ck)2(1−α(1− ck))2 + (1 + c2k)(1−
α(1 + ck))2].

If we choose the almost optimal value α = 2
3 the eigenvalues are 0, 1

9 and 1−3c2k+4c4k
9 for

k = 1, . . . , n−1
2 . By Lemma 9.14, supk ‖Mk‖ =

√
2

3 . This is of course greater than ρ(M)
whose limit is 1

3 .
The same kind of analysis can be done for the 2D model problem (see Stüben and Trottenberg

[426]) if we choose
1) the relaxed Jacobi method,
2) a weighted average as restriction

(Ru)i,j =
1

16
[4ui,j + 2(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

+ ui−1,j−1 + ui−1,j+1 + ui+1,j+1 + ui+1,j−1],

3) a bilinear interpolation,
4) for AH the same 5 point stencil as on the fine grid. Note that, in this case, this is different
from choosing RAP

For the smoothing operator Stuben and Trottenberg get the results in Tables 9.3.4 and 9.3.4.

α 1 4
5

1
2

µ(h, α) c1
1+2c1

5
2+c1

4

µ∗(α) 1 3
5

3
4

α = 4
5 is optimal, giving the smallest value of µ∗. Setting ρ∗ = suph ρ(M) we have the

results of Table 9.3.4.
For small values of ν the study of the smoothing operator (µ∗) gives a good idea of the

behaviour of M(ρ∗). It should be stressed again that the different choices we made were mainly

384 9. Multigrid methods

ν µ∗ ρ∗

1 0.6 0.6
2 0.36 0.36
3 0.216 0.216
4 0.130 0.137
5 0.078 0.113

for the sake of simplicity in the theoretical analysis. Practical problems usually require different
and specific choices.

9.4 The choices of components
Let us look at some of the choices that can be made for all the components of the method.

9.4.1 The smoothing

The relaxed Jacobi method was only chosen for the preceding analysis because, for the model
problem, the iteration matrix has the same eigenvectors as A. But, in some practical computa-
tions, even for the model problem, the Gauss-Seidel method is a better choice. Unfortunately,
not only does the iteration matrix has different eigenvectors than those of A, but they don’t even
give a complete basis. To study the smoothing effect of Gauss-Seidel, Brandt [61] introduced
a heuristic technique that we have already used for preconditioners: the local Fourier analysis.
The analysis is local in the sense that the coefficients of the elliptic operator are held fixed at the
mesh point we consider. The boundary conditions are neglected, that is, we study the problem in
an infinite domain or with periodic boundary conditions. Furthermore, we only study the Fourier
modes corresponding to “high frequencies”.

Let us study the Gauss-Seidel smoothing for the 2D model problem. Consider one iteration
of Gauss-Seidel and let u be the initial value and ū the final value. In this section i will denote
the complex number, square root of −1, hence the generic grid point will be denoted by (k, j).
The iteration formula is

4ūk,j − ūk−1,j − ūk,j−1 = h2bk,j + uk+1,j + uk,j+1. (9.1)

Let ε be the error. Then equation (9.1) gives

4ε̄k,j − ε̄k−1,j − ε̄k,j−1 = εk+1,j + εk,j+1. (9.2)

Consider at point (k, j), the Fourier mode (l,m)

εl,mk,j = exp[i(lkh+mjh)π].

By substituting in (9.2), we get the following lemma.

Lemma 9.15. The error can be written as

ε̄l,mk,j = ρl,mεl,mk,j

with

ρl,m =
exp(ilhπ) + exp(imhπ)

4− exp(−ilhπ)− exp(−imhπ)
.

9.4. The choices of components 385

We are interested in the values of |ρl,m| for those modes which cannot be well approximated
on the coarse grid with stepsize H = 2h. The indices l and m take values in a finite set but to
simplify denote θ = lhπ and ϕ = mhπ, θ and ϕ taking values in [0, π]. Low frequencies are
functions which are smooth in both directions e.g.,

Glow = {(θ, ϕ)|0 ≤ θ < π

2
and 0 ≤ ϕ < π

2
}.

Then, Ghigh = [0, π]2 \Glow and we want to compute the values θ, ϕ that give

σ = max
(θ,ϕ)∈Ghigh

|ρ(θ, ϕ)|,

ρ(θ, ϕ) =
exp(iθ) + exp(iϕ)

4− exp(−iθ)− exp(−iϕ)
.

G
low

high
G

ϕ

Θπ

π

π/2

π/2

0 S
1

2S

3S

4S

Figure 9.1. Definition of Ghigh in the (θ, φ) plane

Theorem 9.16. The maximum of |ρ(θ, ϕ)| is obtained for θ = π
2 , cosϕ = 4

5 , sinϕ = 3
5 and then

σ = 1
2 .

Proof. Let z = 1
2 (exp(iθ) + exp(iϕ)). Hence, σ = max | z2−z̄ | where z̄ denotes the complex

conjugate of z. Since

| z

2− z̄
| = |z|
|2− z|

,

the only extrema of this function are for z = 0 and z = 2. On a compact domain σ is reached on
the boundary. Therefore, we have to compute the function on segments S1, S2, S3, S4 defined
in Figure 9.1.

On segment S1, ρ2(θ, ϕ) = 1+cos θ
5−3 cos θ and the maximum 1

5 is given for cos θ = 0.
On segment S2, ρ2(θ, ϕ) = 1−cosϕ

13−5 cosϕ and the maximum 1
9 is given for cosϕ = −1.

On segment S3, θ = ϕ and ρ2(θ, θ) = 1
5−4 cos θ and the maximum is 1

5 for cos θ = 0.
On segment S4, ρ2(θ, ϕ) = 1+sinϕ

9−4 cosϕ+sinϕ and the maximum is 1
4 for cosϕ = 4

5 , sinϕ = 3
5 .

The conclusion of this heuristic analysis is that, for the model problem, Gauss-Seidel
is a better smoother that relaxed Jacobi because we get a reduction factor of 0.5 instead of
0.6 without any need for a relaxation parameter. Other basic iteration schemes can be used as
smoothers. Some examples are

386 9. Multigrid methods

1) the Gauss-Seidel iteration with other orderings

◦ the red-black ordering (this gives µ∗ = 0.074 if ν1 = ν2 = 1),

◦ many color orderings, etc. . .

2) block relaxations

◦ by lines,

◦ by columns,

◦ line zebra (odd-even ordering on the lines),

◦ column zebra,

◦ alternating directions (lines-columns or zebra lines-zebra columns),

◦ Douglas, Malhotra and Schultz [153] suggested using one iteration of Gauss-Seidel
to solve the tridiagonal systems of the ADI smoothers.

3) ILU or block ILU

4) Conjugate gradient

C. Douglas remarked that some of these choices must not be called “smoothers” as one
iteration does not damp all the components of the error. Some of them can in fact increase, in
which case the method should be called a “rougher”. Moreover, a careful analysis has shown that
the optimal number of smoothing steps is usually small (2-3) although this is problem dependent.

9.4.2 The coarsening

For finite difference problems in two dimensions, the standard coarsening is taking every other
point in each direction as shown in Figure 9.2. The coarse mesh has step sizes (2hx, 2hy).

Figure 9.2. The standard coarsening

For some cases (particularly anisotropic problems) it can be useful to coarsen only in one
direction (see Figure 9.3) giving coarse meshes (2hx, hy) or (hx, 2hy). Another possibility is to
use a Red-Black coarsening, see Figure 9.4.

Figure 9.3. Semi coarsening

9.4. The choices of components 387

Figure 9.4. The RB coarsening

For finite element meshes, the fine mesh is usually derived from a coarse mesh by dividing
each triangle into four triangles, see Figure 9.5, if using linear elements. The same can be done
with quadratic (having also the mid-points as unknowns) and cubic elements. However, there
exist algorithms for automatically coarsening a mesh (in fact a planar graph).

Figure 9.5. Refinement of triangles

9.4.3 Grid transfers

We have to choose the prolongation P (ΩH → Ωh) and the restriction R (Ωh → ΩH). For the
prolongation (interpolation) we have the following choices

1) bilinear interpolation. This is symbolically written as the stencil

1

4

 1 2 1
2 4 2
1 2 1

 .
2) a seven point interpolation

1

2

 1 1 0
1 2 1
0 1 1

 .
3) quadratic or cubic interpolation.

4) interpolation using the equations. For example if we are using 9 point finite differences on
a regular mesh, the value in the middle of a coarse cell is given by

1

a0,0
(−

1∑
i, j = −1
(i, j) 6= 0

ai,jv(x+ ih, y + jh)),

where the ai,j are the coefficients of the matrix corresponding to the equation for that
unknown.

388 9. Multigrid methods

Remark that if we use the interpolation with the equations for the Laplacian, then we get the
same result as with bilinear interpolation. This type of interpolation is generally used for PDE
problems with discontinuous coefficients and also for singularly perturbed problems.

For the restriction operator R, we have the following choices

1) it can be deduced from P by R = cPT , where c is a constant (c = 1/4 for finite differ-
ences). If P is the bilinear interpolation, the corresponding R is known as full weighting
(FW).

2) half weighting (HW). This is defined by

1

8

 0 1 0
1 4 1
0 1 0

 .
3) the trivial restriction which is simply taking the value we have on the fine grid. Generally

the trivial restriction is not considered to be robust and is not used.

The prolongation and restriction must satisfy a “compatibility” condition. If p and r are the
orders of P and R and 2l is the order of the PDE, we must have p+ r ≥ 2l − 1. An analysis by
C. Douglas shows that high order interpolation methods are not cost effective.

9.4.4 The coarse grid operator

For this choice there are also several possibilities

1. using the same discretization as for the fine grid,

2. using a “Galerkin” approximation: AH = RAhP . This is quite natural in the finite ele-
ment framework.

9.5 The multigrid method
So far we have solved the problem Au = b using only two grids. In step 4 of the two-grid
algorithm we made the assumption that we can exactly solve AHεkH = r̄kH . This is certainly not
realistic since with a 2D problem and standard coarsening, ΩH has only roughly one fourth of the
number of points in Ωh. Therefore, the “coarse” problem can still be quite large. So, a natural
idea is to approximately solve AHεkH = r̄kH by using the same two-grid algorithm defining a
coarser grid of stepsize 2H = 4h. To be able to use this idea recursively down to some grids
containing 1 or 4 points, it is necessary that the finest grid has the correct number of points. For
example, for the 2D model problem, we need in each direction m = 2p − 1 for some integer p.
To describe these ideas in a precise way, let us introduce an index l to label the grids we use. So,
we have a sequence Ωl of grids whose stepsizes are hl, l = 0 corresponding to the coarsest grid
and l = L to the finest one.

Let us denote
• Al the approximation of A on Ωl,
• Rl the restriction operator: Ωl → Ωl−1,
• Pl−1 the interpolation operator: Ωl−1 → Ωl,
• Sl the iteration matrix of the smoothing operator on Ωl.
Let w̄l = smoothν(wl, Al, bl) be the result of ν smoothing iterations for the problemAlul =

bl starting from wl.

9.5. The multigrid method 389

The multigrid algorithm for l + 1 grids is the following,

If l = 1 apply the two-grid algorithm.
If l > 1
1) ūkl = smoothν1(ukl , Al, bl),
2) r̄kl = bl −Alūkl ,
3) r̄kl−1 = Rlr̄

k
l ,

4) compute v̄kl−1 as the approximate solution of

Al−1v
k
l−1 = r̄kl−1

on Ωl−1 by doing γ iterations of the l-grid algorithm (Ωl−1, . . . ,Ω0) starting from 0.
5) v̄kl = Pl−1v̄

k
l−1,

6) uk+1
l = smoothν2(ūkl + v̄kl , Al, bl).

This method is given in recursive mode as step 4 refers to the same method with one grid less
and so on, until l = 1 and we can apply the two-grid algorithm. There is also a new parameter γ
which indicates how precisely we solve the problem on grid Ωl−1.

To clarify this algorithm, we shall show its behaviour graphically. We denote
↘ the restriction,
↙ the interpolation,
• the smoothing iterations,
◦ the exact solution of a problem.

When L = 1 this is the two-grid algorithm which graphically looks like Figure 9.6.

Figure 9.6. Two grids

Since we exactly solve when l = 0, γ has no meaning in this algorithm. With three grids we
may have what is shown in Figure 9.7.

Figure 9.7. Three grids, γ = 1

Inside the dotted box is one (γ = 1) iteration of the two-grid method. For obvious graphical
reasons, this is usually called a V-cycle. Using γ = 2, we get Figure 9.8.

Figure 9.8. Three grids, γ = 2

390 9. Multigrid methods

Figure 9.9. Four grids, γ = 2

This is called a W-cycle. With four grids we may have Figure 9.9.
Usually the number of grids is not very large, as for instance l = 8 corresponds to a 512×512

points fine grid. Let us compute the iteration matrix for the multigrid method.

Lemma 9.17. If one solves Ax = b with the iterative method defined by

xk+1 = Sxk + c (9.3)

with x0 = 0, then
xk+1 = (I − Sk+1)A−1b.

Proof. As (9.3) must be consistent we have x = Sx+ c, so

xk+1 − x = S(xk − x) = Sk+1(x0 − x) = −Sk+1x.

Therefore
xk+1 = (I − Sk+1)x.

Denote by M l−1
l the iteration matrix for the two-grid method with grids Ωl and Ωl−1. We

have shown previously that

M l−1
l = Sν2l (I − Pl−1A

−1
l−1RlAl)S

ν1
l .

Going from the two-grid method to the multigrid method is replacing A−1
l−1 by γ iterations of the

l-grid method starting from 0, e.g.,

A−1
l−1 → (I −Mγ

l−1)A−1
l−1,

Ml−1 denoting the iteration matrix of the l-grid method. Therefore

Ml = Sν2l (I − Pl−1(I −Mγ
l−1)A−1

l−1RlAl)S
ν1
l

for l > 2 and
M1 = Sν21 (I − P0A

−1
0 R1A1)Sν11 .

By straightforward algebra

Ml = M l−1
l + (Sν2l Pl−1)Mγ

l−1(A−1
l−1RlAlS

ν1
l).

To end this section we remark that the multigrid method we have defined is not the most general
one we could have derived. For instance, the post-smoothing operator can be different from the
pre-smoothing one, the prolongation and restriction operators can depend on the level, the coarse
grid operators Al may be defined using another operator Ql instead of Rl, etc. . .

9.6. Convergence theory 391

9.6 Convergence theory
We are going to show that if the two-grid algorithms as well as the interpolation and restriction
operators satisfy certain criteria, then the multigrid method converges. There are quite a few
different ways to prove multigrid convergence depending on the assumptions that are made.
Those assumptions are more or less difficult to verify in practical situations.

Lemma 9.18. Let σ and C be two positive real numbers such that

‖M l−1
l ‖ ≤ σ

and
‖Sν2l Pl−1‖ · ‖A−1

l−1RlAlS
ν1
l ‖ ≤ C

then
‖Ml‖ ≤ ηl

where η1 = σ and ηl+1 = σ + Cηγl , l ≥ 1.

Proof. The proof is straightforward by induction.
To prove convergence of the multigrid method we must study the behavior of the sequence

ηl.

Theorem 9.19. Suppose γ = 2 and 4Cσ ≤ 1. Then

‖Ml‖ ≤
1−
√

1− 4Cσ

2C
≤ 2σ.

Proof. ηl is an increasing bounded sequence if 1− 4Cσ ≥ 0 whose limit is 1−
√

1−4Cσ
2C .

This theorem shows that if technical conditions given by the constant C are satisfied, the
multigrid method converges if σ is small enough, e.g., if the two-grid method converges fast
enough. W. Hackbush developed a theory based on different hypotheses. The theory is based on
two properties. The first one is known as the smoothing property,

there are functions η(ν) and ν̄(h) independent of l such that

‖AlSνl ‖ ≤ η(ν)‖Al‖ for all 0 ≤ ν ≤ ν̄(hl).

These functions are such that limν→∞ η(ν) = 0 and limh→0 ν̄(h) = ∞ or ν̄(h) = ∞. The
smoothing property can be proved for the Richardson method, the relaxed Jacobi iteration, the
Red-Black Gauss-Seidelmethod and also for the symmetric Gauss-Seidel, the SSOR and the
ILU iterations, see Hackbusch [270]. The second property is the approximation property,

‖A−1
l − PA

−1
l−1R‖ ≤

C

‖Al‖
,∀l ≥ 1.

Generally, proofs of the approximation property are using properties of the PDE we are solving.
Using these two properties, Hackbush proved the following result.

Theorem 9.20. If we assume the smoothing and approximation properties and ‖Sνl ‖ ≤ C,
C1‖xl−1‖ ≤ ‖Pxl−1‖ ≤ C2‖xl−1‖, γ ≥ 2, then

‖Ml‖ < 1, for ν ≤ min ν̄(hl),

392 9. Multigrid methods

provided h is small enough. If ν̄(h) =∞ the choice of the grid size is not restricted.

Proof. See Hackbusch [270].

Convergence can be proved for all ν if h is sufficiently small. This theory can be refined in
some special cases, mainly if the smoothing iteration is symmetric.

Proofs of the approximation properties use the regularity of the PDE problem. Therefore,
several researchers have looked for a convergence theory without regularity assumptions. Such
a theory has been provided by Bramble, Pasciak, Wang and Xu [58]. The analysis is set in the
finite element framework with a bilinear form a(u, v). A nested sequence of spaces

M0 ⊂M1 ⊂ · · · ⊂ Ml

is defined and operators Ak given by

(Aku, v) = ak(u, v) = a(u, v) = (Au, v), ∀v ∈Mk.

The hypothesis (with simplifying assumptions) is that,

A((I −MkAk)u, (I −MkAk)u) ≤ δkA(u, u), ∀u ∈Mk.

Linear operators Qk:Ml →Mk are assumed to verify

‖(Qk −Qk−1)u‖2 ≤ C1
(Au, u)

λk
, ∀k = 1, . . . , l

where λk is the largest eigenvalue of Ak,

A(Qku,Qku) ≤ C2A(u, u), ∀k = 0, . . . , l − 1

‖u‖2

λk
≤ C3(Sku, u), ∀u ∈ the range of Sk.

Under these hypotheses, Bramble, Pasciak, Wang and Xu proved that

δk = 1− 1

Ck
,

whereC = [1+C
1
2
2 +(C3C1)

1
2]2. Note that these results do not depend on the number of smooth-

ing iterations. However, they can be applied using standard hypothesis on finite element approx-
imations. Another application is given in [58] to finite elements with local refinement. Multigrid
convergence can also be studied by specializing general theories about multilevel methods, see
J. Xu’s Ph.D. thesis [470].

C. Douglas and J. Douglas (see [152]) have defined a variant of the multigrid algorithm
that can be analyzed with algebraic hypothesis. Again, a set of approximation spaces {M}lk=1

is given but not necessarily nested. In addition to the restrictions Rk and prolongation Pk, a
mapping Qk is defined such that Ak−1 = QkAkPk−1. An extra level l + 1 is introduced such
that

Ml+1 =Ml, Pl = Rl+1 = Ql+1 = I, Al+1 = Al,

and the initial residual on level l+1, zl+1 = Al+1x
(−1)
l+1 −b. The algorithm NSMG(k, zk+1, x

(−1)
k)

is the following,
1) compute Rk+1zk+1 ∈Mk,

9.7. Complexity of multigrid 393

2) smoothing: x(0)
k = M

(1)
k x

(−1)
k such that

Akx
(0)
k +Rk+1zk+1 = z

(0)
k ,

where ‖z(0)
k ‖ ≤ ρ

(1)
k ‖zk+1‖.

3) let x̂(1)
k = x

(0)
k , ẑ

(1)
k and γ(1)

1 = 0,
4) for i = 1, . . . , µk

4a) if i > 1

Akx
(i−1)
k +Rk+1zk+1 = θ̂

(i)
k ,

smoothing: x̂(i)
k = M

(i)
k x

(i−1)
k such that

Akx
(i)
k +Rk+1zk+1 = ẑ

(i)
k , ‖ẑ(i)

k ‖ ≤ ρ
(i)
k ‖θ̂

(i)
k ‖,

4b) if k > 1

correction: γ(i)
k =k−1 x̄

(i)
k−1 where x̄(i)

k−1 = NSMG(k − 1, ẑ
(i)
k , 0),

4c) Ak(x̂
(i)
k + γ

(i)
k) +Rk+1zk+1 = θ

(i)
k ,

4d) smoothing: x(i)
k = N

(i)
k (x̂

(i)
k + γ

(i)
k) such that

Akx
(i)
k +Rk+1zk+1 = z

(i)
k , ‖z(i)

k ‖ ≤ ε
(i)
k ‖θ

(i)
k ,

5) return xµk)
k .

Note that, in this formulation, the number of smoothing steps can vary at each iteration if ρ(i)
k

and ε(i)k are fixed. Two types of results were given in C. Douglas and J. Douglas [152]. The first
one only assumes the setsMk are nested and that

‖(I −Q−1
k Rk)u‖ ≤ δk‖u‖,∀u ∈Mk.

Remark that usually Qk cannot be inverted. Therefore, we must give a meaning to Q−1
k . For

some finite element problems, we can take Q−1
k as being the injection ofMk−1 intoMk. Oth-

erwise, it is chosen as a pseudo-inverse. Then, if Pk is the imbedding intoMk+1, we have

‖Q−1
l z

(µl)
l ‖ ≤ C(µl)

l ‖zl+1‖,

where the constants C(µk)
k are computed as

C
(1)
1 = ε

(1)
1 ρ

(1)
1 , C

(µk)
k =

µk∏
i=1

(ε
(i)
k ρ

(i)
k [δk + C

(µk−1)
k−1]), k > 1.

On some simple examples like the Poisson model problem, these bounds are far from being sharp.
To get better bounds Douglas and Douglas [152] introduced a decompositionMk = Sk ⊕ Tk
where Tk =Mk−1 andM⊥k−1 ∩Mk. The set Sk contains the high frequency components and
Tk the low frequencies. Then, refined bounds can be obtained by considering what happens to
the high and low frequencies before and after smoothing, see [152].

9.7 Complexity of multigrid
In this section we would like to estimate the number of floating point operations for the standard
multigrid method. Note that what is really interesting in this kind of elliptic problem solvers is
knowing the amount of work required to make the error between the exact solution u of the PDE

394 9. Multigrid methods

and the solution ukh given by the discrete algorithm smaller than a given threshold. This error is
the sum of the difference between u and uh the exact solution of the discrete problem ‖u− uh‖
and the difference ‖uh − ukh‖. If the cost per step of the iterative method is Cn and if the factor
of reduction of the norm of the error is independent of h (that is, n), then to have ‖u− ukh‖ ≤ ε,
the cost is O(n log n).

Let us denote by nl the number of grid points in Ωl, Wl the number of operations for one
multigrid iteration, W l

l+1 the number of operations for one two-grid iteration without solving on
the coarse grid. Then it is obvious that

Wl+1 = W l
l+1 + γWl,

W1 = W 0
1 +W0,

W0 being the number of operations to solve exactly on Ω0. The solution of the recurrence relation
for Wl is

Wl =

l∑
k=1

γl−kW k−1
k + γl−1W0.

Let us examine the 2D model problem. Then, nl = 4nl−1 so nl = 4ln0 and we shall see later
on that W l−1

l = Cnl, C being a small constant. Therefore, we have the following result.

Theorem 9.21. For the 2D model problem and with γ ≤ 3 the number of floating point opera-
tions for the multigrid method is of the order of n the number of points on the finest grid.

Proof.
Wl

C
= (γl

l∑
k=1

(
4

γ

k

) + γl−1)n0,

but
∑l
k=1(4

γ)k = (4l+1

γl
− 4)/(4− γ) so,

Wl

C
=

4l+1 − γl

4− γ
n0.

Wl

C
=

4l+1

3 n0 ≤ 4
3nl, for γ = 1,

4l+1−2l

2 n0 ≤ 2nl, for γ = 2,

(4l+1 − 3l)n0 leq4nl, for γ = 3.

But note that if γ = 4, then

Wl

C
= (γl

l∑
k=1

1 + γl−1)n0 = lnl +
nl
4
.

Since l is almost log2 nl,
Wl

C = O(nl log2 nl). Therefore, if γ = 1, 2, 3, Wl = O(nl).
Of course this result is true not only for the model problem but more generally for every prob-

lem on a square. Let us now try to estimate C for this problem. We also study the components
defined at the beginning, that is relaxed Jacobi, bilinear interpolation and weighted average re-
striction for a five point stencil. The Jacobi iteration can be conveniently expressed in terms of
the residual. We need to restrict the residual to the coarse grid. Therefore, the first thing to do is
to compute the residual. This requires 5 multiplications and 5 additions for each point. Knowing
the residual, the relaxed Jacobi method needs only 1 multiplication and 1 addition per point if

9.8. The full multigrid method 395

the reciprocals of the diagonal entries of the matrix are stored (remember that division is usually
much more costly than a multiply). Then, we have to restrict the residual but only for points of
the coarse grid, this amounts for 1 multiplication and 1 addition for each point of the fine grid.
Bilinear interpolation requires 1

2 multiplication and 5/4 additions per point. The total is approx-
imately 8 mults and 8 adds per grid point of the fine grid, therefore C is 16. One can see that for
usual dimensions the number of operations is roughly the same as, for instance, for the FACR(l)
method of Chapter 4, but multigrid methods can handle much more general problems.

The storage needed for the multigrid method is a little larger than for the more classical
iterations but not by much. For instance, for the 2D model problem, the storage is almost 4

3nl.
Generally for 2D problems the extra storage (for storing the vectors on the grid hierarchy) is
about 30%.

9.8 The full multigrid method
In the multigrid method one starts iterating from an initial vector defined on the finest grid and
doing relaxation steps and going down to coarser grids gives corrections to this starting vector.
A natural idea is to construct the starting vector for multigrid using the coarse grids. This is
known as the full multigrid method (FMG) or nested iteration (NI). To make this idea clear, let us
denote by Mr(w,Al, bl) the operator corresponding to r iterations of the multigrid method to
solve Alu = bl on Ωl, . . . ,Ω0 starting from w. Then, the FMG method is defined as

1) let ũ0 be the exact solution of A0ũ0 = b0
2) for k = 1, . . . , l

u0
k = Πk−1ũk−1,

ũk = Mr(u0
k, Ak, bk),

where Πk−1 is an interpolation operator, Ωk−1 → Ωk which may be distinct from Pk−1. ũl is
said to be an approximation of the true solution.

Clearly, the full multigrid method starts from the coarsest grid and at each step interpolates to
the next finest grid doing r iterations of the multigrid method before going upwards. As examples
and with the same notation as before and denoting interpolation by Πk−1 as ↗, the method is
depicted on figure 9.10 with three grids and γ = 1, r = 1.

Figure 9.10. Full multigrid, three grids, γ = 1, r = 1

With four grids and γ = 2, r = 1, we have Figure 9.11.

Figure 9.11. ull multigrid, four grids, γ = 2, r = 1

The question is to know how far ũl is from the solution of the problem. Let ul be the exact
solution of Alul = bl, we shall see that the difference between ũl and ul is of the same order

396 9. Multigrid methods

as the truncation error, that is, the difference between ul and u the solution of the underlying
continuous problem. Therefore, it is usually enough to stop with ũl. To prove this result we need
some technical hypotheses,
1) ‖Ml‖ ≤ η < 1, this means that the multigrid method we use at each step is convergent. We
assume that hl−1 = 2hl.
2) ‖Πl−1‖ ≤ C, C being a constant independent of hl.
3) ‖u− ul‖ ≤ K1h

k
1 , that i s, the truncation error is of order hk1l .

4) ‖w −Πl−1w‖ ≤ K2h
k2
l .

One can note that u is a function and ul a vector so it seems that ‖u − ul‖ has no meaning.
If we use the l2-norm, this is a shorthand notation for∑

(i,j)∈Ωl

(u(xi, yj)− (ul)i,j)
2)

1
2 .

Theorem 9.22. If k2 > k1 and ηrC2k1 < 1, then

‖ũl − ul‖ ≤ δhk1l , where δ =
ηrK1(1 + C1)

1− ηrC1
+O(1),

with C1 = C2k1 .

Proof. By definition
ũl − ul = Mr

l (u0
l − ul),

and
u0
l = Πl−1ũl−1,

then
u0
l − ul = Πl−1(ũl−1 − ul−1) + Πl−1(ul−1 − u) + (Πl−1u− u) + u− ul.

Let δl = ‖ũl−ul‖
h
k1
l

, then

δl ≤ ηr
(
C
‖ũl−1 − ul−1‖

hk1l
+ C
‖u− ul−1‖

hk1l
+K2h

k2−k1
l +K1

)
.

As hl−1 = 2hl, we have

‖ũl−1 − ul−1‖
hk1l

= 2k1
‖ũl−1 − ul−1‖

hk1l−1

= 2k1δl−1

and
‖u− ul−1‖

hk1l
= 2k1

‖u− ul−1‖
hk1l−1

≤ 2k1K1.

Therefore
δl ≤ ηr(C2k1δl−1 + CK12k1 +K1 +K2h

k2−k1
l).

Hence,
δl ≤ ηr(Cδl−1 +K1(1 + C1) +K2h

k2−k1
l).

If k2 > k1, we have
δl ≤ ηr(C1δl−1 +K1(1 + C1) +O(hl)).

9.9. Vector and parallel multigrid 397

The result follows from this inequality when l→∞.

When we use FMG, then the cost to reach the order of the discretization error (which is all we
can expect) is proportional to nl. The number of multigrid iterations that are done at each step
is usually quite small. For instance, for the model problem in 2D, it is enough to do only one
iteration.

9.9 Vector and parallel multigrid
Regarding vectorization, the problem is similar to classical iterative methods. The chosen smooth-
ing method must be vectorizable, for instance Red-Black Gauss-Seidel. When we are going to
the coarsest grids, we take every other point which means there could be a stride different from
1 in the vectors we use and this can give memory bank conflicts. This problem can be avoided
by using special storage schemes. Another problem which is more important is the following: as
we go down to coarsest grids the vector length becomes shorter and shorter, the computational
speed decreases and below some levels it is more efficient to do scalar computation.

The work about parallelizing the multigrid method has been well summarized by C. Douglas
[151] and also R. Tuminaro [442]. The most basic way to parallelize multigrid is to use the
standard method and the techniques that are usually invoked to introduce parallelism in classical
iterative methods. Domain decomposition methods that we shall study in Chapter 10 are good
candidates to parallelize the smoothers. Of course, when we reach the coarsest grids, it may be
that the number of unknowns assigned to each processor becomes very small and some proces-
sors may even be idle. This could or could not be a problem, the main goal being to compute the
solution faster than on a serial computer at a reasonable cost. Asynchronous iterations can also
be used as smoothers although this is not too much in favor, mainly because only a small number
of smoothing iterations are usually used.

There are two main kinds of multigrid variants for parallel computers,

• concurrent iterations,

• convergence acceleration.

The first approach tries to process all levels concurrently. The problem is distributed over all
grids, keeping all the processors busy all the time. Relaxation sweeps are done also on all lev-
els and, then the solutions are combined. Such an algorithm was proposed by Gannon and Van
Rosendale [212]. It assumes that n log2 n processors are available for 2D problems. All op-
erations are performed simultaneously on all unknowns on all levels. The solution is obtained
as

û =

fine∑
k=coarse

I lkuk,

where I lk are interpolation operators from grid level k to level l. The residual is redistributed
over all grids and relaxations are performed on all grids. The convergence rate is slower than
standard multigrid but, as all processors are kept busy, the solution can be obtained much faster
on parallel computers. For an analysis of this method, see Douglas [151] and Tuminaro [442].

To introduce the second approach, consider that if we are solving a 2D problem with one grid
point per processor, on the next level 3/4 of the processors are idle. Therefore, a natural idea is to
try solving 3 additional coarse problems and combine the result to accelerate convergence. This
leads to having the same number of unknowns on each level as this idea is applied recursively.
There are several methods using this idea. One method, the Parallel Superconvergent Multigrid,

398 9. Multigrid methods

was developed by Frederickson and McBryan [202]. They used the same interpolation and pro-
jection as in the standard method. An optimized Richardson method is used as the smoothing.
Experiments show that the convergence rate is better than the standard one.

Chan and Tuminaro [99] proposed a method where the residual r is split as

r2 = Zr, r1 = r − r2.

Ax1 = r1 is projected on coarse grids and Ax2 = r2 is solved by relaxation sweeps. Z is a filter
chosen to split the low and high frequencies.

Another kind of methods use approximateA-orthogonal spaces. A matrix Pi isA-orthogonal
to Pj if PiAPj = 0. Suppose that RiAPj = 0, 1 ≥ i, j ≥ q, i 6= j, let

Aix̃i = Rib, Ai = RiAPi.

Then the approximate solution is

x̂ =

q∑
i=1

Pix̃i.

The residual r̂ = b−Ax̂ is orthogonal to the subspace spanned by the columns ofRi. Note that if
Ri span the entire space, x̂ is the exact solution. However, this not really practical, therefore it is
interesting to study methods using approximate A-orthogonal spaces. As was done by Tuminaro
[442] let us consider an algorithm using four coarse grids. The iteration matrix for the two-grid
version is

M = (A−1 −
4∑
i=1

PiA
−1
i Ri)AS

ν .

Let

X =

R1

R2

R3

R4

 .

Each Ri satisfies RiX−1 = Ei where

Ei = (∆i,1 ∆i,2 ∆i,3 ∆i,4) ,

∆i,j being I if i = j and 0 otherwise. T is similar to

(I −
4∑
i=1

R1APi(RiAPi)

−1

R2APi(RiAPi)
−1

R3APi(RiAPi)
−1

R4APi(RiAPi)
−1

Ei)S̄
ν ,

with S̄ = XASA−1X−1. This can be written as WS̄ν with

W = −

0 Φ1,2 Φ1,3 Φ1,4

Φ2,1 0 Φ2,3 Φ2,4

Φ3,1 Φ3,2 0 Φ3,4

Φ4,1 Φ4,2 Φ4,3 0

 ,

where Φi,j = (RiAPj)(RjAPj)
−1. The matrixW measures the deviation fromA-orthogonality.

If we construct two operators such that R2P1 = 0, then R2 and P1 are also A-orthogonal if
Ax ∈ span(P1) for all x ∈ span(P1). Methods by Douglas and Miranker, see Douglas [150]

9.10. Algebraic multigrid 399

satisfy this requirement. For some problems, the operators are exactly A-orthogonal and this
leads to a direct method.

The methods introduced by Ta’asan and also by Hackbush [268, 269] fit into this framework.
These methods use interleaved grids which for a small problem in a square look like

3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2

In Hackbush’s method the four coarse spaces correspond to low-low frequencies, high-high in x
and y, low(x)-high(y), high(x)-low(y). The restriction operators are defined as

R1 =
1

8

 1 2 1
2 4 2
1 2 1

 , R2 =
1

8

−1 2 −1
−2 4 −2
−1 2 −1

 ,

R3 =
1

8

−1 −2 −1
2 4 2
−1 −2 −1

 , R4 =
1

8

 1 −2 1
−2 4 −2
1 −2 1

 ,

where R1 is applied at the even points, R2 at the even points in y, odd in x, R3 is applied at
the odd points in y, even in x and R4 is applied at the odd points. The prolongation operator is
Pi = RTi and Ai = RiAPi. A Fourier analysis explaining how this method works is given in
the Ph.D. thesis of R. Tuminaro [442] and subsequent papers [443, 444]. It turns out that this
method is more robust than standard multigrid and can be used for discontinuous coefficients or
anisotropic problems.

9.10 Algebraic multigrid
The standard multigrid method that we have explained in the previous sections cannot be used
as a black box solver for any PDE problem. For some problems like singularly perturbed equa-
tions, anisotropic problems or even problems with strong variations in the coefficients, the stan-
dard multigrid method is not robust. There are some (problem dependent) solutions to fix these
problems. For instance, semi coarsening (i.e. coarsening in only one dimension) can be used
and/or interpolation defined by using the fine grid matrix. Another solution is to use more robust
smoothers like line Gauss-Seidel or ILU. As an example, see the method defined by Dendy
[139]. Nevertheless, in all these variants, there is still a geometric type of coarsening related to
the mesh of the discretization of the problem. A major problem is that the user needs some good
knowledge of multigrid methods to be able to devise a robust method for his/her own problem.

Another type of methods is known as algebraic multigrid (AMG). Then, only the matrix A is
used regardless of the underlying PDE problem if any. This was introduced by Ruge and Stüben
[392]. It was hoped that this method could be used for much more general problems than the
standard multigrid method. However, it is not so easy to obtain a O(n) algorithm.

To describe the algorithm, we use the notation of Grauschopf, Griebel and Regler [251]. At
each level we have to partition the set of unknowns (denoted also as points) into coarse grid points
and fine grid points. Let N be the set of unknowns. The algorithm is defined for a symmetric
M-matrix. The idea is to identify points which are strongly coupled. Let I be a subset of N and

d(i, I) =

∑
j∈I −ai,j

maxj 6=i(−ai,j)
.

400 9. Multigrid methods

Let α be a given parameter and

Si = {j ∈ N | d(i, {j}) ≥ α}, Ui = {j ∈ N |i ∈ Sj}.

The selection of the set of coarse grid points C and fine grid points F is done in two stages,

[I]:
1) Set C = ∅, F = ∅
2) While C ∪ F 6= N

Pick i ∈ N\(C ∪ F) with maximal numbers of elements: |Ui|+ |Ui ∩ F |
if |Ui|+ |Ui ∩ F | = 0, set F = N\C else set C = C ∪ {i} and F = F ∪ (Ui\C).

[II]:
1) Set T = ∅
2) While T ⊂ F

Pick i ∈ F\T and set T = T ∪ {i}
Set C̃ = ∅, Ci = Si ∩ C and Fi = Si ∩ F
While Fi 6= ∅

Pick j ∈ Fi and set Fi = Fi\{j}
if d(j, Ci)/d(i, {j}) ≤ β

if |C̃| = 0, set C̃ = {j} and Ci = Ci ∪ {j}
else set C = C ∪ {i}, F = F\{i} and go to 2.

C = C ∪ C̃, F = F\C̃.

At level l when the set of points Nl is divided into sets Cl and Fl we can define the interpo-
lation operator P ll−1. For a given vector x we have (P ll−1x)i = xi if i ∈ Cl and

(P ll−1x)i = −
∑
j∈Cl

i
(ali,j + ci,j)xj

ali,i + ci,i
, i ∈ Fl,

where

ci,j =
∑
k 6∈ Cl

i
k 6= i

ali,ka
l
k,j

alk,i +
∑
p∈Cl

i
alk,p

.

The next matrix Al−1 is given by a Galerkin identity Al−1 = (P ll−1)TAlP ll−1. It remains to
choose the parameters α and β. In [251], it is recommended to set α = 0.25 and β = 0.35.
Numerical experiments are given in [251].

Many other algebraic methods have been defined over the years. Let us describe the mul-
tilevel method of Shapira [402]. This method uses three parameters α, 0 ≤ α < 1, β and γ
(β = γ = 0 for symmetric problems). Shapira defines a matrix A(α,β,γ). Then a(α,β,γ)

i,j = 1 if

j 6= i, |ai,j − aj,i| ≥ −γ + β min
l∈{i,j}

max
l≤k≤n

|al,k − ak,l|

and either
|ai,j | > α max

1≤k≤n,k 6=i
|ai,k| or |aj,i| > α max

1≤k≤n,k 6=j
|aj,k|,

and 0 otherwise. N being an index set, one defines a recursive procedure to obtain the coarse (c)
and (f) fine points,

coarsen(S,A, c):
1) Set f = F = ∅,
2) Pick i ∈ S and set c = C = {i},

9.10. Algebraic multigrid 401

3) Until c ∪ f = S:
3.1 F = ∪i∈C{j ∈ S|a(α,β,γ)

i,j 6= 0}\c\f ,
3.2) f = f ∪ F ,
3.3) coarsen(∪i∈F {j ∈ S|a(α,β,γ)

i,j 6= 0}\c\f,A,C),

3.4) if C = ∅, pick i ∈ S\c\f , preferably i ∈ ∪k∈F {j ∈ S|a(α/2,β/2,2γ)
k,j 6= 0} and

set C = {i},
3.5) c = c ∪ C.

After applying this procedure the sets c and f are further refined by using a small parameter
δ: if for some i ∈ f and

max{ai,i −
∑

j 6=i,j∈f or a(α,βγ)
i,j

=0

|ai,j |,
∑

j∈c,a(α,β,γ)
i,j

6=0

|ai,j |} ≤ δ|ai,i,

then c = c∪{i}, f = f\{i}. For any set g ∈ N , Jg denotes the injection operator. Let rs(B) be
a diagonal matrix with diagonal elements equal to the row sums of B and Â be a matrix whose
elements are defined as ai,j if a(α,β,γ)

i,j = 0 and either i ∈ f and j ∈ c or i ∈ c and j ∈ f and 0
otherwise. For any matrix B we denote

B =

(
Bf,f Bf,c
Bc,f Bc,c

)
.

Let d(B) be a diagonal matrix whose diagonal elements are those of B and

Ã =

(
d(Af,f)− rs(|Af,f − d(Af,f)|)− rs(|Âf,c|) Af,c − Âf,c

Ac,f − Âc,f Ac,c

)
.

Ã is subsequently modified to obtain a non-singular Ãf,f . If i ∈ f and (Ãf,f)i,i ≤ δ|ai,i|,
(Ãf,f)i,i = rs(|Af,c − Âf,c|)i,i. The prolongation and restriction matrices are defined by

P−1 =

(
Ãf,f Ãf,c

0 I

)
, R−1 =

(
Ãf,f 0

Ãc,f I

)
.

The coarse grid matrix AC is defines as AC = JcRAPJ
T
c . Let

W = Rf,fd(Af,f)Pf,f , F =

(
W 0
0 Q

)
.

Shapira [402] defines a two level iteration by

xk+1 = xk + PF−1R(b−Axk).

Relaxations may also be added before and after as in multigrid. The multilevel method is defined
as the following. LetAi be a block diagonal matrix whose diagonal blocks areW1,W2, . . . ,Wi, Qi.
Then,

xk+1 = xk + PL,1A
−1
L RL,1(b−Axk),

where for i > k, Pk,i = Rk,i = I, Pi,i = Pi, Ri,i = Ri and for i < k, Pk,i = PiPi+1 · · ·Pk, Rk,i =
RkRk−1 · · ·Ri. Relaxations steps may be added in a multigrid spirit. For symmetric positive
definite matrices, Shapira [402] shows a bound proportional to the number of levels for the con-
dition number of the iteration matrix or to its square depending on the problem. This multilevel
method may be accelerated by any iterative method of Chapter 7.

Many other methods have been proposed over the years, see for instance Chan, Go and
Zikatanov [91], Braess [52], Kickinger [310], Mandel and al. [330, 454, 455], Francescatto [200,
201], Notay [359].

402 9. Multigrid methods

9.11 Bibliographical comments
The origins of the multigrid method is in the Russian literature in the sixties (Fedorenko [186]).
Then, it was developed and popularized by A. Brandt [61, 62, 63]. A great deal of work was
also done by the German school, see [271]. Since the seventies, many papers have been written
about multigrid, see the bibliography in MGNET maintained by C. Douglas. For a good account
of the method, see the book by Hackbusch [267]. With the latest research there is less difference
between multilevel and domain decomposition methods, see Chapter 10 about this point.

10

Domain decomposition
and multilevel methods

10.1 Introduction to domain decomposition
Domain decomposition (DD) is a very natural framework in which to develop solution methods
for parallel computers. Although the idea is quite old and it has been used for many years,
mainly in structural mechanics, the interest in domain decomposition was renewed from the end
of the eighties. This interest was motivated by the advent of parallel computers with physically
distributed memories. There are a lot of DD methods and it is not possible to describe all of them
in a book like this. However, we shall look at some of the main trends in this area.

Although this is not completely the case, DD has generally been used for linear systems
arising from PDEs discretization. Since most of the methods are closely related to partitioning
the domain on which the PDE is to be solved, it is not always possible to study all DD methods
from a purely algebraic point of view. Therefore, from time to time, we shall have to go back to
the continuous problem and the discretization of the PDE problem. We shall restrict ourselves
to problems which give rise to symmetric positive definite matrices although some DD methods
have been developed for indefinite and non-symmetric problems.

For constructing algorithms for parallel computers, a good principle is to divide the problem
into smaller pieces, solve the subproblems in parallel and then to paste the local results together.
This strategy has often been called “divide and conquer”. DD methods proceed in a similar way.
First of all, the domain Ω (or preferably the problem) is split into subdomains (or subproblems),
a problem is defined and solved on each subdomain in parallel and then the partial solutions are
glued together to get the global solution. Originally, DD algorithms were devised to use existing
software for solving subproblems where separation of variables can be used (like FFT) and also
for computers with small memories, as the subproblems can then fit into the memories of these
machines. Today, memories are much larger and cheaper and DD methods are used to introduce
parallelism in very strongly coupled problems. The modern perspective on DD is to use these
techniques to construct preconditioners that will be used in some Krylov methods (CG for SPD
matrices). We can divide DD methods into two main categories: with and without overlapping.
We shall first study some methods with overlapping. They are generically known as Schwarz
methods as Hermann Schwarz in 1869 was probably the first to use a domain decomposition
with overlapping. His goal was to prove existence of the solution of a PDE problem on a domain
which was the union of a disk and a rectangle. He used an iterative method (known today as the
Schwarz alternating method) and proved that it converges to the solution of the PDE.

We shall then turn to methods without overlapping. In general, they reduce the problem to
another one of smaller dimension for the unknowns on the interfaces. They are called Schur

403

404 10. Domain decomposition and multilevel methods

complement or substructuring methods. There are many variants of these methods. Another im-
portant distinction between methods is the algorithm which is used for solving the subproblems.
One can use either a direct method (like Gaussian elimination) or iterative methods or simply
a preconditioner for the matrix of the subproblem. Combining all these possibilities gives rise
to a very large number of algorithms. A good source of information on DD methods are the
proceedings of the annual DD conferences that started in 1987 in Paris [226, 89, 90, 227, 309],
etc. . . , see also the book by Smith, Bjørstad, and Gropp [417].

The ultimate goal being to develop a method whose complexity is proportional to the number
of unknowns n, if we use CG, we need a preconditioner M such that the condition number
κ(M−1A) is independent of n. Moreover, it is desirable that the condition number does not
depend on the number of subdomains or jumps in the coefficients. During the development of
DD methods, it was realized that to reach this goal some sort of global transport of information
is needed. This gives rise to multilevel methods which can be also be seen as extensions of the
multigrid method.

The domain decomposition framework has also been used to match different physical mod-
elings. For instance, in studying flows around airplanes, one would like to use the potential
equations in some regions, the Euler equations in others or even the Navier-Stokes equations.
Another example for computations of flows around space shuttles is the matching of the Boltz-
mann equation and the Navier-Stokes equations. Domain decomposition offers a very natural
framework to match different models. This has been particularly developed by Glowinski, Péri-
aux and their co-workers, see, for instance, Glowinski, Périaux and Terrasson [228]. It can also
be used in some combustion problems to handle boundary layers, see Garbey [214].

10.2 Schwarz methods
10.2.1 The classical Schwarz alternating method

Suppose we are solving a second order elliptic PDE in a bounded two-dimensional domain Ω.
For simplicity, we consider the domain Ω split into two overlapping subdomains Ω1 and Ω2. Let
Γi, i = 1, 2, be the part of the boundary of Ωi enclosed in Ω (see Figure 10.1).

Ω

Ω

1

2

Γ

Γ
1

2

Figure 10.1. Overlapping subdomains

Roughly speaking, the Schwarz alternating method is the following: we guess a value for the
unknowns on the inner boundary Γ1, solve the problem exactly in Ω1, use the computed values on
the inner boundary Γ2 to solve exactly in Ω2 and repeat the process until convergence. This very
simple method “almost always” converges. A general theory has been given for PDE problems
by P.L. Lions [321, 322, 323] in terms of projections in Hilbert spaces. Of course, the rate of
convergence of the method depends on the extent of overlapping. The larger the overlapping, the

10.2. Schwarz methods 405

faster the convergence. This is expected since, when Ω1 = Ω2 = Ω, the method converges in
one iteration, but note that when the overlapping is larger, the cost of solving the subproblems
is higher. Therefore a trade-off has to be found between the number of iterations and the cost of
solving the subproblems. The following exposition is taken from Lions [321]. We consider the
Poisson model problem but the results are more generally true for bilinear forms. Let

−∆u = f in Ω, u|∂Ω = 0.

The basic Schwarz alternating algorithm can be formulated at the PDE level when u1 is given as

−∆u2k = f in Ω1, u2k|Γ1
= u2k−1|Γ1

,

−∆u2k+1 = f in Ω2, u2k+1|Γ2
= u2k|Γ2

,

and the given boundary conditions on the other parts of the boundary. The bilinear form a of the
problem is defined as

a(u, v) =

∫
Ω

∇u · ∇v dx.

We saw in Chapter 1 that the model problem can be written in variational form as

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω).

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2) and the projectors P1 and P2 defined by

a(Piv, w) = a(v, w), ∀w ∈ Vi, i = 1, 2.

The functions defined only on subdomains are extended by 0 to H1
0 (Ω). Then, we have

a(u2k − u, v1) = 0, ∀v1 ∈ V1, u
2k − u2k−1 ∈ V1,

a(u2k+1 − u, v2) = 0, ∀v2 ∈ V2, u
2k+1 − u2k ∈ V2.

It is easy to see that
u− u2k = (I − P1)(u− u2k−1),

u− u2k+1 = (I − P2)(u− u2k).

Therefore,
u− u2k+1 = (I − P2)(I − P1)(u− u2k−1).

This equation explains why this type of algorithm is more generally known as a multiplicative
Schwarz method. The mathematical formulation of the problem for studying convergence is

v0 ∈ V, v2k = (I − P1)v2k−1, v2k+1 = (I − P2)v2k.

We have to examine convergence of iterated projections. The following result shows that the
method converges.

Theorem 10.1. If V = V1 + V2, where the overbar denotes the closure of the set, then vk −→ 0.

Proof. See P.L. Lions [321].
Moreover, if V = V1 + V2 then

‖(I − P2)(I − P1)‖ ≤ c, c < 1.

406 10. Domain decomposition and multilevel methods

10.2.2 The matrix form of the Schwarz alternating method

The previous framework is very general. Let us now specialize to solving a second order elliptic
equation in a rectangle using a five point finite difference scheme with the natural (rowwise)
ordering. We solve Ax = b and we saw in Chapter 1 that the matrix is written blockwise as

A =

D1 −BT2
−B2 D2 −BT3

.
−Bm−1 Dm−1 −BTm

−Bm Dm

 .

Suppose the mesh is partitioned as in Figure 10.2

Ω

Ω

1

2

Figure 10.2. Partitioning of the rectangle with overlapping

Then, the matrix A(1) corresponding to Ω1 is

A(1) =

D1 −BT2
−B2 D2 −BT3

.
−Bp−2 Dp−2 −BTp−1

−Bp−1 Dp−1

 ,

and the matrix A(2) corresponding to Ω2 is

A(2) =

Dl+1 −BTl+2

−Bl+2 Dl+2 −BTl+3

.
−Bm−1 Dm−1 −BTm

−Bm Dm

 .

Let us denote the matrix A in block form as

A =

(
A(1) A(1,2)

X X

)
and A =

(
Y Y

A(2,1) A(2)

)
,

and let b1 and b2 be the restrictions of the right hand side b to Ω1 and Ω2. Note that A(1,2) has
only one non-zero block in the left lower corner and A(2,1) is zero except for the upper right
block. We denote by x1 and x2 the unknowns in Ω1 and Ω2 keeping the natural block numbering
that is

x1 = ((x1)1 · · · (x1)p−1) , x2 = ((x2)l+1 · · · (x2)m) .

10.2. Schwarz methods 407

We extend the vectors x1 and x2 to Ω by completing with the components of the previous iterate
and we define x2k by x2k

1 for the first p− 1 (block) components and the blocks p to m of x2k−1
2

(which we denote by x2k−1
1,2) for the remaining ones. Similarly x2k+1 is defined by the l first

components of x2k
1 (which we denote by x2k

2,1) and then the components of x2k+1
2 . With this

notation, we can write the Schwarz alternating method as

A(1)x2k
1 = b1 +

0
...
0

BTp (x2k−1
2)p

 , A(2)x2k+1
2 = b2 +

Bl+1(x2k

1)l
0
...
0

 .

By adding and subtracting suitable quantities, this is also

x2k
1 = x2k−1

1 + (A(1))−1(b1 −A(1)x2k−1
1 −A(1,2)x2k−1

1,2),

x2k+1
2 = x2k

2 + (A(2))−1(b2 −A(2)x2k
2 −A(2,1)x2k

2,1).

We note that the expression within parentheses in the first equation is simply the restriction to
Ω1 of the residual. In the same way the parenthesis in the second equation is the restriction of
the residual to Ω2. Then, we can write globally,

x2k = x2k−1 +

(
(A(1))−1 0

0 0

)
(b−Ax2k−1),

x2k+1 = x2k +

(
0 0
0 (A(2))−1

)
(b−Ax2k).

By eliminating x2k we obtain

x2k+1 = x2k−1 + [

(
(A(1))−1 0

0 0

)
+

(
0 0
0 (A(2))−1

)
−
(

0 0
0 (A(2))−1

)
A

(
(A(1))−1 0

0 0

)
]r2k−1,

r2k−1 = b−Ax2k−1.

This shows that the Schwarz alternating method is nothing other than a preconditioned Richard-
son iteration (see Chapters 5 and 8). This method can also be written with another notation that
will be useful later on. We introduce restriction operators R1 and R2 such that

xk1 = R1x
k, xk2 = R2x

k.

R1 is simply (Ip−1 0) and R2 = (0 Im−l+1). The transposes of R1 and R2 are extension
operators. Then, we see easily that

A(1) = R1AR
T
1 , A(2) = R2AR

T
2 .

In the first half step of the iteration, we have to restrict the residual by R1, apply the inverse of
R1AR

T
1 and extend the result by RT1 , so this is written as

x2k = x2k−1 +RT1 (R1AR
T
1)−1R1(b−Ax2k−1).

Similarly, the second half step is

x2k+1 = x2k +RT2 (R2AR
T
2)−1R2(b−Ax2k).

408 10. Domain decomposition and multilevel methods

Proposition 10.2. The matrix Pi = RTi (RiAR
T
i)−1RiA, i = 1, 2 is an orthogonal projection in

the scalar product defined by A.

Proof. We have

PiPi = RTi (RiAR
T
i)−1RiAR

T
i (RiAR

T
i)−1RiA = Pi.

Moreover,
APi = ARTi (RiAR

T
i)−1RiA = (APi)

T .

If εk is the error, we have

ε2k = (I − P1)ε2k−1, ε2k+1 = (I − P2)ε2k.

Therefore, Pi is the discrete version of the projection operator we introduced earlier. We can eas-
ily generalize this method to more than two subdomains. We remark that if we choose the restric-
tions Ri properly the point and block Gauss-Seidel iterations fit into this general framework.
Hence, the Schwarz alternating method is simply a generalization of the block Gauss-Seidel
algorithm where the restriction operators allow for overlapping of the blocks.

The Schwarz alternating method can also be viewed as directly applying the block Gauss-Seidel
algorithm to a larger enhanced problem, see Rodrigue and Simon [386] and W.P. Tang [431].

10.2.3 The rate of convergence

We can study the rate of convergence of the Schwarz alternating method for general problems;
however, for the sake of simplicity let us consider a one dimensional Poisson model problem.
We use the analog of the previous notation. The matrices which are involved are

A(1) =

2 −1
−1 2 −1

.
−1 2 −1

−1 2

of order p − 1 and A(2) which is the same matrix but of order n − l. We saw in Chapter 2 that
we explicitly know the inverses of these matrices.

Proposition 10.3. We have

ε2k
i =

i

p
ε2k
p , i = 1, . . . , p− 1,

ε2k+1
i =

n− i+ 1

n− l + 1
ε2k+1
l , i = l + 1, . . . , n.

Proof. Because we use exact solves for the subproblems, the equations corresponding to the
unknowns inside the subdomains are exactly verified and we have

A(1)

 ε2k
1
...

ε2k
p−1

 =

0
...
0

ε2k−1
p

 .

10.2. Schwarz methods 409

The components 1 to p − 1 of the error at iteration 2k are the components of the last column of
the inverse of A(1) times ε2k−1

p . Since the inverse is known explicitly, we obtain the result. The
proof is the same for the other relation.

Note that ε2k
p = ε2k−1

p and ε2k+1
l = ε2k

l . Then, it is clear how the error is reduced during the
iterations. At the end of the first half step, the error is maximum for the node p and linear (being
0 at the ends of the interval). At the end of the second half step, the error is maximum for the
node l and linear, see Figure 10.3 where the errors for three half steps are shown. The error in
the first half step is the solid line. The error in the second half step is the dashed line (partially
hidden by the others). The error in the third half step is the dash-dotted line. Using the previous
results, we can relate the maxima of the error at odd steps.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Figure 10.3. Errors for three half steps of the Schwarz method

Theorem 10.4. At odd steps, the maximum of the (absolute value) of the error is obtained for
node l and

‖ε2k+1‖∞ =
l

p

n− p+ 1

n− l + 1
‖ε2k−1‖∞.

Proof. The result is obvious from the previous discussion. We note that both factors are less
than 1 since

n− p+ 1

n− l + 1
= 1− p− l

n− l + 1
.

This result shows that the larger the overlap (p − l), the faster the convergence. The result
is also directly linked to the amount of diagonal dominance of the matrix. With a strictly diag-
onally dominant matrix (for instance having a diagonal with elements strictly larger than 2) the
convergence rate would be better. The same analysis can be done on this problem for a larger
number of subdomains since the error is still linear on each subdomain. Unfortunately, the rate
of convergence is slower when we have a large number of subdomains as shown on Figure 10.4
where we show the number of iterations for two and three subdomains as a function of the over-
lap (number of points in the overlapping region) for the one dimensional model problem. We
see that when we increase the extent of overlapping we have a large decrease in the number of
iterations at first and then they level off meaning that it is only marginally better to have a large
overlap.

Being a Gauss-Seidel-like method the multiplicative Schwarz method cannot be directly
accelerated by CG. However, it can be symmetrized in the same way as SSOR is derived from SOR.

410 10. Domain decomposition and multilevel methods

2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Figure 10.4. Number of iterations as a function of the overlap, solid line: two subdomains,
dashed: three subdomains

We simply have, at the end of a subdomain sweep, to add another sweep with the subproblems
solved in the reverse order.

10.2.4 Other boundary conditions

A way to reduce the overlap while maintaining a good convergence rate is to use other inner
boundary conditions than Dirichlet for the subproblems. This issue was considered by W.P. Tang
[431]. He proposed using inner mixed boundary conditions like continuity of

ωu+ (1− ω)
∂u

∂n
.

Numerical results show that this can substantially improve the rate of convergence for small
overlaps.

10.2.5 Parallelizing multiplicative Schwarz

Note that there is no parallelism in the Schwarz alternating method as we must solve for the sub-
problems sequentially. To get a parallel algorithm the same trick as for the SSOR preconditioner
can be used, namely a coloring of the subdomains such that a subdomain of one color is only
connected to subdomains of other colors. For a domain divided into strips (see Figure 10.5) a
red-black ordering is used, every other strip is black, and red strips alternate with black strips.
This means red subdomains are only related to black subdomains, so we can compute simulta-
neously, in parallel, all red subdomains say, and then all black subdomains. Now the method is
parallel, the degree of parallelism being half the number of subdomains.

10.2.6 The additive Schwarz method

We have seen that the alternating Schwarz method can be considered as a kind of Gauss-Seidel
algorithm. A way to get a parallel algorithm is to use instead a block Jacobi-like method. This
is known as the Additive Schwarz method, see Dryja and Widlund [158]. Roughly speaking,
we solve independently for each subdomain using the boundary conditions from the previous
iteration, extend the results to the whole domain and sum them. When used as an iterative
method, this is generally not convergent. However, this method is intended to be a preconditioner

10.3. An additive Schwarz preconditioner for parabolic problems 411

Figure 10.5. Red-Black partitioning of the rectangle

for CG which is defined as
M−1 =

∑
i

RTi (RiAR
T
i)−1Ri,

where the summation is over the number of overlapping subdomains. More generally, one can
replace the exact solves for each subdomain by approximations and define

M−1 =
∑
i

RTi M
−1
i Ri.

10.2.7 Adding a coarse mesh correction

The rate of convergence of the multiplicative or additive Schwarz methods depends on the num-
ber of subdomains. An improvement on this is to add a coarse grid correction. The coarse grid
corresponds to the interfaces in the partitioning. For instance, for additive Schwarz, we define

M−1 =
∑
i

RTi (RiAR
T
i)−1Ri +RT0 A

−1
C R0,

the coarse grid operator may be chosen as a Galerkin approximation AC = R0AR
T
0 . Generally,

if the extent of overlap is kept proportional to the “sizes” of the subdomains the number of
iterations is independent of n and of the number of subdomains. Remark that the solution of
the coarse grid problem is usually not parallel. This is a very general framework for defining
preconditioners. It will also be used for DD methods without overlapping.

10.3 An additive Schwarz preconditioner for parabolic
problems

In this section, we consider a method specially designed for parabolic PDEs like

∂u

∂t
− ∂

∂x

(
a(x, y)

∂u

∂x

)
− ∂

∂y

(
b(x, y)

∂u

∂y

)
= f, in Ω ⊂ �2,

u |∂Ω= 0, u(x, 0) = u0(x).

The model problem that is considered is the heat equation,

∂u

∂t
−∆u = f,

412 10. Domain decomposition and multilevel methods

with Dirichlet boundary conditions, Ω being the unit square. For stability and efficiency an
implicit Crank-Nicolson scheme is used as described in the following framework. Consider the
general parabolic partial differential equation,

∂u

∂t
+ Lu = f,

with L being a second order self-adjoint linear elliptic operator. The (space) operator L is dis-
cretized with a standard finite difference scheme with m + 1 points on each side of the square
domain Ω. The mesh size h is given by

h =
1

m+ 1
.

Then, we obtain a sparse matrix A (of order m2 ×m2) from L,

L =⇒ 1

h2
A,

where A is a block tridiagonal matrix (corresponding to the steady state problem Lu = f). Time
is discretized with the usual centered scheme with t ∈ [0, T], k = ∆t being the time step, p
referring to the values of unknowns at time pk, we have

up+1 − up

k
+

1

2h2
(Aup+1 +Aup) =

1

2
(fp+1 + fp),

or

2
h2

k
(up+1 − up) +Aup+1 +Aup = h2(fp+1 + fp).

At every time step this gives a linear system to solve,(
2
h2

k
I +A

)
up+1 = 2

h2

k
up −Aup + h2(fp+1 + fp).

The advantages of the implicit centered scheme are its second order accuracy (which means that
the truncation error is O(k2) + O(h2)) and unconditional stability that allows larger time steps
than more straightforward explicit schemes. In practice, one chooses to solve the problem in the
form

Atx = h2(fp+1 + fp)− 2Aup,

where θ = 2h
2

k , and At = θI + A. Then, up+1 = x + up. We remark that for our problem, At
is a symmetric strictly diagonally dominant M-matrix.

Although domain decomposition preconditioners for elliptic problems can also be used in
our case, we shall use the peculiarities of the time dependent problems to derive a preconditioner
that is both efficient and very easy to implement. This method was inspired by an algorithm of
Y. Kuznetsov [312]. It belongs to the class of Additive Schwarz methods. However, contrary to
Kuznetsov, we use CG to solve the linear system at each time step and domain decomposition,
only to provide a preconditioner.

The domain Ω is divided into non-overlapping subdomains Ωi, i = 1, . . . , l. Each Ωi is
extended to a domain Ω̂i that overlaps the neighbors of Ωi (restricted of course to Ω), see Fig-
ure 10.6, where Ωi corresponds to the light gray area and Ω̂i to the same plus the dark grey
area.

To solveMz = r, the following steps are performed: for each subdomain Ω̂i, i = 1, . . . , l, let
Âi be the ni×ni matrix arising from the discretization of the problem on Ω̂i with homogeneous

10.4. Algebraic domain decomposition methods without overlapping 413

Figure 10.6. Example of one subdomain

Dirichlet boundary conditions. Let r̂i be the vector of length ni that will be the right hand side
on Ω̂i, whose entries are equal to those of r for components corresponding to mesh points in Ωi
and 0 elsewhere. Then, let ẑi be defined by solving a problem on Ω̂i:

Âiẑi = r̂i.

Then, we extend ẑi to a vector zi on the whole Ω with 0 components corresponding to mesh
points outside Ω̂i. The solution z is simply defined as

z =

l∑
i=1

ẑi.

The main problem is to know where to put the artificial boundaries, that is, the definition of
Ω̂i. Some hints and some bounds are given by the study of the decay of elements of the inverse
A−1
t , see Meurant [347]. However, usually a moderate amount of overlapping gives good re-

sults, see the numerical experiments in [346, 345]. This example shows that to develop efficient
methods, one has to take into account the specific nature of the problem to be solved. In this
case, the 1/∆t term on the diagonal of the matrix makes the matrix more diagonally dominant
than for a stationary problem. Because of this we do not really need to use a coarse mesh to
transport the information. Variants of this method can be designed using other inner boundary
conditions than homogeneous Dirichlet. Preconditioners can be used instead of direct solvers for
the subproblems, etc. . .

10.4 Algebraic domain decomposition methods without
overlapping

In this section we introduce the main ingredients for domain decomposition methods without
overlapping. For the sake of simplicity we shall first consider a square domain Ω decomposed
into two subdomains. In the following sections, this will be generalized to more subdomains and
to more general domains. Let us consider an elliptic second order PDE in a rectangle discretized
by standard finite difference methods. Let Ω1 and Ω2 be the two subdomains and Γ1,2 the
interface which is a mesh line (see Figure 10.7).

414 10. Domain decomposition and multilevel methods

Ω

Ω

1

2

Γ1,2

Figure 10.7. Partitioning of the rectangle with non-overlapping subdomains

We shall denote by m1 (resp. m2) the number of mesh lines in Ω1 (resp. Ω2), each mesh line
having m mesh points (m = m1 +m2 + 1). To describe the domain decomposition method, we
renumber the unknowns in Ω. Let x1 (resp. x2) be the vector of unknowns in Ω1 (resp. in Ω2)
and x1,2 be the vector of the unknowns on the interface. Within each subdomain we order the
unknowns with the usual row-wise ordering. With this numbering of the unknowns, the linear
system can be rewritten blockwise as A1 0 E1

0 A2 E2

ET1 ET2 A12

 x1

x2

x1,2

 =

 b1
b2
b1,2

 . (10.1)

It is important to understand the meaning of equation (10.1). A1 (resp. A2) is a block tridiagonal
matrix that represents the coupling of the unknowns within Ω1 (resp. Ω2). A12 is a (point)
tridiagonal matrix that represents the coupling of the unknowns on the interface. E1 (resp. E2)
represents the coupling of Ω1 (resp. Ω2) with the interface. Note that when using the five point
finite difference scheme, E1 and E2 are sparse matrices as the interface is only coupled with one
mesh line above the interface in Ω2 and one mesh line below in Ω1. Therefore,

E1 = (0 0 . . . 0 Em1
1)T , E2 = (E1

2 0 . . . 0)T ,

where Em1
1 and E1

2 are diagonal matrices.
Most algebraic DD methods are based on block Gaussian elimination (or approximate block

Gaussian factorization) of the matrix in equation (10.1). The goal is to solve the system (10.1)
by an iterative method. Basically, we have two possibilities depending on the fact that we can or
cannot (or do not want to) solve linear systems corresponding to subproblems like{

A1y1 = c1
A2y2 = c2

(10.2)

“exactly” with a direct method (or with a fast solver). If we are not able to (or do not want
to) solve exactly these systems then, we can use an iterative method or replace A1 and A2 by
approximations. Let us consider successively these two possibilities.

10.4.1 Exact solvers for the subdomains

In this first class of methods, we eliminate the unknowns x1 and x2 in the subdomains. This
gives a reduced system for the interface unknowns

Sx1,2 = b1,2, (10.3)

10.4. Algebraic domain decomposition methods without overlapping 415

with
b1,2 = b1,2 − ET1 A−1

1 b1 − ET2 A−1
2 b2,

and
S = A12 − ET1 A−1

1 E1 − ET2 A−1
2 E2.

The matrix S is the Schur complement ofA12 inA. Of course, A−1
1 andA−1

2 are dense matrices.
Therefore, it is too costly to construct S. From the structure of E1 and E2, we see that if we
consider A1 and A2 as block tridiagonal matrices (as we did before), a block corresponding to
a mesh line, we only need to know the right lower block of the inverse of A1 and the upper left
block of the inverse of A2. This can be computed by solving m linear systems with the matrix
A1 and m linear systems with the matrix A2. These solves are usually done through the LU
factorization of both matrices. As we shall see later on, since we only need the last block of
unknowns in one case and the first one in the other case, it is more advantageous to use a block
LU factorization for the former and a block UL factorization for the latter. This will lead to a
number of operations ofO((m1 +m2)m3). Of course, the two solves are independent from each
other and can be performed in parallel.

Anyway, constructing and factoring S is costly (but it was done in the past in applications
in structural mechanics where many domains are similar and the matrices need only be factored
once; this method was called substructuring). A more economical solution is to solve the reduced
system with matrix S on the interface with an iterative method. Then, we need to know the
properties of the Schur complement to be able to choose a suitable iterative method. As we saw in
Chapter 1, if A is a symmetric positive definite M-matrix, S is also a symmetric positive definite
M-matrix. An efficient iterative method for solving such systems is PCG, the preconditioned
Conjugate Gradient method. Solving the reduced Schur complement system (10.3) is interesting
as we have the following result.

Theorem 10.5. For the Poisson model problem the condition number of the Schur complement
is

κ(S) = O

(
1

h

)
.

Proof. This result will be proved later when computing the eigenvalues of S.
Therefore, the reduced system has two interesting properties: the dimension is

√
n and the

condition number is an order of magnitude better. One of the operations that we have to do for
performing an iteration of PCG is the product of the matrix S by a given vector, say p. This may
seem a costly operation and moreover, as we do not wish to compute the elements of S. However
the product, Sp can be computed easily as

Sp = A1,2p− ET1 A−1
1 E1p− ET2 A−1

2 E2p,

p being a vector defined on the interface. The vector A1,2p is easy and cheap to compute as A1,2

is a symmetric tridiagonal matrix. The matrices E1 and E2 take p on the interface and extend it
to Ω1 and Ω2, so that

E1p = (0 . . . 0 Em1
1)T p = (0 . . . 0 Em1

1 p)T ,

E2p = (E1
2 0 . . . 0)T p = (E1

2p 0 . . . 0)T .

Then, w1 = A−1
1 E1p is computed by solving

A1w
1 = E1p, (10.4)

416 10. Domain decomposition and multilevel methods

This is solving a linear system corresponding to a problem in Ω1. Note that only the last block
of the right-hand side is different from 0 and because we only need ET1 w

1, the last block w1
m1

of
the solution w1 is what we must compute. Similarly, w2 = A−1

2 E2p is computed by solving

A2w
2 = E2p, (10.5)

a problem in Ω2 and we note that only the first block component of the right-hand side is non-zero
and that we only need the first block of the solution w2

1 . Finally, we have

Sp = A1,2p− w1
m1
− w2

1.

We have just shown that we do not need to explicitly construct S to be able to compute Sp
as this can be done through subdomain solves. Regarding parallel computing, the important
fact is that the linear systems (10.4) and (10.5) are independent and therefore can be solved
in parallel. Of course, in this simple problem, the degree of parallelism is only two which is
not really interesting, but the fact that the degree of parallelism is the number of subdomains will
generalize when we consider more than two subdomains. This method can be seen as being semi-
iterative (or semi-direct depending on one’s preferences). Direct solvers can be used in parallel
on the subdomains and an iterative method is used to patch these local solutions together to get
the global solution of the problem. Moreover, this kind of method allows the use of fast solvers
(like FFT) on domains where fast solvers cannot directly be used. Consider, for instance, solving
the Poisson equation in the L-shaped domain in Figure 10.8 where the domain decomposition
method may use fast solvers in each of the rectangular domains.

Figure 10.8. L-shaped domain

To improve the convergence rate of CG on the reduced system, a preconditioner M is needed.
We have seen that the condition number of S is of the order of 1/h, so we are looking for a
preconditioner improving upon that. We would ideally like to find a preconditioner M such that

κ(M−1S) = O(1).

This will imply that when h gets arbitrarily small the number of iterations stays approximately
constant to reach a given precision. Then, the total number of operations will be proportional
to the number of operations for one iteration. We must note too that to be able to use CG on a
parallel computer, solving a linear system with M must be parallelizable. Therefore, our main
problem with this approach is

Find an approximation of the Schur complement S

10.4. Algebraic domain decomposition methods without overlapping 417

10.4.2 Approximate solvers for the subdomains

In this case, we suppose that we are not able or do not want, because of the cost and storage, to
use a direct method to “exactly” solve {

A1y1 = c1,

A2y2 = c2.

We suppose that these subproblems can only be solved approximately using an iterative method
or that we would like to replaceA1 andA2 by approximations (preconditioners). Let us consider
the second possibility. To solve (10.2) we shall use PCG on all the unknowns that is on the whole
of Ω. The problem is to find a global preconditioner M for the permuted form of A. This is
the point where we shall use ideas of domain decomposition. The preconditioner M must be
symmetric positive definite. Guided by the way block preconditioners were defined in Chapter 8
(see Concus, Golub and Meurant [119]), let us choose M in the form

M = L

M−1
1

M1
2

M−1
1,2

LT ,

where M1 (resp. M2) is of the same order as A1 (resp. A2) and M1,2 is of the same order as
A1,2. L is block lower triangular

L =

M1

0 M2

ET1 ET2 M1,2

 .

Then, we see how parallelism is introduced. At each PCG iteration, we must solve a linear system
like

Mz = M

 z1

z2

z1,2

 = r =

 r1

r2

r1,2

 .

This is done by first solving Ly = r, where the first two steps are

M1y1 = r1, M2y2 = r2.

This can be done in parallel. Then, we solve for the interface

M1,2y1,2 = r1,2 − ET1 y1 − ET2 y2.

To obtain the solution, we have a backward solve step as I 0 M−1
1 E1

I M−1
2 E2

I

 z1

z2

z1,2

 =

 y1

y2

y1,2

 .

This implies that z1,2 = y1,2 and

M1w1 = E1z1,2, z1 = y1 − w1,

M2w2 = E2z1,2, z2 = y2 − w2.

The last two stages can be done in parallel. Therefore, the behaviour of the algorithm is to per-
form two independent solves on the subdomains, a solve on the interface and two other indepen-
dent solves on the subdomains. The problem we are facing is how to choose the approximations

418 10. Domain decomposition and multilevel methods

M1, M2 and M1,2. If we multiply together the three matrices whose product defines M , we
obtain

M =

M1 0 E1

0 M2 E2

ET1 ET1 M∗1,2

 ,

where
M∗1,2 = M1,2 + ET1 M

−1
1 E1 + ET2 M

−1
2 E2.

Therefore, as we would like M to be an approximation of A, it makes sense to choose

M1 ≈ A1, M2 ≈ A2,

and
M∗1,2 ≈ A1,2 =⇒M1,2 ≈ A12 − ET1 M−1

1 E1 − ET2 M−1
2 E2.

That is, if the inverse of M1 (resp. M2) is also a good approximation of the inverse of A1 (resp.
A2), we are back to the same problem as before; that is to say, M1,2 must be an approximation
to the Schur complement S.

This shows that the two different classes of methods we distinguished before give rise to the
same fundamental problem of constructing an approximate Schur complement. We shall now
look at solving this problem. Of course, there are many ways of getting approximate Schur
complements and we shall be looking only at a few of them.

10.5 Approximate Schur complements in the two
subdomains case

In this section, we look at different possibilities of deriving approximations to Schur comple-
ments in the case of two subdomains. To be able to do so, we use some results on tridiagonal and
block tridiagonal matrices that were established in Chapter 2. Then, we show how to compute the
eigenvalues of the Schur complement in the case of separable equations and from there, we de-
rive approximations that can be used in a more general setting. Next, we study other methods for
algebraically constructing approximations for discontinuous coefficients problems arising from
the discretization of general elliptic PDEs.

10.5.1 The Schur complement for block tridiagonal matrices

In this section we exploit the fact that A has a block tridiagonal structure,

A =

D1 −BT2
−B2 D2 −BT3

.
−Bm−1 Dm−1 −BTm

−Bm Dm

 ,

to derive other expressions for the Schur complement in the two subdomains case. If we use our
domain decomposition ordering of the unknowns, we have

A1 =

D1 −BT2
−B2 D2 −BT3

.
−Bm1−1 Dm1−1 −BTm1

−Bm1 Dm1

 ,

10.5. Approximate Schur complements in the two subdomains case 419

A2 =

Dm1+2 −BTm1+3

−Bm1+3 Dm1+3 −BTm1+4

.
−Bm−1 Dm−1 −BTm

−Bm Dm

 ,

and
A1,2 = Dm1+1, Em1

1 = −BTm1+1, E1
2 = −Bm1+2.

To simplify the expression of the Schur complement S, we consider a block twisted factorization
of A, the block in the center being j = m1 + 1. For further reference, we introduce the block
LU and UL factorizations. Let

A1 = (∆ + L1)∆−1(∆ + LT1),

where ∆ is a block diagonal matrix and L1 is the block lower triangular part of A1 which is of
block order m1. Similarly, we have

A2 = (Σ + LT2)Σ−1(Σ + L2),

where Σ is a block tridiagonal matrix and L2 is the block lower triangular part of A2. Note
that A2 is of block order m2. To simplify the notation, we denote the diagonal blocks of Σ by
Σm1+2, . . . ,Σn. By equating, we immediately obtain that{

∆1 = D1 ,

∆i = Di −Bi∆−1
i−1B

T
i , i = 2, . . . ,m1

(10.6)

and {
Σm = Dm ,

Σi = Di −BTi+1Σ−1
i+1Bi+1, i = m− 1, . . . ,m1 + 2

(10.7)

Theorem 10.6.

S = Dm1+1 −Bm1+1∆−1
m1
BTm1+1 −BTm1+2Σ−1

m1+2Bm1+2. (10.8)

Proof. Straightforward.

10.5.2 Eigenvalues of the Schur complement for separable problems

We specialize to the matrix arising from a separable problem (see Chapter 4). To simplify a bit
more, we consider the matrix

A =

T −I
−I T −I

.
−I T −I

−I T

 , (10.9)

where we assume that we know the eigenvalues of the symmetric matrix T . Then,

T = QΛQT ,

420 10. Domain decomposition and multilevel methods

Q being an orthogonal matrix (QTQ=I) and Λ being a diagonal matrix whose diagonal elements
are the eigenvalues of T . As usual we denote these eigenvalues by λl, l = 1, . . . ,m. The matrix
in (10.9) is not the most general we can handle. Actually, we can replace the identity matrix I
by another matrix J as long as J and T commute which implies that they share the same system
of eigenvectors. Using (10.6) and (10.7), we can compute the eigenvalues of ∆i and Σi.

Theorem 10.7. The spectral decompositions of matrices ∆i and Σi are

∆i = QΛiQ
T , Σi = QΠiQ

T ,∀i

where Λi and Πi are diagonal matrices whose diagonal elements are given for l = 1, . . . ,m by{
(Λ1)l,l = Λl,l = λl,

(Λi)l,l = λl − 1
(Λi−1)l,l

, i = 2, . . . ,m1

and {
(Πm)l,l = λl,

(Πi)l,l = λl − 1
(Πi+1)l,l

, i = m− 1, . . . ,m1 + 2

Proof. As all the matrices in the block recurrences (10.6) and (10.7) share the same eigen-
vectors, we easily obtain the formulas for the eigenvalues.

According to Lemma 2.21, in the case of problem (10.9) we can solve analytically these
recurrence relations.

Proposition 10.8. If λl 6= 2, then

(Λi)l,l =
(rl)

i+1
+ − (rl)

i+1
−

(rl)i+ − (rl)i−
, i = 1, . . . ,m1,

(Πj)l,l =
(rl)

m−j+2
+ − (rl)

m−j+2
−

(rl)
m−j+1
+ − (rl)

m−j+1
−

, j = m, . . . ,m1 + 2

where (rl)± =
λl±
√
λ2
l
−4

2 .

Proof. See Lemma 2.21.

From the previous result and using (10.8), we obtain the result for the Schur complement.

Theorem 10.9. The spectral decomposition of the Schur complement is

S = QΘQT ,

where Θ is a diagonal matrix whose diagonal elements θl are given by

θl = λl −
(rl)

m1
+ − (rl)

m1
−

(rl)
m1+1
+ − (rl)

m1+1
−

−
(rl)

m2
+ − (rl)

m2
−

(rl)
m2+1
+ − (rl)

m2+1
−

, l = 1, . . . ,m (10.10)

where (rl)± =
λl±
√
λ2
l
−4

2 .

10.5. Approximate Schur complements in the two subdomains case 421

Proof. Since Dm1+1 = T = QΛQT , Bm1+1 = Bm1+2 = I and

∆−1
m1

= QΛ−1
m1
QT , Σ−1

m1+2 = QΠ−1
m1+2Q

T ,

this proves that S = QΘQT with Θ = Λ−Λ−1
m1
−Π−1

m1+2. Therefore, S has the same eigenvectors
as T and Θ is a diagonal matrix whose diagonal entries are the eigenvalues which are known from
Proposition 10.8.

Note that we do not need to explicitly know the eigenvectors Q to compute the eigenvalues.
Hence, this computation can be done for any separable problem, provided we are able to compute
the eigenvalues of the block matrices in A. When we do not know explicitly the solution of the
recurrence relations, they can be solved numerically. The analytical expression of the eigenvalues
was also derived for the Poisson model problem by Chan and Resasco [97] using the explicit
knowledge of the eigenvectors and in a more general setting by Meurant [342]. Let us give
another expression for formula (10.10) that is more useful for the model problem.

Proposition 10.10. Let λl = 2 + σl and γl =

(
1 + σl

2 −
√
σl +

σ2
l

4

)2

, then

θl =

(
1 + γm1+1

l

1− γm1+1
l

+
1 + γm2+1

l

1− γm2+1
l

)√
σl +

σ2
l

4
, ∀l = 1, . . . ,m. (10.11)

Proof. First, note that

λl = (rl)+ + (rl)−, 2

√
σl +

σ2
l

4
= (rl)+ − (rl)−.

Then, for p = m1 or m2,

λl
2
−

(rl)
p
+ − (rl)

p
−

(rl)
p+1
+ − (rl)

p+1
−

=
(rl)

p+1
+ + (rl)

p+1
−

(rl)
p+1
+ − (rl)

p+1
−

√
σl +

σ2
l

4
.

This is because

((rl)+ + (rl)−)((rl)
p+1
+ − (rl)

p+1
−)− 2((rl)

p
+ + (rl)

p
−)

2((rl)
p+1
+ − (rl)

p+1
−)

=
(rl)

p
+((rl)

2
+ − 1)− (rl)

p
−((rl)

2
− − 1)

2((rl)
p+1
+ − (rl)

p+1
−)

.

This gives the result since

(rl)
2
+ − 1 = (rl)+((rl)+ − (rl)−), (rl)

2
− − 1 = (rl)−((rl)− − (rl)+)

and we set

γl =
(rl)−
(rl)+

= (rl)
2
− =

(
1 +

σl
2
−
√
σl +

σ2
l

4

)2

.

We note that if we assume λl > 2,∀l, as (rl)± > 0 and (rl)+ > (rl)−, we have 0 < γl < 1.

422 10. Domain decomposition and multilevel methods

Remark. Consider the case of the model problem. We have

λl = 2 + σl = 4− 2 cos(lπh), l = 1 . . . ,m

where h = 1
m+1 . Then,

σmin = 2− 2 cos(πh) = 2π2h2 +O(h4),

σmax = 2− 2 cos

(
π

m

m+ 1

)
= 4−O(h2).

This implies that, as a function of h,

θmin = C1h+O(h2), θmax = C2 +O(h2),

where C1 and C2 are two constants independent of h and

κ(S) = O

(
1

h

)
.

This is a proof of Theorem 10.5 for the model problem, but this result can be generalized.

Theorem 10.11. For the matrix in (10.9), if the eigenvalues of T are such that λl > 2,∀l and
λmin = O(h2), λmax = O(1), then

κ(S) = O

(
1

h

)
.

Proof. With the hypothesis we made, 0 < γl < 1. Moreover, γl is a decreasing function of
σl. When h is small, γ1 behaves like 1− 2

√
2πh+O(h2). This means that γp+1

1 , p = m1 or m2

behaves like 1− 2
√

2π(p+ 1)h. But (p+ 1)h is equal to a constant. This is the extent of Ω1 or
Ω2 in the y direction. Therefore the term within parentheses in θl is bounded independently of h
and θl can be written as

θl = C(l)

√
λ2
l

4
− 1,

where C(l) is independent of h. Since the square root is an increasing function of λl, the result
of the theorem follows.

The hypothesis of Theorem 10.11 gives only sufficient conditions and there are other situa-
tions where the same result is obtained. Let us now look at the eigenvalues of S when, for a fixed
h, the domains Ω1 and Ω2 extend to infinity, that is mi →∞.

Theorem 10.12. If λl > 2,

θl → 2

√
σl +

σ2
l

4
when mi →∞, i = 1, 2.

Proof. We have 0 < γl < 1 and γmil → 0.
Before defining the preconditioners for S, note that the knowledge of the eigenvalues of S

allows us to construct a parallel fast Poisson solver (in the case of the Poisson model problem).
We can compute the right-hand side by using two fast solves in parallel, one for each subdomain.
Then, since we know the eigenvalues and eigenvectors of S, we can solve the reduced problem.
Note that for the model problem this is two fast Fourier transforms. Finally, knowing the solution
on the interface, we can back solve in each domain by using two fast solvers in parallel.

10.5. Approximate Schur complements in the two subdomains case 423

10.5.3 Dryja’s preconditioner

Let T2 be the matrix corresponding to finite difference discretization of the one-dimensional
Laplacian defined in Chapter 1. We have

T2 = Q2Σ2Q
T
2 ,

where Σ2 is the diagonal matrix of the eigenvalues whose diagonal elements are

σi = 2− 2 cos(iπh), i = 1, . . . ,m

Q2 is the orthogonal matrix of the (normalized) eigenvectors whose components are

qi,j =

√
2

m+ 1
sin(ijπh), i, j = 1, . . . ,m.

Let
√

Σ2 be the diagonal matrix whose diagonal elements are the square roots of the correspond-
ing diagonal elements of Σ2. Then, we define the Dryja’s preconditioner MD as

MD = Q2

√
Σ2Q

T
2 .

Symbolically, we denote this by
√
−∆1D. For the model problem, we can easily analyze the

effect of this preconditioner. In that case S has the same eigenvectors as MD (i.e. Q = Q2),
therefore, the eigenvalues of M−1

D S are simply the ratios of the eigenvalues of S and MD.

Proposition 10.13. For the model problem, the eigenvalues of M−1
D S are

λl(M
−1
D S) =

(
1 + γm1+1

l

1− γm1+1
l

+
1 + γm2+1

l

1− γm2+1
l

)√
1 +

σl
4
, l = 1, . . . ,m

where γl is defined as in Proposition 10.10.

Proof. This statement is obvious as we know the eigenvalues of S from Proposition 10.10
and because the eigenvalues of MD are

√
σl.

This implies that we have the following result which is what we were looking for.

Theorem 10.14. For the Poisson model problem κ(M−1
D S) = O(1).

Proof. Straightforward.
Note that although the condition number does not depend on h, it depends on m1 and m2,

but we shall look into this problem later. In a practical way, the action of M−1
D on a vector can

be implemented as two one dimensional FFTs and a division by the eigenvalues.

10.5.4 Golub and Mayers’ preconditioner

The Golub and Mayers’ preconditioner [232] is an improvement upon Dryja’s preconditioner.
We have seen that the exact eigenvalues in the case of the model problem are given by for-
mula 10.11. The Golub and Mayers’ preconditioner retains the term under the square root (which
was replaced by

√
σl in the Dryja’s method). Therefore, it is defined as

MGM = Q2

√
Σ2 +

Σ2
2

4
QT2 .

424 10. Domain decomposition and multilevel methods

Symbolically, we denote this by
√
−∆1D +

∆2
1D

4 . Then, we have

Proposition 10.15. The eigenvalues of M−1
GMS are

λl(M
−1
GMS) =

1 + γm1+1
l

1− γm1+1
l

+
1 + γm2+1

l

1− γm2+1
l

, l = 1, . . . ,m

where γl is defined as in Proposition 10.10.

Proof. Same as for Proposition 10.13.

Regarding the asymptotic analysis, we have a similar result as for the Dryja’s preconditioner.

Theorem 10.16. For the Poisson model problem κ(M−1
GMS) = O(1).

Proof. Straightforward.

10.5.5 The Neumann-Dirichlet preconditioner

This preconditioner was introduced by Bjørstad and Widlund [47]. If we remember that in the
two subdomains case, A is written blockwise as A1 0 E1

0 A2 E2

ET1 ET2 A1,2

 x1

x2

x1,2

 =

 b1
b2
b1,2

 ,

we can distinguish what in A1,2 comes from subdomain Ω1 and what comes from Ω2. Let

A1,2 = A
(1)
1,2 +A

(2)
1,2.

This is easy to do in the finite element setting. For finite difference methods, it is less natural.
However, for instance, for the two dimensional model problem, we have

A
(1)
1,2 = A

(2)
1,2 =

2 − 1

2
− 1

2 2 − 1
2

.
− 1

2 2 − 1
2

− 1
2 2

 =
1

2
A1,2.

Since we know that
S = A1,2 − ET1 A−1

1 E1 − ET2 A−1
2 E2,

we can define
S(1) = A

(1)
1,2 − ET1 A

−1
1 E1, S(2) = A

(2)
1,2 − ET2 A

−1
2 E2,

and S = S(1) + S(2). The Neumann-Dirichlet preconditioner is defined as

MND = S(1). (10.12)

Note, that we could also have chosen S(2) instead of S(1).

10.5. Approximate Schur complements in the two subdomains case 425

Proposition 10.17. The eigenvalues of MND are

λl(MND) =

(
1 + γm1+1

l

1− γm1+1
l

)√
σl +

σ2
l

4
, l = 1, . . . ,m

and the eigenvalues of M−1
NDS are

λl(M
−1
NDS) = 1 +

(
1− γm1+1

l

1 + γm1+1
l

)(
1 + γm2+1

l

1− γm2+1
l

)
(10.13)

where γl is defined as in Proposition 10.10.

Proof. The eigenvalues of S(1) are computed in the same way as those of S. We must
consider only that which is coming from Ω1.

Theorem 10.18. For the Poisson model problem κ(M−1
NDS) = O(1).

Proof. Straightforward.

Note that if m2 = m1, the preconditioner is exact, as it differs only from the exact result
given in (10.11) by a constant factor 2. Therefore, if the conjugate gradient method is used on
the interface, it must converge in one iteration. Of course, one does not use this method for the
model problem as we know the exact solution and we can use fast solvers.

Let us explain why this preconditioner is called “Neumann-Dirichlet”. This is because solv-
ing a linear system

S(1)y12 = (A
(1)
1,2 − ET1 A

−1
1 E1)y1,2 = c1,2,

is equivalent to solving (
A1 E1

ET1 A
(1)
1,2

)(
y1

y1,2

)
=

(
0
c1,2

)
.

For second order elliptic PDEs, it is easy to see that this is simply solving a problem in Ω1

with given Neumann boundary conditions on the interface. When the solution is known on the
interface, it is enough to solve a Dirichlet problem in Ω2.

10.5.6 The Neumann-Neumann preconditioner

This preconditioner was introduced by Le Tallec [316]. With the same notation as before, it is
defined as

M−1
NN =

1

2

[
(S(1))−1 + (S(2))−1

]
. (10.14)

Note that we directly define the inverse of the preconditioner as an average of inverses of “local”
(to each subdomain) inverses of Schur complements.

Proposition 10.19. The eigenvalues of M−1
NN are given by

λl(M
−1
NN) =

1

2

(
1− γm1+1

l

1 + γm1+1
l

+
1− γm2+1

l

1 + γm2+1
l

)
1√

σl +
σ2
l

4

426 10. Domain decomposition and multilevel methods

and the eigenvalues of M−1
NNS are

λl(M
−1
NNS) = 1 +

1

2

(
1− γm1+1

l

1 + γm1+1
l

)(
1 + γm2+1

l

1− γm2+1
l

)

+
1

2

(
1− γm2+1

l

1 + γm2+1
l

)(
1 + γm1+1

l

1− γm1+1
l

)
.

Proof. We have seen in Proposition 10.17 how to compute the eigenvalues of S(1). The
computation for S(2) is similar and this gives the result.

Theorem 10.20. For the Poisson model problem κ(M−1
NNS) = O(1).

Proof. Straightforward.

We shall introduce some other preconditioners later on. For the moment, we shall study some
of the properties of the ones we have just discussed.

10.5.7 Dependence on the aspect ratio

So far, we have more or less implicitly supposed that the domain Ω is evenly divided between
Ω1 and Ω2. But this is not necessarily so. The situation might be as in Figure 10.9 (a) where one
subdomain is very thin. Of course, it seems silly to divide Ω in this way. But there are situations
like Figure 10.9 (b), where it is natural to have a thin subdomain.

Figure 10.9. Examples of thin subdomains, (a) left, (b) right

Let αi = (mi + 1)h = mi+1
m+1 , i = 1, 2 be the aspect ratios of the two subdomains. Since

the mesh size h is supposed to be the same in both directions, αi is small if mi is and therefore
the corresponding subdomain must be thin. In that case, even though the condition number of
M−1S is independent of h, it can be large.

Theorem 10.21. Let α = αi, i = 1 or 2 being small, then for the Dryja and Golub-Mayers
preconditioners, we have for a fixed h,

κ(M−1S) = O

(
1

α

)
.

Proof. This dependence arises from the analysis of the geometric factors that remain in both
preconditioners. We introduce α in these factors and do an asymptotic expansion.

10.5. Approximate Schur complements in the two subdomains case 427

For the Neumann-Dirichlet preconditioner, the result depends on which subdomain is thin
and which one we choose in the definition of the preconditioner.

Theorem 10.22. Suppose α1 is small and α2 = O(1). Then,
1) If we choose Ω1 in the definition, κ(M−1

NDS) = O(1),
2) otherwise, if we choose Ω2, then κ(M−1

NDS) = O
(

1
α

)
.

Proof. This result comes from the asymptotic expansion of the geometric factor.
For the Neumann-Neumann preconditioner, we get the following result.

Theorem 10.23. If one of the αi, i = 1, 2 is small, then

κ(M−1
NNS) = O

(
1

α

)
.

Proof. Suppose α1 is small. Then, if we look at the eigenvalues of M−1
NNS, there is a term

1− γm1+1
1 in the denominator that gives the 1/α behaviour. Since there is such a term for both

subdomains, we always get this result independently of which subdomain is small as long as
there is at least one.

From these results, it appears that if there is a small subdomain, the preconditioner of choice
is Neumann-Dirichlet if we are careful in picking the right subdomain.

10.5.8 Dependence on the coefficients

Here, following Chan [86], we look into how the preconditioners depend on the coefficients of
the PDE. Suppose, we want to solve the model problem, but in subdomain Ω1 we multiply the
coefficients by ρ. It means the problem we are looking at is

−ρ∆u = f in Ω1,

−∆u = f in Ω2,

u|∂Ω = 0.

When we discretize we can see that we have the following correspondence

A1 → ρA1,

E1 → ρE1,

A
(1)
1,2 → ρA

(1)
1,2.

This implies that, if for the model problem (ρ = 1) we had

S = S(1) + S(2),

the Schur complement on the interface is now

S(ρ) = ρS(1) + S(2).

Suppose that we precondition S(ρ) by S.

Theorem 10.24.
κ(S−1S(ρ)) ≤ max[κ(S−1S(1)), κ(S−1S(2))].

428 10. Domain decomposition and multilevel methods

Proof. See Chan [94]. With the characterization of the eigenvalues, we have

ρλmin(S−1S(1)) + λmin(S−1S(2))

≤ xTS(ρ)x

xTSx
= ρ

xTS(1)x

xTSx
+
xTS(2)x

xTSx
,

≤ ρλmax(S−1S(1)) + λmax(S−1S(2)).

Hence,

κ(S−1S(ρ)) ≤ ρλmax(S−1S(1)) + λmax(S−1S(2))

ρλmin(S−1S(1)) + λmin(S−1S(2))
.

The right-hand side is a monotone function of ρ. For ρ = 0, its value is κ(S−1S(2)). When
ρ→∞, we obtain κ(S−1S(1)). This gives the result.

Therefore, if we precondition with S, the condition number is bounded independently of ρ.
Of course, as we have seen, we use an approximation of S.

10.5.9 Probing

There are other ways to construct preconditioners for the Schur complement S. Since we have

S = A1,2 − ET1 A−1
1 E1 − ET2 A−1

2 E2,

we note that we know how to compute Sv for a given vector v by solving two independent
subproblems. Moreover, S depends only on the lower right block ofA−1

1 and the upper left block
of A−1

2 . For the kind of elliptic problems that we are considering, we know that the absolute
values of the coefficients of these matrices decrease as we depart from the main diagonal on a
given row. Therefore, the same property holds for S leading to the idea of approximating S by a
banded matrix M (see Figure 10.10).

0

5

10

15

20

25

30

0

10

20

30

-2

-1

0

1

2

3

4

Figure 10.10. S for the model problem with two subdomains

We are going to compute the elements of M by requiring that

Mvi = Svi, i = 1, . . . , q

for a given set of vectors vi, i = 1, . . . , q. This idea (denoted as probing) was introduced in the
preconditioning area by Chan [93] and Axelsson and Polman [25, 26]. Suppose, for instance that

10.5. Approximate Schur complements in the two subdomains case 429

we would like to compute a tridiagonal approximation M of S. We set q = 3 and a possible
choice of probing vectors is

v1 = (1 0 0 1 0 0 1 0 0 . . .)
T
,

v2 = (0 1 0 0 1 0 0 1 0 . . .)
T
,

v3 = (0 0 1 0 0 1 0 0 1 . . .)
T
.

If we denote yi = Mvi, i = 1, 2, 3, we have

y1 = (m1,1 m2,1 m3,4 m4,4 m5,4 . . .)
T
,

y2 = (m1,2 m2,2 m3,2 m4,5 m5,5 . . .)
T
,

y3 = (0 m2,3 m3,3 m4,3 m5,6 . . .)
T
.

We see that if we have computed Sv1, Sv2, Sv3 by solving six subproblems, we obtain the
non-zero coefficients of M right away. This can be generalized in a straightforward way to
constructing a banded matrix M=Probe(S, d) with 2d + 1 diagonals. However, this way of
constructing the approximation leads to a non-symmetricM even when starting with a symmetric
S as the following small example shows. Let

S =

10 0 0 5
0 10 0 2
0 0 10 0
5 2 0 10

 ,

then, we obtain

M = Probe(S, 1) =

15 0 0 0
2 10 0 0
0 0 10 0
0 0 0 15

 .

Nevertheless this approximation possesses nice properties as T. Chan has shown that

Probe(αS1 + S2, d) = αProbe(S1, d) + Probe(S2, d)

and if a row of S is strictly diagonally dominant, then the corresponding row of Probe(S, d) is
also strictly diagonally dominant. A way to solve the symmetry problem is to use

M =
1

2
(Probe(S, d) + Probe(S, d)T),

but then, the diagonal dominance property is not preserved. A better way to symmetrize is
to define MProbe(S, d) by computing the i, j entry from M=Probe(S, d) as mi,j if |mi,j | =
min(|mi,j |, |mj,i|) and mj,i otherwise. This preserves symmetry and strict diagonal dominance.
For our previous small example we obtain a diagonal matrix.

By the way it is constructed, we cannot expect the tridiagonal probing approximation to give
a condition number independent of h. Chan and Mathew [95] proved that, for the model problem

κ(M−1S) = O

(
1√
h

)
.

However, probing is an interesting idea that may be applied in many different problems.

430 10. Domain decomposition and multilevel methods

10.5.10 INV and MINV approximations

For constructing a preconditioner of the Schur complement for the special case we are consid-
ering, one can use the same ideas as in Chapter 8 for the INV preconditioner. We have seen
that

A1 = (∆ + L1)∆−1(∆ + LT1),

where ∆ is a block diagonal matrix and

A2 = (Σ + LT2)Σ−1(Σ + L2),

where Σ is a block tridiagonal matrix and the diagonal blocks are given by{
∆1 = D1,

∆i = Di −Bi∆−1
i−1B

T
i , i = 2, . . . ,m1

and {
Σm = Dm,

Σi = Di −BTi+1Σ−1
i+1Bi+1, i = m− 1, . . . ,m1 + 2.

The Schur complement is given by

S = Dm1+1 −Bm1+1∆−1
m1
BTm1+1 −BTm1+2Σ−1

m1+2Bm1+2.

To derive an approximation to S we do the same as in INV by taking tridiagonal approximations
of the inverses of ∆i and Σi. Let{

∆̄1 = D1,

∆̄i = Di −Bitrid(∆̄−1
i−1)BTi , i = 2, . . . ,m1{

Σ̄m = Dm,

Σ̄i = Di −BTi+1trid(Σ̄−1
i+1)Bi+1, i = m− 1, . . . ,m1 + 2

where trid gives the three main diagonals of a matrix. Then, we define

M = Dm1+1 −Bm1+1trid(∆̄−1
m1

)BTm1+1 −BTm1+2trid(Σ̄−1
m1+2)Bm1+2.

Note that the computation of this approximation is cheaper than probing as we do not need to
solve subproblems. However, the drawback is that there is no theory supporting this choice. But,
for the model problem the elements of the involved matrices converge when we increase the
dimension of the problem. Therefore, we can analyze the limit problem where all matrices have
constant diagonals. If we do so, it turns out that all the eigenvalues of the INV approximation of
the Schur complement are bounded independently of h giving a condition number κ(M−1S) =
O(1/h) which is of the same order as for S. Nevertheless, κ(M−1A) is much smaller than
κ(S). This can be improved by using a MINV approximation instead of INV. Then, we can
obtain a smallest eigenvalue that depends on h. Figure 10.11 compares the eigenvalues of the
Schur complement and its approximations by probing, INV and MINV for the model problem and
m = 30. Figure 10.12 shows the condition numbers as a function of m. We can see that probing
and MINV give almost the same results. We note that the MINV approximation is computed such
that the row sums of M are the same as those of S. For the example, the same property is
obtained by probing since the sum of the three probing vectors has all its components equal to 1,
therefore the remainder of probing approximation has also zero row sums.

10.5. Approximate Schur complements in the two subdomains case 431

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Figure 10.11. Eigenvalues of the Schur complement and its approximations, solid line: Schur,
dash-dotted: probing, dashed: INV, stars: MINV

10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

Figure 10.12. Condition numbers κ(M−1S) as a function of the problem dimension, dash-
dotted: probing, dashed: INV, stars: MINV

10.5.11 The Schur complement for more general problems

Let A∆ be the matrix arising from the finite difference approximation of the Poisson model
problem,

A∆ =

 B1 0 F1

0 B2 F2

FT1 FT2 B1,2

and A be another matrix

A =

 A1 0 E1

0 A2 E2

ET1 ET2 A1,2

which is spectrally equivalent to A∆ that is, there exist constants C0 and C1 independent of h
such that

C0(A∆x, x) ≤ (Ax, x) ≤ C1(A∆x, x), ∀x.

This implies that

κ(A−1
∆ A) ≤ C1

C0
.

432 10. Domain decomposition and multilevel methods

Let x = (x1 x2 x1,2)
T and y = (−A−1

1 E1x1,2 −A−1
2 E2x1,2 x1,2)

T , then

Ay =

 0
0

(A1,2 − ET1 A−1
1 E1 − ET2 A−1

2 E2)x1,2

 =

 0
0

Sx1,2

 .

The matrices A−1
1 E1 and A−1

2 E2 are the discrete analogues of what is called the harmonic ex-
tension. They take values on the inner boundaries and extend them to the subdomains. With this
choice of y we have

(Ay, y) = (Sx1,2, x1,2),

and

A∆y =

 (−B1A
−1
1 E1 + F1)x1,2

(−B2A
−1
2 E2 + F2)x1,2

(B1,2 − FT1 A−1
1 E1 − FT2 A−1

2 E2)x1,2

 .

Let us compute (A∆y, y):

(A∆y, y) = (y1, (−B1A
−1
1 E1 + F1)x1,2)

+ (y2, (−B2A
−1
2 E2 + F2)x1,2)

+ (x1,2, (B1,2 − FT1 A−1
1 E1 − FT2 A−1

2 E2)x1,2).

Suppose that there exist non-singular matrices D1 and D2 such that

Ai = DiBi, Ei = DiFi, i = 1, 2

then, the first and second terms in (A∆y, y) are zero and the third one is (S∆x1,2, x1,2), S∆

being the Schur complement of A∆. This shows that we have

C0(S∆x1,2, x1,2) ≤ (Sx1,2, x1,2) ≤ C1(S∆x1,2, x1,2);

so S is spectrally equivalent to S∆. So, we can use the same preconditioners for S as for the
model problem. This happens, for instance, for the case we considered before ifAi = ρiBi, Ei =
ρiFi, i = 1, 2.

10.6 Approximations of Schur complements with many
subdomains

We would like to extend the results for two subdomains by considering now the domain Ω being
divided into k strips as in Figure 10.13.

We denote by xi the unknowns in subdomain Ωi and by xi,i+1 the unknowns on the interface
between Ωi and Ωi+1. With this notation the problem is written as Ax = b with

A =

A1 C1

A2 E2 C2

A3 E3
. . .

. Ck−1

Ak Ek
CT1 ET2 A1,2

CT2 ET3 A2,3

.
CTk−1 ETk Ak−1,k

,

10.6. Approximations of Schur complements with many subdomains 433

Figure 10.13. Multi strips partitioning

x =

x1

x2

x3
...
xk
x1,2

x2,3

...
xk−1,k

, b =

b1
b2
b3
...
bk
b1,2
b2,3

...
bk−1,k

.

The notation we used for the two subdomains case for the matrices corresponding to the subdo-
mains becomes too cumbersome when generalizing to k > 2. Therefore, we denote

Ai =

D1
i (A2

i)
T

A2
i D2

i (A3
i)
T

.
Amii Dmi−1

i (Amii)T

Amii Dmi
i

 , i = 1, . . . , k

We eliminate the inner unknowns x1, . . . , xk to obtain the Schur complement.

Proposition 10.25. The Schur complement matrix S is block tridiagonal and we denote

S =

A′12 FT2
F2 A′23 FT3

. . .
. . .

. . .
Fk−2 A′k−2,k−1 FTk−1

Fk−1 A′k−1,k

 .

The blocks are defined as

A′i,i+1 = Ai,i+1 − CTi A−1
i Ci − ETi+1A

−1
i+1Ei+1,

Fi = −CTi A−1
i Ei.

Proof. It is obvious that when we eliminate the inner unknowns, an interface can only be
coupled with the interface above and the interface below. The expressions for the blocks follow
from straightforward algebra.

434 10. Domain decomposition and multilevel methods

As in the two subdomains case, we can slightly simplify the expressions for the blocks by
using both LU and UL block factorizations for each subdomain. For subdomain number i we
denote the diagonal blocks of these factorizations as ∆j

i and Σji .

Theorem 10.26. The blocks of the Schur complement can be written as

A′i,i+1 = Ai,i+1 − (Cmii)T (∆mi
i)−1Cmii − (E1

i+1)T (Σ1
i+1)−1E1

i+1.

If G1
i = (Σ1

i)
−1E1

i and

Gli = −(Σli)
−1AliG

l−1
i , l = 2, . . . ,mi

then
Fi = −(Cmii)TGmii .

Proof. This is simply solving the linear systems using the block factorizations and noticing
the block sparsity of the right hand sides.

To compute the eigenvalues, we consider a separable problem and, more specifically the
model problem. Then it is easy to show that A′i,i+1 and Fi have the same eigenvectors. To
simplify a little further, let us take identical subdomains with m mesh lines. All the matrices
A′i,i+1 are the same and the same is true for matrices Fi. Let us suppose that Ai,i+1 is of order
m. We have already computed the eigenvalues θl of A′i,i+1,

θl = 2

(
1 + γm+1

l

1− γm+1
l

)√
σl +

σ2
l

4
, ∀l = 1, . . . ,m.

Proposition 10.27. The eigenvalues of Fi are

δl = − (rl)+ − (rl)−

(rl)
m+1
+ − (rl)

m+1
−

,

where (rl)± =
λl±
√
λ2
l
−4

2 . This can be written

δl = −
2γm+12
l

1− γm+1
l

√
σl +

σ2
l

4
.

Proof. Let Gli = QΞliQ
T and Σli = QΠl

iQ
T . Then,

Ξ1
i = (Π1

i)
−1, Ξli = (Πl

i)
−1Ξl−1

i , l = 2, . . . ,m.

This shows that Fi = QΞmi Q
T and gives the expression for the eigenvalues.

If we do a permutation of the unknowns, we see that S is similar to a block diagonal matrix
with m blocks, each block being a tridiagonal Toeplitz matrix of order k − 1

βl

1 + γm+1
l −γ

m+1
2

l

−γ
m+1

2

l 1 + γm+1
l −γ

m+1
2

l

.
−γ

m+1
2

l 1 + γm+1
l −γ

m+1
2

l

−γ
m+1

2

l 1 + γm+1
l

,

10.6. Approximations of Schur complements with many subdomains 435

βl =
2

1− γm+1
l

√
σl +

σ2
l

4
, l = 1, . . . ,m

Theorem 10.28. The eigenvalues of S are

ωl,j =
2

1− γm+1
l

√
σl +

σ2
l

4

(
1 + γm+1

l − 2γ
m+1

2

l cos

(
jπ

k

))
,

l = 1, . . . ,m, j = 1, . . . k − 1.

Proof. We verify by computing the eigenvalues of the Toeplitz tridiagonal matrices.

As with two subdomains we can analyze the condition number of S. The maximum eigen-
value is bounded and the minimum is obtained for l = 1, j = 1. We have

κ(S) = O

(
k

h

)
.

Therefore, if k is fixed and h→ 0, κ increases as 1/h. If h is given and we increase the number
of subdomains, κ increases as k. For a given h, the more subdomains we use, the smaller they
are and then, the condition number of S (which is larger and larger) is proportional to k.

The problem now is to define preconditioners for S. A first idea is to use block diagonal
preconditioners, the diagonal blocks being the preconditioners we define for the two subdomains
case. If we do this with Dryja’s preconditioner, remembering that the eigenvalues were

√
σl, we

can compute the eigenvalues of λ(M−1
D S):

2

1− γm+1
l

√
1 +

σl
4

(
1 + γm+1

l − 2γ
m+1

2

l cos

(
jπ

k

))
.

This preconditioner removes the h dependency but not that on k and, in fact, we have

κ(M−1
D S) = O(k2).

The same result is obviously true for the Golub and Mayers’ preconditioner although the con-
dition number is a little smaller. It is more difficult to generalize the Neumann-Dirichlet pre-
conditioner to many subdomains One obvious way is to use as preconditioner a block diagonal
matrix whose blocks are the two subdomains Neumann-Dirichlet preconditioner. If we do this,
we have κ = O(k2). Another way to derive a preconditioner is to apply the same principle as
with two subdomains, that is to decompose the Schur complement into S(1) +S(2). We describe
the method on an example with k = 5. Then, we have 3 Neumann subdomains and 4 interfaces.
Let Āi,j be the part of Ai,j coming from the Neumann subdomains. Then, the preconditioner is
defined as

Ā12 − CT1 A−1
1 C1 0 0 0

0 Ā23 − ET3 A−1
3 E3 −ET3 A−1

3 C3 0
0 −CT3 A−1

3 E3 Ā34 − CT3 A−1
3 C3 0

0 0 0 Ā45 − ET5 A−1
5 E5

More generally, the preconditioning matrix has 2×2 blocks and the first and last blocks are either
2 × 2 or 1 × 1. As before, this preconditioner is equivalent to solving problems with Neumann
boundary conditions on the interfaces on the “Neumann” subdomains. Dryja and Proskurowski

436 10. Domain decomposition and multilevel methods

[156] proved that the condition number is of order k2. The generalization is easier if a red-black
coloring of the subdomains can be done.

The Neumann-Neumann preconditioner can be easily extended to many subdomains, the
inverses of partial Schur complements have to be weighted by the inverse of the number of
subdomains which share a given node.

Another possibility is to use probing or INV to obtain a block incomplete factorization of S
but, then the condition number cannot be h independent.

10.7 Inexact subdomain solvers
If we cannot solve exactly for the subproblems, we are not able to use an iterative method with
S as we cannot compute the matrix×vector product Sv. Hence, we have to iterate on all the
unknowns and we need a global parallel preconditioner. We define

M = L

M−1
1

M−1
2

. . .
M−1
k

M−1
1,2

. . .
M−1
k−1,k

LT ,

L =

M1

M2

. . .
. . .

Mk

CT1 ET2 M1,2

CT2 ET3 H2 M2,3

.
CTk−1 ETk Hk−1 Mk−1,k

.

The matrices Mi can be chosen without problem as for the two subdomains case. For matrices
Mi,i+1 and Hi, we have many possible choices as there are many different ways to construct an
incomplete factorization of a block tridiagonal matrix. The simplest choice is to take an INV-like
decomposition

M1,2 = A1,2 − (Cm1
1)

T
trid((∆m1

1)
−1

) Cm1
1 − (E1

2)
T
trid((Σ1

2)
−1

) E1
2 .

Mi,j = Ai,j − (Cmii)
T
trid((∆mi

i)
−1

) Cmii

−(E1
j)
T
trid((Σ1

j)
−1

) E1
j −Hi trid(M−1

i−1,j−1) HT
i .

G1
i = diag((Σ1

i)
−1

(E1
i)
T

),

Gji = −diag((Σji)
−1

Aji G
j−1
i),

10.7. Inexact subdomain solvers 437

Hi = −(Cmii)
T
Gmii ,

where diag defines a diagonal approximation. Then, Hi is diagonal. Mi is chosen as an INV
block LU or UL approximation of Ai. We call this preconditioner INVDD.

There are two main problems with this preconditioner. First of all, it can be somewhat ineffi-
cient when, for a fixed mesh size, the number of subdomains is increased. Then, their aspect ratio
decreases and the influence between the interfaces becomes stronger, which means that having a
good approximation to the outer diagonals of the reduced system is more important. The simple
diagonal approximation that we chose for simplicity would not be good enough to account for
this strong coupling. A possible way to remedy to this problem is to keep more non-zero entries
in Hi, for instance a tridiagonal approximation.

The second problem is related to parallel computation. For every conjugate gradient itera-
tion, we must solve a linear system with matrix M . First, we solve a system Ly = c and then a
block upper triangular system whose matrix has the same structure as LT . It is clearly seen from
the structure we chose forM that, in both cases, we can solve independently for the subdomains,
assigning for instance one subdomain to one processor. But, because we introduce a block fac-
torization of the reduced system for the interfaces, there is, both in the forward and backward
solves, a block recurrence. The interfaces cannot be solved in parallel. This is the sequential
bottleneck of this method. Let us analyze the parallel complexity of this method and propose
some more parallel variants.

We consider the analysis of the solve Mz = r that is to be done every iteration. First,
we count the number of floating point operations (Flops) needed to solve for one subdomain.
Consider a subdomain Ωi with p lines, each with m unknowns. The flops count depends on
whether we use a vector method or not. The basic elimination method is recursive as we have
point tridiagonal systems to solve. However, we saw in Chapter 8 how to vectorize INV block
solves. We give both the scalar (INV) and vector (INVV) operation counts. For INV on one
subdomain, we have 11pm − 7m multiplications and 6pm − 4m additions. For the vector
algorithm INVV, we need 17pm − 10m multiplications and 14pm − 8m additions. Now, we
must include these results in our DD algorithm. Suppose for the sake of simplicity that all k
subdomains have p lines each, thus kp + k − 1 = m. Suppose also that we have q processors,
k being a multiple of q. In the following, we are counting the “elapsed” number of flops, that
is to say, the number of operations divided by the number of processors we can use in parallel.
This will be proportional to the (elapsed) computing time on a dedicated parallel machine with
no communication or memory contention problems.

The parallel part of the work for the subdomains is 2k solves, that is 2k(11pm−7m)
q multipli-

cations and 2k(6pm−4m)
q additions for INV. For INVV, the corresponding count is 2k(17pm−10m)

q

multiplications and 2k(14pm−8m)
q additions. Note that k

q is an integer. For the interfaces the

parallel work is 2(
⌈ 2(k−1)

q

⌉
+ 1)m multiplications and the same number for the additions. The

balance of the work between the processors depends on the relative values of k and q and the
details of the implementation. Unfortunately, as we said before, there is some sequential work
associated with the reduced system : 11(k − 1)m− 7m multiplications, 6(k − 1)m− 4m addi-
tions if INV is used, 17(k− 1)m− 10m multiplications, 14(k− 1)m− 8m additions with INVV.
The summary of these results is the following,

The total “elapsed” work for INVDD is
i) with the use of INV:

2k(11pm− 7m)

q
+ 2(

⌈2(k − 1)

q

⌉
+ 1)m+ 11(k − 1)m− 7m multiplications,

438 10. Domain decomposition and multilevel methods

2k(6pm− 4m)

q
+ 2(

⌈2(k − 1)

q

⌉
+ 1)m+ 6(k − 1)m− 4m additions,

ii) with the use of INVV:

2k(17pm− 10m)

q
+ 2(

⌈2(k − 1)

q

⌉
+ 1)m+ 11(k − 1)m− 7m multiplications,

2k(14pm− 8m)

q
+ 2(

⌈2(k − 1)

q

⌉
+ 1)m+ 6(k − 1)m− 4m additions.

The problem is that, when m, the number of points in one direction, is fixed, as the number
of subdomains increase (leading to more parallelism), p the number of lines per subdomain
decreases (leading to less work to be done for each processor). The sequential work also increases
as the number of interfaces grows. So there must be an optimum to be found. Suppose q = k,
the number of processors is always the same as the number of subdomains then, for the number
of multiplications, we should achieve a balance between the term 22pm which is decreasing and
the term 11(k − 1)m which is increasing. The approximate minimum of the sum is given by
2p = k − 1. The same is true for the number of additions. Suppose that m = 2l − 1, then
m = 2l−i − 1 and k = 2i, i = 1, . . . , l − 1 ; for large values of l the solution is i = l+1

2 , for
instance if m = 127, l = 7 and the “optimum” number of subdomains is 16. The following table
gives the optimum number of subdomains as a function of the problem size :

n # of subdomains
15 8
63 16
511 32
2047 64

How could we modify our INVDD preconditioner to introduce more parallelism?
The simplest idea is to set Hi = 0, i = 2, . . . , k − 1, we call this method INVDDH. Doing so,

we obtained a perfectly parallel method which only requires one synchronization point between
the solve for the subdomains and the one for the interfaces. During the interface solve there are
only k − 1 processors active, so one processor is idle but the apparent number of multiplications
is 34pm− 20m+ 4m+m = 34pm− 9m. Unfortunately, the numerical experiments show that,
because we neglect the coupling between the interfaces, when the aspect ratio becomes small,
the number of iterations increases much faster than for INVDD, see Meurant [343].

Another possibility is to compute Hi as in INVDD and then to set only a “few” Hi to 0. This
leads to the solution of independent block systems for the interface solve. We call this method
INVDDS. If, for instance, we zero out every otherHi, this allows us to use roughly k−1

2 processors
in parallel, reducing the number of multiplications to approximately 34pm−20m+4m+22m =
34pm + 6m. The number of iterations is expected to be somewhere in between the result for
INVDD and INVDDH. A third possibility for the preconditioner is to go back to the general form

M =

(
MS 0
MSI MI

)(
I M−1

S MT
SI

0 I

)
,

whereMI is the interface system. As soon as we have computed the approximate reduced system

R =

M1,2 HT

2

H2 M2,3 H3

.
Hk−2 Mk−2,k−1 Hk−1

Hk−1 Mk−1,k

 ,

10.8. Domain decomposition with boxes 439

we can choose for MI whatever approximation we would like. The latter method was to use for
MI a usual block INV preconditioner of R. Another method is to take MI = R and to solve the
system with matrix MI applying the same DD method in a recursive way. This is very close to
block cyclic reduction. Of course, the number of processors that we can use in parallel decreases
at each reduction stage.

A choice which is more parallel forMI is to use a polynomial preconditioner (see Chapter 8).
The easiest choice is to take a least squares polynomial. The bounds for the eigenvalues are
computed using the Gerschgorin disks. We call this method INVDPOL. The number of operations
depends of course on the degree of the polynomial.

The last approach is to use the generalized incomplete twisted factorization, see Meurant
[343]. In this combined method, we see domain decomposition as giving coarse grain parallelism
and twisted factorization as providing finer grain parallelism for the interfaces. It is easier to
explain this factorization with an example. Consider k = 8; we factor the reduced system as
L̃D̃L̃T with

L̃ =

M12

H2 M23 H3

M34

H4 M45 H5

M56

H6 M67 H7

M78

,

with
M12 = M12, quadM34 = M34, M56 = M56, M78 = M78,

M23 = M23 −H2trid(M−1
12)H2 −H3trid(M−1

34)H3,

M45 = M45 −H4trid(M−1
34)H4 −H5trid(M−1

56)H5,

M67 = M67 −H6trid(M−1
56)H6 −H7trid(M−1

78)H7.

In this small example, in the forward solve we can use first 4 processors in parallel to solve for
M12, M34, M56 and M78 and then 3 processors to solve for M23, M45 and M67. In general the
degree of parallelism is roughly k−1

2 . We call this method INVDTW.

10.8 Domain decomposition with boxes
A domain decomposition with strips can be done for more general domains (than rectangles)
by finding pseudo-peripheral nodes and constructing the level structure corresponding to one of
these nodes, see Chapters 1 and 3. This is similar to one-way dissection. However, except for
very large problems, when partitioning in this way, we cannot use many subdomains. A way to
partition with many subdomains is to use so-called boxes, as in Figure 10.14 for a rectangle and
a general two dimensional domain.

This type of partitioning introduces new problems as the interfaces are now made of two kinds
of sets: the edges and the points where the interfaces cross which are known as vertices or cross
points. We shall use an index Ei for the edges, E = ∪Ei and V for the vertices. We remark
that with the most standard approximations the cross points are not linked to nodes inside the
subdomains but only to nodes on the edges. Moreover, there is no connection between the cross
points as we require at least one mesh point per edge. The structure of the Schur complement S
depends on the numbering of the nodes we choose. Let us consider an example for the model

440 10. Domain decomposition and multilevel methods

Figure 10.14. Partitioning with boxes

problem with 121 nodes and 9 subdomains arranged as 3 × 3, each subdomain having 3 × 3
nodes. Let us use the following ordering of the nodes,

61 62 63 114 70 71 72 117 79 80 81
58 59 60 113 67 68 69 116 76 77 78
55 56 57 112 64 65 66 115 73 74 75
103 104 105 120 106 107 108 121 109 110 111
34 35 36 99 43 44 45 102 52 53 54
31 32 33 98 40 41 42 101 49 50 51
28 29 30 97 37 38 39 100 46 47 48
88 89 90 118 91 92 93 119 94 95 96
7 8 9 84 16 17 18 87 25 26 27
4 5 6 83 13 14 15 86 22 23 24
1 2 3 82 10 11 12 85 19 20 21

With this ordering the structure of S is given in Figure 10.15 with 3× 3 blocks.

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 540

Figure 10.15. Structure of S with boxes

One block is only linked to a maximum of 5 blocks. Moreover, the elements of S outside a
tridiagonal structure are quite small except for the last 4 rows and 4 columns corresponding to
the links with the cross points, see Figure 10.16. For the Poisson model problem, the magnitude
of the elements depends only on the distance between nodes. However, this is not true for
more general problems. We see that there is some coupling between the nodes on different
(neighboring) edges and this must be taken into account when designing preconditioners.

10.8. Domain decomposition with boxes 441

0

10

20

30

40

0

10

20

30

40

-2

-1

0

1

2

3

4

Figure 10.16. S with boxes

10.8.1 The Bramble, Pasciak and Schatz preconditioner

In this section, we consider a preconditioner (known as BPS) that was proposed by Bramble, Pas-
ciak and Schatz in [53] and the subsequent papers [55, 56, 57] for extensions for finite element
problems in two dimensions. This is an algorithm that had an important influence on the devel-
opment of DD methods. The method relies on deriving a simpler finite element approximation
of the problem. Suppose, we wish to solve

a(u, v) = (f, v), ∀v ∈ V

where a is a coercive bilinear form arising from a second order elliptic PDE, V being a Hilbert
space, say H1

0 (Ω) for homogeneous Dirichlet boundary conditions. The aim of the algorithm is
to construct another spectrally equivalent bilinear form b(u, v) such that

λ0b(v, v) ≤ a(v, v) ≤ λ1b(v, v), ∀v ∈ V

and to use b as a preconditioner. Ω is divided into non-overlapping subdomains Ωk, the edges
between two subdomains being denoted as Γl,m. Another intermediate form is introduced to
eventually allow for some averaging of the coefficients,

ã(u, v) =
∑
k

∑
i,j

∫
Ωk

aki,j
∂u

∂xi

∂v

∂xj
dx =

∑
k

ãk(u, v).

The method then separates interior, edges and vertices unknowns in the following way,

u = uP + uH ,

where uP is in
∑
⊕ V

0(Ωk) where functions in V 0(Ωk) have homogeneous Dirichlet boundary
conditions and

uP = 0 on Γl,m.

uP is defined by
ãk(uP , φ) = ãk(u, φ), ∀φ ∈ V 0(Ωk).

This takes care of the right-hand side and uH is defined by

ãk(uH , φ) = 0, ∀φ ∈ V 0(Ωk).

442 10. Domain decomposition and multilevel methods

The method goes one step further and decomposes uH on the interfaces as

uH = uE + uV ,

where uE stands for edge unknowns, uV for vertices unknowns, uV (vj) = u(vj) and uV |Γij
is linear, uE(vj) = 0. Bramble, Pasciak and Schatz defined an operator l0 on the edges,
V 0(Γi,j)→ V 0(Γi,j) by∫

Γi,j

c−1l0(w)φ =

∫
Γi,j

cw′φ′, ∀φ ∈ V 0(Γi,j),

where c is piecewise constant. More simply, this defines something which behaves like the one
dimensional Laplace operator that we have already used with finite difference schemes. The
bilinear form b is defined as

b(w, φ) = ã(uP , φP)

+
∑
Γi,j

∫
Γi,j

αi,jc
−1l

1/2
0 (uE)φE

+
∑
Γi,j

(uV (vi)− uV (vj))(φV (vi)− φV (vj)).

The basis functions that are used are the usual ones for the interior nodes, one dimensional hat
functions for the edges (vanishing at the vertices) and functions which are linear on each edge, 1
at one vertex, 0 at the other ones for the vertices. This BPS preconditioner requires us to perform
the following steps:

1) solve Dirichlet problems on each subdomain in parallel for −→ uP ,
2) solve one dimensional edge equations in parallel for −→ uE
3) solve a coarse mesh system on vertices for −→ uV . From uE and uV we obtain the

boundary values of uH . Therefore, the last step is
4) solve Dirichlet problems on each subdomain in parallel for −→ uH .
The solution is uP + uH . For possible choices for the coefficients, see Bramble, Pasciak and

Schatz [53].

Theorem 10.29. Under suitable hypotheses, the condition number for the preconditioned system
in two dimensions is

κ ≤ C
(

1 + log2

(
H

h

))
,

where H is the coarse mesh size.

Proof. See Bramble, Pasciak and Schatz [53].
Therefore, there is only a slight h dependency in the condition number and this gives a good

rate of convergence with CG. This dependency comes from the fact that the vertices are not
directly linked to the neighboring edge nodes. Variants of the BPS preconditioner can also be
denoted as

M−1v =
∑
edges

RTEi(αiMi)
−1REiv +RTHA

−1
H RHv,

whereREi denotes the restriction to the edgeEi andRH is a weighted restriction onto the coarse
mesh, Mi being one of the preconditioners for two subdomain case, either Dryja or Golub-
Mayers.

10.8. Domain decomposition with boxes 443

10.8.2 Vertex space preconditioners

One way to improve on BPS is to allow for some coupling between the vertices and the edge
nodes. Some points are considered around each vertex on each of the edges. Let Vk be this set
of points. Then the preconditioner is defined as

M−1v = RTHA
−1
H RHv +

∑
edges

RTEi(MEi)
−1REiv +

∑
vertices

RTVk(MVk)−1RVkv.

This includes some coupling between neighboring edges. The edge preconditioner can be chosen
as a weighting of Dryja’s or Golub-Mayers’ preconditioners. Chan and Mathew [93] proposed
the use of probing to define MVk . The restriction to the edges is tridiagonal and an edge is
only linked to the crosspoint and to the two nodes adjacent to the crosspoint on the neighboring
edges. Five probing vectors are chosen to construct this approximation. If enough points are
used around each vertex, then the condition number is independent of h and of the number of
subdomains. The vertex space algorithm was developed by B. Smith (see [414, 415, 416, 417]).

In his Ph.D. thesis L. Carvalho [83] considered some preconditioners whose spirit is quite
close to the vertex space preconditioners. Because they involved some kind of overlapping be-
tween the edge and vertex parts, they are denoted as algebraic additive Schwarz (AAS). He studied
several local block preconditioners for the subdomains and several coarse space preconditioners.
For the local preconditioners, the main difference with the vertex space preconditioner is that
the edge and the adjacent vertices are considered together, see Figure 10.17. For anisotropic
problems, it is sometimes enough to consider overlapping in one direction only.

* *

* *

Figure 10.17. The points in the vertex space

Another proposal was to consider the complete boundary of one subdomain, to be able to
retrieve all the couplings between the edge nodes and the vertices when the interior nodes are
eliminated. In any case, the local preconditioners are obtained by probing. A careful implemen-
tation is described in [83]. A set of numerical experiments on elliptic problems shows that there
is a 1/H2 dependency in the number of iterations. Therefore, it is necessary to add a coarse space
component in the algorithm. A restriction operator R0 is defined (depending on the choice of
the coarse part of the preconditioner). The coarse component of the preconditioner is defined as
RT0 A

−1
0 R0 where A0 is the Galerkin coarse space operator A0 = R0SR

T
0 . Several possibilities

were considered:
i) a subdomain-based coarse space where all the boundary points of a subdomain are con-

sidered. The coarse space is spanned by vectors which have non-zero components for the points
around a subdomain, for all subdomains.

ii) a vertex-based coarse space where the vertices and some few adjacent edge points are
considered.

444 10. Domain decomposition and multilevel methods

iii) an edge-based coarse space where the points of an edge and the adjacent vertices are
considered.

When combining these coarse space preconditioners with the local parts, a preconditioner
for which the condition number is insensitive to the mesh size or the number of subdomains is
obtained except for very highly anisotropic problems. An efficient parallel implementation of
these preconditioners is described in [83].

10.9 A block Red-Black DD preconditioner
The construction of the preconditioner is based on partitioning the domain as indicated in Fig-
ure 10.18. This type of partitioning was introduced by Proskurowski et al. [157]. We consider
four types of unknowns:

(1) the nodes in the white boxes (W),
(2) the nodes in the black boxes (B),
(3) the nodes in the rectangular boxes (interfaces) called separators (S),
(4) the nodes in the small dark grey boxes called crosspoints (C).

Figure 10.18. The Red-Black decomposition of the domain

Classically, we rewrite A as a 4 × 4 block matrix, the indices corresponding to the types
previously defined. Thus, we have:

A =

AWW 0 AWS 0

0 ABB ABS 0
ATWS ATBS ASS ASC

0 0 ATSC ACC

 .

The preconditioner M is defined as

M = L D−1 LT ,

where D is block diagonal and has the same block diagonal as L and, with the same numbering
as before,

L =

MWW

0 MBB

ATWS ATBS MSS

0 0 ATSC MCC

 .

10.10. Multilevel preconditioners 445

At each iteration of the PCG method, we have to solve a problem with matrix M . Now, the
solution of the forward step

MWW

0 MBB

ATWS ATBS MSS

0 0 ATSC MCC

yW
yB
yS
yC

 =

cW
cB
cS
cC

is obtained by

1) Parallel solves on the white and the black boxes Mi,iyi = ci (i = W,B).
2) A solve on the interface MSS yS = cS −ATWS yW −ATBS yB .
3) A solve on the cross points MCCyC = cC −ATSCyS .
Therefore, the total amount of work involved to solve a problem with matrixM is two parallel

solves on the boxes (matrices Mi,i, i = W,S), two solves on the interface (matrix MSS) and
one solve on the cross points (matrixMCC). There are many choices for matrices Mi,i. We shall
consider the following choices,

Mi,i = Ai,i, i = W,S; that is, a direct solver is used for the subproblems,
M1
SS = 2{A(2)

SS −ATBS M
−1
BBABS}, or M2

SS = BSS −ATBS M
−1
BBABS .

Here, A(2)
SS is the part of the assembly matrix computed on the black boxes, and BSS is equal

to ASS except on the diagonal where

(BSS)i,i = (ASS)i,i − |(AWS)ji,i|, ji such that (AWS)ji,i 6= 0.

This corresponds to a “Neumann” boundary condition on the black boxes. In both cases, the cou-
pling with the white nodes is discarded. It is easy to see that if the unknowns in the black boxes
are numbered in a “natural” way, thenMSS is a block diagonal matrix (each block corresponding
to the nodes around a black box) and that the elements of these blocks can be computed cheaply.
Indeed, the matrix MSS corresponds to the elimination of the interior nodes of the black boxes.
This gives a clique that connects all the nodes on the boundary of each box. Thus, the diagonal
blocks of MSS are dense matrices.

Finally, we choose MCC = ACC − ATSC M−1
SS ASC . This matrix is sparse and it is also

easily seen that it has the structure given by a nine point stencil, two coefficients of which are
zero. This particular point requires more explanation. The matrix MSS is block diagonal, each
block corresponding to a clique. A cross point is related to exactly two cliques by ASC and its
transpose. Thus the term −ATSC M

−1
SS ASC links the cross points as shown in Figure 10.19. We

solve this “coarse grid” system with a direct method or a diagonally Preconditioned Conjugate
Gradient solver.

Further improvements of the method are to use this algorithm recursively in a multilevel way
or to define an approximation of the inverse of the matrixMCC for the cross points (a polynomial
or a sparse inverse). This last method seems better suited for massively parallel architectures.
Numerical experiments in Ciarlet and Meurant [115] show that the condition number is constant
when the ratio of the number of points to the number of subdomains is kept constant.

10.10 Multilevel preconditioners
We have seen that it is useful to add a coarse space component to the additive Schwarz precon-
ditioners. It is relatively easy to generalize these two level methods to a multilevel algorithm.
There are also many multilevel preconditioners. In some sense, they are very close to the multi-
grid algorithms, specially to the algebraic multigrid methods. There are many different possible

446 10. Domain decomposition and multilevel methods

(B)

(W) (B)

(W)

Figure 10.19. Coarse grid links

methods. For instance, it depends if we are looking at a problem where the mesh is given and for
which there is a nested family of triangulations or if the coarse meshes are not nested with the
finer ones. It depends also if the coarse meshes are given (as when the fine meshes are computed
by refinement of coarse meshes) or if the coarse meshes have to be constructed from the fine ones
by a process named “coarsening”. One can also look at the problem purely algebraically trying
to define “coarse” problems by looking only at the matrix coefficients. We shall describe only
a few of all the possible methods. Let us start by straightforward generalizations of the additive
Schwarz preconditioners.

10.10.1 Additive multilevel Schwarz preconditioners

Suppose we have L different levels, each level being decomposed into N (l) subdomains denoted
as Ωli. Then, the fully additive Schwarz preconditioner is defined as

M−1 =

L∑
l=0

N(l)∑
i=1

(Rli)
T (Ali)

−1Rli.

The index l = 0 corresponds to the coarsest grid (eventually one node). Note that the subdomains
Ωli overlap each other as in the one level case. A particularly simple case is the multilevel
diagonal scaling preconditioner. Then, if the coarsest grid has only a single subdomain

M−1 = (R0)T (A0)−1R0 +

L−1∑
l=1

(Rl)T (Dl)−1Rl + (DL)−1,

where Dl is the diagonal of Al. A closely related preconditioner was developed by Bramble,
Pasciak, and Xu [59] which is known as BPX. It is noted that in finite element methods with
linear approximations, the diagonal elements of the matrix at level l must be of order (hl)d−2

where h is the mesh size and d is the dimension (1, 2 or 3). The BPX preconditioner is defined as

M−1 = (R0)T (A0)−1R0 +

L−1∑
l=1

(hl)2−d(Rl)TRl + (hL)2−dI.

Note that the BPX preconditioner disregards all information about the coefficients of the prob-
lem except for the coarsest mesh, therefore it is not expected to be robust when there are large
jumps in the coefficients. However, it has been proved that the BPX is theoretically optimal, the
condition number being O(1).

10.10. Multilevel preconditioners 447

These additive Schwarz methods can be mixed with multiplicative methods in different ways.
One can define as before fully additive methods which are additive among subdomains and be-
tween levels. Another possibility is to be multiplicative between subdomains on one level and
additive between levels. A third kind of algorithm is being multiplicative between both subdo-
mains and levels. This is very close to a V-cycle multigrid (without smoothing). For details, see
Smith, Bjørstad, and Gropp [417].

10.10.2 Multilevel ILU preconditioners

The use of multilevel orderings for ILU preconditioners has been considered for a while (at least
since multigrid has become popular). Research in this direction has been done by Axelsson and
Vassilevski [27, 28, 29] and Axelsson and Eijkhout [23]. Here we refer to the work of Notay
[359, 360]. There are basically two ways to derive optimal preconditioners using MILU, the first
uses some sort of W-cycle by introducing polynomial acceleration at each level, the second uses
a V-cycle like algorithm but relies also on smoothing as in multigrid algorithms.

Suppose that A is an M-matrix. Both methods start by looking at the two level algorithm, the
matrix being partitioned as

A =

(
A1,1 A1,2

A2,1 A2,2

)
.

The block (1, 1) refers to unknowns on the “fine” grid and (2, 2) to unknowns on the “coarse”
grid. Then, the two level preconditioner is defined as

M =

(
M1,1

A2,1 S

)(
I M−1

1,1A1,2

I

)
,

where M1,1 is an MILU incomplete factorization of A1,1 (without fill-in) and S = A2,2 −
A2,1KA1,2 is an approximation of the Schur complement of A with K being a diagonal ma-
trix to be defined. By choosing this approximation, the reduced system has the same structure
as the original problem. Since M1,1 is an MILU preconditioner, we have M1,1e = A1,1e, where
e = (1, 1, . . . , 1)T . Let D be a diagonal matrix such that De = A1,1e. Then, ki,i is equal to
d−1
i,i if the diagonal element is non-zero and zero otherwise. If A is symmetric, S is a symmetric

M-matrix. Notay [360] gave some bounds for the condition number of M−1A. The multilevel
method is obtained by a recursive application of the two level preconditioner. Let MS be the
preconditioner on the next coarsest level. A solve with S is exchanged for a multiplication by
P2(M−1

S S)S−1 where P2 is a second order polynomial such that P2(0) = 0. Usually, shifted
Chebyshev polynomials are used. Using a second order polynomial leads to a kind of W-cycle
algorithm. Notay [360] proved that the condition number is bounded independently of h and
that the complexity of one iteration step is proportional to n. Numerical results in [360] show
that this method seems quite robust. In [359] Notay proposed using a V-cycle with the previous
algorithm by replacing the use of the second order polynomial by some smoothing (dampened
Jacobi or RILU). Note that there is no smoothing on the finest level. Results show that the
number of iterations is independent of h.

R. Bank also proposed multilevel algorithms: the incomplete factorization multigraph al-
gorithm, see Bank and Kent Smith [34] and the multilevel ILU decomposition, see Bank and
Wagner [35] which are designed for general matrices. Unfortunately, these algorithms are quite
complex particularly in defining the coarse levels. But, they give an h independent number of
iterations.

Other proposals of this sort were made by Meurant, Chan, and Ciarlet [349]. The idea was
to use a multilevel ordering of the unknowns as this could allow for introducing a coupling

448 10. Domain decomposition and multilevel methods

between mesh points that are far away from each other and then to do an incomplete Cholesky
factorization. Of course, to obtain the coupling, some fill-in has to be kept between different
levels. A model problem in a square domain was considered. The multilevel ordering of 15× 15
mesh is given in Figure 10.20.

176 175 174 173 172 171 170 169 168 167 166 165 164 163 162

161 216 160 215 159 214 158 213 157 212 156 211 155 210 154

153 152 151 150 149 148 147 146 145 144 143 142 141 140 139

138 209 137 224 136 208 135 223 134 207 133 222 132 206 131

130 129 128 127 126 125 124 123 122 121 120 119 118 117 116

115 205 114 204 113 203 112 202 111 201 110 200 109 199 108

107 106 105 104 103 102 101 100 99 98 97 96 95 94 93

92 198 91 221 90 197 89 225 88 196 87 220 86 195 85

84 83 82 81 80 79 78 77 76 75 74 73 72 71 70

69 194 68 193 67 192 66 191 65 190 64 189 63 188 62

61 60 59 58 57 56 55 54 53 52 51 50 49 48 47

46 187 45 219 44 186 43 218 42 185 41 217 40 184 39

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

23 183 22 182 21 181 20 180 19 179 18 178 17 177 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 10.20. The multilevel ordering

The coarsest level with just one node being denoted as 1, the next coarsest level with eight
nodes being 2 and so on, the levels of the nodes are shown in Figure 10.21.

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 2 4 3 4 2 4 3 4 2 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 2 4 3 4 1 4 3 4 2 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 2 4 3 4 2 4 3 4 2 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Figure 10.21. The level of nodes for the multilevel ordering

Within each level the nodes are ordered with a lexicographic ordering. Let us denote this
ordering as ML. More generally on an m × m mesh where m = 2L − 1, ML is defined in the
following way : the coarsest mesh G1 (level 1) has only one node located at (0.5, 0.5) in our
example (the other 8 nodes are on the boundary and as such are not labeled). Level 2 corresponds
to a mesh G2 with mesh size of 1/22 excluding the node already labeled. Level 3 (mesh G3) has

10.10. Multilevel preconditioners 449

a mesh size of 1/23 and so on up to the last level L corresponding to the finest mesh GL. When
the level of each node has been found, the nodes are labeled beginning with the finest level in
descending order finishing with level 1. Within one level the nodes are numbered using a natural
row ordering.

By itself ML is not a good ordering from the point of view of the number of fill-ins in the
complete Cholesky decomposition. For our example, the structure of the lower triangular part of
A has 645 non-zero entries, the ROW ordering gives 2744 fill-ins, the minimum degree ordering
MIND gives 1203 fills and ML gives 7007 fills. When used with IC(0), ML is also not a very
good ordering. This could be explained by the theory we reviewed in Chapter 8. For the Poisson
model problem, if the stopping criterion is defined as

‖rk‖2 ≤ 10−6‖r0‖2,

with x0 random and f ≡ 0, we obtain 13 iterations with the ROW ordering and 17 iterations
with ML. However, our purpose is to use ML not with IC(0) but to keep some fill-in during the
incomplete factorization. Therefore we have to define the rules that will allow us to decide which
fill-in we are going to keep. Before doing so, let us remark that we shall not be forced to store
all the fill-ins if we accept some extra work during the solution phase. For the sake of simplicity,
let us suppose that we have only two levels. Then, the permuted matrix PAPT can be written

AP = PAPT =

(
A2 AT21

A21 A1

)
,

where A2 represents the coupling of nodes belonging to level 2 (the fine mesh), A1 represents
the coupling of nodes of level 1 (the coarse mesh). In fact, in our problem A1 is diagonal, and
A21 is the coupling between level 1 and level 2. Let LLT (resp. L2L

T
2 , LSLTS) be an incomplete

decomposition of AP (resp. A2, A1 −A21L
−T
2 L−1

2 AT21). Then, we can write

LLT =

(
L2 0

A21L
−T
2 LS

)(
LT2 L−1

2 AT21

0 LTS

)
.

Therefore, it is not necessary to store the fill-in that arises in the coupling between levels 1 and
2, i.e. the matrix A21L

−T
2 since when we solve

L

(
x2

x1

)
=

(
y2

y1

)
,

we can do L2x2 = y2, LT2 w2 = x2, and LSx1 = y1 −A21w2. If we agree to solve two systems
with matrix L2 instead of one, we have to store only the diagonal blocks L2 and LS that is a part
of the fill-in. This can be important in terms of storage. The previous technique can be applied
recursively if the mesh is divided into more levels.

Let us now explain some of the strategies we tried to keep some fill-in. Let us first define
lev(i) as being the level of node i, Np(i) (p odd) as being the set of neighbors of node i on mesh
GL (the finest level) in a p× p square whose center is node i, N l

p(i) as being the same definition
except that we consider the neighbors on mesh Gl. We shall denote the node we eliminate by i
and the two nodes that are concerned with the fill-in by j and k (that is j and k are neighbors
of i in the elimination graph and therefore the elimination of i may create a non-zero entry in
position (j, k)). For each considered strategy, we give the resulting number of iterations nit, nel
the total number of elements in L, nsto the number of elements that it is enough to store, nr
the number of elements in the remainder R and the Frobenius norm of R, frobR. The following
results are for the model problem on the 15× 15 mesh and the ML ordering.

450 10. Domain decomposition and multilevel methods

1– we keep the fill-in if
lev(j) = lev(k).

This gives

nit = 16, nel = 1919, nsto = 1919, nr = 1065, frobR = 48.7

These results show that it is not enough to keep the fill-in within each level. Even though there
is communication between nodes that are far away through the fill-in in the coarse levels, the
number of iterations is almost as large as with no fill at all. Therefore, we must introduce in
some way intra-level fill-in that is fill-in coupling different levels.
2– we keep the fill-in if

lev(j) < lev(i) or lev(k) < lev(i).

nit = 9, nel = 4761, nsto = 1453, nr = 811, frobR = 7.96

In this condition, at least one of the nodes is on a coarser level than the one being eliminated. This
shows that adding some fill-in coupling the different levels helps a lot in reducing the number of
iterations (See the reduction in the Frobenius norm). However, in this recipe we add quite a lot
of fill and it will not be practical to use such a large amount of storage.
3– we keep the fill-in if

j, k ∈ N lev(i)
5 (i).

nit = 6, nel = 2039, nsto = 1181, frobR = 0.16

This gives a good improvement in the number of iterations but the storage is quite large.
4– we keep the fill-in if{

j, k ∈ N lev(i)
5 (i) and [lev(k) 6= lev(j) or lev(k) 6= L]

}
or

{j, k ∈ N3(i)} .

nit = 6, nel = 1531, nsto = 865, nr = 844, frobR = 0.69

5– we keep the fill-in if

j, k ∈ N3(i) or
[
lev(i) > lev(k) or

{
lev(i) > lev(j) and j, k ∈ N lev(i)

3 (i)
}]

.

nit = 7, nel = 1220, nsto = 795, frobR = 1.17

Unfortunately, the condition number κ(M−1A) is still h dependent as shown in the following
results. We give the number of fill-ins and nop which is the number of multiplications needed
to solve Lw = c times the number of iterations. This is proportional to the work done for the
preconditioner and gives an idea of the respective costs.

As a matter of comparison, we may look at results obtained with the ROW ordering when one
uses a “level 1” fill and with the same ordering when the fill-in is kept or rejected according to a
threshold parameter t.

We see that even with choosing the fill-in according to its magnitude, it is difficult to beat the
ROW ordering with no fill. The only method that does better is u = 0.2 but the gain is quite small.
When the threshold is decreased, there is too much additional fill-in even though the number of

10.10. Multilevel preconditioners 451

condition m nit nel nop

15 16 1919 30704
1 31 29 14747 427663

63 51 114611 5845161

15 9 4761 42849
2 31 13 77521 1007773

63 ? ? ?

15 6 2039 12234
3 31 10 10332 103320

63 16 46553 744848

15 6 1531 9186
4 31 10 7808 78080

63 17 35389 601613

15 7 1120 7840
5 31 12 5841 70092

63 20 25586 511720

15 13 645 8385
ROW 31 23 2821 64883

63 41 11781 483021

15 21 645 13545
MIND 31 40 2821 112840

63 70 11781 824670

15 17 645 10965
ML 31 32 2821 90272

63 57 11781 671517

condition m nit nel nop

LEV1 15 11 840 9240
31 18 3720 66960

t = 10−4 15 4 3211 12844
31 4 24838 99352

t = 5 10−3 15 5 2156 10780
31 6 11242 67452

t = 10−2 15 5 1847 9235
31 7 9207 64449

t = 5 10−2 15 8 1022 8176
31 12 4590 55080

t = 0.2 15 10 840 8400
31 15 3720 49050

t = 0.3 15 14 645 9030
31 24 2821 67704

iterations is small. To try to see where the useful fill-ins are located with the ML ordering, we use
the same method but with the ML ordering, i.e. we discard the fill-ins that are smaller than a given
threshold.

452 10. Domain decomposition and multilevel methods

condition m nit nel nop

ML t = 10−4 15 3 4051 12153
ML t = 10−3 15 4 2980 11920
ML t = 5 10−3 15 6 2033 12198
ML t = 10−2 15 6 1769 10614
ML t = 2 10−2 15 7 1499 10493
ML t = 5 10−2 15 11 1142 12562

condition m nit nel nop

3 t = 10−2 15 6 2039 12234
3 t = 2 10−2 15 6 1550 9300
3 t = 2 10−2 15 7 1499 10493
3 t = 3 10−2 15 8 1364 10912
3 t = 510−2 15 11 1142 12562

In strategy number 3, we eliminate some of the fills that are smaller than a threshold pa-
rameter. From these results, we see we can still save some storage and get the same number of
iterations. Therefore, one way to improve this multilevel preconditioner is to use some threshold
to discard some of the fill-ins which are too small to be interesting. Another way will be to use a
modified incomplete factorization MIC (or a relaxed one). This was done by Van der Ploeg, Botta,
and Wubs [446]. The main difference with what we have described is that a threshold variable
with the level is used. The threshold decreases by a constant multiplicative factor smaller than 1
when going to coarse levels. Therefore, more fill-in is kept in the coarse levels than in the fine
ones. Good numerical results are reported in [446].

10.11 Bibliographical comments
As we said at the beginning of this chapter, even without going back to Schwarz, Domain De-
composition has been in use for quite a long time by engineers, mainly in structural mechanics,
see Przemieniecki [381]. This type of methods was also used by Russian applied mathemati-
cians (in the former Soviet Union) in the sixties and seventies because it has some advantages
for solving large problems on computers with small memories.

Some work was done during the eighties by Glowinski, Périaux and their co-workers, see for
instance Dinh, Glowinski, and Périaux in 1980 [141]. One can also quote the papers of Widlund
and his co-workers: Bjørstad, Dryja and Proskurowski, see, for instance, [47]. All this led to the
organization of the first Domain Decomposition conference in Paris in 1987. Since then, annual
conferences have taken place in different countries. Their proceedings are one of the best sources
of information about domain decomposition.

A series of papers that have been really influential are those by Bramble, Pasciak, and Schatz
[54, 53, 55, 56, 57]. Many papers about DD were written in the nineties mainly coming from
France, United States and Russia. Most methods and some theory is summarized in the book by
Smith, Bjørstad, and Gropp [417] and the review paper by Chan and Mathew [94].

Domain Decomposition has been applied to more and more difficult problems starting from
elliptic model problems in square domains in the eighties to complex three dimensional industrial
problems at the end of the nineties. The search for preconditioners having a condition number
independent of the mesh size leads to a merger of Domain Decomposition with multilevel ideas.

10.11. Bibliographical comments 453

There are now very efficient methods, although they are not always so easy to implement for
general sparse matrices.

454 10. Domain decomposition and multilevel methods

Bibliography

[1] J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT, 11:233–242, 1971.
(Cited on page 66.)

[2] L. M. Adams and H. F. Jordan. Is SOR color blind? SIAM J. Sci. Statist. Comput., 7(2):490–506,
1986. (Cited on page 154.)

[3] G. Alefeld. Zur konvergenz des Peaceman-Rachford verfahrens. Numer. Math., 26:409–419, 1976.
(Cited on page 165.)

[4] G. Alefeld and R. S. Varga. Zur konvergenz des symmetrischen relaxationsverfahrens. Numer. Math.,
25:291–295, 1976. (Cited on page 159.)

[5] F. Alouges and P. Loreaux. Massively parallel preconditioners. Numer. Algorithms, 14(4):361–375,
1997. (Cited on pages 370 and 371.)

[6] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.
SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996. (Cited on page 105.)

[7] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1st edition, 1992. (Cited on pages 45 and 46.)

[8] R. S. Anderssen and G. H. Golub. Richardson’s non-stationary matrix iterative procedure. Technical
Report STAN-CS-72-304, Computer Science Dept., Stanford University, 1972. (Cited on page 169.)

[9] J. R. Appleyard and I. M. Cheshire. Nested factorisation. In SPE 1983 Reservoir Simulation Sym-
posium, San Francisco, 1983. paper SPE 12264. (Cited on page 345.)

[10] J. R. Appleyard, I. M. Cheshire, and R. K. Pollard. Special techniques for fully implicit simulators.
Technical Report CSS 112, AERE Harwell, UK, 1981. (Cited on page 345.)

[11] M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward error.
SIAM J. Matrix Anal. Appl., 10(2):165–190, 1989. (Cited on page 115.)

[12] S. F. Ashby. Polynomial preconditioning for conjugate gradient methods. PhD thesis, Dept. of
Computer Science, University of Illinois, 1987. (Cited on pages 362 and 363.)

[13] S. F. Ashby. Minimax polynomial preconditioning for Hermitian linear systems. SIAM J. Matrix
Anal. Appl., 12(4):766–789, 1991. (Cited on page 352.)

[14] C. C. Ashcraft, S. C. Eisenstat, and J. W. H. Liu. A fan-in algorithm for distributed sparse numerical
factorization. SIAM J. Sci. Statist. Comput., 11(3):593–599, 1990. (Cited on page 117.)

[15] C. C. Ashcraft and J. W. H. Liu. Applications of the Dulmage-Mendelsohn decomposition and
network flow to graph bisection improvement. SIAM J. Matrix Anal. Appl., 19(2):325–354, 1998.
(Cited on pages 109 and 110.)

[16] C. C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices using multisection. SIAM J.
Matrix Anal. Appl., 19(3):816–832, 1998. (Cited on pages 110 and 119.)

[17] O. Axelsson. On preconditioning and convergence acceleration for sparse matrix problems. Techni-
cal Report Report 74-10, CERN, Geneva, Switzerland, 1974. (Cited on page 276.)

455

456 Bibliography

[18] O. Axelsson. A class of iterative methods for finite element equations. Comput. Methods Appl.
Mech. Engrg., 9:123–137, 1976. (Cited on pages 185, 276, and 277.)

[19] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear
equations. Linear Algebra Appl., 29:1–16, 1980. (Cited on page 245.)

[20] O. Axelsson. A general incomplete block matrix factorization method. Linear Algebra Appl.,
74:179–190, 1986. (Cited on page 331.)

[21] O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994. (Cited on pages 303,
308, and 339.)

[22] O. Axelsson and V. Eijkhout. Robust vectorizable preconditioners for three dimensional elliptic
difference equations with anisotropy. In H. J. J. Riele, T. J. Dekker, and H. A. van der Vorst, editors,
Algorithms and Applications on Vector and Parallel Computers, pages 279–306. Elsevier, 1987.
(Cited on page 368.)

[23] O. Axelsson and V. Eijkhout. The nested recursive two level factorization method for nine point
difference matrices. SIAM J. Sci. Statist. Comput., 12:1373–1400, 1991. (Cited on page 447.)

[24] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate gradient
method. Numer. Math., 48:499–523, 1986. (Cited on pages 185 and 189.)

[25] O. Axelsson and B. Polman. On approximate factorization methods for block matrices suitable for
vector and parallel processors. Linear Algebra Appl., 77:3–26, 1986. (Cited on pages 368 and 428.)

[26] O. Axelsson and B. Polman. Block preconditioning and domain decomposition methods, II. J.
Comput. Appl. Math., 24:55–72, 1988. (Cited on page 428.)

[27] O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods, I. Numer. Math.,
56:157–177, 1989. (Cited on page 447.)

[28] O. Axelsson and P. S. Vassilevski. A survey of multilevel preconditioned iterative methods. BIT
Numerical Mathematics, 29(4):769–793, 1989. (Cited on page 447.)

[29] O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods, II. SIAM J. Numer.
Anal., 27(6):1569–1590, 1990. (Cited on page 447.)

[30] O. Axelsson and P. S. Vassilevski. A black box generalized conjugate gradient solver with inner
iterations and variable step preconditioning. SIAM J. Matrix Anal. Appl., 12:625–644, 1991. (Cited
on page 223.)

[31] Z. Bai. Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem. Math.
Comput., 62(205):209–226, 1994. (Cited on page 257.)

[32] Z. Bai and G. H. Golub. Bounds for the trace of the inverse and the determinant of symmetric positive
definite matrices. Ann. Numer. Math., 4:29–38, 1997. (Cited on page 207.)

[33] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA J. Numer. Anal.,
14:563–581, 1994. (Cited on page 271.)

[34] R. E. Bank and R. K. Smith. The incomplete factorization multigraph algorithm. SIAM J. Sci.
Comput., 20(4):1349–1364, 1999. (Cited on page 447.)

[35] R. E. Bank and C. Wagner. Multilevel ILU decomposition. Numer. Math., 82(4):543–576, 1999.
(Cited on page 447.)

[36] J. Baranger and M. Duc-Jacquet. Matrices tridiagonales symétriques et matrices factorisables. RIRO,
3:61–66, 1971. (Cited on page 70.)

[37] S. T. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope reduction of sparse
matrices. Numer. Linear Algebra Appl., 2(4):317–334, 1995. (Cited on pages 101, 102, and 119.)

[38] R. Bellman. Introduction to Matrix Analysis. Mc Graw-Hill, 1960. (Cited on page 130.)

[39] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the conjugate
gradient method. SIAM J. Sci. Comput., 17(5):1135–1149, 1996. (Cited on pages 349 and 350.)

Bibliography 457

[40] M. Benzi, D. B. Szyld, and A. Van Duin. Orderings for incomplete factorization preconditioning of
nonsymmetric problems. SIAM J. Sci. Comput., 20(5):1652–1670, 1999. (Cited on page 317.)

[41] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear sys-
tems. SIAM J. Sci. Comput., 19(3):968–994, 1998. (Cited on page 350.)

[42] M. Benzi and M. Tůma. A comparative study of sparse approximate inverse preconditioners. Appl.
Numer. Math., 30(2-3):305–340, 1999. (Cited on page 350.)

[43] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic
Press, 1979. Reprinted by SIAM. (Cited on pages 3, 19, 20, 47, and 67.)

[44] P. Berman and G. Schnitger. On the performance of the minimum degree ordering for Gaussian
elimination. SIAM J. Matrix Anal. Appl., 11(1):83–89, 1990. (Cited on page 104.)

[45] Å. Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra Appl., 197:297–316,
1994. (Cited on page 8.)

[46] Å. Björck. Numerical Methods for Least squares Problems. SIAM, 1996. (Cited on pages 229
and 272.)

[47] P. Bjørstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on regions
partitioned into substructures. SIAM J. Numer. Anal., 23(6):1097–1120, 1986. (Cited on pages 424
and 452.)

[48] J.R. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In A. George, J.R.
Gilbert, and J. W-H. Liu, editors, Graph Theory and Sparse Matrix Computation, pages 1–29.
Springer Verlag, 1993. (Cited on page 26.)

[49] J. A. M. Bollen. Numerical stability of descent methods for solving linear equations. Numer. Math.,
43:361–377, 1984. (Cited on pages 172 and 214.)

[50] E. G. Boman and B. Hendrickson. A multilevel algorithm for reducing the envelope of sparse matri-
ces. Technical Report SCCM-96-14, Computer Science Dept., Stanford University, 1996. (Cited on
page 103.)

[51] M. Bonnet and G. Meurant. Résolution de systèmes d’équations linéaires par la méthode du gra-
dient conjugué avec préconditionnement. Technical Report N-2159, CEA/DAM, 1980. (Cited on
page 192.)

[52] D. Braess. Towards algebraic multigrid for elliptic problems of second order. Computing, 55:379–
393, 1995. (Cited on page 401.)

[53] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic
problems by substructuring I. Math. Comput., 47(175):103–134, 1986. (Cited on pages 441, 442,
and 452.)

[54] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on regions
partitioned into substructures. Math. Comput., 46(174):361–369, 1986. (Cited on page 452.)

[55] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic
problems by substructuring II. Math. Comput., 49(179):1–16, 1987. (Cited on pages 441 and 452.)

[56] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic prob-
lems by substructuring III. Math. Comput., 51(184):415–430, 1988. (Cited on pages 441 and 452.)

[57] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic
problems by substructuring IV. Math. Comput., 53(187):1–24, 1989. (Cited on pages 441 and 452.)

[58] J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for multigrid algorithms
without regularity assumptions. Math. Comput., 57(195):23–45, 1991. (Cited on page 392.)

[59] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comput.,
55(191):1–22, 1990. (Cited on page 446.)

[60] C. W. Brand. An incomplete factorization preconditioning using repeated Red/Black ordering. Nu-
mer. Math., 61:433–454, 1992. (Cited on pages 324 and 325.)

458 Bibliography

[61] A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value
problems. In H. Cabannes and R. Temam, editors, Proceedings of the Third International Conference
on Numerical Methods in Fluid Mechanics, pages 82–89. Springer, 1973. Lecture Notes in Physics
18. (Cited on pages 384 and 402.)

[62] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comput., 31:333–390,
1977. (Cited on page 402.)

[63] A. Brandt. Guide to multigrid development. In W. Hackbusch and U. Trottenberg, editors, Multigrid
Methods, Proceedings of the Koln-Porz Conference, pages 220–312. Springer, 1982. Lecture Notes
in Mathematics 960. (Cited on page 402.)

[64] C. Brezinski. Hybrid methods for solving systems of equations. In NATO ASI Series C Mathematical
and Physical Sciences - Advanced Study Institute, volume 508, pages 271–290. NATO, 1998. (Cited
on page 213.)

[65] C. Brezinski and M. Redivo-Zaglia. Hybrid procedures for solving linear systems. Numer. Math.,
67:1–19, 1994. (Cited on page 213.)

[66] C. Brezinski and M. Redivo-Zaglia. Treatment of near-breakdown in the CGS algorithm. Numer.
Algorithms, 7:33–73, 1994. (Cited on page 263.)

[67] C. Brezinski and M. Redivo-Zaglia. Look-ahead in BiCGstab and other methods for linear systems.
BIT, 35:169–201, 1995. (Cited on page 265.)

[68] C. Brezinski, M. Redivo-Zaglia, and H. Sadok. Avoiding breakdown and near-breakdown in Lanczos
type algorithms. Numer. Algorithms, 1:261–284, 1991. (Cited on pages 259 and 272.)

[69] C. Brezinski, M. Redivo-Zaglia, and H. Sadok. Addendum to “Avoiding breakdown and near-
breakdown in Lanczos type algorithms”. Numer. Algorithms, 2:133–136, 1992. (Cited on page 259.)

[70] C. Brezinski, M. Redivo-Zaglia, and H. Sadok. A breakdown-free Lanczos type algorithm for solving
linear systems. Numer. Math., 63:29–38, 1992. (Cited on page 259.)

[71] C. Brezinski, M. Redivo-Zaglia, and H. Sadok. Breakdowns in the implementation of the Lanc-
zos method for solving linear systems. Computers Math. Applic., 33(1):31–44, 1997. (Cited on
pages 258 and 259.)

[72] C. Brezinski, M. Redivo-Zaglia, and H. Sadok. New look-ahead Lanczos-type algorithms for linear
systems. Numer. Math., 83(1):53–85, 1999. (Cited on page 258.)

[73] C. Brezinski and H. Sadok. Avoiding breakdown in the CGS algorithm. Numer. Algorithms, 1:199–
206, 1991. (Cited on page 263.)

[74] W. L. Briggs. A Multigrid Tutorial. SIAM, 1987. (Cited on page 373.)

[75] P. N. Brown. A theoretical comparison of the Arnoldi and GMRES algorithms. SIAM J. Sci. Statist.
Comput., 12(1):58–78, 1991. (Cited on pages 239 and 241.)

[76] A. M. Bruaset, A. Tveito, and R. Winther. On the stability of relaxed incomplete LU factorizations.
Math. Comput., 54(190):701–719, 1990. (Cited on page 311.)

[77] J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric
linear systems. Math. Comput., 31(137):63–179, 1977. (Cited on page 66.)

[78] J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linear
equations. SIAM J. Numer. Anal., 8(4):639–655, 1971. (Cited on page 66.)

[79] O. Buneman. A compact non-iterative Poisson solver. Technical Report 294, Stanford University
Institute for Plasma Research, Stanford University, 1969. (Cited on pages 137 and 143.)

[80] B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub. The direct solution of the discrete Poisson
equation on irregular regions. SIAM J. Numer. Anal., 8(4):722–736, 1971. (Cited on page 143.)

[81] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct methods for solving Poisson’s equations.
SIAM J. Numer. Anal., 7(4):627–656, 1970. (Cited on pages 136, 137, and 143.)

[82] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer. GMRES and the minimal polynomial.
BIT Numerical Mathematics, 36(4):664–675, 1996. (Cited on pages 240 and 242.)

Bibliography 459

[83] L. M. Carvalho. Preconditioned Schur complement methods in distributed memory environments.
PhD thesis, INPT Toulouse, 1997. CERFACS report TH/PA/97/41. (Cited on pages 443 and 444.)

[84] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM, 1996. (Cited
on page 3.)

[85] R. H. Chan, C. Greif, and D. P. O’ Leary. Milestones in Matrix Computation: The Selected Works of
Gene H. Golub with Commentaries. Oxford University Press, Oxford, 2007. (Cited on page 466.)

[86] T. F. Chan. Analysis of preconditioners for domain decomposition. SIAM J. Numer. Anal., 24(2):382–
390, 1987. (Cited on page 427.)

[87] T. F. Chan. Fourier analysis of relaxed incomplete factorization preconditioners. SIAM J. Sci. Com-
put., 12:668–680, 1991. (Cited on pages 294 and 308.)

[88] T. F. Chan and H. Elman. Fourier analysis of iterative methods for elliptic problems. SIAM Rev.,
31(1):20–49, 1989. (Cited on pages 47 and 278.)

[89] T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund Eds. Second International Symposium
on Domain Decomposition Methods for Partial Differential Equations. SIAM, 1989. (Cited on
page 404.)

[90] T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund Eds. Third International Symposium on Do-
main Decomposition Methods for Partial Differential Equations. SIAM, 1990. (Cited on page 404.)

[91] T. F. Chan, S. Go, and L. Zikatanov. Lecture notes on multilevel methods for elliptic problems on
unstructured grids. Department of Mathematics, University of California, Los Angeles, 1997. (Cited
on page 401.)

[92] T. F. Chan, K. R. Jackson, and B. Zhu. Alternating direction incomplete factorizations. SIAM J.
Numer. Anal., 20(2):239–257, 1983. (Cited on page 364.)

[93] T. F. Chan and T. Mathew. An application of the probing technique to the vertex space method
in domain decomposition. In R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux, and O. B.
Widlund, editors, Fourth International Symposium on Domain Decomposition Methods for Partial
Differential Equations, pages 101–111. SIAM, 1991. (Cited on pages 428 and 443.)

[94] T. F. Chan and T. Mathew. Domain decomposition algorithms. Acta Numerica, 3:61–143, 1992.
(Cited on pages 428 and 452.)

[95] T. F. Chan and T. Mathew. The interface probing in domain decomposition. SIAM J. Matrix Anal.
Appl., 13:212–238, 1992. (Cited on page 429.)

[96] T. F. Chan and G. Meurant. Fourier analysis of block preconditioners. Technical Report CAM 90-04,
University of California, Los Angeles, 1990. (Cited on pages 281, 285, 332, 335, 337, and 339.)

[97] T. F. Chan and D. C. Resasco. A domain-decomposed fast Poisson solver on a rectangle. SIAM J.
Sci. Statist. Comput., 8(1):s14–s26, 1987. Errata, SISSC, 8(3), p. 457. (Cited on page 421.)

[98] T. F. Chan, W. P. Tang, and W. L. Wan. Wavelet sparse approximate inverse preconditioners. BIT
Numerical Mathematics, 37(3):644–660, 1997. (Cited on pages 365 and 366.)

[99] T. F. Chan and R. S. Tuminaro. Analysis of a parallel multigrid algorithm. Technical Report CAM
89-29, University of California, Los Angeles, 1989. (Cited on page 398.)

[100] T. F. Chan and P. S. Vassilevski. A framework for block ILU factorizations using block-size reduc-
tion. Math. Comput., 64(209):129–156, 1995. (Cited on pages 339 and 340.)

[101] T. F. Chan and W. L. Wan. Analysis of projection methods for solving linear systems with multiple
right-hand sides. SIAM J. Sci. Comput., 18(6):1698–1721, 1997. (Cited on pages 217 and 220.)

[102] T. F. Chan and Q. Ye. A mixed product Krylov subspace method for solving nonsymmetric linear
systems. Asian J. Math., 1(3):422–434, 1997. (Cited on page 267.)

[103] R. Chandra. Conjugate gradient methods for partial differential equations. PhD thesis, Yale Univer-
sity, 1978. (Cited on pages 209, 227, 281, 294, and 364.)

[104] P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un solveur de type dissection
emboîtée. Numer. Math., 55:463–476, 1989. (Cited on page 107.)

460 Bibliography

[105] P. Charrier and J. Roman. Analysis of refined partitions for a parallel implementation of nested
dissection. Technical Report LABRI 91-38, Université de Bordeaux, Laboratoire Bordelais de
Recherche en Informatique, 1991. (Cited on page 107.)

[106] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In The Fourth Symposium on the Frontiers of Massively
Parallel Computation, pages 120–127. IEEE, 1992. (Cited on page 47.)

[107] E. Chow and Y. Saad. Approximate inverse preconditioners for general sparse matrices. Technical
Report UMSI 94-101, Supercomputer Institute, University of Minnesota, 1994. (Cited on page 349.)

[108] A. T. Chronopoulos and C. W. Gear. On the efficient implementation of preconditioned s-step con-
jugate gradient methods on multiprocessors with memory hierarchy. Parallel Comput., 11(1):37–53,
1989. (Cited on page 226.)

[109] M. T. Chu, R. E. Funderlic, and G. H. Golub. A rank one reduction formula and its applications to
matrix factorizations. SIAM Rev., 37:512–530, 1995. (Cited on page 350.)

[110] P. Ciarlet Jr. Etude de préconditionnements parallèles pour la résolution d’équations aux dérivées
partielles elliptiques. PhD thesis, Université Paris 6, 1992. (Cited on pages 324 and 329.)

[111] P. Ciarlet Jr. Repeated Red-Black ordering: a new approach. Numer. Algorithms, 7:295–324, 1994.
(Cited on pages 324, 325, and 329.)

[112] P. Ciarlet Jr. and F. Lamour. An efficient low cost greedy graph partitioning heuristic. Technical
Report CAM 94-1, Dept. of Mathematics, UCLA, 1994. (Cited on page 108.)

[113] P. Ciarlet Jr. and F. Lamour. Spectral partitioning methods and greedy partitioning methods: a
comparison on finite element graphs. Technical Report CAM 94-9, Dept. of Mathematics, UCLA,
1994. (Cited on page 108.)

[114] P. Ciarlet Jr. and F. Lamour. On the validity of a front oriented approach to partitioning large sparse
graphs with a connectivity constraint. Numer. Algorithms, 12(1):193–214, 1996. (Cited on page 108.)

[115] P. Ciarlet Jr. and G. Meurant. A class of domain decomposition preconditioners for massively parallel
computers. In A. Quarteroni, J. Périaux, Y. A. Kuznetsov, and O. B. Widlund, editors, Proceedings
of the Sixth International Conference on Domain Decomposition, pages 353–360. American Mathe-
matical Society, 1994. (Cited on page 445.)

[116] P. Concus and G. H. Golub. Use of fast direct methods for the efficient numerical solution of non-
separable elliptic equations. SIAM J. Numer. Anal., 10(6):1103–1120, 1973. (Cited on page 365.)

[117] P. Concus and G. H. Golub. A generalized conjugate gradient method for nonsymmetric systems
of linear equations. In Computing mMethods in Applied Sciences and Engineering, pages 56–65,
Berlin, Heidelberg, 1976. Springer. (Cited on pages 231 and 272.)

[118] P. Concus, G. H. Golub, and D. P. O’Leary. A generalized conjugate gradient method for the numer-
ical solution of elliptic partial differential equations. In J. R. Bunch and D. J. Rose, editors, Sparse
Matrix Computations, pages 309–332. Academic Press, 1976. (Cited on pages 176 and 227.)

[119] P. Concus, G.H. Golub, and G. Meurant. Block preconditioning for the conjugate gradient method.
SIAM J. Sci. Statist. Comput., 6:220–252, 1985. (Cited on pages 20, 71, 330, 331, 335, and 417.)

[120] J. W. Cooley. How the FFT gained acceptance. In S. G. Nash, editor, A History of Scientific Com-
puting, pages 133–140. ACM Press, 1990. (Cited on page 143.)

[121] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Comput., 19,(90):297–301, 1965. (Cited on pages 123 and 143.)

[122] C. W. Cryer. Pivot growth in Gaussian elimination. Numer. Math., 12:335–345, 1968. (Cited on
page 81.)

[123] A. R. Curtis and J. K. Reid. On the automatic scaling of matrices for Gaussian elimination. IMA J.
Appl. Math., 10(l):118–124, 1972. (Cited on page 84.)

[124] E. H. Cuthill. Several strategies for reducing the bandwidth of matrices. In D. J. Rose and R. A.
Willoughby, editors, Sparse Matrices and their Applications, pages 157–166, New York, 1972.
Plenum Press. (Cited on page 119.)

Bibliography 461

[125] G. Dahlquist and Å. Björck. Numerical Methods. Prentice-Hall, 1974. (Cited on page 27.)

[126] G. Dahlquist, S. C. Eisenstat, and G. H. Golub. Bounds for the error of linear systems of equations
using the theory of moments. J. Math. Anal. Appl., 37:151–166, 1972. (Cited on page 196.)

[127] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, 1984. (Cited on
page 196.)

[128] T. A. Davis. Users’ guide for the unsymmetric pattern multifrontal package. Technical Report TR-
93-020, University of Florida, 1993. (Cited on page 89.)

[129] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU factorization.
SIAM J. Matrix Anal. Appl., 18(1):140–158, 1997. (Cited on page 119.)

[130] D. Day. Semi-duality in the two-sided Lanczos algorithm. PhD thesis, University of California,
Berkeley, 1993. (Cited on page 254.)

[131] E. F. D’Azevedo, V. Eijkhout, and C. H. Romine. Conjugate gradient algorithms with reduced syn-
chronization overhead on distributed memory multiprocessors. Technical Report Lapack Working
Notes 56, University of Tennessee, 1999. (Cited on page 226.)

[132] E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang. Ordering methods for preconditioned conjugate
gradient methods applied to unstructured grid problems. SIAM J. Matrix Anal. Appl., 13(3):944–
961, 1992. (Cited on pages 323 and 324.)

[133] E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang. Towards a cost-effective ILU preconditioner with
high level fill. BIT Numerical Mathematics, 32(3):442–463, 1992. (Cited on page 324.)

[134] C. de Boor and J. R. Rice. Extremal polynomials with application to Richardson iteration for indefi-
nite linear systems. SIAM J. Sci. Statist. Comput., 3(1):47–57, 1982. (Cited on pages 169 and 362.)

[135] E. de Sturler. Nested Krylov methods based on GCR. J. Comput. Appl. Math., 67:15–41, 1996.
(Cited on page 250.)

[136] J. W. Demmel. The condition number of equivalence transformations that block diagonalize matrix
pencils. In B. Kågström and A. Ruhe, editors, Matrix Pencils, pages 2–16. Springer, 1982. Lecture
Notes in Mathematics 973. (Cited on page 275.)

[137] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for sparse
Gaussian elimination. SIAM J. Matrix Anal. Appl., 20(4):915–952, 1999. (Cited on page 89.)

[138] J. W. Demmel, N. J. Higham, and R. S. Schreiber. Stability of block LU factorization. Numer. Linear
Algebra Appl., 2(2):173–190, 1995. (Cited on page 69.)

[139] J. E. Dendy. Black box multigrid. J. Comp. Phys., 48:366–386, 1982. (Cited on page 399.)

[140] V. R. Deshpande, M. J. Grote, P. Messmer, and W. B. Sawyer. Parallel sparse approximate inverse
preconditioner. Technical Report TR-96-14, Swiss Center for Scientific Computing, 1996. (Cited on
page 348.)

[141] Q. V. Dinh, R. Glowinski, and J. Périaux. Résolution numérique des équations de Navier-Stokes
par des méthodes de décomposition de domaines. In E. Absi, R. Glowinski, P. Lascaux, and
H. Veysseyre, editors, Méthodes Numériques dans les Sciences de l’Ingénieur, pages 383–404.
Dunod, 1980. (Cited on page 452.)

[142] S. Doi and A. Hoshi. Large-numbered multicolor MILU preconditioning on SX-3/14. Intl. J. Com-
put. Math., 44(1-4):143–152, 1992. (Cited on page 324.)

[143] S. Doi and A. Lichnewsky. Some parallel and vector implementations of preconditioned iterative
methods on Cray-2. Intl. J. High Speed Computing, 2(02):143–179, 1990. (Cited on pages 317
and 322.)

[144] S. Doi and A. Lichnewsky. A graph-theory approach for analyzing the effects of ordering on ILU pre-
conditionning. Technical Report RR-1452, INRIA, Rocquencourt, France, 1991. (Cited on pages 317
and 322.)

[145] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. Linpack User’s Guide. SIAM, Philadel-
phia, 1979. (Cited on pages 45 and 64.)

462 Bibliography

[146] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. Algorithm 679: A set of level 3 basic linear
algebra subprograms: model implementation and test programs. ACM Trans. Math. Soft. (TOMS),
16(1):18–28, 1990. (Cited on page 46.)

[147] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Soft. (TOMS), 14(1):1–17, 1988. (Cited on page 46.)

[148] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithms for dense
matrices on a vector pipeline machine. SIAM Rev., 26(1):91–112, 1984. (Cited on pages 60 and 64.)

[149] J. J. Dongarra and D. W. Walker. The design of linear algebra libraries for high performance com-
puters. Technical Report ORNL/TM-12404, Oak Ridge National Lab., 1993. (Cited on page 87.)

[150] C. C. Douglas. Multi-grid algorithms with applications to elliptic boundary-value problems. SIAM
J. Numer. Anal., 21(2):236–254, 1984. (Cited on page 398.)

[151] C. C. Douglas. A review of numerous parallel multigrid methods. In G. Astfalk, editor, Applications
on Advanced Architecture Computers, pages 187–202. SIAM, 1996. (Cited on page 397.)

[152] C. C. Douglas and J. Douglas, Jr. A unified convergence theory for abstract multigrid or multilevel
algorithms, serial and parallel. SIAM J. Numer. Anal., 30:136–158, 1993. (Cited on pages 392
and 393.)

[153] C. C. Douglas, M. Malhotra, and M. H. Schultz. Parallel multigrid with AD-like smoothers in two
dimensions. Report available in MGNET, 1997. (Cited on page 386.)

[154] A. Draux. Polynômes Orthogonaux Formels. Applications, volume LNM 974. Springer-Verlag,
1983. (Cited on page 259.)

[155] J. Drkošovà, A. Greenbaum, M. Rozložník, and Z. Strakoš. Numerical stability of GMRES. BIT
Numerical Mathematics, 35(3):309–330, 1995. (Cited on pages 247, 248, and 272.)

[156] M. Dryja and W. Proskurowski. Capacitance matrix method using strips with alternating Neumann
and Dirichlet boundary conditions. Appl. Numer. Math., 1:285–298, 1985. (Cited on page 436.)

[157] M. Dryja, W. Proskurowski, and O. B.Widlund. Numerical experiments and implementation of a
domain decomposition method with crosspoints for the model problem. In R. Vichnevetsky and
R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations - VI,
pages 22–27. IMACS, 1987. (Cited on page 444.)

[158] M. Dryja and O. B. Widlund. Towards a unified theory of domain decomposition algorithms for
elliptic problems. In T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, editors, Third Inter-
national Symposium on Domain Decomposition Methods for Partial Differential Equations, pages
3–21. SIAM, 1990. (Cited on page 410.)

[159] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. Approximating the inverse of a matrix for use in
iterative algorithms on vector processors. Computing, 22(3):257–268, 1979. (Cited on page 352.)

[160] I. S. Duff, A. M. Erisman, and J. K. Reid. On George’s nested dissection method. SIAM J. Numer.
Anal., 13(5):686–695, 1976. (Cited on page 107.)

[161] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University
Press, 2nd edition, 2017. First edition 1987. (Cited on pages 89, 113, and 114.)

[162] I. S. Duff and G. Meurant. The effect of ordering on preconditioned conjugate gradients. BIT,
29:635–657, 1989. (Cited on pages 317, 323, 324, and 367.)

[163] I. S. Duff and J. K. Reid. Some design features of a sparse matrix code. ACM Trans. Math. Soft.
(TOMS), 5(1):18–35, 1979. (Cited on page 89.)

[164] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations.
ACM Trans. Math. Soft. (TOMS), 9(3):302–325, 1983. (Cited on pages 89 and 110.)

[165] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear equations. SIAM J.
Sci. Statist. Comput., 5(3):633–641, 1984. (Cited on pages 89 and 110.)

[166] I. S. Duff and J. K. Reid. MA47, a Fortran code for direct solution of indefinite sparse symmetric
linear systems. Technical Report RALâĂŞ95âĂŞ001, Rutherford Appleton Laboratory, 1995. (Cited
on page 89.)

Bibliography 463

[167] I. S. Duff and J. K. Reid. The design of MA48: a code for the direct solution of sparse unsymmetric
linear systems of equations. ACM Trans. Math. Soft. (TOMS), 22(2):187–226, 1996. (Cited on
page 89.)

[168] I. S. Duff, J. K. Reid, and J. A. Scott. The use of profile reduction algorithms with a frontal code.
Internat. J. Numer. Methods Engrg., 28:2555–2568, 1989. (Cited on page 100.)

[169] T. F. Dupont, R. P. Kendall, and H.H. Rachford. An approximate factorization procedure for solving
self-adjoint elliptic difference equations. SIAM J. Numer. Anal., 5(3):559–573, 1968. (Cited on
pages 304 and 306.)

[170] A. Edelman and M. Ohlroch. Editor’s note. SIAM J. Matrix Anal. Appl., vol 12, 1991. (Cited on
page 81.)

[171] V. Eijkhout. Analysis of parallel incomplete point factorizations. Linear Algebra Appl., 154:723–
740, 1991. (Cited on pages 317 and 321.)

[172] S. C. Eisenstat. Efficient implementation of a class of preconditioned conjugate gradient methods.
SIAM J. Sci. Statist. Comput., 2(1):1–4, 1981. (Cited on page 208.)

[173] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for nonsymmetric
systems of linear equations. SIAM J. Numer. Anal., 20:345–367, 1983. (Cited on page 243.)

[174] S. C. Eisenstat, M. T. Heath, C. S. Henkel, and C. H. Romine. Modified cyclic algorithms for solving
triangular systems on distributed memory multiprocessors. SIAM J. Sci. Comput., 9(3):589–600,
1988. (Cited on page 85.)

[175] S. C. Eisenstat, J. W. Lewis, and M. H. Schultz. Optimal block diagonal scaling of block 2-cyclic
matrices. Linear Algebra Appl., 44:181–186, 1982. (Cited on page 275.)

[176] H. C. Elman. A stability analysis of incomplete LU factorizations. Math. Comput., 47(175):191–217,
1986. (Cited on page 311.)

[177] H. C. Elman. Approximate Schur complement preconditioners on serial and parallel computers.
SIAM J. Sci. Comput., 10(3):581–605, 1989. (Cited on page 311.)

[178] L. Elsner. A note on optimal block-scaling of matrices. Numer. Math., 44:127–128, 1984. (Cited on
page 275.)

[179] J. Erhel. Sparse matrix multiplication on vector computers. Intl. J. High Speed Computing, 2(2):101–
116, 1990. (Cited on pages 35 and 225.)

[180] J. Erhel. A parallel GMRES version for general sparse matrices. Electron. Trans. Numer. Anal.,
3(12):160–176, 1995. (Cited on page 271.)

[181] J. Erhel and F. Guyomarc’h. An augmented conjugate gradient algorithm for solving consecutive
symmetric positive definite linear systems. SIAM J. Matrix Anal. Appl., 21(4):1279–1299, 2000.
(Cited on page 217.)

[182] D. J. Evans. The use of preconditioning in iterative method for solving linear equations with sym-
metric positive definite matrices. J. Inst. Maths Applics, 4:295–314, 1967. (Cited on page 276.)

[183] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate
gradient method. SIAM J. Numer. Anal., 21(2):352–362, 1984. (Cited on pages 232 and 272.)

[184] C. Farhat. A simple and efficient automatic FEM domain decomposer. Computer and Structures,
28(5):579–602, 1988. (Cited on page 108.)

[185] C. Farhat, S. Lanteri, and H. D. Simon. TOP/DOMDEC a software tool for mesh partitioning and
parallel processing. Comput. Syst. Eng., 6:13–26, 1995. (Cited on page 108.)

[186] R. P. Fedorenko. A relaxation method for solving elliptic difference equations. Zh. Vychisl. Mat. Mat.
Fiz., 1:922–927, 1961. Also in U.S.S.R. Comput. Math. and Math. Phys., 1 (1962), pp. 1092-1096.
(Cited on pages 373 and 402.)

[187] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. 19th
Design Automation Conference, IEEE, 1982. (Cited on page 108.)

464 Bibliography

[188] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to
graph theory. Czechoslovak Math. J., 25:619–633, 1975. (Cited on page 101.)

[189] M. Fiedler. Special Matrices and their Applications in Numerical Mathematics. Martinus Nijhoff
Publishers, Dordrecht, The Netherlands, 1st edition, 1986. reprinted by Dover (2008). (Cited on
page 67.)

[190] M. Fiedler and V. Pták. On matrices with non-positive off-diagonal elements and positive principal
minors. Czechoslovak Math. J., 12(3):382–400, 1962. (Cited on page 67.)

[191] S. A. Finogenov and Y. A. Kuznetsov. Two-stage fictitious components method for solving the
Dirichlet boundary value problem. Sov. J. Numer. Anal. Math. Modelling, 3(4):301–323, 1988. (Cited
on page 143.)

[192] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems. Wiley Teubner,
1996. (Cited on pages 209, 212, 227, and 362.)

[193] B. Fischer and G. H. Golub. On the error computation for polynomial based iteration methods. In
A. Greenbaum and M. Luskin, editors, Recent Advances in Iterative Methods, pages 59–67, New
York, 1994. Springer. (Cited on page 203.)

[194] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. A. Watson, editor, Numerical
Analysis. Lecture Notes in Mathematics, vol 506, pages 73–89, Berlin, Heidelberg, 1976. Springer.
(Cited on pages 256 and 272.)

[195] G. E. Forsythe. Solving linear algebraic equations can be interesting. Bull. Amer. Math. Soc.,
59(4):299–329, 1953. (Cited on page 227.)

[196] G. E. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Systems. Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1967. (Cited on pages 3, 41, and 42.)

[197] G. E. Forsythe and E. G. Straus. On best conditioned matrices. Proc. Am. Math. Soc., 6:340–345,
1955. (Cited on page 275.)

[198] G. E. Forsythe and W. R. Wasow. Finite-difference Methods for Partial Differential Equations. John
Wyley and Sons, 1960. (Cited on page 141.)

[199] L. V. Foster. Gaussian elimination with partial pivoting can fail in practice. SIAM J. Matrix Anal.
Appl., 15(4):1354–1362, 1994. (Cited on page 81.)

[200] J. Francescatto. Résolution de l’équation de Poisson sur des maillages étirés par une méthode multi-
grille. Technical Report 2712, INRIA, 1995. (Cited on page 401.)

[201] J. Francescatto and A. Dervieux. A semi coarsening strategy for unstructured MG with agglomera-
tion. Technical Report 2950, INRIA, 1997. (Cited on page 401.)

[202] P. O. Frederickson and O. A. McBryan. Parallel superconvergent multigrid. In S. F. McCormick,
editor, Multigrid Methods, pages 195–210. Marcel Dekker, 1988. (Cited on page 398.)

[203] R. W. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of
complex non Hermitian matrices. Numer. Math., 57:285–312, 1990. (Cited on pages 270 and 272.)

[204] R. W. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations. J. Comput.
Appl. Math., 43(1-2):135–158, 1992. (Cited on page 270.)

[205] R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems.
SIAM J. Sci. Comput., 14(2):470–482, 1993. (Cited on page 268.)

[206] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices. SIAM J. Sci. Comput., 14:137–158, 1993. (Cited on pages 261
and 272.)

[207] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear
systems. Numer. Math., 60(3):315–339, 1991. (Cited on pages 267 and 268.)

[208] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc. 1998
IEEE Intl. Conf. Acoustics Speech and Signal Processing, pages 1381–1384. IEEE, 1998. (Cited on
page 129.)

Bibliography 465

[209] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform Adapta-
tion”. (Cited on page 129.)

[210] S. Fujino and S. Doi. Optimizing multicolor ICCG methods on some vector computers. In
R. Beauwens, editor, Proceedings IMACS Int. Symp. Iterative Methods in Linear Algebra. North
Holland, 1991. (Cited on page 324.)

[211] R. E. Funderlic, M. Neumann, and R. J. Plemmons. LU decompositions of generalized diagonally
dominant matrices. Numer. Math., 40:57–69, 1982. (Cited on page 68.)

[212] D. Gannon and J. Van Rosendale. On the structure of parallelism in a highly concurrent PDE solver.
J. Par. Dist. Comp., 3:106–135, 1986. (Cited on page 397.)

[213] F. R. Gantmacher. The Theory of Matrices, Vol. 1. AMS Chelsea Publishing, Providence, RI, 1959.
(Cited on page 49.)

[214] M. Garbey. A Schwarz alternating procedure for singular perturbation problems. SIAM J. Sci.
Comput., 17(5):1175–1201, 1996. (Cited on page 404.)

[215] W. Gautschi. Construction of GaussâĂŞChristoffel quadrature formulas. Math. Comput., 23:221–
230, 1968. (Cited on page 196.)

[216] W. Gautschi. Orthogonal polynomials - constructive theory and applications. J. Comput. Appl.
Math., 12-13:61–76, 1985. (Cited on page 196.)

[217] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10(2):345–
363, 1973. (Cited on pages 105 and 107.)

[218] J. A. George. An automatic one way dissection algorithm for irregular finite element problems. SIAM
J. Numer. Anal., 17(6):740–751, 1980. (Cited on page 106.)

[219] J. A. George and J. W. H. Liu. An automatic nested dissection algorithm for irregular finite element
problems. SIAM J. Numer. Anal., 15(5):1053–1069, 1978. (Cited on page 106.)

[220] J. A. George and J. W. H. Liu. An implementation of a pseudo-peripheral node finder. ACM Trans.
Math. Soft. (TOMS), 5(3):284–295, 1979. (Cited on page 96.)

[221] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice
Hall, 1981. (Cited on pages 89, 94, 95, 96, 98, and 119.)

[222] J. A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Rev.,
31(1):1–19, 1989. (Cited on pages 103, 104, and 119.)

[223] J. A. George and A. Pothen. An analysis of spectral envelope reduction via quadratic assignment
problems. SIAM J. Matrix Anal. Appl., 18(3):706–732, 1997. (Cited on page 101.)

[224] N. E. Gibbs, W. G. Poole Jr., and P. K. Stockmeyer. An algorithm for reducing the bandwidth and
profile of a sparse matrix. SIAM J. Numer. Anal., 13(2):236–250, 1976. (Cited on page 96.)

[225] J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse LU factors. SIAM J.
Matrix Anal. Appl., 14(2):334–352, 1993. (Cited on pages 114 and 115.)

[226] R. Glowinski, G. H. Golub, G. Meurant, and J. Périaux Eds. First International Symposium on Do-
main Decomposition Methods for Partial Differential Equations. SIAM, 1988. (Cited on page 404.)

[227] R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux, and O. B. Widlund Eds. Fourth International
Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, 1991.
(Cited on page 404.)

[228] R. Glowinski, J. Périaux, and G. Terrasson. On the coupling of viscous and inviscid models for
compressible fluid flows via domain decomposition. In T. F. Chan, R. Glowinski, J. Périaux, and
O. B. Widlund, editors, Third International Symposium on Domain Decomposition Methods for
Partial Differential Equations, pages 64–97. SIAM, 1990. (Cited on page 404.)

[229] D. Golberg. What every computer scientist should know about floating point arithmetic. ACM Comp.
Surveys, 23(1):5–48, 1991. (Cited on pages 42 and 47.)

466 Bibliography

[230] G. H. Golub. Some modified matrix eigenvalue problems. SIAM Rev., 15(2):318–334, 1973. (Cited
on pages 196, 198, and 200.)

[231] G. H. Golub. Bounds for matrix moments. Rocky Mountain J. Math., 4(2):207–211, 1974. (Cited on
page 196.)

[232] G. H. Golub and D. Mayers. The use of preconditioning over irregular regions. In R. Glowinski
and J. L. Lions, editors, Computing Methods in Applied Science and Engineering VI, pages 3–14.
North-Holland, 1984. (Cited on page 423.)

[233] G. H. Golub and G. Meurant. Matrices, moments and quadrature. In D. F. Griffiths and G. A.
Watson, editors, Numerical Analysis 1993, volume 303 of Pitman Research Notes in Mathematics,
pages 105–156. Longman Sci. Tech., 1994. Reprinted in [85]. (Cited on pages 196, 201, and 222.)

[234] G. H. Golub and G. Meurant. Matrices, moments and quadrature II or how to compute the norm of
the error in iterative methods. BIT, 37(3):687–705, 1997. (Cited on pages 203, 204, 206, and 207.)

[235] G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos algorithms:
1948-1976. SIAM Rev., 31(1):50–102, 1989. (Cited on page 227.)

[236] G. H. Golub and M. L. Overton. Convergence of a two-stage Richardson iterative procedure for
solving systems of linear equations. Technical Report NA-81-17, Computer Science Dept., Stanford
University, 1981. (Cited on page 223.)

[237] G. H. Golub and M. L. Overton. The convergence of inexact Chebyshev and Richardson iterative
methods for solving linear systems. Numer. Math., 53(5):571–593, 1988. (Cited on page 223.)

[238] G. H. Golub and Z. Strakoš. Estimates in quadratic formulas. Numer. Algorithms, 8(2):241–268,
1994. (Cited on page 203.)

[239] G. H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues. In J. Rice,
editor, Mathematical Software III, Proceedings of a Symposium conducted by the Mathematics Re-
search Center, the University of Wisconsin-Madison, March 28-30, 1977, pages 361–377. Academic
Press, 1977. (Cited on page 220.)

[240] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
2nd edition, 1989. (Cited on pages 82, 177, 202, 206, 209, 347, and 348.)

[241] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
3rd edition, 1996. (Cited on pages 3, 4, 8, 41, and 66.)

[242] G. H. Golub and J. M. Varah. On a characterization of the best `2-scaling of a matrix. SIAM J.
Numer. Anal., 11(3):472–479, 1974. (Cited on page 275.)

[243] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overrelaxation iterative
methods, and second order Richardson iterative methods. I. Numer. Math., 3(1):147–156, 1961.
(Cited on pages 171 and 172.)

[244] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overrelaxation iterative
methods, and second order Richardson iterative methods. II. Numer. Math., 3(1):157–168, 1961.
(Cited on pages 171 and 172.)

[245] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comput., 23(106):221–
230, 1969. (Cited on pages 196 and 197.)

[246] G. H. Golub and Q. Ye. Inexact preconditioned conjugate gradient method with inner-outer iteration.
SIAM J. Sci. Comput., 21(4):1305–1320, 1999. (Cited on page 223.)

[247] I. J. Good. The interaction algorithm and practical fourier analysis. J. Roy. Statist. Soc. Ser. B,
20:361–372, 1958. (Cited on page 129.)

[248] I. J. Good. The relationship between two Fast Fourier Transforms. IEEE Trans. Comput., 20:310–
317, 1971. (Cited on page 129.)

[249] N. Gould. On growth in Gaussian elimination with complete pivoting. SIAM J. Matrix Anal. Appl.,
12(2):354–361, 1991. (Cited on page 81.)

Bibliography 467

[250] N. I. Gould and J. A. Scott. Sparse approximate-inverse preconditioners using norm-minimization
techniques. SIAM J. Sci. Comput., 19(2):605–625, 1998. (Cited on page 348.)

[251] T. Grauschopf, M. Griebel, and H. Regler. Additive multilevel preconditioners based on bilinear
interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening for second-
order elliptic PDEs. Appl. Numer. Math., 23(1):63–95, 1997. (Cited on pages 399 and 400.)

[252] J. F. Grcar. Analysis of the Lanczos algorithm and of the approximation problem in Richardson’s
method. PhD thesis, University of Illinois at Urbana-Champaign, USA, 1981. (Cited on pages 215
and 227.)

[253] A. Greenbaum. Behavior of the conjugate gradient algorithm in finite precision arithmetic. Technical
Report UCRL-85752, Lawrence Livermore Laboratory, 1981. (Cited on page 227.)

[254] A. Greenbaum. Convergence properties of the conjugate gradient algorithm in exact and finite pre-
cision arithmetic. PhD thesis, University of California, Berkeley, USA, 1981. (Cited on page 227.)

[255] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate gradient recurrences. Linear
Algebra Appl., 113:7–63, 1989. (Cited on pages 214 and 227.)

[256] A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods. SIAM
J. Matrix Anal. Appl., 1(3):535–551, 1997. (Cited on pages 215 and 248.)

[257] A. Greenbaum, V. Pták, and Z. Strakoš. Any convergence curve is possible for GMRES. SIAM J.
Matrix Anal. Appl., 17(3):465–470, 1996. (Cited on page 242.)

[258] A. Greenbaum and G. H. Rodrigue. Optimal preconditioners of a given sparsity pattern. BIT Numer-
ical Mathematics, 29(4):610–634, 1989. (Cited on pages 275 and 310.)

[259] A. Greenbaum and Z. Strakoš. Predicting the behavior of finite precision Lanczos and conjugate
gradient computations. SIAM J. Matrix Anal. Appl., 13(1):121–137, 1992. (Cited on pages 214, 215,
and 227.)

[260] M. J. Grote and H. D. Simon. Parallel preconditioning and approximate inverses on the Connection
Machine. In R. Sincovec, editor, Proceedings of the Sixth SIAM Conference on Parallel Processing
for Scientific Computing, pages 519–523. SIAM, 1993. (Cited on page 347.)

[261] I. Gustafsson. A class of first order factorization methods. BIT, 18:142–156, 1978. (Cited on
pages 304 and 306.)

[262] M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and related algorithms.
Part I. SIAM J. Matrix Anal. Appl., 13(2):594–639, 1992. (Cited on page 259.)

[263] M. H. Gutknecht. Variants of BICGSTAB for matrices with complex spectrum. SIAM J. Sci. Com-
put., 14(5):1020–1033, 1993. (Cited on pages 265 and 272.)

[264] M. H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of equations. Acta Numer-
ica, 6:271–397, 1997. (Cited on pages 253, 255, and 260.)

[265] M. H. Gutknecht and Z. Strakoš. Accuracy of two three-term and three two-term recurrences for
Krylov space solvers. SIAM J. Matrix Anal. Appl., 22(1):213–229, 2000. (Cited on page 271.)

[266] H.-C. Lee and A. J. Wathen. On element-by-element preconditioning for general elliptic problems.
Comput. Methods Appl. Mech. Engrg., 92(2):215–229, 1991. (Cited on page 365.)

[267] W. Hackbusch. Multigrid Methods and Applications. Springer, 1985. (Cited on pages 373 and 402.)

[268] W. Hackbusch. The frequency decomposition multigrid method, part I: Application to anisotropic
equations. Numer. Math., 56:229–245, 1989. (Cited on page 399.)

[269] W. Hackbusch. The frequency decomposition multigrid method, part II: Convergence analysis based
on the additive Schwarz method. Numer. Math., 63:433–453, 1992. (Cited on page 399.)

[270] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer, 1994. (Cited on
pages 373, 391, and 392.)

[271] W. Hackbusch and U. Trottenberg. Multigrid Methods. Springer, 1982. Lecture Notes in Mathemat-
ics 960. (Cited on pages 373 and 402.)

468 Bibliography

[272] S. M. Hadfield and T. A. Davis. Potential and achievable parallelism in the unsymmetric-pattern
multifrontal LU factorization method for sparse matrices. In Fifth SIAM Conference on Applied
Linear Algebra. SIAM, 1994. (Cited on page 118.)

[273] L. A. Hageman and D. M. Young. Applied Iterative Methods. Academic Press, 1981. Reprinted by
Dover (2003). (Cited on page 158.)

[274] W. W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5(2):311–316, 1984. (Cited on
pages 84 and 115.)

[275] M. T. Heath and C. H. Romine. Parallel solution of triangular systems on distributed memory multi-
processors. SIAM J. Sci. Comput., 9(3):558–588, 1988. (Cited on pages 85 and 86.)

[276] D. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM Rev., 20(4):740–777,
1978. (Cited on page 85.)

[277] M. R. Hestenes. The conjugate gradient method for solving linear systems. Technical Report INA
54âĂŞ11, National Bureau of Standards, 1954. (Cited on page 227.)

[278] M. R. Hestenes. Conjugate Direction Methods in Optimization. Springer, 1980. (Cited on page 227.)

[279] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res.
Natl. Bur. Stand., 49(6):409–436, 1952. (Cited on pages 193 and 227.)

[280] M. Heyouni and H. Sadok. On a variable smoothing procedure for Krylov subspace methods. Linear
Algebra Appl., 268:131–149, 1998. (Cited on page 235.)

[281] N. J. Higham. The accuracy of solutions to triangular systems. SIAM J. Numer. Anal., 26(5):252–265,
1989. (Cited on page 80.)

[282] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996. (Cited
on pages 3, 8, 47, 81, 88, 128, 171, and 172.)

[283] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2nd edition,
2002. (Cited on pages 3, 8, 47, 81, 88, 128, 171, and 172.)

[284] N. J. Higham and D. J. Higham. Large growth factors in Gaussian elimination with pivoting. SIAM
J. Matrix Anal. Appl., 10(2):155–164, 1989. (Cited on page 81.)

[285] M. Hochbruck. The Padé table and its relation to certain numerical algorithm. PhD thesis, Univer-
sitat Tubingen, 1996. (Cited on page 259.)

[286] M. Hochbruck and C. Lubich. Error analysis of Krylov methods in a nutshell. SIAM J. Sci. Comput.,
19(2):695–701, 1998. (Cited on pages 239 and 240.)

[287] R. W. Hockney. A fast direct solution of Poisson’s equation using Fourier analysis. Journal of the
ACM, 12:95–113, 1965. (Cited on pages 131, 140, and 143.)

[288] R. W. Hockney. The potential calculation and some applications. Methods Comput. Phys., 9:135–
211, 1970. (Cited on page 143.)

[289] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, Bristol, 1988. (Cited on
page 128.)

[290] A. S. Householder. Principles of Numerical Analysis. McGraw-Hill Book Company, New York,
1953. (Cited on pages 3, 11, and 47.)

[291] T. Huckle. Efficient computation of sparse approximate inverses. Technical Report TUM-19608,
Institut fur Informatik, Technische Universitat Munchen, 1996. (Cited on page 348.)

[292] T. Huckle and M. Grote. A new approach to parallel preconditioning with sparse approximate in-
verses. Technical Report SCCM-94-03, Computer Science Dept., Stanford University, 1994. (Cited
on pages 347 and 348.)

[293] T. J. R. Hughes, I. Levit, and J.Winget. An element-by-element solution algorithm for problems of
structural and solid mechanics. Comput. Methods Appl. Mech. Engrg., 36(2):241–254, 1983. (Cited
on page 365.)

Bibliography 469

[294] G. Ifrah. Histoire universelle des chiffres. Robert Laffont, Paris, 1994. English translation: The
universal history of numbers: From prehistory to the invention of the computer, Wiley, 2000. (Cited
on page 88.)

[295] B. M. Irons. A frontal solution program for finite element analysis. Internat. J. Numer. Methods
Engrg., 2(1):5–32, 1970. (Cited on page 110.)

[296] D. A. H. Jacobs. A generalization of the conjugate gradient method to solve complex systems. IMA
J. Numer. Anal., 6:447–452, 1986. (Cited on pages 271 and 272.)

[297] K. C. Jea. Generalized conjugate gradient acceleration of iterative methods. PhD thesis, Center for
Numerical Analysis, University of Texas at Austin, 1982. Report CNA-176. (Cited on page 245.)

[298] A. Jennings. Matrix Computations for Engineers and Scientists. John Wiley, 1977. (Cited on
pages 95 and 119.)

[299] A. Jennings and G. M. Malik. Partial elimination. IMA J. Appl. Math., 20(3):307–316, 1977. (Cited
on page 315.)

[300] J. A. G. Jess and H. G. M. Kees. A data structure for parallel LU decomposition. IEEE Trans.
Comput., C-31(3):231–239, 1982. (Cited on page 116.)

[301] O. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditioners for conjugate gradient
calculations. SIAM J. Numer. Anal., 20(2):362–376, 1983. (Cited on pages 352 and 356.)

[302] P. Joly. Résolution de systèmes linéaires avec plusieurs seconds membres par la méthode du gradient
conjugué. Technical Report R91000, Lab. dâĂŹAnalyse Numérique, Université Pierre et Marie
Curie, 1991. (Cited on pages 217, 219, and 220.)

[303] P. Joly and G. Meurant. Complex conjugate gradient methods. Numer. Algorithms, 4:379–406, 1993.
(Cited on pages 217, 218, 270, 271, and 272.)

[304] M. T. Jones and P. E. Plassmann. Scalable iterative solution of sparse linear systems. Parallel
Comput., 20:753–773, 1994. (Cited on page 367.)

[305] R. Karlson. A study of some roundoff effects of the GMRES method. Technical Report Li-TH-MAT-
R-1990-11, Department of Mathematics, Linköping University, Sweden, 1991. (Cited on page 248.)

[306] G. Karypis and V. Kumar. A high performance sparse Cholesky factorization algorithm for scalable
parallel computers. In Proceedings Frontiers’ 95. The Fifth Symposium on the Frontiers of Massively
Parallel Computation. IEEE, 1995. (Cited on page 118.)

[307] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System
Tech. J., 49(2):291–307, 1970. (Cited on pages 103 and 108.)

[308] D. S. Kershaw. On the problem of unstable pivots in the incomplete LU conjugate gradient method.
J. Comp. Phys., 38:114–123, 1980. (Cited on page 290.)

[309] D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, and R. G. Voigt Eds. Fifth International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations. SIAM, 1992. (Cited on
page 404.)

[310] F. Kickinger. Algebraic multigrid for discrete elliptic second order problems. Report J. Kepler
University, Linz, 1997. (Cited on page 401.)

[311] G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront reduction. BIT
Numerical Mathematics, 37(3):559–590, 1997. (Cited on pages 100, 102, and 119.)

[312] Y. Kuznetsov. New algorithms for approximate realization of implicit difference schemes. Sov. J.
Numer. Anal. Math. Modelling, 3(2):99–114, 1988. (Cited on page 412.)

[313] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. J. Res. Natl. Bur. Stand., 45:255–282, 1950. (Cited on page 193.)

[314] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur.
Stand., 49:33–53, 1952. (Cited on pages 193 and 227.)

470 Bibliography

[315] C. L. Lawson, R. J. Hanson, F. T. Krogh, and D. R. Kincaid. Algorithm 539: Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Soft. (TOMS), 5(3):308–325, 1979. (Cited on
page 45.)

[316] P. Le Tallec. Neumann-Neumann domain decomposition algorithms for solving 2D elliptic problems
with nonmatching grids. East-West J. Numer. Math., 1(2):129–146, 1993. (Cited on page 425.)

[317] R. B. Lehoucq. Analysis and implementation of an implicitly restarted Arnoldi iteration. PhD thesis,
Rice University, Houston, Tx, USA, 1995. (Cited on page 234.)

[318] J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse matrices for parallel
factorization. SIAM J. Sci. Statist. Comput., 10(6):1146–1173, 1989. (Cited on pages 116 and 117.)

[319] G. Li and T. F. Coleman. A parallel triangular solver for a distributed-memory multiprocessor. SIAM
J. Sci. Statist. Comput., 9(3):485–502, 1988. (Cited on page 86.)

[320] G. Li and T. F. Coleman. A new method for solving triangular systems on distributed memory
message passing multiprocessors. SIAM J. Sci. Statist. Comput., 10(2):382–396, 1989. (Cited on
page 86.)

[321] P.-L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H. Golub, G. A. Meurant, and
J. Périaux, editors, First International Symposium on Domain Decomposition Methods for Partial
Differential Equations, pages 1–42. SIAM, 1988. (Cited on pages 404 and 405.)

[322] P.-L. Lions. On the Schwarz alternating method. II: Stochastic interpretation and orders properties.
In T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Proceedings of the Second Inter-
national Symposium on Domain Decomposition Methods for Partial Differential Equations, pages
47–70. SIAM, 1989. (Cited on page 404.)

[323] P.-L. Lions. On the Schwarz alternating method. III: A variant for nonoverlapping subdomains. In
T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Third International Symposium on
Domain Decomposition Methods for Partial Differential Equations, pages 202–223. SIAM, 1989.
(Cited on page 404.)

[324] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal.,
16(2):346–358, 1979. (Cited on page 107.)

[325] J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Trans.
Math. Soft. (TOMS), 11:141–153, 1985. (Cited on pages 104 and 115.)

[326] J. W. H. Liu. Equivalent sparse matrix reordering by elimination tree rotations. SIAM J. Sci. Statist.
Comput., 9(3):424–444, 1988. (Cited on page 116.)

[327] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl.,
11(1):134–172, 1990. (Cited on page 95.)

[328] J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev.,
34(1):82–109, 1992. (Cited on pages 111 and 113.)

[329] J. W. H. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting of chordal graphs.
SIAM J. Alg. Disc. Meth., 2(1):100–107, 1989. (Cited on pages 116 and 117.)

[330] J. Mandel, M. Brezina, and P. Vaněk. Energy optimization of algebraic multigrid bases. Computing,
62(3):205–228, 1999. (Cited on page 401.)

[331] T. A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numer. Math.,
28(3):307–327, 1977. (Cited on pages 171, 172, and 363.)

[332] T. A. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev
iteration. Numer. Math., 31(2):183–208, 1978. (Cited on pages 171, 172, and 363.)

[333] T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems. Math.
Comput., 34(150):473–497, 1980. (Cited on pages 289, 311, and 315.)

[334] H. M. Markowitz. The elimination form of the inverse and its application to linear programming.
Management Science, 3(3):255–269, 1957. (Cited on page 113.)

Bibliography 471

[335] T. P. Mathew, P. L. Polyakov, G. Russo, and J. Wang. Domain decomposition operator splittings
for the solution of parabolic equations. SIAM J. Sci. Comput., 19(3):912–932, 1998. (Cited on
page 166.)

[336] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix. Math. Comput., 31(137):148–162, 1977. (Cited on
page 316.)

[337] J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems. J. Comp. Phys., 44:134–155,
1981. (Cited on page 293.)

[338] R. G. Melhem. Towards efficient implementation of PCG methods on vector supercomputers. Intl.
J. Supercomp. Appl., 1:70–98, 1987. (Cited on pages 35 and 225.)

[339] G. Meurant. The Fourier/tridiagonal method for the Poisson equation from the point of view of
block Cholesky factorization. Technical Report LBIDâĂŞ764, Lawrence Berkeley Laboratory, 1983.
(Cited on page 130.)

[340] G. Meurant. The block preconditioned conjugate gradient method on vector computers. BIT, 24:623–
633, 1984. (Cited on page 368.)

[341] G. Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48. Parallel Comput.,
5:267–280, 1987. (Cited on pages 226 and 369.)

[342] G. Meurant. Domain decomposition vs block preconditioning. In R. Glowinski, G. H. Golub,
G. Meurant, and J. Périaux, editors, Domain Decomposition Methods for Partial Differential Equa-
tions, pages 231–249. SIAM, 1988. (Cited on page 421.)

[343] G. Meurant. omain decomposition preconditioners for the conjugate gradient method. Calcolo,
25(1):103–119, 1988. (Cited on pages 369, 438, and 439.)

[344] G. Meurant. Practical use of the conjugate gradient method on parallel supercomputers. Comput.
Phys. Comm., 53:467–477, 1989. (Cited on page 369.)

[345] G. Meurant. A domain decomposition method for parabolic problems. Appl. Numer. Math., 8:427–
441, 1991. (Cited on page 413.)

[346] G. Meurant. Numerical experiments with domain decomposition methods for parabolic problems on
parallel computers. In R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux, and O. B. Widlund,
editors, Fourth International Symposium on Domain Decomposition Methods for Partial Differential
Equations, pages 394–408. SIAM, 1991. (Cited on page 413.)

[347] G. Meurant. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM
J. Matrix Anal. Appl., 13(3):707–728, 1992. (Cited on pages 69, 70, 75, 286, 342, 344, 368, and 413.)

[348] G. Meurant. The computation of bounds for the norm of the error in the conjugate gradient algorithm.
Numer. Algorithms, 16:77–87, 1997. (Cited on pages 207 and 208.)

[349] G. Meurant, T. F. Chan, and P. Ciarlet Jr. Multilevel incomplete Cholesky preconditioners. Unpub-
lished manuscript, 1990. (Cited on page 447.)

[350] J. Moré. Global convergence of Newton Gauss Seidel methods. SIAM J. Numer. Anal., 8:325–336,
1971. (Cited on page 164.)

[351] H. Munthe-Kaas. The convergence rate of inexact preconditioned steepest descent algorithm for
solving linear systems. Technical Report NAâĂŞ87âĂŞ04, Computer Science Dept., Stanford Uni-
versity, 1987. (Cited on page 223.)

[352] R. Nabben. Decay rates of the inverse of nonsymmetric tridiagonal and band matrices. SIAM J.
Matrix Anal. Appl., 20(3):820–837, 1999. (Cited on page 70.)

[353] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations?
SIAM J. Matrix Anal. Appl., 13(3):778–795, 1992. (Cited on page 229.)

[354] N. M. Nachtigal, L. Reichel, and L. N. Trefethen. A hybrid GMRES algorithm for nonsymmetric
linear systems. SIAM J. Matrix Anal. Appl., 13(3):796–825, 1992. (Cited on page 251.)

472 Bibliography

[355] A. Neumaier and R. S. Varga. Exact convergence and divergence domains for the symmetric succes-
sive overrelaxation iterative (SSOR) method applied to H-matrices. Linear Algebra Appl., 58:261–
272, 1980. (Cited on page 159.)

[356] M. Neumann and R. S. Varga. On the sharpness of some upper bounds for the spectral radii of SOR
iteration matrices. Numer. Math., 35:69–79, 1980. (Cited on page 157.)

[357] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems.
SIAM J. Numer. Anal., 24(2):355–365, 1987. (Cited on page 223.)

[358] Y. Notay. On the convergence rate of the conjugate gradients in presence of rounding errors. Numer.
Math., 65(1):301–317, 1993. (Cited on page 215.)

[359] Y. Notay. Optimal V-cycle algebraic multilevel preconditioning. Numer. Linear Algebra Appl.,
5(5):441–459, 1998. (Cited on pages 401 and 447.)

[360] Y. Notay. Optimal order preconditioning of finite difference matrices. SIAM J. Sci. Comput.,
21(6):1991–2007, 2000. (Cited on page 447.)

[361] W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with given error
bounds for coefficients and right-hand sides. Numer. Math., 6(1):405–409, 1964. (Cited on page 83.)

[362] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra Appl.,
29:293–322, 1980. (Cited on page 222.)

[363] G. Opfer and G. Schober. Richardson’s iteration for nonsymmetric matrices. Linear Algebra Appl.,
58:343–361, 1984. (Cited on page 169.)

[364] J. M. Ortega and R. J. Plemmons. Extensions of the Ostrowski-Reich theorem for SOR iterations.
Linear Algebra Appl., 28, 1979. (Cited on page 23.)

[365] C. C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. J. Inst.
Maths Applics, 18:341–349, 1976. (Cited on pages 191 and 214.)

[366] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations and
least squares problems. Technical Report STAN-CS-73-399, Computer Science Dept., Stanford
University, 1973. (Cited on pages 209, 211, 212, and 227.)

[367] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J.
Numer. Anal., 12(4):617–629, 1975. (Cited on pages 209 and 227.)

[368] C. C. Paige and M. A. Saunders. A bidiagonalization algorithm for sparse linear equations and least
squares problems. Technical Report SOL 78-19, Systems Optimization Lab., Stanford University,
1978. (Cited on page 250.)

[369] B. N. Parlett. A new look at the lanczos algorithm for solving symmetric systems of linear equations.
Linear Algebra Appl., 29:323–346, 1980. (Cited on page 272.)

[370] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, 1980. Reprinted by SIAM (1998).
(Cited on pages 102, 191, and 193.)

[371] B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthogonalization. Math. Com-
put., 33(145):217–238, 1979. (Cited on page 216.)

[372] S. V. Parter. The use of linear graphs in Gauss elimination. SIAM Rev., 3(2):119–130, 1961. (Cited
on pages 47, 91, and 94.)

[373] G.H. Paulino, I. F. Menezes, M. Gattass, and S. Mukherjee. Node and element resequencing using
the laplacian of a finite element graph: part I- general concepts and algorithm. Internat. J. Numer.
Methods Engrg., 37:1511–1530, 1994. (Cited on page 102.)

[374] O. Perlot. Préconditionnements de systèmes linéaires sur machines massivement parallèles CM-2 et
CM-5. PhD thesis, Université Paris VI, 1995. (Cited on pages 275, 345, 353, 356, 357, and 364.)

[375] E. L. Poole and J. M. Ortega. Multicolor iccg methods for vector computers. SIAM J. Numer. Anal.,
24(6):1394–1418, 1987. (Cited on pages 324 and 367.)

[376] G. Poole and L. Neal. A geometric analysis of Gaussian elimination, I. Linear Algebra Appl.,
149:249–272, 1991. (Cited on page 57.)

Bibliography 473

[377] G. Poole and L. Neal. Gaussian elimination: when is scaling beneficial? Linear Algebra Appl.,
162:309–324, 1992. (Cited on page 84.)

[378] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990. (Cited on page 109.)

[379] W. Proskurowski and O. B. Widlund. On the numerical solution of Helmholtz’s equation by the
capacitance matrix method. Math. Comput., 30(135):433–468, 1976. (Cited on pages 142 and 143.)

[380] W. Proskurowski and O. B. Widlund. A finite element capacitance mattrix method for the Neumann
problem for Laplace’s equation. SIAM J. Sci. Statist. Comput., 1(4):410–425, 1980. (Cited on
page 143.)

[381] J. S. Przemieniecki. Matrix structural analysis of substructures. Am. Inst. Aero. Astro. J., 1(1):138–
147, 1963. (Cited on page 452.)

[382] J. K. Reid. On the method of conjugate gradients for the solution of large sparse systems of linear
equations. In J. K. Reid, editor, Proc. Conference on Large Sparse Sets of Linear Equations, New
York, 1971. Academic Press. (Cited on page 227.)

[383] R. D. Richtmyer and K. W. Morton. Difference Methods for Initial-value Problems. Wiley-
Interscience, New York, 2nd edition, 1967. (Cited on page 39.)

[384] J. L. Rigal and J. Gaches. On the compatibility of a given solution with the data of a linear system.
Journal of the ACM, 14(3):543–548, 1967. (Cited on page 83.)

[385] Y. Robert. Regular incomplete factorizations of real positive definite matrices. Linear Algebra Appl.,
48:105–117, 1982. (Cited on page 315.)

[386] G. H. Rodrigue and J. Simon. A generalization of the numerical Schwarz algorithm. In R. Glowinski
and J.-L. Lions, editors, Computing Methods in Applied Sciences and Engineering VI, pages 273–
283. North-Holland, 1984. (Cited on page 408.)

[387] G. H. Rodrigue and D. Wolitzer. Preconditioning by incomplete block cyclic reduction. Math.
Comput., 42(166):549–565, 1984. (Cited on page 370.)

[388] J. Roman. Calcul de complexité relatifs à une méthode de dissection emboîtée. Numer. Math.,
47:175–190, 1985. (Cited on page 107.)

[389] D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl., 32:597–609,
1970. (Cited on pages 47 and 91.)

[390] E. Rothberg. Exploiting the memory hierarchy in sequential and parallel sparse Cholesky factoriza-
tion. PhD thesis, Stanford University, 1993. (Cited on pages 86 and 87.)

[391] E. Rothberg and A. Gupta. An efficient block-oriented approach to parallel sparse Cholesky factor-
ization. SIAM J. Sci. Comput., 15(6):1413–1439, 1994. (Cited on page 118.)

[392] J. W. Ruge and K. Stüben. Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG). In D. J. Paddon and H. Holstein, editors, Multigrid Methods for Integral
and Differential Equations, pages 169–212. Clarendon Press, 1985. (Cited on page 399.)

[393] A. Ruhe. Numerical aspects of Gram-Schmidt orthogonalization of vectors. Linear Algebra Appl.,
52:591–601, 1983. (Cited on page 8.)

[394] Y. Saad. Krylov subspace methods for solving large nonsymmetric linear systems. Math. Comput.,
37:105–126, 1981. (Cited on page 272.)

[395] Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection methods for solv-
ing large unsymmetric systems. SIAM J. Numer. Anal., 19(3):470–484, 1982. (Cited on page 253.)

[396] Y. Saad. Least squares polynomials in the complex plane and their use for solving nonsymmetric
linear systems. SIAM J. Numer. Anal., 24(1):155–169, 1987. (Cited on page 363.)

[397] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. J. Sci. Comput., 14(2):461–469,
1993. (Cited on pages 248, 249, and 272.)

[398] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving nonsymmetric linear
systems. Math. Comput., 44(170):417–424, 1985. (Cited on pages 243 and 272.)

474 Bibliography

[399] Y. Saad and M. H. Schultz. GMRES: a generalized minimum residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986. (Cited on pages 237,
239, and 272.)

[400] H. Sadok. CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg
reduction algorithm. Numer. Algorithms, 20(4):303–321, 1999. (Cited on pages 234, 235, 269,
and 272.)

[401] H. Sadok. Analysis of the convergence of the minimal and the orthogonal residual methods. Numer.
Algorithms, 40:201–216, 2005. (Cited on pages 241 and 242.)

[402] Y. Shapira. A multilevel method for sparse linear systems. Report Los Alamos National Laboratory,
1997. (Cited on pages 400 and 401.)

[403] H. D. Simon. The Lanczos algorithm for solving symmetric linear systems. PhD thesis, University
of California, Berkeley, USA, 1982. (Cited on pages 193, 215, 216, 217, and 227.)

[404] H. D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods. Lin-
ear Algebra Appl., 61:101–131, 1984. (Cited on pages 215 and 227.)

[405] H. D. Simon. The Lanczos algorithm with partial reorthogonalization. Math. Comput., 42(165):115–
142, 1984. (Cited on pages 215 and 227.)

[406] R. D. Skeel. Scaling for numerical stability in Gaussian elimination. Journal of the ACM, 26(3):494–
526, 1979. (Cited on pages 83, 84, and 85.)

[407] G. L. G. Sleijpen and D. R. Fokkema. BiCGstab(`) for linear equations involving unsymmetric ma-
trices with complex spectrum. Electron. Trans. Numer. Anal., 11:11–32, 1993. (Cited on pages 265
and 272.)

[408] G. L. G. Sleijpen and H. van der Vorst. Maintaining convergence properties of BiCGstab methods in
finite precision arithmetic. Numer. Algorithms, 10:203–223, 1995. (Cited on page 266.)

[409] G. L. G. Sleijpen and H. van der Vorst. An overview of approaches for the stable computation of
hybrid BiCG methods. Appl.Numer.Math., 19:235–254, 1995. (Cited on pages 266 and 267.)

[410] G. L. G. Sleijpen and H. van der Vorst. Reliable updated residuals in hybrid BiCG methods. Com-
puting, 56:141–163, 1996. (Cited on page 266.)

[411] G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. The main effects of rounding errors in
Krylov solvers for symmetric linear systems. Technical Report 1006, University of Utrecht, 1997.
(Cited on page 217.)

[412] G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. Differences in the effects of rounding
errors in Krylov solvers for symmetric indefinite linear systems. SIMAX, 22(3):736–751, 2001.
(Cited on page 217.)

[413] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. Internat. J. Numer.
Methods Engrg., 23(2):239–251, 1986. (Cited on pages 99 and 100.)

[414] B. F. Smith. A domain decomposition algorithm for elliptic problems in three dimensions. Numer.
Math., 60:219–234, 1991. (Cited on page 443.)

[415] B. F. Smith. An iterative substructuring algorithm for problems in three dimensions. In D. E. Keyes,
T. F. Chan, G. Meurant, J. S. Scroggs, and R. G. Voigt, editors, Fifth International Symposium
on Domain Decomposition Methods for Partial Differential Equations, pages 91–98. SIAM, 1992.
(Cited on page 443.)

[416] B. F. Smith. An optimal domain decomposition preconditioner for the finite element solution of
linear elasticity problems. SIAM J. Sci. Statist. Comput., 13:364–378, 1992. (Cited on page 443.)

[417] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, 1996. (Cited on pages 404,
443, 447, and 452.)

[418] D. C. Smolarski and P. E. Saylor. An optimum iterative method for solving any linear system with a
square matrix. BIT, 28:163–178, 1988. (Cited on page 363.)

Bibliography 475

[419] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 10(1):36–52, 1989. (Cited on pages 261 and 272.)

[420] G. W. Stewart. Introduction to Matrix Computations. Academic Press, 1973. (Cited on page 3.)

[421] G. W. Stewart. Maybe we should call it “Lagrangian elimination”. Na-net, message of Friday June
21, 1991, 1991. (Cited on page 88.)

[422] G. W. Stewart. Matrix Algorithms, volume I: Basic Decompositions. SIAM, Philadelphia, 1998.
(Cited on page 3.)

[423] G. W. Stewart. Matrix Algorithms, volume II: Eigensystems. SIAM, Philadelphia, 2001. (Cited on
page 3.)

[424] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, New York, 1980.
(Cited on pages 196 and 198.)

[425] G. Strang. Linear Algebra and its Applications. Academic Press, 1976. (Cited on pages 3, 9, and 47.)

[426] K. Stüben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model problem analysis
and applications. In Springer, editor, Multigrid Methods, Proceedings of the Koln-Porz Conference,
pages 1–176, 1982. Lecture Notes in Mathematics 960. (Cited on pages 376, 378, and 383.)

[427] P. N. Swarztrauber. A direct method for the discrete solution of separable elliptic equations. SIAM
J. Numer. Anal., 11(6):1136–1150, 1974. (Cited on pages 125 and 139.)

[428] P. N. Swarztrauber. Vectorizing the FFTs. In G. Rodrigue, editor, Parallel Computations, pages
51–84. Academic Press, 1982. (Cited on page 128.)

[429] P. N. Swarztrauber. FFT algorithms for vector computers. Parallel Comput., 1:45–63, 1984. (Cited
on page 128.)

[430] R. A. Sweet. A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary dimen-
sion. SIAM J. Numer. Anal., 14(4):706–720, 1977. (Cited on page 139.)

[431] W.-P. Tang. Generalized Schwarz splittings. SIAM J. Sci. Statist. Comput., 13(2):573–595, 1992.
(Cited on pages 408 and 410.)

[432] C. Temperton. Direct methods for the solution of the discrete Poisson equation: Some comparisons.
J. Comp. Phys., 31(1):1–20, 1979. (Cited on page 125.)

[433] C. Temperton. On the FACR(l) algorithm for the discrete Poisson equation. J. Comp. Phys.,
34(3):314–329, 1980. (Cited on page 140.)

[434] C. Temperton. A generalized prime factor FFT algorithm for any n = 2p3q5r . SIAM J. Sci. Statist.
Comput., 13(3):676–686, 1992. (Cited on page 129.)

[435] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally ordered
triangular factorization. Proc. IEEE, 55(11):1801–1809, 1967. (Cited on pages 103 and 119.)

[436] C. H. Tong. A comparative study of preconditioned lanczos methods for non symmetric linear
systems. Technical Report AND91-8240, Sandia National Laboratory, 1992. (Cited on page 270.)

[437] C. H. Tong and Q. Ye. A linear system solver based on a modified Krylov subspace method for
breakdown recovery. Numer. Algorithms, 12(1):233–251, 1996. (Cited on page 261.)

[438] C. H. Tong and Q. Ye. Analysis of the finite precision biconjugate gradient algorithm for nonsym-
metric linear systems. Math. Comput., 69:1559–1575, 2000. (Cited on page 257.)

[439] L. N. Trefethen. Pseudospectra of linear operators. SIAM Rev., 39(3):383–406, 1997. (Cited on
page 242.)

[440] L. N. Trefethen and R. S. Schreiber. Average-case stability of Gaussian elimination. SIAM J. Matrix
Anal. Appl., 11(3):335–360, 1990. (Cited on page 81.)

[441] A. D. Tuff and A. Jennings. An iterative method for large systems of linear structural equations.
Internat. J. Numer. Methods Engrg., 7(2):175–183, 1973. (Cited on page 291.)

[442] R. Tuminaro. Multigrid algorithms on parallel processing systems. PhD thesis, Dept.of Computer
Science, Stanford University, 1989. (Cited on pages 397, 398, and 399.)

476 Bibliography

[443] R. S. Tuminaro. A highly parallel multigrid-like method for the solution of the Euler equations.
SIAM J. Sci. Statist. Comput., 13(1):88–100, 1992. (Cited on page 399.)

[444] R. S. Tuminaro and D. E. Womble. Analysis of the multigrid FMV cycle on large-scale parallel
machines. SIAM J. Sci. Comput., 14(5):1159–1173, 1993. (Cited on page 399.)

[445] R. Underwood. An approximate factorization procedure based on the block Cholesky decomposition
and its use with the conjugate gradient method. Technical Report NEDO-11386, General Electric,
San José, USA, 1976. (Cited on page 330.)

[446] A. van der Ploeg, E.F. F. Botta, and F. W. Wubs. Nested grids ILU decomposition (NGILU). J.
Comput. Appl. Math., 66:515–526, 1996. (Cited on page 452.)

[447] A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14(1):14–23,
1969. (Cited on page 275.)

[448] A. van der Sluis and H. A. van der Vorst. The rate of convergence of conjugate gradients. Numer.
Math., 48:543–560, 1986. (Cited on pages 187 and 191.)

[449] H. van der Vorst. A vectorizable variant of some ICCG methods. SIAM J. Sci. Comput., 3(3):350–
356, 1982. (Cited on page 367.)

[450] H. van der Vorst. BICGSTAB: A fast and smoothly converging variant of BI-CG for the solution
of non-symmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631–644, 1992. (Cited on
pages 263 and 272.)

[451] H. van der Vorst and C. Vuik. The superlinear convergence behavior of GMRES. J. Comput. Appl.
Math., 48:327–341, 1993. (Cited on page 240.)

[452] H. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numer. Linear
Algebra Appl., 1(4):369–386, 1994. (Cited on pages 249, 250, and 272.)

[453] C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM, 1992. (Cited
on page 143.)

[454] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid on unstructured meshes. Technical Re-
port 34, UCD/CCM, 1994. (Cited on page 401.)

[455] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems. Computing, 56(3):179–196, 1996. (Cited on page 401.)

[456] R. S. Varga. Factorization and normalized iterative methods. In R. E. Langer, editor, Boundary
Problems in Differential Equations, pages 121–142. University of Wisconsin Press, Madison, 1960.
Proceedings of a Symposium conducted by the Mathematics Research Center at the University of
Wisconsin, Madison, April 20-22, 1959. (Cited on page 304.)

[457] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962. A revised and
expanded edition was published by Springer in 2000. (Cited on pages 3, 21, 47, 156, and 172.)

[458] R. S. Varga, E. B. Saff, and V. Mehrmann. Incomplete factorizations of matrices and connections
with H-matrices. SIAM J. Numer. Anal., 17(6):787–793, 1980. (Cited on page 315.)

[459] P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneous linear
equations. In Proceedings of the Fourth SPE Symposium on Numerical Simulation of Reservoir
Performance. Society of Petroleum Engineers of AIME, 1976. (Cited on page 244.)

[460] J. von Neumann and H. H. Goldstine. Numerical inverting of matrices of high order. Bull. Amer.
Math. Soc., 53:1021–1099, 1947. (Cited on page 88.)

[461] C. Vuik. Further experiences with GMRESR. Technical Report 92-12, Faculty of Mathematics,
Delft University of Technology, 1992. (Cited on pages 250 and 272.)

[462] C. Vuik. New insights in GMRES-like methods with variable preconditioners. J. Comput. Appl.
Math., 61(2):189–204, 1995. (Cited on page 250.)

[463] H. F. Walker. Implementation of the GMRES method using Householder transformations. SIAM J.
Sci. Statist. Comput., 9(1):152–163, 1988. (Cited on pages 238 and 272.)

Bibliography 477

[464] J. R. Wallis, R. P. Kendall, and T. E. Little. Constrained residual acceleration of conjugate resid-
ual methods. In SPE 13536, Reservoir Simulation Symposium, Austin Texas. Society of Petroleum
Engineers, 1985. (Cited on pages 223 and 224.)

[465] R. Weiss. A theoretical overview of Krylov subspace methods. Appl. Numer. Math., 19(3):207–233,
1995. (Cited on page 213.)

[466] O. B. Widlund. A Lanczos method for a class of nonsymmetric systems of linear equations. SIAM
J. Numer. Anal., 15(4):801–812, 1978. (Cited on pages 231, 232, and 272.)

[467] H. S. Wilf. Mathematics for the Physical Sciences. Wiley, 1962. (Cited on page 201.)

[468] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK, 1965.
(Cited on pages 3, 43, 47, 78, 81, 88, and 234.)

[469] S. J. Wright. A collection of problems for which gaussian elimination with partial pivoting is unsta-
ble. SIAM J. Sci. Comput., 14(4):231–238, 1993. (Cited on page 81.)

[470] J. Xu. Theory of multilevel methods. PhD thesis, Penn State University, 1989. (Cited on page 392.)

[471] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2(1):77–
79, 1981. (Cited on page 91.)

[472] Q. Ye. A breakdown-free variation of the nonsymmetric Lanczos algorithms. Math. Comput.,
62(205):179–207, 1994. (Cited on page 261.)

[473] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, 1971. Reprinted by
Dover (2003). (Cited on pages 3, 14, 15, 17, 47, 150, 153, 154, 157, 165, and 172.)

[474] D. M. Young. On the accelerated ssor method for solving large linear systems. Advances in Maths.,
23:215–271, 1977. (Cited on page 160.)

[475] D. M. Young and K. C. Jea. Generalized conjugate-gradient acceleration of nonsymmetrizable iter-
ative methods. Linear Algebra Appl., 34:159–194, 1980. (Cited on pages 245 and 246.)

[476] L. Zhou and H. F. Walker. Residual smoothing techniques for iterative methods. SIAM J. Sci.
Comput., 15:297–312, 1994. (Cited on page 268.)

Index

adjacency set, 25, 100, 116
algorithm complexity, 44
ancestor, 95, 116

backward error, 46, 83, 85, 115
backward error analysis, 43, 78,

172
band, 95
bandwidth, 95, 96, 119, 222,

261
bipartite graph, 109
bit reversal, 125
BLAS, 45–47
BLAS1, 45, 46
BLAS2, 46
BLAS3, 46, 118
block Cholesky factorization, 76
block cyclic distribution, 87
block diagonally dominant, 69
block LU factorization, 68, 415
block tridiagonal, 74–76, 121,

134, 135, 140, 222, 261,
280, 291, 329–331, 340,
344, 345, 412, 414, 415,
418, 419, 430, 433, 436

block twisted factorization, 75,
76

block UL factorization, 415
bordering algorithm, 59, 61

Cauchy-Schwarz inequality, 4,
6, 355

Cayley-Hamilton theorem, 233
characteristic polynomial, 168,

351
Chebyshev polynomials, 27, 29,

170, 171, 185, 188, 353,
358, 363, 447

Cholesky factorization, 65, 69,
72, 73, 101, 194, 195,
202, 206, 209, 320, 330,
346, 365, 448

chord, 26
clique, 26, 104, 116, 117, 445
complete pivoting, 57, 81
componentwise condition

number, 83
computer arithmetic, 42
computers, 34, 41, 42, 44–46,

64, 65, 86, 88, 134, 138,
151, 165, 225, 364, 403,
452

condition number, 83, 115, 167,
169, 172, 185, 186, 189,
196, 215, 231, 273–278,
280, 282, 290, 294, 300,
306, 308, 309, 311, 322,
326, 329, 339, 340, 352,
353, 356, 365, 401, 404,
415, 416, 423, 426,
428–430, 435, 436,
442–447, 450

Cramer’s rule, 49, 241
Crank-Nicolson scheme, 412
Cuthill-McKee, 96, 97, 105, 317
cycle, 26

degree, 26, 96, 99–102, 104, 105
descendant, 95
determinants, 49, 241, 242
diagonally dominant, 14, 16, 66,

67, 71, 76, 84, 306–308,
330, 349, 413

diameter, 26, 96
digraph, 25, 114, 323
direct methods, 3, 34, 47, 49,

89, 121
Dirichlet boundary conditions,

31, 35–39, 121, 141, 278,
285, 299, 301, 304,
307–311, 321, 335, 339,
374, 412, 413, 441

dissection, 105–107, 110, 116,
119, 317, 439

distance, 26, 100, 440
Dulmage-Mendelsohn

decomposition, 109, 110

eccentricity, 26, 96
eigenvalues, 8–12, 16, 20, 22,

23, 35–39, 46, 47, 122,
129–131, 139, 146–148,
150–155, 158, 160,
166–168, 170, 171,
183–187, 189, 191, 193,
196–198, 201, 206, 209,
214, 215, 222, 231, 232,
234, 240, 242, 265,
272–274, 276–278,
280–282, 285, 294, 295,
297–305, 307, 308, 310,
316, 328, 335, 337–339,
351, 352, 357, 361–363,
375, 377, 380, 382, 383,
415, 418–423, 425–428,
430, 434, 435, 439

eigenvectors, 8, 9, 35–39, 122,
130, 139, 152, 154, 189,
196, 197, 201, 294, 297,
300–302, 310, 328,
375–380, 382, 384,
420–423, 434

elimination tree, 93, 111, 113,
114, 116–118

energy norm, 6, 22, 180
envelope, 95, 98, 101, 103, 119
equimodular set, 20
Euclidean norm, 4, 5, 8, 10, 11,

101, 207, 209, 230, 231,
237, 249, 263, 267

Fast Fourier Transform, 122,
123, 143, 365

fill-in, 89–91, 93–95, 103–105,
112, 113, 115, 116, 119,
138, 210, 286, 290–293,

478

Index 479

319, 321–323, 325, 329,
330, 350, 447–450, 452

finite difference, 29, 35, 40, 100,
121, 147, 166, 225, 291,
304, 311, 312, 316, 321,
324, 329, 340, 345, 374,
377, 386, 406, 412–414,
423, 424, 431, 442

finite element, 29, 33, 110, 206,
225, 277, 365, 387, 388,
392, 393, 424, 441, 446

floating point, 3, 4, 34, 42–47,
49, 57, 60, 91, 176, 178,
208, 209, 217, 227, 230,
238, 242, 244, 256, 262,
264, 266, 267, 269, 326,
393, 394, 437

floating point arithmetic model,
41

forest, 26
forward error, 83
Fourier analysis, 39, 40, 47,

122, 131, 140, 274, 281,
285, 294, 296, 297, 308,
311, 339, 384

Frobenius norm, 6, 309, 310,
318, 320, 322, 347, 449,
450

frontal method, 110, 119

Gauss quadrature rule, 197, 201,
202

Gauss-Lobatto quadrature rule,
202

Gauss-Radau quadrature rule,
202

Gaussian elimination, 43, 46,
47, 49, 77, 78, 81, 83–85,
88–91, 111, 115, 117,
118, 131, 132, 138, 149,
217, 235, 324, 364, 368,
404, 414

generalized diagonally
dominant, 16, 308

generalized strictly diagonally
dominant, 16, 17, 19–21,
67

Gerschgorin disks, 16, 439
Gigaflops, 45
Gram-Schmidt

orthogonalization, 7, 9,
193, 234, 247, 349

graph, 25, 26, 91–93, 96, 97,
100, 102, 103, 105–111,

114, 322–324, 326, 367,
387, 449

graph contraction, 102
growth factor, 68, 79, 81, 84

H-matrix, 20, 23, 68, 146, 147,
149, 152, 155, 157, 159,
163, 287–290, 311, 315,
350

Hermitian matrix, 10, 270
Householder-John theorem, 22,

166

induced matrix norm, 4, 5, 12
inner product algorithm, 60, 62
irreducible, 13–15, 26, 70, 97
irreducibly diagonally dominant,

14–16, 19–21, 147, 152
iterative methods, 3, 11, 13, 21,

23, 27, 31, 35, 39, 40, 47,
145, 147, 171, 172, 180,
203, 213, 217, 234, 273,
274, 373–375, 397, 404

iterative refinement, 83–85, 115,
374

L-matrix, 18–20, 147, 330
LAPACK, 46, 47, 88
Laplacian, 30, 39, 40, 388, 423
Laplacian matrix, 100, 101, 108
level structure, 26, 96, 99, 439
LINPACK, 45–47, 64, 88
LU factorization, 54, 55, 57, 63,

68–71, 79, 86, 222, 235,
253–255, 286, 415

M-matrix, 18–23, 67, 68, 101,
147, 152, 156, 164, 165,
172, 288–290, 307, 322,
340, 350, 399, 412, 415,
447

Markowitz criterion, 113
matrix norm, 4–6, 11
maximum norm, 5, 27, 84, 158,

185
maximum principle, 17
Mflops, 44
minimum degree, 96, 99,

103–105, 110, 113–116,
119, 449

modified Gram-Schmidt, 8, 234,
247, 248, 253, 271

monotone, 17
multifrontal method, 110, 113,

118

multiprocessor computers, 44

Netlib, 47, 129
Neumann boundary conditions,

31, 32, 435
Neumann series, 13, 351
Newton’s method, 29
norm, 5–7, 11, 12, 22, 167, 176,

189, 194, 195, 203, 206,
211, 213, 214, 219, 229,
230, 238, 239, 242–244,
246, 249–251, 254, 256,
261, 262, 264, 266–269,
291, 309, 310, 318, 347,
348, 394

normal equations, 229–231, 272
normwise backward error, 83
normwise condition number, 82
normwise error analysis, 81

orthogonal matrix, 8, 10, 129,
168, 183, 247, 251, 365,
420, 423

orthogonal polynomials, 29,
184, 198, 221, 258, 354

orthogonality, 7, 8, 168, 175,
192, 193, 212, 214–217,
219, 221, 223, 227, 235,
241, 244, 247, 248, 250,
258, 261, 270

outer product, 59, 60, 64, 65,
285

overlapping, 403, 404, 408, 409,
411, 413, 443

parallel algorithms, 45, 85, 86,
368

parallel computers, 44, 45, 47,
115, 119, 125, 157, 179,
347, 366, 367, 370, 397,
403

parallelism, 45, 46, 86, 115,
116, 118, 128, 138, 149,
154, 225–227, 271, 272,
274, 275, 317, 349, 366,
368, 370, 397, 403, 410,
416, 417, 438, 439

partial differential equations, 29,
33, 128, 141, 148, 158,
225, 304, 373

partial pivoting, 55, 57, 81,
83–85, 113

path, 26, 94, 95, 105, 109, 114
periodic boundary conditions,

31, 32, 35, 37, 38, 121,

480 Index

138, 274, 278, 281,
294–296, 307, 308, 332,
334, 336, 384

peripheral, 26, 96
permutation matrix, 14, 17,

55–57, 66, 90, 320, 322
Petaflops, 45
pipelined computer, 44
pivot, 50, 51, 55–57, 60, 64, 66,

77, 81, 84, 87, 91, 113,
117, 209, 290

pivoting, 55–57, 64, 66, 69, 84,
90, 114, 115, 235, 290,
291

Poisson equation, 29, 35, 121,
126, 274, 416

Poisson model problem, 31, 33,
35, 77, 98, 107, 122, 129,
147, 158, 206, 233, 275,
277, 280, 294, 304–307,
310, 311, 315, 321, 327,
329, 332, 352, 374, 393,
405, 408, 415, 421–426,
431, 440, 449

positive definite, 6, 22–24, 64,
65, 76, 91, 113, 150, 152,
157, 160, 166, 167,
172–174, 176, 181–183,
194, 196, 204, 209, 218,
219, 229, 230, 239, 241,
242, 244, 273, 276, 286,
291, 299, 302, 315, 316,
345, 349, 352, 361, 403

powers of a matrix, 11
prime factor algorithm, 129
profile, 95, 96, 98, 100–102,

286, 326
property A, 17, 151, 153, 158,

275
pseudo-peripheral, 96, 97, 99,

439

QR factorization, 212, 216, 220,
233, 234, 236, 237, 247,
272, 348

reachable, 94, 95, 109, 114
recursive bisection, 108
reducible, 14
regular splitting, 21, 47, 147,

155, 156, 164, 172, 288,
290

roundoff error analysis, 41, 84,
246, 257

roundoff errors, 41, 43, 136,
137, 169, 171, 174, 214,
215, 217, 233, 247, 248

Saxpy algorithm, 85, 86
scalability, 45
ScaLAPACK, 47
scalar product, 3, 4, 7, 9, 27, 60,

85, 173, 175, 176, 218,
225, 226, 229, 230, 253,
270, 408

scalar product algorithm, 86
scaling, 84, 195, 236, 253, 267,

274, 275, 334, 361, 446
Schur complement, 20, 24, 64,

403, 415, 418–420, 427,
428, 430, 432–435, 439,
447

section graph, 26
separator, 26, 105, 107–110
series of matrices, 13, 164
sparsity, 89, 95, 113, 116, 290,

343, 347–350, 434
spectral decomposition, 10, 122,

129, 135, 216, 221, 420
spectral norm, 383
spectral ordering, 101, 103, 108
spectral radius, 10, 11, 145, 147,

150, 153, 158, 160, 167,

322, 377, 378, 383
splitting, 21, 40, 145, 146, 149,

159, 161, 166, 169, 171,
213, 286

storage scheme, 34, 35, 89, 95,
125, 225

strictly diagonally dominant, 14,
16, 17, 19–21, 23, 47, 67,
68, 71, 146, 147, 149,
151, 152, 155, 159, 162,
163, 287, 409, 412, 429

subgraph, 25, 26
symmetric positive definite, 22,

65, 89, 118, 119, 149,
150, 159, 160, 166, 167,
173, 180, 183, 230, 232,
273, 275, 276, 279, 286,
312–315, 327, 351, 375,
401, 415, 417

Teraflops, 45
transitive closure, 114
transpose envelope, 97
tree, 26, 93, 116, 118
tree rotation, 116, 117
tridiagonal matrix, 30, 69, 70,

72, 121, 135, 194,
199–201, 203, 209, 255,
280, 330, 333, 334, 336,
362, 370, 414, 415

twisted factorization, 71, 72,
419, 439

UL factorization, 69–71
unitary matrix, 9, 10, 12

vector computers, 44, 46, 88,
128, 225, 366, 367

vector norm, 4, 12, 22

wrap mapping, 85, 118

