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Preface

Solving linear systems of equations is ubiquitous in scientific computing. Therefore, nu-
merical algorithms for solving them are of paramount importance. There are two main kinds
of methods for solving nonsingular linear systems. Direct methods are designed to obtain the
solution after a finite number of basic operations, additions, subtractions, multiplications and
divisions. Iterative methods define iterates that are supposed to converge in a certain sense to the
solution.

This book covers both direct and iterative methods for solving nonsingular linear systems
of equations. Very large sparse systems are now solved due to the progresses of numerical
simulation and computers. Many methods have been invented over the years, particularly since
the advent of the first digital computers during and after World War II. Some of the older methods
proposed in the 1950s and 1960s are not so efficient anymore when applied to very large systems
and there is still a very active research in this area. This book covers what we think are the most
important and efficient algorithms known today.

The first chapter recalls some mathematical results and tools that are needed in the next
chapters. We gather some definitions and put a particular emphasis on floating-point arithmetic
and rounding errors in numerical computations.

The direct methods we consider are different versions of Gaussian elimination. Chapter 2
is devoted to Gaussian elimination for general linear systems. We describe several pivoting
strategies and some variants designed for modern computers. We also consider methods which
are not often described in books on direct methods: the Gauss-Jordan, Gauss-Huard and Purcell
algorithms.

The topic of Chapter 3 is Gaussian elimination for sparse systems, that is, with matrices hav-
ing many zero entries. We describe several ordering techniques designed to reduce the number
of floating-point operations and the computer storage, as well as techniques designed to improve
the efficiency on parallel computers like supernodal and multifrontal methods.

Classical iterative methods are recalled in Chapter 4. This means methods that have been
developed in the 19th century and used on the computers of the 1950s and 1960s. We study
Jacobi, Gauss-Seidel, SOR, and SSOR methods, as well as Richardson and alternating direction
methods. Even though there are not really efficient for solving the problems people solve today,
they are still of interest for constructing preconditioners.

In Chapter 5 the emphasis is put on the conjugate gradient (CG) method which is probably
the most efficient method for solving sparse symmetric positive definite linear systems. We
show how to cheaply compute bounds or estimates of error norms during the iterations. We also
consider a few methods for symmetric indefinite problems.

Chapter 6 consider Krylov methods for nonsymmetric matrices with a particular interest for
GMRES and methods using short recurrences, derived from the nonsymmetric Lanczos algo-
rithm, that is, BiCG, BiCGStab, QMR and some variants. We also consider IDR methods.

An important issue for using Krylov methods efficiently is preconditioning. Therefore, in
Chapter 7 we describe the most efficient preconditioners, mainly for symmetric problems.

1



2 Preface

This book should be useful for engineers and scientists solving linear systems as well as
graduate students interested in numerical computations.



1

The tools of the trade

In this chapter, for the convenience of the reader, we recall some definitions and prove some
well-known fundamental theorems on matrix properties that will be used in the following chap-
ters. More details can be found in the classical books (in alphabetical order) by O. Axelsson
[64], A. Berman and R.J. Plemmons [123], G.E. Forsythe and C.B. Moler [461], G.H. Golub and
C. Van Loan [548], A.S. Householder [647], G. Strang [1054], G.W. Stewart [1040, 1045, 1046],
R.S. Varga [1098], J.H. Wilkinson [1120], and D.M. Young [1144], as well as [811]. We also
recall some facts about computer arithmetic that will be useful in studying rounding errors. More
on that topic can be found in the books by N.J. Higham [631, 633], F. Chatelin and V. Frayssé
[215], and the handbook [846]. We give a few examples of linear systems arising from dis-
cretization of partial differential equations which can be solved with the numerical methods that
are considered in this book.

There are two main classes of algorithms to compute the solution of a linear system, direct
methods and iterative methods. Mathematically, direct methods obtain the solution after a finite
number of floating-point operations by doing combinations and modifications of the given equa-
tions. Of course, since on a digital computer the result of floating-point operations can only be
obtained to a certain given precision, the computed solution is generally different from the exact
solution, even with a direct method.

Iterative methods define a sequence of approximations that are expected to be closer and
closer to the exact solution in some given norm, stopping the iterations using some predefined
criterion, and obtaining a vector which is only an approximation of the solution.

Without being explicitly stated, we will consider square matrices A of order n with real
coefficients that we denote by ai,j . Most of the time we will denote matrices by capital letters,
vectors by roman letters and scalars by Greek letters. Components of a vector x are denoted by
xi. Generally, elements of a vector sequence (iterates) will be denoted by xk. To avoid confusion,
when needed, their components are denoted as [xk]i.

1.1 Discretization methods for partial differential
equations

Linear systems of equations are ubiquitous in scientific computing. Although not the only source
of linear systems, problems that arise from discretization of elliptic and parabolic (systems of)
partial differential equations (PDEs) are some of the most important ones. Generally, nonlinear
problems are handled with iterative algorithms like Newton’s method which gives a linear sys-
tem to solve at each nonlinear iteration. Linear system solves are also involved in optimization

3



4 1. The tools of the trade

algorithms.
There are several ways to discretize PDEs: finite difference methods, finite volume methods,

and finite element methods. Finite volumes can usually be interpreted as finite elements. These
kinds of methods have many things in common, and finite differences can often be seen as partic-
ular cases of finite element methods. Nowadays, finite elements methods are the most used since
scientists and engineers solve problems on complicated geometries and finite difference methods
are not well suited for these problems.

Nevertheless, let us start with finite differences because they give model problems which are
easy to construct. Most often, finite differences are used on a regular (cartesian) mesh and yield
matrices with a regular nonzero structure that are easy to store in the computer memory. The
model problem that was and still is widely used for testing algorithms is the Poisson equation on
the open unit square Ω = (0, 1)× (0, 1),

−∆u = −∂
2u

∂x2
− ∂2u

∂y2
= f in Ω,

u
∣∣
∂Ω

= 0,

where ∂Ω is the boundary of Ω and f is given in an appropriate functional space (for instance
L2(Ω) =

{
u
∣∣u measurable and

∫
Ω
u2dx < +∞

}
). Non-homogeneous boundary conditions

can be easily handled as well. To compute an approximate solution of this infinite dimensional
problem we cover Ω with a regular mesh Ωh having m points in each direction. This gives a
mesh size h = 1

m+1 as in Figure 1.1.

h

Figure 1.1. A regular cartesian mesh

We want to compute an approximate solution at each point (xi, yj) inside Ω since we already
know u on the boundary (for i and j equal 0 or m+ 1). We denote ui,j the approximation of u at
(xi, yj). Then we approximate the partial derivative ∂u

∂x at [(ih+ h
2 ), jh] by the finite difference(

∂u

∂x

)
i+ 1

2 ,j

≈ ui+1,j − ui,j
h

.

For the second order derivative,(
∂2u

∂x2

)
i,j

≈ 1

h

((
∂u

∂x

)
i+ 1

2 ,j

−
(
∂u

∂x

)
i− 1

2 ,j

)
,

≈ ui−1,j − 2ui,j + ui+1,j

h2
.

Doing this for both directions, we obtain an approximation of minus the Laplacian ∆ that we
denote (after multiplication by h2) by −∆5.

(−∆5u)i,j = −ui−1,j − ui,j−1 + 4ui,j − ui,j−1 − ui,j+1,

= h2f(xi, yj), i = 1, . . . ,m, j = 1, . . . ,m.



1.1. Discretization methods for partial differential equations 5

The solution is known for points on ∂Ω, that is, for i = 0 or m + 1, j = 0 or m + 1. We have
m2 equations with m2 unknowns and a linear system to solve. If we number the points from left
to right and from bottom to top and rename the unknowns from u to x to agree with the notation
that is traditionally used for linear algebra, the system can be written as

Ax = b

where
x = {u1,1, u1,2, . . . , um,m}T , b = h2{f1,1, f1,2, . . . , fm,m}T ,

fi,j being the value of f at point (i, j). The matrix A can be written in block form as

A =


T −I
−I T −I

. . . . . . . . .
−I T −I

−I T

 ,

where I is the identity matrix and T is a tridiagonal matrix, both of order m,

T =


4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4

 .

Of course, if we would have used other orderings for the mesh points, the structure of the matrix
would have been different. We must warn the reader that this problem is relatively easy to solve,
and therefore not a very good test problem for comparing algorithms, particularly for iterative
methods.

It can be shown that ui,j → u(xi, yj) in some sense when h→ 0. In this example, the matrix
coefficients are integers. However, a linear system with the same nonzero structure is obtained
when solving a diffusion problem with variable (and possibly discontinuous) coefficients like

− ∂

∂x

[
λ1(x, y)

∂u

∂x

]
− ∂

∂y

[
λ2(x, y)

∂u

∂y

]
= f(x, y),

u
∣∣
∂Ω

= 0.

For this problem we obtain a linear system Ax = b where the matrix can be written blockwise as

A =


D1 AT2
A2 D2 AT3

. . . . . . . . .
An−1 Dn−1 ATn

An Dn

 .

With a 5-point discretization stencil as above the equation for the point (i, j) involves only
the unknowns at points (i, j), (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). The matrices Di

are tridiagonal and the matrices Ai are diagonal. Other types of boundary conditions give rise to
matrices that are only slightly different. Let us look at the modifications given by Neumann or
periodic boundary conditions on ∂Ω, Ω = (0, 1)× (0, 1) for the problem −∆u+ σu = f where
σ > 0 is a given coefficient.



6 1. The tools of the trade

Figure 1.2. Shadow unknowns for Neumann boundary conditions

With Neumann boundary conditions ∂u
∂n = 0, n being the outward normal to the boundary,

we have m + 2 unknowns for each mesh line, that is, (m + 2)2 unknowns in total. Difference
equations on the boundary are obtained using “shadow” unknowns as in Figure 1.2.

We set ui,−1 = ui,1 for handling ∂u
∂n = 0. Hence, the equation for the point (i, 0) becomes

−ui−1,0 − ui+1,0 + (4 + σh2)ui,0 − 2ui,1 = h2fi,0.

Putting together the results for the whole mesh, we obtain

A =


T −2I
−I T −I

. . . . . . . . .
−I T −I

−2I T

 ,

where

T =


4 + σh2 −2
−1 4 + σh2 −1

. . . . . . . . .
−1 4 + σh2 −1

−2 4 + σh2

 .

The matrix A is not symmetric but it can be symmetrized with a multiplication by a suitable
diagonal matrix.

For periodic boundary conditions there are (m+ 1)2 unknowns and the matrix (for σ = 0) is

A =


T −I −I
−I T −I

. . . . . . . . .
−I T −I

−I −I T

 ,

where

T =


4 −1 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 −1 4

 .

We observe that the matrix A is singular. This is linked to the fact that the solution of the
continuous problem is not unique. It is often important to make sure that b ∈ Range(A).
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Parabolic problems solved with time implicit discretization schemes are usually a little easier
to solve than elliptic problems. At each time step, we have to solve a linear system that looks
like an elliptic problem. However, due to the discretization of the time derivative, there is an
additional term (typically h2/∆t where ∆t is the time step) added to the diagonal of the matrix
giving better numerical properties. Three dimensional problems also give matrices with the
same pattern as for two dimensional problems but then, the matrices Di are themselves block
tridiagonal.

Convection-diffusion problems are an interesting source of nonsymmetric linear systems. A
typical problem is

−ε∆u+ 2Px
∂u

∂x
+ 2Py

∂u

∂y
= f in Ω,

u
∣∣
∂Ω

= 0.

The first order derivatives are approximated with centered or upwind finite differences.
The matrices arising from these finite difference methods have many zero entries. They are

called sparse matrices. Dealing with sparse matrices, our aim is to be able to avoid storing
the zero entries of the matrix A and to avoid doing operations on these zeros. Finite differences
matrices can be conveniently stored by diagonals, that is, a diagonal is stored in a one dimensional
array. At least, this is true if one wants to use an iterative method to solve the linear system , in
which case only matrix-vector products are needed.

Another way to solve elliptic and parabolic PDEs is to use the finite element method. There
is a variety of such methods, see [264]. We now give the flavor of the simplest one. Let Ω be a
two dimensional domain and suppose we want to solve again the Poisson model problem,

−∆u = f in Ω, u
∣∣
∂Ω

= 0,

with f in L2(Ω).
Using Green’s formula, one can see that u is the solution of the so-called variational problem,

a(u, v) = (f, v) for all v ∈ H1
0 (Ω),

where

H1
0 (Ω) =

{
u |u ∈ L2(Ω),

∂u

∂xi
∈ L2(Ω), u

∣∣
∂Ω

= 0

}
,

and a(u, v) is the bilinear form

a(u, v) =

∫
Ω

∇u∇v dx, (f, v) =

∫
Ω

fv dx,

where∇ is the gradient operator. To approximate the solution u, we define uh as the solution of

a(uh, vh) = (f, vh) ∀vh ∈ Vh,

where Vh ⊂ H1
0 (Ω) is a finite dimensional subspace. For example, one is given a triangulariza-

tion of Ω (in our simple case Ω is supposed to be a polygon) as in Figure 1.3.
In the simplest method Vh is the set of continuous and piecewise polynomials of degree one

on each triangle. The unknowns are taken to be the values of uh at each vertex of the mesh.
A basis for Vh is given by the functions wi ∈ Vh whose value is 1 at node i and 0 outside the
triangles to which i is a vertex of. Then, the discrete problem is

a(uh, wi) = (f, wi) for all basis functions wi.
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Figure 1.3. A finite element triangular mesh in �2

The approximate solution uh can be decomposed on the basis functions as uh =
∑
j uh(i)wj .

Hence, we get a linear system whose unknowns are uh(i) with a matrix A for which ai,j =
a(wi, wj). The nonzero structure of the matrix depends on the numbering scheme which is used
for the mesh nodes. Generally these matrices cannot be stored by diagonals. The storage mode
depends on the method (direct or iterative) that is used to solve the system and also on the type
of computer that is used.

The most natural storage scheme is to store only the nonzero entries ai,j of A, together with
the row and column indices i and j. If nz is the number of nonzeros of A, the storage needed is
nz floating-point numbers and 2 nz integers. However, this mode of storage (which is sometimes
called the coordinate scheme) is not very convenient for direct methods as they usually require
easy access to rows and/or columns of the matrix.

One common way (called CSR) to store a sparse matrix, more suited to direct methods, is to
hold the nonzero entries of each row (resp. column) as a packed sparse vector AA, together with
the column (resp. row) index of each element in a vector JA. These two vectors have a length of
nz words. A third vector IA of integers of length n+ 1 is needed for pointing to the beginning of
each row (or column) in AA and JA. Let us look at this storage scheme on a small example. Let

A =


a1 0 0 a2

a3 a4 a5 0
0 a6 a7 0
a8 0 0 a9

 ,

the stored quantities are

1 2 3 4 5 6 7 8 9
AA a1 a2 a3 a4 a5 a6 a7 a8 a9

JA 1 4 1 2 3 2 3 1 4
IA 1 3 6 8 10

Note that IA(n+1)=nz+1. This allows to compute the length of row i as IA(i+1)-IA(i).
Equivalently, the lengths of rows can be stored in place of IA. In some codes, the diagonal
elements are treated in a special way. Since they are often all nonzero, they are stored in an
additional vector of length n or the diagonal entry of each row can be stored in the first (or last)
position of the row. If the matrix is symmetric, only the lower or upper part is stored.

Another storage scheme is using linked lists. Each nonzero entry (together with the column
index) has a pointer IPA to the location of the next element in the row. To be able to add or
delete entries easily in the list, it is sometimes useful to have a second pointer to the location of
the previous entry. Finally, we must know the beginning of the list for each row in a vector IA.
Going back to our small example, we have the following storage when using only forward links.
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Note that the entries could be stored in any order,

1 2 3 4 5 6 7 8 9
AA a3 a2 a9 a1 a4 a8 a6 a5 a7

JA 1 4 4 1 2 1 2 3 3
IPA 5 0 0 2 8 3 9 0 0
IA 4 1 7 6

A zero value in IPA(.) indicates the end of the list for the given row.

Later on, we will consider other schemes for storing sparse matrices that are more useful for
some particular algorithms. There also exist storage schemes that are more suited to iterative
methods, especially those which need only matrix-vector products.

1.2 Where are the errors coming from?
When we want to simulate a phenomenon with a computer, there are many sources of error which
make that the result of the simulation can be different from the real phenomenon (if it can be
observed or measured without too many errors). The following list is obviously not exhaustive.

• Errors from the model.
The chosen mathematical model for the physics (or chemistry, biology, or any other science)

may not represent the reality in a sufficiently precise way since one has almost always to make
approximations. For example, continuum mechanics may not be sufficient, the diffusion equa-
tions may not represent correctly the transfer of heat or radiation in some media, and so on. The
chosen model depends on the level that the scientist is considering: microscopic, macroscopic or
an intermediate between the two and it is not simple to use models at different scales together.
This is generally called multi-layer physics.

• Approximation or truncation errors.
Generally, the model is posed in a space of infinite dimension. It can be, for example, a linear

or nonlinear partial differential equation having a solution denoted u in a bounded domain of �3

or �4 if the problem depends on time, or even higher dimensions if the problem is posed in a
phase space, like for the equations of the transport of certain types of particles. In many cases
an analytical solution is not known or is out of reach. By discretization techniques we reduce
the so-called “continuous problem” to a finite dimensional problem whose solution is denoted
uh. This can be done, as we have seen above, by calculating the solution only in a finite number
of points of the domain and replacing the derivatives in the model by differential quotients. In
general uh is not equal to u and there is an error depending on how refined is the discretization.

• Errors in the solution.
In many nonlinear cases the finite dimensional problem must be solved with an iterative

method (for example Newton’s method) which can only compute an approximation û of the
solution uh of the discrete problem. This solution û can, itself, be computed only approximately
by another iterative method to solve the linear system at each iteration of the nonlinear method.

• Errors in data.
Many sources of error or inaccuracy may exist in the data needed to solve the problem. For

example, the definition of the geometry of the domain in which the problem is posed may not
be accurate enough. Since all the underlying physics may not be necessarily contained in the
model, many simulations call upon material laws which in fact simulate the physics at a smaller
scale (for example equations of state, nuclear cross sections, and so on). They are themselves the
result of computations or measurements that are subject to errors.

• Rounding errors
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The numerical simulation is carried out on digital computers which cannot, by definition,
represent all real numbers. This results in rounding errors during the conversion of the data and
at each elementary operation during the calculation. These errors can sometimes lead, as we will
see in the following, to totally erroneous results.
• Human and computer errors.

The person trying to solve the problem intervenes in many stages of this process. Mistakes
are therefore possible, if not probable. By example, programming errors when the algorithm
that should give the solution is translated in a high-level language (Fortran, C, C++,. . . ) When,
despite these errors, the program provides a result, it is not always easy to see that there was an
error. Hence, the importance of verification and validation of the codes with respect to known
solutions (in some simple cases), comparisons to other codes and to experimental results. More
rarely, computers can produce wrong results temporarily (hardware or software failure) or per-
manently (see the design error of the Pentium IV processor).

Generally, solving problems in scientific computing is a complicated process that requires
iterations with the different stages: modelization, discretization, numerical solution, verification
and validation. If the validation does not give good results, one has to verify the code or some-
times improve the numerical methods, the discretization scheme or eventually the model itself.
It may take several of such loops to obtain a satisfactory solution.

1.3 IEEE floating-point arithmetic
Most problems that we have to solve in scientific computing use real or complex numbers (de-
fined as couples of real numbers). For instance, the coefficients and solution of linear systems
are generally real or complex numbers. Unfortunately, for solving these systems we use digital
computers in which all real (or complex) numbers cannot be exactly represented. In particular,
registers and memory words designed to store the data and the intermediate and final results
have a finite length or capacity and cannot store all real numbers. Moreover, when computa-
tions are performed on a computer, each arithmetic operation (+,−, ∗, /) is generally affected
by rounding errors as only a finite number of digits (or bits) can be retained in the result.

The subject of rounding error analysis is to try to understand the effects of these limitations on
the result of solving a problem. Therefore, let us describe a few basic facts about floating-point
arithmetic.

In day to day’s life we use a positional base-10 number system. For instance,

(71.25)10 = 7× 10 + 1× 1 + 2× 1

10
+ 5× 1

100
.

Today’s scientific computers use a binary representation of real numbers, that is, the digits are
equal to 0 or 1. In the past certain manufacturers, in particular IBM for its 360 series and for his
successors used the hexadecimal system, that is, a representation in base 16. In binary, the reals
are therefore decomposed into powers of 2,

71.25 = 26 + 22 + 21 + 20 + 2−2.

Of course, not all real numbers have a finite binary representation, for example 1/10 has a finite
representation in decimal but infinite in binary. The rational numbers (quotients of integers) have
finite or infinite representations with a repetition of a sequence of digits. Irrational numbers (for
example π) have an infinite representation without repetition.

The numbers that can be represented in the computer are a (finite) subset of the real numbers.
This set, denoted by F , is characterized by four integers: the base β, the number t of base-β
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digits in the fractional partm (also called the mantissa or the significand) and the exponent range
[eL, eU ],

f = ±m× βE , 1 ≤ m < β.

Such numbers are called floating-point numbers. In a binary computer β = 2.

Computers developed in the 1960s and 1970s used a wide variety of formats to define and
store floating-point numbers. The number of bits (that can store 0 or 1) contained in each memory
word as well as the number of these bits allocated to the mantissa m or the exponent E were not
standardized. For example, in the 1960s the IBM 704 had words of 36 bits, the IBM 7030 Stretch
had 64 bits words (including 48 bits of mantissa), in the 1970s the Control Data 6400, 6600 and
7600 had 60-bit words. The CRAY machines in the 1980s had 64 bits words with 48 bits of
mantissa. The arithmetic aberrations were legion on these machines.

The way in which the elementary operations (+,−, ∗, /) were done also differed from one
architecture to another. Up to recent times, all computers using base 2 implemented the IEEE
754 standard defined in 1985 by the Institute of Electrical and Electronics Engineers (IEEE) in a
more or less strict way.

The genesis of this development began in 1976 when Intel decided to develop a floating co-
processor (named 8087) for its 8086 processor. John Palmer from Intel wanted the arithmetic of
the 8087 to be “the best possible”. To achieve this goal, Intel asked William M. Kahan, professor
at the University of California at Berkeley to act as a consultant. Kahan had already been very
interested in the properties and anomalies of floating-point arithmetic. He was, moreover, a
well-known researcher in the field of numerical analysis and scientific computing.

These attempts interested other manufacturers and led to the creation in 1977 of a committee
(named IEEE p754) under the aegis of IEEE. The second meeting in November 1977 attracted
a dozen people among whom representatives of National Semiconductor, Zilog, Motorola and
IBM. The most prominent manufacturers of scientific computers at that time, that is, CDC and
Cray, did not participated in this committee. After agreement from Intel, Kahan, his student
J. Coonen, and H. Stone wrote a proposed standard known as KCS. Although Kahan was not
authorized to disclose all the details of the 8087, the KCS document was heavily inspired by the
work done for Intel.

There were many discussions and even arguments (or religious wars) during the lively meet-
ings of this committee. Particularly with the representatives of DEC who, with the arithmetic
of their VAX computers also had good arguments. One of the controversial parts of KCS was
the introduction of denormalized numbers (that are now called subnormal numbers) to deal with
underflow in a gradual way. Finally, a consensus eventually emerged around the main principles
of KCS and the proposal was submitted to the IEEE, and was published in 1985. It was a 23-
page document which defines the formats of the floating-point numbers and the constraints that a
binary floating-point arithmetic must implement. Kahan received the ACM Turing award (Asso-
ciation for Computing Machinery) in 1989 for his contribution to the definition of the standard.

This American standard was adopted internationally in 1989 under the name IEC 60559. An-
other IEEE Std 854 standard was created in 1987. It defined a floating point arithmetic whatever
the base. It is consistent with IEEE 754 when the base is 2. The IEEE 754 was updated in 2008
with the introduction of decimal floating-point arithmetic. It is a 58-page document. Another
revision was done in 2019 with only minor changes.

The adoption of the IEEE standard by most computer manufacturers was a blessing for people
developing algorithms and for programmers. In particular, as we will see, a standard model could
be used in the rounding error analysis of linear algebra algorithms.

Let us now consider what is defined in IEEE 754. The standard asks for

◦ a consistent representation of floating-point numbers,
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◦ floating-point operations with a result correctly rounded with several rounding modes,

◦ a consistent handling of exceptions (for instance, divisions by zero).

There is no requirement on the way integers are represented and stored. The standard de-
scribes formats for storing floating-point numbers and constraints on operations but not how this
must be implemented. Moreover, this can be done by hardware or software. For example, on
a machine with only the single format, one can implement the support of the double format in
software.

As we said above floating-point numbers (or floats for short) are written as f = ±m × 2E .
The binary significand is

m = d0.d1d2 · · · , di = 0 or 1.

If d0 = 1 the float is said to be normalized and the corresponding bit is not stored. This allows
to have one more significant bit in the mantissa. d0 is called the hidden bit. Floats with d0 = 0
are called subnormals and are identified by their exponent. A memory word is divided in three
fields: the sign, the exponent, and the mantissa. The precision is the number p of bits in the
mantissa, including the hidden bit.

The smallest normalized float larger than 1 is

(1.00 · · · 01)2 = 1 + 21−p.

The number 21−p is called the machine epsilon, and denoted as ε or εM .

The 1985 version of the standard defined three formats: single, double, and extended. The
single format (also known as binary32 or fp32) uses 32 bits with one sign bit, 8 bits for the
exponent, and 23 bits for the mantissa (not including the hidden bit) which gives p = 24. The
number 0 has a special representation as well as for −∞, +∞ and NaN (Not a Number). The
exponent is biased by 127. This means that what is stored in the 8 bits of the exponent is the
binary representation of E+127. If the sign bit is 0 (resp. 1) the float is positive (resp. negative).
If the float is denoted as

± a1a2 · · · a8 d1d2 · · · d23

Table 1.1 shows representations of normalized single floats (except zero). The first row shows the
representation of 0, and the last one shows ±∞ and NaN depending on the bits in the mantissa.
There exist +0 and −0. For the non-biased exponent the minimum and maximum values are
Emin = −126 and Emax = 127. The smallest normalized number is Nmin = 2−126 ≈ 1.17 ×
10−38, and the largest one is Nmax = (2 − 2−23) × 2127 ≈ 2128 ≈ 3.4 × 1038. The machine
epsilon is εM ≈ 1.1921 10−7.

Subnormal numbers use the particular exponent −126 (corresponding to (0 · · · 0)2 in binary
after bias and shift. For instance, 2−149 ≈ 1.4× 10−45 is

0 00000000 00000000000000000000001

It is the smallest positive number that can be used. Subnormal numbers are less accurate than
normalized ones since they have less significant bits.

The double format (also known as binary64 or fp64) follows the same principles. It uses
64 bits with one sign bit, 11 bits for the exponent, and 52 bits for the mantissa (p = 53). The
exponent bias is 1023. Therefore, Nmin = 2−1022 ≈ 2.2 × 10−308 and Nmax = (2 − 2−52) ×
21023 ≈ 21024 ≈ 1.8×10308. The smallest subnormal positive number is 2−1074 ≈ 4.9×10−324.
The machine epsilon is εM ≈ 2.2204 10−16. Characteristics of double floats are shown in
Table 1.2.
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Table 1.1. IEEE 754 single format

a1a2 · · · a8 value

(00000000)2 = (0)10 ±(0.d1d2 · · · d23)2 × 2−126

(00000001)2 = (1)10 ±(1.d1d2 · · · d23)2 × 2−126

(00000011)2 = (2)10 ±(1.d1d2 · · · d23)2 × 2−125

...
...

(01111111)2 = (127)10 ±(1.d1d2 · · · d23)2 × 20

(10000000)2 = (128)10 ±(1.d1d2 · · · d23)2 × 21

...
...

(11111110)2 = (254)10 ±(1.d1d2 · · · d23)2 × 2127

(11111111)2 = (255)10 ±∞ if d1 = · · · = d23 = 0, NaN otherwise

Table 1.2. IEEE 754 double format

a1a2 · · · a11 value

(00000000000)2 = (0)10 ±(0.d1d2 · · · d52)2 × 2−1022

(00000000001)2 = (1)10 ±(1.d1d2 · · · d52)2 × 2−1022

(00000000011)2 = (2)10 ±(1.d1d2 · · · d52)2 × 2−1021

...
...

(01111111111)2 = (1023)10 ±(1.d1d2 · · · d52)2 × 20

(10000000000)2 = (1024)10 ±(1.d1d2 · · · d52)2 × 21

...
...

(11111111110)2 = (2046)10 ±(1.d1d2 · · · d52)2 × 21023

(11111111111)2 = (2047)10 ±∞ if d1 = · · · = d52 = 0, NaN otherwise

The 1985 standard suggested an extended format with at least 15 bits for the exponent and at
least 53 bits for the mantissa. This was used in some Intel microprocessors for the floating-point
registers. Therefore, the basic operations were done more accurately than in double precision
before rounding to double.

The 2008 revision of the standard introduced a quadruple format (also known as binary128
or fp128). As the name implies it uses 128 bits with one sign bit, 15 bits for the exponent, and
112 bits for the mantissa (p = 113). The exponent bias is 16383. Therefore, Nmin = 2−16382 ≈
3.4× 10−4932 and Nmax = (2− 2−128)× 216383 ≈ 216384 ≈ 1.2× 104932. Unfortunately most
common microprocessors do not have an hardware implementation of fp128.

An interchange half precision format (also known as binary16 or fp16) was also defined
in that revision. It uses 16 bits with one sign bit, 5 bits for the exponent, and 10 bits for the
mantissa (p = 11). The exponent bias is 15. Therefore, Nmin = 2−14 ≈ 6.1 × 10−5 and
Nmax = (2 − 2−10) × 215 = 65504. The smallest subnormal number is 5.9605 10−8 and the
machine epsilon is εM = 9.7656250 10−4. The fp16 format is now used in specialized hardware
and software for neural networks and machine learning.

The IEEE standard also prescribes how rounding must be done. Floats are the numbers
which can be represented in the chosen format. A real number x is in the normalization interval
ifNmin ≤ |x| ≤ Nmax. If a real x is not a float, either x is not in this interval or the precision p is
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too small to exactly represent x. In both cases x has to be approximated by something else. Let
x− and x+ be the two closest floats below and above x. If x is larger than Nmax, x− = Nmax

and x+ = ∞. If x is positive and smaller than Nmin, then x− is subnormal or 0 and x+ is
subnormal or Nmin. If x is negative we have the symmetric of this situation. The rounding
modes are defined as follows with a result f = fl(x),

◦ if x is a float, f = x,

◦ round down (towards−∞), closest float to and no greater than the infinitely precise result,
f = x−,

◦ round up (towards +∞), closest float to and no less than the infinitely precise result, f =
x+,

◦ round towards zero, closest float to and no greater in magnitude than the infinitely precise
result, f = x− if x ≥ 0 and x+ if x ≤ 0,

◦ round to nearest, f is from x− and x+ the closest to x. If there is a tie,

- (roundTiesToEven), the one with an even least significant digit,

- (roundTiesToAway), the one with larger magnitude.

Generally, roundTiesToEven is the default rounding mode. Every operation (+,−, ∗, /,√)
must be performed as if it first produced an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result according to the rounding mode. The stan-
dard also considered a fused multiply-add (FMA) operation computing x + (y ∗ z) with only
one rounding at the end. If we denote ⊕,	,⊗,� the hardware realizations of the arithmetic
operations +, −, ∗, /, if x and y are two floats we must have

x⊕ y = fl(x+ y), x	 y = fl(x− y),

x⊗ y = fl(x ∗ y), x� y = fl(x/y).

These requirements can be satisfied if the processor uses guard digits. Let us, for instance, add 3
and 3 × 2−23 in single precision. The mantissa of the second operand must be shifted to obtain
the same exponent,

(1.10000000000000000000000 )2 × 21

+ (0.00000000000000000000001|1 )2 × 21

= (1.10000000000000000000001|1 )2 × 21

If the bit after the bar in the second operand is not kept, the result cannot be rounded correctly.
Using only one guard digit is not always enough. If we subtract (1.0001)2 × 2−25 from 1,

(1.00000000000000000000000 )2 × 20

- (0.00000000000000000000000|010001 )2 × 20

= (0.11111111111111111111111|101111 )2 × 20

n (1.11111111111111111111111|011110 )2 × 2−1

The last step is the normalization. Fortunately, it is not necessary to have a large number of guard
digits. It is enough to have two guard digits if we add to them another bit (called the sticky bit)
which is 1 to indicate that we have removed some bits equal to 1 to the right of the guard digits.
The previous example becomes

(1.00000000000000000000000 )2 × 20

- (0.00000000000000000000000|011 )2 × 20

= (0.11111111111111111111111|101 )2 × 20

n (1.11111111111111111111111|01 )2 × 2−1
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Operations which are mathematically well defined must give the correct result, x−∞ = −∞,
if x > 0 x/0 =∞, x ∗∞ =∞,∞+∞ =∞. Results without mathematical meaning like 0/0,
∞/∞,∞−∞ must give a NaN as a result. An operation with a NaN operand must give a NaN.

1.4 Properties of the IEEE standard and examples
If x is a real number different from zero, let the relative rounding error be

δ =
fl(x)− x

x
.

If fl(x) has an exponent E and x is in the normalization interval, |x| ≥ 2E and

|δ| < 21−p × 2E

2E
= εM ,

whatever is the rounding mode. If the rounding mode is “round to nearest”, we have a better
bound,

|δ| < 2−p × 2E

2E
=
εM
2
.

The quantity u = εM/2 is called the unit roundoff. It is 1.110223024625157 10−16 for double
precision. In all cases we have

x ◦ y = (x • y)(1 + δ), ◦ = ⊕,	,⊗,�, • = +,−, ∗, /,

with |δ| < εM or |δ| < u if rounding to nearest is used. The upper bound on |δ| can be attained
as one can see in the following example,

>> u=eps/2
u = 1.110223024625157e-016
>> up6 = 6+u
up6 = 6
>>

The difference is u = εM/2. However, in some cases, the bound is pessimistic. For example, if

>> x=1/2-1/16
x = 4.375000000000000e-01

and the result is exact. Of course, in this example 1/2 and 1/16 are exactly represented. An
interesting result about subtraction due to P.H. Sterbenz [1038] is the following.

Theorem 1.1. Let x and y be two normalized floating-point numbers whose exponents differ at
most by 1. Then, fl(x− y) = x− y.

Proof. See [633].

A useful corollary is obtained from Theorem 1.1.

Corollary 1.2. Let x and y be two normalized floating-point numbers such that y/2 ≤ x ≤ 2y.
Then, fl(x− y) = x− y.



16 1. The tools of the trade

Let us consider an example with x = fl(1/3) and y = fl(1/5). The mathematical result is

1

3
− 1

5
=

1

10

(
1 +

1

3

)
= 0.13333333333333 . . .

The binary representation of x = 1/3 is

0 01111111101 0101010101010101010101010101010101010101010101010101

The unbiased exponent is −2. The representation of y = 1/5 is

0 01111111100 1001100110011001100110011001100110011001100110011010

The unbiased exponent is −3. The result of the difference of these two floats is

0 01111111100 0001000100010001000100010001000100010001000100010000

The hypotheses of Theorem 1.1 are satisfied and the result is obtained without rounding. Con-
verted to decimal, the binary fractional part is 6.666666666666643 10−2. We have to add 1 and
to multiply by 2−3. When converted to decimal the binary result is 1.333333333333333 10−1

with 16 correct decimal digits.

The elements of F are not regularly distributed on the real line; see Figure 1.4 that shows the
elements for a toy floating-point format with only three bits in the mantissa.

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.4. Floating-point numbers with three digits in the mantissa

Let us now consider some interesting questions:

- How many floats do we have?

Normalized Subnormal

fp32 4.3 109 1.7 107

fp64 1.8 1019 9 1015

- How many fp64 floats do we have in between two fp32 floats?

The answer is the same for every pair of normalized fp32 floats. Hence, we can look in
between 1 and 1 + 2−23. In that interval the distance between two fp64 floats is 2−52.
Hence, the answer is 229 − 1 ≈ 5.4 108
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- What is the largest integer m such that all the integers in [−m,m] are represented exactly
in fp64?

The answer is m = 253. Therefore, the largest integer that can be exactly represented is
253 ≈ 9.01 1015.

The IEEE 754 arithmetic has the following nice properties,

- fl(x ◦ y) = fl(y ◦ x), ◦ = +, ∗

- fl(x− y) = −fl(y − x) if the rounding mode is not towards ±∞

- fl(x+ x) = fl(2 ∗ x)

- fl(0.5 ∗ x) = fl(x/2)

- x ≤ fl((x+ y)/2) ≤ y if x ≤ y

Unfortunately it does not have fl((x + y) + z) = fl(x + (y + z)), which means that addition
is commutative but not associative. This is a problem when summing several floats since the
answer may depend on the order of the operations. For instance,

>> pi+1e16-1e16
4
>> pi+(1e16-1e16)
3.1416e+00

In the first case π is almost lost in the first addition whose binary representation of the result is

0 10000110100 0001110000110111100100110111111000001000000000000010

whence 1016 is

0 10000110100 0001110000110111100100110111111000001000000000000000

1.5 Other arithmetic formats
Half precision refers to arithmetics using words with 16 bits. There are only 5 bits for the ex-
ponent in fp16. Hence, the range of numbers that can be represented is rather limited, even
though fp16 allows subnormal numbers. This is why another (non standard) format named
bfloat16 was promoted by Google and Intel [664]. Their characteristics are shown in Table 1.3
in which Nmin (resp. Nmax) stands for the smallest (resp. largest) normalized number. The for-
mat bfloat16 has three more bits for the exponent which allows larger or smaller numbers, but,
of course, there are less bits for the significand and this limits the accuracy of the computations.

Table 1.3. Parameters for bfloat16 and fp16

format sign signif. expo. min. subnormal Nmin Nmax

bfloat16 1 7 8 - 1.18 10−38 3.39 1038

fp16 1 10 5 5.96 10−8 6.10 10−5 6.55 105

In the past and still now, some people would like to get rid of the IEEE 754 floating point
arithmetic IEEE 754 standard, arguing that they can obtain the same or even better accuracy
while storing a smaller amounts of bits. For instance, see the logarithmic arithmetic [705] in the
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1970s and tapered floating point arithmetic [844] also in the 1970s, a format similar to floating
point, but with variable-sized entries for the mantissa and exponent. The last avatar is called
unums and posits (which are unums of type III); see [583, 584]. Wether this is good or bad is a
debate. For an analysis of the positive and negative aspects of posits, see [323].

1.6 Misconceptions about rounding errors
In this section we discuss examples about some common misconceptions about rounding errors,

1- Subtraction operations are always bad,

2- Rounding errors are only important if they accumulate during a large number of successive
operations,

3- A computation with only few operations without underflow or overflow is always accurate,

4- Increasing the precision, that is, the number of bits of the mantissa, always improves the
accuracy,

5- The final accuracy of a computation cannot be more accurate than that of intermediate
results,

6- Rounding errors are always a bad thing.

1.6.1 Subtraction cancellation

Let us first consider an example showing that assertion 1 is sometimes true. We would like to
compute

f(x) =
1− cos(x)

x2
,

for x = 1.25 10−5. Using the Taylor expansion,

cos(x) = 1− x2

2
+
x4

24
− x6

720
+O(x8),

and
1− cos(x)

x2
=

1

2
− x2

24
+

x4

720
+O(x6).

and the correct answer is clearly close to 1/2. In fact, using variable precision in Matlab1 with
64 decimal digits we obtain,

>> digits(64)
>> xx=vpa(1.25e-5)
0.0000125

>> cc=cos(xx)
0.9999999999218750000010172526041613684760199800606757875216132723

>> yy=vpa(1)-cc
0.00000000007812499999898274739583863152398001993932421247838672769550198716

>> zz=yy/(xx*xx)
0.4999999999934895833333672417534721276116749598616750572512127178

1Matlab is a trademark of The MathWorks.
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With the fp64 (double precision) format we obtain

>> x=1.25e-5
1.250000000000000e-05
>> (1-cos(x))/x^2
4.999996860988176e-01

The relative difference with the variable precision result is 6.277893 10−7. This is far from being
proportional to the unit roundoff. The cosinus computed with fp64 has 15 correct decimal digits
but 1 − cos(x) has only 6 correct decimal digits. Things can be worse with a lower precision.
Using fp32 (single precision) format the value of cos(1.25 10−5) is 1 and the numerator of f is
0. This can be understood by looking at the Taylor expansion of the cosine. The term x2/2 is
7.8124993 10−11 with fp64 as well as in fp32. But, in single precision (fp32), this number has a
binary representation

0 01011101 01010111100110001110110

The unbiased exponent is −34 and when a shift is done to subtract from 1, all the significant
digits are lost and the result is 1. More mantissa bits are needed to obtain a nonzero result for
the numerator of f(x). In fact, with 8 bits of exponent we need at least 32 bits in the mantissa to
obtain a cosine different from 1.

However, f(x) can be computed in a different way. Using the relation cos(x) = 1 −
2 sin2(x/2), we can write

f(x) =
1

2

(
sin(x/2)

x/2

)2

.

In double precision we obtain

>> x=1.25e-5
1.250000000000000e-05
>> sx=2*sin(x/2)/x
9.999999999934897e-01
>> f=sx^2/2
4.999999999934897e-01

Only the rightmost decimal digit is different from the exact result. In single precision the value
of the function is 1.

However, we have seen in Theorem 1.1 and Corollary 1.2 that subtraction of floating-point
numbers can be exact if they are close enough. Hence, assertion 1 is not always true.

1.6.2 Accumulation of rounding errors

We are concerned with assertions 2 and 3. We have already shown at the end of the previous
section an example with only two operations and a wrong result. Let us consider some other
examples.

Even though this is not a very good idea, we would like to compute e = exp(1) with

e = lim
n→∞

(
1 +

1

n

)n
.

The limit in the right-hand side was first considered by the Swiss mathematician Jacob Bernoulli
in 1683. He proved that the limit is between 2 and 3. The values of n we consider are n =
10m, m = 1, . . . , 16.

The value of the exponential computed in variable precision with 64 decimal digits is



20 1. The tools of the trade

e = 2.718281828459045235360287471352662497757247093699959574966967628

In fp64 we obtain

m f |f - e|
1 2.593742460100002e+00 1.245393683590429e-01
2 2.704813829421529e+00 1.346799903751675e-02
3 2.716923932235594e+00 1.357896223451649e-03
4 2.718145926824926e+00 1.359016341197286e-04
5 2.718268237192298e+00 1.359126674774804e-05
6 2.718280469095753e+00 1.359363291853169e-06
7 2.718281694132082e+00 1.343269634748315e-07
8 2.718281798347358e+00 3.011168751033943e-08
9 2.718282052011560e+00 2.235525150215830e-07
10 2.718282053234788e+00 2.247757423188143e-07
11 2.718282053357110e+00 2.248980649153106e-07
12 2.718523496037238e+00 2.416675781925168e-04
13 2.716110034086901e+00 2.171794372144353e-03
14 2.716110034087023e+00 2.171794372022673e-03
15 3.035035206549262e+00 3.167533780902166e-01
16 1.000000000000000e+00 1.718281828459045e+00

When increasing m, the result improves until m = 8 (but we have only 8 correct decimal digits)
and then it deteriorates until having no correct decimal digits for the last two values of m. In
each of these computations, there are only one addition, one division and an exponentiation. We
loose some significant digits when computing 1 + 1/n. For example, for m = 16 this is equal to
1. This explains the results for the last values of m. However, the exponentiation involves many
hidden operations through the logarithm and the exponential.

We can construct examples for which the results are not accurate because we do a large
number of iterations. Let us consider the following code which sums small positive values. In
this code ps is the accumulated value and psc is the correct result if n is even.

pi3 = pi / 3;
epsi = 10 * eps;
ps = 0.;
for i=1:2:n-1
x(i) = pi3;
x(i+1) = epsi;
y(i) = epsi;
y(i+1) = pi3;
ps = ps + x(i) * y(i) + x(i+1) * y(i+1);
end
psc = n * pi3 * epsi;

The results using fp64 are

n ps |(ps - psc) / psc|
1 2.325245665339088e-15 0
10 2.325245665339088e-14 1.357036664091101e-16
100 2.325245665339087e-13 2.171258662545761e-16
1000 2.325245665339066e-12 9.553538115201348e-15
10000 2.325245665339668e-11 2.495731557076599e-13
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100000 2.325245665342595e-10 1.508555778598194e-12
1000000 2.325245665361659e-09 9.706872749351716e-12
10000000 2.325245664914360e-08 1.826594643824356e-10

The relative error is increasing with n. The results for fp32 (single precision) are given below.
Of course, we have to replace eps by the single precision machine epsilon, that is 2−23.

n ps |(ps - psc) / psc|
1 1.2483567e-06 0
10 1.2483569e-05 7.2855350e-08
100 1.2483573e-04 4.6627426e-07
1000 1.2483563e-03 4.6627420e-07
10000 1.2482489e-02 8.6465894e-05
100000 1.2498596e-01 1.2038678e-03
1000000 1.2395369e+00 7.0652380e-03
10000000 1.1708032e+01 6.2124588e-02

For n = 10000 we have only 4 correct decimal digits. The last result has just one correct decimal
digit.

We will come back to summation algorithms later and show that sums like the last one can
be computed more accurately.

1.6.3 Increase of precision

In [633] N.J. Higham gave examples in which increasing the precision does not always improve
the accuracy of the result. Let us consider the inverse A of the Hilbert matrix of order 5,

A =


25 −300 1050 −1400 630
−300 4800 −18900 26880 −12600
1050 −18900 79380 −117600 56700
−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100


and a right-hand side b = [−1; 2;−3; 4;−5]. The linear system Ax = b is solved with Gaussian
elimination without pivoting. For the data and the result of every operation, the mantissa is
truncated to t digits. The relative error in the maximum norm as a function of t is shown in
Figure 1.5. One can see that when t is increased, the accuracy is not always better.

1.6.4 Final accuracy

Let us consider two algorithms for computing (ex − 1)/x with x close to zero. When x is
very small, the result must be close to 1. Algorithm 1 is the naive and straightforward way. In
algorithm 2 we make a change of variable.

Algo 1

for i=nmin:nmax
x = 10^(-i);
if x == 0
f1(i) = 1;
else
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Figure 1.5. Relative error as a function of the number of bits in the mantissa

f1(i) = (exp(x) - 1) / x;
end
end

Algo 2

for i=nmin:nmax
x = 10^(-i);
y = exp(x);
if y == 1
f2(i) = 1;
else
f2(i) =(y - 1) / log(y);
end
end

We use nmin = 5, nmax = 16, and using fp64 we obtain

i Algo 1 Algo 2

5 1.000005000006965e+00 1.000005000016667e+00
6 1.000000499962184e+00 1.000000500000167e+00
7 1.000000049433680e+00 1.000000050000002e+00
8 9.999999939225290e-01 1.000000005000000e+00
9 1.000000082740371e+00 1.000000000500000e+00
10 1.000000082740371e+00 1.000000000050000e+00
11 1.000000082740371e+00 1.000000000005000e+00
12 1.000088900582341e+00 1.000000000000500e+00
13 9.992007221626409e-01 1.000000000000050e+00
14 9.992007221626409e-01 1.000000000000005e+00
15 1.110223024625157e+00 1.000000000000000e+00
16 0 1.000000000000000e+00

One can see that Algorithm 1 gives results which are not accurate. Let us consider the case
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i = 13. In variable precision, we have

>> digits(32)
>> xx = vpa(1e-13)
0.0000000000001
>> ee = exp(xx)
1.000000000000100000000000005
>> eex1 = ee - 1
0.00000000000010000000000000500000000000018957
>> eex1 / xx
1.0000000000000500000000000018957

We see that Algorithm 2 gives the correctly rounded result. In fp64 we obtain

>> x = 1e-13
1.000000000000000e-13
>> e = exp(x)
1.000000000000100e+00
>> ex1=e-1
9.992007221626409e-14
>> ex1/x
9.992007221626409e-01

The binary representation of the exponential e is

0 01111111111 0000000000000000000000000000000000000000000111000010

When we subtract 1 from this, we just obtain the rightmost bits as leading bits and the result of
the subtraction is far from being accurate. In variable precision, Algorithm 2 gives

>> yy = exp(xx)
1.000000000000100000000000005
>> eey1 = yy - 1
0.00000000000010000000000000500000000000018957
>> lyy = log(yy)
0.0000000000001000000000000000000000000000229
>> eey1 / lyy
1.0000000000000500000000000016667

With fp64, we obtain

>> y = exp(x)
1.000000000000100e+00
>> ey1 = y - 1
9.992007221626409e-14
>> ly = log(y)
9.992007221625909e-14
>> ey1 / ly
1.000000000000050e+00

y − 1 and log(y) (whose exact value must be 10−13) are not very accurate but their errors com-
pensate and the result of the division is accurate even though the intermediate results are not.
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1.6.5 Rounding errors are not random

Let us consider an example devised by W. Kahan and reported in [633]. We would like to
compute the rational function

r(x) =
(622− x(751− x(324− x(59− 4x))))

(112− x(151− x(72− x(14− x))))
,

for x = 1.606 + (i− 1)2−52, i = 1, . . . , 361. The function r is almost constant on that interval
with an average value 8.752376580778492. Figure 1.6 shows 100(r − 8.752376580778492).
We clearly see that rounding errors are not random since many points are aligned.

0 50 100 150 200 250 300 350 400

×10
-12

-8

-6

-4

-2

0

2

4

6

8

Figure 1.6. Values of 100(r − 8.752376580778492)

1.6.6 Rounding errors can sometimes help (but not always)

Let us consider the singular matrix

A =

 0.7 −0.4 −0.3
−0.4 0.9 −0.5
−0.3 −0.5 0.8

 .

The eigenvector corresponding to the zero eigenvalue is e = ( 1 1 1 )
T . Let us suppose that

we want to use the power method to compute the largest eigenvalue which is 1.373205080756888.
Starting from a given x0, we iterate

y = Axk, xk+1 =
y

‖y‖
.

The vectors xk converges to the eigenvector and the Rayleigh quotient (xk)TAxk converges
to the largest eigenvalue. However, if we are so stupid to choose x0 = e, mathematically we
find y = Ax0 = Ae = 0 and the method cannot converge. But, in finite precision arithmetic,
rounding errors come to rescue us. With fp64 and doing 50 iterations we obtain

>> x =
-2.113267819223670e-001
7.886756481218821e-001
-5.773488661995152e-001
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and (xk)TAxk = 1.373205080754842 which has 12 correct decimal digits. This is due to
rounding errors which are, in this case, useful. For the first iteration, we obtain

>> A * e
= -5.551115123125783e-017

0
0

The first component is equal to−εM/4 due to rounding errors. It allows the algorithm to continue
without a breakdown.

Of course, we know that there are many cases where rounding errors are a nuisance. Let us
consider the recurrence

xk+1 = 111−
1130− 3000

xk−1

xk
, x0 =

11

2
, x1 =

61

11
,

proposed by J.-M. Muller. Mathematically, this is an increasing sequence converging to 6. Using
fp64, the first 20 iterations give

5.500000000000000e+00
5.545454545454546e+00
5.590163934426244e+00
5.633431085044251e+00
5.674648620514802e+00
5.713329052462441e+00
5.749120921136040e+00
5.781810945409518e+00
5.811314669233340e+00
5.837663962407220e+00
5.861078484508624e+00
5.883542934069212e+00
5.935956716634138e+00
6.534421641135182e+00
1.541304318084583e+01
6.747239836474626e+01
9.713715118465481e+01
9.982469414672073e+01
9.998953968869486e+01
9.999937614164210e+01

The sequence converges to 100 and not to 6. The general solution of such a recurrence is

xk =
100k+1a+ 6k+1b+ 5k+1c

100ka+ 6kb+ 5kc
.

Taking c = 1, we find a = 0, b = 1, and

xk = 6− 1

1 + 6
5

k
.

In finite precision everything happens as if a 6= 0. In that case the sequence converges to 100.
In fact, the rational number 61/11 is not exactly representable. There is a rounding error corre-
sponding to the truncation of the number. If, instead of using 61/11 to compute the coefficients



26 1. The tools of the trade

of the solution, we use its rounded value, we find a = 3.761294558884072 10−19. Thus, a small
initial rounding error leads to a wrong solution.

Let us consider a more practical example. We would like to solve the ordinary differential
equation (ODE) y′ = −y, for t ∈ [0, 1] with the initial value y(0) = 1. The solution is y =
exp(−t). Let us use one of the simplest methods, the order 1 forward Euler scheme,

yn+1 = yn − hyn, y0 = 1, n = 0, 1, . . . ,m− 1, h = ∆t = 1/m,

h being the time step. Let us look at the solution ym at the end of the time interval and at the
error |ym − exp(−1)|.
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Figure 1.7. Forward Euler scheme, error at t = 1 as a function of p, m = 10p, fp16 (o), fp32
(+), and fp64 (*)

Figure 1.7 show the error at t = 1 for as a function of the number of time steps in half, single
and double precision. In half and single precisions, instead of continuing decreasing when we
decrease h, at some point the error goes up, and then we do not obtain the correct solution at
t = 1.

However, there is another way to compute y since we have yn+1 = (1 − h)yn. We can
compute the factor 1− h once for all and then just do multiplications. Note that to be able to do
this the time step h has to be constant in time.

There are other ways to solve this ODE. We can choose an implicit scheme (backward Euler),

yn+1 = yn − hyn+1, y0 = 1, n = 0, 1, . . . ,m− 1, h = ∆t = 1/m.

The multiplicative version is

yn+1 =
1

1 + h
yn.

Another possibility is to use a Crank-Nicolson centered scheme,

yn+1 = yn − h
yn+1 + yn

2
, y0 = 1, n = 0, 1, . . . ,m− 1, h = ∆t = 1/m,

and

yn+1 =
1− h/2
1 + h/2

yn.
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For these three schemes, we have

yn+1 = fhyn ⇒ ym = fmh y0 = fmh , h = 1/m,

with fh = 1 − h for the implicit scheme, fh = 1/(1 + h) for the implicit scheme and fh =
(1− h/2)/(1 + h/2) for Crank-Nicolson.

Using a Taylor expansion it is straightforward to see that

fmh = e−1

(
1 +

h

2
+

11

24
h2 +O(h3)

)
for the explicit scheme and the error

|e−1 − fmh |
e−1

=
h

2
+

11

24
h2 +O(h3).

It is an order 1 scheme. For the implicit scheme we obtain

fmh = e−1

(
1 +

h

2
− 5

24
h2 +O(h3)

)
.

This is also an order 1 scheme but the factor of the second order term is smaller than for the
explicit scheme. For Crank-Nicolson,

fmh = e−1

(
1− h2

2
+O(h3)

)
.

It is a second order scheme.

In finite precision arithmetic, we have to analyse the effect of rounding errors. Let us con-
sider the multiplicative versions of those schemes. Assuming that h was computed exactly, the
computed factor f̂h is

f̂h = (1− h)(1 + δ) = fh(1 + δ), |δ| ≤ u,

u being the unit roundoff. Then,

fl(f̂h × f̂h) = f2
h(1 + δ)2(1 + δ2), |δ2| ≤ u,

and so on. In the end, we obtain,

fmh (1 + δ)m
m∏
i=2

(1 + δi), |δi| ≤ u.

From [633], we have

m∏
i=2

(1 + δi) = 1 + θm, |θm| ≤
(m− 1)u

1− (m− 1)u
= γm−1.

As long as (m − 1)u is not to close to 1, this factor must be close to 1. The other multiplying
factor is

(1− h)m(1 + δ)m = e−1

[
1 +

h

2
+

11

24
h2 +O(h3)

] [
1 +mδ +

m(m− 1)

2
δ2 +O(δ3)

]
.
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The most important terms are

e−1

[
1 +

h

2
+
δ

h
+

1− h
2

(
δ

h

)2

+ · · ·

]
.

When h is decreasing, terms involving δ/h can become large compared to the term h/2. After
that δ/h and h/2 are of the same order, δ/h is increasing whence h/2 decreases.

For Crank-Nicolson, assuming that h/2 is exact, we obtain,

(1− h/2)(1 + δ−)

(1 + h/2)(1 + δ+)
(1 + δ) =

1− h/2
1 + h/2

(1 + θ), |θ| ≤ γ3 =
3u

1− 3u
,

and

e−1

[
1− h2

2
+
θ

h
+

1− h
2

(
θ

h

)2

+ · · ·

]
(1 + θm).

Everything depends on the size of h compared to θ. In these examples, it is the error on the
computation of the factor which is amplified by the successive multiplications.

If we code the explicit scheme as yn+1 = yn − hyn, denoting ŷi the computing values, we
obtain

ŷn+1 = (ŷn − hŷn(1 + δ∗n+1))(1 + δ+
n+1), |δ∗n+1|, |δ+

n+1| ≤ u,

that we can write

ŷn+1 = (1− h+ µn)ŷn, µn = δ+
n+1 − h(δ+

n+1 + δ∗n+1) + · · ·

Therefore,

ŷm =

m−1∏
i=0

(1− h+ µi).

The product can be written as

(1− h)m + (1− h)m−1
m−1∑
i=0

µi + · · ·

The first term is what we obtain without rounding errors. If we denote ε̂m = ŷm − e−1 the error
at t = 1 and εm the error in exact arithmetic, we have

ε̂m = εm + (1− h)m−1
m−1∑
i=0

µi + · · ·

Using the Taylor expansion of (1− h)m−1, we can write this as

ε̂m = εm + e−1
m−1∑
i=0

µi + · · ·

The term εm decreases with h, but the second term may increase. However, the additive coding
may give better results than the multiplicative versions.
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1.7 Summation algorithms
A problem that occurs quite frequently in numerical linear algebra is to compute accurately the
sum of n floating-point numbers. It happens, for instance, when computing dot products or
norms of vectors. The straightforward naive algorithm for a vector x is

s = 0
for i=1:length(x)
s = s + x(i)
end

Clearly, the rounding errors depend on the order in which the components xi are summed. We
can, for instance, sort the components (if they are all available) in increasing or decreasing order.
Note that this may be a costly operation. We also can sum the components pairwise yi = x2i−1+
x2i and apply recursively the same process for the yi’s. This is called pairwise summation.

Whatever is the chosen ordering, denoting S the exact result, from Chapter 4 of [633], we
have,

|S − s| ≤ (n− 1)u

n∑
i=1

|xi|+O(u2).

The multiplying factor can be improved to (n−1)/(1+u) when summing floating-point numbers,
see [676]. Another possibility is to use compensated summation. This technique was proposed
by W. Kahan [689] in 1965 (see also [690]), and almost at the same time by I. Babuška; see also
T.J. Dekker [328], A. Klein [706] and D.M. Priest [929, 930]. It allows to compute the sum of
two floating-point numbers and its rounding error as follows,

function [s,e] = comp_sum(x,y)
if |x| < |y|, swap x and y
s = x + y;
w = s - x;
e = y - w;
% s is the sum and e the rounding error
end

The following scheme shows why we can obtain the rounding error in this algorithm,

x x1 x2

+y y1 y2

= s x1 x2 + y1

w y1 0

e y2 0

In fact, W. Kahan proposed the algorithm without the initial swap and this is the way it is
generally used. If we use this algorithm on an example we have seen above we obtain

>> x = 6
6
>> y = eps / 2
1.110223024625157e-016
>> s = x + y
6
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>> w = s - x
0
>> e = y - w
1.110223024625157e-016

We obtain the rounding error in e.
Compensated summation can be used in a summation algorithm,

function [s,e] = compsum(x)
s = 0
e = 0
for i=1:length(x)
temp = s
y = x(i) + e
s = temp + y
e = (temp - s) + y
end

The rounding error at one stage is immediately re-injected in the next stage. Note that there is
no swap, and e may not contain the exact rounding error. Moreover, compensated summation is
not always accurate. C.-P. Jeannerod showed in [674] that the smallest dimension n for which
Kahan’s summation with decreasing ordering can yield a large relative error is 4.

Deterministic and probabilistic error bounds were given by E. Hallman and I.C.F. Ipsen in
[612] and [613, 614]. For the standard summation algorithm, they showed that

|S − s| ≤ nu(1 + u)n
n∑
i=1

|xi|.

For the probabilistic bound the multiplying factor of the sum depends only on u
√
n. For com-

pensated summation they showed that

s =

n∑
i=1

(1 + ρi)xi, |ρi| ≤ 3u+ [4(n− i) + 6]u2 +O(u3).

The probabilistic bounds are too complicated to be reported here.

In [709], D.E. Knuth proposed a variant of Kahan’s summation which uses more operations
but no swapping.

function [s,e] = TwoSum(x,y)
s = x + y;
w = s - x;
e = (x - (s - w)) + (y - w);
% s is the sum and e the rounding error
end

Many algorithms have been proposed to sum accurately n floating-point numbers. Since the
end of the 1990s, there has been at least one proposal every year. The following algorithm [869]
uses TwoSum,

function [s,c] = sum2(x)
s = 0;
c = 0;
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for i = 1:length(x)
sm = s;
s = s + x(i);
t = s - sm;
t2 = s - t;
t3 = x(i) - t;
t4 = sm - t2;
t5 = t4 + t3;
c = c + t5; % rounding error
end
s = s + c;

One can go one step further. The following algorithm simulates quadruple precision (DD refers
to double-double),

function [s,c] = DDsum(x)
s = 0;
c = 0;
for i = 1:length(x)
sm = s;
s = s + x(i);
t = s - sm;
t2 = s - t;
t3 = x(i) - t;
t4 = sm - t2;
t5 = t4 + t3;
c = c + t5;
sm = s;
s = s + c;
e = sm - s;
c = c + e;
end

Another type of algorithm using TwoSum is called distillation. One first transforms the input
vector x. Starting from

[x1 x2 x3 x4 · · ·xn−1 xn ]

we apply TwoSum to x1 and x2, [s1, e1] = TwoSum(x1, x2) and put the results in a new vector
x,

[ e1 s1 x3 x4 · · ·xn−1 xn ]

Therefore,
∑n
i=1 xi = e1 + s1 +

∑n
i=3 xi. Then, we apply TwoSum to s1 and x3 and obtain

[ e1 e2 s2 x4 · · ·xn−1 xn ]

and
∑n
i=1 xi = e1 + e2 + s2 +

∑n
i=4 xi. We do this up to the end of the vector. In the end

[ e1 e2 e3 e4 · · · en−1 sn ]

and
∑n
i=1 xi =

∑n−1
i=1 ei + sn. This process can be iterated on the vector just obtained, see

[968, 969, 1158, 1159]. The transformation of the vector x is done by

function q = VecSum(x)
q(1) = x(1);
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for i = 2:length(x)
[qi,qi1] = TwoSum(x(i),q(i-1));
q(i) = qi;
q(i-1) = qi1;
end

Then, this can be used recursively with k > 1,

function s = sumK(x,k)
for i = 1:k-1
x = VecSum(x);
end
s = sum(x);

Note that one can use another summation algorithm in the last line instead of the standard recur-
sive algorithm.

Recently, there has been an interest in mixed precision algorithms. A block algorithm was
proposed in [134] where the vector x to be summed is split into blocks of m numbers. Each
block is summed in low precision and the partial sums are summed using an higher precision.
Here, we use this type of algorithm only in double precision with m = 128, but the partial sums
are summed either using the standard recursive algorithm or compensated summation.

To compare the summation algorithms, let us consider an example of summation proposed
by J.H. Wilkinson. Let t = 53 and r a small integer r � t, the sequence xi is computed in
double precision as

n = 2^r
x(1) = 1
x(2) = 1 - 2^(-t)
for j = 2:r
x(2^(j-1)+1:2^j) = 1 - 2^(j-1-t)
end

We first choose r = 10 which gives 1024 components for the vector x. All the values are
close to 1 but not exactly 1, except x1. The sum is obviously close to 1024.

Computed in variable precision with the floatp toolbox [821] with 128 binary digits in the
mantissa, the rounded sum is 1.023999999999961 103. Using Matlab variable precision with 64
decimal digits, the sum is

1023.9999999999636202119290828704833984375

In single precision all the components of x are rounded to 1 and the sum is 1024. Table 1.4 gives
the results for the summation algorithms we have described above. Except the standard recursive
summation, all the algorithms give a correct result except for the last decimal digit.

Let us now use r = 20. The vector x has 1, 048, 576 components. The variable precision
result is

1048575.9999593098982586525380611419677734375

The results are displayed in Table 1.5. All the sophisticated summation algorithms give a cor-
rectly rounded result.

Another example is the following. We compute a vector x with components

xi = sin

(
2π

(
i

n
− 1

2

))
,
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Table 1.4. Wilkinson’s example, r = 10

Algo. s cum. rounding err. c/u

sum 1024

comp. sum 1.023999999999961 103

sum2 1.023999999999961 103 −3.880507026821078 10−11 −349525
DDsum 1.023999999999961 103 −3.785860513971784 10−14 −341
sumK 2 1.023999999999961 103 −5.684341886080802 10−14 −512
sumK 3 1.023999999999961 103 −3.785860513971784 10−14 −341

blk + double 1.023999999999962 103

blk + comp 1.023999999999961 103

Table 1.5. Wilkinson’s example, r = 20

Algo. s cum. rounding err. c/u

sum 1048576

comp. sum 1.048575999959310 106

sum2 1.048575999959310 106 −4.069010416662966 10−5 −3.66503875925 1011

DDsum 1.048575999959310 106 −3.880507026821078 10−11 −349525
sumK 2 1.048575999959310 106 −5.820766091346741 10−11 −524288
sumK 3 1.048575999959310 106 −3.880507026821078 10−11 −349525

blk + double 1.048575999959310 106

blk + comp 1.048575999959310 106

and we sum its components. The relative errors of the summation algorithms are shown in
Figure 1.8. The x-axis is the log10 of n.
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Figure 1.8. Sine example, relative errors

With n = 100 and computed in variable precision with 64 decimal digits, the sum is

0.0000000000000008163540703054581584821461955026023557750692124677580063796256127

which, when rounded, is 8.163540703054582 10−16. Table 1.6 displays the results. One can
see that the result of the standard recursive summation is completely wrong. Even the sign is
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not correct. The result of compensated summation is better but not completely satisfactory. The
three other algorithms give correct results. The best result is given by sumK with K = 3.

Table 1.6. Sine example, n = 100

Algo. s cum. rounding err. c/u

sum −3.346982272038879 10−15

comp. sum 7.053317678429425 10−16

sum2 8.163540703054580 10−16 4.163336342344337 10−15 37.5

DDsum 8.163540703054582 10−16 −2.465190328815662 10−32 −2.220446049250313 10−16

sumK 3 8.163540703054582 10−16 0 0

For n = 1000, the sum is

0.000000000000005618068651809260195814353159995400207337569212467758006379625613

which, when rounded, is 5.618068651809260 10−15. The results are displayed in Table 1.7. The
conclusions are the same as for n = 100. However, Figure 1.8 shows that the results of sum2,
DDsum and sumK deteriorate when n ≥ 105 but their results are slightly better than for the
standard algorithm.

Table 1.7. Sine example, n = 1000

Algo. s cum. rounding err. c/u

sum −6.496436013873507 10−14

comp. sum 5.670110356088564 10−15

sum2 5.618068651809260 10−15 7.058242879054433 10−14 635.75

DDsum 5.618068651809260 10−15 1.725633230170963 10−31 1.554312234475219 10−15

sumK 3 5.618068651809260e 10−15 0 0

blk + comp −4.263256414560601 10−14

Let us go back to an example discussed in Subsection 1.6.2 in which the components of the
vectors were alternatively π/3 and 10ε. The results for the compensated summation are:

n ps |(ps - psc) / psc|
1 2.325245665339088e-15
10 2.325245665339088e-14 0
100 2.325245665339087e-13 2.171258662545761e-16
1000 2.325245665339088e-12 0
10000 2.325245665339088e-11 0
100000 2.325245665339088e-10 0
1000000 2.325245665339087e-09 1.778695096357487e-16
10000000 2.325245665339087e-08 1.422956077085990e-16

Remember that “psc” was the exact sum. We see that the relative errors are of the order of the
unit roundoff. The same conclusion holds for DDsum:

n ps |(ps - psc) / psc|
1 2.325245665339088e-15
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10 2.325245665339088e-14 0
100 2.325245665339087e-13 2.171258662545761e-16
1000 2.325245665339088e-12 0
10000 2.325245665339088e-11 0
100000 2.325245665339088e-10 0
1000000 2.325245665339087e-09 1.778695096357487e-16
10000000 2.325245665339087e-08 1.422956077085990e-16

Let us now apply the summation algorithms to the solution of the ODE y′ = −y with the
Crank-Nicolson scheme. In Figure 1.9 the x-axis is the log10 of the number of time steps in [0, 1]
and the curves are the absolute errors at t = 1. The curve for compensated summation is hidden
behind the curve for DDsum. We see that the multiplicative version of the scheme does not give
accurate results when n > 105. Compensated summation and DDsum give better results than
the standard summation and allow to obtain an accuracy close to the unit roundoff.
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Figure 1.9. Crank-Nicolson scheme, errors at t = 1

As we said at the beginning of this section, summation algorithms can be used to compute
dot products of vectors.

Definition 1.3. The Euclidean dot product of two vectors x and y in �n, denoted by (x, y) or
xT y, is defined by

(x, y) = xT y =

n∑
i=1

xiyi

Computing a dot product needs n multiplications and n−1 additions, that is 2n−1 floating-
point operations in total.

If the vectors are complex, the dot product is defined as

(x, y) =

n∑
i=1

x̄iyi,

where x̄i is the conjugate of xi.
The first operation to compute a dot product is the product of the two vectors component by

component. A compensated product algorithm of two floating-point numbers was published in
[328]. It is the following,
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function [x,y] = TwoProd(a,b);
x = a .* b;
[ah,al] = Split(a);
[bh,bl] = Split(b);
y = al .* bl - (((x - ah .* bh) - al .* bh) - ah .* bl);
end

function [x,y] = Split(a);
% this is for double precision f = 2^27 + 1
f = 134217728 + 1;
z = a * f;
x = z - (z - a);
y = a - x;
end

This algorithm can be combined with any summation algorithm to compute a dot product of
two vectors x and y. Since TwoProd was coded to allow the inputs to be vectors, let us write

function [s,c] = dotp(x,y);
[xy,e] = TwoProd(x,y); % product of components
[s,c] = DDsum(xy + e);
end

According to [869] the condition number (see Section 1.9) of a dot product is for xT y 6= 0,

cond(xT y) = 2
|x|T |y|
|xT y|

.

In [1135] an algorithm was given to generate examples of dot products with a prescribed con-
dition number. We use it to generate vectors x and y of length 1000 giving dot products with a
condition number increasing from 10 to 1020. The computed dot products are

cond x^T y dotp

10^1 1.000000000000000e-01 1.000000000000000e-01
10^2 1.000000000000000e-02 1.000000000000000e-02
10^3 1.000000000000000e-03 1.000000000000000e-03
10^4 1.000000000000000e-04 1.000000000000000e-04
10^5 1.000000000000000e-05 1.000000000000000e-05
10^6 1.000000000000000e-06 1.000000000000000e-06
10^7 1.000000000000000e-07 1.000000000000000e-07
10^8 9.999997527121991e-09 1.000000000000000e-08
10^9 9.999971547903214e-10 1.000000000000000e-09
10^10 9.999711755715453e-11 1.000000000000000e-10
10^11 9.997557923047679e-12 9.999999999999999e-12
10^12 9.971578704271450e-13 1.000000000000000e-12
10^13 9.773959005888173e-14 1.000000000000000e-13
10^14 7.442490654175345e-15 1.000000000000000e-14
10^15 -6.327471696014490e-15 1.000000000000000e-15
10^16 -7.227471660589171e-15 1.000000000000004e-16
10^17 -7.317471662340594e-15 9.999999999999885e-18
10^18 -7.326471683691561e-15 9.999999999999096e-19
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10^19 -7.327371669944790e-15 1.000000000004643e-19
10^20 -7.327461668570112e-15 9.999999999888655e-21

When the condition number is 10i, the exact value of the dot product is 10−i. The relative
errors in the dot products are

cond x^T y dotp

10^1 0 0
10^2 0 0
10^3 0 0
10^4 0 0
10^5 0 0
10^6 0 0
10^7 0 0
10^8 2.472878009134568e-07 0
10^9 2.845209678660400e-06 0
10^10 2.882442845470812e-05 0
10^11 2.442076952320854e-04 0
10^12 2.842129572854992e-03 0
10^13 2.260409941118270e-02 0
10^14 2.557509345824655e-01 0
10^15 7.327471696014489e+00 1.972152263052529e-16
10^16 7.327471660589170e+01 4.190823558986625e-15
10^17 7.327471662340594e+02 1.155557966632341e-14
10^18 7.327471683691560e+03 9.051870738620007e-14
10^19 7.327471669944789e+04 4.642694872188480e-12
10^20 7.327471668570113e+05 1.113443295426561e-11

When the condition number is larger that 107, the error for xT y starts increasing whence
this happens only much later for dotp when the condition number is larger than 1015. However,
the complexity of dotp, which needs 26n floating-point operations, is much larger than for the
standard dot product with 2n− 1 operations.

1.8 Vector and matrix norms
From the dot product, we can define the Euclidean norm (also called the `2 norm) of a vector x.

Definition 1.4. The Euclidean norm of x in �n is defined as

‖x‖ = (x, x)
1
2 =

(
n∑
i=1

x2
i

) 1
2

.

Proposition 1.5. Every vector norm has the three following properties,

‖λx‖ = |λ| ‖x‖, ∀λ ∈ �,
‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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For the `2 norm, the last relation can be shown using the Cauchy-Schwarz inequality.

Proposition 1.6. For the dot product of two vectors in �n, we have

|(x, y)| ≤ ‖x‖ ‖y‖.

Equality holds only if x and y are collinear.

Proof. If y = 0 the proof is trivial. Hence, we can assume y 6= 0, then we have

0 ≤ ‖x− (x, y)

‖y‖2
y‖2 = ‖x‖2 − 2

(x, y)2

‖y‖2
+

(x, y)2

‖y‖4
‖y‖2 =

‖x‖2‖y‖2 − (x, y)2

‖y‖2
.

Hence,
‖x‖2‖y‖2 − (x, y)2 ≥ 0,

which proves the result.
A matrix norm can be defined in such a way that it is related to any given vector norm. Such

a matrix norm is said to be induced by (or subordinate to) the vector norm.

Definition 1.7. Let ‖ · ‖p be any vector norm. The induced matrix norm is defined as

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

.

Another equivalent definition of an induced matrix norm is ‖A‖p = max‖y‖p=1 ‖Ay‖p.
Definition 1.7 implies ‖Ax‖p ≤ ‖A‖p‖x‖p. The following result states the properties of a
matrix norm, see [548].

Proposition 1.8. A matrix norm satisfies the following properties:

‖λA‖p = |λ| ‖A‖p, ∀λ ∈ �,
‖A‖p ≥ 0 and‖A‖p = 0 ⇐⇒ A = 0,

‖A+B‖p ≤ ‖A‖p + ‖B‖p.

Proposition 1.9. For every induced norm,

‖AB‖p ≤ ‖A‖p‖B‖p.

More generally, one defines every function from

M(�n) = {matrices of order n with real coefficients}

to �+ which satisfies Proposition 1.8 as a matrix norm. We shall, however, add the property of
Proposition 1.9 to the definition of a norm since it is often the most useful one. Let us consider
some examples of norms. We will see the norm that is induced by the `2 norm in Proposition 1.24
but this requires some additional definitions.
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Definition 1.10. The maximum norm of a vector is ‖x‖∞ = maxi |xi| and the induced matrix
norm, denoted by ‖A‖∞ is characterized in the following proposition.

Proposition 1.11. The ‖.‖∞ norm of A is

‖A‖∞ = max
i

n∑
j=1

|ai,j |.

Proof. Let y = Ax. Then,

‖y‖∞ = max
i

∣∣∣∣∑
j

ai,jxj

∣∣∣∣ ≤ max
i

∑
j

|ai,j | · |xj | ≤ ‖x‖∞max
i

∑
j

|ai,j |.

Hence, ‖A‖∞ ≤ maxi
∑
j |ai,j |. Now, let us suppose that maxi

∑
j |ai,j | =

∑
j |aI,j |. We

define x such that xj = sign aI,j . Clearly, we have ‖x‖∞ = 1 and yI =
∑
j aI,jxj =

∑
j |aI,j |.

Since,

‖y‖∞ = max
j
|yi| ≥ yI =

∑
j

|aI,j |,

‖A‖∞ ≥ ‖Ax‖∞ = ‖y‖∞ ≥
∑
j

|aI,j | = max
i

∑
j

|ai,j |.

The energy norm or A-norm of a vector x is defined as ‖x‖A = (Ax, x)
1
2 , where A is a

given matrix. However, for this to be a norm, we need (Ax, x) > 0,∀x 6= 0. This is true only for
positive definite matrices that we will consider later in this chapter. Another example of matrix
norm is the Frobenius norm.

Definition 1.12. The Frobenius norm of A denoted by ‖A‖F is defined as

‖A‖F =

 n∑
i=1

n∑
j=1

a2
i,j

 1
2

= (trace [ATA])
1
2 ,

where trace [ATA] is the sum of the diagonal elements of ATA and AT is the transpose of A.

The Frobenius norm satisfies Proposition 1.9 but is not an induced norm, since for In, the
identity matrix of order n, we have ‖In‖F = n

1
2 . For finite dimensional spaces all norms are

equivalent. In particular, the `2 and Frobenius norms are related to each other by the following
inequalities.

Proposition 1.13. The Euclidean and Frobenius norms satisfy

max
i,j
|ai,j | ≤ ‖A‖ ≤ ‖A‖F ≤ n‖A‖.

Proof. Let us prove the first inequality. For all x, y 6= 0 the Cauchy-Schwarz inequality
(Proposition 1.6) gives

|(x,Ay)|
‖x‖ ‖y‖

≤ ‖Ay‖
‖y‖

≤ ‖A‖.
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Let us take x = ei and y = ej where ei and ej are vectors with zeros in all components except in
the ith and jth position where the value is 1. Then, |(x,Ay)| = |ai,j |, and hence |ai,j | ≤ ‖A‖.
This inequality holds for every i and j. Therefore,

max
i,j
|ai,j | ≤ ‖A‖.

We use, once again, the Cauchy-Schwarz inequality to prove the second inequality.

‖Ax‖2 =

n∑
i=1

(

n∑
j=1

ai,jxj)
2,

≤
n∑
i=1

[
(

n∑
j=1

a2
i,j)(

n∑
j=1

x2
j )

]
,

= (

n∑
i=1

n∑
j=1

a2
i,j)(

n∑
j=1

x2
j ),

= ‖A‖2F ‖x‖2.

To obtain the last inequality, we bound ai,j by max |ai,j |,

‖A‖F = (

n∑
i=1

n∑
j=1

a2
i,j)

1
2 ≤ n max

i,j
|ai,j | ≤ n‖A‖.

Definition 1.14. Let L be a nonsingular matrix, the L-norm of A is defined by

‖A‖L = ‖LAL−1‖.

It is easy to prove that this definition satisfies the properties of Proposition 1.8.

1.9 Condition numbers
Let us assume that we have computed an approximation ŷ of a quantity y = f(x), x and y being
real numbers. The absolute error is defined as

∆y = y − ŷ,

or ŷ − y since the sign does not really matter. If y 6= 0, the relative error is

∆y

y
=
y − ŷ
y

.

This type of error is called the forward error. Ideally, what we would like to obtain are tight
bounds of the absolute value of the forward error. This is not always possible but we can be
satisfied if we could answer to the question: For which data is the computed ŷ an exact solution
of the problem? That is, what are the perturbations ∆x of the data x such that

ŷ = f(x+ ∆x).
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The quantity ∆x is called the backward error and ∆x/x the relative backward error. They
measure the sensitivity of the solution to perturbations of the data. We are interested in the norm
or at the minimum of the norm for all possible perturbations. In many cases, we can be satisfied if
we have a small (relative) backward error. For instance, if the data is only known approximately
and if the backward error is smaller than the uncertainties on the data, the computed solution is
probably the best we can hope for.

A numerical method to compute y = f(x) is called backward stable if ŷ is obtained with
a “small” ∆x (or ∆x/x), the meaning of “small” depending on the problem. Backward error
analysis was first pioneered for linear algebra by J.W. Givens, but its use was mainly developed
by J.H. Wilkinson [1119, 1120].

The relative forward and backward errors are approximately linked through the condition
number of the problem. In the simple scalar case, y = f(x), let us assume that f is twice
continuously differentiable. For a small perturbation ∆x and using a Taylor expansion we can
write the forward error as

ŷ − y = f(x+ ∆x)− f(x) = f ′(x)∆x+
f ′′(x+ θx)

2
(∆x)2,

for θ ∈ [0, 1]. Then,
ŷ − y
y

=

(
xf ′(x)

f(x)

)
∆x

x
+O(∆x)2.

The quantity

κ(x) =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣
is called the condition number of the problem. A more general definition is

lim
ε→0

sup‖∆x‖≤ε‖x‖
‖f(x+ ∆x)− f(x)‖

ε‖f(x)‖
.

If the function f is differentiable with a Jacobian J , this is equal to

‖x‖ ‖J(x)‖
‖f(x)‖

.

The relative forward and backward errors are related by

forward error ≈ condition number × backward error.

Therefore, a problem with a small backward error can have a large forward error if the condition
number is large. The condition number is a property of the problem and not of the algorithm to
compute a solution.

Different definitions of the condition number were given in the literature. For instance, for
the dot product of two vectors x and y we can use

lim sup
ε→

{∣∣∣∣ (x+ ∆x)T (y + ∆y)− xT y
ε xT y

∣∣∣∣ , |∆x| ≤ ε|x|, |∆y| ≤ ε|y|} .
Here, the perturbations are bounded elementwise. As we have seen above this is equal to
2(|x|T |y|)/|xT y|. With our previous definition we would have 2(‖x‖ ‖y‖)/|xT y|which is larger.
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1.10 Rounding error analysis
Let us denote the set of floating-point numbers by F and assume that there are no overflow or un-
derflow. As we have seen in Section 1.4, people generally use the standard model corresponding
to IEEE arithmetic,

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u

for two numbers x and y inF and the four basic operations (+,−, ∗, /), u being the unit roundoff.
This means that the relative error is bounded by u. However, this was recently slightly improved
by C.-P. Jeannerod and S.M. Rump [676]. For t 6= 0 or fl(t) 6= 0, let

E1(t) =
|t− fl(t)|
|t|

, E2(t) =
|t− fl(t)|
|fl(t)|

.

When t is the exact result of an operation on one or two numbers in F and the rounding mode
is “round to nearest” with any tie-breaking strategy, we have the bounds on E1(t) and E2(t)
given in Table 1.8. This may seems an innocuous modification since, when computed in finite
precision, u and u/(1 + u) are the same, but it allows an improvement on the rounding error
bounds for higher level operations.

Table 1.8. Bounds on E1 and E2 from [676]

Op.. E1 E2

x± y u
1+u

u

x y u
1+u

u

x/y u− 2u2 u−2u2

1+u−2u2

√
x 1− 1√

1+2u

√
1 + 2u− 1

The basic operations we are interested in are dot products, norms, ratios of dot products or
norms, matrix-vector multiplications and additions of scalar multiples of vectors.

For dot products, the standard rounding error analysis (see, for instance, [633]) using the
recursive summation algorithm is

fl(xT y) = (x+ ∆x)T y = xT (y + ∆y),

where x and y are vectors of length n and

|∆x| ≤ γn|x|, |∆y| ≤ γn|y|, γn =
nu

1− nu
, nu < 1.

This relates the result of fl(xT y) to perturbations of the data x or y, fl(xT y) is the exact result
of a dot product with perturbed data. Therefore we can write

fl(xT y) = xT y + ∆xT y = xT y + ωnu,

where ω is a real number such that

|ω| ≤ 1

1− nu
|xT | |y|.
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The forward error bound is
|xT y − fl(xT y)| ≤ γn|xT | |y|.

Note that |x|T |y| can be much different from xT y if the signs of the elements of x and y are not
all positive or negative.

The problems with these bounds is that we must have nu < 1. It implies that n has to be
smaller than 9.0072 1015 for fp64, 1, 6777, 216 for fp32 and 2, 048 for fp16. For low-precision
formats it is a severe constraint. Moreover, if nu is close to 1, |ω| can be large. But, when x and
y are in F , from [675, 676], we have

|xT y − fl(xT y)| ≤ ζn|xT | |y|, ζn =
(1 + 2u)nu− u2

(1 + u)2
< nu.

There is no restriction on n in this expression. Note that when nu ≈ 1, the relative error bound
nu is O(1). The upper bound on |ω| can be replaced by |ω| ≤ |xT | |y|. The elementwise
backward error bound is

fl(xT y) = (x+ ∆x)T y = xT (y + ∆y), |∆x| ≤ ζn|x|, |∆y| ≤ ζn|x|,

and ζn can be replaced by nu. For the computation of the `2 norm of a vector, from [676] we
have

fl(‖x‖) = ‖x‖(1 + δ), |δ| ≤
(n

2
+ 1
)
u.

Our next step is to compute ratios of (nonzero) dot products as this is useful for some iterative
methods. Assuming wT z 6= 0, we have

fl

(
xT y

wT z

)
=
fl(xT y)

fl(wT z)
(1 + δ), |δ| ≤ u.

But,

fl(xT y) = (x+ ∆x)T y, fl(wT z) = (w + ∆w)T z, |∆x| ≤ ζn|x|, |∆w| ≤ ζn|w|.

We write

1

wT z + (∆w)T z
=

1

wT z

(
1

1 + (∆w)T z
wT z

)
,

∣∣∣∣ (∆w)T z

wT z

∣∣∣∣ ≤ ζn |w|T |z||wT z|
.

Let us assume that ψn = ζn|w|T |z|/|wT z| is small. Then, we can use a Taylor expansion of the
denominator,

1

wT z + (∆w)T z
=

1

wT z

(
1− (∆w)T z

wT z

)
+O(Ψ2

n), |Ψn| ≤ ψn.

We multiply with the numerator,

fl

(
xT y

wT z

)
=

{
(x+ ∆x)T y

wT z

(
1− (∆w)T z

wT z

)
+ (x+ ∆x)T y O(Ψ2

n)

}
(1 + δ).

Therefore,

fl

(
xT y

wT z

)
=
xT y

wT z
+

[
(∆x)T y

wT z
− xT y

wT z

(∆w)T z

wT z
+ δ

xT y

wT z

]
+O(u2).
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The absolute value of the first order term within brackets is bounded by

ζn
|x|T |y|
|wT z|

+
|xT y|
|wT z|

(
|δ|+ ζn

|w|T |z|
|wT z|

)
.

We can specialize this result to the computation of the ratio of squares of norms. It yields

fl

(
‖x‖2

‖w‖2

)
=
‖x‖2

‖w‖2
+

[
(∆x)Tx

‖w‖2
− ‖x‖

2

‖w‖2
(∆w)Tw

‖w‖2
+ δ
‖z‖2

‖w‖2

]
+O(u2).

The absolute value of the first order term is bounded by

‖x‖2

‖w‖2
(2ζn + |δ|) ≤ (2n+ 1)u

‖x‖2

‖w‖2
.

The rounding error analysis for a matrix vector product y = Ax follows from the results for dot
products since the ith component of y is the dot product of the ith row of A and the vector x. It
depends on mi, the number of nonzero entries in the ith row of A. To obtain a simple result, we
usually use m, the maximum number of entries in any row of A. If the number of nonzero in a
row varies greatly, the bounds cannot be very tight. The standard bound (see [633]) is

fl(y) = (A+ ∆A)x, |∆A| ≤ γm|A|.

Using the results in [675, 676], we have a better result,

|∆A| ≤ ζm|A|.

Let us consider the ith component of the matrix-vector product. We denote the ith row of A as
Ai,:. Then,

fl(yi) = (Ai,: + ∆Ai,:)x, |∆Ai,:x| ≤ ζmi |Ai,:| |x| ≤ miu|Ai,:| |x|.

Hence, we can write
fl(y) = Ax+ ucA, |cAi | ≤ mi|Ai,:| |x|,

where cA is a vector for which we have |cA| ≤ m|A| |x| componentwise.
For the `2 norm, we have

‖y − fl(y)‖ ≤ ‖∆A‖ ‖x‖.

We can bound ‖∆A‖ either by ‖A‖ or by ‖ |A| ‖. This leads to

‖y − fl(y)‖ ≤ n 1
2 ζm‖A‖,

or
‖y − fl(y)‖ ≤ ζm‖ |A| ‖.

We are also interested in dot products involving a matrix-vector product like (Ax, x) =
xTAx 6= 0. This dot product can be written as

fl(xTAx) = xT (Ax+ ucA) + ωnu, ω ≤ |xT | |Ax+ ucA|, |cA| ≤ m|A| |x|,
= xTAx+ u(ωn+ xT cA).

Since ω is multiplied by u, we can write

fl(xTAx) = xTAx+ uξ +O(u2), |ξ| ≤ (m+ n)|xT | |A| |x|.
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Let x 6= 0 and y be two vectors such that yTAy > 0. We will also be interested in the ratio of
‖x‖2 and yTAy. Using our previous results, with |ω| ≤ ‖x‖2 and |ξ| ≤ (m+ n)|yT | |A| |y|, we
can write

fl

(
‖x‖2

yTAy

)
=

‖x‖2 + ωnu

yTAy + ξu+O(u2)
(1 + δ), |δ| ≤ u,

=
‖x‖2

yTAy

1 + δ + ωnu
‖x‖2 +O(u2)

1 + ξu
yTAy

+O(u2)
.

Assuming that ξu/yTAy is small and using a Taylor expansion of the denominator, we obtain

fl

(
‖x‖2

yTAy

)
=
‖x‖2

yTAy
(1 + ρu+O(u2)), |ρ| ≤ (m+ n)

|yT | |A| |y|
yTAy

+ n+ 1.

In several of the algorithms we will study, we have to do linear combinations of vectors. Let
z and y be two vectors and α and β be two real numbers. We have

fl(αx+ βy) = (fl(αx) + fl(βy))(1 + δ), |δ| ≤ u.

Then,
fl(αx) = αx(1 + δ1), f l(βx) = βx(1 + δ2), |δi| ≤ u, i = 1, 2,

and
fl(αx+ βy) = αx+ βy + αx(δ1 + δ) + βy(δ2 + δ) +O(u2).

Therefore,

fl(αx+ βy) = αx+ βy + u c+O(u2), |c| ≤ 2(|αx|+ |βy|).

We observe that, using the results in [676], and when the rounding mode is “round to nearest”,
we can get rid of the O(u2) terms with still the same bound for c. This yields

|fl(αx+ βy)− (αx+ βy)| = u |c| ≤ 2u(|α| |x|+ |β| |y|),

and
‖fl(αx+ βy)− (αx+ βy)‖ = u ‖c‖ ≤ 2u(|α| ‖x‖+ |β| ‖y‖).

There are algorithms where x is going to be replaced by the result of the computation of Ax.
Then,

fl(αfl(Ax) + βy) = αfl(Ax) + βy + u c, |c| ≤ 2(|αfl(Ax)|+ |βy|).

Using the results for the matrix-vector product, in the end we obtain,

fl(αAx+ βy) = αAx+ βy + u c′, |c′| ≤ mα|A| |x|+ 2(|αAx|+ |βy|+ um|A| |x|).

Note that the last term in the upper bound has a factor u and thus gives a second order term in u.

1.11 Orthogonalization
With the dot product of Definition 1.3, we can generalize the usual definition of orthogonality in
�3.
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Definition 1.15. Two real vectors x and y are said to be orthogonal if and only if

(x, y) = xT y = 0.

Every set of linearly independent vectors {x1, x2, . . . , xn} can be orthogonalized in the fol-
lowing way.

Proposition 1.16. We can find a set of orthogonal vectors {q1, q2, . . . , qn} of unit norm such
that span (q1, q2, . . . , qn) = span (x1, x2, . . . , xn), where span (x1, x2, . . . , xn) is the subspace
spanned by the vectors x1, x2, . . . , xn.

Proof. The method to obtain qi, is known as the Gram-Schmidt orthogonalization process.
Let us first consider only two vectors, that is, n = 2. Let x1 and x2 be given and define

q1 =
x1

‖x1‖
,

z2 = x2 −
(x1, x2)

‖x1‖2
x1 = x2 − (q1, x2)q1,

q2 =
z2

‖z2‖
.

Note that (x1,x2)
‖x1‖2 x1 is the component of x2 in the direction x1. If we subtract this component

from x2 we obtain a vector q2 which is orthogonal to x1. The vectors q1 and q2 are indepen-
dent, linear combinations of x1 and x2 and span the same subspace. This process can be easily
generalized to n vectors giving

q1 =
x1

‖x1‖
,

zi = xi −
(q1, xi)

‖q1‖2
q1 − · · · −

(qi−1, xi)

‖qi−1‖2
qi−1,

qi =
zi
‖zi‖

, i = 2, . . . , n.

One can check that the qi are orthogonal and by induction that the spannned subsets are the same.

Being orthogonal and of unit norm, the vectors qi are said to be orthonormal. Note that for
the Gram-Schmidt algorithm we need all the previous vectors to compute qi.

Definition 1.17. A matrix Q is an orthonormal matrix if and only if the columns of Q are
orthonormal vectors.

For an orthonormal matrix Q, we have QTQ = I . If we just have the orthogonality of
the columns of Q, the matrix is said to be orthogonal. Note that, if we think of the vectors
{x1, . . . , xn} as columns of a matrix A, the Gram-Schmidt process is nothing other than com-
puting a factorization A = QR where Q (whose columns are the vectors qi) is orthonormal and
R is upper triangular. In the Gram-Schmidt algorithm Q and R are computed one column at a
time. Unfortunately, this classical Gram-Schmidt algorithm (CGS) has poor numerical properties
in finite precision arithmetic. Typically, there is a loss of orthogonality in the computed vectors.

However, there is a rearrangement of the computation, called the modified Gram-Schmidt
(MGS) algorithm, that leads to much better results, see [966], [129], [548], [631]. In MGS, as soon
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as one qi is computed, all the remaining vectors are orthogonalized against it. The algorithm
is the following. We introduce partially orthogonalized vectors q(j)

i whose initial values are
q

(1)
i = xi, i = 1, . . . , n. Then, for i = 1, . . . , n,

qi =
q

(i)
i

‖q(i)
i ‖

,

and for j = i+ 1, . . . , n,
q

(i+1)
j = q

(i)
i − (qi, q

(i)
j )qi.

For stability results on MGS, see N.J. Higham [631, 633].
Gram-Schmidt orthogonalization algorithms in finite precision arithmetic were first studied

to compute a QR factorization; see, for instance, [128, 129]. The main application was the
computation of the solution of least squares problems, see [725, 130]. As we said, because of
rounding errors, there is quite often a gradual loss of orthogonality in the computed columns of
the matrix Q. The differences between CGS and MGS were first shown by numerical experiments
in [943] where it was observed that orthogonality is better preserved in MGS than in CGS.

The reason for the loss of orthogonality can be seen with only two vectors, see [129]. Let q1

of unit norm and b2 be two vectors. We orthogonalize b2 against q1,

q̂2 = b2 − r1,2 q1, r1,2 = qT1 b2, q2 =
q̂2

‖q̂2‖
.

Let us assume that q1 and b2 are known exactly and that the norms are computed exactly. We
compute fl(q̂2) and it can be shown that

‖fl(q̂2)− q̂2‖ ≤ αu‖b2‖,

where α is equal to the length of the vectors times a small constant. Then,

I −
(
q1

fl(q̂2)
‖fl(q̂2)‖

)T (
q1

fl(q̂2)
‖fl(q̂2)‖

)
= −

(
0

qT1 fl(q̂2)
‖fl(q̂2)‖

qT1 fl(q̂2)
‖fl(q̂2)‖ 0

)
.

Let us define the level of orthogonality as the norm of that matrix. It is

|qT1 fl(q̂2)|
‖fl(q̂2)‖

.

Since q1 and q̂2 are exactly orthogonal,

|qT1 fl(q̂2)| = |qT1 (fl(q̂2)− q̂2)| ≤ ‖fl(q̂2)− q̂2‖ ≤ αu‖b2‖.

The bound on the level of orthogonality is proportional to

u
‖b2‖
‖fl(q̂2)‖

.

This bound can be large if ‖fl(q̂2)‖ is small. This happens if the angle between q1 and b2 is
small.

Let us consider a small example,

A =

(
0.7071067812 0.7071067883
0.7071067812 0.7071067741

)
.
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This matrix is of rank 2. The second column is equal to the first column slightly rotated. With
CGS and MGS (which are the same in this simple case) the computed matrix Q is

Q =

(
0.7071067812 0.7071067923
0.7071067812 −0.7071067701

)
,

and

QTQ =

(
1 1.570092452 10−8

1.570092452 10−8 1

)
which is far from the identity matrix. If we orthogonalize a second time, we obtain a matrix Q2

such that

QT2 Q2 =

(
1 −8.865115929 10−17

−8.865115929 10−17 1

)
which is the identity matrix up to working precision.

The loss of orthogonality in CGS was studied in [534, 535, 1027] when orthogonalizing the
columns of a matrix A. Note that in [1027] the normalization is done in a different way. In these
papers it is proved that the computed quantities satisfy

‖I −QTQ‖ ≤ α

1− βuκ2(A)
uκ2(A),

when βuκ2(A) < 1 and α depends on the dimension of A. This condition corresponds to ATA
being numerically nonsingular.

In [128] it was proved that, with MGS, the computed matrix Q satisfies

‖I −QTQ‖ ≤ γ

1− δκ(A)u
uκ(A),

if δuκ(A) < 1 where γ and δ are constants depending on the number of columns of A. For MGS
the bound depends on κ(A) whence for CGS it depends on κ2(A). The rank and the condition
number of the computed Q in MGS were studied in [533] where, under some restrictions on the
condition number of A and the arithmetic, it was shown that κ(Q) ≤ 1.3.

1.12 Eigenvalues and singular values
Even though we do not study algorithms to compute eigenvalues in this book, it is useful to recall
some results about eigenvalues and singular values since there are involved in the convergence
of some iterative algorithms to solve linear systems.

Definition 1.18. λ ∈ � is an eigenvalue of a square matrix A if and only if there exists at least
one vector x 6= 0 such that

Ax = λx.

The vector x is said to be an eigenvector of A.

For every real or complex matrix there is at least one eigenvalue. The matrix A − λI being
singular, its determinant is zero. But this determinant is a polynomial of degree n in λ. Conse-
quently, from the fundamental theorem of algebra, it has at least one root which is an eigenvalue
of A. Of course, some of the n roots can be equal. The eigenvectors can be normalized as we
wish. Usually, they are taken as being of unit `2 norm.
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Definition 1.19. If λi = λi+1 = · · · = λi+m−1 = λ we say that λ is of algebraic multiplic-
ity m. The geometric multiplicity is defined as the dimension of the subspace spanned by the
eigenvectors associated with λ.

The two multiplicities may be different, as shown in the following example,

A =

(
0 1
0 0

)
, λ1 = λ2 = 0.

The algebraic multiplicity is 2 but the geometric multiplicity is 1.
An eigenvalue λi of algebraic multiplicity mi = 1 is said to be simple. If mi > 1 and there

are mi associated independent eigenvectors, it is said to be semi-simple.

What completely describes the eigenstructure of a matrix is the Jordan canonical form. For
every square matrix with real or complex entries there exists a nonsingular matrix X such that

X−1AX = J

where J is a block diagonal matrix with blocks of a simple bidiagonal structure. The diagonal
blocks are of the form

J (i,j) =


λi 1

. . . . . .
. . . 1

λi

 , i = 1, . . . , `, j = 1, . . . , gi, (1.1)

where ` is the number of distinct eigenvalues of A and gi is the geometric multiplicity of λi. The
matrices J (i,j) are called Jordan blocks and have only two nonzero constant diagonals.

Let di,j be the order of J (i,j). Then, the characteristic (and irreducible) polynomial of J (i,j)

is (λ−λi)di,j . There may be several Jordan blocks associated with one eigenvalue and the block
diagonal matrix whose diagonal blocks are all these Jordan blocks J (i,j), j = 1, . . . , gi is called
a Jordan box and denoted as B(i) when these Jordan blocks are numbered sequentially. The
matrix B(i) is of order mi and contains gi blocks. The Jordan canonical form is unique up to the
order of the diagonal Jordan blocks.

If A has only simple or semi-simple eigenvalues (which means that
∑
imi = n) or, equiva-

lently, if there exists a basis of �n consisting of eigenvectors, the matrix is diagonalizable. There
exists a nonsingular matrix X such that

X−1AX = Λ, (1.2)

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues λi of A. The factoriza-
tion A = XΛX−1 is called the spectral factorization of A. The most general result that can be
proved is that A is similar to a diagonal matrix if the geometric multiplicity of each eigenvalue
is the same as its algebraic multiplicity. If A is not diagonalizable, it is said to be defective and
one has to use the Jordan canonical form.

A matrixA is normal ifAHA = AAH whereAH (which is sometimes written asA∗) denotes
the conjugate transpose of A. It is known that A is normal if and only if it can be diagonalized
by a unitary matrix. In other words, the matrix X in (1.2) can be chosen to be unitary (see
the definition below) and the spectral factorization of A is A = XΛXH . Examples of normal
matrices are Hermitian, symmetric and skew-symmetric matrices.
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To state an important theorem, we now consider complex numbers. As we have seen above,
the dot product of two vectors x and y with complex components is defined by

(x, y) =

n∑
i=1

xiyi,

where xi denotes the conjugate of xi ∈ �. The matrix AH is given by (AH)i,j = aj,i. A
complex matrix A which is orthogonal is called unitary. A matrix A is Hermitian if and only if
AH = A.

Theorem 1.20. For every matrix A there exists a unitary matrix U such that

UHAU = T,

where T is an upper triangular matrix.

Proof. For the proof we follow G. Strang [1054]. As we said above, every matrix A has at
least one eigenvalue, say λ1 (which may be of algebraic multiplicity n) and at least one unit norm
eigenvector x1. With the Gram-Schmidt orthogonalization process, we can find n − 1 vectors
u

(1)
2 , . . . , u

(1)
n such that

U1 = (x1, u
(1)
2 , . . . , u(1)

n )

is a unitary matrix. Then,

AU1 = U1


λ1 ∗ · · · · · · ∗
0
... A(2)

0

 .

This process can be repeated on A(2) which has at least one eigenvalue λ2 and an eigenvector
x2. So there exists a unitary matrix V2 of order n− 1 such that

A(2)V2 = V2


λ2 ∗ · · · ∗
0
... A(3)

0

 .

Let us denote

U2 =


1 0 · · · 0
0
... V2

0

 ,

then, 
λ1 ∗ · · · ∗
0
... A(2)

0

U2 =


λ1 ∗ · · · ∗
0
... A(2)V2

0



= U2


λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0
...

... A(3)

0 0

 .
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The general result follows by induction.
The relation A = UTUH is called the Schur factorization of A.

Corollary 1.21. Let A be an Hermitian matrix. Then, there exists a unitary matrix U such that

UHAU = Λ,

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A.

Let us now return to real matrices. We have already seen that a symmetric matrix is diago-
nalizable. The following useful result is used in many proofs in numerical linear algebra.

Theorem 1.22. Let A be a real symmetric matrix. There exists an orthogonal matrix Q such that

QHAQ = QTAQ = Λ,

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A (which are real
numbers).

We have the following important definition.

Definition 1.23. The spectral radius ρ(A) of A is defined as

ρ(A) = max
1≤i≤n

|λi|,

where λi are the eigenvalues of A.

Since the eigenvalues of a real square matrix may be complex numbers, it is sometimes
useful to associate real numbers to a matrix. The singular values σi of an n × m complex
rectangular matrix A are the square roots of the nonzero eigenvalues of AHA. It can be shown
that they are also the nonzero eigenvalues of AAH . If A is of rank r, there are r nonzero
eigenvalues ofAHA and ofAAH and thus r singular values which are usually ordered according
to σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

The right singular vectors are the eigenvectors of AHA. Let us collect them in the columns
of a unitary matrix V of order m. The left singular vectors are the eigenvectors of AAH that we
collect in the columns of a unitary matrix W of order n. Then, the matrix A can be factorized
into its singular value decomposition (SVD),

A = WΣV H ,

where the n ×m matrix Σ is zero except for its leading principal submatrix of size r which is
diagonal and contains the singular values σi in descending order.

It is easy to see that the `2 norm of A is ‖A‖ = σ1, the maximum singular value. The `2
condition number ofA is therefore σ1(A)/σn(A). For symmetric matrices we have the following
result.

Proposition 1.24. Let A be a symmetric matrix. Then, ‖A‖ = ρ(A).

Proof. This is implied by the general result using the SVD.
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For studying the convergence of some iterative methods, we will have to consider the limit
of the sequence of powers Ak for k = 1, 2, . . . , of a given matrix A. The sequence of matrices
A(k) = Ak converges to a limit A∞ as k tends to infinity if and only if

lim
k→∞

a
(k)
i,j = a∞i,j , for all i, j.

This definition is equivalent to
lim
k→∞

‖A(k) −A∞‖ = 0.

The main result is the following.

Theorem 1.25. We have limk→∞Ak = 0 if and only if the eigenvalues of A are in the unit
circle, that is,

lim
k→∞

Ak = 0⇔ ρ(A) < 1.

Proof. This was proved in 1940 by R. Oldenburger [873] using the SVD. It is not too difficult
to write powers of the Jordan blocks and to study their limits. Another proof was given by
A.S. Householder [647].

It is clear that ρ(A) ≤ ‖A‖. In fact, this is true for all norms. Hence, ‖A‖ < 1 is a sufficient
condition to have limk→∞Ak = 0.

Now we consider series of matrices. We have the following result.

Theorem 1.26. The series I +A+A2 + · · · converges and the limit is (I −A)−1 if and only if
ρ(A) < 1.

Proof. Assume that ρ(A) < 1 and let λ be an eigenvalue of I−A. Then 1−λ is an eigenvalue
of A and 1 − λ < 1 because ρ(A) < 1. Therefore, I − A is non-singular. Let us denote the
partial sums of the series by Sk.

Sk = I +A+A2 + · · ·+Ak,

(I −A)Sk = I −Ak+1,

Sk = (I −A)−1(I −Ak+1),

Sk − (I −A)−1 = −(I −A)−1Ak+1,

‖Sk − (I −A)−1‖ ≤ ‖(I −A)−1‖ ‖Ak+1‖.

As ρ(A) < 1, limk→∞ ‖Ak+1‖ = 0 and

lim
k→∞

‖Sk − (I −A)−1‖ = 0.

For the converse we observe that if limk→∞ Sk exists, it implies limk→∞Ak = 0 and so, ρ(A) <
1 by Theorem 1.25.

The series I+A+A2 + · · · is said to be the Neumann series for (I−A)−1 and Sk (for small
k) is frequently used in numerical algorithms to approximate (I −A)−1 when ρ(A) < 1.

1.13 Irreducibility and diagonal dominance
Some theorems about convergence of iterative methods depend on constraints on the eigenvalues
which are difficult to verify in practical problems. Therefore, since the beginning of the use of
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these methods, researchers tried to find sufficient conditions for convergence, that is, classes of
matrices for which they could know that the methods are convergent. In this section we study
the properties of some of these classes of matrices.

Definition 1.27. Let I = {1, 2, . . . , n}. A matrix A is irreducible if

1) n = 1 and a1,1 6= 0 or

2) n > 1 and for every set of integers I1 ∈ I and I2 ∈ I

with I1 ∩ I2 = ∅ and I1 ∪ I2 = I, there exists i ∈ I1, and j ∈ I2 such that ai,j 6= 0.

This definition is complicated but the following result helps to understand what it means.
When the matrix A is not irreducible, it is said to be reducible.

Proposition 1.28. A matrix A is reducible if and only if there exists a permutation matrix P such
that

P−1AP =

D1 0

F D2

 ,

D1, D2 being square matrices.

Proof. A permutation matrix is a matrix whose columns are a permutation of the columns of
the identity matrix. For a proof of this proposition, see D.M. Young [1144].

A being irreducible means that one cannot solve the linear system Ax = b by solving two
subproblems of smaller size.

Definition 1.29. A matrix A is

• diagonally dominant (by rows) if

|ai,i| ≥
n∑

j = 1
j 6= i

|ai,j |, ∀i,

• strictly diagonally dominant if

|ai,i| >
n∑

j = 1
j 6= i

|ai,j |, ∀i,

• irreducibly diagonally dominant if

1) A is irreducible,

2) A is diagonally dominant,

3) there exists an index i such that

|ai,i| >
n∑

j=1,j 6=i

|ai,j |.
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Theorem 1.30. Let A be irreducibly diagonally dominant. Then, A is nonsingular and ai,i 6= 0
for all i.

Proof. Let us prove by contradiction that ai,i 6= 0. Assume that n > 1 and ai,i = 0 for some
i. Diagonal dominance implies that ai,j = 0 for all j. But, this contradicts the irreducibility of A
because we can choose I1 = i, I2 = I − {i} and have ai,j = 0 for all i ∈ I1 and for all j ∈ I2.
Let us now prove that A is nonsingular. Since ai,i 6= 0 for all i, we can define

B = I −D−1A,

where D is a diagonal matrix with di,i = ai,i for all i (in abbreviated form D = diag(A)).
Clearly,

bi,i = 0,

bi,j = −ai,j
ai,i

, i 6= j.

Since A is irreducibly diagonally dominant, we have

n∑
j=1

|bi,j | ≤ 1, for all i,

and there exists an index i such that
∑n
j=1 |bi,j | < 1. Using Proposition 1.11, we obtain ‖B‖∞ ≤

1. Hence, ρ(B) ≤ 1. Let us assume there exists an eigenvalue λ of modulus 1 and let x be the
corresponding eigenvector,

n∑
j=1

bi,jxj = λxi.

We end the proof as in [1144]. Let i be such that |xi| = ‖x‖∞, then

n∑
j=1

|bi,j | ‖x‖∞ ≤ ‖x‖∞ ≤
n∑
j=1

|bi,j | |xj |.

The second inequality follows because

|λxi| = |λ| |xi| = |xi| = ‖x‖∞ ≤
n∑
j=1

|bi,j | |xj |.

Hence,
n∑
j=1

|bi,j |
(
|xj | − ‖x‖∞

)
≥ 0,

but
|xj | − ‖x‖∞ ≤ 0 for all j.

This implies that |xj | = ‖x‖∞ or bi,j = 0 but B is irreducible. Therefore, from [1144], there
exist indices i1, . . . , ip such that

bi,i1 , bi1,i2 , . . . , bip,j 6= 0.

This shows that
|xi1 | = |xi2 | = · · · = |xj | = ‖x‖∞.
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In all cases, we have |xj | = ‖x‖∞ for all j and therefore

‖x‖∞ = |xi| ≤
n∑
j=1

|bi,j | ‖x‖∞,

for all i. Since ‖x‖∞ 6= 0,
∑n
j=1 |bi,j | ≥ 1 for all i. This contradicts the fact that there is at least

one index i such that
∑n
j=1 |bi,j | < 1. Thus we have proved that ρ(B) < 1 and by Theorem 1.26,

I −B = D−1A is nonsingular.

Corollary 1.31. Let A be strictly diagonally dominant. Then, A is nonsingular and ai,i 6= 0 for
all i.

The eigenvalues of diagonally dominant matrices have the following property.

Theorem 1.32. Let A be irreducibly diagonally dominant and assume that ai,i > 0 for all i.
Then, for every eigenvalue λ, Re(λ) > 0.

Proof. From Theorem 1.30, A is nonsingular. Let x be an eigenvector of A. Then, we have

λxi =

n∑
j=1

ai,jxj ,

(λ− ai,i)xi =

n∑
j=1,j 6=i

ai,jxj .

Let us choose an index i such that |xi| = ‖x‖∞, then

|λ− ai,i| ≤
n∑

j=1,j 6=i

|ai,j |.

This proves that the eigenvalues belong to the union of the disks with centers ai,i and radius∑n
j=1,j 6=i |ai,j |. These are known as Gerschgorin disks. We observe that these disks contain

only complex numbers with positive real parts because if there is a b > 0 such that −b belongs
to the disk then

ai,i < ai,i + b = | − b− ai,i| ≤
n∑

j=1,j 6=i

|ai,j |.

This contradicts the diagonal dominance of A. Moreover, we cannot have λ = 0 because A is
nonsingular.

The same result holds if A is strictly diagonally dominant. The definition of diagonal domi-
nance was generalized as follows.

Definition 1.33.
• A matrix A is generalized diagonally dominant if there exists a vector d with di > 0 for all i
such that

|ai,i|di ≥
n∑

j = 1
j 6= i

|ai,j |dj .
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• A is generalized strictly diagonally dominant if

|ai,i|di >
n∑

j = 1
j 6= i

|ai,j |dj .

These definitions are equivalent to applying the classical definitions of diagonal dominance
to the matrix AD where D is the diagonal matrix with diagonal entries di. Using what we have
proved for diagonally dominant matrices, we have the following result.

Proposition 1.34. Let A be generalized strictly diagonally dominant. Then, A is nonsingular
and ai,i 6= 0 for all i.

The definition of generalized diagonal dominance can also be expressed in a different way.
There exists a diagonal matrix D with strictly positive diagonal elements such that D−1AD is
strictly diagonally dominant. To see this, we write the definition in the following form

|ai,i| ≥
n∑

j = 1
j 6= i

|ai,j |
dj
di
.

This last definition is often more convenient. Let us now give a definition which has some formal
analogy with irreducibility.

Definition 1.35. The matrix A has property A if there exist two sets of indices I1 and I2 that
partition the set I and if i 6= j and ai,j 6= 0 or aj,i 6= 0, then i ∈ I1 and j ∈ I2 or j ∈ I2 and
j ∈ I1.

This definition was introduced by D.M. Young [1144] who showed the following characteri-
zation for matrices having property A.

Proposition 1.36. The matrix A has property A if and only if A is diagonal or there exists a
permutation matrix P such that

P−1AP =

D1 F

E D2

 ,

where D1 and D2 are diagonal square matrices.

1.14 M-Matrices and generalizations
A matrix A is positive (resp. strictly positive) and we denote A ≥ 0 (resp. A > 0) if ai,j ≥ 0
(resp. ai,j > 0) for all i and j.

Definition 1.37. A matrix A is monotone if and only if A is nonsingular and A−1 ≥ 0.
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This definition is the finite dimensional version of the maximum principle: if A is monotone
and b ≥ 0, then the solution of Ax = b is such that x ≥ 0.

Definition 1.38. A is an L-matrix if and only if

ai,i > 0, for all i, ai,j ≤ 0, i 6= j.

From this definition, it is obvious that every L-matrix A can be written as A = σI −B, with
σ ∈ �, σ > 0, and B ≥ 0. Then, we have the following definition.

Definition 1.39. Every matrix A which can be written as A = σI − B with σ > 0, B ≥ 0 and
such that ρ(B) ≤ σ is said to be an M-matrix.

With this definition A can be singular. If A is nonsingular we have ρ(B) < σ. Many authors
include A being nonsingular in the definition of an M-matrix. The following result relates the
previous definition to the most frequently used definition of M-matrices.

Theorem 1.40. A is a nonsingular M-matrix if and only if A is nonsingular with ai,j ≤ 0 for
i 6= j and A−1 ≥ 0.

Proof. Let A be a nonsingular M-matrix. Then,

A = σI −B, σ ∈ �, σ > 0, B ≥ 0, ρ(B) < σ.

We have to show that A−1 ≥ 0. We have ρ(Bσ ) < 1 and by Theorem 1.26 1
σA = I − B

σ is
nonsingular. The Neumann series

I +
B

σ
+
B2

σ2
+ . . .

converges and

σA−1 = I +
B

σ
+ . . .

Since B ≥ 0 and σ > 0, we have A−1 ≥ 0.
Conversely, let us assume that A is nonsingular with ai,j ≤ 0 for all i and j with i 6= j and

A−1 ≥ 0. Then, we can write A = σI −B with B ≥ 0 and σ > 0.
Let Sk be defined as

Sk = I +
B

σ
+ · · ·+ Bk+1

σk+1
.

Then, (
I − B

σ

)
Sk = I − Bk+1

σk+1
,

σA−1 =

(
I − B

σ

)−1

= Sk +

(
I − B

σ

)−1
Bk+1

σk+1
.

But (I − B
σ )−1 ≥ 0, Bk+1 ≥ 0 and Sk ≤ σA−1. Every entry of Sk is a decreasing bounded

sequence and so, it converges. The series I + B
σ + · · · converges. By Theorem 1.26 it implies

ρ

(
B

σ

)
< 1,
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which proves that A is an M-matrix.
One can show that an M-matrix has positive diagonal entries and so is an L-matrix. Many

characterizations of nonsingular M-matrices have been given. The book [123] by A. Berman and
R.J. Plemmons gives 50 equivalent definitions. A sufficient condition that is often useful is given
in the following theorem.

Theorem 1.41. Let A be an irreducibly diagonally dominant L-matrix. Then, A is a nonsingular
M-matrix.

Proof. From Theorem 1.30 we know that A is nonsingular. Let D be a diagonal matrix such
that di,i = ai,i > 0 and let B = I −D−1A. It is clear that B ≥ 0,

D−1A = I −B, B ≥ 0.

Theorem 1.30 shows that ρ(B) < 1. This proves that D−1A is an M-matrix and so is A.
In fact, with the hypotheses of Theorem 1.41, we can prove that A−1 > 0. If A is a strictly

diagonally dominant L-matrix, then A is a nonsingular M-matrix. Along the same lines we have
the next theorem.

Theorem 1.42. A is a nonsingular M-matrix if and only if ai,j ≤ 0 for all i 6= j and A is
generalized strictly diagonally dominant.

Proof. LetA be generalized strictly diagonally dominant. Then, there exists a diagonal matrix
D, di,i > 0 such that AD is strictly diagonally dominant. It is clear that the diagonal entries of
AD are positive and the off-diagonal ones are negative. Therefore, AD is a nonsingular M-
matrix and so is A.

Conversely, let us suppose that A is a nonsingular M-matrix. We have ai,j ≤ 0 for all i 6= j,
ai,i > 0 and A−1 ≥ 0. Let e be such that eT = (1, . . . , 1), and d = A−1e. Then d > 0
because if we suppose there exists i such that di = 0 we have,

∑
j(A
−1)i,j = 0 which implies

(A−1)i,j = 0 for all j and hence, A−1 is singular. Let D be a diagonal matrix with diagonal
entries di. Of course, De = d so,

ADe = Ad = e > 0.

Componentwise, we have

ai,idi +

n∑
j=1
j 6=1

ai,jdj > 0.

But, ai,j ≤ 0 for all i 6= j so |ai,j | = −ai,j . The previous inequality can be written as

|ai,i|di >
n∑

j=1,j 6=i

|ai,j |dj ,

which proves that A is generalized strictly diagonally dominant.

Corollary 1.43. The matrix A is a nonsingular M-matrix if and only if A is an L-matrix and
there exists a diagonal matrixD with di,i > 0 such thatD−1AD is strictly diagonally dominant.

Proof. This comes from the remark following Proposition 1.34.
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The following result is a generalization for M-matrices of Theorem 1.32 for irreducibly di-
agonally dominant matrices.

Theorem 1.44. Let A be a matrix with ai,j ≤ 0 for all i 6= j. Then, A is a nonsingular M-matrix
if and only if Re(λ) > 0 for all eigenvalues λ of A.

Proof. See A. Berman and R.J. Plemmons [123].

Lemma 1.45. Let A be an M-matrix written in block form,

A =

(
B F
E C

)
,

where B and C are square matrices. Then, the Schur complement S = C − EB−1F is an
M-matrix.

Proof. It is obvious that the principal submatrices of an M-matrix are M-matrices. Therefore,
B is an M-matrix andB−1 > 0. Since, by definition, the entries ofE and F are non-positive, the
entries of EB−1F are non-negative. Therefore, the non-diagonal entries of S are non-positive.

Since A is an M-matrix, there is a diagonal matrix D with strictly positive diagonal entries
such that AD is strictly diagonally dominant by row. Let

D =

(
D1 0
0 D2

)
,

AD being strictly diagonally dominant means that if e = (1 . . . 1)T , then ADe > 0. But,

AD =

(
BD1 FD2

ED1 CD2

)
,

and let e =

(
e1

e2

)
. The Schur complement of AD is strictly diagonally dominant, (see [273]).

This means that
0 < [CD2 − ED1(BD1)−1FD2]e2 = SD2e2.

This shows that S is generalized strictly diagonally dominant by row. Hence, S is an M-matrix.

Let us consider a generalization of M-matrices. Given a matrix A, we define M(A) as the
matrix having entries mi,j such that

mi,i = |ai,i|, mi,j = −|ai,j |

for all i 6= j. Clearly, M(A) is an L-matrix. It is obvious that many different matrices A can
lead to the same M(A). So, we define the set

Ω(A) = {B | |bi,j | = |ai,j |} .

Ω(A) is called the equimodular set for A. Then, we have the following definition.

Definition 1.46. A is an H-matrix if and only if M(A) is an M-matrix.

Each definition of an M-matrix gives a corresponding definition for H-matrices. Let us recall
the following result which will be useful later.
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Theorem 1.47. A is a nonsingular H-matrix if and only if A is generalized strictly diagonally
dominant.

It is obvious that strictly diagonally dominant, irreducibly diagonally dominant and nonsin-
gular M-matrices are nonsingular H-matrices.

1.15 Splittings
Some iterative methods that we will study use a decomposition of the matrix A (which is also
known as a splitting) in the form

A = M −N.

To prove some results about splittings, we have to be more specific about M and N .

Definition 1.48. A = M − N is a regular splitting if and only if M is nonsingular, M−1 ≥ 0
and N ≥ 0.

Regular splittings and M-matrices are closely related as shown in the next result.

Theorem 1.49. Let A be a matrix with ai,j ≤ 0 for all i 6= j. A is a nonsingular M-matrix if
and only if there exists a regular splitting A = M −N with ρ(M−1N) < 1.

Proof. A being an M-matrix, there exists σ ∈ �, σ > 0 and B ≥ 0 such that A = σI − B
with ρ(B) < σ. This is clearly a regular splitting of A.

Conversely, assume we have a regular splitting A = M −N with ρ(M−1N) < 1. Then,

M−1A = M−1(M −N) = I −M−1N

is nonsingular. By Theorem 1.26,

(I −M−1N)−1 = I +M−1N + (M−1N)2 + · · ·

Therefore, (I −M−1N)−1 ≥ 0 and A−1 ≥ 0.
It is sometimes useful to compare two regular splittings. This is done in the following theo-

rem.

Theorem 1.50. Let A be such that A−1 ≥ 0 and consider two regular splittings of A, A =
M1 −N1 and A = M2 −N2 with N2 ≤ N1. Then,

ρ(M−1
2 N2) ≤ ρ(M−1

1 N1) < 1.

Proof. See R.S. Varga [1098].

Lemma 1.51. Let A = M −N be a regular splitting. The following statements are equivalent,

1) A−1 ≥ 0,

2) A−1N ≥ 0,

3) ρ(M−1N) = ρ(A−1N)
1+ρ(A−1N) < 1.
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Proof. This was proved by R.S. Varga [1098].

Lemma 1.52. Let |A| ≤ B. Then, ρ(A) ≤ ρ(B).

Proof. This is a consequence of the Perron-Frobenius theorem, see R.S. Varga [1098].

Lemma 1.53. Let B be a nonsingular matrix and for all k, let (Mk, Nk) be a regular splitting
of B. The following statements are equivalent

1) B−1 ≥ 0,

2) the sequence defined by xk+1 = xk −M−1
k (Bxk − c) tends to a solution of Bx = c.

Proof. See J. Moré [837].

Lemma 1.54. With the same hypothesis as in Lemma 1.53, let M̃k (nonsingular) and Ñk such
that

|M−1
k | ≤ M̃

−1
k , |Nk| ≤ Ñk,

and let B̃ = M̃k − Ñk for all k. If the sequence defined by

xk+1 = xk − M̃−1
k (B̃xk − c),

converges, then the sequence yk such that

yk+1 = yk −M−1
k (Byk − c)

also converges.

Proof. Let x̃ be the solution of B̃x̃ = c, y be the solution of By = c, and εk = x̃ − xk,
εk = y − yk. Then,

M̃kεk+1 = Ñkεk,

Mkεk+1 = Nkεk.

Let us choose ε0 such that |ε0| = ε0, then

|ε1| = |M−1
0 N0ε0| ≤ |M−1

0 ||N0||ε0| ≤ M̃−1
0 Ñ0ε0 = ε1.

By induction, we can show that
|εk| ≤ εk

But εk → 0 as k →∞, therefore εk → 0.

1.16 Positive definite matrices

Definition 1.55. The matrix A is positive definite if and only if (Ax, x) = xTAx > 0 for all
x 6= 0.

These matrices are sometimes referred to as positive real. As we have seen above, if A is
symmetric positive definite (SPD), we can define a vector norm ‖x‖A by

‖x‖A = (Ax, x)
1
2 .
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This is usually called the energy norm or the A-norm. For symmetric matrices we have a well
known characterization of positive definiteness.

Proposition 1.56. Let A be a symmetric matrix. Then, A is positive definite if and only if the
eigenvalues of A (which are real numbers) are positive.

Proof. This is easily proved by considering the spectral factorization of A , which is A =
XΛXH .

The following result for splittings is often called the Householder-John theorem. It is useful
to prove the convergence of some iterative methods.

Theorem 1.57. Let A be a nonsingular symmetric M-matrix such that A = M − N with M
nonsingular and Q = M + MT − A = MT + N is positive definite. Then, ρ(M−1N) < 1 if
and only if A is positive definite.

Proof. Let us assume that A is positive definite and let x0 be given. We define a sequence of
vectors by

Mxk+1 = Nxk.

We have to prove that xk converges to 0 as k goes to∞, but,

xk+1 = M−1Nxk = (I −M−1A)xk.

Since A is positive definite,

‖xk+1‖2A = (Axk+1, xk+1),

= ((A−AM−1A)xk, (I −M−1A)xk),

= (Axk, xk)− (AM−1Axk, xk)

−(Axk,M
−1Axk) + (AM−1Axk,M

−1Axk).

Let yk = M−1Axk. Then,

‖xk+1‖2A − ‖xk‖2A = (Ayk, yk)− (Myk, yk)− (yk,Myk).

This holds because (AM−1Axk, xk) = (M−1Axk, Axk) = (yk,Myk). Hence,

‖xk+1‖2A − ‖xk‖2A = ((A−MT −M)yk, yk) = −(Qyk, yk) < 0.

If yk = 0, this implies xk = 0 and then xk+1 = 0. Therefore, ‖xk‖2A is a bounded decreasing
sequence and it converges to some limit. Since we have

‖xk‖2A − ‖xk+1‖2A = (Qyk, yk),

(Qyk, yk)→ 0 and then yk → 0 and xk → 0 which proves that ρ(M−1N) < 1.
Conversely, let us assume that ρ(M−1N) < 1 and that A is not positive definite. We have

already shown that
(Axk, xk)− (Axk+1, xk+1) > 0.

If A is not positive definite, there exists x0 such that (Ax0, x0) < 0. Then, by induction, the
sequence xk is such that

(Axk+1, xk+1) < (Axk, xk) < 0.



1.16. Positive definite matrices 63

But this contradicts the fact that xk tends to 0.
We remark that the A-norms of iterates of the sequence xk are decreasing. The previous

theorem can be generalized to nonsymmetric matrices.

Theorem 1.58. Let A be a nonsingular matrix A = M − N , with M nonsingular, such that
Q = MTA−TA + N is positive definite. Then, ρ(M−1N) < 1 if and only if A is positive
definite.

Proof. See J.M. Ortega and R.J. Plemmons [884].
We now consider the relationship between M-matrices, H-matrices and positive definite ma-

trices in the symmetric case.

Theorem 1.59. LetA be a symmetric matrix with ai,j ≤ 0 for all i 6= j. ThenA is a nonsingular
M-matrix if and only if A is positive definite.

Proof. The result follows directly from Theorem 1.44.

Theorem 1.60. Let A be a symmetric nonsingular H-matrix with ai,i > 0 for all i. Then, A is
positive definite.

Proof. There exists a diagonal matrixD with di,i > 0 such thatD−1AD is strictly diagonally
dominant and (D−1AD)i,i = ai,i > 0. From Theorem 1.32 D−1AD is positive definite. Since
D−1AD has the same eigenvalues as A, this proves the result.

The converse of this theorem is not true as shown by the following simple example.
Let

A =

 a e e
e a e
e e a

 .

The eigenvalues of A are a+ 2e, a− e, a+ e. Let a > e > 0. Then, A is positive definite. Since

M(A) =

 a −e −e
−e a −e
−e −e a

 ,

the eigenvalues of M(A) are a + e, a + e and a − 2e. If we choose 0 < e < a < 2e, M(A) is
not positive definite and by Theorem 1.59 is not an M-matrix. This matrix A is an example of a
positive definite matrix which is not an H-matrix.

The following result is important for the study of direct and iterative methods.

Lemma 1.61. Let A be a symmetric positive definite matrix partitioned as

A =

(
A1,1 AT

2,1

A2,1 A2,2

)
,

where the blocks A1,1 and A2,2 are square. Then, the Schur complement,

S2,2 = A2,2 −A2,1A
−1
1,1A

T
2,1,

is symmetric and positive definite.
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Proof. This result can be proved in many different ways. Perhaps, the simplest one is to
consider A−1 and to compute the bottom right-hand block of A−1. Let(

A1,1 AT
2,1

A2,1 A2,2

)(
x1

x2

)
=

(
b1
b2

)
.

Then,
A1,1x1 +AT

2,1x2 = b1 ⇒ x1 = A−1
1,1(b1 −AT

2,1x2).

Therefore,
(A2,2 −A2,1A

−1
1,1A

T
2,1)x2 = b2 −A2,1A

−1
1,1b1.

The inverse of A can be written as

A−1 =

(
X Y
Z S−1

2,2

)
.

Since A is positive definite, the diagonal blocks of A and A−1 are also positive definite, and S2,2

is positive definite.

We also have the useful following result.

Lemma 1.62. Let A be a symmetric positive definite matrix. Then,

max
i,j
|ai,j | = max

i
(ai,i).

Proof. It is clear that the diagonal entries of A are positive. Suppose there are indices i0, j0
such that |ai0,j0 | > |ai,j |, i0 6= j0, ∀i, j different from i0, j0. There are two cases:
i) assume ai0,j0 > 0, then let

x = (0 . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T ,

the 1 being in position i0 and the −1 in position j0. We have,

(x,Ax) = ai0,i0 + aj0,j0 − 2ai0,j0 < 0.

Therefore, A is not positive definite and we have a contradiction;

ii) assume ai0,j0 < 0, we choose

x = (0 . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)T ,

and obtain
(x,Ax) = ai0,i0 + aj0,j0 + 2ai0,j0 < 0,

which, again, is a contradiction.

1.17 The graph of a matrix
In the following chapters, we will be interested in matrices with many zero entries. Such matrices
are called sparse matrices. For these matrices it is often useful to consider their graphs.

To a general nonsymmetric square matrix A of order n, we associate a directed graph (or
digraph).
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Definition 1.63. A digraph is a couple G = (X,E) where X is a set of n nodes (or vertices)
and E is a set of directed edges.

For a given matrix A, there is a directed edge from node i to node j if ai,j 6= 0. Usually, self
loops corresponding to ai,i 6= 0 are not included. Let us consider a small example,

A =


x x 0 x
0 x 0 0
x 0 x 0
0 x x x

 .

Then, the associated digraph is shown in Figure 1.10.

1 2

3 4

Figure 1.10. A directed graph

Graphs are more commonly used in problems involving symmetric matrices or matrices hav-
ing a symmetric nonzero structure (also called a nonzero pattern). If ai,j 6= 0, then aj,i 6= 0.
Therefore, we can consider only undirected graphs and drop the arrows on the edges. Let

A =


x x x 0
x x 0 x
x 0 x x
0 x x x

 ,

then, the graph of A is shown in Figure 1.11.

1 2

3 4

Figure 1.11. An undirected graph

Let G = (X,E) be a (undirected) graph. We denote the nodes of the graph by xi or some-
times i and consider some definitions:
• G′ = (X ′, E′) is a subgraph of G if X ′ ⊂ X and E′ ⊂ E.
• Two nodes x and y of G are adjacent if {x, y} ∈ E. The adjacency set of a node y is defined
as

Adj(y) = {x ∈ X | x is adjacent to y}.
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If Y ⊂ X , then
Adj(Y ) = {x ∈ X | x ∈ Adj(y), x 6∈ Y, y ∈ Y }.

• The degree of a node x of G is the number of its adjacent nodes in G,

deg(x) = |Adj(x)|.

• Let x and y ∈ X . A path of length ` from x to y is a set of nodes {x1, x2, . . . , x`+1} such that
x = x1, y = x`+1 and {xi, xi+1} ∈ E, 1 ≤ i ≤ `. A path {x0, x1, . . . , x`, x0} is a (simple)
cycle of length `+ 1.
• A graph is connected if for every x, y ∈ X , there exists a path from x to y. This corresponds
to the matrix being irreducible.
• A chord of a path is any edge joining two non-consecutive vertices in the path. A graph is
chordal if every cycle of length greater than three has a chord, see [133].
• An important kind of graph is when there are no closed paths. A particular node is labeled as
the root. Then, there is a path from any node to the root. Such a (connected) graph is called a
tree. If it is not connected, we have a set of trees which is called a forest.
• Let Y ⊂ X , the section graph G(Y ) is a subgraph (Y,E(Y )) with

E(Y ) = {{x, y} ∈ E | x ∈ Y, y ∈ Y }.

• A set Y ⊂ X is a separator for G, a connected graph, if G(X/Y ) has two or more connected
components.
• The distance d(x, y) between two nodes x and y ofG is the length of the shortest path between
x and y. The eccentricity e(x) of a node x is

e(x) = max{d(x, y) | y ∈ X}.

The diameter δ of G is
δ(G) = max{e(x) |x ∈ X}.

A node x is peripheral if e(x) = δ(G).
• A clique is a subset of nodes which are all pairwise connected.
• A level structure of a graph G is a partition L = {L0, L1, . . . , L`} of X such that

Adj(Li) ⊂ Li−1 ∪ Li+1, i = 1, . . . , `− 1,

Adj(L0) ⊂ L1,

Adj(L`) ⊂ L`−1.

Each Li, i = 1, . . . , `− 1 is a separator for G. For each node x ∈ X , a level structure L(x) can
be defined as

L(x) = {L0(x), . . . , Le(x)(x)},

L0(x) = {x}
Li(x) = Adj(∪i−1

k=0Lk(x)), 1 ≤ i ≤ e(x)

where e(x) is the eccentricity of x. The width of a level structure L(x) is

w(x) = max{|Li(x)|, 0 ≤ i ≤ e(x)}.
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1.18 Hessenberg and tridiagonal matrices
An upper Hessenberg matrix H is such that hi,j = 0 for i > 2, j = 1, . . . , i− 2, that is, only the
entries of the upper triangular part of H are (possibly) nonzero as well as the entries on the first
subdiagonal. A lower Hessenberg matrix is a transposed upper Hessenberg matrix. A symmetric
Hessenberg matrix is tridiagonal.

The matrix H of order n is unreduced (or irreducible) if hj+1,j 6= 0, j = 1, . . . , n− 1, that
is, the subdiagonal entries are nonzero. It implies that the matrix H is nonderogatory, which
means that up to a scalar multiply the characteristic polynomial and the minimal polynomial are
the same; see, for instance, [425] for a proof.

In some iterative methods we have to solve linear systems Hky = c where Hk is an unre-
duced upper Hessenberg matrix of order k. This can be done by reducing Hk to upper triangular
form with Givens rotations to successively eliminate the subdiagonal entries. Let us assume that
the current matrix is 

x x . . . x
. . .

...
. . .

x x
0 r
0 h


.

We have to eliminate the h entry to obtain an upper triangular matrix. This is done by left
multiplying with the Givens matrix

1
. . .

1
c −s
s c

 .

The coefficients s and c, which are sine and cosine of the angle of rotation, are given by

c =
r√

r2 + h2
, s = − h√

r2 + h2
.

Let QTk be the product of all the Givens rotation matrices for eliminating successively all the
subdiagonal entries in rows 2 to k. Then, QTkHk = Rk and the solution is obtained by solving
the triangular system Rky = QTk c. To compute and use Rk we have to store and apply all the
previous rotations to the right-hand side.

A particular kind of Hessenberg matrix is a companion matrix,

C =


0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 . . . 0 −α2
...

. . . . . .
...

...
0 . . . 0 1 −αn−1

 . (1.3)

The matrix C is square of order n and nonderogatory. The eigenvalues of C are the roots of the
monic polynomial p of degree n,

p(λ) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0.
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Theorem 1.64. An unreduced upper Hessenberg matrix H of order n can be factored as

H = UCU−1, (1.4)

where U is a nonsingular upper triangular matrix of order n with u1,1 = 1 and diagonal entries
uk,k =

∏k−1
j=1 hj+1,j for k > 1 and C is the companion matrix of H , that is, corresponding to

the characteristic polynomial pC of H .

Proof. Define U = ( e1 He1 H2e1 . . . Hn−1e1 ). Then, U is upper triangular and
nonsingular since H is unreduced and uk,k =

∏k−1
j=1 hj+1,j . Moreover, we have HU = UC as

it is easy to see for the first n− 1 columns, and because of the Cayley-Hamilton theorem (which
says that pC(H) = 0) for the last column. Therefore, H = UCU−1. This decomposition of H
is unique.

Inverses of unreduced upper Hessenberg matrices possess interesting properties. In [663]
and [438], it was proved that the entries of the lower triangular part of H−1 are the product
of components of two vectors, say x and y, (H−1)i,j = xjyi; see also [55, 99]. The lower
triangular part of H−1 is the lower triangular part of a rank-one matrix. This result about H−1

can be easily proved from the factorization (1.4) as follows.

Theorem 1.65. Let pC(λ) = λn+αn−1λ
n−1 + · · ·+α1λ+α0 be the characteristic polynomial

of the unreduced Hessenberg matrix H factored as H = UCU−1 as in Theorem 1.64. We define
β1 = −α1/α0,

β̂ = − (−α2/α0 · · · αn−1/α0 1/α0 )
T
,

and we partition the upper triangular matrix U−1 as

U−1 =

(
1 ϑ̂T

0 Û−1

)
.

Then, the inverse of H can be written as

H−1 =

(
β1 − ϑ̂T Û β̂ (β1 − ϑ̂T Û β̂)ϑ̂T + (eT1 − ϑ̂T ÛF )Û−1

Û β̂ Û β̂ϑ̂T + ÛF Û−1

)
, (1.5)

where F is the zero matrix except for the entries on the first upper diagonal which are equal to
1.

Proof. We have obviously H−1 = UC−1U−1. With our notation the inverse of C can be
written as

C−1 =

(
β1 eT1
β̂ F

)
.

The inverse of the matrix U−1 is

U =

(
1 −ϑ̂T Û
0 Û

)
.

We obtain the result by the multiplication UC−1U−1.
The matrix ÛF Û−1 is strictly upper triangular. Therefore, the lower triangular part of the

principal trailing block ofH−1 is the lower triangular part of Û β̂ϑ̂T . We easily see that the lower
triangular part of H−1 is the lower triangular part of a rank-one matrix.

From the previous result about H , we can obtain the factorization of all its principal matrices
Hk.
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Theorem 1.66. Let H = UCU−1 where U is nonsingular with u1,1 = 1 and upper triangular
and C is a companion matrix. For k < n the principal submatrix Hk can be written as Hk =
UkC

(k)U−1
k , Uk being the leading principal submatrix of order k ofU and the companion matrix

of Hk is C(k) = Ek + ( 0 U−1
k U1:k,k+1 ) where Ek is a square down-shift matrix of order k,

Ek =


0
1 0

. . .
. . .
1 0

 .

Proof. Clearly,

Hk = ( Ik 0 )H

(
Ik
0

)
= ( Ik 0 )UCU−1

(
Ik
0

)
,

where Ik is the identity matrix of order k. Let

( Ik 0 )U = (Uk Z ) , U−1

(
Ik
0

)
=

(
U−1
k

0

)
.

Since C = En + ( 0 · · · 0 v ) where v is a given vector, we have

Hk = (Uk Z )

(
EkU

−1
k

e1e
T
k U
−1
k

)
= UkEkU

−1
k + Ze1e

T
k U
−1
k .

The vector Ze1 of length k is made of the k first components of the k+ 1st column of U , that is,
U1:k,k+1. Factoring Uk on the left and U−1

k on the right gives the result.

We will see later that the entries of the first row of U−1
k are linked to the convergence of some

iterative methods. They can be computed recursively from the entries of H .

Lemma 1.67. The entries ϑ1,j of the first row of the inverse of U in H = UCU−1 are related to
the entries hi,j of H by the relation

ϑ1,k+1 = − 1

hk+1,k

k∑
j=1

ϑ1,jhj,k, k = 1, . . . , n− 1. (1.6)

Proof. We have seen that H = UCU−1 where C is the companion matrix defined in (1.3).
Multiplying on the left by U−1, we have U−1H = CU−1. From the structure of C and the fact
that U−1 is upper triangular, the entries of the first row of CU−1 are zero except for the last one
in position (1, n). Writing the entry (1, k) of U−1H for k < n, we obtain

k+1∑
j=1

ϑ1,jhj,k = 0 ⇒ ϑ1,k+1 = − 1

hk+1,k

k∑
j=1

ϑ1,jhj,k,

which proves the claim.

We can specialize some of the previous results to symmetric tridiagonal matrices.
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Let

T =


α1 β2

β2 α2 β3

. . . . . . . . .
βn−1 αn−1 βn

βn αn

 , (1.7)

where the values βj , j = 2, . . . , n are assumed to be nonzero. From [97] or [809] and the
references therein, as well as Theorem 1.65, we know that there exist two sequences of nonzero
numbers {νi}, {σi}, i = 1, . . . , n such that

T−1 =


ν1σ1 ν1σ2 ν1σ3 . . . ν1σn
ν1σ2 ν2σ2 ν2σ3 . . . ν2σn
ν1σ3 ν2σ3 ν3σ3 . . . ν3σn

...
...

...
. . .

...
ν1σn ν2σn ν3σn . . . νnσn

 . (1.8)

Moreover, ν1 can be chosen as ν1 = 1. The strictly triangular part corresponds to what we have
seen for the inverse of the upper Hessenberg matrix H . Even though this seems implied by the
notation, we observe that the matrix T−1 is nonsingular if and only if νi 6= 0, i = 1, . . . , n and
νiσi+1 − νi+1σi 6= 0, i = 1, . . . , n− 1.

We can relate the entries of T−1 to those of T by identification in the relation T−1T = I ,

α1 = − ν2

σ2 − ν2σ1
, β2 =

1

σ2 − ν2σ1
= −α1

ν2
,

and for i = 2, . . . , n− 1, let
χi = νi(νiσi+1 − νi+1σi),

αi = −νi+1

χi
− βi

νi−1

νi
, βi+1 =

νi
χi
, (1.9)

the last diagonal entry being equal to

αn =
1

νnσn
− βn

νn−1

νn
.

Of course, we have to assume that νi 6= 0 for i = 1, . . . , n and χi 6= 0 for i = 1, . . . , n − 1. It
can be easily proved that νTTei = 0 for i = 1, . . . , n− 1, where νT = ( ν1 ν2 · · · νn ) and
ei is the ith column of the identity matrix. As a consequence, νTU = eT1 , where T = UCU−1.

We can see that the last column of T−1 is proportional to the transpose of the first row of
U−1. Since T = UCU−1 is symmetric as well as T−1,

T−1 = T−T = U−TC−TUT .

The last column of UT is un,nen. The last column of C−T is −(1/α0)e1, where α0 is the
coefficient of the characteristic polynomial of T , that is, the determinant of T . Finally, we obtain

T−1en = − un,n
det(T )

U−T e1,

which proves the result.



1.18. Hessenberg and tridiagonal matrices 71

For k < n, we can characterize the inverses of the principal matrices Tk of T . Let us start
with Tn−1 which is obtained from T by removing the last row and the last column. Let B be a
nonsingular matrix of order n, partitioned as

B =

(
B a
cT α

)
,

with B nonsingular. We would like to make a rank-one modification to B to find the inverse
B−1. Let B:,n be the last column of B. We define two vectors

u = B:,n − en =

(
a

α− 1

)
, v = en,

and the rank-one modification,

B − uvT =

(
B 0
cT 1

)
.

Clearly, if we are able to compute the inverse of B−uvT , we obtain the inverse ofB. The inverse
of the rank-one modification is

(B − uvT )−1 = B−1 +
1

1− vTB−1u
B−1uvTB−1,

according to the Sherman-Morrison formula, see [548] and Section 1.19. First, we have

vTB−1u = eTnB−1(B:,n − en) = eTnen − eTnB−1en = 1− eTnB−1en.

It yields
1− vTB−1u = eTnB−1en = [B−1]n,n.

vTB−1 is the last row of B−1 that we denote as [B−1]n,:. The other vector is

B−1u = B−1(B:,n − en) = en − [B−1]:,n.

Therefore, the inverse of the rank-one modification is

(B − uvT )−1 = B−1 +
1

[B−1]n,n

[
en − [B−1]:,n

] [
[B−1]n,:

]
.

If we know the inverse of B, by taking the indices (i, j) such that 1 ≤ i, j ≤ n − 1 in the right-
hand side, we obtain the inverse ofB. Note that the last term on the right-hand side depends only
on the last row and last column of B−1.

Lemma 1.68. Let T be the tridiagonal matrix whose inverse is defined by (1.8). The inverse of
Tn−1 is

T−1
n−1 =


σ

(n−1)
1 σ

(n−1)
2 · · · σ

(n−1)
n−1

σ
(n−1)
2 σ

(n−1)
2 ν2 · · · σ

(n−1)
n−1 ν2

...
...

. . .
...

σ
(n−1)
n−1 σ

(n−1)
n−1 ν2 · · · σ

(n−1)
n−1 νn−1

 .

with
σ

(n−1)
i = σi − σn

νi
νn
, i = 1, 2, . . . , n− 1. (1.10)
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Proof. We apply the previous results with B = T . We start with the first column. We have
σ

(n−1)
1

σ
(n−1)
2

...
σ

(n−1)
n−1

 =


σ1

σ2
...

σn−1

− 1

νn


σn
σnν2

...
σnνn−1

 .

It yields relation (1.10). Now, we consider the last column of T−1
n−1,

σ
(n−1)
n−1


1

ν
(n−1)
2

...
ν

(n−1)
n−1

 = σn−1


1
ν2
...

νn−1

− νn−1

νn


σn
σnν2

...
σnνn−1

 .

Hence,
σ

(n−1)
n−1 ν

(n−1)
i = σn−1νi − σn

νn−1

νn
νi, 1 ≤ i ≤ n− 1.

Using the value of σ(n−1)
n−1 , we obtain

σ
(n−1)
n−1 ν

(n−1)
i = σn−1νi − σn

νn−1

νn
νi =

(
σn−1 − σn

νn−1

νn

)
ν

(n−1)
i .

If σ(n−1)
n−1 6= 0, it yields ν(n−1)

i = νi, for all 1 ≤ i ≤ n− 1.
To obtain the inverse of Tk, with k = 1, . . . , n− 2 we apply Lemma 1.68 recursively.

Theorem 1.69. Let T be the tridiagonal matrix whose inverse is defined by (1.8). The inverse of
Tk for k = 1, . . . , n− 1 is

T−1
k =


σ

(k)
1 σ

(k)
2 · · · σ

(k)
k

σ
(k)
2 σ

(k)
2 ν2 · · · σ

(k)
k ν2

...
...

. . .
...

σ
(k)
k σ

(k)
k ν2 · · · σ

(k)
k νk

 .

with
σ

(k)
i = σ

(k+1)
i − σ(k+1)

k+1

νi
νk+1

, i = 1, 2, . . . , k. (1.11)

Moreover,
σ

(k)
i = σi − σk+1

νi
νk+1

, i = 1, 2, . . . , k. (1.12)

Proof. Relation (1.11) is obtained by applying Lemma 1.68 to Tk+1. To prove relation (1.12),
we proceed by induction from k = n − 1 to k = 1. From Lemma 1.68, the result holds for
k = n− 1. Let us assume that it holds for k + 1. Then, for i = 1, . . . , k,

σ
(k)
i = σ

(k+1)
i − σ(k+1)

k+1

νi
νk+1

,

= σi − σk+2
νi
νk+2

−
(
σk+1 − σk+2

νk+1

νk+2

)
νi
νk+1

,

= σi − σk+1
νi
νk+1

.
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1.19 Sherman-Morrison and Cauchy-Binet formulas
The Sherman-Morrison formula (see [100, 1005]) shows what is the inverse of a rank-one mod-
ification of a nonsingular square matrix A of order n. Let u and v be two vectors with n compo-
nents. The matrix A+ uvT is nonsingular if and only if 1 + vTA−1u 6= 0 and

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (1.13)

This has been generalized to the Sherman-Morrison-Woodbury formula (see [1122]). Let U, V
be two matrices of arbitrary rank r, r ≤ n, and let C be nonsingular such that the product UCV
exists and is square of order n. Then,

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (1.14)

The Cauchy-Binet formula (see, for instance, [494]) is a relation giving the determinant of
the product of two rectangular matrices of compatible dimension. Let k ≤ n, A be k × n and B
be n× k. Then,

det(AB) =
∑
Ik

det(A:,Ik) det(BIk,:), (1.15)

where the summation is over all the ordered subsets Ik of k integers, 1 ≤ i1 < i2 < · · · < ik ≤
n. Note that if A = B∗, the conjugate transpose of B, we have

det(B∗B) =
∑
Ik

|det(BIk,:)|2.

1.20 Chebyshev polynomials
In this section we review some results about Chebyshev polynomials that will be useful in study-
ing some iterative methods.

Definition 1.70. The Chebyshev polynomials (of the first kind) Cn are defined for an integer n
and x ∈ �, |x| ≤ 1, by

Cn(x) = cos(n arccosx).

This definition can be extended to an interval [a, b] by setting t = a+b
2 + b−a

2 x. Then, t ∈ [a, b]⇔
x ∈ [−1,+1].

From this definition, it is not immediately obvious that Cn is a polynomial. This follows
from the properties in the following theorem.

Theorem 1.71. Let Cn be a Chebyshev polynomial. Then,

1) C0(x) = 1, C1(x) = x, Cn+1(x) = 2xCn(x)− Cn−1(x).

2) For n ≥ 1, Cn is a polynomial of degree n whose leading coefficient is 2n−1.

3) Cn(−x) = (−1)nCn(x).

4) Cn has n zeros in [−1,+1], namely

xk = cos

(
2k + 1

n

π

2

)
, k = 0, 1, . . . , n− 1,
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and n+ 1 extremas

x′k = cos

(
kπ

n

)
with Cn(x′k) = (−1)k, k = 0, 1, . . . , n.

5) The Chebyshev polynomials are orthogonal with respect to the dot product

((f, g)) =

∫ +1

−1

f(x)g(x)√
1− x2

dx.

Moreover,

((Ci, Cj)) =


0 i 6= j
π
2 i = j 6= 0

π i = j = 0

6) For all polynomials of degree n with leading coefficient 1,Cn/2n−1 has the smallest maximum
norm, namely 1/2n−1.

Proof. See, for instance, G. Dahlquist and Å. Björck [302].
The most interesting property of Chebyshev polynomials for studying iterative methods is

that they have the smallest maximum norm (item 6). It helps in solving the following problem:
Let π1

n = { polynomials of degree n in t whose value is 1 at the origin }. We will
frequently require the solution of the minimization problem

min
Qn∈π1

n

max
t∈[a,b]

|Qn(t)|.

A solution to this problem is given by the shifted and normalized Chebyshev polynomial

min
Qn∈π1

n

max
t∈[a,b]

|Qn(t)| = max
t∈[a,b]

∣∣∣∣∣∣
Cn

(
2t−(a+b)
b−a

)
Cn

(
a+b
b−a

)
∣∣∣∣∣∣ =

1∣∣∣Cn (a+b
b−a

)∣∣∣ .
This solution is of interest because we know the roots of Qn,

τ` =
a+ b

2
+
b− a

2
cos

(
2`− 1

n

π

2

)
` = 1, . . . , n.

If a = −b, then Cn
(
a+b
b−a

)
= 1. In more general cases we need an upper bound for

1∣∣∣Cn (a+b
b−a

)∣∣∣ .
We use the following characterization.

Lemma 1.72.

Cn(x) =
1

2
[(x+

√
x2 − 1)n + (x−

√
x2 − 1)n], |x| ≤ 1.

Proof. Let ϕ = arccos(x), so Cn(x) = cos(nϕ). We can write

cos(nϕ) =
1

2
(cos(nϕ) + i sin(nϕ) + cos(nϕ)− i sin(nϕ)),
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with i =
√
−1. Therefore,

cos(nϕ) =
1

2
[(cos(ϕ) + i sin(ϕ))n + (cos(ϕ)− i sin(ϕ))n],

but,
x = cos(ϕ) and i sin(ϕ) =

√
− sin(ϕ)2 =

√
x2 − 1,

proving the result.
Using Lemma 1.72, we obtain the bound we are looking for.

Theorem 1.73. If 0 < a < b then

min
Qn∈π1

n

max
t∈[a,b]

|Qn(t)| ≤ 2

(
1−

√
a
b

1 +
√

a
b

)n
= 2


√

b
a − 1√
b
a + 1

n

.

Proof. We have x = b+a
b−a , so

x2 − 1 =
2
√
ab

b− a
,

x+
√
x2 − 1 =

(
√
b−
√
a)2

b− a
,

=

√
b+
√
a√

b−
√
a
,

and

x−
√
x2 − 1 =

√
b−
√
a√

b+
√
a
.

Therefore,

Cn

(
b+ a

b− a

)
≥ 1

2

(√
b+
√
a√

b−
√
a

)n
.

1.21 Computer architecture
Let us very briefly review the history of computers. For more details, see Chapter 7 of [160].
Since the first few years after World War II with the advent of the first digital computers with
stored programs, there has been tremendous progress in the floating-point performance of scien-
tific computers.

In the early years of computers, people have considered the number of floating-point opera-
tions involved in their algorithms as a measure of efficiency. This was supposed to give a good
account of what is the computing time used when running the codes. A nice feature was that this
operation count was computer independent. But we cannot use the same technique anymore on
today’s parallel computers.

Up to the beginning of the 1970s, computers can be considered as serial machines. Roughly
speaking, one can say that these computers execute basic operations in a serial way, waiting for
the completion of an operation before beginning the execution of the next one. For this kind of
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computer, that is to say the ones people used in the 1950s, 1960s and the beginning of the 1970s,
the operation count gives a good idea of what is going on.

This was already no longer true for some computers that were introduced in the beginning of
the 1970s, for example, the CDC 7600. The 7600 was a pipelined computer. This means that a
basic operation, like addition or multiplication, is divided into a certain number of steps, say n.
When one pair of operands has moved from step 1 to step 2, step 1 is free to accept a new pair
of operands. Of course, the second pair must be independent of the results of the first operation.
If we (or the compiler) are able to continuously feed the pipeline with independent operations
then the first result will take n cycles to be produced but after that we must get a new result every
cycle. Unfortunately, at that time the available compilers were not smart enough to automatically
recognize that they had to do consecutive independent operations.

The 1970s saw the advent of vector computers, the first one commercially successful be-
ing the CRAY-1. Among other features, the CRAY-1 had 8 vector registers of 64 words each.
The compiler was able to recognize that we were doing, for example, the addition of two one-
dimensional arrays, that is, two vectors. It was then able by using vector instructions to feed the
addition pipeline efficiently by fetching the operands from the memory into the vector registers.
Moreover, this machine had independent functional units that can operate in parallel, of course
on non-related data.

It is clear that with this kind of computer, the classical operation count means nothing. On
typical codes, there was a ratio of 10 to 40 between scalar and vectorized codes. To run fast, an
algorithm had to be expressed (if possible) in terms of vectors. The memory traffic issue was
also very important in order to get good performance. The fastest vector computers were those
with the largest memory bandwidth and the speed of computation depended also on the ratio of
the number of floating-point operations to the number of memory references.

The next step to get more computer power was to use multiprocessor computers. Vector com-
puters evolved into machines with several vector processors sharing a large memory. Examples
of these machines were the CRAY Y-MPs, as well as computers from Japanese manufacturers
like Fujitsu, NEC or Hitachi. Most of these machines were running by the mid-1190s at Gi-
gaflops (109 floating-point operations per second) speeds on well designed programs.

At the end of the 1980s and beginning of the 1990s a new kind of scientific computers ap-
peared on the market: parallel computers with a distributed memory. Almost all these machines
used off-the-shelf microprocessors rather than proprietary designs. The rise of the microproces-
sors was the demise of the vector processors. These new machines had from a few tens to a few
thousand processors. Teraflops (1012 flops) speeds were reached on some applications.

Since the increase of the computational speed of microprocessors was slowing down, at the
beginning of the 2000s manufacturers started to increase the number of processors in reach of
the Petaflops (1015 flops). Moreover, several computing engines, named as “cores” were put
on a single chip. In 2011, a Blue Gene/Q IBM computer using 18-core chips with 1.47 billion
transistors had a peak performance of 20 Petaflops. It reached 17 Petaflops on the Linpack
benchmark in the TOP500 list.

To increase the performance again in reach of the Exaflops (1018 flops), computer design-
ers turned to another type of computing engines known as general-purpose graphics processing
units (GPGPU). A graphics processing unit (GPU) is a type of specialized processor for the fast
creation and manipulation of images for output on a display device. They were first developed
in the 1970s and 1980s. They were in particular used for video games. With time, they became
more sophisticated and efficient, also being able to do floating-point arithmetic. The GPUs use a
form of parallelism which may somehow be assimilated to vectorization. They are now used in
many supercomputers which become hybrid machines with traditional multicore processors and
GPUs. These computing devices also use 16-bit floating-point arithmetic which was useful for
the applications they were developed for. Since the computations are faster with 16 bits rather
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than with single or double precision and this also reduce the communication times, it attracted the
attention of numerical analysts. In recent years we saw a flowering of so-called mixed precision
algorithms.

Parallel computers put more constraints on numerical analysts and programmers. It seems
obvious that to obtain good performances on a parallel computer, the program implementing an
algorithm must have as many operations as possible that can be executed in parallel. Sometimes
only a few modifications have to be made to classical algorithms to use them on parallel com-
puters. But, most of the time, new algorithms have to be derived. This is not so easy to achieve,
for instance, in algorithms for solving linear systems. By definition some or all the unknowns of
a linear system are coupled, except if the matrix is diagonal in which case the solution is trivially
obtained. In distributed memory computers these algorithms have to exchange data between the
processors’ memories. This is often the bottleneck of the computation. Quite often it is also
necessary to compute the dot product of two vectors. If the multiplication of the components is
parallel, the summation is a reduction operation that can be costly. This is why in recent years,
researchers have been looking for algorithms minimizing the communications. They are some-
times called communication-avoiding algorithms, even though some communications are always
needed when solving linear systems.

Finding efficient and robust parallel algorithms is a serious challenge for numerical analysts.
Another important issue that has to be considered is scalability. The most powerful scientific
computers are designed to solve large problems. The size of the problems that scientists and
engineers want to solve is, and probably will be, always too large for the available computers.
Nevertheless, as the size of the problem grows we would like, if we increase proportionally the
number of cores, to keep the (elapsed) computer time constant. To obtain this, we need to have
algorithms whose serial complexity is proportional to the number of unknowns. Unfortunately,
most of the well known algorithms are not scalable.

Figure 1.12 displays the performance (in Tflops) of the fastest computer in the TOP500 list up
to June 2021. On the x-axis, one unit corresponds to six months. Note that we have a logarithmic
scale on the y-axis.
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Figure 1.12. Performance of the fastest computer in the TOP500 HPL list as a function of time
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During all the years since World War II, researchers in numerical linear algebra had to face
many challenges like fixed-point arithmetic, floating-point arithmetic, different and sometimes
weird arithmetics, rounding errors, portability issues, vectorization of algorithms, cache-aware
algorithms, parallelism, communication-avoiding algorithms, mixed precision algorithms and so
on. But, we must note that, except for the definition of the IEEE 754 standard for floating-point
arithmetic, numerical analysts did not have much influence on the architecture and design of
computers. They have to deal with what they get.

1.22 Historical and bibliographical comments
Many of the results given in this chapter can be found in the classical books of A.S. Householder
[647], J.H. Wilkinson [1120], R.S. Varga [1098], D.M. Young [1144] and G. Strang [1054].

For discretization methods, one can see, for instance, R.J. LeVeque [731] for finite differences
and P.G. Ciarlet [264] for finite elements.

The design of the IEEE standard for floating-point arithmetic was largely influenced by
W.M. Kahan. He received the Turing Award in 1989 for his work. On this topic, see D. Golberg
[537], M.L. Overton , N.J. Higham [631, 633], the handbook [846], or the norm IEEE-754 itself.

Norms of vectors and matrices were not much used in numerical linear algebra before the
1940s. One can find them in papers by J. von Neumann and H.H. Goldstine [1105] in 1947 and
by A.M. Turing [1078] in 1948. Later on, they were studied intensively by A.S. Householder and
F.L. Bauer [648, 649, 104, 105]. Properties of matrix norms and their relations to eigenvalues
were studied by A.M. Ostrowski [888] in 1955.

The Gram-Schmidt orthogonalization is named after J.P. Gram [554] in 1883 and E. Schmidt
[994, 995, 997, 996] in 1907-1908. It was used later on to orthogonalize sets of vectors.

The Schur factorization originated from I. Schur [999] in 1909.

The singular value decomposition is due to E. Beltrami in 1873, C. Jordan in 1874, and
J.J. Sylvester in 1889 The name “singular value” was introduced by H. Bateman in 1908 and
E. Picard in 1909.

Theorem 1.25, giving a necessary and sufficient condition for convergence of a matrix power
sequence, goes back to K.W. Hensel in 1926 and R. Oldenburger in 1940. Most of the proofs in
the literature use the Jordan canonical form.

Irreducibility of a matrix was introduced by F.G. Frobenius in 1912 and reintroduced by
H. Geringer in 1949.

Diagonally dominant matrices have been studied for a very long time. Corollary 1.31 saying
that a strictly diagonally dominant matrix is nonsingular was proved by many mathematicians.
However, its origin seems to be in the works of L. Levy in 1881, J. Desplanques in 1887, and
J. Hadamard in 1898. This result was then forgotten and rediscovered by S. Gerschgorin in
1931. Olga Taussky proved in 1949 that a strictly diagonally dominant matrix has eigenvalues
with positive real parts.

A.M. Ostrowski introduced M- and H-matrices in 1937. It is very difficult to trace where all
the characterizations of M-matrices come from. The book [123] by A. Berman and R.J. Plem-
mons is a good summary of all these results.

Theorem 1.57 originated from A.S. Householder in 1955 and F. John in 1956. It is an exten-
sion of the Ostrowski-Reich theorem (1949-1954).

The use of graphs for Gaussian elimination is due to S.V. Parter [906] in 1961 and D.J. Rose
[951] in 1970; see also F. Harary [616] in 1959 and [617] in 1971.
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Hessenberg matrices were introduced in the work of K. Hessenberg [624, 625] on the com-
putation of eigenvalues in 1940. The characterization of the lower triangular part of inverses of
Hessenberg matrices was published by Y. Ikebe [663] in 1979 and by D.K. Faddeev in 1981 in
Russian and in 1984 in English [438]. An early paper considering the explicit inverse of tridi-
agonal matrices is by D. Moskovitz [845] in 1944. An important paper for the inverses of band
matrices was the seminal work by E. Asplund [55] in 1959. In 1969, the physicist C.F. Fischer
and her student R.A. Usmani gave a general analytical formula for inverses of symmetric Toeplitz
tridiagonal matrices [458]. In 1971, J. Baranger and M. Duc-Jacquet considered symmetric fac-
torizable matrices (whose elements are aibj for i ≤ j) and proved that the inverse is tridiagonal
(this is Asplund’s result) and conversely [97]. For a review about inverses of tridiagonal and
block tridiagonal matrices, see [809] in 1992.
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2

Gaussian elimination for
general linear systems

The two main classes of rounding error analysis are not, as my audience
might imagine, ‘backwards’ and ‘forwards’, but rather ‘one’s own’ and
‘other people’s’. One’s own is, of course, a model of lucidity; that of others
serves only to obscure the essential simplicity of the matter in hand.

– J.H. Wilkinson, NAG 1984 Annual General Meeting

In this chapter we consider elimination methods for solving linear systems with general ma-
trices. This means that the matrices are generally stored as a two-dimensional array without any
particular assumption about the value of the entries. Elimination methods correspond to a factor-
ization of the matrix as the product of lower an upper triangular matrices. This is why we start
by considering triangular systems. Then, we turn to general systems and LU factorization. A
particular attention is given to symmetric systems and then to special classes of matrices. After
discussing rounding error analyses, we consider elimination methods on parallel computers. We
end this chapter with some variants of Gaussian elimination.

2.1 Triangular systems
The easiest linear systems to solve are those with a diagonal matrix. All the equations are inde-
pendent and the solution is trivially obtained by n divisions. Of course, if the matrix is diagonal
we cannot really speak of a linear system. Among linear systems whose solution is easily ob-
tained, triangular systems are of particular interest since we will see that they are involved in
solving general linear systems. A matrix L is lower triangular is all the entries above the main
diagonal are zero, that is, `i,j = 0 for j > i. The matrix L is nonsingular if and only if all the
diagonal entries are nonzero and the determinant of L is the product of the diagonal entries. An
upper triangular matrix U is the transpose of a lower triangular matrix.

A linear system Lx = b is solved straightforwardly. The first equation is `1,1x1 = b1, and it
gives immediately the value of x1. Then, we use the second equation to obtain x2, and so on, up
to the last component xn. For an upper triangular system, we start with the computation of xn,
then xn−1 and so on, up to x1.

For solving Lx = b on a sequential computer, there are basically two algorithms. In the
first one, the entries of the matrix L are accessed by rows and components of the solution x are
computed in a natural way, one after the other from 1 to n,

81
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for i = 1:n
for j = 1:i-1
b(i) = b(i) - L(i,j) * x(j);
end
x(i) = b(i) / L(i,i);
end

This is known as the dot product algorithm since the operation in the central loop on j is
computing the dot product of the nonzero entries of the ith row (except the diagonal entry) with
the first i− 1 components of x. We observe that if we want to improve the accuracy, we can use
one of the summation algorithms described in Section 1.7.

The other algorithm modifies the right-hand side as soon as each component of x has been
computed and the matrix entries are accessed by columns,

for j = 1:n
x(j) = b(j) / L(j,j);
for i = j+1:n
b(i) = b(i) - L(i,j) * x(j);
end
end

This is known as the axpy algorithm by reference to the operation in the central loop which
computes a vector plus (minus) a scalar xj times a vector. It corresponds to switching the loops
in the first implementation. Which one is faster depends on the computer architecture and the
programming language.

Let us experiment with these two algorithms in Matlab. We construct a lower triangular
matrix L of order 300 with ones on the diagonal and random numbers in [−1, 1] in the strictly
lower part. We solve linear systems with the principal submatrices of L and a random right-
hand side. It turns out that the fastest algorithm is the axpy variant. Figure 2.1 shows ratios of
computing times relative to the axpy runs as a function of the size of the matrix. We use the
standard dot product variant and another one where the dot product is computed with the DDsum
algorithm of Section 1.7. Figure 2.2 displays the relative error norms. The “exact” solution is
computed in variable precision with 64 decimal digits.

The dot product algorithm is a little more expensive than the axpy algorithm, probably be-
cause of the way the matrix is accessed. Using the DDsum algorithm is much more expensive,
but the error is smaller. However, for this example, the dot product and axpy algorithms give a
satisfactory accuracy.

2.2 Gaussian elimination for general systems
The problem we are concerned with is obtaining the numerical solution of a linear system,

Ax = b, (2.1)

where A is a square nonsingular matrix (that is, det(A) 6= 0) of order n with real entries and b is
a given vector. Of course, the solution x of (2.1) is given by

x = A−1b

where A−1 denotes the inverse of A. Unfortunately, in most cases A−1 is not explicitly known,
except for some special problems and/or for small values of n. Moreover, it is generally not a
good idea to compute the inverse to solve a linear system.
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Figure 2.1. Relative computing times for solving Lx = b
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Figure 2.2. Relative error norms when solving Lx = b

Linear systems of equations had been solved by elimination methods a long, long time before
matrices where introduced around the mid-1800s by A. Cayley, J.J. Sylvester and E. Laguerre,
see [160]. Without going back to the Babylonians, linear systems were solved in almost the
same way as today by Chinese mathematicians. The book in which we find these methods is the
most important Chinese mathematical classic Jiuzhang Suanshu, which has been translated as
Nine Chapters on the Mathematical Art. This text is believed to have been compiled some time
between 100 BC and 100 AD, but it is likely that the content of Nine Chapters was much older
than its date of compilation.

Algebra was introduced in medieval Europe through Latin translations of Arabic texts in
the 12th century. After that, linear systems of order three or four were solved with integer
coefficients by many people. We can cite, for instance, Nicolas Chuquet (c. 1445-1488), a French
mathematician, who solved a system of order 3 in 1484, and Jean Borrel, also known as Johannes
Buteo (1492-c. 1570), who solved a system of order 3 in 1559, which, in modern notation, is

3x+ y + z = 42,

x+ 4y + z = 32,

x+ y + 5z = 40.

Unlike Borrel, our readers can see that the corresponding matrix is strictly diagonally dominant
and therefore nonsingular. All these early authors used some multiplications of the equations to
eliminate unknowns. Their goal was to avoid divisions up to the end and also rational numbers
as much as possible.
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The use of elimination methods should have ended in the 18th century when the general
solution of a nonsingular linear system of any order using ratios of determinants was given in
1750 by the Swiss mathematician Gabriel Cramer (1704-1754) in an appendix of his book [290]
about algebraic curves published in 1750.

The solution is expressed by Cramer’s formula which, in modern notation, is (see [494]),

xi =
1

det(A)

∣∣∣∣∣∣∣∣
a1,1 · · · a1,i−1 b1 a1,i+1 · · · a1,n

a2,1 · · · a2,i−1 b2 a2,i+1 · · · a2,n

... · · ·
...

...
... · · ·

...
an,1 · · · an,i−1 bn an,i+1 · · · an,n

∣∣∣∣∣∣∣∣ , i = 1, . . . , n. (2.2)

The computation of the solution x by (2.2) requires the evaluation of n+ 1 determinants of order
n. This implies that this method will require more than (n+ 1)! operations (multiplications and
additions) to compute the solution. This is far too much even for small values of n. It gives
already around 4 107 operations for n = 10. More efficient techniques to use determinants for
solving a linear system were proposed by Felice Chiò (1813-1871), an Italian mathematician and
physicist [251] in 1853, and Charles Lutwidge Dodgson (1832-1898) (who is better known as
Lewis Caroll) [340] in 1866. Even with these modifications, using the determinant formulas to
solve large linear systems is too expensive. Hence, elimination methods continued to be used,
but Cramer’s formulas show that there exists a perfectly parallel numerical method to solve a
linear system, even though it may be too expensive.

The most widely used direct methods for general matrices belong to a class collectively
known as Gaussian elimination. There are many variations of the same basic idea and we will
describe some of them in the next sections.

2.2.1 Gaussian elimination without permutations

In this section we describe Gaussian elimination without permutations. The basis of the method
is easily explained on a small example and then, it can be extended to any value of n. As the
name of the technique implies, the main idea is to successively eliminate the unknowns, as it has
been done for centuries. Consider the following small set of linear equations,

x1 + x2 = 2

4x1 + 5x2 + 3x3 = 12 (2.3)
4x1 + 6x2 + 7x3 = 17

whose solution is x1 = x2 = x3 = 1. Equations (2.3) can be written in matrix form as

Ax =

 1 1 0
4 5 3
4 6 7

x =

 2
12
17

 . (2.4)

The determinant of A is equal to 1. Therefore, the matrix is nonsingular and there is a unique
solution to (2.3). Straightforwardly, the first equation is used to express x1 as a function of x2,

x1 = 2− x2. (2.5)

Then, using (2.5), x1 is eliminated in the second and third equations giving a new (reduced)
system of order 2, involving only x2 and x3,

x2 + 3x3 = 4

2x2 + 7x3 = 9. (2.6)
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In the second step, x2 is expressed as a function of x3 using the first equation of (2.6),

x2 = 4− 3x3. (2.7)

Using (2.7) in the last equation of (2.6), we obtain a linear system involving only x3 whose
solution is immediately given, x3 = 1. Knowing the value of x3, we can compute x2 with (2.7)
which gives x2 = 1. Finally, (2.5) gives x3 = 1.

The previous elementary elimination method can be cast in a matrix framework. Eliminat-
ing x1 from the second equation of (2.3) amounts to do a linear combination of the first two
equations. This is obtained by left multiplying A with the matrix

E2,1 =

 1 0 0
−4 1 0
0 0 1

 .

Multiplying the system of (2.4) by E2,1 replaces the second equation by the second equation
minus four times the first one, leaving the two others invariant,

E2,1A =

 1 1 0
0 1 3
4 6 7

 .

Elimination of x1 from the last equation of (2.3) is obtained by left multiplying with

E3,1 =

 1 0 0
0 1 0
−4 0 1

 ,

and we obtain

E3,1(E2,1A) =

 1 1 0
0 1 3
0 2 7

 .

Then, all the entries of the first column of A below the diagonal entry have been reduced to
zero. Observe that the subsystem corresponding to the second and third rows and columns of
this matrix is precisely the same as in (2.6).

Elimination of x2 from the third equation is obtained by left multiplying with

E3,2 =

 1 0 0
0 1 0
0 −2 1

 ,

and

E3,2(E3,1E2,1A) =

 1 1 0
0 1 3
0 0 1

 .

Therefore, when A is successively left multiplied by E2,1, E3,1 and E3,2, it is reduced to an
upper triangular form. Notice that E3,1 and E2,1 commute, since we have 1 0 0

0 1 0
β 0 1

 1 0 0
α 1 0
0 0 1

 =

 1 0 0
α 1 0
0 0 1

 1 0 0
0 1 0
β 0 1

 =

 1 0 0
α 1 0
β 0 1
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We observe that the first column of the product is the “superposition” of the first columns of E3,1

and E2,1. Matrices E2,1, E3,1 and E3,2 are nonsingular since their determinants are equal to 1.
Therefore, the linear system of (2.4) can be transformed into the equivalent system,

E3,2E3,1E2,1Ax = E3,2E3,1E2,1b, (2.8)

where

b =

 2
12
17

 .

Let

L−1 = E3,2E3,1E2,1 =

 1 0 0
−4 1 0
4 −2 1

 .

With E3,2E3,1E2,1A, equation (2.8) reduces to

L−1Ax = Ux =

 1 1 0
0 1 3
0 0 1

x = L−1b =

 2
4
1

 . (2.9)

Since the matrix U is upper triangular, this system, which is equivalent to (2.4), is easily solved
starting with the last equation and moving backwards. This process is usually called backward
(or back) substitution.

Besides solving the linear system, we have also seen that L−1A = U . Therefore, we have
the factorization,

A = LU.

L−1 being lower triangular, its inverse L is also lower triangular. The matrixA has been factored
into the product of lower and upper triangular matrices. The matrix L is easily obtained from
L−1. First, we check that if

E3,1E2,1 =

 1 0 0
α 1 0
β 0 1

 ,

then

E−1
2,1E

−1
3,1 =

 1 0 0
−α 1 0
−β 0 1

 .

Moreover,

E3,2 =

 1 0 0
0 1 0
0 γ 1

 ⇒ E−1
3,2 =

 1 0 0
0 1 0
0 −γ 1

 ,

and

L = E−1
2,1E

−1
3,1E

−1
3,2 =

 1 0 0
−α 1 0
−β 0 1

 1 0 0
0 1 0
0 −γ 1

 =

 1 0 0
−α 1 0
−β −γ 1

 .

The matrix L is obtained straightforwardly from the elementary matrices Ei,j by simply chang-
ing the signs of the nonzero off-diagonal entries. Of course, not all systems are as simple as this
example, in which we were able to work with integers and without any division.

Let us now describe the method for a general linear system of order n. The first step of the
algorithm is the elimination of the unknown x1 in the equations 2 to n. This can be done through



2.2. Gaussian elimination for general systems 87

n − 1 steps. Assume that a1,1 6= 0, a1,1 is then called the first pivot. To eliminate x1 from the
second equation, we left multiply A by an elementary matrix,

E2,1 =


1
−a2,1a1,1

1
0 0 1
...

...
. . . . . .

0 . . . . . . 0 1

 .

This corresponds to do a linear combination of the first two rows of A. More generally, to
eliminate x1 from the ith equation, we left multiply by

Ei,1 =



1
0 1
...

. . .

0
. . .

− ai,1
a1,1

0 . . . 0 1

0
. . .

...
. . .

0 . . . . . . 0 1


,

the nonzero entries of the first column of Ei,1 being in positions (1, 1) and (i, 1). All these
elementary matrices can be easily combined as it is shown in the following lemma.

Lemma 2.1. Let j > i, then

Ei,1Ej,1 =



1
0 1
...

. . .

0
. . .

− ai,1
a1,1

1

0
. . .

...
. . .

0
. . .

− aj,1
a1,1

1

0
. . .

...
. . .

0 1



,

and
Ej,1Ei,1 = Ei,1Ej,1.

Proof. The result is obtained by straightforward matrix multiplication. Note that we also
have

Ei,1Ej,1 = Ei,1 + Ej,1 − I.
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Let us denote L−1
1 = En,1En−1,1 · · ·E2,1 and A2 = L−1

1 A. Obviously, L−1
1 is lower

triangular. The entries of A2 are denoted by a(2)
i,j . The matrix A2 has the following nonzero

structure,

A2 =


a1,1 x . . . x

0 x . . . x
...

...
...

0 x . . . x

 ,

the x’s corresponding to (eventually) nonzero entries that are defined in the following lemma.

Lemma 2.2.

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
, 2 ≤ i ≤ n, 1 ≤ j ≤ n,

a
(2)
1,j = a1,j , 1 ≤ j ≤ n.

Proof. This is simply the result of the multiplication of A by L−1
1 .

For the kth step of the algorithm, let Ak be the matrix that has been obtained by zeroing the
entries below the diagonal in the k − 1 first columns,

Ak =



a
(k)
1,1 . . . . . . . . . . . . a

(k)
1,n

. . .
...

a
(k)
k,k . . . . . . a

(k)
k,n

a
(k)
k+1,k . . . . . . a

(k)
k+1,n

...
...

...
...

a
(k)
n,k . . . . . . a

(k)
n,n


and assume that a(k)

k,k 6= 0. The entry a(k)
k,k is known as the kth pivot. For i > k, let

Ei,k =



1
. . .

1
0 1
...

. . .

0
. . .

− a
(k)

i,k

a
(k)

k,k

1

0
. . .

...
. . .

0 1



,

where the entry − a
(k)

i,k

a
(k)

k,k

is in row i and column k. The off-diagonal entries that are not explicitly

shown are zero. Let L−1
k = En,kEn−1,k · · ·Ek+1,k and Ak+1 = L−1

k Ak. Then, as for the first
column, we can characterize this product of matrices.
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Lemma 2.3.

L−1
k =



1
. . .

1

−a
(k)

k+1,k

a
(k)

k,k

1

...
. . .

−a
(k)

n,k

a
(k)

k,k

1


,

and Ak+1 has the following structure

Ak+1 =



a
(k+1)
1,1 . . . . . . . . . . . . a

(k+1)
1,n

. . .
...

a
(k+1)
k,k . . . . . . a

(k+1)
k,n

0 a
(k+1)
k+1,k+1 . . . a

(k+1)
k+1,n

...
...

...
0 a

(k+1)
n,k+1 . . . a

(k+1)
n,n


.

Proof. Straightforward.
The entries of the jth column of Ak+1 are given by the following expressions.

Lemma 2.4.

a
(k+1)
i,j = a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

, k + 1 ≤ i ≤ n, k ≤ j ≤ n,

a
(k+1)
i,j = a

(k)
i,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n

and k + 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1.

Proof. This is the formula we obviously obtain when multiplying by L−1
k .

As we have seen in our small example above, it is useful to characterize the inverses of the
matrices L−1

k .

Lemma 2.5. L−1
k is nonsingular and

Lk =



1
. . .

1
a
(k)

k+1,k

a
(k)

k,k

1

...
. . .

a
(k)

n,k

a
(k)

k,k

1


Proof. Let

`k =

(
0 . . . 0

a
(k)

k+1,k

a
(k)

k,k

. . .
a
(k)

n,k

a
(k)

k,k

)T
.
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Obviously, L−1
k = I − `kekT where ek is the kth column of the identity matrix. Then,

Lk = I + `kek
T ,

because,

LkL
−1
k = (I + `kek

T )(I − `kekT ),

= I − `kekT `kekT ,

and ekT `k = 0.
The preceding results can be summarized in the following proposition.

Proposition 2.6. If for all k, 1 ≤ k ≤ n− 1, a(k)
k,k 6= 0, there exists a factorization

A = LU,

where L is lower triangular with a unit diagonal and U is upper triangular.

Proof. The elimination process goes as follows,

A1 = A,

A2 = L−1
1 A1,

...
An = L−1

n−1An−1.

The last matrix An is upper triangular and is therefore denoted by U . Hence,

L−1
n−1L

−1
n−2 · · ·L

−1
1 A = U.

The matrices L−1
i , 1 ≤ i ≤ n− 1 are nonsingular. Then,

A = (L1 · · ·Ln−1)U.

The product of unit lower triangular matrices being unit lower triangular, we have

L = L1 · · ·Ln−1

which is a lower triangular matrix with a unit diagonal. Moreover, let us show that

L =



1
a
(1)
2,1

a
(1)
1,1

. . .

...
. . . 1

...
a
(k)

k+1,k

a
(k)

k,k

1

...
...

. . . . . .
a
(1)
n,1

a
(1)
1,1

. . .
a
(k)

n,k

a
(k)

k,k

. . .
a
(n−1)
n,n−1

a
(n−1)
n−1,n−1

1


.

Since LiLi+1 = I + `iei
T + `i+1ei+1

T , we obtain

L = L1 · · ·Ln−1 = I + `1e1
T + · · · `n−1en−1

T .
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Theorem 2.7. If the factorization A = LU exists, it is unique.

Proof. The proof is by contradiction. Assume there exist two such factorizations, A =
L1U1 = L2U2, where L1 and L2 (resp. U1 and U2) are two lower triangular matrices with a unit
diagonal (resp. upper triangular matrices). Then,

L−1
2 L1 = U2U

−1
1 .

The matrix on the left-hand side is lower triangular with a unit diagonal and the matrix on the
right-hand side is upper triangular. Therefore, they are both diagonal and

L−1
2 L1 = U2U

−1
1 = I

which shows that the decomposition is unique.

Let us derive the conditions under which there exists an LU factorization. We have to identify
conditions for all the pivots to be nonzero.

Theorem 2.8. A nonsingular matrix A has a unique LU factorization if and only if all the
principal minors of A are nonzero. That is,

A

(
1 2 . . . k
1 2 . . . k

)
6= 0, k = 1, . . . , n

where the determinant is defined as

A

(
i1 i2 . . . ip
k1 k2 . . . kp

)
=

∣∣∣∣∣∣∣∣∣
ai1,k1 ai1,k2 . . . ai1,kp
ai2,k1 ai2,k2 . . . ai2,kp

...
...

...
aip,k1 aip,k2 . . . aip,kp

∣∣∣∣∣∣∣∣∣ .
Moreover,

a
(k)
k,k =

A

(
1 2 . . . k
1 2 . . . k

)
A

(
1 2 . . . k − 1
1 2 . . . k − 1

) ,
and

a
(k)
k,j =

A

(
1 2 . . . k − 1 k
1 2 . . . k − 1 j

)
A

(
1 2 . . . k − 1
1 2 . . . k − 1

) , j > k.

Proof. Assume there exists an LU factorization. From the proof of Proposition 2.6,

Ak+1 = L−1
k . . . L−1

1 A.

Therefore,
A = L1 . . . LkAk+1,



92 2. Gaussian elimination for general linear systems

and we also have A = LU . In block form, this is written as

A =

(
A1,1 A1,2

A2,1 A2,2

)
, L =

(
L1,1 0
L2,1 L2,2

)
, U =

(
U1,1 U1,2

0 U2,2

)
,

and from Proposition 2.6,

L1 . . . Lk =

(
L1,1 0
L2,1 I

)
, Ak+1 =

(
U1,1 U1,2

0 W2,2

)
,

where all the matrices in block position (1, 1) are square of order k. By equating blocks, we have

A1,1 = L1,1U1,1

A2,2 = L2,1U1,2 + L2,2U2,2

A2,2 = L2,1U1,2 +W2,2

Therefore, L1,1U1,1 is the LU factorization of the leading principal submatrix of order k of A
and L2,2U2,2 is the factorization of the matrix W2,2 in the bottom right-hand corner of Ak+1

since we have W2,2 = L2,2U2,2.
Note that det(A) = det(Ak+1). We have det(L1,1) = 1 and det(A1,1) = det(U1,1). Since

the matrix U1,1 is upper triangular, its determinant is equal to the product of the diagonal entries.
Therefore, for all k,

det(A1,1) = a
(1)
1,1 · · · a

(k)
k,k.

This shows that the principal minors are nonzero and the first formula. The converse of the proof
is easily derived by induction.

Now, we proceed in the same way as J.H. Wilkinson in [1120]. We have(
A1,1

A2,2

)
=

(
L1,1

L2,1

)
U1,1.

Let Ai1,1 denotes the matrix constructed with the k − 1 first rows and the i-th row of the first k
columns of A with i ≥ k and let Li1,1 be defined in a similar way. Then, Ai1,1 = Li1,1U1,1. The
matrix Li1,1 is triangular and

det(Li1,1) = `i,k =
a

(k)
i,k

a
(k)
k,k

.

Therefore, since det(Ai1,1) = `i,k det(U1,1) and det(U1,1) = det(A1,1),

`i,k =
det(Ai1,1)

det(A1,1)
=

A

(
1 2 · · · k − 1 i
1 2 · · · k − 1 k

)
A

(
1 2 · · · k
1 2 · · · k

) .

Similarly, we have
(A1,1 A1,2 ) = L1,1 (U1,1 U1,2 ) .

This leads to

uk,i =

A

(
1 2 · · · k − 1 k
1 2 · · · k − 1 i

)
A

(
1 2 · · · k − 1
1 2 · · · k − 1

) ,
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for the entries of U .

On modern computers with several level of memories, the LU factorization is often imple-
mented in block form. Let

A =

(
A1,1 A1,2

A2,1 A2,2

)
=

(
L1,1 0
L2,1 I

)(
U1,1 U1,2

0 S

)
, (2.10)

whereA1,1 andL1,1 are of order p > 1, and S is the Schur complement S = A2,2−A2,1A
−1
1,1A1,2.

First A1,1 is factored as A1,1 = L1,1U1,1. Then, U1,2 is computed by solving the triangular
system with several right-hand sides L1,1U1,2 = A1,2. The matrix L2,1 is computed by solving
L2,1U1,1 = A2,1 which, when transposed, is also a triangular system. Then, S = A2,2−L2,1U1,2

and the process is repeated on S. The optimal value of p depends on the computer architecture.
The same process repeated on A1,1 and S, with a smaller value of p, is called a recursive LU

factorization.

2.2.2 Gaussian elimination with permutations (partial pivoting)

In this section, we allow for the possibility of having zero pivots and we show that, nevertheless,
a factorization can be computed by exchanging (or swapping) rows. This is known as pivoting.
If the first pivot a1,1 is zero, we permute the first row with a row p such that ap,1 6= 0. Finding
such a p is always possible, otherwise we must have det(A) = 0. The row interchange is done
by left multiplication of A by a permutation matrix P1. P1 is equal to the identity matrix except
that rows 1 and p have been switched, that is,

P1 =



0 0 . . . 0 1 0 . . . 0

0 1 0 . . . 0 . . .
...

...
. . . . . . . . .

...
0 . . . 0 1 0 . . .
1 0 . . . 0 0 0 . . .

0 . . . . . . 0 1
. . .

...
...

...
. . . . . . 0

0 . . . . . . 0 . . . 0 1


.

Note that P−1
1 = P1 = PT1 . For the permuted matrix, the algorithm is the same as without

permutations. We construct L1 such that A2 = L1P1A. Let us describe the kth step. The
main difference from what we have done before is that the possibility exists that the pivot is
zero. If this is the case, it is possible to find a row p such that a(k)

p,k 6= 0. The reason for that
being that det(Ak) = det(A) 6= 0 and the determinant det(Ak) is equal to the product of the
first k − 1 (nonzero) pivots and the determinant of the matrix in the right-hand bottom corner.
Therefore, this matrix is nonsingular. In fact, we choose a nonzero element a(k)

p,k, p > k which
has the maximum modulus. This strategy of choosing the pivot in the kth column is called partial
pivoting. Then, we multiply Ak by the corresponding permutation matrix Pk and we apply the
elimination algorithm,

Ak+1 = L−1
k PkAk.

Finally, we obtain
U = L−1

n−1Pn−1 · · ·L−1
2 P2L

−1
1 P1A.

It may seem that we have lost the good properties of the Gaussian algorithm since permuta-
tion matrices have appeared in between the lower triangular matrices, even if some of them are
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equal to the identity matrix when there is no need for pivoting for the corresponding columns.
Fortunately, we have the following result.

Lemma 2.9. Let Pp be a permutation matrix representing the permutation between indices p
and q > p. Then, ∀k < p

LkPp = PpL
′
k.

where L′k is deduced from Lk by the permutation of entries in rows p and q in column k.

Proof. Recall that P−1
p = Pp and Lk = I + `kek

T ,

L′k = PpLkPp = Pp(I + `kek
T )Pp = I + Pp`kek

TPp.

Since p > k, Ppek = ek. Therefore

L′k = I + `k
′ek

T

where `k′ = Pp`k. The same kind of result holds for L−1
k since L−1

k = I − `kekT .
Now, we can characterize the LU decomposition of a given matrix.

Theorem 2.10. Let A be a nonsingular matrix, there exists a permutation matrix P such that

PA = LU,

where L is lower triangular with a unit diagonal and U is upper triangular.

Proof. We have seen that

A = P1L1P2 · · ·Pn−1Ln−1U.

From Lemma 2.9,
A = P1P2 · · ·Pn−1(L′′1) · · · (L′′n−1)U,

where L′′k = Pn−1 · · ·Pk+1LkPk+1 · · ·Pn−1, corresponding to a permutation of the coefficients
of column k.

We observe that, by definition, in the factorization of Theorem 2.10, we have |`i,j | ≤ 1 since
we have chosen the pivot as the element of maximum modulus.

Usually, the permutation matrix P is stored as a vector of indices since row permutations are
not explicitly performed during the factorization, even though this is sometimes done to avoid
indirect addressing. The linear system Ax = b is transformed into

PAx = LUx = Pb,

and is solved in two steps by
Ly = Pb, Ux = y.

These two triangular solves are known respectively as the forward and backward sweeps. For
general systems and in finite precision arithmetic, pivoting is used even when a(k)

k,k 6= 0 to im-

prove stability. A permutation is systematically done with the row p giving maxp>k |a(k)
p,k|.

If we use the block factorization (2.10), the choices of the pivots only occur in A1,1. A
variant [1066] consists in factoring the n × p leftmost matrix (which is called a panel) using
partial pivoting,

P1 (A1,1 A1,2 ) = (L1,1 L1,2 )U1,1.
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Then, permute the rows of the rightmost columns,

(A′1,2 A′2,2 ) = P1 (A1,2 A2,2 ) ,

solve the triangular system L1,1U1,2 = A′1,2 for U1,2 and compute A′′2,2 = A′2,2−L2,1U1,2. The
next step is to recursively compute the factorization P2A

′′
2,2 = L2,2U2,2.

When this is done, the new permutation is applied to the previous lower blockL′1,2 = P2L2,1.
It yields the factorization

P

(
A1,1 A1,2

A2,1 A2,2

)
=

(
L1,1 0
L′2,1 L2,2

)(
U1,1 U1,2

0 U2,2

)
,

where the permutation P is constructed from P1 and P2. The width p of the panel can be different
at each step of the recursion.

In fact, the entire trailing submatrix is not updated after a block of columns is factored. After
the factorization of the first column (p = 1), we can update just the next column to the right,
which enables the algorithm to proceed. When the second column is factored, we need to apply
the updates from the first two columns before the algorithm can proceed. We update two more
columns and proceed. When four columns are factored, they are used to update four more, and
so on. This technique is called look-ahead.

2.2.3 Gaussian elimination with other pivoting strategies

Different pivoting strategies may also be used. For instance, we can search for the pivot not
only in the lower part of the kth column but in all the remaining columns in the bottom-right
submatrix. The chosen pivot is an element that realizes maxi,j |a(k)

i,j |,∀i, j ≥ k. This technique
is known as complete pivoting. Then, we not only have to do row permutations but also column
permutations to bring the chosen pivot into position (k, k). This is achieved by multiplying to
the right by a permutation matrix. In the end, we obtain two permutation matrices P and Q such
that

PAQ = LU.

The solution of the linear system is obtained through three steps,

Ly = Pb, Uz = y, x = QT z.

We will see that complete pivoting has some advantages regarding stability. However, the cost
of finding the pivot is much larger than for partial pivoting.

Another strategy called rook’s pivoting (or rook pivoting) has been introduced by G. Poole
and L. Neal [922, 923]. At the k-th step, the algorithm is the following. Let

r1 = min{r| |a(k)
r,k | ≥ |a

(k)
i,k |, k ≤ i ≤ n}

and
c1 = min{c| |a(k)

r1,c| ≥ |a
(k)
r1,j
|, k ≤ j ≤ n}.

If c1 = k, then a(k)
r1,k

is the selected pivot. If c1 6= k, column c1 is searched for the entry with
maximum modulus. Let

r2 = min{r| |a(k)
r,c1 | ≥ |a

(k)
i,c1
|, k ≤ i ≤ n}

and
c2 = min{c| |a(k)

r2,c| ≥ |a
(k)
r2,j
|, k ≤ j ≤ n}
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Then, we proceed as with r1 and c1, and so on, until we have selected a pivot.
Therefore, rook’s pivoting searches for coefficients of maximum modulus in rows, then

columns and then, rows and columns until an entry a(k)
r,c satisfies |a(k)

r,c | ≥ |a(k)
i,c |, k ≤ i ≤ n

and |a(k)
r,c | ≥ |a(k)

r,j |, k ≤ j ≤ n. In other words this method selects a pivot which is the largest
in magnitude in both its row and its column. It is an intermediate between partial and complete
pivoting. Numerical experiments using this strategy are given in [923]. Rook’s pivoting was also
studied by X.-W. Chang [230].

Other pivoting strategies have been devised over the years; see, for instance, M. Olschowka
and A. Neumaier [879], J.M. Peña [912], and V. Cortés and J.M. Peña [284]. More recently,
different strategies have been defined for LU factorization on parallel computers, as tournament
pivoting [575] that we will describe in Section 2.12, or threshold pivoting [749].

Another approach, that could be useful for parallel computations, is to try to completely avoid
pivoting by multiplying the matrix by random recursive butterfly transformations (RBT) and then
apply LU without pivoting, see [904, 902, 79, 939, 750]. Let n be even, a butterfly matrix is of
the form

B(n) =
1√
2

(
R0 R1

R0 −R1

)
,

whereR0 andR1 are nonsingular (random) diagonal matrices of order n/2. When n is a multiple
of 2d−1, an RBT of depth d is

U (n) =

B
(n/2d−1)
1 · · · 0

...
. . .

...
0 · · · B

(n/2d−1)

2d−1

 · · ·(B(n/2)
1 0

0 B
(n/2)
2

)
B(n).

These matrices have this name because their structure is similar to matrices in the discrete Fourier
transform that bear the butterfly name due to the data transfer patterns they form. The matrix A
is transformed to A′ = UTAV where U and V are RBTs. D.S. Parker [904] proved that such a
transformation for d = log2 n makes the matrix factorizable without pivoting with probability 1.
For an implementation, see [750].

Let us do some numerical experiments with pivoting strategies. We use the gep Matlab
function from N.J. Higham’s Matrix Computation Toolbox2. A is a random matrix of order 500
whose condition number is 6.5638 102, with a norm equal to 44.366. The right-hand side b is
also random. Each computation was repeated 10 times. The results are shown in Table 2.1. The
computing times are normalized with the time of the algorithm without pivoting which is the
fastest. We define the growth factor as

gA =
maxi,j,k |a(k)

i,j |
‖A‖∞

.

We will see later that the smallest is gA, the better we are. The growth factor is much larger
when there is no pivoting. The smallest growth factor is given by complete pivoting, but partial
pivoting and rook’s pivoting already give a large reduction of gA. Without pivoting, the equality
A = LU is not so well satisfied.

Let us now vary the order n from 10 to 300. We solve linear systems with the principal
matrices of A and the corresponding parts of b. Figure 2.3 shows the growth factors as functions
of n. Without pivoting, the growth factor is increasing fast and is much larger than for the other
strategies. The best result is given by complete pivoting and rook’s pivoting is in between partial
and complete pivoting. Figure 2.4 displays the relative error norms. Not pivoting gives the largest
error norms.

2https://nhigham.com/ or http://www.ma.man.ac.uk/∼higham/mctoolbox
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Table 2.1. Pivoting strategies, A random, n = 500

no piv. partial piv. complete piv. rook’s piv.

time 1 1.0362 1.4553 1.0399

gA 2.8315 104 11.098 5.0790 7.5319
‖PAQ−LU‖
‖A‖ 1.9558 10−12 4.4340 10−15 2.6207 10−15 3.1801 10−15
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Figure 2.3. Growth factors, A random
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Figure 2.4. Relative error norms, A random

2.2.4 Operation counts

Despite what we said in Chapter 1, it is interesting to compute the number of floating-point
operations that must be done to obtain the LU factorization of A, a dense matrix of order n.

For computing the kth column of L, we need one division by the pivot and n − k multipli-
cations. To compute the updated matrix Ak+1, we need (after having computed the multipliers
−a(k)

i,k /a
(k)
k,k which are the entries of L) (n − k)2 additions and the same number of multiplica-

tions. To obtain the total number of operations, we sum these numbers from 1 to n− 1

n−1∑
k=1

(n− k) = n(n− 1)− 1

2
n(n− 1) =

1

2
n(n− 1),

n−1∑
k=1

(n− k)2 = n2
n−1∑
k=1

1− 2n

n−1∑
k=1

k +

n−1∑
k=1

k2,
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=
1

3
n(n− 1)(n− 1

2
).

Theorem 2.11. To obtain the factorization PA = LU of Theorem 2.10, we need 2n3

3 −
n2

2 −
n
6

floating-point operations (multiplications and additions) and n − 1 divisions. The solutions of
the triangular systems to obtain the solution x give n(n− 1) floating-point operations for L and
n(n − 1) + n for U . Note that this is an order of magnitude less than what is needed for the
factorization.

2.3 Gaussian elimination for symmetric systems
The factorization of symmetric matrices is an important special case that we consider in more
detail in this section. Let us specialize the previous algorithms to the symmetric case. We
consider a factorization slightly different from what we have seen above,

A = LDLT ,

where L is lower triangular with a unit diagonal and D is diagonal. There are several possible
ways to compute this factorization. We will study three different algorithms that will lead to six
ways of coding the factorization. Note that these factorizations may fail if the matrix A is not
positive definite.

2.3.1 The outer product algorithm

The first method to construct the LDLT factorization is similar to what we used for nonsymmet-
ric systems. It proceeds column by column. Assume a1,1 6= 0 and

L1 =

(
1 0
`1 I

)
, D1 =

(
a1,1 0

0 A2

)
,

A =

(
a1,1 aT1
a1 B1

)
= L1D1L

T
1 .

By identification, we obtain expressions for `1 and A2,

`1 =
a1

a1,1
,

A2 = B1 −
1

a1,1
a1a

T
1 = B1 − a1,1`1`

T
1 .

The matrix A2 is obviously symmetric. If we assume that the (1, 1) element of A2 is nonzero,
we can use the same technique and write

A2 =

(
a

(2)
2,2 aT2
a2 B2

)
=

(
1 0
`2 I

)(
a

(2)
2,2 0
0 A3

)(
1 `T2
0 I

)
.

Similarly,

`2 =
a2

a
(2)
2,2

,

A3 = B2 −
1

a
(2)
2,2

a2a
T
2 = B2 − a(2)

2,2`2`
T
2 .
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We observe that, if we denote,

L2 =

 1 0 0
0 1 0
0 `2 I

 ,

then,

D1 =

(
a1,1 0

0 A2

)
= L2

 a1,1 0 0

0 a
(2)
2,2 0

0 0 A3

LT2 = L2D2L
T
2 .

Therefore, after two steps, we have A = L1L2D2L
T
2 L

T
1 . We note that

L1L2 =

(
1 0

`1

(
1 0
`2 I

))
.

The product of L1 and L2 is a lower triangular matrix. If all the pivots are nonzero, we can
continue and at the last step, we obtain

A = A1 = L1L2 · · ·Ln−1DL
T
n−1 · · ·LT1 = LDLT ,

where L is unit lower triangular andD is diagonal. There exists a variant of this algorithm where
a decomposition

A = L̄D̄−1L̄T

is obtained with L̄ lower triangular, D̄ diagonal and diag(L̄) = diag(D̄). We obtain this variant
from the previous algorithm by writing

A = LDLT = (LD)D−1(DLT ),

and D̄ = D, L̄ = LD.
The matrix L has been constructed column by column. This method is called the outer

product algorithm since an outer product aaT is involved at each step.

2.3.2 The bordering algorithm

The matrix A can be partitioned in a different way as

A =

(
Cn−1 an
aTn an,n

)
,

Assume that Cn−1 has already been factored as

Cn−1 = Ln−1Dn−1L
T
n−1,

Ln−1 being unit lower triangular and Dn−1 diagonal. We can write,

A =

(
Ln−1 0
`Tn 1

)(
Dn−1 0

0 dn,n

)(
LTn−1 `n

0 1

)
.

Then, by identification,

`n = D−1
n−1L

−1
n−1an,

dn,n = an,n − `TnDn−1`n.

By induction, we can start with the decomposition of the 1× 1 matrix a1,1, adding one row and
column at a time, and obtaining at each step the factorization of an enlarged matrix. The only
operation we have to perform at each step is solving a triangular system. To be able to proceed
to the next step, we need the diagonal entries of Dn to be nonzero. For obvious reasons, this
method is called the bordering algorithm.
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2.3.3 The dot product algorithm

A third way to compute the factorization is simply to write the formulas for the matrix product,

A = LDLT .

Assume i ≥ j, we have

ai,j =

j∑
k=1

`i,k`j,kdk,k.

If we set i = j in this formula then, since `i,i = 1, we obtain

dj,j = aj,j −
j−1∑
k=1

(`j,k)2dk,k,

and for i > j,

`i,j =
1

dj,j

(
ai,j −

j−1∑
k=1

`i,k`j,kdk,k

)
.

Since we have to consider the product of the transpose of a vector times a vector, this method is
called the dot product algorithm or sometimes the inner or scalar product algorithm. We observe
that, if the diagonal entries of D are positive, we can write A = L

√
D
√
DLT . This is the

algorithm that was devised by A.-L. Cholesky around 1910, see [160].
The number of floating-point operations required for these three variants is about one half of

the number of operations for the general algorithm, that is, approximately n3

6 multiplications and
the same number of additions.

2.3.4 Coding the three factorization algorithms

Let us now consider the different ways of coding the three algorithms we have just described for
general (dense) symmetric matrices. The codes are written in Matlab-like language, although for
clarity, we do not always use the most compact and efficient Matlab constructs.

In the outer product algorithm the matrix L is constructed column by column. At step k,
column k is constructed by multiplying by the inverse of the pivot and then, the columns at the
right of column k are modified using the values of the entries of column k. This is called a
right-looking algorithm and it is summarized in Figure 2.5

no longer accessed

modified

Figure 2.5. The outer product algorithm data layout

The modification of columns k+ 1 to n can be done by rows or by columns and this leads to
the two codes given below. We store the matrix D in a vector denoted by d and L in a separate
matrix although in practice it can be stored in the lower triangular part of A (if A is not to be
saved). The array temp is a temporary vector whose use can eventually be avoided. We use it for
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clarity of presentation. Note that the coding is slightly different from that given in J.J. Dongarra,
F.G. Gustavson, and A. Karp [352]. It is done such that in the main loop, i is a row index, j is a
column index and k can eventually be both. The strictly lower triangular part of L is initialized
to that of A using the function tril.

Outer product kij algorithm

function [L,d] = kij(A)
[m,n] = size(A);
d = zeros(n,1);
temp = zeros(n,1);
L = tril(A);
d(1) = A(1,1);
L(1,1) = 1;
for k=1:n-1
dki = 1 / d(k);
temp(k+1:n) = dki * L(k+1:n,k);
for i=k+1:n
for j=k+1:i
L(i,j) = L(i,j) - temp(i) * L(j,k);
end % for j
end % for i
L(k+1:n,k) = temp(k+1:n);
d(k+1) = L(k+1,k+1);
L(k+1,k+1) = 1;
end % for k

To reflect the way the three loops are nested, this algorithm is called the kij form. We can
eliminate the temporary vector temp by using the upper part of the matrix L. However, we think
the coding is clearer using temp. Modifying by rows (interchanging the loops on i and j) we
obtain

Outer product kji algorithm

function [L,d] = kji(A)
[m,n] = size(a);
d=zeros(n,1);
temp=zeros(n,1);
L = tril(A);
d(1) = A(1,1);
L(1,1) = 1;
for k=1:n-1
dki = 1 / d(k);
temp(k+1:n) = dki * L(k+1:n,k);
for j=k+1:n
for i=j:n
L(i,j) = L(i,j) - temp(i) * L(j,k);
end % for i
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end % for i
L(k+1:n,k) = temp(k+1:n);
d(k+1) = L(k+1,k+1);
L(k+1,k+1) = 1;
end % for k

Now we consider the bordering algorithm whose data accesses are summarized in Figure 2.6.
It is a left-looking algorithm. For each row i, we have to solve a triangular system. As we have
seen above, there are two algorithms to do this. One is column oriented, the other is row oriented.

computed and accessed

modified

not yet accessed

Figure 2.6. The bordering algorithm data layout

Bordering ijk algorithm

function [L,d] = ijk(A)
[m,n] = size(A);
d = zeros(n,1);
temp = zeros(1,n);
L = tril(A);
d(1) = A(1,1);
L(1,1)=1;
for i=2:n
temp(1:i) = A(i,1:i);
for j=1:i
if j ~= i
L(i,j) = temp(j) / d(j);
end % if
for k=j+1:i
temp(k) = temp(k) - L(k,j) * temp(j);
end % for k
end % for j
d(i) = temp(i);
L(i,i)=1;
end % for i

There are too many divisions in the previous coding since they are in a j loop. This can be
avoided by storing the inverses of d as they are computed.

Bordering ikj algorithm
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function [L,d] = ikj(A)
[m,n] = size(A);
d = zeros(n,1);
temp = zeros(1,n);
L = tril(A);
d(1) = A(1,1);
L(1,1)=1;
for i=2:n
temp(1:i) = A(i,1:i);
for k=1:i
for j=1:k-1
temp(k) = temp(k) - temp(j) * L(k,j);
end % for j
if k ~= i
L(i,k) = temp(k) / d(k);
else
d(i) = temp(i);
L(i,i) = 1;
end % if
end % for k
end % for i

Finally, we consider the dot product algorithm. This algorithm is schematically depicted in
Figure 2.7.

computed and accessed

modified

not yet accessed

no longer accessed

Figure 2.7. The dot product algorithm data layout

Dot product jik algorithm

function [L,d] = jik(A)
[m,n] = size(A);
L = tril(A);
for j=1:n
for k=1:j-1
L(j,k) = L(j,k) / d(k);
end % for k
d(j) = A(j,j);
for k=1:j-1
d(j) = d(j) - L(j,k)^2 * d(k);
end % for k
for i=j+1:n
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for k=1:j-1
L(i,j) = L(i,j) - L(i,k) * L(j,k);
end % for k
end % for i
L(j,j)=1;
end % for j

In the computation of ai,j −
∑j−1
k=1 `i,k`j,kdk,k, one can compute ai,j − `i,k`j,kdk,k for a

fixed value of k looping on i provided the division by dj,j is done afterwards. Then, we obtain
the following algorithm.

Dot product jki algorithm

function [L,d] = jki(A)
[m,n] = size(A);
L = tril(A);
for j=1:n
for k=1:j-1
L(j,k) = L(j,k) / d(k);
end % for k
d(j) = A(j,j);
for k=1:j-1
d(j) = d(j) - L(j,k)^2 * d(k);
end % for k
for k=1:j-1
for i=j+1:n
L(i,j) = L(i,j) - L(i,k) * L(j,k);
end % for i
end % for k
L(j,j) = 1;
end % for j

We have obtained six different ways of coding the LDLT factorization of a symmetric matrix
A. Similar things can be done for the LU factorization of a nonsymmetric matrix. Of course,
users are interested in knowing what is the best implementation, that is, the one requiring the
smallest computing time. Unfortunately, this is dependent on the computer architecture and also
on the programming language. It also depends on the data structure chosen to store L since the
performance depends on the way the data is accessed in the computer memory.

Suppose first that L is to be stored in a two-dimensional array or in the lower triangular part
ofA. In modern computing engines with data caches, it is advantageous to perform operations on
data in consecutive memory locations. This increases the cache hit ratio since data is moved into
the cache by blocks of consecutive addresses. The data access is by columns for algorithms kji
and jki, by rows for ikj and jik and by rows and columns for kij and ijk. Form kji accesses
the data by columns and the basic operation is known as an AXPY (for a times x plus y), that is,

y = y + αx,

where x and y are vectors and α is a scalar. Note that the vector y is stored after it is com-
puted. This particular form was used in the famous LINPACK package [348] in the 1970s.
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Form jki also accesses that data by columns and the basic operation is also an AXPY. How-
ever, the same column (j) is successively accessed many times. This is known as a generalized
AXPY or GAXPY. These algorithms were analyzed for a vector computer by J.J. Dongarra,
F.G. Gustavson, and A. Karp [352]. Their notation was slightly different from ours. On vector
architectures, the GAXPY jki form was generally the best one.

Let us do some numerical experiments with Matlab. Let B be a random matrix of order 500
and A = B+BT . The matrix we use is A+ 70 I to have an SPD matrix. Each computation was
repeated 10 times. The average times t are shown in Table 2.2. They are normalized with the
time of the fastest algorithm which is kji. For these implementations the fastest algorithms were
kji and kij, but, as we said above, this can be different when using other languages or types
of computers. The values of ‖LDL

T−A‖
‖A‖ show that the six algorithms compute the factorization

with the same accuracy which is around 14u.

Table 2.2. Normalized computing times and relative errors for the LDLT factorization

kij kji ijk ikj jik jki

t 1.0570 1 1.0924 1.3115 2.4925 2.2457
‖LDLT−A‖
‖A‖ × 1015 1.539 1.539 1.643 1.643 1.643 1.643

If L is not stored in the lower triangular part of A, it is better to store it in a one-dimensional
array of dimension n(n − 1)/2. Consecutive entries can be chosen by rows or columns. If
consecutive entries are chosen by rows, it is better to use algorithms ikj and jik since the data
accesses will be in consecutive addresses. Forms kji and jki are chosen if the data is stored by
columns.

So far, we have assumed it was not necessary to do pivoting for a symmetric system. In the
next section we describe particular cases where it can be shown that this is the case, at least to be
able to run the algorithm to completion without breakdown.

2.3.5 Positive definite systems

In this part, we assume A is symmetric and positive definite (SPD). We are looking for an
LDLT factorization. In the outer product algorithm, we see that for the first step, A2 =
B1 − (1/a1,1)a1a

T
1 is a Schur complement, the matrix A being partitioned as

A =

(
a1,1 aT1
a1 B1

)
.

Therefore, by using Lemma 1.61, A2 is also positive definite and the next pivot is nonzero. This
process can be continued until the last step. All the square matrices involved in the algorithm are
SPD and the diagonal entries are strictly positive. All the pivots are nonzero and the algorithm
can continue without any need for pivoting. This is summarized in the following result.

Theorem 2.12. A matrix A has a factorization A = LDLT , where L is a unit lower triangular
matrix and D is a diagonal matrix with positive diagonal entries, if and only if A is symmetric
and positive definite.

Proof. Lemma 1.61 and the previous discussion show that if A is positive definite, it can be
factored as LDLT . Conversely, if A = LDLT , then, of course, A is symmetric and if x 6= 0,

xTAx = xTLDLTx = yTDy,
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where y = LTx 6= 0. Note that

yTDy =

n∑
i=1

di,iy
2
i > 0,

since the diagonal entries of D are positive.
We can introduce a diagonal matrix S such that si,i =

√
di,i, i = 1, . . . , n. It yields,

S2 = D. Let L̄ = LS. Then,

A = LDLT = LSSLT = L̄L̄T .

As we have seen above, this decomposition is usually called the Cholesky factorization of A.
However, this form of factorization is not so often used today since the computation involves
square roots. Factorizations like LDLT are sometimes called the square root-free Cholesky. We
will use the generic name “Cholesky” for any LDLT factorization.

An interesting property of SPD matrices is that there is no growth of the entries of the reduced
matrices during the factorization.

Theorem 2.13. Let A be a symmetric positive definite matrix. Consider the matrices Di, i =
1, . . . , n of the outer product algorithm. Then,

max
k

(max
i,j
|(Dk)i,j |) ≤ max

i,j
|ai,j | = max

i
(ai,i).

Proof. By Lemma 1.61, the matricesDk are positive definite. By Lemma 1.62, it is sufficient
to consider the diagonal to find the maximum of the absolute values of the entries. We only
consider the first step, since the proof is the same for the other steps. Since the diagonal entries
are positive, we have

diag(A2) ≤ diag(B1).

Therefore, either maxi(ai,i) = a1,1 and then, maxi(D1)i,i = a1,1 or the maximum is on the
diagonal of B1 and then,

max
i

(D1)i,i = max(a1,1,max
i

[diag(A2)i,i]),

with maxi[diag(A2)i,i] ≤ maxi[diag(B1)i,i]. In both cases,

max
i

(D1)i,i ≤ max
i,j
|ai,j |.

2.3.6 Indefinite systems

When factorizing an indefinite matrix (that is, one that is neither positive or negative definite),
there can be some problems as shown in the following example,(

ε 1
1 0

)
=

(
1 0

1/ε 1

)(
ε 0
0 −1/ε

)(
1 1/ε
0 1

)
,

If ε is small, 1/ε can be very large and the factorization can be unstable. Indeed, if ε = 0, the
decomposition does not exist. One can use pivoting to avoid this. However, if symmetry is to
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be preserved, pivoting must be done on the diagonal but this does not always solve the problem.
Moreover, zero pivots can sometimes be the only alternative. A method to solve these problems
was introduced by J.R. Bunch and B.N. Parlett [184] and further developed by J.R. Bunch and
L. Kaufman [183]. The remedy is to use diagonal pivoting with either 1 × 1 or 2 × 2 pivots.
Assume

P1AP
T
1 =

(
A1,1 A1,2

AT1,2 A2,2

)
,

where A1,1 is of order s with s = 1 or 2, det A1,1 6= 0 and P1 is a permutation matrix. This
matrix can be factored as

P1AP
T
1 =

(
Is 0

AT1,2A
−1
1,1 In−s

)(
A1,1 0

0 A2,2 −AT1,2A−1
1,1A1,2

)(
Is A−1

1,1A1,2

0 In−s

)
.

The algorithm can go through provided that A1,1 is nonsingular. It can be proved that if A is
nonsingular, it is always possible to find a nonzero pivot (s = 1) or a nonsingular 2 × 2 block
(s = 2). A strategy was devised in [183] to find the block pivots; see also [548]. Another method
that can be used for indefinite systems is due to J.O. Aasen [1].

2.4 Gaussian elimination for H-matrices
There are types of matrices (not necessarily symmetric) other than positive definite matrices for
which it is not necessary to use pivoting (at least to obtain a factorization without permutations).
Let us first consider matrices A which are diagonally dominant; see Chapter 1 for the definition.

Theorem 2.14. If A is (row or column) diagonally dominant, then

A = LU,

where L is unit lower triangular and U is upper triangular.

Proof. Assume that A is (row) diagonally dominant. Then, a1,1 6= 0,. Otherwise all the
entries in the first row are 0 and A is singular. We first prove that A2 is also (row) diagonally
dominant, and then, the proof can proceed by induction. The case of the first row has already
been handled. For a row i, i > 1, we have

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
, 2 ≤ i ≤ n, 2 ≤ j ≤ n, a

(2)
i,1 = 0, 2 ≤ i ≤ n,

∑
j,j 6=i

|a(2)
i,j | =

∑
j,j 6=i,j 6=1

|a(2)
i,j | ≤

∑
j,j 6=i,j 6=1

|ai,j |+
∣∣∣∣ ai,1a1,1

∣∣∣∣ ∑
j,j 6=i,j 6=1

|a1,j |.

But,
|a1,1| ≥

∑
j,j 6=i,j 6=1

|a1,j |+ |a1,i|.

Therefore, ∑
j,j 6=i

|a(2)
i,j | ≤

∑
j,j 6=i,j 6=1

|ai,j |+
∣∣∣∣ ai,1a1,1

∣∣∣∣(|a1,1| − |a1,i|),

≤
∑
j,j 6=i

|ai,j | −
|ai,1a1,i|
|a1,1|

,
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≤ |ai,i| −
|ai,1a1,i|
|a1,1|

,

≤
∣∣∣∣ai,i − ai,1a1,i

a1,1

∣∣∣∣ = |a(2)
i,i |.

The reduced matrix is also diagonally dominant. This shows that all the pivots are nonzero and
the computation can continue. If A is column diagonally dominant, the same proof goes through
with AT .

We now consider M-matrices. The following result was proved by M. Fiedler and V. Ptàk
[452].

Theorem 2.15. If A is an M-matrix, then

A = LU,

where L is unit lower triangular and U is upper triangular.

Proof. See Fiedler’s book [451] or A. Berman and R.J. Plemmons [123]. The proof uses
Lemma 1.45.

Let us move to H-matrices. Let B be an M-matrix, we consider the equimodular set ΩB
defined in Chapter 1. It is the set of matrices A satisfying

|ai,i| ≥ bi,i, 1 ≤ i ≤ n,
|ai,j | ≤ |bi,j |, i 6= j, 1 ≤ i, j ≤ n.

Note that the matrix A is at least as diagonally dominant as the matrix B.

Lemma 2.16. Let B be an M-matrix. Each matrix A ∈ ΩB is (row) generalized strictly diago-
nally dominant.

Proof. There exists a diagonal matrix D (with diag(D) > 0) such that BD is strictly diago-
nally dominant. Let A ∈ ΩB . We have

BD ≤M(A)D = M(AD).

Therefore, if e is a vector of all ones,

0 < BDe ≤M(AD)e,

which implies that AD is (row) strictly diagonally dominant.

Theorem 2.17. Let B be an M-matrix. For each A ∈ ΩB ,

A = LU,

where L is unit lower triangular and U is upper triangular. In particular, for every H-matrix,
there exists an LU factorization.

Proof. From the proof of Lemma 2.16, AD is (row) strictly diagonally dominant. Then, by
Theorem 2.14, there exist L̄ and Ū , lower and upper triangular matrices such that

AD = L̄Ū .
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We have,
A = L̄ŪD−1,

and the result follows.
Let

βD =
maxi(di,i)

mini(di,i)
.

Then,

|`i,j | ≤ βD,
|ui,j | ≤ 2βD max

i
|ai,i|.

We have defined the growth factor gA above. It is also sometimes defined as

gA =
maxi,j,k |a(k)

i,j |
maxi,j |ai,j |

.

For an H-matrix, we have gA ≤ 2βD, and for an M-matrix, R.E. Funderlic, M. Neumann, and
R.J. Plemmons [482] proved that gA ≤ βD.

The proof that an H-matrix has an LU factorization can also be established by showing, as in
A. Bermann and R.J. Plemmons [123], that all the leading principal minors are nonsingular. Sim-
ilar results for the case whereA is singular have been studied in R.S. Varga and D.-Y. Cai [1099],
R.E. Funderlic and R.J. Plemmons [483], and R.E. Funderlic, M. Neumann, and R.J. Plemmons
[482].

It has also been shown that any symmetric permutation of an H-matrix A has an LU factor-
ization. However, even if gA is bounded, it can be large. Consider, for instance, the following
example from A.A. Ahac, J.J. Buoni, and D.D. Oleski [5],

Ax =

 2 0 −x
−x x −1
0 −1 x

 , x > 0.

The matrix Ax is an M-matrix if x >
√

2, and the LU factorization is

Ax =

 1 0 0
−x2 1 0
0 − 1

x 1

 2 0 −x
0 x −x

2

2 − 1
0 0 x

2 −
1
x

 .

If x is large, the growth factor is large (in factO(x)). This is bad for the stability of the algorithm.
This can be avoided by using some form of symmetric pivoting. For M-matrices, A.A Ahac and
D.D. Oleski [6] chose the column in the reduced matrix which has the largest column sum. In
the example, we choose the second column. The permuted matrix is

A′x =

 x −1 −x
−1 x 0
−x 0 2

 ,

and

A′x =

 1 0 0
− 1
x 1 0
−1 x

1−x2 1

x −1 −x
0 x− 1

x 1
0 0 2− x+ x

x2−1

 .

The growth factor of A′x is bounded independently of x. In [6], it is proved that gA ≤ n for
M-matrices. This result was extended to H-matrices in [5].
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2.5 Block methods
Block methods are obtained by partitioning the matrixA into blocks (submatrices). For instance,
consider a 3× 3 block partitioning. Then A is written as

A =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 .

The matrices Ai,i are square of order ni, 1 ≤ ni ≤ n,
∑
ni = n. To obtain a block LU

factorization , we do exactly the analog of the point case, provided the blocks that arise on the
diagonal are nonsingular. One way to proceed is the following,

A =

 I
L2,1 I
L3,1 L3,2 I

U1,1 U1,2 U1,3

U2,2 U2,3

U3,3

 .

Note that this is different from the block implementations of point LU factorization since the
matrices Ui, are not triangular. For instance, U1,1 = A1,1. The stability was investigated by
J.W. Demmel, N.J. Higham and R.S. Schreiber [337]. Block LU factorization without pivoting
is unstable in general, although it has been found to be stable for matrices which are block
diagonally dominant by columns, that is, such that

‖A−1
j,j ‖
−1 ≥

∑
i 6=j

‖Ai,j‖.

2.6 Tridiagonal and block tridiagonal systems
Tridiagonal matrices arise quite often in numerical analysis. So, it is worth investigating their
factorization. Let T be a symmetric tridiagonal matrix,

T =


α1 −β2

−β2 α2 −β3

. . . . . . . . .
−βn−1 αn−1 −βn

−βn αn

 .

We assume βi 6= 0,∀i. The minus sign in front of the βi’s is a technical convenience to avoid
powers of −1 in some formulas. Assume that the Cholesky factorization T = LD−1

L LT exists.
It is easily obtained as,

L =


δ1
−β2 δ2

. . . . . .
−βn−1 δn−1

−βn δn

 , DL =


δ1

δ2
. . .

δn−1

δn

 .

By identification, we have

δ1 = α1, δi = αi −
β2
i

δi−1
, i = 2, . . . , n.
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The computation of the δi’s requires only n− 1 additions, multiplications and divisions. Exten-
sions are easily obtained to nonsymmetric tridiagonal matrices as long as pivoting is not needed.
A UL factorization T = UD−1

U UT is also easily obtained, with

U =


d1 −β2

d2 −β3

. . . . . .
dn−1 −βn

dn

 , DU =


d1

d2

. . .
dn−1

dn

 .

By identification, we obtain

dn = αn, di = αi −
β2
i+1

di+1
, i = n− 1, . . . , 1.

The LU factorization starts from the top-left corner and the UL factorization from the bottom-
right corner. We have seen in Chapter 1 what is the inverse of a tridiagonal matrix. The LU and
UL factorizations of these matrices have been used by G.M. [809] to characterize the inverse as
follows.

Theorem 2.18. The entries of the inverse of T are

(T−1)i,j = βi+1 · · ·βj
dj+1 · · · dn
δi · · · δn

, ∀i, ∀j > i,

(T−1)i,i =
di+1 · · · dn
δi · · · δn

, ∀i.

In these products, terms with indices greater than n must be taken equal to 1.

Proof. From [97], [809] and Chapter 1, we know there exist two sequences {νi}, {σi}, i =
1, n such that

T−1 =


ν1σ1 ν1σ2 ν1σ3 . . . ν1σn
ν1σ2 ν2σ2 ν2σ3 . . . ν2σn
ν1σ3 ν2σ3 ν3σ3 . . . ν3σn

...
...

...
. . .

...
ν1σn ν2σn ν3σn . . . νnσn

 ,

with ν1 = 1. Every nonsingular matrix of the same form as T−1 is the inverse of an irre-
ducible tridiagonal matrix. The matrices of this class have been called matrices factorisables
in J. Baranger and M. Duc-Jacquet, [97]. They are called symmetric generator representable
semiseparable matrices in R. Vandebril, M. Van Barel, and N. Mastronardi [1093]. To find all
the entries of T−1, it is sufficient to compute its first and last columns. In fact, it is enough to
know 2n − 1 quantities since ν1 can be chosen equal to 1. Note that 2n − 1 is the number of
nonzero entries determining T . The elements νi and σi can be computed in the following stable
way. We first compute σ = (σ1, . . . , σn)

T . The first column of T−1 is σ, so Tσ = e1, where e1

is the first column of the identity matrix. Because of the special structure of the right-hand side,
it is natural to use a UL factorization T = UD−1

U UT to solve the linear system for σ. It yields

σ1 =
1

d1
, σi =

β2 · · ·βi
d1 · · · di−1di

, i = 2, . . . , n.
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Let ν = (ν1, . . . , νn)
T . The last column of T−1 is σnν, and therefore σnTν = en, where en

is the last column of the identity matrix. To solve this system, with the special structure of the
right-hand side, it is easier to use the LU factorization T = LD−1

L LT ,

νn =
1

δnσn
, νn−i =

βn−i+1 · · ·βn
δn−i · · · δnσn

, i = 1, . . . , n− 1.

Note that

ν1 =
β2 · · ·βn
δ1 · · · δnσn

=
d1 · · · dn
δ1 · · · δn

,

but d1 · · · dn = δ1 · · · δn = det T , so ν1 = 1, since the σi’s were computed with this scaling.

This result for inverses of tridiagonal matrices has been extended to nonsymmetric matrices
by R. Nabben [847]. It gives a computationally stable and simple algorithm for computing entries
of the inverse of T since it involves only Cholesky factorizations that are stable when the matrix
T possesses enough properties such as, for instance, being diagonally dominant.

We are also interested in characterizing the decrease of the elements of T−1 along a row
or column starting from the diagonal element. In P. Concus, G.H. Golub, and G.M. [273], it is
proved that if T is strictly diagonally dominant, the sequence {νi} is strictly increasing and the
sequence {σi} is strictly decreasing. From Theorem 2.18, we have

(T−1)i,j
(T−1)i,j+1

=
dj+1

βj+1
,

and, therefore

(T−1)i,j =
dj+1 · · · dj+`
βj+1 · · ·βj+`

(T−1)i,j+`, ` ≥ 1.

Theorem 2.19. If T is strictly diagonally dominant, the sequence di is such that di > βi. Hence,
the sequence T−1

i,j is a strictly decreasing function of j, for j > i. Similarly, we have δi > βi+1.

Proof. We prove the result by induction. We have dn = αn > βn. Assume di+1 > βi+1.
Then

di = αi −
β2
i+1

di+1
> αi − βi+1 > βi,

and this proves the theorem.

For any nonsingular tridiagonal matrix, we have

|[T−1
k e1]i| < |[T−1

k+1e1]i|, i = 1, . . . , k.

At this point, it is interesting to introduce another factorization, which can be obtained from
the LU and UL factorizations. It is called the twisted factorization or also the BABE (burn at
both ends) algorithm. To compute that factorization, we must first select an integer j, 1 ≤ j ≤ n.
Let

T = (Φ + L)Φ−1(Φ + LT ),
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where Φ is a diagonal matrix with diagonal entries φi, and L is twisted

L =



0
−β2 0

. . . . . .
−βj 0 −βj+1

. . . . . .
0 −βn

0


,

where the two nonzero entries are in the jth row. By identification, we have

φi = δi i = 1, . . . , j − 1, φi = di i = j + 1, . . . , n,

φj = αj −
β2
j

δj−1
−
β2
j+1

dj+1
.

The first j − 1 entries come from the LU factorization and the last n − j come from the UL
factorization. Therefore, whatever is j, every twisted factorization can be computed with the
knowledge of the LU and UL factorizations. Only the jth entry requires a special treatment.
This twisted factorization leads naturally to a parallel method for a two-processor computer. It
can be used to prove the following result.

Theorem 2.20. The diagonal entries of the inverse of T are

(T−1)j,j = φ−1
j .

Proof. This comes from solving a linear system with ej as the right-hand side and using the
twisted factorization. We have to use a different twisted factorization for each value of j.

Let us specialize the previous results to the case of tridiagonal Toeplitz matrices. The inter-
esting thing is that we are then able to solve analytically the recurrences arising in the Cholesky
factorization. Let

Tα =


α −1
−1 α −1

. . . . . . . . .
−1 α −1

−1 α

 .

Lemma 2.21. Let
δ1 = α, δi = α− 1

δi−1
, i = 2, . . . , n.

Then, if α 6= 2,

δi =
ri+1
+ − ri+1

−
ri+ − ri−

,

where r± = α±
√
α2−4
2 are the two solutions of the quadratic equation r2−αr+1 = 0. If α = 2,

then δi = i+1
i .

Proof. We set
ωi =

γi
γi−1

.
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We now have a recurrence on ωi,

ωi − αωi−1 + ωi−2 = 0, ω0 = 1, ω1 = α.

The solution of this linear second order difference equation is well known,

ωi = c0r
i+1
+ + c1r

i+1
− .

From the initial conditions we have c0 + c1 = 0. Hence, the solution can be written as

ωi = c0(ri+1
+ − ri+1

− ).

When α = 2 one can see that ωi = i+ 1 and the result follows.
From Lemma 2.21, the solutions of the recurrences involved in the Cholesky factorization of

Tα can be deduced. When α 6= 2 we have,

dn−i+1 =
ri+1
+ − ri+1

−
ri+ − ri−

.

Solving for σ the following result is obtained.

Proposition 2.22. For the sequence σi in T−1
α ,

σi =
rn−i+1
+ − rn−i+1

−

rn+1
+ − rn+1

−
, i = 1, . . . , n.

In particular,

σn =
r+ − r−

rn+1
+ − rn+1

−
.

It is obvious that for the Toeplitz case, we have the relation δi = dn−i+1. Solving for ν, the
following result is obtained.

Proposition 2.23. For the sequence νi in T−1
α ,

νi =
ri+ − ri−
r+ − r−

, i = 1, . . . , n.

Now we are able to obtain expressions for the entries of the inverse.

Theorem 2.24. For j ≥ i and when α 6= 2,

(Tα
−1)i,j = νiσj =

(ri+ − ri−)(rn−j+1
+ − rn−j+1

− )

(r+ − r−)(rn+1
+ − rn+1

− )
,

where r± are the two solutions of the quadratic equation r2 − αr + 1 = 0.
For α = 2, we have

(Tα)
−1
i,j = i

n− j + 1

n+ 1
.
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Regarding the decay of the elements of T−1
α , in this simple case we can obtain useful bounds.

Assume that α > 2. Then,

νiσj
νiσj+1

=
rn−j+1
+ − rn−j+1

−

rn−j+ − rn−j−
=
rn−j+1
+

rn−j+

(
1− rn−j+1

1− rn−j

)
> r+ > 1,

and

νiσj < ri−j−1
+

(1− ri)(1− rn−j+1)

(1− r)(1− rn+1)
, j ≥ i+ 1,

where r = r−
r+

< 1 and the following result follows.

Theorem 2.25. If α > 2, we have the bound

(Tα
−1)i,j < (r−)

j−i
(Tα
−1)i,i, ∀ i, ∀j ≥ i,

(Tα
−1)i,j <

rj−i+1
−
1− r

, ∀ i, ∀j ≥ i+ 1.

Let ε1 > 0 and ε2 > 0 be given. The following estimate holds,

(Tα
−1)i,j

(Tα
−1)i,i

≤ ε1 if j − i ≥ log ε−1
1

log r+
,

and

(Tα
−1)i,j ≤ ε2 if j − i+ 1 ≥ log [ε2(1− r)]−1

log r+
.

As an example, Figure 2.8 shows the inverse of T4, a Toeplitz matrix of order 30 with α = 4.
The off-diagonal entries decrease quite fast since T4 is strongly diagonally dominant.

30

20

10

00

10

20

0.3

0

0.25

0.2

0.15

0.1

0.05

30

Figure 2.8. The inverse of T4
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The previous factorizations are easily extended to block tridiagonal symmetric matrices. Let

A =


D1 −AT2
−A2 D2 −AT3

. . . . . . . . .
−Am−1 Dm−1 −ATm

−Am Dm

 ,

each block being of order m. Let L be the block lower triangular part of A. Then, if such a
factorization exists, we have

A = (∆ + L)∆−1(∆ + LT ),

where ∆ is a block diagonal matrix whose diagonal blocks are denoted by ∆i. By identification,
we have

∆1 = D1, ∆i = Di −Ai(∆i−1)−1ATi , i = 2, . . . ,m

Obtaining this block factorization only involves solving linear systems with matrices ∆i and
several right-hand sides. Whatever the structure of the matrices Di, matrices ∆i, i = 2, . . . ,m
are dense matrices.

This block factorization (as well as the block twisted factorization) can also be used to char-
acterize the inverse of block tridiagonal matrices, see G.M. [809]. Let us write the block LU and
UL factorizations as

A = (∆ + L) ∆−1 (∆ + LT ) = (Σ + LT ) Σ−1 (Σ + L),

where ∆ and Σ are block diagonal matrices whose diagonal blocks are denoted by ∆i and Σi.
They are given by block recurrences{

∆1 = D1,
∆i = Di −Ai (∆i−1)

−1
(Ai)

T

{
Σm = Dm,

Σi = Di − (Ai+1)
T

(Σi+1)
−1

Ai+1.

A block twisted factorization can be defined for each j = 2, . . . ,m− 1 as

A = (Φ + L)Φ−1(Φ + LT )

where Φ is a block diagonal matrix and L has the following twisted block structure

L =



0
−A2 0

. . . . . .
−Aj 0 −ATj+1

. . . . . .
0 −ATm

0


,

where the row with two nonzero blocks is the jth block row. By identification, we have

Φi = ∆i i = 1, . . . , j − 1, Φi = Σi i = j + 1, . . . ,m,

Φj = Dj −Aj∆−1
j−1A

T
j −ATj+1Σ−1

j+1Aj+1.

With the block twisted factorization, the block jth column X of the inverse can be computed in
a straightforward way.
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Theorem 2.26. The jth block column X of A−1 is given by

Xj = Φ−1
j ,

Xj−l = ∆−1
j−l A

T
j−l+1 ∆−1

j−l+1 · · ·∆
−1
j−1 A

T
j Φ−1

j , l = 1, . . . , j − 1

Xj+l = Σ−1
j+l Aj+l Σ−1

j+l−1 · · ·Σ
−1
j+1 Aj+1 Φ−1

j , l = 1, . . . ,m− j.

These expressions are valid for any symmetric block tridiagonal matrix. When the matrices
Ai are nonsingular, A is said to be proper; in this case, the formulas can be simplified. Using the
uniqueness of the inverse, we can prove the following result.

Proposition 2.27. If A is proper, then

Φ−1
j = A−1

j+1 Σj+1 · · ·A−1
n Σm ∆−1

m Am · · ·∆−1
j+1 Aj+1 ∆−1

j

= A−Tj ∆j−1 · · ·A−T2 ∆1 Σ−1
1 AT2 · · ·Σ−1

j−1 A
T
j Σ−1

j .

From these relations, we deduce alternate formulas for the other elements of the inverse.

Theorem 2.28. If A is proper,

Xj−l = (A−Tj−l∆j−l−1 · · ·A−T2 ∆1)(Σ−1
1 AT2 · · ·ATj Σ−1

j ), l = 1, . . . , j − 1

Xj+l = (A−1
j+l+1Σj+l+1 · · ·A−1

m Σm)(∆−1
m Am · · ·∆−1

j+1Aj+1∆−1
j ), l = 1, . . . ,m− j.

As before, the elements of the inverse can be computed in a stable way using the block
Cholesky factorization when the matrix is diagonally dominant or positive definite. These for-
mulas give a characterization of the inverse of a proper block tridiagonal matrix.

Theorem 2.29. If A is proper, there exist two (non-unique) sequences of matrices {Ui}, {Vi}
such that for j ≥ i

(A−1)i,j = UiV
T
j ,

with Ui = A−Ti ∆i−1 · · ·A−T2 ∆1 and V Tj = Σ−1
1 AT2 · · ·ATj Σ−1

j .

In other words, A−1 can be written as

A−1 =


U1V

T
1 U1V

T
2 U1V

T
3 . . . U1V

T
m

V2U1
T U2V

T
2 U2V

T
3 . . . U2V

T
m

V3U1
T V3U2

T U3V
T
3 . . . U3V

T
m

...
...

...
. . .

...
VmU1

T VmU2
T VmU3

T . . . UmV
T
m

 .

The inverse of the matrix of the Poisson model problem constructed with m = 5 is shown on
Figure 2.9.
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Figure 2.9. The inverse of the matrix of the Poisson problem, m = 5

2.7 Rounding error analysis
Let us consider a small example to show some of the difficulties that can happen when solving a
linear system using Gaussian elimination. We would like to solve the linear system

αx1 + βx2 = α+ β,

γx1 + ωx2 = γ + ω.

Obviously, the solution is x1 = x2 = 1. We choose α = γ = 108, β = 1, and ω = 1 + 10−4.
The exact determinant is 104 and the condition number is 2 1012. In double precision arithmetic
(fp64), the computed solution and the relative error are respectively,

sol =

(
0.9999999999998307
1.000016927719226

)
, error =

(
−1.693090112553364 10−13

1.692771922634506 10−5

)
.

We have a large relative error on the second component of the solution. It does not come from
the factorization since the computed factors are

L =

(
1 0
1 1

)
, U =

(
108 1
0 9.999999999998899 10−5

)
.

The error arises from the solve Ly = b. The first component x1 is correctly computed as 108 +1.
The second component x2, which must be equal to 10−4, is computed as (108 + 1 + 10−4) −
(108 + 1) ≈ 1.000016927719116 10−4. The error is 1.692771911616302 10−9. Note that if we
compute the relative error in the infinity norm,

‖xex − x‖∞
‖xex‖∞

=
1.692771911616302 10−9

1 + 108
= 1.692771894688583 10−17.

The relative error is small, but this is because the norm of the exact solution is large.
If we do a rounding error analysis as in Chapter 1, we see that the computed x2 is

1 + δ

(
1− 2αγ

αω − βγ

)
+O(u2), |δ| ≤ u.



2.7. Rounding error analysis 119

The second term in the parenthesis is roughly 2 1012, and multiplied by δ, it is of the order 10−4

and gives a large error which is of the order of u‖A‖. Even if the determinant αω − βγ is not
small, the error can be large if αγ is large, which is what happens in our example.

Wether or not the computed solution can be considered as satisfactory is a matter of debate.

2.7.1 Triangular systems

Let L be a lower triangular matrix of order n and c be the right-hand side. We would like to solve
the linear system Lx = c. Straightforwardly, x1 = c1/`1,1, and

xk =
1

`k,k
(ck −

k−1∑
i=1

`k,ixk), k = 2, . . . , n.

Apart from the division by the diagonal entry, this is very similar to what we have seen in Chap-
ter 1 for sums and dot products. An analysis is given in N.J. Higham’s book [633], Chapter 8,
where he considered the computation of

(c−
k−1∑
i=1

aibi) / bk.

The result of his Lemma 8.4 is that the computed solution y satisfies

bk y(1 + θ
(0)
k ) = c−

k−1∑
i=1

aibi(1 + θ
(i)
k ), |θ(i)

k | ≤ γk, γk =
ku

1− ku
.

The upper bound is reduced to γk−1 if bk = 1. This yields the backward error bound

(L+ ∆L)x = c, |∆L| ≤ γn |L|.

If xex is the exact solution, the forward error is bounded as

‖xex − x‖∞
‖xex‖∞

≤ cond(L, xex)γn
1− cond(L)γn

,

where

cond(L, xex) =
‖ |L−1| |L| |xex| ‖∞

‖xex‖∞
, cond(L) = ‖ |L−1| |L| ‖∞.

In absence of underflows and overflows, and if the rounding mode is “round to nearest”, these
results were improved by S.M. Rump and C.-P. Jeannerod [967]. The bound |θ(i)

k | ≤ γk can be
replaced by |θ(i)

k | ≤ ku, and (k − 1)u if bk = 1. It yields the backward error bound

|∆L| ≤ DL |L| ≤ nu |L|,

where DL is a diagonal matrix whose kth diagonal entry is ku. It shows that γn can be replaced
by nu. Theorem 7.4 in [633] implies that

‖xex − x‖∞
‖xex‖∞

≤ cond(L, xex)nu

1− cond(L)nu
.
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2.7.2 General linear systems

As remarked in [633, p. 163], all the variants of LU factorizations have different rounding errors,
but they all have the same error bounds and permutations due to pivoting are not a concern.
Hence, it is sufficient to analyze the simple following algorithm,

for k = 1 : n
for j = k : n
uk,j = ak,j −

∑k−1
i=1 `k,iui,j

end
for i = k + 1 : n
`i,k = (ai,k −

∑k−1
j=1 `i,juj,k)/uk,k

end
end
The operations that are involved to compute uk,j and `i,k are similar to what we have seen

for triangular solves. Therefore, we obtain the same kind of bounds. Higham’s results are

|ak,j −
k−1∑
i=1

`k,iui,j − uk,j | ≤ γk
k∑
i=1

|`k,i| |ui,j |, j ≥ k,

|ai,k −
k∑
j=1

`i,juj,k| ≤ γk
k∑
j=1

|`i,j | |uj,k|, i > k.

It yields the backward error bound,

LU = A+ ∆A, |∆A| ≤ γn |L| |U |.

Using the results of S.M. Rump and C.-P. Jeannerod [967], we can replace γn by nu. In fact, it
can even be replaced by (n− 1)u, but this does not make such a big difference.

The computed solution of Axex = b satisfies (A+ ∆A)x = b. Higham’s bound is

|∆A| ≤ (3γn + γ2
n)|L| |U |.

There is a term proportional to u2. Moreover, in the bound we have |L| |U |, and not |A| as we
would have expected. Rump and Jeannerod’s upper bound is

((3n− 2)u+ (n2 − n)u2)|L| |U |.

A more traditional analysis, similar to what was done by J.H. Wilkinson [1120], allows to
relate the error bounds to the growth factor.

Theorem 2.30. At step k of Gaussian elimination, we have

L−1
k Ak = Ak+1 + Ek,

where
|(Ek)i,j | ≤ Cu max(|a(k+1)

i,j |, |a(k)
i,j |) +O(u2).

Proof. The multipliers (that is, the entries of L−1) that we denote by mi,k are

mi,k = fl

(
a

(k)
i,k

a
(k)
k,k

)
, i ≥ k + 1,
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and

a
(k+1)
i,j =


0 i ≥ k + 1, j = k,

fl(a
(k)
i,j −mi,k a

(k)
k,j) i ≥ k + 1, j ≥ k + 1,

a
(k)
i,j otherwise

Let us first consider i ≥ k + 1,

mi,k =
a

(k)
i,k

a
(k)
k,k

(1 + δi,k), |δi,k| ≤ u.

This translates into
a

(k)
i,k −mi,k a

(k)
k,k + a

(k)
i,k δi,k = 0.

Let e(k)
i,j be the entries of Ek. Then,

e
(k)
i,k = a

(k)
i,k δi,k, i ≥ k + 1.

For i ≥ k + 1 and j ≥ k + 1, we have

a
(k)
i,j = fl(a

(k)
i,j −mi,ka

(k)
k,j).

From what we have seen above,

a
(k+1)
i,j (1 + θ(0)) = a

(k)
i,j −mi,ka

(k)
k,j(1 + θ(1)), |θ(i)| ≤ 2u.

It yields

e
(k)
i,j = a

(k+1)
i,j θ(0) +mi,ka

(k)
k,jθ

(1) = a
(k+1)
i,j θ(0) +

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

(1 + δi,k)θ(1).

|e(k)
i,j | ≤

(
2u

(
1 + max

i

|a(k)
i,k |

|a(k)
k,k|

))
max(|a(k+1)

i,j |, |a(k)
i,j |) +O(u2).

In general, the absolute values of the multipliers are bounded. For partial pivoting, there are
smaller than 1. For e(k)

i,k ,

|e(k)
i,k | ≤ u |a

(k)
i,k .

Therefore, we have

|e(k)
i,j | ≤ Cu max(|a(k+1)

i,j |, |a(k)
i,j |) +O(u2), i ≥ k + 1, j ≥ k,

where C is a small constant and the other entries of Ek are zero.
We have the following useful technical lemma.

Lemma 2.31. If Bk is a matrix whose first k rows are zero, then

LiBk = Bk, i ≤ k.

Similarly, (Li)
−1Bk = Bk.

Proof. Remember that Lk = I + `kek
T . Then

LiBk = (I + `iei
T )Bk = Bk − `ieiTBk = Bk,
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since eiTBk = 0.

With this result we can prove the following theorem about LU factorization.

Theorem 2.32. Let F be defined as

F = F1 + · · ·+ Fn−1,

where

(Fk)i,j =

{
1 i ≥ k + 1, j ≥ k,
0 otherwise

Then
A = LU + E,

with
|E| ≤ Cu max

k,i,j
|a(k)
i,j | F +O(u2),

where C is a small constant.

Proof. We have

L−1
k Ak = Ak+1 + Ek =⇒ Ak = LkAk+1 + Ek.

By Lemma 2.31,
(L1) . . . (Lk−1)Ak = (L1) . . . (Lk)Ak+1 + Ek.

We sum these equalities for k = 1 to n− 1. Most of the terms cancel and we obtain,

A = (L1) . . . (Lk−1)An + E1 + . . .+ En−1.

Therefore, A = LU + E with E = E1 + . . .+ En−1. Finally, it is easy to see that

|E| ≤ Cu max
k,i,j
|a(k)
i,j | F +O(u2).

The entries of F are bounded by n−1. Therefore, |E| being small depends on maxi,j,k |a(k)
i,j |.

Using the growth factor gA for the computed quantities, the bound can be written as

|E| ≤ CugA‖A‖∞F +O(u2).

Taking norms, we have
‖E‖∞ ≤ CugA n2‖A‖∞ +O(u2).

Pivoting techniques are not only used to avoid zero or small pivots, but also to reduce the
growth factor. J.H. Wilkinson [1120] gave contrived examples where an exponential growth is
observed. Let us consider matrices of order n which have the following form (for n = 5),

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1
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Figure 2.10. Growth factors, Wilkinson’s example

Figure 2.10 shows the growth factors for several pivoting strategies for increasing n. No pivoting
and partial pivoting give a linear increase in this logarithmic scale whence complete and rook’s
pivoting strategies give bounded growth factors.

It was thought for quite some time that this type of growth arises only in contrived examples.
However, in the 1990s, linear systems, arising from practical problems, for which an exponential
growth with partial pivoting is obtained appeared in the literature, see S.J. Wright [1123] and
L.V. Foster [463]. The average case stability of Gaussian elimination with partial pivoting was
studied by L.N. Trefethen and R.S. Schreiber [1073]. They looked at random matrices of order
≤ 1024. The average growth factor was approximately n3/2 for partial pivoting and n1/2 for
complete pivoting. Although Gaussian elimination with partial pivoting gives accurate results in
most cases, these examples show that, when using this algorithm, we must carefully analyze the
results.

For complete pivoting, Wilkinson [1120] showed that the growth factor is bounded (in the
absence of rounding) by

|a(k)
i,j | ≤ k

1
2 (2 · 3 1

2 · · · k
1
k−1 )

1
2 max

i,j
|ai,j |.

It was conjectured that, in this case, gA ≤ n. C.W. Cryer [292] proved that this is true for n ≤ 4.
However, the conjecture was shown to be false for n > 4 if rounding errors are allowed by
N. Gould [552]. A. Edelman and M. Ohlroch [392] modified Gould’s counterexample to show
that the conjecture is also false in exact arithmetic. N.J Higham and D.J. Higham [635] exhibited
some matrices of practical interest which have a growth factor of at least n/2 for complete
pivoting.

2.7.3 Probabilistic bounds

Since the bounds obtained from rounding error analyses are often pessimistic, some researchers
tried to use probability theory. Probably the first ones to do this were J. von Neumann and
H.H. Goldstine [1105, 538]. This was also considered by P. Henrici [623], as well as some
other authors starting in the 1960s up to the end of the century. These authors considered the
perturbation terms due to rounding errors as independent random variables with mean zero and
assumed them to be from a uniform or a normal distributions. This approach contributed to a rule
of thumb saying that, in rounding error upper bounds, the order of the matrix n can be replaced
by
√
n. However, we have seen in Chapter 1 that rounding errors are not random. Moreover,

in many cases they are not independent. For probabilistic bounds, see also L.N. Trefethen and
R.S. Schreiber [1073], M.C. Yeung and T.F. Chan [1141], and M.C. Yeung [1139].
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A recent revival of probabilistic rounding error analysis was proposed by N.J. Higham and
T. Mary [636]. They assumed that rounding errors associated with every pair of operands are
independent random variables of mean zero without any assumption on the probability distribu-
tion. They used Hoeffding’s inequality [638] to bound expressions like

∏n
i=1(1 + δi)

ρi where
|δi| ≤ u and ρi = ±1. For any λ > 0, this is equal to 1 + θn with |θn| ≤ γ̃n(λ) with probability

P (λ) = 1− 2 exp

(
−λ

2(1− u)2

2

)
,

where

γ̃n(λ) = exp

(
λ
√
nu+

nu2

1− u

)
− 1.

This result is used to obtain probabilistic bounds for

(c−
k−1∑
i=1

aibi) / bk.

The computed solution y satisfies

bk y(1 + µ0) = c−
k−1∑
i=1

aibi(1 + µi), |µi| ≤ γ̃k(λ),

with probability Q(λ, k) = 1− k(1− P (λ)).
For triangular systems, it yields |∆L| ≤ γ̃n(λ) |L| with probability Q(λ, n(n + 1)/2). For

the LU factorization, the bound |∆A| ≤ γ̃n(λ) |L| |U |with probabilityQ(λ, n3/3+n2/2+n/6)
is obtained. When,

λ
√
nu+

nu2

1− u
< 1,

the constant γ̃n(λ) is bounded from above by λ
√
nu+O(u2). The authors of [636] were aware

that their model is not very realistic and they provided many numerical experiments to show that,
nevertheless, it can give upper bounds that are better than the deterministic upper bounds in many
cases.

2.7.4 Symmetric linear systems

For symmetric positive definite matrices, what has been mainly considered in the literature is the
Cholesky factorization A = LLT , for which error bounds can be derived in the same way as
those for the LU factorization. The standard result from [633] is,

A+ ∆A = LLT , |∆A| ≤ γn+1 |L| |LT |.

There is a γn+1, and not a γn, in the bound because of the square root in Cholesky’s algorithm.
Note that

‖|L| |LT | ‖ ≤ n‖A‖.

The previous bound was improved in [967] as

|∆A| ≤ (n+ 1) |L| |LT |.

We observe, as in [633], that ∆A is not necessarily symmetric. Moreover, in these results, we
have to add the hypothesis that the algorithm runs to completion, since this is not obvious in
floating-point arithmetic; on this issue, see J.W. Demmel [332].
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2.8 Perturbation analysis
We have been concerned with the consequences of running the Gaussian elimination algorithm
in floating-point arithmetic, but we should also look at the sensitivity of the solution to pertur-
bations of the data. When the matrix A or the right-hand side b are constructed (from scratch
or from some other computations) some errors could also have been introduced. For works
on perturbation theory, see, for instance, G.W. Stewart and J.-G. Sun [1047], J.-G. Sun [1056,
1055], G.W. Stewart [1043, 1044], Z. Drmač, M. Omladič, and K. Veselič [360], X.-W. Chang,
C.C. Paige, and G.W. Stewart [232], X.-W. Chang and C.C. Paige [231], F.M. Dopico and
J.M. Molera [355], and X.-W. Chang and D. Stehlé [233].

There are different ways to study the effect of perturbations that differ mainly in the way
they are measured; see N.J. Higham [631, 633]). The oldest way is known as normwise error
analysis. Let x and y be such that

Ax = b,

(A+ ∆A)y = b+ ∆b.

∆A and ∆b are chosen such that

‖∆A‖ ≤ αω, ‖∆b‖ ≤ βω,

where ω is given, α (resp. β) is 0 or ‖A‖ (resp. ‖b‖), depending on whether A, or b, or both are
perturbed. The number ω defines the normwise relative perturbation. Then, we can bound the
solution of the perturbed system.

Lemma 2.33. If ξ = αω‖A−1‖ < 1, then

‖y‖
‖x‖
≤ 1

1− ξ

(
1 +

ξβ

α‖x‖

)
.

Proof. First, we must show that, with our hypothesis, A + ∆A is nonsingular. We observe
that

A+ ∆A = A(I +A−1∆A),

and, with the hypothesis,
‖A−1∆A‖ ≤ αω‖A−1‖ = ξ < 1.

Then, A+ ∆A is nonsingular by Lemma 2.3.3 of [547]. We have

(I +A−1∆A)y = A−1(b+ ∆b) = x+A−1∆b.

Taking norms,

‖y‖ ≤ 1

1− αω‖A−1‖
(‖x‖+ βω‖A−1‖).

But,

ω ≤ 1

α‖A−1‖
=⇒ ‖y‖ ≤ 1

1− αω‖A−1‖

(
‖x‖+ ξ

β

α

)
.

Therefore,
‖y‖
‖x‖
≤ 1

1− ξ

(
1 + ξ

β

α‖x‖

)
.
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Note that if α = ‖A‖ and β = ‖b‖, then

‖y‖
‖x‖
≤ 1 + ξ

1− ξ
.

The relative difference with the exact solution x can also be bounded.

Theorem 2.34. Under the hypothesis of Lemma 2.33,

‖x− y‖
‖x‖

≤ ω
(
‖A−1‖α‖x‖+ β

‖x‖

)(
1

1− ξ

)
.

Proof. We have,
y − x = A−1∆b−A−1∆Ay.

Taking norms, the result follows easily.
If α = ‖A‖ and β = ‖b‖,

‖x− y‖
‖x‖

≤ 2ω‖A‖ ‖A−1‖
(

1

1− ξ

)
.

The normwise condition number of the problem is defined as

KT (A, b) = ‖A−1‖α‖x‖+ β

‖x‖
.

Note that, if β = 0, this reduces to KT (A) = ‖A−1‖ ‖A‖, which is the condition number
related to inversion. This condition number is frequently denoted κ(A). The subscript T refers
to A. Turing [1078] who first introduced this condition number. It measures the sensitivity of the
solution to perturbations.

The bounds, like those in Theorem 2.34, are, quite often, overly conservative. T.F. Chan and
D.E. Foulser [221] introduced the concept of “effective well-conditioning”. They considered the
SVD of the matrix A, A = UΣV T and perturbations of the right-hand side. Let σi, i = 1, . . . , n
be the singular values and Pk = UkU

T
k , where the columns of Uk are the k last columns of U

for 1 ≤ k ≤ n. If Ax = b and Ay = b+ ∆b, then

‖x− y‖
‖x‖

≤ σn+1−k

σn

(
‖Pkb‖
‖b‖

)−1 ‖∆b‖
‖b‖

, 1 ≤ k ≤ n.

If k = n, this is the standard bound involving κ(A). However, if, for some k < n, a large
fraction of b lies in span(Uk) and the ratio of singular values is not too large, then the solution x
is relatively insensitive to perturbations in b.

Other results can be obtained for some special classes of matrices. For instance, bounds for
row diagonally dominant matrices were described by M. Dailey, F.M. Dopico, and Q. Ye [306].

The normwise backward error measures the minimal distance to a perturbed problem which
is solved exactly by the computed solution y. Let

ηT = inf{ω | ω ≥ 0, ‖∆A‖ ≤ ωα, ‖∆b‖ ≤ ωβ, (A+ ∆A)y = b+ ∆b}.

The normwise backward error has been characterized by J.-L. Rigal and J. Gaches [945] in the
following result.
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Theorem 2.35. Let r = b−Ay be the residual of the computed solution. Then

ηT =
‖r‖

α‖y‖+ β
.

We remark that the bound on the forward error ‖x−y‖‖x‖ is approximately the product of the
condition number and the backward error, as it was already stated in Chapter 1.

Another type of analysis considers componentwise perturbations. It was introduced by
F.L. Bauer and R. Skeel (see [1016]]. It allows to study perturbations on individual entries
of A and b. This is particularly useful for sparse matrices. We consider perturbations ∆A and
∆b such that

|∆A| ≤ ωE, |∆b| ≤ ωf.

We have the same kind of results as for the normwise perturbations.

Theorem 2.36. If ω‖ |A−1|E‖∞ < 1,

‖x− y‖∞
‖x‖∞

≤ ω ‖ |A
−1|(E|x|+ f)‖∞
‖x‖∞

1

1− ω‖ |A−1|E‖∞
.

S. Chandrasekaran and I.C.F. Ipsen gave componentwise bounds for the error [228, 229].

The componentwise condition number is defined as

KBS(A, b) =
‖ |A−1|(E|x|+ f)‖∞

‖x‖∞
.

The subscript BS refers to Bauer and Skeel. As above, we introduce the backward error,

ηBS = inf{ω |, ω ≥ 0, |∆A| ≤ ωE, |∆b| ≤ ωf, (A+ ∆A)y = b+ ∆b}.

W. Oettli and W. Prager [868] proved the following characterization of ηBS .

Theorem 2.37.

ηBS = max
i

|(b−Ay)i|
(E|y|+ f)i

.

An algorithm is said to be backward stable when the backward error is of the order of the
unit roundoff u. Unfortunately, Gaussian elimination with partial pivoting is both normwise and
componentwise backward unstable. There are examples where ηT or ηBS are large compared
to machine precision. Despite this fact, Gaussian elimination can be used safely on most prac-
tical examples. Moreover, there are some remedies to this (potential) backward instability; see
Section 2.10.
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2.9 Scaling
Scaling has been used for, at least, two goals: improve the condition number of the matrix and im-
prove the behavior of Gaussian elimination. On the first goal, see G.E. Forsythe and E.G. Straus
[462], F.L. Bauer [102, 103], A. van der Sluis [1083], J.R. Bunch [182], C.A. McCarthy and
G. Strang [792], and G.H. Golub and J.M. Varah [549]. Scaling is also used, for instance, as a
preprocessing step in eigenvalue computations.

Let D1 and D2 be two nonsingular diagonal matrices. The system Ax = b is transformed
into

A′y = (D1AD2)y = D1b,

and the solution x is recovered by x = D2y. The left multiplication by D1 is a row scaling and
right multiplication by D2 is a column scaling. The entry ai,j is changed into d1

i d
2
jai,j where

d`i , ` = 1, 2 are the diagonal entries of D`.
Note that if one uses Gaussian elimination with partial pivoting, row scaling influences the

choice of the pivots. On this issue, see G.E. Forsythe and C.B. Moler [461], A. van der Sluis
[1084], A.R. Curtis and J.K. Reid [299] in 1972 and G.W. Stewart [1042]. Classical strategies
can be found in A.R. Curtis and J.K. Reid [299]. Other proposals were described by W.W. Hager
[607]. A common strategy for row scaling is to divide the entries of a row by the maximum norm
of the row. R.D. Skeel [1016] showed that a good scaling matrix is choosing the diagonal entries
of D1 as di = (|A| |y|)i where y is the computed solution. Of course, this is impractical since
the solution y depends on the scaling. However, if an approximation c of the solution is known,
then A could be scaled by (|A| |c|)i.

More recent discussions of scaling are found in O. Livne and G.H. Golub [764], I.S. Duff
and S. Pralet [378], P.R. Amestoy, I.S. Duff, D. Ruiz, and B. Uçar [32], P.A. Knight and D. Ruiz
[707], P.A. Knight, D. Ruiz, and B. Uçar [708], and Z. Allen-Zhu, Y. Li, R. Oliveira, and
A. Wigderson [13].

Another related possibility is to permute the rows and columns to bring large entries on the
diagonal; see, for instance, I.S. Duff and J. Koster [375, 376].

So far, no scaling strategy has been shown to give consistently better results than not using
any scaling, although many different strategies have been proposed over the years. As we said
above, it has been argued that the real role of scaling is to alter the pivoting sequence. This can
result in a better or worse solution. The rule of thumb given by G. Poole and L. Neal [923] is that
scaling can be useful if it leads to a system which is more diagonally dominant, but otherwise it
should be avoided. But, as for any rule of thumb, there are exceptions.

2.10 Iterative refinement
From the rounding error analysis, we have shown that the computed solution y satisfies

(A+H)y = b,

with
‖H‖∞ ≤ u C‖A‖∞,

if the growth factor is bounded. Let r = b−Ay be the residual. Then, obviously

‖r‖∞ ≤ ‖H‖∞ ‖y‖∞ ≤ uC‖A‖∞ ‖y‖∞.

If the constant C and the norms are not too large, Gaussian elimination usually produces a small
residual. But, unfortunately, small residuals do not always imply high accuracy in the solution.
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Let e = x− y be the error vector, then Ae = b− Ay = r. Therefore, a natural idea to improve
the computed solution is to solve Ae = r. This will produce a computed solution ẽ, satisfying

(A+ H̃)ẽ = r

and we can set x̃ = y + ẽ as a new approximation to the solution. Eventually, we can iterate this
process. This algorithm is known as iterative refinement. Of course, iterative refinement is just
one example of a very simple iterative method and one can use any suitable iterative method to
solve Ae = r.

Myrick Hascall Doolittle (1830-1913) was probably the first to use iterative refinement [354]
in 1881. He was solving linear systems arising from least squares problems by hand with the
help of multiplication tables. He computed the solutions with only a few decimal digits and used
iterative refinement to improve the solution. He also realized that the residual has to be computed
in higher precision than the one used for the computation; see [160] for details.

Iterative refinement started to be used in the 1960s, see R.S. Martin, G. Peters, and J.H. Wilkin-
son [787] and C.B. Moler [833] who studied iterative refinement in floating-point arithmetic.

The main question is to decide to which precision the residual r has to be computed since
we are not able to compute the exact answer. If we have r̃ = fl(b − Ay) and (A + H̃)ẽ = r̃,
R.D. Skeel [1016] showed that computing the residual vector to the same precision as the original
computation is enough to make Gaussian elimination with partial pivoting backward stable. This
is shown in the following theorem.

Theorem 2.38. If u|A| |A−1| is sufficiently small, one step of iterative refinement with single
precision residual computation is componentwise backward stable.

On this issue, see also M. Jankowski and H. Wozniakowski [668].
However, one step of iterative refinement in working precision only gives a small backward

error. It does not guarantee a better accuracy. If this is desired, the residual must be computed
in higher precision and then rounded to the lower precision. Iterative refinement was studied by
A. Kiełbasiński [701], and N.J. Higham [632]. Numerical experiments with sparse matrices were
discussed in Z. Zlatev [1166]. A Chebyshev acceleration of iterative refinement was proposed
by M. Arioli and J. Scott [42]. Error bounds from extra-precise iterative refinement were given
by J.W. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee, and E.J. Riedy [336]. Forward
and backward stability results were given by S. Oishi, T. Ogita, and S.M. Rump [870] for an
algorithm using an approximate inverse.

Recently, there has been a renewal of interest into iterative refinement because of the avail-
ability of computing engines capable of doing half, single and double precision computations.
One can compute an approximate solution in low precision and then improve the result using an
higher precision.

Results in single and double precision were presented by A. Buttari, J. Langou, J. Langou,
P. Luszczek, and J. Kurzak [188]. Three precisions were used by E.C. Carson and N.J. Higham
[205]. N.J. Higham described a GMRES-based iterative refinement in two and three precisions
[634]. Mixed-precision iterative refinement on GPUs was studied by A. Haidar, H. Bayrak-
tar, S. Tomov, J.J. Dongarra, and N.J. Higham [609] using a multiprecision LU factorization
and GMRES. When using half precision, some scaling of the data has to be used. A five-
precision GMRES-based iterative refinement algorithm was presented by P.R. Amestoy, A. But-
tari, N.J. Higham, J.Y. L’Excellent, T. Mary, and B. Vieublé [24]. For mixed precision iterative
refinement, see also E. Oktay and E.C. Carson [871, 872].
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2.11 Software
Since their arrival during and after World War II, computer architectures have undergone tremen-
dous changes as well as a spectacular increase of their computing power. On the first digital
computers, coding was done directly using the machine instruction set. This was obviously
machine-dependent. High-level languages and compilers started to appear at the end of the
1950s. FORTRAN (FORmula TRANslator) was first released by IBM in 1957. It was widely
and quickly adopted by programmers. In 1958, FORTRAN II allowed user-written subroutines
as well as COMMON statements. FORTRAN IV was developed from 1961 to 1966. It added
some data types and the logical IF statement. In the 1960s, other computer manufacturers started
proposing FORTRAN compilers to their customers. A new enriched standard, FORTRAN 77,
was approved in 1978 by the American National Standards Institute (ANSI). It introduced the
ELSE statement, DO loops extensions, and the CHARACTER data type. FORTRAN 77 re-
mained the standard for a long time. The next standard, Fortran 90 (note the move to lower
case letters), was adopted only in 1991-92 with many new features like free-form source input,
recursive procedures, modules, array features, dynamic memory allocation, and pointers.

Algol was an interesting language developed in the 1950s and 1960s. It was used in many
papers and books to describe algorithms. Unfortunately, Algol did not have much success, par-
ticularly in the USA because it was not so popular in the industry, and IBM, the most influential
manufacturer at that time, was pushing FORTRAN.

The C language was originally developed at Bell Labs in the beginning of the 1970s and C++,
with object-oriented features, was started in 1979.

With the sequential computers of the 1960s and 1970s, and with FORTRAN or C, the LU
factorization can be coded in an almost straightforward way as a translation of the mathematical
formulas. However, the programmers had already to be careful. A dense matrix A is stored as
a two-dimensional array. Such an array is stored by columns in FORTRAN, that is, the entries
of a column are in consecutive memory locations. Accessing the array in a row-wise fashion
within the matrix could involve successive memory references to locations separated from each
other by a large increment. In computers using memory pages to control memory usage this can
result in a large number of page swaps. In C, a two-dimensional array is stored by rows and the
indices start at 0, instead of 1 in FORTRAN. Hence, it is likely that the implementations must be
different.

LINPACK is a package of mathematical software for solving problems in linear algebra,
mainly dense and banded linear systems and factorizations that was developed at the end of the
1970s [348]. It was written in FORTRAN 66.

In the second half of the 1970s the computer landscape changed with the introduction of
vector computers. The most notable evolution was the use of vector registers and of pipelined
functional units. If one wants to do (say) the addition of two vectors, those are segmented into
chunks by the compiler, loaded in the vector registers, and then the addition pipelined functional
unit can be used at full speed provided there is a large enough bandwidth between the memory
and the vector registers. With this kind of computers one can deliver one result each clock
period and more if there are several independent functional units. However, to obtain the best
performances, algorithms have to be expressed in vector form. Therefore, in the late 1970s there
was an effort to standardize vector operations for use in scientific computations. A de facto
standardization of low-level vector operations was done, leading to the Basic Linear Algebra
Subroutines (BLAS), now known as Level 1 BLAS or BLAS1 [615, 726]. These routines can
be implemented efficiently in assembly language by the manufacturer. They brought modularity,
portability, and efficiency. LINPACK was using BLAS1 for its column-oriented algorithms. A
Matlab-like translation of the code dgefa doing the factorization in LINPACK is following.
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function [A,ipvt,info,L,U,P] = dgefa(A);
[n,m] = size(A);
ipvt = zeros(n,1);
pp = 1:n;
info = 0;
nm1 = n - 1;
if nm1 < 1
ipvt(n) = n;
if A(n,n) == 0
info = n;
end % if
L = 1;
U = A(n,n);
return
end % if
L = eye(n,n);
for k = 1:nm1
kp1 = k + 1;
[~,I] = max(abs(A(k:n,k)));
l = I(1) + k - 1; % pivot index, BLAS1 idamax
ipvt(k) = l;
pp( [k, l] ) = pp( [l, k] ); % this is not in LINPACK dgefa
if A(l,k) == 0 % zero pivot implies this column is already

triangularized
info = k;
continue
end % if
if l ~= k % interchange if necessary
t = A(l,k);
A(l,k) = A(k,k);
A(k,k) = t;
end % if
t = -1 / A(k,k); % compute multipliers
A(k+1:n,k) = t * A(k+1:n,k); % BLAS1 dscal
L(k+1:n,k) = -A(k+1:n,k); % this is not in LINPACK dgefa
% row elimination with column indexing
for j = kp1:n
A(l,j);
if l ~= k % interchange if necessary
A(l,j) = A(k,j);
A(k,j) = t;
end % if
A(k+1:n,j) = t * A(k+1:n,k) + A(k+1:n,j); % BLAS1 daxpy
end % for j
% apply the permutation to the previous columns (this is not

in LINPACK dgefa)
% this is to obtain L
L([l,k],1:k-1) = L([k,l],1:k-1);
end % for k
ipvt(n) = n;
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if A(n,n) == 0
info = n;
end
U = triu(A);
P = eye(n);
P = P(pp,:);

P is a permutation matrix such that PA = LU . It must be noted that the original code
does not contain the last arguments L, U, P because dgefa computes only the U factor and
the multipliers needed to solve a linear system with the routine dgesl. Nevertheless, this shows
how LU factorization was coded at that time. The previous code is quite slow when executed in
Matlab. A faster one is the following.

function [L,U,P,rho] = gauss_pp(A);
[n,m] = size(A);
pp = 1:n;
maxA = norm(A(:),inf);
rho = maxA;
for k = 1:n-1
[~,I] = max(abs(A(k:n,k))); % find largest element in column
row = I(1) + k - 1;
% Permute largest element into pivot position
A([k,row],:) = A([row,k],:);
pp([k,row]) = pp([row,k]);
i = k+1:n;
if A(k,k) ~= 0
A(i,k) = A(i,k) / A(k,k); % multipliers
end % if
if k+1 <= n
j = k+1:n;
A(i,j) = A(i,j) - A(i,k) * A(k,j);
rho = max(rho,max(max(abs(A(i,j)))));
end % if
end % for k
L = tril(A,-1) + eye(n,n);
U = triu(A);
P = eye(n,n);
P = P(pp,:);
rho = rho / maxA;

In gauss_pp, rho is the growth factor. For coding the LU factorization, kij, kji,. . . coding
can be used similarly to what we have seen for the symmetric case. LINPACK used a kji
algorithm coded with BLAS1 calls. The six variants were compared on vector computers in
[882].

The rise of microprocessors in the 1980s and 1990s was the demise of vector processors,
which were proprietary and dedicated designs of their manufacturers. Many of the machines
based on these microprocessors had a deep memory hierarchy with multiple levels of cache
memory. LINPACK was inefficient on these computers. To regain efficiency it was necessary
to develop successively Level 2 BLAS with matrix-vector operations and Level 3 BLAS with
matrix-matrix operations. Matrix-matrix operations offer the proper level of modularity for per-
formance and portability across a wide range of computer architectures.
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LAPACK was started to be developed at the end of the 1980s. It was necessary to restructure
the algorithms to a block form in terms of matrix-vector and matrix-matrix products to be able
to use BLAS2 and BLAS3. Originally in Fortran 77, LAPACK is now written in Fortran 90.
Unfortunately, the codes became much more involved and difficult to understand than those in
LINPACK, see [769]. Over the years there were at least four different versions of the routine
DGETRF for the LU factorization in double precision: a Crout BLAS3 version, an implementa-
tion of the recursive algorithm in [1066], a left-looking algorithm, and a blocked right-looking
BLAS3 version. To show how more complicated are these implementations, let us look at a
Maltlab-like translation of the right-looking version.

function [A,ipiv,info,L,U,P] = dgetrf(A,nb);
% Test the input parameters
[m,n] = size(A);
info = 0;
if m < 0
info = -1;
elseif n < 0
info = -2;
end % if
if info ~= 0
error('dgetrf, info ~= 0')
end % if
ipiv = zeros(m,1);
% Quick return if possible
if m == 0 || n == 0
ipiv = 0; L = 0; U = 0; P = 0;
return
end % if
if nb >= n || nb <= 1
[A,ipiv,info,L,U,P] = dgetf2(A);
return
end % if
% Use blocked code
for j=1:nb:min(m,n)
jb = min(min(m, n) - j + 1,nb);
% Factor diagonal and subdiagonal blocks and test for exact

singularity
[A2,ipiv2,iinfo] = dgetf2(A(j:m,j:j+jb-1));
A(j:m,j:j+jb-1) = A2;
% Adjust info and the pivot indices
jj = min(m,j+jb-1);
ipiv(j:jj) = j - 1 + ipiv2(1:jj-j+1);
if info == 0 && iinfo > 0
info = iinfo + j - 1;
end % if
% Apply interchanges to column 1:j-1
for i=j:j+jb-1
A([i,ipiv(i)],1:j-1) = A([ipiv(i),i],1:j-1); % dlaswp
end % for i
if j+jb <= n
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% Apply interchanges to column j+jb:n
for i=j:j+jb-1
A([i,ipiv(i)],j+jb:n) = A([ipiv(i),i],j+jb:n); % dlaswp
end % for i
% Compute block row of U
LA = tril(A(j:j+jb-1,j:j+jb-1),-1) + eye(jb,jb);
X = LA \ A(j:j+jb-1,j+jb:n); % dtrsm
A(j:j+jb-1,j+jb:n) = X;
if j+jb <= m
% Update trailing submatrix
A(j+jb:m,j+jb:n) = A(j+jb:m,j+jb:n)...
- A(j+jb:m,j:j+jb-1) * A(j:j+jb-1,j+jb:n); % dgemm

end % if j+jb <= m
end % if j+jb <= n
end % for j
% this is not in dgetrf
% Assume m >= n
L = zeros(m,n);
L(1:m,1:n) = tril(A(1:m,1:n),-1) + eye(m,n);
U = triu(A(1:n,1:n));
P = eye(m,m);
for i=1:n
P([i,ipiv(i)],:) = P([ipiv(i),i],:);
end % for i

In that code nb is the panel width and dgetrf2 does the LU factorization of a panel. The
corresponding names of the BLAS3 functions as shown as comments. The recursive code derived
from [1066] is even more involved.

function [A,ipiv,info,L,U,P] = dgetrf_r(A);
% Test the input parameters
[m,n] = size(A);
info = 0;
if m < 0
info = -1;
elseif n < 0
info = -2;
end % if
if info ~= 0
error('dgetrf\_r, info ~= 0')
end % if
ipiv = zeros(m,1);
% Quick return if possible
if m == 0 || n == 0
ipiv = 0; L = 0; U = 0; P = 0;
return
end % if
% Compute machine safe minimum
sfmin = realmin;
small = 1 / realmax;
if small >= sfmin
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sfmin = small * (1 + eps );
end % if
nstep = min(m,n);
for j=1:nstep
kahead = bitand(int64(j),int64(-j));
kstart = j + 1 - kahead;
kcols = min(kahead,m-j);
% Find pivot
[~,I] = max(abs(A(j:m,j)));
jp = j - 1 + I(1);
ipiv(j) = jp;
% Permute just this column
if j ~= jp
A([j,jp],j) = A([jp,j],j);
end % if
% Apply pending permutations to L
ntopiv = 1;
ipivstart = j;
jpivstart = j - ntopiv;
while ntopiv < kahead
for i=ipivstart:j
A([i,ipiv(i)],jpivstart:jpivstart+ntopiv -1)...
= A([ipiv(i),i],jpivstart:jpivstart+ntopiv -1); % dlaswp

end % for i
ipivstart = ipivstart - ntopiv;
ntopiv = ntopiv * 2;
jpivstart = jpivstart - ntopiv;
end % while
% Permute U block to match L
for i=kstart:j
A([i,ipiv(i)],j+1:j+kcols) = A([ipiv(i),i],j+1:j+kcols); %

dlaswp
end % for i
% Factor the current column
if A(j,j) ~= 0 && isnan(A(j,j)) == 0
if abs(A(j,j)) >= sfmin
t = 1 / A(j,j);
A(j+1:m,j) = t * A(j+1:m,j); % dscal
else
for i=1:m-j
A(j+i,j) = A(j+i,j) / A(j,j);
end % for i
end % if abs
elseif A(j,j) == 0 && info == 0
info = j;
end % if A(j,j)
% Solve for U block
LA = tril(A(kstart:kstart+kahead-1,kstart:kstart+kahead -1),-1)
...

+ eye(kahead,kahead);
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X = LA $\backslash$ A(kstart:kstart+kahead -1,j+1:j+kcols); %
dtrsm

A(kstart:kstart+kahead -1,j+1:j+kcols) = X;
% Schur complement
jk = min(j+kahead,n);
A(j+1:m,j+1:jk) = A(j+1:m,j+1:jk)...
- A(j+1:m,kstart:kstart+kahead -1) * A(kstart:kstart+kahead-1,
j+1:jk); % dgemm

end % for j
% Handle pivot permutations on the way out of the recursion
npived = bitand(int64(nstep),int64(-nstep));
j = nstep - npived;
while j > 0
ntopiv = bitand(int64(j),int64(-j));
for i=j+1:nstep
A([i,ipiv(i)],j-ntopiv+1:j) = A([ipiv(i),i],j-ntopiv+1:j); %

dlaswp
end % for i
j = j - ntopiv;
end % while
% this is not in dgetrf
% Assume m >= n
L = zeros(m,n);
L(1:m,1:n) = tril(A(1:m,1:n),-1) + eye(m,n);
U = triu(A(1:n,1:n));
P = eye(m,m);
for i=1:m
P([i,ipiv(i)],:) = P([ipiv(i),i],:);
end % for i

Let us consider a random matrix of order 300. Figure 2.11 shows the computing times as
functions of the block (panel) size nb for different Matlab versions of the LU factorization with
partial pivoting: the unblocked algorithm dgetf2, the blocked Crout version dgetfr_c, the
blocked left-looking version dgetfr_lk, the recursive algorithm dgetfr_r and a version sim-
ilar to the LAPACK standard dgetrf. Note that the computing times are subject to variations
and that the respective merits of the algorithms may not be the same when coded in Fortran or
C when using BLAS3. Moreover, Matlab’s lu, which is a built-in function, is much faster than
these implementations using m-files, in fact about 10 times faster on the old PC used for these
experiments. Figure 2.12 shows the norms ‖PA− LU‖ as functions of the block size. There is
not much difference in the norms.

For the experiments in figures 2.13-2.14 we use a random matrix of order 1000 that we denote
by A1000 and we compute the LU factorizations of the principal submatrices Ak = A(1 : k, 1 :
k). Figure 2.13 shows that the blocked versions (with a block size nb equal 40) and the recursive
one are asymptotically faster than the unblocked algorithm. The norms in Figure 2.14 are more
or less the same even though the Crout version is asymptotically the best.

Other packages for dense matrices were developed in the 1990s and later, but they were not
as successful as LAPACK. Over the years, other data distributions were proposed. For instance,
since a given data distribution may not be efficient for all the phases of an LU factorization.
G. Ballard, J.W. Demmel, B. Lipshitz, O. Schwartz, and S. Toledo [92] introduced a shape mor-
phing procedure that dynamically matches the layout to the computation throughout the algo-
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rithm, switching the data layout of parts of the matrix back and forth between column-major
layout and recursive block-contiguous layout.

2.12 Parallel solution of general linear systems
Many algorithms have been developed for solving linear systems on parallel computers since they
became commercially available in the 1970s. Devising parallel versions of Gaussian elimination
is not so easy since, at first sight, elimination is a sequential process. The main problems are
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the pivoting strategy and how to distribute the matrix for distributed memory computers. In
the following, we review some approaches to these problems for dense matrices and show the
progresses that had been made over the years. We start by considering triangular systems on
distributed memory architectures.

2.12.1 Triangular systems

Although this accounts only for a small fraction of the overall computing time when solving gen-
eral linear systems on sequential computers, solving triangular systems might be a bottleneck on
parallel computers if not implemented efficiently. It is an interesting challenge for parallel com-
puting. It might seem a very sequential task since the unknowns must be computed in sequence,
one after the other. Nevertheless, many parallel algorithms have been devised for this problem,
see the survey by D. Heller [622] in 1978 and, for instance, the early papers by S.C. Chen and
D.J. Kuck [245], A.H. Sameh and R.P. Brent [987], S.C. Chen, D.J. Kuck, and A.H. Sameh
[246]. Several of the oldest algorithms assumed that O(n3) processors were available for a sys-
tem of order n and they were not of practical interest at that time since the number of processors
was quite limited, see D. Heller [621], or some of these algorithms were unstable, see L. Csanky
[293].

We observe that the method described in [987] is quite different from the others. It uses the
fact that the inverse of a lower triangular matrix L can be written as L−1 = L−1

n L−1
n−1 · · ·L

−1
1 ,

where

L−1
k =



1
. . .

1
`k,k

− `k+1,k

`k,k
1

...
. . .

− `n,k`k,k
1


.

Assuming n is even, the product for L−1 is started as n/2 products that can be computed in
parallel,

L−1 = (L−1
n L−1

n−1) (L−1
n−2L

−1
n−3) · · · (L−1

2 L−1
1 ).

This is repeated in the next stages until there is only one term which multiplied by the right-hand
side gives the solution. Of course, the degree of parallelism is decreasing with the number of
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steps. There was no numerical experiments on a parallel computer in [987]. This algorithm is
also described in the more recent book [486] by E. Gallopoulos, B. Philippe, and A.H. Sameh.

Many papers were published in the 1980s about the implementation of LU factorization and
triangular solves on hypercube parallel computers that were quite popular at that time. Let us cite
R.M. Chamberlain [216, 217], G.A. Geist and M.T. Heath [500], C.B. Moler [834], C.H. Romine
and J.M. Ortega 1986 [950], G. Li and T.F. Coleman [736, 737]. These implementations dis-
tributed the rows or the columns of the triangular matrix in the local memories of the processors.
Some of them assumed a particular (virtual) topology of the communication network. Let us
briefly explain what was proposed by M.T. Heath and C.H. Romine [619] and S.C. Eisenstat,
M.T. Heath, C.S. Henkel, and C.H. Romine [405] at the end of the 1980s.

To distribute the rows or columns, we define a mapping map giving the processor number to
which a row or column is mapped. The most commonly used one at these times is known as the
wrap mapping. Assuming that n is a multiple of the number of processors, it is defined as,(

j : 1 2 3 . . . p p+ 1 . . . 2p 2p+ 1 . . . n
map(j) : 1 2 3 . . . p 1 . . . p 1 . . . p

)
where p is the number of processors. This mapping can be generalized by considering blocks
of consecutive rows or columns instead of individual rows or columns, as it was suggested by
V.Y. Pan [901]. Doing this decreases the communication time but may increase load imbalance.
Methods using these block mappings are called panel methods in E. Rothberg’s Ph.D. thesis
[957].

People used the two variants of the triangular solve. Let us first consider the axpy algorithm
for a lower triangular solve on a distributed memory computer. It is obvious that the modifica-
tions of the components of the right-hand side b due to one column can be computed in parallel
if the matrix is distributed by rows. Assume that each processor has a set {myrows} containing
the indices of the rows (as well as right-hand side and solution components) the memory of the
processor is storing. As soon as the xj component of the solution is computed by processor num-
ber j, it must be broadcasted to all the other processors. This is called a fan-out operation. The
notation Fan-out(x,proc) means that processor proc sends x (located in its local memory) to
all the other processors. Of course, sending just one word of data is not really efficient because
of the latency of the send operation. Sending a message of ` words costs t = t0 + τ`, t0 is the
start-up time (or latency). The efficiency depends on the value of t0 relatively to τ and `. For
sending only one word, the cost is essentially the start-up time. The algorithm (the code running
on one processor) looks like the following (see [619]),
for j = 1:n
if j ∈ { myrows }
x(j) = b(j) / L(j,j);
fan-out(x(j),map(j))
else
wait for x(j)
endif
for i ∈ { myrows }
b(i) = b(i) - L(i,j) * x(j);
end

end

The implementation of the fan-out operation depends on the computer architecture, particu-
larly the topology of the communication network. It provides the necessary synchronization since
one processor sends data and all the others wait to receive it. This algorithm can be efficient only
on computers with a small latency. Otherwise, much of the time is spent in communications.
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To obtain some parallelism in the inner loop for the dot product algorithm, the data has
to be distributed by columns or block of columns. Then, each processor can compute the
L(i,j)*x(j) term for j in its column index set { mycolumns }. These partial contributions
must be added to those of the other processors to obtain the dot product. This is done in a fan-in
operation: Fan-in(x,proc) means that processor proc receives the sum of all the x’s over all
processors. Other algorithms were devised that look for parallelism in the outer loop, such as
wavefront algorithms or cyclic algorithms; see M.T. Heath and C.H. Romine [619], G. Li and
T.F. Coleman [736, 737]) who assumed an embedding on a ring topology with a wrap mapping
of the matrix columns. They solved systems of order up to n = 2000.

Some people tried other data distributions. L.D.J.C. Loyens and R.H. Bisseling [766], and
R.H. Bisseling and J.G.G. van de Vorst [127], used a square grid cyclic distribution in which `i,j
is stored in processor (imod q, j mod q) when p = q×q. Their algorithm is dot product-oriented
with neighbour to neighbour communication. It was programmed in Occam 2 on a network of
transputers with at most 36 processors, for solving systems up to n = 1200 in single precision.

In the 1970s and 1980s, many people used models of the computation to try to estimate the
volume of communications and the speed up one can expect from a parallel algorithm. E.E. San-
tos [988] used a so-called LogP model to obtain lower bounds for computation times and data
layout in parallel trinagular solvers for several data distributions. This study shows that block
data layout and block-cyclic layouts can incur higher running times than those of many other
common data layouts, such as row-column wrapped. Unfortunately, no comparisons of these
results with real computations were done.

Computer architectures and performances changed over the years as we have seen in Chap-
ter 1. In the beginning of the 1990s, a de facto standard for message passing, the Message
Passing Interface (MPI), was defined and adopted by many computer companies. It facilitated
the portability of the parallel programs and an abstraction from the network topology.

The package ScaLAPACK was intended to be a parallel version of a subset of the LAPACK
library. The development started at the beginning of the 1990s and it was first released in 1995
[253]. It was mainly written in Fortran at the University of Tennessee and used a block cyclic
data distribution for dense matrices as well as block-partitioned algorithms. This data distribution
means that map(Li,j)=((i−1) mod p, (j−1) mod q) on a p× q processor grid. A ScaLAPACK
users’ guide [132] was published in 1997. Extensions were developed later [317].

The benefits of blocked and recursive algorithms, as well as appropriate data distributions,
were discussed by E. Elmroth, F.G. Gustavson, I. Jonsson, and B. Kågström [421]. P. Stpiczyński
[1049] described a new data distribution for block triangular matrices and made numerical ex-
periments on a parallel computer up to n = 16, 000.

In 1965, G.E. Moore, who was the co-founder of Intel, stated that the number of transistors in
integrated circuits doubles about every year. This was later known as Moore’s law, even though
it was not a law of physics, but just based on observations. In the mid-1970s, Moore revised his
“law” to doubling every two years. Unfortunately, after some time, in the beginning of the 2000s
the rate of increase started to slow down. It became difficult to increase again the frequency and
the microprocessor companies started to put several processing units on one chip. This induced
a change of terminology; these processing units that would have been called processors before
are now known as cores. A processor has several or many cores, becoming a parallel computer
with, eventually, a shared memory. There are multicore chips with tens of cores that are used in
supercomputers.

To further increase the computational speed, computer manufacturers relied on special pur-
pose computing engines, known as GPUs, that were initially designed for computations related to
graphic devices. GPUs have their own memory and have a larger degree of parallelism than mul-
ticore chips. Today’s supercomputers mainly owe their computing power from GPUs. Therefore,
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there were many attempts to devise efficient implementations of dense numerical linear algebra
on these devices. We can cite the MAGMA and PLASMA (Parallel Linear Algebra Software for
Multicore Architectures) libraries developed at the University of Tennessee.

Other works specifically related to triangular systems are [1116] by T. Wicky, E. Solomonik,
and T. Hoefler, considering systems with multiple right-hand sides and using inversion of diag-
onal blocks, [236, 235] by A. Charara, D.E. Keyes, and H. Ltaief with the implementation on
GPUs of a recursive block method for multiple right-hand sides.

More recently, another library, named SLATE (Software for Linear Algebra Targeting Exas-
cale), was in development at the University of Tennessee [496]. It adopts a new data distribution
since a matrix is a “loose” collection of tiles (that is, submatrices) without any constraints on the
memory location of any tile with respect to the others. The distribution of tiles can be arbitrary,
but the default is a 2D cyclic distribution. It means that, for a triangular matrix, it is not necessary
to store the whole matrix. The goal of SLATE is to replace ScaLAPACK with a better perfor-
mance potential and maximum scalability on modern, many-node high-performance computers
with large numbers of cores and multiple hardware accelerators per node.

2.12.2 LU factorization

A main issue when implementing LU factorization on distributed memory computers is the dis-
tribution of the matrix in the local memories of the processing units. As we have seen above,
many implementations in the 1980s and 1980s used distributions in which one column or one
row is assigned to one processor with a wrap mapping. Another important issue is pivoting. Most
of the time, partial pivoting was used. Finding the pivot at one step is easy if the matrix is dis-
tributed by columns. But, then, the pivot information has to be broadcast to the other processors.
A straightforward implementation looks like the following.

for k = 1:n-1
if k ∈ { mycolumns }
find pivot index r
for i=k+1:n
m(i,k) = a(i,k) / a(k,k)

end
broadcast m and pivot index
else
receive m and pivot index
end
for j> k & j ∈ { mycolumns }
for i = k+1:n
a(i,j)=a(i,j) - m(i,k) * a(k,j)

end
end

end

Many of the implementation in the 1980s and early 1990s were devised for hypercube com-
puters without too many processors. G.A. Geist [499] used a scheduling of tasks such that the
pivot search is completely masked. Other implementations on hypercubes were [216, 217] by
R.M. Chamberlain, [261] by E. Chu and A. George who used a simple load-balancing scheme
to maintain computational balance in the presence of pivoting with an explicit exchange of rows,
[501] by G.A. Geist and C.H. Romine where pipelining is used to mask the cost of pivoting,
[339] by F. Desprez, B. Tourancheau, and J.J. Dongarra who used a column distribution and
pipelining, [37] by M. Angelaccio and M. Clajanni with a subcube matrix decomposition.
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More efficient algorithms can be obtained if the data is partitioned by blocks, see J.J. Don-
garra and D.W. Walker [353]. Independent data distributions are used for rows and columns. An
object m (a piece of row or column) is mapped to a couple (p, i), p being the processor number
and i the location in the local memory of that processor. By using wrapping, we have

m −→ (m modp, bm/pc).

Blocking consists of assigning contiguous entries to processors by blocks,

m −→ (bm/Lc,m modL), L = dm/pe.

The block cyclic distribution is a combination of both. Blocks of consecutive data are distributed
by wrapping,

m −→ (q, b, i),

where q is the processor number, b the block number in processor q and i the index in block b. If
there are r data objects in a block, then

m −→
(⌊

m modT

r

⌋
,
⌊m
T

⌋
,m modr

)
, T = rp.

To distribute the matrix, independent block cyclic distributions are applied for the rows and
columns. The processors are supposed to be (logically) arranged in a two dimensional mesh
and referred by couples (q1, q2). Communications are required for the pivot search and the
computation of the multipliers. The communications to be done are a broadcast to all processors
and a broadcast to all processors in the same row (or column) in the 2D mesh of processors. For
details, see [353], and also E. Rothberg [957]. A taxonomy of distributed dense LU factorization
methods was proposed by C.C. Ashcraft [48, 49].

At the end of the 1980s, experiments were done on vector multiprocessors; see, for instance,
T.C. Oppe and D.R. Kincaid [882] who tried several variants of LU factorization on a CRAY
X-MP/4 and M.J. Daydé and I.S.Duff [316] who studied the impact of Level 3 BLAS in LU
factorization on the Cray 2, the ETA-10P, and the IBM 3090/VF.

As we said above, ScaLAPACK is a parallel version of a subset of the LAPACK library, de-
veloped in the mid-1990s; see J. Choi, J.J. Dongarra, S. Ostrouchov, A. Petitet D. Walker, and
R.C. Whaley [252] for the design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines. The DGETRF routine in LAPACK implements a blocked LU factoriza-
tion. The algorithm iterates over block columns (panels). At each step, the LU factorization
with partial pivoting of the current panel is computed, a block row of U is determined, and the
trailing matrix is updated. The PDGETRF routine in ScaLAPACK distributes the input matrix
over processors using a block cyclic layout. With this partition, every column is distributed over
several processors. Finding the maximum element in a column of L for partial pivoting incurs
one reduction operation among processors.

In the 2000s, supercomputers were evolving towards machines with multi-core processors
and GPU accelerators. More and more, communication was the bottleneck of LU factorization
and other implementations were devised to adapt the algorithms to the new architectures. New
libraries were made available. MAGMA (Matrix Algebra on GPU and Multi-core Architectures)
LU factorization does a CPU factorization of the panel, with look-ahead, update of another panel
on GPU which is sent back to CPU for factorization while the GPU updates the rest of the panels,
see S. Tomov, J.J. Dongarra, and M. Baboulin [1067].

Reducing the communication time became the key factor to obtain good performances. At
the beginning of the 2000s, D. Irony and S. Toledo [667] used a 3-dimensional data distribution
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in which every processor is responsible for a 3D subcube. Their approach led to less communi-
cations but more temporary storage.

In 2008-2010, J.W. Demmel, L. Grigori, and H. Xiang [574, 335, 575] introduced CALU, a
communication avoiding Gaussian elimination. Communication avoiding refers to algorithms
that reduce the communication to a minimum, while being numerically as stable as classic al-
gorithms, and without a significant increase of the number of floating-point operations. The
main novelty of their approach was the way the pivots are found when factorizing a panel. Their
method is called tournament pivoting. Let us explain this strategy for a first panel of dimension
n × nb. It has the property that the communication for computing the panel factorization does
not depend on the number of columns, but only on the number of processors in the parallel case.
A preprocessing step aims at finding, at low communication cost, nb rows that can be used as
pivots to factor the entire panel. Let us assume that we have p = 4 processing units and that n
is a multiple of 4. The n × nb panel is partitioned into four blocks of size n/4 × nb which are
factored independently using a standard Gaussian elimination with partial pivoting (GEPP) as

A:,1:nb =


A1

A2

A3

A4

 =


P1,1L1,1U1,1

P2,1L2,1U2,1

P3,1L3,1U3,1

P4,1L4,1U4,1

 = P1L1U1,

where P1 and L1 are block diagonal matrices. Then, we have four sets of nb potential pivot
rows. The global pivot rows are obtained from these four sets by performing a binary tree of
GEPP factorizations of matrices of size 2nb × nb, grouping the blocks two by two,

(PT1 A)1:nb,1:nb

(PT1 A)n4+1:n4+nb,1:nb

(PT1 A)2n4+1:2n4+nb,1:nb

(PT1 A)3n4+1:3n4+nb,1:nb

 =

(
P1,2L1,2U1,2

P2,2L2,2U2,2

)
= P2L2U2,

where n4 = n/4. We extend P2 by identity matrices to the dimensions of P1 and we proceed to
the last step, (

(PT2 P
T
1 A)1:nb,1:nb

(PT2 P
T
1 A)2n4+1:2n4+nb,1:nb

)
= P1,3L1,3U1,3 = P3L3U3.

This provides us with the nb global pivots. Then, these nb rows are permuted into the first
positions of the panel and the LU factorization without pivoting of the entire panel is performed.
In general, there are around log2 p stages. Other reduction trees than a binary tree can be used.
The found pivots may be different from those of GEPP. Tournament pivoting reduces to partial
pivoting when nb = 1. A stability analysis was done in [575], but the upper bound of the growth
factor is worse than with GEPP. Note also that the degree of parallelism is decreasing at each
stage of the reduction tree. Communication lower bounds for QR and LU factorization are given
in [334].

For the experiments in Figure 2.15 we used the same random matrix A1000 of order 1000 as
above and we computed the LU factorizations of the principal submatrices Ak = A(1 : k, 1 : k).
It shows ‖PA − LU‖ for several values of p for tournament pivoting, as well as the norms for
unblocked and blocked GEPP. We see that the norms are larger with tournament pivoting. The
computing times can be smaller on a parallel computer, but there is no reason to use tournament
pivoting on a sequential computer since most of the time is spent in the factorization of parts of
the panels, just to find the pivots.

E. Solomonik and J.W. Demmel [1029] introduced what they called 2.5D matrix multipli-
cation and LU factorization algorithms with the use of tournament pivoting. With c copies of



144 2. Gaussian elimination for general linear systems

n

500 550 600 650 700 750 800 850 900 950 1000

n
o

rm

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

dgetf2

dgetrf

dgetrftp16

dgetrftp32

dgetrftp64

dgetrftp128

Figure 2.15. ‖PA− LU‖ as a function of n, nb=40, tournament pivoting and GEPP

the input data, this algorithm reduces the number of words moved by a factor of
√
c, but it send√

c more messages. They showed that using extra memory cannot reduce the latency cost of LU
below the 2D standard algorithm.

Starting from 2010, many papers appeared describing implementations of LU factorization
on computers using GPU accelerators. In [1110] F. Wang, C.Q. Yang, Y.F. Du, J. Chen, H.Z. Yi,
and W.X. Xu reported on the implementation of the High Performance Linpack benchmark on
the TianHe-1 Chinese supercomputer which obtained a 0.563 Pflops performance in 2009.

E.F. D’Azevedo and J.C. Hill [321] proposed a left-looking algorithm for complex matrices
based on ScaLAPACK whose aim was to minimize the data transfer between the CPU host and
the GPU memory.

M. Baboulin, S. Donfack, J.J. Dongarra, L. Grigori, A. Rémy, and S. Tomov [78] studied
two approaches to reduce the communication overhead due to pivoting on hybrid CPU/GPU
architectures. The first one is based on tournament pivoting using two levels of blocking. On
the CPU, each panel of width nb is subdivided into several panels of smaller widths which are
tuned to optimize the utilization of the multicore cache. The matrix-matrix update of the trailing
submatrix is done on the GPUs. A look-ahead technique is used to overlap the computations of
the CPU and GPU. As soon as a new panel has been computed in the GPU, it is sent to the CPU.
Experiments are reported in [78] with a 48-core CPU and one GPU. The second algorithm used
recursive butterfly transformations that we have described in Section 2.2.3 with only two levels
of recursion (PBRT). The matrix UTAV , where U and V are two random PBRTs, is factorized
without pivoting, followed with iterative refinement in the working precision.

For the experiments in Figure 2.16 we use a random matrix of order 1024 = 210 and we
compute the LU factorizations of the principal submatrices Ak = A(1 : k, 1 : k) for k = 2j , j =
4 : 10. We use two levels of recursion in the construction of the RBTs and we plot the `2 norm
of the error where the exact solution of each linear system is a given random vector. One can see
that the error is much larger with RBT, but that two steps of iterative refinement give an error of
the same order or better than with GEPP.

Y. Jia, P. Luszczek, and J.J. Dongarra [681] described a multi-core, multi-GPU implemen-
tation of recursive LU factorization [588]. A number of CPU cores are dedicated to the panel
factorizations. The rest of the CPU cores are used for the update of the trailing submatrix. All
the GPUs are used only for the submatrix update. The authors solved problems of order n up
to 32, 000 with 4 GPUs and reached 46% of the theoretical computational peak. A parallel
fine-grained recursive formulation of the panel factorizations was exploited by J.J. Dongarra,
M. Faverge, H. Ltaief, and P. Luszczek [349]. It is based on conflict-free partitioning of the data
and lockless synchronization mechanisms.
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Figure 2.16. Norm of error as a function of n, RBT, d = 2 with and without iterative refinement
and GEPP

In [700], A. Khabou, J.W. Demmel, L. Grigori, and M. Gu revisited the CALU algorithm.
In the new algorithm, a panel is factored by computing the strong rank revealing QR (RRQR)
factorization of its transpose. The permutation which is obtained is applied to the rows of the
matrix A, and the block L factor of the panel is computed based on the R factor of the strong
RRQR factorization. Doing this, they obtained better bounds of the growth factor than with
CALU.

An interesting review of the evolution of computers and software for solving dense linear
systems was written by P. Luszczek, J. Kurzak, and J.J. Dongarra [769] in 2014. It shows than in
order to adapt to the new computer architectures, the codes are getting more and more intricate.
That same year, J.J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek described a recursive tile
LU factorization with partial pivoting [350]. Their idea was to arrange the original dense matrix
into small square regions of data (tiles) that are contiguous in memory to fit into the core’s
caches in multicore architectures. M. Faverge, J. Herrmann, J. Langou, B. Lowery, Y. Robert,
and J.J. Dongarra [444] mixed LU and QR factorization algorithms, dynamically alternating LU
with local pivoting and QR elimination steps, based upon some robustness criterion. The hybrid
algorithm executes a QR step when a robustness criterion detects some risk for instability, and
they execute an LU step otherwise. Porting the PLASMA library to the OpenMP standard for
shared memory architectures was described in [1138].

More recently, the SLATE library stores the matrix as a collection of individual tiles. This is
a flexible data distribution since it can be used for holding many different matrix types and tiles
can easily be moved or copied among different memory spaces. Tile indexing is global, and each
computer node stores only its local subset of tiles. By default, mapping of tiles is a 2D block
cyclic mapping. For details, see J. Kurzak, M. Gates, A. Charara, A. YarKhan, I. Yamazaki,
and J.J. Dongarra [716]. Tournament pivoting in SLATE is described in R. Alomairy, M. Gates,
S. Cayrols, D. Sukkari, K. Akbudak, A. YarKhan, P. Bagwell, and J.J. Dongarra [14]. They
showed computational speeds for matrices of order up to n = 307, 200.

N. Lindquist, M. Gates, P. Luszczek, and J.J. Dongarra [749] used threshold pivoting. It
means that the pivot is selected such that |ai,i| ≥ τ |aj,i|, j = i, . . . , n with 0 ≤ τ ≤ 1. In step k,
this is used for all processors except the one holding ak,k. This method reduces the inter-process
exchanges and data movement.

As we have seen in Chapter 1, Section 1.21, a new trend in numerical linear algebra is the
use of mixed-precision computations. GPU’s computations are much faster in single, or even
half-precision. Therefore, LU factorization did not escape from this trend.

The mixed-precision iterative refinement algorithm described by A. Haidar, H. Bayraktar,
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S. Tomov, J.J. Dongarra, and N.J. Higham [609] computes an LU factorization in low precision,
uses the LU factors to compute an initial approximation x0, and then computes an iterative re-
finement process in double precision (fp64) arithmetic. This work is based on the three-precision
algorithm of E.C. Carson and N.J. Higham [205], and computes using tensor cores on GPUs.
Tensor cores are a special type of unit that computes D = C+AB, where all matrices are 4×4,
A and B must be stored in fp16, and C and D can be in fp16 or fp32. The LU factorization itself
is done using two precisions, the panel factorizations and the triangular solves are done in fp32
and the trailing matrix updates are done in fp16 on the tensor cores but with an output in fp32.
The GMRES iterative algorithm (see Chapter 6) preconditioned by the low-precision LU factors
is used for the iterative refinement or as an iterative method by itself to solve Ax = b. On this
type of algorithms, see also [610].

In [765], F. Lopez and T. Mary stored the matrix in fp16. In their left-looking factorization
without pivoting, using fp16 LU factors with fp32 buffers, the fp32 buffers are used to accumulate
the output of fp16 multiplications in fp32. They also studied variants with panel factorization
entirely in fp32 arithmetic or with a doubly partitioned factorization algorithm that exploits GPU
tensor cores in the panel factorization.

The fastest LU factorization that has been registered so far (end of 2022) was obtained with
the HP Linpack benchmark on the Oak Ridge National Laboratory Frontier supercomputer, see
[351]. This machine has 9408 nodes, each node having one AMD EPYC 64-core CPU and four
AMD Instinct MI250X GPU accelerators with 220 cores each. The benchmark was run on May
27, 2022 with a dense matrix of order n = 24, 440, 832. The measured speed was 1.102 Eflops
which is 66% of the peak. It took 8, 828.74 seconds (2.45 hours) to complete the solve.

2.13 The Gauss-Jordan algorithm
This method was introduced independently by W. Jordan [687] and B.I. Clasen [268] in 1888.
For a (brief) history of Gauss-Jordan elimination, see S.C. Althoen and R. McLaughlin [17] or
[160]. In Gaussian elimination, at a given step, we eliminate the entries below the diagonal in a
column of A to transform the matrix into an upper triangular form. Gauss-Jordan also eliminates
the entries above the diagonal to reduce the matrix to a diagonal form. Let us illustrate that with
a small example from [242],

A =


5 1 2 1
2 10 3 1
1 4 8 2
6 2 4 20

 , b =


17
35
41
102

 , x =


1
2
3
4

 . (2.11)

Note that the matrix A is strictly diagonally dominant and therefore nonsingular. Moreover, we
do not need pivoting. In the first step, which is similar to what is done in Gaussian elimination,
we multiply A by the elementary matrix J−1

1 ,

J−1
1 =


1 0 0 0
−0.4 1 0 0
−0.2 0 1 0
−1.2 0 0 1

→ J−1
1 A =


5 1 2 1
0 9.6 2.2 0.6
0 3.8 7.6 1.8
0 0.8 1.6 18.8

 .

In the second step we eliminate in the second column,

J−1
2 =


1 −0.1042 0 0
0 1 0 0
0 −0.3958 1 0
0 −0.08333 0 1

→ J−1
2 J−1

1 A =


5 0 1.771 0.9375
0 9.6 2.2 0.6
0 0 6.729 1.563
0 0 1.417 18.75

 .
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Eliminating in the third column we obtain,

J−1
3 =


1 0 −0.2632 0
0 1 −0.3269 0
0 0 1 0
0 0 −0.2105 1

→ J−1
3 J−1

2 J−1
1 A =


5 0 0 0.5263
0 9.6 0 0.08916
0 0 6.729 1.563
0 0 0 18.42

 .

Finally, the last step is

J−1
4 =→


1 0 0 −0.02857
0 1 0 −0.00484
0 0 1 −0.08482
0 0 0 1

→ J−1
4 J−1

3 J−1
2 J−1

1 A =


5 0 0 0
0 9.6 0 0
0 0 6.729 0
0 0 0 18.42

 .

The last matrix is diagonal. Multiplying the right-hand side by J−1
4 J−1

3 J−1
2 J−1

1 , which is a
dense matrix, and dividing by the diagonal entries of the last matrix, we obtain the solution of
the linear system. The inverse of A is also easily obtained without any triangular solve.

Let us now consider the general case. At step k we multiply the current matrix Ak by

J−1
k =



1 − a
(k)

1,k

a
(k)

k,k

. . .
...

1 −a
(k)

k−1,k

a
(k)

k,k

1

−a
(k)

k+1,k

a
(k)

k,k

1

...
. . .

−a
(k)

n,k

a
(k)

k,k

1


.

The inverse Jk is obtained by changing − to + in the kth column. To relate this to what is done
in Gaussian elimination, we observe that

J−1
k =



1 − a
(k)

1,k

a
(k)

k,k

. . .
...

1 −a
(k)

k−1,k

a
(k)

k,k

1
0 1
...

. . .
0 1





1 0
. . .

...
1 0

1

−a
(k)

k+1,k

a
(k)

k,k

1

...
. . .

−a
(k)

n,k

a
(k)

k,k

1


.

The matrix on the right is the matrix L−1
k in the standard Gaussian elimination. Let U−1

k be the
other matrix in the product such that J−1

k = U−1
k L−1

k . These two matrices commute. Moreover,
as observed in [242], U−1

j L−1
i = L−1

i U−1
j . Since

U−1
n−1L

−1
n−1 · · ·U

−1
1 L−1

1 A = D,

with a diagonal D, we obtain

U−1
n−1 · · ·U

−1
1 L−1

n−1 · · ·L
−1
1 A = D.
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Hence, A = LU with
L = L1 · · ·Ln−1, U = U1 · · ·Un−1D.

Of course, we can also introduce pivoting in the Gauss-Jordan algorithm. The following code
solves Ax = b using the Gauss-Jordan algorithm with row pivoting (pivot search in column and
exchange of rows). Of course, we do not compute the matrices J−1

k , but just the multipliers
which are needed to update the right part of the matrix and the right-hand side.

function [x, info] = dgjsv(A,b);
[m,n] = size(A);
info = 0;
for j=1:min(m,n)
% Find pivot and test for singularity
[~,I] = max(abs(A(j:m,j)));
jp = j - 1 + I(1); % global index of the pivot
if A(jp,j) ~= 0
% Apply the interchange to columns j:n
if jp ~= j
A([j,jp],j:n) = A([jp,j],j:n);
b([j,jp]) = b([jp,j]);
end % if
% Compute elements 1:m of j-th column
rowind = [1:j-1, j+1:m];
mult = A(rowind,j) / A(j,j);
elseif info == 0
info = j;
end % if jp
% Update trailing submatrix
jm = rowind;
jn = j:n;
u = -mult;
v = A(j,j:n);
A(jm,jn) = prank1(A(jm,jn),u,v); % rank-one update of A(jm,jn)
b(jm) = b(jm) - mult * b(j);
end % for j
x = b ./ diag(A);

The stability of the Gauss-Jordan algorithm with partial pivoting was studied by G. Peters
and J.H. Wilkinson [915] in the 1970s. They stated that this algorithm “is commonly regarded
as suspect. It is shown that in many respects suspicions are unfounded, and in general the abso-
lute error in the solution is strictly comparable with that corresponding to Gaussian elimination
with partial pivoting plus back substitution. However, when A is ill-conditioned, the residual
corresponding to the Gauss-Jordan solution will often be much greater than that corresponding
to the Gaussian elimination solution”. People also observe that a drawback of Gauss-Jordan is
that the operation count for solving Ax = b is n3 + 2n− 3, that is, 50% more than for Gaussian
elimination.

A more recent rounding error analysis was done by N.J. Higham [633]. He considered Gauss-
Jordan elimination as a two-phase algorithm, one to compute an upper triangular matrix U and a
second one to reduce U to a diagonal matrix. The final result of the two phases is that

|xex − x| ≤ (n− 1)γ3(1 + γ3)n−2|X| (|U | |x|+ |y|), X = U−1 +O(u),
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where x is the Gauss-Jordan solution, y is the result of the first phase, xex is the exact solution,
and u is the unit roundoff. Finally, using an error analysis for the first phase, it holds

|b−Ax| ≤ 9nu|L| |U | |U−1| |U | |x|+O(u2),

|xex − x| ≤ 2nu(|A−1| |L| |U |+ 3|U−1| |U |) |x|+O(u2).

One can see that U−1 is involved in these bounds. The backward error can be guaranteed to
be small only if U is well-conditioned. Gauss-Jordan with partial pivoting is normwise forward
stable and, even without pivoting, it is forward stable for symmetric positive definite matrices.

Up to the 1980s, despite what was written by G. Peters and J.H. Wilkinson, Gauss-Jordan had
a bad reputation. It was “rehabilitated” by T.J. Dekker and W. Hoffmann [329] in 1989. They
noticed that Gauss-Jordan with pivoting by searching the pivot in rows and exchanging columns
has good numerical properties and that it is well suited for use on vector computers that were
in favor at that time. They also gave a normwise error analysis; see also W. Hoffmann’s thesis
[641] and [640].

A Gauss-Jordan code with pivot search in rows and column exchanges is the following. Note
that we have to do a permutation of the components of the solution at the end because of the
column exchanges.

function [x,info] = dgjsvr(A,b);
[m,n] = size(A);
col = 1:m;
info = 0;
for j=1:min(m,n)
% Find pivot in row j and test for singularity
[~,I] = max(abs(A(j,j:n)));
jp = j - 1 + I(1);
if A(j,jp) ~= 0
% Apply the column interchange
if jp ~= j
A(:,[j,jp]) = A(:,[jp,j]);
col([j,jp]) = col([jp,j]);
end % if jp
% Compute elements 1:m of j-th column
rowind = [1:j-1, j+1:m];
t = 1 / A(j,j);
mult = t * A(rowind,j);
elseif info == 0
info = j;
end % if A
% Update trailing submatrix and rhs
jm = rowind;
jn = j:n;
u = -mult;
v = A(j,j:n);
A(jm,jn) = prank1(A(jm,jn),u,v); % rank-one update of A(jm,jn)
b(jm) = b(jm) - mult * b(j);
end % for j
x = b ./ diag(A);
ip = invperm(col); % inverse permutation
x = x(ip,:);
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As for what can be done for Gaussian elimination, Y. Li [743] related the entries of the matrix
Ak obtained at step k of the Gauss-Jordan algorithm to ratios of determinants. A more direct and
simpler proof by induction was given by N. Van Tran, J. Justino, and I. van den Berg [1092].

The Gauss-Jordan algorithm is better suited to parallel computing than Gaussian elimination.
This was already noticed in the 1970s and 1980s, see T.D. Kimura [703], and R.G. Melhem [797].
T.J. Dekker, W. Hoffmann, and K. Potma [330] described parallel algorithms for solving large
linear systems, including Gauss-Jordan. In the 21st century, we can cite N. Melab, E-G. Talbi,
and S. Petiton [796] who proposed a parallel adaptive block Gauss-Jordan algorithm to compute
the inverse, but without pivoting, P.D. Michailidis and K.G. Margaritis [831] who described
an OpenMP pipelined implementation on a multicore platform, and, more recently, J.-P. David
[307] with a low latency and division free Gauss-Jordan solver, as well as H. Anzt, J.J. Dongarra,
G. Flegar, and E.S. Quintana-Ortí [39] with a GPU implementation of Gauss-Jordan to compute
block Jacobi preconditioners.

A parallel block Gauss-Jordan was studied by O. Tingleff [1061]. It is relatively easy to
develop a blocked Gauss-Jordan algorithm where nb columns (a panel) are handled together. A
prototype code is the following.

function [x,info] = dgbjsvc(A,b,nb);
[m,n] = size(A);
nbl = ceil(m / nb); % number of blocks
for k=1:nbl
% block k
js = (k - 1) * nb + 1; % start of the block
je = min(js + nb - 1,m); % end of the block
% permute the rows, Gauss factorization of the panel
[~,~,info,L,U,row] = dgetf2(A(js:m,js:je));
row = row + js - 1; % global index
A(js:m,:) = A(row,:);
b(js:m) = b(row);
% compute the inverse of the permuted block
nblo = je - js + 1;
Y = L(1:nblo,1:nblo) $\backslash$ eye(nblo,nblo);
IA11 = U \ Y;
A(1:js-1,js:je) = A(1:js-1,js:je) * IA11;
A(je+1:m,js:je) = A(je+1:m,js:je) * IA11;
A(1:js-1,je+1:n) = A(1:js-1,je+1:n) - A(1:js-1,js:je) * A(js:

je,je+1:n);
A(je+1:m,je+1:n) = A(je+1:m,je+1:n) - A(je+1:m,js:je) * A(js:

je,je+1:n);
b(1:js-1,:) = b(1:js-1,:) - A(1:js-1,js:je) * b(js:je,:);
b(je+1:m,:) = b(je+1:m,:) - A(je+1:m,js:je) * b(js:je,:);
A(js:je,js:je) = IA11;
end % for k
x = zeros(m,1);
for k=1:nbl
% block k
js = (k - 1) * nb + 1; % start of the block
je = min(js + nb - 1,m); % end of the block
IA11 = A(js:je,js:je);
x(js:je) = IA11 * b(js:je);
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end % for k

2.14 The Gauss-Huard algorithm
A less well-known elimination method was introduced by P. Huard [655] in 1979. This method
is often called the Gauss-Huard method, even though it was not known to Gauss. The elimination
is done alternatively in rows and columns. We eliminate successively entries in a row to the left
of the diagonal and in column above the diagonal. Let us illustrate that without pivoting on the
small example defined in (2.11). We first scale the first row to have a1,1 = 1, and eliminate the
entry (2, 1) in the second row,

5 1 2 1
2 10 3 1
1 4 8 2
6 2 4 20

→


1 0.2 0.4 0.2
2 10 3 1
1 4 8 2
6 2 4 20

→


1 0.2 0.4 0.2
0 9.6 2.2 0.6
1 4 8 2
6 2 4 20

 .

We observe that the bottom part of the matrix (that is, the last two rows) is not modified. Then,
we scale the second row and eliminate the entry (1, 2), modifying the 2× 2 top-right block,

→


1 0 0.3542 0.1875
0 1 0.2292 0.0625
1 4 8 2
6 2 4 20

 ,

and we continue in the same way, with the third row and third column,

→


1 0 0.3542 0.1875
0 1 0.2292 0.0625
0 0 6.729 1.563
6 2 4 20

→


1 0 0 0.1053
0 1 0 0.009288
0 0 1 0.2322
6 2 4 20

 ,

and we finally obtain an identity matrix after eliminating entries in the last row and last column,

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Applying the same transformations to the right-hand side, we solve Ax = b. The elementary
matrices involved in that process are the following. At the first step, E1 scales the first row, and
H1 eliminates the entry (2, 1),

H1E1 =


1 0 0 0
−2 1 0 0
0 0 1 0
0 0 0 1




0.2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


0.2 0 0 0
−0.4 1 0 0

0 0 1 0
0 0 0 1

 .

At the second step, we have,

H2E2 =


1 0 0 0
0 1 0 0
−1 −4 1 0
0 0 0 1




1 −0.02083 0 0
0 0.1042 0 0
0 0 1 0
0 0 0 1

 =


1 −0.02083 0 0
0 0.1042 0 0
−1 −0.3958 1 0
0 0 0 1

 ,
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and the third step is

H3E3 =


1 0 0 0
0 1 0 0
0 0 1 0
−6 −2 −4 1




1 0 −0.05263 0
0 1 −0.03406 0
0 0 0.1486 0
0 0 0 1

 =


1 0 −0.05263 0
0 1 −0.03406 0
0 0 0.1486 0
−6 −2 −0.2105 1

 .

The last step, to eliminate entries in the last column, is

E4 =


1 0 0 −0.005714
0 1 0 −0.0005042
0 0 1 −0.01261
0 0 0 0.05429

 ,

and H4 = I . The product of all these transformations H4E4H3E3H2E2H1E1 is a dense matrix
(which is, in exact arithmetic, the inverse of A) and we observe that the elementary matrices do
not commute.

A Gauss-Huard code with pivot search in rows and column exchanges is the following.

function [x,info] = dghsvr(A,b);
[m,n] = size(A);
col = 1:n;
info = 0;
% find first pivot in row 1, permute the columns and divide
[~,I] = max(abs(A(1,1:n)));
jp = I(1);
if jp ~= 1
A(:,[1,jp]) = A(:,[jp,1]);
col(1) = col(jp);
col(jp) = 1;
end % if
t = 1 / A(1,1);
A(1,:) = t * A(1,:);
B(1,:) = t * B(1,:);
for j=2:min(m,n)
% modify row j and the rhs
A(j,j:n) = A(j,j:n) - A(j,1:j-1) * A(1:j-1,j:n);
b(j) = b(j) - A(j,1:j-1) * b(1:j-1,);
% Find pivot in row j and test for singularity
[~,I] = max(abs(A(j,j:n)));
jp = j - 1 + I(1);
if A(j,jp) ~= 0
% Apply the interchange
if jp ~= j
A(:,[j,jp]) = A(:,[jp,j]);
col([j,jp]) = col([jp,j]);
end % if jp
elseif info == 0
info = j;
end % if A
% scale row j and the rhs
t = 1 / A(j,j);



2.14. The Gauss-Huard algorithm 153

A(j,j:n) = t * A(j,j:n);
b(j) = t * b(j);
% rank-one update of the top right matrix
m = 1:j-1;
jn = j+1:n;
u = -A(1:j-1,j);
v = A(j,j+1:n);
A(jm,jn) = prank1(A(jm,jn),u,v);
b(jm) = b(jm) - A(jm,j) * b(j);
end % for j
ip = invperm(col); % inverse permutation
x = b(ip);

The Gauss-Huard algorithm is described in K. Chen’s book [242]. One interest of Huard’s
method, when compared to Gauss-Jordan, is that it needs the same number of floating-point
operations than the standard Gaussian elimination. They both transform the matrix to a diagonal
form, but Gauss-Jordan needs 50% more operations.

Gauss-Jordan and Huard’s methods were studied by M. Cosnard, Y. Robert, and D. Trystram
[286] in 1986. They introduced parallel versions for shared-memory computers; see also [287]
in English. Pivoting with column swaps was considered in W. Hoffman’s thesis [641] in 1989.
Results for a parallel version on the Alliant FX/4 were given. A block Gauss-Huard method for
linear solves on parallel computers was constructed by W. Hoffmann, K. Potma, and G. Pronk
[643] in 1994.

The stability of the Gauss-Huard algorithm with column swaps was studied by T.J. Dekker,
W. Hoffmann, and K. Potma [331], see also [330]. They also gave numerical comparisons
of Gauss, Gauss-Jordan, and Gauss-Huard methods on different types of matrices in single-
precision arithmetic. Their conclusion was that Gauss-Huard with column swaps appeared to be
as stable as Gaussian and Gauss-Jordan eliminations with column swaps.

In [723], P. Laurent-Gengoux and D. Trystram showed that, for symmetric matrices, the
Gauss-Huard algorithm without pivoting is equivalent to a conjugate direction method that we
will consider in the next section. W. Hoffmann [642] showed that, without pivoting, the Gauss-
Huard algorithm computes in each step the next row of a unit diagonal matrix U that satisfies
A = LU whereL is lower triangular, like it is done in the ikj form of LU factorization. However,
in the Gauss-Huard algorithm, the row of U that has been computed is not kept.

An implementation of a block Gauss-Huard algorithm was proposed by P. Benner, P. Ezzatti,
E.S. Quintana-Ortí, and A. Remón [109] on computers with multicore processors and GPUs. The
impact of panel factorization on the Gauss-Huard algorithm, and the impossibility of overlapping
the panel factorization stage with the remaining matrix updates was discussed by S. Catalán,
P. Ezzatti, E.S. Quintana-Ortí, and A. Remón [210]. M.A. Hassanein [618] described imple-
mentations of different variants of the block Gauss-Huard algorithm with column pivoting on
a hybrid CPU-GPU architecture. Numerical results show that these algorithms yield solutions
as good as those obtained by Gaussian elimination with partial pivoting and that they are more
suitable for parallel architectures

For the numerical experiments of figures 2.17-2.18, we use the random matrix A1000 and
a random exact solution. We display results for Gaussian elimination (dgetf2 and dgetrf),
Gauss-Jordan with row (resp. column) swaps (dgj, resp. dgjcol), blocked Gauss-Jordan with
row swaps (dgbjrow), Gauss-Huard with column swaps (dghcol), and blocked Gauss-Huard
with column swaps (dgbhcol). Figure 2.17 shows the residual norms. Those of the block
Gauss-Jordan are larger than the other ones. Figure 2.18 displays the error norms. There are of
the same magnitude for all methods.
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Figure 2.17. ‖b−Ax‖ as a function of n, with Gauss, Gauss-Jordan and Gauss-Huard
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Figure 2.18. Error norms as a function of n, with Gauss, Gauss-Jordan and Gauss-Huard

2.15 The Purcell algorithm
This method was introduced by E.W. Purcell [933] in 1953. His purpose was to solve linear
systems on an IBM card programmable calculator whose memory was too small to accommodate
the dense matrix entries. The linear system Ax = b with a nonsingular A is written as

Ây = 0 with Â = (A, −b ) , y =

(
x
1

)
.

Hence, one looks for a vector y in the null space of the n×(n+1) matrix Â. One way to compute
such a vector is the following. Let âi denotes the ith row of Â and V (n+1) be a given matrix of
order n + 1 with linearly independent columns v(n+1)

i . We do n steps i from n to 1. At step i,
we compute new vectors v(i)

k , k = 1, . . . , i as linear combinations of the vectors at step i+ 1,

v
(i)
k = αkv

(i+1)
p + v(i+1)

mk
, k = 1, . . . , i,

where p is a chosen index in {1, 2, . . . , i+1} and mk is the kth index in that set when p has been
removed. The coefficient αk is chosen such that ân+1−iv

(i)
k = 0, that is,

αk = − ân+1−iv
(i+1)
mk

ân+1−iv
(i+1)
p

.



2.15. The Purcell algorithm 155

The integer p can be seen as a pivot index. It is chosen as the index giving the maximum of
|ân+1−iv

(i+1)
j | for j = 1, . . . , i+ 1. In the original method, division by zero or tiny values was

possible. This was considered later by J.P. Roth and D.S Scott [956] in 1956 and C.-H. Lai [720]
in 1997.

With this process, at the first step (i = n), we have â1v
(n)
k = 0, k = 1, . . . , n. For the second

step (i = n − 1), â2v
(n−1)
k = 0, k = 1, . . . , n − 1, but, multiplying the relation for v(n−1)

k by
â1, we see that v(n−1)

k is also orthogonal to â1. By induction, in the end, we obtain that v(1)
1 is

orthogonal to all the rows of Â. The solution x is obtained from the first n components of that
vector divided by its last component.

Usually, V (n+1) is chosen as In+1, the identity matrix of order n + 1, but it can be any
nonsingulat matrix. With the choice of the identity, initially there are many zero entries in the
vectors v(i)

j . Let us illustrate that on the small example defined in (2.11). For the first step
(i = 4), we have p = 5 and m = [1, 2, 3, 4],

α = [0.29412, 0.058824, 0.11765, 0.058824],

V (4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.29412 0.058824 0.11765 0.058824

 .

In the second step (i = 3), p = 1 and m = [2, 3, 4],

α = [0.95745,−0.13475,−0.12766], V (3) =


0.95745 −0.13475 −0.12766

1 0 0
0 1 0
0 0 1

0.34043 0.078014 0.021277

 .

For the third step (i = 2), we obtain p = 1, m = [2, 3],

α = [0.51852, 0.11111], V (2) =


0.36170 −0.021277
0.51852 0.11111

1 0
0 1

0.25453 0.059102

 .

In the last step (i = 1), p = 1, m = [2],

α = [0.75], V (1) =


0.25000
0.5.0000
0.75000

1
0.25000

 .

Dividing the first four components by 0.25, we find the solution x = ( 1 2 3 4 )
T . In double

precision arithmetic the norm of the error is 4.4409 10−16, but there is only one nonzero error
component.

Implementing Purcell’s algorithm with pivoting is particularly simple as shown in the fol-
lowing compact code.
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function x = dpurcell(A,b);
A = [A, -b];
V = eye(n+1,n+1);
for i n:-1:1
ni = n + 1 - i;
av = A(ni,:) * V(:,1:i+1); % dot products , row vector x matrix
[~,I] = max(abs(av));
piv = I(1); % index of largest dot product
m = [1:piv-1, piv+1:i+1];
alp = -av(m) / av(piv);
V = prank1(V(:,m),V(:,piv),alp); % rank-one update of V(:,m)
end % for i
x = V(1:n,1) / V(n+1,1);

Note that the matrix A is not modified in the algorithm and it is accessed one row at a time.
In fact, the rows can be used in any order, as long as we keep a record of the ordering.

Purcell’s algorithm and its relation to Gaussian elimination were studied by K. Zorychta
[1167] in 1964. He proved that the algorithm succeeds in finding the solution if all the principal
minors are different from zero, which is the same condition as for Gaussian elimination. He also
showed how an LU factorization can be computed from Purcell’s method without pivoting. This
was also noticed by F. Sloboda [1022] in 1978, who gave a somewhat different presentation of
Purcell’s method.

The fact that we can obtain an LU factorization when we start from an identity matrix is
easily seen from the construction of the vectors v(i)

k . At each step we collect the first of the
vectors as a new column of an (n + 1) × n matrix Z with a first column equal to e1, the first
column of the identity matrix. Since the first rows of Â are orthogonal to v(i)

1 , the second column
of ÂZ has one zero at the top, the third column two zeros at the top, and so on. At the last step,
ÂZ is a lower triangular matrix L. Without pivoting, Z1:n,: is an upper triangular matrix and,
since AZ1:n,: = L, we have

A = LU, with U = (Z1:n,)
−1.

The reader may wonder if, having solved a linear system with a given right-hand side, we can eas-
ily solve another system with the same matrix and a different right-hand side. This was explained
by C.J. Hegedüs [620]. In that paper he related Purcell’s method to the work of E. Egerváry [393]
in 1956-1960. In his first papers in 1956-1957 on Purcell’s method, published in Hungarian,
Egerváry showed that it can be given by his rank reduction technique. Egerváry’s 1960 paper
is in English. A detailed exposition of the rank reduction process can be found in A. Galántai
[485].

In [620] the notation is different from what we used above. One starts from an identity matrix
V (1) with v(1)

j = ej , j = 1, . . . , n+ 1. Let us assume that, after column permutations, the pivot
index is p = i at the ith step. The new vectors are computed as

v
(i+1)
j =

(
I − v

(i)
i eTi Â

eTi Av
(i)
i

)
v

(i)
j , j > i.

These vectors satisfy the first i equations. The nonzero columns span the subspace of vectors that
satisfy the first i equations. It is easy to check that the matrix within parenthesis is a projection
matrix. For projection methods, we must also mention T. Pietrzykowski [919], H.-Y. Huang
[653], C. Brezinski [157], and A. Galántai [484]. Let us assume that we have another right-hand
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side b′ and that we would like to solve Ax = b′. According to [620], what we have to do, instead
of what we have done above, is to start with V (1) = In and perform projections not for the
augmented matrix, but simply for the matrix A. We store the vectors v(1)

1 , v
(2)
2 , . . . , v

(n)
n and

compute vectors

x(i) = x(i−1) + v
(i)
i

b′i − eTi Ax(i−1)

eTi Av
(i)
i

, i = 1, 2, . . . , n, x(0) = 0.

However, this is not equivalent to using the augmented matrix [A,−b] since the pivots are not
the same. With the augmented matrix the choice of the pivot depends on the right-hand side, but
this is not the case if we just use A and it has an effect on the accuracy of the solution.

The positive points for Purcell’s algorithm are

- In a given step, only one row of the matrix A is needed. This can be important in some
applications.

- Contrary to Gaussian elimination, the right-hand side is included in the pivot choice. How-
ever, this does not always improve the accuracy.

- It is not necessary to do row of column swaps and pivoting does not change the order of
the components of the solution.

- The method is easy to parallelize. The dot products needed at one step are independent
and the main operation is a rank-one update of a matrix.

The negative points are

- The storage is larger than for Gaussian elimination which can be done in place.

- The only BLAS3 operation is the rank-one update which can be seen as a matrix-matrix
multiply.

K. Chen and D. Evans [243] showed that, without pivoting, the Gauss-Huard and Purcell’s
methods are equivalent, but this does not hold with pivoting. They modified the methods to
achieve an equivalence. If we omit the entry arising from the right-hand side for choosing the
pivot in Purcell’s method, it is similar to the Gauss-Huard method. On Purcell’s method and
its relation to Gauss-Jordan, see C.-H. Lai [719, 720]. A block version of Purcell’s method, for
matrices partitioned in block, was proposed by K. Jbilou and A. Messaoudi [671], see also [798].

For parallel versions of Purcell’s method, see K. Chen and C.-H. Lai [244] who described
six parallel variants of Purcell’s method. The algorithms differ in ways of pivoting and load
balancing.

R. Fletcher [460] introduced in 1997 a method which, formally, looks like Purcell’s. How-
ever, his method, which is called LIU (L Implicit U) factorization, operates on columns rather
than on rows in Purcell’s. The method computes a unit lower triangular matrix L(n) column by
column. Let L(0) = I and assume that we have L(k) in which we have already computed the
first k columns which are also those of L(k+1). Then, let dk = `

(k)T
k `k where `(k)T

j is the jth
row of L(k) and `j is the jth column of A. The entries of the new column below the diagonal are
computed as

`
(k+1)
j = `

(k)
j − rj,k`

(k)
k , rj,k =

`
(k)T
j `k

dk
, j = k + 1, . . . , n.
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At step n− 1 we have a unit lower triangular matrix L(n). It is easy to see that it is the inverse of
the L factor of the LU factorization and the ratios rj,k are the multipliers in Gaussian elimination
and L(n)A is an upper triangular matrix. Partial pivoting can be introduced with row swaps. Let
b(n) = b, the solution of Ax = b is computed as

xi =
`
(n)T
i b(i)

di
, b(i−1) = b(i) − `ixi, i = n, n− 1, . . . , 1.

This method is only one variant of Gaussian elimination without explicitly computing L and U .
It turns out that a similar algorithm was proposed by S. Ursic [1081] in 1982.

Projection methods were considered in the 1990s by M. Benzi, see [111] and [116] with
C.D. Meyer. Their method is very close to Purcell’s, except that they used a normalization of the
basis vectors and pivoting; see also M. Tůma [1077].

On projection methods for least squares problems, see C. Popa, T. Preclik, H. Köstler, and
U. Rüde [924], and the references therein.

For the numerical experiments of figures 2.19-2.20, we use the random matrix A1000 and a
random exact solution. We display results for Gaussian elimination (dgetf2 and dgetrf), Pur-
cell’s method (dpurcell), and the projection method of Benzi and Meyer (dpBM). Figure 2.19
shows the residual norms. Purcell and the projection method give smaller residual norms than
the Gaussian elimination variants. Figure 2.20 displays the error norms. There are of the same
magnitude for all methods, even though those of Purcell’s method are slightly smaller for some
problem dimensions.
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Figure 2.19. ‖b−Ax‖ as a function of n, with Gauss, Purcell and the projection method of Benzi
and Meyer

2.16 Conjugate direction methods
In this section we consider some conjugate direction methods because they are somewhat related
to LU factorization. One of the earliest ones was considered by L. Fox, H.D. Huskey, and
J.H. Wilkinson [465] in 1948. They observed that their method was almost identical with the
escalator process of J. Morris [843]. The idea is to use a basis of A-conjugate vectors vi. The
solution of Ax = b, with A symmetric, is written as

x =

n∑
i=1

αivi, vTj Avi = 0, i 6= j.
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Figure 2.20. Error norms as a function of n, with Gauss, Purcell and the projection method of
Benzi and Meyer

Therefore, we must have
n∑
i=1

αiv
T
j Avi = vTj b.

Because of the A-orthogonality, the coefficients αi and the solution x are

αi =
vTi b

vTi Avi
, x =

n∑
i=1

vTi b

vTi Avi
vi.

Let Y = In, the identity matrix of order n, The vectors vi are obtained by A-orthogonalizing the
columns of Y . First vi = y1, then

v2 = y2 + λ2v1, λ2 = −v
T
1 Ay2

vT1 Av1
= −y

T
2 Av1

vT1 Av1
.

The next step is
v3 = y3 + λ3v1 + µ3v2, . . .

and so on. It was observed by Fox, Huskey, and Wilkinson that the A-orthogonality of the basis
vectors can be lost. Hence, they recommended computing the coefficients αi by an iterative
method.

This method was considered by M.R. Hestenes and E. Stiefel in Section 4 of their seminal
paper [629] in 1952. In the conjugate gradient method for symmetric positive definite matrices
the A-conjugate vectors are constructed by a short recurrence. They observed in Section 12 that,
if the basis vectors are obtained by A-orthogonalizing the columns of the identity matrix, this is
essentially Gaussian elimination without pivoting.

In 1958, M.R. Hestenes [627] constructed biorthogonal set of vectors for computing inverses
of nonsymmetric matrices. His aim was to compute singular values and eigenvalues. Conjugate
direction methods were also described by L. Fox [464].

A generalization of conjugacy was given by G.W. Stewart [1039] in 1973. A pair of matrices
(U, V ) is said to be A-conjugate if L = V TAU is lower triangular. The solution of the linear
system is computed by the recurrence

xk = xk−1 + µkuk, µk =
vTk rk−1

vTk Auk
, rk−1 = b−Axk−1,
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where uk is the kth column of U . With this, we have rn = 0 (in exact arithmetic) and the error
vectors are given by x − xk = (I − Pk)(x − xk−1) where Pk is a projection matrix satisfying
PiPk = 0 if i < k.

Let A, V, P be given matrices, Stewart computed a linear combination of p1, . . . , pk such
that U and V are A-conjugate. To be able to do that, V TAP must be factorizable as LS where
S is upper triangular. One has to find an upper triangular matrix S such that U = PS−1. Then,

P = US ⇒ pk = Uk−1sk + σk,kuk,

where sk is a vector with components (σi,k). We must have V Tk−1AUk−1 lower triangular and
V Tk−1Auk = 0,

(V Tk−1AUk−1)sk = V Hk−1Apk.

The σk,k’s are scaling parameters to be chosen. Note that the choice of vk can be made dependent
on u1, . . . , uk.

The choice P = V = I gives an LU factorization, as well as P = I and V = U . When A is
symmetric, V TAV is diagonal. If P = I and V = A, V TAP = ATA = LU . That choice leads
to a QR factorization. Another choice is pi = Ai−1p1. If V is arbitrary and P conjugated with
respect to V , it gives a reduction of A to upper Hessenberg form.

As we said above, P. Laurent-Gengoux and D. Trystram [723] showed that, for symmet-
ric matrices, the Gauss-Huard algorithm without pivoting is equivalent to a conjugate direction
method.

An inverse factorization algorithm A−1 = ZD−1ZT , with Z unit upper triangular and D
diagonal, was proposed by M. Benzi, C.D. Meyer, and M. Tůma [117] for symmetric matrices.
Their aim was to construct a preconditioner for sparse matrices and iterative methods by dropping
some entries during the computation of Z, see Chapter 7. This method is very close to that in
[116]. M. Benzi and M. Tůma extended this method to nonsymmetric matrices [120]. Two sets
of A-biconjugate vectors zi, wi are constructed to obtain WTAZ = D diagonal with Z and
W upper triangular. Without dropping entries, this method is close to what was done by L. Fox
[464]. SinceA = W−TDZ−1, we recognize an LDU factorization ofA. The solution of a linear
system is obtained by direct multiplication, x = ZD−1WT b.

The authors of [120] warn us that “In practice, this direct method for solving linear systems
is not used on account of its cost: for a dense n × n matrix, the biconjugation process requires
about twice the work as the LU factorization of A”. Moreover, a loss of A-orthognality may
happen which can spoil the accuracy. In that case iterative refinement is needed increasing even
more the cost of the algorithm.

For the sake of constructing robust preconditioners, M. Bollhöfer and Y. Saad [140] studied
how to introduce pivoting in this A-orthogonalization method. The pivots are found iteratively
to satisfy some criterion. An (non-optimal) implementation of this method without any dropping
of entries is the following. Most of code lines are devoted to finding the pivots.

function [Z,Wt,p,row,col]=biconj_ZW(A);
n = size(A,1);
EY = eye(n,n);
Z = eye(n,n); W = eye(n,n);
p = zeros(n,1); q = zeros(n,1);
row = 1:n; col = 1:n;
tol = 0.1;
npiv = 20;
for i=1:n
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piv = 0; satp = 0; satq = 0;
% pivoting
k = 0;
while satp == 0 && k < npiv
k = k + 1;
p(i:n) = W(:,i:n)' * (A * Z(:,i));
[val,I] = max(abs(p(i:n)));
if abs(p(i)) < tol * val
satq = 0;
ip = i + I(1) - 1; % global index
if ip $\sim$= i
piv = 1;
A(:,[i,ip]) = A(:,[ip,i]);
ZI = Z - EY;
ZI(:,[i,ip]) = ZI(:,[ip,i]);
Z = ZI + EY;
p([i,ip]) = p([ip,i]);
col([i,ip]) = col([ip,i]);
end % if ip
end % if abs
satp = 1;
% pivoting
if satq == 0
q(i:n) = (W(:,i)' * A) * Z(:,i:n);
end % if
[val,I] = max(abs(q(i:n)));
if abs(q(i)) < tol * val
satp = 0;
ip = i + I(1) - 1; % global index
if ip $\sim$= i
piv = 1;
A([i,ip],:) = A([ip,i],:);
WI = W - EY;
WI(:,[i,ip]) = WI(:,[ip,i]);
W = WI + EY;
q([i,ip]) = q([ip,i]);
row([i,ip]) = row([ip,i]);
end % if ip
end % if abs
satq = 1;
end % while
if piv == 1
% must recompute p and q with the new A, Z, W
p(i:n) = W(:,i:n)' * (A * Z(:,i));
q(i:n) = (W(:,i)' * A) * Z(:,i:n);
end % if
p1 = 1 / p(i);
pp1 = p1 * p(i+1:n);
qq1 = p1 * q(i+1:n);
for j=i+1:n
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Z(:,j) = Z(:,j) - qq1(j-i) * Z(:,i);
W(:,j) = W(:,j) - pp1(j-i) * W(:,i);
end % for j
end % for i
Wt = W';

Working along the same lines as G.W. Stewart [1039] and based on the work of J.H.M. Wed-
derburn [1113], M.T. Chu, R.E. Funderlic, and G.H. Golub [262] explored the relations between
A-conjugation and several matrix factorizations.

Wedderburn [1113, p. 69] showed that if x and y are vectors such that ω = yTAx 6= 0, the
matrix B = A − ω−1AxyTA has rank exactly one less than A. In fact, if B = A − σ−1uvT ,
rank(B)=rank(A)− 1 if and only if there exist vectors x and y such that u = Ax, v = AT y, and
σ = yTAx. This is also related to the work of E. Egerváry [393] who was probably not aware of
Wedderburn’s earlier work.

In the rank-reduction process a sequence of matrices is computed as

Ak+1 = Ak − ω−1
k Akxky

T
k Ak, ωk = yTk Akxk, A1 = A,

for any sequences of vectors xk and yk, for which ωk 6= 0. The rank decreases by one at each step
and the recurrence stops at some indexm ≤ n. The matrices Ak are called Wedderburn matrices
in [262]. In matrix form this can be written as A = UΩ−1VT , where Ω is a diagonal matrix with
diagonal entries ωj , j = 1, . . . ,m, the columns of U (resp. V) are Ajxj (resp. ATj yj).

It turns out that this process can be obtained without a reference to the Wedderburn matrices.
Let < x, y >A= yTAx. From the xj’s and yj’s, we define

uk = xk −
k−1∑
i=1

< xk, vi >A
< ui, vi >A

ui,

vk = yk −
k−1∑
i=1

< ui, yk >A
< ui, vi >A

vi.

Then,
Auk = Akxk, vTk A = yTk Ak, ωk = yTk Axk =< uk, vk >A,

and < uk, vj >A=< uj , vk >A= 0 for j < k. If Uk (resp. Vk) has columns uj (resp. vj) for
j = 1, . . . , k ≤ m,

V Tk AUk = Ωk, A = AUmΩ−1
m V TmA.

If m = n, UnΩ−1
n V Tn is the inverse of A. If Xk, Yk are the matrices with columns xj and yj

involved in a rank-reduction process, there exist unit upper triangular matrices R(x)
k , R(y)

k such
that

Xk = UkR
(x)
k , Yk = VkR

(y)
k .

A necessary and sufficient condition for the ωj’s to be different from zero is that Y Tk AXk has an
LDU factorization; in fact det(Y Tk AXk) =

∏k
i=1 ωi.

If Xm and Ym are chosen as upper trapezoidal matrices, AUm and ATVm are lower trape-
zoidal, and one obtains a trapezoidal LDU factorization of A. If A is square with all nonzero
principal minors, m = n, and Xn = Yn = In, one obtains an LDU factorization of A, as it was
already shown by E. Egerváry [393]. If, moreover, A is symmetric, Um = Vm, and we have a
Cholesky-like factorization.

If A has full column rank, the choice X = I , Y = A, leads to U = R−1
1 and V = QD,

where R1 is a unit upper triangular matrix, Q is an orthonormal matrix, and D is diagonal. It
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gives A = QDR1. On rank-reduction formulas, see also N. Mahdavi-Amiri and E. Golpar-
Raboky [771].

We will meet other A-biconjugation processes when studying the Lanczos iterative algo-
rithms.

For the numerical experiments of figures 2.21-2.22, we use our random matrix A1000 and
a random exact solution. We display results for Gaussian elimination (dgetf2 and dgetrf),
Purcell’s method (dpurcell), and the biconjugation algorithm without (ZW) and with iterative
refinement (ZW ref). For the iterative refinement the residual vector is computed in extended
precision with 32 decimal digits. Figure 2.21 shows the residual norms. The biconjugation al-
gorithm gives residual norms much larger than the Gaussian elimination variants and Purcell’s
method, but one iteration of iterative refinement is efficient to reduce the residual norms. Fig-
ure 2.22 displays the error norms for which we observe the same trends.
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Figure 2.21. ‖b−Ax‖ as a function of n, with Gauss, Purcell and the biconjugation algorithm
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Figure 2.22. Error norms as a function of n, with Gauss, Purcell and the biconjugation algorithm

2.17 The WZ factorization
The WZ factorization of a matrix A was introduced in 1979 by D.J. Evans and M. Hatzopoulos
[432]. It is also known on the less appealing name, Quadrant Interlocking Factorization (QIF).
Their aim was to obtain a factorization with more potential parallelism than the LU factorization.
In LU, we put zeros below the diagonal of A sequentially, column by column. In WZ, entries
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are zeroed by columns but starting from the left and at the same time from the right. Let us show
how to do that on a small example of order 6,

A =


17 6 20 −16 14 15
19 11 −10 20 16 1
3 20 17 14 15 −6
−19 20 3 1 8 1
13 4 9 17 14 2
2 −20 −19 19 4 17

 .

At the first step, we multiply to the left by the matrix (rounded to three decimal digits),

W (1) =


1 0 0 0 0 0

−1.239 1 0 0 0 1.035
−0.2432 0 1 0 0 0.5676

1.255 0 0 1 0 −1.166
−0.8378 0 0 0 1 0.6216

0 0 0 0 0 1

 ,

and the result is

A(1) =


17 6 20 −16 14 15
0 −17.13 −54.45 59.49 2.788 0
0 7.189 1.351 28.68 13.86 0
0 50.85 50.25 −41.23 20.9 0
0 −13.46 −19.57 42.22 4.757 0
2 −20 −19 19 4 17

 ,

with zeros in the first and last columns. Then, we proceed with columns 2 and 5, multiplying
with

W (2) =


1 0 0 0 0 0
0 1 0 0 0 0
0 5.022 1 0 −5.858 0
0 11.9 0 1 −11.37 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The final result is

Z = A(2) =


17 6 20 −16 14 15
0 −17.13 −54.45 59.49 2.788 0
0 0 −157.5 80.14 0 0
0 0 −375.2 186.8 0 0
0 −13.46 −19.57 42.22 4.757 0
2 −20 −19 19 4 17

 .

Hence, we have W (2)W (1)A = Z. The inverses of the matrices W (i) are obtained straightfor-
wardly since it is enough to negate some entries. For instance,

[W (1)]−1 =


1 0 0 0 0 0

1.239 1 0 0 0 −1.035
0.2432 0 1 0 0 −0.5676
−1.255 0 0 1 0 1.166
0.8378 0 0 0 1 −0.6216

0 0 0 0 0 1

 .
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Moreover, we have A = WZ with

W = [W (1)]−1[W (2)]−1 =


1 0 0 0 0 0

1.239 1 0 0 0 −1.035
0.2432 −5.022 1 0 5.858 −0.5676
−1.255 −11.9 0 1 11.37 1.166
0.8378 0 0 0 1 −0.6216

0 0 0 0 0 1

 .

It means that we do not have to compute the product of the inverses, we just have to put in proper
places minus the entries that we have computed at each step.

This process can be generalized. Let us assume that A is of order n with n even and write
W (1) and A in block form,

W (1) =

 1 0 0
w(1) In−2 w(n)

0 0 1

 A =

 a1,1 a1,: a1,n

a:,1 Â a:,n

an,1 an,: an,n

 .

The first and last rows of the product W (1)A are those of A. In the middle, for the first and last
columns that we want to zero, we have the vector equations,

a1,1w
(1) + a:,1 + an,1w

(n) = 0,

a1,nw
(1) + a:,n + an,nw

(n) = 0.

Taking the first two equations,

a1,1w
(1)
1 + a2,1 + an,1w

(n)
1 = 0,

a1,nw
(1)
1 + a2,n + an,nw

(n)
1 = 0.

This is a linear system of order 2,(
a1,1 an,1
a1,n an,n

)(
w

(1)
1

w
(n)
1

)
=

(
−a2,1

−a2,n

)
.

We can proceed similarly with the other equations for the other components of w(1) and w(n).
Finally, we have n − 2 independent linear systems of order 2, all with the same matrix but
different right-hand sides, that can be solved in parallel. When they are solved, we can compute
the term in the middle of the product W (1)A,

Ã = Â+ w(1)a1,: + w(n)an,:,

which is a rank-two update of Â. The next step is to use that same process on Ã.
Things are a little bit different if n is odd. Figure 2.23 shows the nonzero structure of W and

Z for n = 11. In W , we have one full row W6,: and, in Z, the 6th row has just one nonzero
entry.

A function to compute the WZ factorization without pivoting for any n is the following.

function [W,Z] = WZ_np(A);
n = size(A,1);
W = eye(n,n); Z = zeros(n,n);
kstart = 1; kend = n;
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Figure 2.23. Nonzero structure of W (left) and Z (right), n = 11

sA = n;
while sA > 2
% first and last rows
W(kstart,kstart:kend) = eye(1,sA);
W(kend,kstart:kend) = [zeros(1,sA-1) 1];
Z(kstart,kstart:kend) = A(kstart,kstart:kend);
Z(kend,kstart:kend) = A(kend,kstart:kend);
% 2 x 2 matrix
A2 = [A(kstart,kstart) A(kend,kstart);
A(kstart,kend) A(kend,kend)];
if abs(det(A2)) < 1e-14
error('WZ_np: too small determinant of A2')
end % if
% right-hand sides
rhs = [A(kstart+1:kend-1,kstart)';
A(kstart+1:kend-1,kend)'];
X2 = A2 \ rhs; \% solve all the 2 x 2 systems
W(kstart+1:kend-1,kstart) = X2(1,:);
W(kstart+1:kend-1,kend) = X2(2,:);
% reduced matrix
sA2 = sA - 2;
UP = zeros(sA2,sA2);
ws = -W(kstart+1:kend-1,kstart);
we = -W(kstart+1:kend-1,kend);
zs = Z(kstart,kstart+1:kend-1);
ze = Z(kend,kstart+1:kend-1);
for j=1:sA2
% rank-two update
UP(:,j) = A(kstart+1:kend-1,kstart+j)...
+ zs(j) * ws + ze(j) * we;

end % for j
A(kstart+1:kend-1,kstart+1:kend-1) = UP;
sA = sA2;
kstart = kstart + 1;
kend = kend -1;
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end % while
Z(kstart:kend,kstart:kend) = A(kstart:kend,kstart:kend);

Properties of the WZ factorization had been studied in the 1980s and 1990s; see P. Yalamov
and D.J. Evans who did a rounding error analysis [1133, 1134], C.S. Rao who considered the
existence and uniqueness of the factorization [936], and M. Kaps and M. Schlegl [692]. Some
people implemented WZ on parallel computers, see I. García, J.J. Merelo, J.D. Bruguera, and
E.L. Zapata [495] and E. Asenjo, M. Ujaldón, and EL. Zapata [44].

However, since, as it was noticed by D.J. Tylavsky [1079], the WZ factorization can be
obtained from a block LU factorization with 2× 2 blocks (see Section 2.5), it is enough to look
at the existence and properties of this block factorization. Let us see how this works on our small
example above with n = 6. We group the rows with the same number of nonzero entries, that is,
(1,6), (2,5) and (3,4). This is done by the permutation vector ( 1 4 5 6 3 2 ). Let P be
the corresponding permutation matrix, then

PWPT =


1 0 0 0 0 0
0 1 0 0 0 0

0.8378 −0.6216 1 0 0 0
1.239 −1.035 0 1 0 0
0.2432 −0.5676 5.858 −5.022 1 0
−1.255 1.166 11.37 −11.9 0 1

 ,

which is a block diagonal matrix, but in fact a lower unit triangular matrix. Applying the same
permutations to Z,

PZPT =


17 15 14 6 20 −16
2 17 4 −20 −19 19
0 0 4.757 −13.46 −19.57 42.22
0 0 2.788 −17.13 −54.45 59.49
0 0 0 0 −157.5 80.14
0 0 0 0 −375.2 186.8

 ,

which is a truly block upper triangular matrix. Therefore, PAPT = (PWPT )(PZPT ) = LU ,
and WZ = PTLUP .

As it is stated in [633, Section 13.1, Th. 13.2], such a factorization exists and is unique if and
only if the first m − 1 leading principal block submatrices of PAPT are nonsingular, where m
is the number of blocks on the diagonal. The stability of block LU factorization can be different
and worse from that of LU factorization. It was studied by J.W. Demmel, N.J. Higham, and
R.S. Schreiber [337] who proved that in finite precision arithmetic,

LU = A+ ∆A1, (A+ ∆A2)x = b,

‖∆Ai‖
‖A‖

≤ cnu
(

1 +
‖L‖ ‖U‖
‖A‖

)
+O(u2), i = 1, 2,

where the norm is the maximum norm. The ratio of norms in the right-hand side can be arbitrary
large. However, block LU factorization is stable if A is diagonally dominant by columns, see
[633]. A problem with the WZ factorization is that it is not easy to find a good pivoting strategy
to improve the accuracy when solving a linear system. It is difficult to completely control the size
of the multipliers that are used in the rank-two update, and it can lead to an amplification of the
rounding errors. A possible strategy is to use the pivots computed from an LU factorization of
the matrix [A(kstart:kend,kstart), A(kstart:kend,kend)] with two columns, but this
is expensive.
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There was a renew of interest for the WZ factorization in the 2000s, see B. Bylina and
J. Bylina [189, 190, 191, 192, 193], even though these papers contain many typos and some
errors. See also D. Bashir, H. Kamarulhailia, and O. Babarinsa [101].

Let us use again the random matrix A1000 and a random exact solution for the numerical
experiments of figures 2.24-2.25. We display results for Gaussian elimination (dgetf2 and
dgetrf), Gaussian elimination without pivoting (dgetf2 np), and the WZ algorithm without
(WZ np) and with pivoting (WZ). Figure 2.24 shows the residual norms. The WZ algorithm with-
out pivoting gives residual norms larger than those of Gaussian elimination without pivoting, but
pivoting brings the WZ residual norms to the same level as those of Gaussian elimination with
pivoting. Figure 2.25 displays the error norms for which we observe the same trends.
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Figure 2.24. ‖b−Ax‖ as a function of n, with Gauss and WZ with and without pivoting
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Figure 2.25. Error norms as a function of n, with Gauss and WZ with and without pivoting
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2.18 More numerical experiments
The random matrixA1000 that we used above is relatively well-conditioned with κ(A) = 4.7985 103,
maxi σi = 63.087 and mini σi = 1.3147 10−2. To do numerical experiments with matrices with
different condition numbers, let us now use matrices generated with the “randsvd” option of Mat-
lab gallery with a parameter mode = 2. For us, it means that all the singular values are equal
to 1, except the smallest one which is equal to 10−k for k = 1, 2, . . . , 8. Therefore, ‖A‖ = 1
and we have

‖xe − x‖
10k

≤ ‖b−Ax‖ ≤ ‖xe − x‖.

The exact solutions xe are random vectors and the right-hand sides are b = Axe.

Figures 2.26-2.27 show Gaussian elimination residual and error norms with different pivoting
strategies as functions of the condition number. The residual norms are almost constant but
much larger without pivoting. The error norms are increasing with the condition number, loosing
almost five orders of magnitude from k = 1 to k = 8.
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Figure 2.26. randsvd, ‖b−Ax‖ with different pivoting strategies as a function of the condition number
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Figure 2.27. randsvd, error norm with different pivoting strategies as a function of the condition number

Figures 2.28-2.29 display the residual and error norms for different variants of Gaussian
elimination as functions of the condition number. In Figure 2.28 we do not show the residual
norms without pivoting because they are much larger than the other ones. All the variants with
pivoting give more or less the same residual and error norms.
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Figure 2.28. randsvd, ‖b − Ax‖ with variants of Gaussian elimination as a function of the
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Figure 2.29. randsvd, error norm with variants of Gaussian elimination as a function of the
condition number

Figures 2.30-2.31 show the residual and error norms for Gauss, Gauss-Jordan, and Gauss-
Huard, as well as block versions of these last two. There are differences in the residual norms,
but the error norms are almost all the same.
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Figure 2.30. randsvd, ‖b − Ax‖ with Gauss, Gauss-Jordan and Gauss-Huard as a function of
the condition number

Figures 2.32-2.33 show the residual and error norms for Gauss, Purcell, and the Benzi-Meyer
projection method. The residual norms of these two last methods are smaller than those of
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Figure 2.31. randsvd, error norm with Gauss, Gauss-Jordan and Gauss-Huard as a function of
the condition number

Gaussian elimination, but the error norms are not much different.
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Figure 2.32. randsvd, ‖b − Ax‖ with Gauss, Purcell and Benzi-Meyer as a function of the
condition number
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Figure 2.33. randsvd, error norm with Gauss, Purcell and Benzi-Meyer as a function of the
condition number

Figures 2.34-2.35 show the residual and error norms for Gauss, Purcell and the ZW biconju-
gation method. The ZW biconjugation method is much worse than the other ones.
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Figure 2.34. randsvd, ‖b− Ax‖ with Gauss, Purcell and ZW biconjugation as a function of the
condition number
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Figure 2.35. randsvd, error norm with Gauss, Purcell and ZW biconjugation as a function of the
condition number

Figures 2.36-2.37 show the residual and error norms for Gauss and the WZ method with
and without pivoting. WZ without pivoting is slightly worse than Gaussian elimination without
pivoting and much worse than the other methods, even for well-conditioned matrices.
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Figure 2.36. randsvd, ‖b−Ax‖ with Gauss and WZ as a function of the condition number

Random matrices are not really representative of practical problems. In tables 2.4-2.11 we
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Figure 2.37. randsvd, error norm with Gauss and WZ as a function of the condition number

use a set of matrices from the SparseSuite3 collection. They are ordered by increasing condition
numbers. Their characteristics are given in Appendix 1. These matrices are sparse, but in this
chapter we consider them as dense matrices, storing all the zero entries. The acronyms for the
methods we consider are explained in Table 2.3. We give the absolute residual norms (tables 2.4-
2.5) and relative residual norms (tables 2.6-2.7). The absolute error norms are in tables 2.8-2.9
and the relative error norms in tables 2.10-2.11.

For the matrices with large condition numbers, the absolute residual norms are large, but
the relative ones are of the order of the machine precision. This is not the case for the error
norms, since most of the relative error norms for these matrices are quite large. There are some
breakdowns (NaN) for methods without pivoting (dgetf2 np, ZW, and WZ np) meaning that
there was no LU factorization for these matrices.

Gaussian elimination with partial pivoting (dgetf2, dgetrf) does not always give the
smallest residual or error norms, but they are quite robust. In our sequential implementations,
dgetrf is the fastest method. The Gauss-Huard method is also quite reliable. Without surprise,
the biconjugation ZW method does not give good results, but it is usually only used to construct
parallel preconditioners with some dropping strategies.

Table 2.3. Acronyms of methods

meth.

dgetf2 np Gaussian elimination without pivoting
dgetf2 Gaussian elimination with partial pivoting
dgetrf blocked Gaussian elimination with partial pivoting (nb = 40)
dgjsv Gauss-Jordan with pivoting (row swaps)
dgjsvr Gauss-Jordan with pivoting (column swaps)
dgbjsvr block Gauss-Jordan with pivoting (column swaps)
dghsvr Gauss-Huard with pivoting (column swaps)
dgbhsvr block Gauss-Huard with pivoting (column swaps)
dpurcell Purcell orthogonalization method
dBM Benzi-Meyer projection method
ZW biconjugation method
WZ np WZ without pivoting
WZ WZ with pivoting (row swaps)

3https://sparse.tamu.edu/
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Table 2.4. Residual norms

meth. pde225 gre 243 jpwh 991 jagmesh1 bfwa782 782

dgetf2 np 2.287e-14 1.446e-12 1.168e-13 NaN 2.386e-13
dgetf2 2.287e-14 5.957e-15 1.171e-13 7.861e-14 1.264e-13
dgetrf 2.299e-14 7.196e-15 1.064e-13 8.102e-14 1.073e-13
dgjsv 4.532e-14 1.276e-14 2.010e-13 2.129e-13 2.444e-13
dgjsvr 4.532e-14 1.202e-14 2.010e-13 2.479e-13 1.597e-13
dgbjsvr 2.862e-14 1.163e-14 7.743e-14 4.605e-13 1.769e-13
dghsvr 3.919e-14 1.060e-14 2.025e-13 2.422e-13 1.215e-13
dgbhsvr 1.998e-14 7.902e-15 5.918e-14 1.781e-13 6.980e-14
dpurcell 4.907e-14 7.321e-15 1.941e-13 1.747e-13 1.954e-13
dBM 4.101e-14 1.150e-14 2.034e-13 3.257e-13 1.098e-13
ZW 1.021e-13 NaN 2.809e-13 NaN 6.371e-12
WZ np 2.164e-14 5.395e-12 1.144e-13 NaN 9.718e-14
WZ 2.161e-14 9.405e-15 1.288e-13 1.119e-13 8.943e-14

meth. jagmesh2 1009 lshp1009 fs 680 1c fs 680 1 sherman1 1000

dgetf2 np NaN NaN 1.301e-14 0.09450 1.644e-14
dgetf2 9.756e-14 9.756e-14 1.592e-14 0.09450 1.587e-14
dgetrf 1.022e-13 1.022e-13 1.473e-14 0.09041 1.237e-14
dgjsv 2.875e-13 2.875e-13 4.300e-13 0.06729 7.410e-14
dgjsvr 2.690e-13 2.690e-13 1.640e-14 0.06729 3.370e-14
dgbjsvr 5.750e-13 5.750e-13 3.990e-13 0.09526 1.064e-13
dghsvr 2.772e-13 2.772e-13 7.981e-15 0.04888 2.757e-14
dgbhsvr 1.902e-13 1.902e-13 5.061e-15 0.03236 1.275e-14
dpurcell 2.109e-13 2.109e-13 1.144e-14 0.08065 3.994e-14
dBM 3.280e-13 3.280e-13 8.278e-15 0.05311 3.022e-14
ZW NaN NaN 1.415e-12 0.60230 9.817e-13
WZ np NaN NaN 1.404e-14 0.08732 1.355e-14
WZ 1.014e-13 1.014e-13 1.378e-14 0.08732 1.297e-14

meth. nos3 960 cavity05 1182 e05r0500 236 olm1000 steam2 600

dgetf2 np 3.245e-12 1.457e-13 4.053e-12 1.501e-10 1.145e-05
dgetf2 3.245e-12 4.601e-13 1.933e-13 8.197e-11 1.178e-05
dgetrf 2.990e-12 4.314e-13 1.957e-13 8.262e-11 1.098e-05
dgjsv 9.156e-12 8.853e-12 8.619e-12 1.971e-07 1.527e-05
dgjsvr 9.156e-12 3.333e-13 1.911e-13 3.073e-09 1.486e-05
dgbjsvr 2.105e-11 7.672e-11 1.605e-09 3.914e-06 1.196e-05
dghsvr 8.254e-12 2.138e-13 1.415e-13 3.154e-09 1.706e-05
dgbhsvr 2.935e-12 1.181e-13 1.108e-13 1.221e-09 1.138e-05
dpurcell 8.852e-12 2.183e-13 1.314e-13 3.928e-10 2.566e-05
dBM 8.608e-12 2.190e-13 1.319e-13 8.033e-10 1.776e-05
ZW 3.905e-10 2.688e-10 NaN NaN 2.495e-05
WZ np 3.502e-12 NaN NaN 1.580e-10 1.388e-05
WZ 3.552e-12 3.287e-13 1.344e-13 1.279e-10 1.322e-05
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Table 2.5. Residual norms

meth. 1138bus steam1 240 nos7 729 fs 183 6 bcsstk20 485

dgetf2 np 3.316e-11 1.537e-08 1.488e-08 8.955e-08 9.002
dgetf2 3.261e-11 3.828e-08 1.488e-08 3.406e-08 8.018
dgetrf 2.102e-11 3.493e-08 1.609e-08 3.354e-08 4.134
dgjsv 1.068e-10 5.616e-07 3.005e-08 1.108e-07 1.302e+06
dgjsvr 1.325e-10 5.732e-08 3.005e-08 1.676e-08 13.43
dgbjsvr 5.499e-09 7.587e-08 9.422e-06 5.083e-08 7.559e+12
dghsvr 9.048e-11 2.624e-08 2.630e-08 6.830e-08 7.963
dgbhsvr 3.499e-11 2.100e-08 1.079e-08 6.839e-08 4.18
dpurcell 1.088e-10 8.687e-08 3.269e-08 7.309e-08 10.71
dBM 1.071e-10 2.692e-08 2.887e-08 1.528e-08 9.548
ZW 1.230e-06 6.532e-08 0.12190 0.02468 9.312e+07
WZ np 2.398e-11 4.179e-08 1.813e-08 3.933e-09 4.67
WZ 3.108e-11 6.497e-08 1.550e-08 2.984e-08 3.106

meth. mcfe 765 nnc 261 lnsp 511

dgetf2 np 733.6 NaN NaN
dgetf2 97.26 2.151e-12 3.351e-06
dgetrf 102.5 2.599e-12 3.073e-06
dgjsv 153.9 0.0001435 0.0004175
dgjsvr 52.2 1.481e-12 3.687e-05
dgbjsvr 130.2 0.003508 0.003324
dghsvr 75.88 1.632e-12 3.525e-05
dgbhsvr 77.8 7.349e-13 1.845e-05
dpurcell 97.33 1.977e-12 4.654e-05
dBM 76.09 1.374e-12 2.859e-05
ZW 650.7 NaN NaN
WZ np 75.2 NaN NaN
WZ 106.1 1.876e-12 8.292e-06
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Table 2.6. Relative residual norms ‖b−Ax‖/‖b‖

meth. pde225 gre 243 jpwh 991 jagmesh1 bfwa782 782

dgetf2 np 2.858e-16 1.377e-13 6.126e-16 NaN 1.910e-15
dgetf2 2.858e-16 5.676e-16 6.141e-16 1.025e-15 1.012e-15
dgetrf 2.872e-16 6.856e-16 5.581e-16 1.056e-15 8.591e-16
dgjsv 5.663e-16 1.216e-15 1.054e-15 2.775e-15 1.956e-15
dgjsvr 5.663e-16 1.145e-15 1.054e-15 3.231e-15 1.278e-15
dgbjsvr 3.576e-16 1.109e-15 4.061e-16 6.003e-15 1.416e-15
dghsvr 4.896e-16 1.010e-15 1.062e-15 3.157e-15 9.729e-16
dgbhsvr 2.497e-16 7.529e-16 3.104e-16 2.321e-15 5.588e-16
dpurcell 6.131e-16 6.975e-16 1.018e-15 2.277e-15 1.564e-15
dBM 5.124e-16 1.096e-15 1.067e-15 4.245e-15 8.786e-16
ZW 1.276e-15 NaN 1.473e-15 NaN 5.100e-14
WZ np 2.704e-16 5.140e-13 6.002e-16 NaN 7.779e-16
WZ 2.700e-16 8.962e-16 6.756e-16 1.458e-15 7.158e-16

meth. jagmesh2 1009 lshp1009 fs 680 1c fs 680 1 sherman1 1000

dgetf2 np NaN NaN 4.162e-16 8.723e-16 4.052e-16
dgetf2 1.198e-15 1.198e-15 5.091e-16 8.723e-16 3.911e-16
dgetrf 1.254e-15 1.254e-15 4.711e-16 8.345e-16 3.050e-16
dgjsv 3.529e-15 3.529e-15 1.375e-14 6.211e-16 1.826e-15
dgjsvr 3.302e-15 3.302e-15 5.244e-16 6.211e-16 8.306e-16
dgbjsvr 7.059e-15 7.059e-15 1.276e-14 8.793e-16 2.622e-15
dghsvr 3.403e-15 3.403e-15 2.553e-16 4.512e-16 6.793e-16
dgbhsvr 2.335e-15 2.335e-15 1.619e-16 2.987e-16 3.143e-16
dpurcell 2.589e-15 2.589e-15 3.658e-16 7.445e-16 9.843e-16
dBM 4.027e-15 4.027e-15 2.648e-16 4.903e-16 7.448e-16
ZW NaN NaN 4.524e-14 5.560e-15 2.419e-14
WZ np NaN NaN 4.489e-16 8.061e-16 3.339e-16
WZ 1.244e-15 1.244e-15 4.409e-16 8.061e-16 3.197e-16

meth. nos3 960 cavity05 1182 e05r0500 236 olm1000 steam2 600

dgetf2 np 4.637e-16 7.725e-16 1.638e-14 1.258e-16 2.131e-16
dgetf2 4.637e-16 2.439e-15 7.815e-16 6.870e-17 2.193e-16
dgetrf 4.272e-16 2.287e-15 7.912e-16 6.924e-17 2.045e-16
dgjsv 1.308e-15 4.693e-14 3.485e-14 1.652e-13 2.843e-16
dgjsvr 1.308e-15 1.767e-15 7.726e-16 2.576e-15 2.765e-16
dgbjsvr 3.008e-15 4.067e-13 6.488e-12 3.280e-12 2.226e-16
dghsvr 1.179e-15 1.133e-15 5.722e-16 2.643e-15 3.175e-16
dgbhsvr 4.194e-16 6.260e-16 4.480e-16 1.023e-15 2.117e-16
dpurcell 1.265e-15 1.157e-15 5.314e-16 3.292e-16 4.776e-16
dBM 1.230e-15 1.161e-15 5.332e-16 6.732e-16 3.305e-16
ZW 5.579e-14 1.425e-12 NaN NaN 4.644e-16
WZ np 5.003e-16 NaN NaN 1.324e-16 2.584e-16
WZ 5.074e-16 1.742e-15 5.434e-16 1.072e-16 2.460e-16
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Table 2.7. Relative residual norms ‖b−Ax‖/‖b‖

meth. 1138bus steam1 240 nos7 729 fs 183 6 bcsstk20 485

dgetf2 np 3.082e-16 1.738e-16 4.989e-16 2.165e-16 4.319e-16
dgetf2 3.031e-16 4.331e-16 4.989e-16 8.233e-17 3.847e-16
dgetrf 1.954e-16 3.952e-16 5.392e-16 8.107e-17 1.984e-16
dgjsv 9.931e-16 6.354e-15 1.007e-15 2.678e-16 6.245e-11
dgjsvr 1.231e-15 6.485e-16 1.007e-15 4.050e-17 6.446e-16
dgbjsvr 5.111e-14 8.583e-16 3.158e-13 1.229e-16 0.0003627
dghsvr 8.409e-16 2.969e-16 8.813e-16 1.651e-16 3.820e-16
dgbhsvr 3.252e-16 2.375e-16 3.616e-16 1.653e-16 2.005e-16
dpurcell 1.011e-15 9.827e-16 1.096e-15 1.767e-16 5.136e-16
dBM 9.956e-16 3.045e-16 9.675e-16 3.692e-17 4.581e-16
ZW 1.143e-11 7.389e-16 4.084e-09 5.967e-11 4.468e-09
WZ np 2.229e-16 4.728e-16 6.078e-16 9.506e-18 2.241e-16
WZ 2.889e-16 7.350e-16 5.193e-16 7.212e-17 1.490e-16

meth. mcfe 765 nnc 261 lnsp 511

dgetf2 np 2.339e-15 NaN NaN
dgetf2 3.101e-16 4.932e-16 3.549e-17
dgetrf 3.269e-16 5.957e-16 3.255e-17
dgjsv 4.908e-16 3.290e-08 4.421e-15
dgjsvr 1.664e-16 3.396e-16 3.904e-16
dgbjsvr 4.151e-16 8.043e-07 3.520e-14
dghsvr 2.419e-16 3.741e-16 3.733e-16
dgbhsvr 2.481e-16 1.685e-16 1.954e-16
dpurcell 3.104e-16 4.532e-16 4.929e-16
dBM 2.426e-16 3.151e-16 3.028e-16
ZW 2.075e-15 NaN NaN
WZ np 2.398e-16 NaN NaN
WZ 3.383e-16 4.302e-16 8.781e-17
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Table 2.8. Error norms

meth. pde225 gre 243 jpwh 991 jagmesh1 bfwa782 782

dgetf2 np 8.581e-15 5.006e-12 4.025e-14 NaN 1.241e-12
dgetf2 8.581e-15 2.648e-14 4.024e-14 6.356e-13 5.074e-13
dgetrf 9.027e-15 3.410e-14 3.406e-14 5.874e-13 4.900e-13
dgjsv 1.165e-14 4.386e-14 4.878e-14 7.278e-13 3.654e-13
dgjsvr 1.165e-14 3.832e-14 4.870e-14 9.122e-13 6.968e-13
dgbjsvr 8.007e-15 4.607e-14 2.795e-14 6.265e-13 1.601e-13
dghsvr 8.844e-15 3.453e-14 3.517e-14 6.274e-13 6.549e-13
dgbhsvr 5.792e-15 4.760e-14 1.680e-14 4.490e-13 2.112e-13
dpurcell 1.240e-14 2.392e-14 3.371e-14 5.733e-13 4.868e-13
dBM 8.918e-15 3.037e-14 3.380e-14 1.189e-12 4.671e-13
ZW 2.352e-14 NaN 4.518e-14 NaN 2.180e-11
WZ np 8.555e-15 4.491e-11 4.258e-14 NaN 3.987e-13
WZ 8.401e-15 5.375e-14 5.982e-14 7.844e-13 3.642e-13

meth. jagmesh2 1009 lshp1009 fs 680 1c fs 680 1 sherman1 1000

dgetf2 np NaN NaN 1.476e-12 1.085e-12 8.609e-13
dgetf2 4.492e-13 4.492e-13 2.378e-12 1.085e-12 1.172e-12
dgetrf 4.646e-13 4.646e-13 2.044e-12 8.356e-13 9.382e-13
dgjsv 8.750e-13 8.750e-13 1.654e-12 1.065e-12 1.213e-12
dgjsvr 9.243e-13 9.243e-13 1.563e-12 1.065e-12 1.163e-12
dgbjsvr 5.689e-13 5.689e-13 1.597e-12 7.874e-13 2.458e-11
dghsvr 3.797e-13 3.797e-13 2.907e-13 1.943e-13 1.934e-13
dgbhsvr 5.915e-13 5.915e-13 3.216e-13 1.880e-13 1.799e-13
dpurcell 5.919e-13 5.919e-13 4.004e-13 2.822e-13 4.149e-13
dBM 5.156e-13 5.156e-13 2.543e-13 2.167e-13 1.433e-13
ZW NaN NaN 1.652e-12 1.406e-12 1.020e-12
WZ np NaN NaN 1.471e-12 1.023e-12 5.701e-13
WZ 3.007e-13 3.007e-13 1.161e-12 1.023e-12 1.267e-12

meth. nos3 960 cavity05 1182 e05r0500 236 olm1000 steam2 600

dgetf2 np 8.573e-12 2.495e-12 5.840e-10 2.779e-11 9.162e-12
dgetf2 8.573e-12 2.918e-10 1.086e-10 3.029e-11 9.719e-12
dgetrf 6.502e-12 1.740e-10 1.081e-10 2.865e-11 9.687e-12
dgjsv 7.708e-12 5.098e-10 1.192e-10 3.526e-11 9.692e-12
dgjsvr 7.708e-12 3.027e-12 8.114e-12 2.042e-11 9.436e-12
dgbjsvr 3.122e-12 1.308e-09 8.736e-09 3.113e-08 8.357e-12
dghsvr 9.809e-13 4.189e-12 3.944e-12 1.327e-11 6.472e-12
dgbhsvr 3.244e-12 3.942e-12 3.282e-12 2.738e-11 6.797e-12
dpurcell 2.089e-13 3.029e-12 2.819e-12 2.259e-11 6.313e-12
dBM 2.742e-12 1.410e-12 2.092e-12 4.509e-11 6.312e-12
ZW 6.243e-12 9.625e-10 NaN NaN 7.044e-12
WZ np 3.975e-12 NaN NaN 2.853e-11 1.514e-11
WZ 1.078e-11 1.576e-10 4.384e-11 3.618e-11 1.147e-11
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Table 2.9. Error norms

meth. 1138bus steam1 240 nos7 729 fs 183 6 bcsstk20 485

dgetf2 np 4.553e-10 3.150e-12 8.812e-08 8.730e-07 2.352e-07
dgetf2 4.551e-10 4.080e-09 8.812e-08 1.459e-07 7.515e-07
dgetrf 1.570e-10 2.893e-09 3.182e-08 1.880e-07 8.707e-07
dgjsv 4.412e-10 3.025e-09 5.389e-08 4.542e-07 8.953e-07
dgjsvr 4.142e-10 3.322e-12 5.389e-08 1.965e-07 1.087e-07
dgbjsvr 7.261e-11 3.430e-09 7.103e-08 1.942e-07 2.62
dghsvr 5.757e-10 1.930e-12 1.925e-08 2.270e-07 3.691e-07
dgbhsvr 1.320e-11 2.488e-12 1.412e-08 2.131e-07 1.628e-07
dpurcell 6.383e-10 1.813e-12 3.330e-08 8.132e-08 1.374e-06
dBM 6.903e-10 2.048e-12 2.600e-08 8.431e-08 3.506e-07
ZW 9.319e-10 3.499e-12 1.163e-07 0.1336 0.005807
WZ np 2.619e-10 1.276e-11 2.229e-08 1.515e-07 4.756e-07
WZ 1.303e-10 7.907e-09 1.168e-08 3.934e-07 1.511e-06

meth. mcfe 765 nnc 261 lnsp 511

dgetf2 np 5.521e-12 NaN NaN
dgetf2 1.610e-12 0.003847 6.204e-09
dgetrf 1.280e-12 0.008257 4.01e-09
dgjsv 6.330e-13 0.01552 4.916e-09
dgjsvr 3.108e-14 0.008658 4.050e-10
dgbjsvr 1.786e-12 0.2182 3.197e-09
dghsvr 2.968e-14 0.002956 8.295e-12
dgbhsvr 1.866e-14 0.0019 4.954e-11
dpurcell 3.291e-14 0.001081 1.761e-11
dBM 2.961e-14 0.001872 8.370e-11
ZW 2.650e-13 NaN NaN
WZ np 4.632e-12 NaN NaN
WZ 8.916e-13 0.01116 1.263e-09
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Table 2.10. Relative error norms ‖xe − x‖/‖xe‖

meth. pde225 gre 243 jpwh 991 jagmesh1 bfwa782 782

dgetf2 np 5.371e-16 2.568e-13 1.280e-15 NaN 4.481e-14
dgetf2 5.371e-16 1.359e-15 1.280e-15 2.092e-14 1.832e-14
dgetrf 5.650e-16 1.749e-15 1.084e-15 1.933e-14 1.769e-14
dgjsv 7.292e-16 2.250e-15 1.552e-15 2.395e-14 1.319e-14
dgjsvr 7.292e-16 1.966e-15 1.549e-15 3.002e-14 2.515e-14
dgbjsvr 5.012e-16 2.364e-15 8.892e-16 2.062e-14 5.778e-15
dghsvr 5.536e-16 1.772e-15 1.119e-15 2.065e-14 2.364e-14
dgbhsvr 3.625e-16 2.442e-15 5.344e-16 1.478e-14 7.622e-15
dpurcell 7.762e-16 1.227e-15 1.072e-15 1.887e-14 1.757e-14
dBM 5.582e-16 1.558e-15 1.075e-15 3.912e-14 1.686e-14
ZW 1.472e-15 NaN 1.437e-15 NaN 7.867e-13
WZ np 5.355e-16 2.304e-12 1.355e-15 NaN 1.439e-14
WZ 5.258e-16 2.758e-15 1.903e-15 2.582e-14 1.314e-14

meth. jagmesh2 1009 lshp1009 fs 680 1c fs 680 1 sherman1 1000

dgetf2 np NaN NaN 5.672e-14 4.169e-14 2.725e-14
dgetf2 1.419e-14 1.419e-14 9.136e-14 4.169e-14 3.711e-14
dgetrf 1.468e-14 1.468e-14 7.856e-14 3.211e-14 2.970e-14
dgjsv 2.764e-14 2.764e-14 6.356e-14 4.093e-14 3.840e-14
dgjsvr 2.920e-14 2.920e-14 6.007e-14 4.093e-14 3.681e-14
dgbjsvr 1.797e-14 1.797e-14 6.135e-14 3.026e-14 7.782e-13
dghsvr 1.200e-14 1.200e-14 1.117e-14 7.468e-15 6.121e-15
dgbhsvr 1.869e-14 1.869e-14 1.236e-14 7.223e-15 5.694e-15
dpurcell 1.870e-14 1.870e-14 1.539e-14 1.084e-14 1.313e-14
dBM 1.629e-14 1.629e-14 9.773e-15 8.327e-15 4.536e-15
ZW NaN NaN 6.349e-14 5.401e-14 3.228e-14
WZ np NaN NaN 5.653e-14 3.930e-14 1.805e-14
WZ 9.500e-15 9.500e-15 4.463e-14 3.930e-14 4.012e-14

meth. nos3 960 cavity05 1182 e05r0500 236 olm1000 steam2 600

dgetf2 np 2.783e-13 7.217e-14 3.626e-11 8.798e-13 3.757e-13
dgetf2 2.783e-13 8.441e-12 6.741e-12 9.587e-13 3.986e-13
dgetrf 2.111e-13 5.035e-12 6.713e-12 9.068e-13 3.973e-13
dgjsv 2.502e-13 1.475e-11 7.404e-12 1.116e-12 3.975e-13
dgjsvr 2.502e-13 8.756e-14 5.038e-13 6.462e-13 3.870e-13
dgbjsvr 1.014e-13 3.784e-11 5.425e-10 9.855e-10 3.427e-13
dghsvr 3.185e-14 1.212e-13 2.449e-13 4.200e-13 2.654e-13
dgbhsvr 1.053e-13 1.140e-13 2.038e-13 8.667e-13 2.787e-13
dpurcell 6.781e-15 8.763e-14 1.751e-13 7.151e-13 2.589e-13
dBM 8.902e-14 4.079e-14 1.299e-13 1.427e-12 2.588e-13
ZW 2.027e-13 2.784e-11 NaN NaN 2.889e-13
WZ np 1.290e-13 NaN NaN 9.032e-13 6.207e-13
WZ 3.499e-13 4.560e-12 2.722e-12 1.145e-12 4.705e-13
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Table 2.11. Relative error norms ‖xe − x‖/‖xe‖

meth. 1138bus steam1 240 nos7 729 fs 183 6 bcsstk20 485

dgetf2 np 1.344e-11 1.916e-13 3.309e-09 5.792e-08 1.059e-08
dgetf2 1.343e-11 2.482e-10 3.309e-09 9.68e-09 3.384e-08
dgetrf 4.636e-12 1.760e-10 1.195e-09 1.247e-08 3.920e-08
dgjsv 1.302e-11 1.840e-10 2.024e-09 3.013e-08 4.031e-08
dgjsvr 1.223e-11 2.021e-13 2.024e-09 1.304e-08 4.893e-09
dgbjsvr 2.143e-12 2.086e-10 2.667e-09 1.289e-08 0.1179
dghsvr 1.699e-11 1.174e-13 7.229e-10 1.506e-08 1.662e-08
dgbhsvr 3.897e-13 1.513e-13 5.302e-10 1.414e-08 7.328e-09
dpurcell 1.884e-11 1.103e-13 1.251e-09 5.395e-09 6.187e-08
dBM 2.038e-11 1.246e-13 9.764e-10 5.594e-09 1.578e-08
ZW 2.751e-11 2.129e-13 4.367e-09 0.008866 0.0002614
WZ np 7.730e-12 7.761e-13 8.370e-10 1.005e-08 2.141e-08
WZ 3.845e-12 4.810e-10 4.387e-10 2.61e-08 6.802e-08

meth. mcfe 765 nnc 261 lnsp 511

dgetf2 np 2.007e-13 NaN NaN
dgetf2 5.853e-14 0.0002245 2.725e-10
dgetrf 4.655e-14 0.0004818 1.762e-10
dgjsv 2.302e-14 0.0009055 2.160e-10
dgjsvr 1.130e-15 0.0005052 1.779e-11
dgbjsvr 6.493e-14 0.01273 1.404e-10
dghsvr 1.079e-15 0.0001725 3.644e-13
dgbhsvr 6.782e-16 0.0001109 2.176e-12
dpurcell 1.197e-15 6.309e-05 7.738e-13
dBM 1.077e-15 0.0001092 3.677e-12
ZW 9.635e-15 NaN NaN
WZ np 1.684e-13 NaN NaN
WZ 3.242e-14 0.0006511 5.55e-11
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2.19 Historical and bibliographical comments
It has been written [558, 559] that the earliest solutions of linear equations were obtained by the
Babylonians (2000 to 1600 BC) in Mesopotamia, the region between the Tigris and Euphrates
rivers. The Babylonians were using a positional sexagesimal number system and fixed point
numbers. They represented problems by a step-by-step list of rules whose evaluation was given
in words. It turns out that problems written on some clay tablets correspond, when translated in
our modern notation, to solving linear and nonlinear equations. However, seeing the Babylonians
being the first ever people solving linear equations and inventing linear algebra may be simply
an overstatement, see [650, 651].

As we said above, elimination methods were used in ancient China long before our era. The
book in which we find these methods is the Chinese mathematical classic Jiuzhang Suanshu
(which has been translated as The Nine Chapters on Mathematical Art). It is believed to have
been compiled some time between 100 BC and 100 AD, but it is likely that the content of that
book was much older than its date of compilation. Chapter 8 contains 18 practical problems
which amount to solve nonsingular linear systems of order 2 to 5 and one underdetermined
system with 5 equations and 6 unknowns. The procedure in described in words using examples.
There is no general description. The Chinese mathematicians of those times were solving small
linear systems with integer coefficients using an elimination method. Their method is not exactly
what we now call Gaussian elimination, particularly in the backward phase, but it is very similar.
They did not use pivoting techniques and symbols for the unknowns and did not have the concept
of linear equation.

Solution by elimination of small linear systems of order 3 or 4 were done in Western Europe
in the 15th and 16th centuries. An important step in the history of algebra occurred at the end of
the 16th and the beginning of the 17th centuries. It was the advent of symbolic algebra, thanks to
the works of François Viète (1540-1603) and René Descartes (1596-1650). During the 17th and
18th centuries many books contained examples of elimination methods on small linear systems,
including one by Isaac Newton (1643-1727) published in the first years of the 18th century, and
one by Leonhard Euler (1707-1783) published in 1768.

The general solution of a nonsingular linear system of any order using ratios of determinants
was given by the Swiss mathematician Gabriel Cramer (1704-1754) in an appendix of his book
[290] about algebraic curves published in 1750. It could have been the end of elimination meth-
ods, but is was not so because computing determinants of large order is painful by hand and
costly when using any computing device.

The interest of Johann Carl Friedrich Gauss (1777-1855) for the method of least squares came
from his activities in astronomy and geodesy. He had to solve what was considered as large linear
systems in those times. He gave the details of his method in [498] in 1809. Gauss improved upon
his predecessors by describing the elimination process in very general terms. Contrary to what
was done before, he did not rewrite the equations after each elimination step, but just computed
the coefficients with his own bracket notation. Since Gauss solved linear systems by elimination
in a way clearly different from his predecessors, it seems to be fair to name the method we are
using today “Gaussian elimination”, even though the basic technique is much, much older.

In 1888, Wilhelm Jordan (1842-1899) published Handbuch der Vermessungskunde (Sur-
veyor’s manual), a book [687] on geodesy, in which he showed how to use elimination (that
he called Gauss’sche elimination), but with a slightly different notation. It is thanks to that book
that this method spread out [17]. The Gauss-Jordan elimination was devised by this Jordan,
and not, as it is sometimes said, by the French mathematician Marie Ennemond Camille Jordan
(1838-1922) whose name is associated with the Jordan canonical form.

A method similar to Gauss-Jordan was devised by the abbot Bernard Isidore Clasen (1829-
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1902), from Luxembourg, in 1888 [268].
Interesting variants of Gaussian elimination were devised by Myrick Hascall Doolittle (1830-

1913) in 1878 [354], André Louis Cholesky (1875-1918) around 1910, and Prescott Durand
Crout (1907-1984) in 1941 [291]. It is interesting to observe that Doolittle used iterative refine-
ment to improve the solutions he computed by hand using multiplication tables. Cholesky never
published his method during his lifetime. It was published by a fellow officer, Major Ernest
Benoît (1873-1956) in 1924 [110]. About Cholesky’s life and work, see [171]. Cholesky’s
method was later independently rediscovered many times; in particular, in the square root method
of Tadeusz Banachiewicz (1882-1954), a Polish astronomer and mathematician in 1938 [93].

When the first computers were developed after World War II, it was not obvious to every-
one that Gaussian elimination could be used safely for computing solution of linear systems,
see [1105]. In particular, Harold Hotelling (1895-1973), an American statistician and economist
raised some concerns about its accuracy because of rounding errors. In 1947, John von Neumann
(1903-1957) published a paper [1105] with Herman H. Goldstine (1913-2004) about the inver-
sion of matrices in which they did an analysis of Gaussian elimination. In 1948, Alan Mathison
Turing (1912-1954) published a paper titled “Rounding-off errors in matrix processes” [1078].
Together with the von Neumann and Goldstine paper, it has been influential in rehabilitating
Gaussian elimination.

It is mainly through the work of James Hardy Wilkinson (1919-1986), summarized in his
1965 book [1120], that the properties of Gaussian elimination were carefully studied and it be-
came widely known that Gaussian elimination can be successfully used. Wilkinson also devel-
oped some software to be used on the early computers available at that time. For a summary of
the work on the stability of Gaussian elimination, see N.J. Higham [631, 633].

The Gauss-Huard method was proposed in 1979 by Pierre Huard de la Marre (1927-2022)
who was an expert in optimization [655]. He was professor in Lille University (France) and
scientific advisor for EDF, the French electricity company. He is well known for his “méthode
des centres” (center method) in optimization.

The WZ factorization was devised and mainly promoted by David John Evans (1928-2005).
He was professor at Loughborough University (UK).

Most of the papers published today about Gaussian elimination are concerned with the im-
plementation of the method on parallel computers. For details on the history of Gaussian elimi-
nation, see [556, 557, 558] and [160].
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3

Gaussian elimination for
sparse linear systems

The matrix may be sparse, either with the non-zero elements concentrated
. . . or distributed in a less systematic manner. We shall refer to a matrix as
dense if the percentage of zero elements or its distribution is such as to make
it uneconomic to take advantage of their presence.

– J.H. Wilkinson and C. Reinsch [1121] 1971

There are many practical problems leading to linear systems with a matrix having many zero
entries. Matrices of that type are called sparse matrices. There is no precise definition of what
is a sparse matrix, that is, how many zeros entries there are or what is the percentage of zeros,
see the quote above. As we have seen in Chapter 1, special techniques are used to store sparse
matrices in order to store only the nonzero entries, as well as avoiding operations on zeros. The
matrix and its factors can be stored by rows, by columns, or by blocks. As for dense matrices
there are several variants of Gaussian elimination for sparse matrices. The storage scheme is
generally adapted to the particular variant that is used. A definition that has sometimes been
given is that a matrix is considered as sparse when it is beneficial (either in computer storage,
that is, memory usage, or in computer time) to use special sparse techniques as opposed to the
more traditional general algorithms we have described in Chapter 2. Exploiting sparsity allows
to compute the solution of very large problems.

There are a few good books about direct methods for sparse linear systems. Let us mention
those of J.A. George and J.W.H. Liu [511] for symmetric positive definite systems, S. Pissanet-
sky [920], T.A. Davis [312], I.S. Duff, A.M. Erisman and J.K. Reid [373], and J.S. Scott and
M. Tůma [1002] for more general sparse systems. There is also a thorough recent review of
sparse techniques by T.A. Davis, S. Rajamanickamn and W.M. Sid-Lakhdar [315].

3.1 Triangular systems
When factorizing a sparse matrix, the factors L and U are generally sparse, and the last step of
the algorithm is solving two sparse triangular systems. Let us consider a sparse lower triangular
matrix. The algorithm to choose depends on the storage scheme for the sparse factor L and
also on the right-hand side being dense or sparse. Generally, things are not too different from
the dense case. However, a sparse triangular solve is difficult to parallelize. The entries of L
give a dependency graph which is a direct acyclic graph (DAG) that can be used to schedule the
computation.

185
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Early algorithms for parallel computers were described by A. George, M.T. Heath, J.W.H. Liu,
and E.G. Ng [504, 505, 506], and E. Rothberg [958]. More recent references are P.R. Amestoy,
I.S. Duff, A. Guermouche, and T. Slavova [28] and E. Totoni, M.T. Heath, and L.V. Kale [1070].

Another possibilities are to use inversion of submatrices as E. Anderson and Y. Saad [35] or
a partition form of the inverse as F.L. Alvarado, D.C. Yu, and R. Betancourt [20], F.L. Alvarado
and R.S. Schreiber [19], A. Pothen and F.L. Alvarado [925], F.L. Alvarado, A. Pothen, and
R.S. Schreiber [18], and B.W. Peyton, A. Pothen, and X. Yuan [916].

3.2 The fill-in phenomenon
Unfortunately, in many cases, there are more nonzero entries in the L and U factors than in the
sparse matrix A. Let us assume that there exists an LU factorization of the matrix A. As we have
seen in Chapter 2, the entries a(k+1)

i,j of the reduced matrix at the kth step of Gaussian elimination
are computed as

a
(k+1)
i,j = a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

.

Even if a(k)
i,j = 0 in the previous reduced matrix, a(k+1)

i,j can be nonzero if a(k)
i,k 6= 0 and a(k)

k,j 6= 0.
Nonzero entries in the L and U factors in positions (i, j) for which ai,j = 0 are called fill-ins.
The storage scheme for L and U must be designed to account for that.

Let us consider an example with a small matrix of order 5 having a symmetric nonzero
structure. The x’s in A denote nonzero entries,

A1 = A =


x x 0 x 0
x x x 0 0
0 x x 0 x
x 0 0 x 0
0 0 x 0 x

 .

Let us look at the successive steps of the LU factorization, assuming that we do not need to use
pivoting. Fill-ins are denoted by black bullets •,

A2 =


x x 0 x 0
0 x x • 0
0 x x 0 x
0 • 0 x 0
0 0 x 0 x

 .

The entry (2, 4), which was initially zero, becomes nonzero because the entries (2, 1) and (1, 4)
are nonzero. The same thing happens for the entry (4, 2) because the nonzero structure is sym-
metric. The second step gives

A3 =


x x 0 x 0
0 x x • 0
0 0 x • x
0 0 • x 0
0 0 x 0 x

 .

We observe that the fill-in in position (4, 3) is created by the fill-in in position (4, 2) at the
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previous step. The next steps are

A4 =


x x 0 x 0
0 x x • 0
0 0 x • x
0 0 0 x •
0 0 0 • x

 , U = A5 =


x x 0 x 0
0 x x • 0
0 0 x • x
0 0 0 x •
0 0 0 0 x

 .

There are four fill-ins in A4 but only three in A5 which is the U matrix. Finally, the L factor is

L =


x
x x
0 x x
x • • x
0 0 x • x

 .

In this example, three entries which were initially zero in the lower triangular part of A are
nonzero in L. When pivoting is used, the number of fill-ins depends on the choice of the piv-
ots. Different pivoting strategies may lead to large differences in the number of fill-ins. Let us
consider a well-known example,

A =


x x x x
x x
x x
x x

 ⇒ L =


x
x x
x • x
x • • x

 .

All the zero entries in the lower triangular part of A are filled in L. We can define a permutation
matrix P such that the first element is numbered last, giving the permuted matrix,

PAPT =


x x

x x
x x

x x x x

 .

There is no fill-in in the LU factorization of PAPT . This is called a perfect elimination.
The aim of sparse Gaussian elimination is to avoid doing operations on zero entries and

therefore to try to decrease as much as possible the number of fill-ins. This will have the effect
of decreasing the needed storage and the number of floating-point operations. The way this
can be achieved depends on the properties of the matrix A. If the matrix is symmetric and,
for instance, positive definite, we do not need to pivot for numerical stability, see Chapter 2.
This gives the freedom to choose symmetric permutations only to decrease the fill-in. Moreover,
the number and positions of fill-ins can be determined before doing the numerical factorization
since it depends only on the structure of the matrix and not on the values of the entries. The
LU factorization can be computed within a static data structure that is constructed in a pre-
processing phase called the symbolic factorization. It has been shown that finding an ordering
that minimizes the fill-in is an NP complete problem, see M. Yannakakis [1137]. Consequently,
all the algorithms to reduce the fill-in rely on heuristics to find a “good” ordering producing a low
level of fill-in. When the matrix is nonsymmetric and without any special properties, we have
seen that we generally need to pivot to achieve an acceptable numerical accuracy. If in addition
the matrix is sparse, we now have another requirement which is to decrease the fill-in. These
two, sometimes conflicting, goals have to be dealt with at the same time. It implies that the data
structure for the L and U factors cannot be determined before the numerical factorization, since
the pivot rows or columns, and therefore the potential fill-ins are only known when performing
the numerical factorization.
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3.3 Graphs and fill-in for symmetric matrices
To set up the data structure for the triangular matrix L in a Cholesky factorization A = LLT we
have to know the positions of the fill-ins. This was the topic of intense research, starting in the
1970s. It is based on the interpretation of Gaussian elimination in terms of graphs.

We have seen in Chapter 1 that a graph can be associated with any sparse matrix. It turns out
that Gaussian elimination can be described by simple operations on the graph. The connection
between sparse Gaussian elimination and graphs for symmetric matrices was first studied by
S.V. Parter [906] in the 1960s, see also D.J. Rose [951]. We define a sequence of graphsG(k), k =
1, . . . , n, corresponding to the successive steps of the elimination, G(1) = G being the graph of
the matrix A.

Theorem 3.1. The graph G(k+1) is obtained from G(k) by removing the node xk from the graph
as well as all its incident edges and adding edges such that all the remaining neighbors of xk in
G(k) are pairwise connected. This process from G(k) to G(k+1) corresponds to the kth step of
Gaussian elimination.

Proof. Let us prove this for the first step, eliminating the node x1 (or the corresponding
unknown in the linear system). Then,

a
(2)
i,j = ai,j −

ai,1a1,j

a1,1
.

The element a(2)
i,j is nonzero if either ai,j 6= 0 or ai,j = 0 and ai,1 and a1,j are nonzero. This

last possibility means that xi and xj are neighbors of x1 in the graph. When x1 is eliminated and
a

(2)
i,j 6= 0, they will be connected by an edge representing the new nonzero entry. This occurs for

all the neighbors of x1. We do not consider zeros that arise by cancellation in the computation
of a(2)

i,j . Therefore, G(2) is the graph corresponding to the submatrix obtained from A(2), by
deleting the first row and the first column. A similar process obviously occurs for every step of
Gaussian elimination.

Starting from the graph G(A) of A and adding the edges that are created in all the G(k)’s
during the elimination, we obtain a graph GF , (F = L + LT ) which is called the filled graph
GF = (X,EF ). Let us consider a small example of an elimination graph for the structurally
symmetric matrix, Let

A =



x x x x x
x x
x x x
x x x x x x

x x
x x x

x x x x


.

Figure 3.1 displays the graph G(A). The graph G(2) is given in Figure 3.2. Eliminating x1, we
have to pairwise connect its neighbors x2, x3, x4 and x7. The edges corresponding to fill-ins are
shown as grey lines.
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Figure 3.1. The graph G(A)
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Figure 3.2. The graph G(2)

The graph G(2) corresponds to the following matrix, without the first row and first column,

A(2) =



x x x x x
x x • • •
x • x x •
x • x x x x x

x x
x x x

x • • x x x


.

5

6

3

4

7

Figure 3.3. The graph G(3)
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Then, the elimination of x2 does not cause any fill-in since all its neighbors form already a
clique. G(3) is given in Figure 3.3 and A(3) ≡ A(2), ≡ meaning that the two matrices have the
same structure. The next step is to eliminate x3. Again, there is no fill-in since x4 and x7 are
already connected. G(4) is displayed on Figure 3.4 and A(4) ≡ A(3).

5

6

4

7

Figure 3.4. The graph G(4)

Elimination of x4 connects x5, x6 and x7. The graph G(5) is shown on Figure 3.5 and the
matrix is

A(5) =



x x x x x
x x • • •
x • x x •
x • x x x x x

x x • •
x • x x

x • • x • x x


.

5

6

7

Figure 3.5. The graph G(5)

G(5) is a clique and the corresponding 3 × 3 submatrix is dense thus there will be no other
fill-in before the end of the elimination and A(7) ≡ A(5). The filled graph GF is shown in
Figure 3.6.

In total there are six fill-ins in the elimination. We observe that a perfect elimination can be
obtained by ordering the unknowns as

2, 5, 3, 6, 1, 4, 7

With this ordering, the permuted matrix is

A′ = PAPT =



x x
x x

x x x
x x x

x x x x x
x x x x x x

x x x x


.
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Figure 3.6. The filled graph GF

One thing to remember is that the more fill-ins we create in the early stages of the elimination,
the more fill-ins we will get later on, since fill-ins usually create fill-ins. The number of fill-
ins depends of the order of elimination, that is, on the numbering of the vertices in the graph.
From this remark, an heuristic rule is that it is likely to be beneficial to start eliminating nodes
(or unknowns) that do not create many fill-ins. These are the nodes with a small number of
neighbors or nodes in cliques.

Instead of reducing the fill-in one may try to minimize (or decrease) the number of floating-
point operations. This is different from the minimum fill-in problem. R. Luce and E.G. Ng [768]
showed that this problem is NP-hard for the sparse Cholesky factorization.

3.4 Characterization of the fill-in
To characterize the fill-in it is useful to introduce a few more definitions.
• The elimination tree of a symmetric matrix A of order n is a graph with n nodes such that the
node p is the parent of node j if and only if

p = min{i | i > j, `i,j 6= 0}

where L is the Cholesky factor of A = LLT , when this factorization exists. The elimination tree
of A is denoted by T (A) or simply T if the context makes it clear that we refer to the matrix
A. Clearly, p is the index of the first nonzero entry below the diagonal in column j of L. In
the example of Figure 3.1, T (A′) is shown in Figure 3.7 with a renumbering of the unknowns
according to P .

This tree shows that x′1, x
′
2, x
′
3, x
′
4 (corresponding to x2, x5, x3, x6 in the initial ordering)

can be eliminated in any order (or even in parallel) since there are no dependencies between the
corresponding variables.

The elimination tree was introduced by R.S. Schreiber [998]. It can be computed before
knowing the nonzero pattern ofL, and then used to construct that pattern, see [998], and J.W.H. Liu
[757, 760]. Let Tk be the tree corresponding to the principal submatrix A1:k,1:k. The tree Tk is
constructed from Tk−1. For each entry ak,i 6= 0, it is enough to see if i is a descendant of k in
Tk. Following the path from i to a root t in Tk−1 implies that t is a child of k in Tk. If this is well
implemented, the run time to construct T is almost linear in the number of nonzero entries in A.

Quite often, the nodes of the elimination tree are postordered. In a postordered tree, the d
proper descendants of a node k are numbered k − d through k − 1.
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Figure 3.7. The elimination tree of the matrix A′

• Let S ⊂ X and x ∈ X,x 6∈ S, x is said to be reachable from y 6∈ S through S if there exists
a path (y, v1, . . . , vk, x) from y to x in G such that vi ∈ S, i = 1, . . . , k. We define the set of
nodes that can be reached from y as

Reach(y, S) = {x |x 6∈ S, x is reachable from y through S}

There can be a fill-in between xj and xk only if at some step m, they are not already connected
together and both neighbors of a node xm,m < j, m < k. Either they were already neighbors
of xm in G or they were put in this situation by the elimination of other nodes x`, ` < m.
Recursively, we see that at some stage, xj was a neighbor of one of these nodes and the same for
xk with another of these nodes. It means that in G, there is at least one path between xj and xk
and that all the nodes on this path have numbers smaller than j and k. If there is no such path,
there could not be a fill-in between xj and xk. To formalize this we first prove a lemma due to
S.V. Parter [906].

Lemma 3.2. The edge {xi, xj} ∈ EF if and only if {xi, xj} ∈ E or {xi, xk} ∈ EF and
{xk, xj} ∈ EF for some k < min{i, j}.

Proof. If {xi, xk} is an edge of the filled graph, that is, ∈ EF and {xk, xj} ∈ EF for
some k < min{i, j}, the elimination of xk creates a fill-in between xi and xj . Therefore,
{xi, xj} ∈ EF . Conversely, if {xi, xj} ∈ EF and {xi, xj} 6∈ E, then at some stage, xi
and xj must be neighbors of a node, say xk, that will be eliminated before xi and xj . Thus,
k < min{i, j}.

The fill-in was characterized by A. George, see the book by A. George and J.W.H. Liu [511].
An earlier reference is [953] by D.J. Rose, R.E. Tarjan, and G.S. Lueker.

Theorem 3.3. Let k > j, there will be a fill-in between xj and xk if and only if

xk ∈ Reach(xj , {x1, . . . , xj−1}).

Proof. Assume xk ∈ Reach(xj , {x1, . . . , xj−1}). There exists a path {xj , v1, . . . , v`, xk} ∈
G with vi ∈ {x1, . . . , xj−1}, 1 ≤ i ≤ `. If ` = 0 or ` = 1, the result follows from Lemma 3.2.
If ` > 1, we can show that {xk, xj} ∈ EF by induction.

Conversely, we assume {xi, xj} ∈ EF , j < k. The proof is by induction on j. For j = 1,
{x1, xk} ∈ EF implies {x1, xk} ∈ E since there is no fill-in with the first node. Moreover, the
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set {x1, . . . , xj−1} is empty. Assume the result is true up to j−1. From Lemma 3.2, there exists
some ` ≤ j−1 such that {xj , x`} ∈ EF and {x`, xk} ∈ EF . By assumption, there exists a path
between xj and x` and another one from x` to xk. Clearly, this implies that there is a path from
xj to xk whose nodes have numbers ≤ ` ≤ j − 1.

A. George demonstrated that reachable sets can be efficiently implemented by using quotient
graphs [511] that were introduced by S.C. Eisenstat, M.H. Schultz, and A.H. Sherman [412].

The fill-in can also be characterized using elimination trees. Let T [x] be the subtree of T (A)
rooted at node x. A node y ∈ T [x] is a descendant of x and x is an ancestor of y. From the
definition of T (A), if xi is a proper ancestor of xj in T (A), then i > j. The following result is
due to J.W.H. Liu [760].

Theorem 3.4. For i > j, the numerical values of columns i ofL (denotedL:,i) depend on column
j of L (L:,j) if and only if `i,j 6= 0.

The row and column counts of the lower triangular matrix L can also be found from the
elimination tree without computing the pattern of L. They are useful to construct a data structure
for L. For the row count, see J.W.H. Liu [757], J.R. Gilbert, E.G. Ng, and B.W. Peyton [530],
and J.R. Gilbert, X.S. Li, E.G. Ng, and B.W. Peyton [526]. For the column count, see A. George
and J.W.H. Liu [511], R.S. Schreiber [998], and J.D. Hogg and J.A. Scott [646].

A. Pothen and S. Toledo wrote a survey [927] of algorithms and data structures for the sym-
bolic analysis of both symmetric and nonsymmetric factorizations.

After the symbolic analysis, as for the dense case, there are several variants for the numerical
factorization. Let us mention the up-looking or bordering method which proceeds one row at
a time, see D.J. Rose, G.G. Whitten, A.H. Sherman, and R.E. Tarjan [954], J.W.H. Liu [757],
R.E. Bank and R.K. Smith [94], and T.A. Davis [311, 312].

The left-looking method proceeds one column at a time, see S.C. Eisenstat, M.H. Schultz,
and A.H. Sherman [411, 414], S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman
[404], A. George and J.W.H. Liu [511], and A. George, M.T. Heath, J.W.H. Liu, and E.G. Ng
[504].

The right-looking (fan-out or outer product) method modifies the trailing submatrix, see
A. George, M.T. Heath, J.W.H. Liu, and E.G. Ng [505].

3.5 Band and envelope numbering schemes for symmetric
matrices

The first attempts to exploit sparsity in the 1960s and 1970s used band or envelope storage
schemes, trying to reduce the storage. These methods are now only of historical interest. But
profile reduction orderings are still an active area of research since they are very well-suited for
the frontal methods we will discuss later. Let us introduce a few definitions.

• fi(A) = min{i | ai,j 6= 0}. fi(A) is the index of the column with the first nonzero entry of
row i.

• βi(A) = i− fi(A) is the bandwidth of row i. The bandwidth of the matrix A is defined as

β(A) = max
i
{βi(A), 1 ≤ i ≤ n}, band(A) = {(i, j) | 0 < i− j ≤ β(A), i ≥ j}.

• Env(A) = {(i, j) | 0 < i−j ≤ βi(A), i ≥ j} is the envelope ofA. The profile ofA is defined
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as

Pr(A) = |Env(A)| =
n∑
i=1

βi(A).

In the 1970s these definitions led to ideas for storing the matrices A and L since if βi(A) is
almost constant as a function of i, it makes sense to store the entries corresponding to all the
indices in band(A). Unfortunately, most of the time this is not practical since there are often
a few rows with a large bandwidth and then, too much storage is wasted by the band scheme.
Then, one can use the variable band or envelope storage scheme, see A. Jennings [678]. For all
rows, this simple storage scheme stores all the entries of the envelope in one vector. Another
vector of integers is needed to point to the start of each row. The interest in this storage scheme
was motivated by the following result.

Theorem 3.5. Let Fill(A) = {(i, j) | i > j, ai,j = 0, `i,j 6= 0} be the index set of the fill-ins,
then

Fill(A) ⊂ Env(A).

Proof. This is a direct consequence of Theorem 3.3 since there cannot be any fill-in from a
node xi to a node xj whose number is smaller than the smallest number of the neighbors of xi.
All the paths going from xi to xj will have a node with a number larger than xj .

When using these storage schemes, it was natural to try to find orderings that reduce the
bandwidth or the profile of the matrix. Unfortunately, minimizing the bandwidth or the profile is
an NP-complete problem, see C.H. Papadimitriou [903]. But there are some heuristics that help
to obtain low profile orderings.

3.5.1 The Cuthill-McKee and reverse Cuthill-McKee orderings

The Cuthill-McKee (CM) algorithm is a local minimization algorithm whose aim is to reduce the
profile of A. Clearly, if at some stage of the ordering process, we want to minimize βi(A), we
must immediately number all the unlabeled nodes in Adj(xi). The algorithm due to E.H. Cuthill
and J. McKee [301] is the following.
Algorithm Cuthill-McKee (CM)
1) choose a starting node,
2) for i = 1, . . . , n − 1 number all the (unlabeled) neighbors of xi in G(A) in increasing order
of degree,
3) update the degrees of the remaining nodes.

The profile resulting from this ordering is quite sensitive to the choice of the starting node.
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9 10 12

13 14 15 16

11

Figure 3.8. An example of ordering
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Figure 3.9. Two reorderings

Consider the graph shown on Figure 3.8. If we choose 1 as a starting node, we obtain the left
ordering of Figure 3.9 with 38 fill-ins in L. If node 4 of the initial ordering is chosen as a starting
node, the right ordering is obtained with 14 fill-ins in L. In the left ordering, the maximum
difference of node numbers between neighbors is 7. With the right one, the maximum difference
is 4.

Let us consider the level structures of both orderings. The level structure of the left ordering
is on the left of Figure 3.10 using the numbers of the initial graph to label the nodes. The height
of the structure is 4 and the width 7. The level structure of the second ordering is shown on the
right. Its height is 7 and its width is 4. Clearly, the second choice is better than the first one. The
higher the structure is, the narrower it is. Starting nodes which give rise to narrow level structures
are clearly better choices.
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Figure 3.10. The two level structures

A “good” choice for a starting node will be a peripheral node, that is, one whose eccentricity
is equal to the diameter of the graph. This gives a narrow level structure where the difference
in number for a node and its neighbors is minimal. Unfortunately, peripheral nodes are not that
easy to find quickly. Therefore, heuristics were devised to find pseudo-peripheral nodes, that is,
nodes whose eccentricities are close to the diameter of the graph. An algorithm for finding such
nodes was proposed by N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer [524]. It is the following.
Algorithm GPS
1) choose a starting node r,
2) build the level structure L(r)

L(r) = {L0(r), . . . , Le(r)(r)},
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3) sort the nodes x ∈ Le(r)(r) by increasing degree order,
4) for all nodes x ∈ Le(r)(r) in increasing degree order, build L(x). If the height of L(x) is
larger than the height of L(r), choose x as a starting node (r = x) and go to step 2).

This algorithm eventually converges since eccentricities are bounded above by the diameter
of the graph. However, it can be very costly. A. George and J.W.H. Liu [508] decreased the
computing time by eliminating structures with large width as soon as possible. Step 4) of the
algorithm is modified as,
4′) let w(x) be the width of L(x). For all x ∈ Le(r)(r) in order of increasing degree, build

L(x) = {L0(x), . . . , Le(r)(x)}.

At each level i, if |Li(x)| > w(r), drop the current node and pick another one x. If w(x) ≤ w(r)
and e(x) > e(r), choose x as a starting node (r = x) and go to 2).

A. George and J.W.H. Liu [511] also proposed to use the following simple algorithm,
1) choose a starting node r,
2) build L(r),
3) choose a node x of minimum degree in Le(r)(r),
4) build L(x). If e(x) > e(r), choose x as a starting node and go to 2).

As an ordering scheme, A. George and J.W.H. Liu [511] proposed to reverse the Cuthill-
McKee ordering.
Algorithm Reverse Cuthill-McKee (RCM),
1) find a pseudo-peripheral starting node,
2) generate the CM ordering,
3) reverse the numbering. Let x1, . . . , xn be the CM ordering. The RCM ordering {yi} is given by
yi = xn+i−1, i = 1, . . . , n.

Let us consider a small example. We would like to number the graph of Figure 3.11.

Figure 3.11. A graph to number

With the Cuthill-McKee (resp. reverse Cuthill-McKee) algorithm, we obtain the left (resp. right)
part of Figure 3.12.

The nonzero structures of the two Cholesky factors are respectively,

LCM =


x
x x

x x
x • x
x • • x
x • • • x

 , LRCM =


x

x
x

x
x x x x x

x x

 .

There are 6 fill-ins with CM and no fill-in with RCM.
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Figure 3.12. Cuthill-McKee (left) and reverse Cuthill-McKee (right)

Let us now show that, regarding the number of fill-ins, RCM is always as good as CM. Hence,
there is no reason to use CM.

Theorem 3.6. Let A be an irreducible matrix and ACM be the matrix corresponding to reorder-
ing (the graph of) A by the Cuthill-McKee scheme. Then,

∀i, j, i ≤ j, fi ≤ fj .

Moreover, fi < i if i > 1.

Proof. Assume the conclusion does not hold. Then, there are a column k and rows p, `,m, p <
` < m such that

fp ≤ k, f` > k, fm ≤ k.
It means that

ap,k 6= 0 =⇒ xp ∈ Adj(xk),

am,k 6= 0 =⇒ xm ∈ Adj(xk),

a`,k = 0 =⇒ x` 6∈ Adj(xk).

This is a contradiction since the Cuthill-McKee algorithm has successively numbered all nodes
in Adj(xk).

Let us introduce a new definition,
• Tenv(A) = {(i, j) | j ≤ i, ∃k ≥ i, ak,j 6= 0}.
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Figure 3.13. Env(A) and Tenv(A)

Tenv(A) is the transpose envelope of A. Let us consider the example in Figure 3.13. If
we use the reverse Cuthill-McKee algorithm, we have to reverse the ordering, and we obtain the
matrix of Figure 3.14. The rows of ARCM are the columns of ACM .
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Figure 3.14. The envelope for RCM

Lemma 3.7.
|Env(ARCM )| = |Tenv(ACM )|.

Proof. Straightforward.

Theorem 3.8.
Tenv(ACM ) ⊆ Env(ACM ).

Proof. Looking at the figures, the result seems obvious, but let us formalize it. Assume we
have (i, j) ∈ Tenv(ACM ) and (i, j) 6∈ Env(ACM ). Then, there exists k ≥ i such that ak,j 6= 0.
Either
1) ai,j 6= 0 =⇒ (i, j) ∈ Env(ACM ),

or
2) ai,j = 0. If (i, j) 6∈ Env(ACM ) =⇒ ∀` ≤ j, ai,` = 0 =⇒ fi > j.

But, we have fk ≤ j. It implies fk < fi which is impossible since k ≥ i by Theorem 3.6.
Obviously, we have

|Env(ARCM )| ≤ |Env(ACM )|.

A. George proved the following result.

Lemma 3.9. If ∀i > 1, fi < i, the envelope Env(A) fills completely.

This result implies
|Fill(ARCM )| ≤ |Fill(ACM )|.

There are cases for which equality holds. It was shown that RCM can be implemented to run in
O(|E|) time. For a regular N ×N grid and triangular finite elements, the storage for RCM varies
as O(N3), ( ≈ 0.7N3) that is O(n

3
2 ).

Figure 3.15 displays the nonzero structure of two matrices. The matrix on the left arises from
the discretization of the Poisson model problem on a 6 × 6 square mesh with a lexicographic
ordering. The matrix on the right is a “Wathen” matrix from N.J. Higham’s matrix toolbox.
The matrix A is the “consistent mass matrix” for a regular 10 × 10 grid of 8-node (serendipity)
elements in two space dimensions. Figure 3.16 shows the nonzero structure of those matrices
reordered by the Matlab RCM algorithm. For the Wathen matrix, the number of nonzero entries in
the Cholesky factor is 2311 for the initial ordering and 2141 with RCM.
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Figure 3.15. The nonzero structure of the Poisson (left) and Wathen (right) matrices
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Figure 3.16. The nonzero structure of the Poisson and Wathen matrices reordered by RCM

Several other algorithms have been proposed to reduce the profile of a symmetric matrix.
I.P. King [704] proposed a wavefront reduction algorithm. R. Levy’s algorithm [732] is similar
to King’s algorithm, but, at each stage, all vertices are considered instead of unlabeled vertices
adjacent to already labeled vertices.

E.H. Cuthill [300] compared the Cuthill-McKee algorithm with its reverse form, and I.P. King’s
method using a number of criteria such as bandwidth, wavefront and profile reduction. Her re-
sults showed that the CM method and RCM gave smaller bandwidths. R. Levy’s algorithm gave
smaller wavefronts and profiles.

Other algorithms were proposed by R.A. Snay [1028] and N.E. Gibbs [523]. G.C. Everstine
[433] compared RCM, GPS, and R. Levy’s algorithm on different criteria and concluded that
GPS is good for maximum wavefront and profile reduction. J.G. Lewis ([733, 734] described
techniques to improve GPS and the algorithm of N.E. Gibbs. W.W. Hager [608] considered
exchanges of rows and columns to minimize the profile. This is useful to refine other orderings.

3.5.2 Sloan’s algorithm

One of the downsides of the CM algorithm is that it is a local algorithm only using information
about the neighbors of the last numbered nodes. S.W. Sloan [1021] suggested an algorithm that
tries to overcome this problem. The first step is the selection of pseudo-peripheral nodes.

Sloan’s algorithm
• Step 1 (selection of a pseudo-diameter)
1) choose a node s with minimum degree,
2) build the level structure L(s) = {L0(s), . . . , Lk(s)},
3) sort the nodes of Lk(s) by increasing degree. Let m be the number of entries in Lk(s) and Q
be the bm+2

2 c first entries of the sorted set,
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4) Let wmin = ∞ and kmax = k. For each node i ∈ Q in order of ascending degree, generate
L(i) = {L0(i), . . . , Lk(i)}. If k > kmax and w = maxi≤j≤k |Lj(i)| < wmin, set s = i and go
to step 3). Otherwise, if w < wmin, set e = i and wmin = w.

At the end of this algorithm we have a starting node s and an end node e which define a
pseudo-diameter. The difference of this algorithm with GPS is the shrinking strategy of step 3).
This is performed since it was observed that nodes with large degrees are not often chosen as
starting nodes. The second step of Sloan’s algorithm labels the nodes.

• Step 2 (node labeling)
The nodes are classified in four categories according to their status. Nodes which have been

already assigned a label are postactive. Nodes which have not been assigned a number but
are adjacent to postactive nodes are active. Nodes without a number adjacent to active nodes
are preactive. All other nodes are inactive. The current degree ni of a node i is defined as
ni = mi − ci + ki, where mi is the degree of i, ci is the number of postactive or active nodes
adjacent to i, and ki = 0 if i is active or postactive, and ki = 1 otherwise. The inputs of the
algorithm are the two nodes s and e selected in Step 1). The algorithm maintains a list of eligible
nodes each with a priority related to the current degree and the distance from the end node. Nodes
with low current degree and large distance to the end have high priorities.

1) for all nodes, compute the distances d(e, i) from i to e, initialize all nodes as inactive and set

Pi = (nmax − ni)W1 + d(e, i)W2,

where nmax = maxi ni, and W1,W2 are integer weights. The queue of eligible nodes is initial-
ized with s which is assigned a preactive status.

2) as long as the queue is not empty,
2.1) select the node i with highest priority in the queue (ties are broken arbitrarily),
2.2) delete i from the queue. If it is not preactive, go to 2.3). Else, consider each node j

adjacent to i and set Pj = Pj +W1. If j is inactive, insert j in the queue and declare it preactive,
2.3) label node i and declare it postactive,
2.4) Examine every node j adjacent to i. If j is preactive, set Pj = Pj + W1, declare j as

active and examine each node k adjacent to j. If k is active or preactive, set Pk = Pk + W1,
otherwise if k is inactive, set Pk = Pk +W1, insert k in the queue and declare it as preactive.

Values of the weights W1 and W2 determine the balance between the local information (the
current degree) and the global one (the distance) to the end. S.W. Sloan [1021] chose W1 = 2
and W2 = 1. He reported numerical experiments showing that on certain sets of matrices his
algorithm gives lower profiles than RCM and other algorithms. Figure 3.17 gives the nonzero
structures for our two previous examples with the Sloan algorithm. For the Wathen matrix, the
number of nonzero entries in the Cholesky factor is 1921, that is, slightly less than with RCM. For
the Poisson matrix both RCM and Sloan give the same profile.

I.S. Duff, J.K. Reid, and J.A. Scott [384] have improved Sloan’s algorithm by allowing it to
work with weighted graphs where nodes with the same adjacency set are collapsed. G. Kumfert
and A. Pothen [715] have also used the Sloan algorithm combined with other techniques.

3.6 Spectral schemes
The Laplacian matrix L(G) associated with a symmetric matrix A (or the associated graph G)
is such that if i 6= j, Li,j = −1 if node j is a neighbor of node i in the graph G (that is, if
ai,j 6= 0). The diagonal entry Li,i is minus the sum of the other entries in row i. The matrix L
is a singular M-matrix, and its smallest eigenvalue λ1 is zero. The eigenvector u2 corresponding
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Figure 3.17. The nonzero structure of the Poisson and Whathen matrices reordered by Sloan’s algorithm

to the smallest positive eigenvalue λ2 has interesting properties that were studied by M. Fiedler
[450].

The Laplacian matrix has been used both for envelope reduction, and for graph partitioning.
The rationale for using u2 in envelope reducing algorithms is the following. Let row(i) =
{j | ai,j 6= 0, 1 ≤ j ≤ i}. We define the 1-sum σ1 as,

σ1(A) =

n∑
i=1

∑
j∈row(i)

(i− j).

The work in the Cholesky factorization is proportional to

W =

n∑
i=1

max
j∈row(i)

(i− j)2.

This is related to the 2-sum,

σ2
2(A) =

n∑
i=1

∑
j∈row(i)

(i− j)2.

The following theorem is due to A. George and A. Pothen [517].

Theorem 3.10. Let p be the maximum number of off-diagonal nonzero entries in a row of A (or
the maximum node degree in G). Then

W ≤ σ2
2(A) ≤ pW.

The spectral ordering sorts the components of the eigenvector u2 in increasing order. It
gives a permutation vector which represents the ordering. To justify this, we consider σ2(A)
instead of W as the quantity to minimize over all the orderings. Assume, for the sake of sim-
plicity, that n is even and let P be the set of vectors whose components are permutations of
{−n/2, . . . ,−1, 0, 1, . . . , n/2}. Then,

min
x∈P

n∑
i=1

∑
j∈row(i)

(xi − xj)2 =
1

2
min
x∈P

∑
ai,j 6=0

(xi − xj)2.
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The condition on x is relaxed to obtain an easier continuous problem. We consider the set H of
vectors x such that

∑
xi = 0 and (x, x) given. We have

1

2
min
x∈H

∑
ai,j 6=0

(xi − xj)2 = min
x∈H

(x,Lx) = λ2(u2, u2).

S.T. Barnard, A. Pothen, and H.D. Simon [98] showed that the permutation vector induced by
u2 is the closest vector in P to u2 in the Euclidean norm. Figure 3.18 shows the results of the
reordering for the two previous examples. For the Wathen matrix the number of nonzero entries
in the Cholesky factor is slightly larger than before, being 2571.
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Figure 3.18. The nonzero structure of the Poisson and Wathen matrices reordered by the spectral
ordering

The eigenvalue λ2 and eigenvector u2 do not have to be computed very accurately, but the
previous spectral algorithm is too costly compared to other profile reduction algorithms for large
examples. To decrease the cost, S.T. Barnard, A. Pothen, and H.D. Simon proposed using the
algorithm on a coarsened graph with much fewer vertices than G as follows,

1) construct a series of coarser and coarser graphs that retains the structure of the original graph,
2) compute the second eigenvector of the Laplacian matrix of the coarsest graph,
3) interpolate this vector to the next finer graph,
4) refine the interpolated vector (by Rayleigh Quotient Iteration, see B.N. Parlett [905]) and go
to 3) until we are back to the original graph.

There are many ways to define graph coarsening. The one chosen by S.T. Barnard, A. Pothen,
and H.D. Simon was to find a maximal independent set of vertices which are to be the vertices of
the coarser graph. The edges are found by growing domains from the selected vertices adding an
edge when two domains intersect. Good results were reported in [98]. A similar algorithm was
introduced independently by G.H. Paulino, I.F. Menezes, M. Gattass, and S. Mukherjee [907].

As we said above, G. Kumfert and A. Pothen [715] suggested using a combination of the
spectral and the Sloan algorithms. The multilevel spectral algorithm is used to find the end nodes
of a pseudo-diameter, and then a modified version of the Sloan algorithm is used to number the
nodes. G. Kumfert and A. Pothen provided examples for which the spectral algorithm performs
poorly. They introduced a variant of the Sloan algorithm for weighted graphs. They denoted by
Size(i) the weight of a multi-vertex i. The degree of that node is the sum of the sizes of the
neighboring multi-vertices. The generalization of the current degree Cdeg(i) denotes the sum of
the sizes of the neighbors of i for preactive or inactive vertices. Then, they defined

Incr(i) =

{
Cdeg(i) + Size(i) if i is preactive,

Cdeg(i) if i is active.
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Let ∆ be the maximum degree in the unweighted graph, the new priority function is defined as

P (i) = −W1bd(s, e)/∆cIncr(i) +W2 d(i, e).

Considering the choices of weights, G. Kumfert and A. Pothen identified two classes of problems,
one for which W1 = 2 and W2 = 1 gives good results, and another one that needs large values
of W2 to obtain small envelopes. They implemented the priority queue as a binary heap contrary
to Sloan’s implementation as an array. It turns out that this new implementation was much faster
on selected sets of examples. In the hybrid algorithm, the start and end nodes are chosen to be
the first and last nodes in the spectral ordering, and the priority function is given by

P (i) = −W1bn/∆cIncr(i) +W2 d(i, e)−W3 i,

this function being sensitive to the initial ordering through the third term. The weight W3 is
chosen by considering the eigenvector corresponding to the first nonzero eigenvalue. If the
component giving the maximum of the absolute values of the components is negative, then
W3 = −1 and the starting and end nodes are exchanged, otherwise W3 = 1. The other weights
are W1 = W2 = 1. However, there are problems for which W1 = 1,W2 = W3 = 2 give good
results. Numerical results showed that the hybrid algorithm gives better envelope sizes than both
RCM and the Sloan algorithm.

In the approach of E.G. Boman and B. Hendrickson [142], the original problem is approxi-
mated by a sequence of coarser ones. The vertices of the coarsest problem are then labeled and
the results are interpolated back to the larger graphs with some refinement steps if needed. The
coarsening of graphs is done by edge contraction by coalescing adjacent vertices and assigning
weights to the edges of the coarse graph. If two vertices are adjacent to the same neighbor, the
new edge is given a weight equal to the sum of the two old edges. In the first step, a maximum
matching is found. This is a maximal set of edges for which no two edges are incident to the
same vertex. The coarsest graph is numbered by the spectral ordering algorithm. The uncoarsen-
ing is done by numbering the vertices of the larger graph preserving the coarse graph ordering.
A local refinement scheme is used to improve this ordering. It is a variant of the algorithm of
B.W. Kernighan and S. Lin [697], the weighted 1-sum being the objective function.

3.7 The minimum degree ordering
This ordering scheme was introduced by W.F. Tinney and J.W. Walker [1062]. With some of its
variants, it is one of the most often used ordering schemes today. Its aim is to locally minimize
the fill-in. The minimum degree (MD) uses the elimination graphs G(i) = (Xi, Ei) corresponding
to Gaussian elimination. The ith step of the algorithm is described as follows,
Algorithm MD
1) in G(i), find a node xj such that

deg(xj) = min
y∈Xi
{deg(y)},

and number it at the ith node.

2) form G(i+1) by eliminating xj and update the degrees,
3) if i+ 1 < n go to 1) with i← i+ 1.

To use this algorithm we must have a way to represent the elimination graphs and to transform
them. Of course, the degree of some nodes change after the deletion of edges incident to xi and
the addition of new edges. Quite often, there are several nodes of minimum degree. This must be
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resolved by a tie breaking strategy. Unfortunately, the final number of fill-ins is quite sensitive to
the tie breaking strategy, see A. George and J.W.H. Liu [512].

Since it is a local minimization algorithm, the minimum degree does not always give a glob-
ally minimum fill-in ordering. There are cases, like trees, for which it gives no fill-in at all, but
there are examples for which it generates fill-in that is more than a constant time greater than the
minimum fill-in, see P. Berman and G. Schnitger [124] for examples.

The first efficient implementation was proposed by A. George and D.R. McIntyre [513]; see
also J.W. Huang and O. Wing [654], A. George and J.W.H. Liu [510, 509] used respectively
quotient graphs and reachable sets in their implementations.

Over the years many improvements were suggested to the basic algorithm, mainly to decrease
the computer time needed rather than to improve the ordering. A summary of these results can
be found in A. George and J.W.H. Liu [512]. The main improvements are the following.

- Mass elimination
When xi is eliminated, often there are nodes in AdjG(i)(xi) that can be eliminated immedi-

ately. This is because, when xi is eliminated, only the degrees of nodes in AdjG(i)(xi) change
and some of them can be deg(xi)−1. For instance, if a node in a clique is eliminated, the degree
of all the other nodes in the clique decreases by 1. All these nodes can be eliminated at once,
before the degrees are updated, thereby saving some degree updates. This leads to the concept
of indistinguishable nodes,

• Two nodes u and v are indistinguishable in G if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}.

A. George and J.W.H. Liu [512] proved the following result.

Theorem 3.11. Let z ∈ AdjG(i)(xi). Then, degG(i+1)(z) = degG(i)(xi)− 1 if and only if

AdjG(i)(z) ∪ {z} = AdjG(i)(xi) ∪ {xi}.

By merging indistinguishable nodes, we only need to update the degrees of the representa-
tives of these nodes.

- Incomplete degree update
Let us introduce a new definition,

• v is said to be outmatched by u in G if

AdjG(u) ∪ {u} ⊆ AdjG(v) ∪ {v}.

Theorem 3.12. If v is outmatched by u in G(i), it is also outmatched by u in G(i+1).

Proof. See A. George and J.W.H. Liu [512].

As a consequence, if v becomes outmatched by u, it is not necessary to update the degree of
v until u is eliminated.

- Multiple elimination
This variant of the basic scheme was proposed by J.W.H. Liu [756]. When xi is chosen, we

select a node with the same degree as xi in G(i)/(AdjG(i)(xi) ∪ {xi}). This process is repeated
until there are no nodes of the same degree, and then the degrees are updated. At each step, an
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independent set of minimum degree nodes is selected. The ordering that is produced is not the
same as for the basic algorithm. However, it is generally as good as the genuine minimum degree
ordering.
- Early stop

In many implementations of Gaussian elimination for sparse matrices, a switch is done to
dense matrices when the percentage of nonzero entries in the remaining matrix is large enough.
Of course, the computation of the ordering can be stopped at that stage since later stages are
meaningless.
- Tie breaking

An important issue is the choice of a tie breaking strategy. Unfortunately, not much is known
about how to decide which nodes to choose at a given stage. Some experiments by A. George
and J.W.H. Liu, [512]) showed that there can be large differences in the number of nonzeros and
factorization times when several random tie breakers are chosen. Quite often, the initial ordering
determines the way ties are broken. It was suggested that another ordering scheme, such as the
reverse Cuthill-McKee algorithm, can be used before running the minimum degree algorithm.
- Approximate minimum degree

P.R. Amestoy, T.A. Davis, and I.S. Duff [27] proposed to use bounds on the degree of nodes
instead of the real degree. It allows a faster update of the information when nodes are eliminated.
Techniques based on the quotient graph are used to obtain these bounds. The quality of the
orderings that are obtained are comparable to those from the genuine minimum degree algorithm,
but the algorithm is much faster; see the performance results in [27].

Figure 3.19 shows the result for the two previous examples using the Matlab minimum degree
ordering. For the Wathen matrix the number of nonzero entries in the Cholesky factor is 1924.
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Figure 3.19. The nonzero structure of the Poisson and Wathen matrices reordered by the minimum
degree ordering

J.W.H. Liu [759] proposed an hybrid between nested dissection (to be discussed below) and
the minimum degree algorithm. F. Pellegrini, J. Roman, and P.R. Amestoy [911] proposed an
hybrid between nested dissection and the approximate minimum degree algorithm.

Another idea that has been used is to choose at each stage the node that causes the small-
est fill-in. This is called the minimum deficiency algorithm. It is very costly to implement, see
R.D. Berry [125], and M. Nakhla, K. Singhal, and J. Vlach [849]. E. Rothberg and S.C. Eisen-
stat [959] studied several methods, an approximate minimum mean local fill, an approximate
minimum increase in neighbor degree, and variants of the approximate minimum fill. Their
conclusion was that the minimum deficiency gives the best quality ordering, but it is expensive.
E.G. Ng and P. Raghavan [855] proposed two methods, a modified minimum deficiency and a
modified multiple minimum degree.

The minimum degree algorithm was generalized to nonsymmetric problems, see COLMMD
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by J.R. Gilbert, C.B. Moler, and R.S. Schreiber [528] and COLAMD by T.A. Davis, J.R. Gilbert,
S.I. Larimore, and E.G. Ng [314].

3.8 The nested dissection ordering
Nested dissection was introduced by A. George [502] for problems arising from finite element
discretizations of partial differential equations. It was later generalized to other linear systems.
It is very close to an old idea used in Mechanics known as substructuring and also to what is now
called domain decomposition. This technique is based on Theorem 3.3 telling that there cannot
be a fill-in between xi and xj if there is a node with a number greater than xi and xj on every
path from xi to xj in G

As an example, consider the graph of Figure 3.20 and its partition given in the right-hand
part of the figure.

1

2

3

Figure 3.20. Dissection partitioning

With nested dissection, the graph is first split into three pieces. The diagonal numbered 3 is
called a separator. If we first number the nodes in part 1, then the nodes in part 2 and finally
the nodes of the separator 3, there cannot be any fill-in between nodes in sets 1 and 2. With this
ordering and an obvious notation, the matrix has the following block structure,

A =

 A1 0 AT
3,1

0 A2 AT
3,2

A3,1 A3,2 A3

 ,

and its Cholesky factor L is,

L =

 L1

0 L2

L3,1 L3,2 L3

 .

The matrices L1 and L2 are respectively the Cholesky factors of A1 and A2. The blocks A1

and A2 can be factored independently. The basis of the nested dissection algorithm is to apply
this idea recursively to the sets 1 and 2. There are basically two ways to partition a rectangular
mesh for a rectangle domain. The first one is to partition the graph into vertical (or horizontal)
stripes. This is known as one-way dissection. The other way is to alternate between vertical and
horizontal partitioning obtaining a partition into small rectangles. This is called nested dissec-
tion. Of course, one-way dissection is a little simpler to implement. One-way dissection can
be generalized relatively easily to any sparse matrix by using level structures of their graph, see
A. George and J.W.H. Liu [507].

Let us consider nested dissection for a square regular Cartesian mesh. A partition function Π
is defined for integers i from 0 to N (= 2`) as

Π(0) = 1
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Π(N) = 1

Π(i) = p+ 1, if i = 2p(2q + 1).

For example, for N = 16, we obtain

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Π(i) 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

For k = 1, . . . , ` we define sets Pk of mesh nodes (i, j) as

Pk = {(i, j)|max(Π(i),Π(j)) = k}.

For a 17×17 mesh we obtain the partition of Figure 3.21 where the numbers refer to the set Pk to
which the nodes belong to. Nodes in P1 are numbered first, then nodes in P2, etc. . . up to nodes
in P`. A. George [502] proved that the number of operations for the factorization is O(N3).
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Figure 3.21. Nested dissection partitioning and numbering

The partition function was generalized by I.S. Duff, A. Erisman, and J.K. Reid [372] to the
case N 6= 2`.

The storage schemes we have described previously are not well suited to nested dissection
orderings. In nested dissection for mesh problems, there is a natural block structure, each block
corresponding to subsets of each Pk. Diagonal blocks are stored by rows in a one dimensional
array together with an integer pointer that gives the position of the diagonal element. Non-
diagonal blocks are stored in a one dimensional array. It is necessary to know pointers to the
start of each block, see Figure 3.22.

Numerical experiments showed that for an N ×N 2D grid, the storage for nested dissection
is smaller than for RCM when N > 37. Figure 3.23 shows the Poisson model problem matrix
reordered with nested dissection and the corresponding Cholesky factor.

Nested dissection was revisited by C.C. Ashcraft, I.S. Duff, J. Hogg, J.A. Scott, and S. Thorne
[50] in 2016.

3.9 Generalization of dissection algorithms
For a general sparse matrix there is no underlying mesh, we have to work directly on the graph of
the matrix and it is not so easy to find a small separator for partitioning the graph in two or more
components of almost an equal number of nodes. There are many ways to handle this problem.
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Figure 3.22. Storage scheme for nested dissection on a regular mesh
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Figure 3.23. The Poisson matrix with nested dissection (left) and its Cholesky factor (right)

3.9.1 General dissection algorithms

General theorems were proved about the existence of good separators using graph theory, see
R.J. Lipton, D.J. Rose, and R.E. Tarjan [754], J. Roman [949], and P. Charrier and J. Roman
[237, 238]. Without giving too many details, let us describe the kind of results that have been
proved.

• Let G be a graph. There is an f(n)-separator theorem for S if there exists α and β, positive
real numbers such that the nodes of G can be partitioned into three subsets A,B,C with the
following properties

- there is no edges between nodes of A and nodes of B,

- |A| ≤ αn, |B| ≤ αn,

- |C| ≤ βf(n).

C is called a separator of G.
R.J. Lipton and R.E. Tarjan [755] proved that f(n) =

√
n for planar graphs and 2D finite

element graphs. The elements of the separator C are numbered last and the same partition al-
gorithm is applied recursively to A and B. It was shown by J. Roman [949] that the following
holds.

Theorem 3.13. LetG be a graph satisfying the previous definition with f(n) =
√
n with n nodes

and m edges,
- the time to construct the partitions is O(n+m),



3.9. Generalization of dissection algorithms 209

- the number of nonzero entries in L is O(n log2 n),
- the number of floating-point operations for the factorization is O(n

√
n).

Therefore, we have the same results as for a mesh grid. These results can be slightly gener-
alized, see J. Roman [949].

Over the years many methods have been devised for partitioning graphs. Most of them pro-
ceed by recursive bisection. Geometric (or greedy) algorithms can be used that start from the
nodes on the “boundary” of the graph accumulating nodes until about one half of the vertices are
collected in a subset, see P. Ciarlet Jr. and F. Lamour [265, 266, 267], and C. Farhat [439, 440].
A refinement algorithm is generally used to improve the found partition.

The algorithm by B.W. Kernighan and S. Lin [697] is one of the most used methods for
partitioning graphs into two subsets, dating back to 1970. The goal of this heuristic algorithm is
to approximately minimize the number of edges joining vertices in both subsets. Let us assume
that we have two sets of vertices V1 and V2. In this iterative algorithm, at every iteration, we move
vertices from one set to the other until we cannot improve any longer the gain which is defined
as the number of edges joining V1 to V2. If the algorithm moves vertices from V1 to V2, then at
the next iteration it tries to move vertices from V2 to V1 to improve the balance in the number of
vertices in both sets. Unfortunately, this process can converge to a local minima. To avoid this
situation, the algorithm uses moves with a negative gain for a given number of iterations. The
best partition found so far is recorded and the algorithm returns to that partition if the negative
moves do not give an improvement after a while. C.M. Fiduccia and R.M. Mattheyses [449] gave
an efficient implementation of this algorithm in O(|E|) time where E is the set of edges. The
main problem is to find an efficient way to update the gains. The results of the Kernighan and Lin
algorithm depend very much on the initial partition. This is why it is often used as a refinement
step in other methods.

3.9.2 Graph bisection improvement techniques

The Kernighan and Lin algorithm is a technique to improve the partition of a graph in two do-
mains. It improves an edge separator. For nested dissection we are more interested in improving
a vertex separator. Powerful graph techniques were used and extended by C.C. Aschraft and
J.W.H. Liu [53]. The main tool is the Dulmage-Mendelsohn decomposition which has often
been used to extract a vertex separator from an edge separator, see [926]. To describe the work
in [53] we need a few more definitions,
• a bisector is a vertex separator S whose removal gives two componentsB andW ,Adj(B) ⊆

S, Adj(W ) ⊆ S. The partition is denoted [S,B,W ]. A cost function γ is defined as

γ(S,B,W ) = |S|
(

1 + α
max{|B|, |W |}
min{|B|, |W |}

)
,

where α is a constant whose choice allows to switch between the separator size |S| and the other
term measuring the imbalance of the partition.
• Let Y be a subset of vertices. The interior of Y is Int(Y ) = {y ∈ Y |Adj(y) ⊆ Y }.

The boundary of Y is the set of nodes not in Y that are adjacent to Y . The border of Y is the
boundary of the interior of Y .

C.C. Ashcraft and J.W.H. Liu tried to improve the partition by moving subsets Z that reduce
the cost function. This is done by moving a subset from S to the smaller portion W . If it cannot
be done, the algorithm tries to move a subset to the larger portion B. The algorithm stops when
no more reduction can be obtained.
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The choice of which subset of the separator to move is done by using graph matching tech-
niques. When we move a subsetZ from S toW , the separator size becomes |S|−|Z|+|Adj(Z)∩
B|. If we are able to find a subset Z such that |Z| > |Adj(Z) ∩ B|, the separator size will be
improved. J.W.H. Liu used bipartite graph matching to choose the subset Z. In a bipartite graph
the vertices are divided into two subsets X and Y such that every edge had one endpoint in X
and one in Y . A matching is a subset of edges such that no two edges in this subset have a node
in common. A vertex that is incident to an edge in this subset is said to be covered, otherwise it
is exposed. The number of edges in the subset is the size of the matching. A maximum matching
is one with the largest possible size. A complete matching is one with a size equal to the size of
the smallest of the two sets X and Y .

For the partition [S,B,W ], assume that B is the largest subset and consider the bipartite
graph H = (S, border(B), EH) where EH is the set of edges between the vertices in S and
those in border(B). There is a result stating that there exists a subset Z of S satisfying |Z| ≤
|Adj(Z) ∩ B| if and only if the bipartite graph H has a complete matching. Therefore, we are
able to find a move that improves the size of the separator if there are exposed vertices in a
maximum matching. J.W.H. Liu introduced the notion of an alternating path. For a matching
M , this is a path with no repeated vertices if the alternate edges belong to the matching. He
proved the following result: if x ∈ S is an exposed vertex in a maximum matching of H , let
Sx = {s ∈ S | s is reachable from x via alternating paths}, then |Sx| − |Adj(Sx ∩ B)| = 1. Sx
can be found by a breadth-first search starting from x.

The Dulmage-Mendelsohn decomposition is the partition of S into three disjoint subsets:
S = SI ∪ SR ∪ SX with

SI = {s ∈ S | s is reachable from some exposed vertices in S via alternating paths },
SX = {s ∈ S | s is reachable from some exposed vertices in B via alternating paths },
SR = S \ (SI ∪ SX).
This decomposition is independent of the maximum matching used for the definition of the

paths. It has been proved that SI is the smallest subset of S with the maximum reduction of the
separator size and SI ∪ SR is the largest subset with the maximum reduction. Moving SI or
SI ∪ SR give the same reduction, but the balance of the sizes may be different.

When a reduction of the separator size is not possible, there is still some hope of improving
the cost function by reducing the imbalance. When SI is empty, SR can be used to reduce the
imbalance, see [53].

C.C. Ashcraft and J.W.H. Liu [53] extended the Dulmage-Mendelsohn decomposition to
work with weighted graphs. This is useful when working with compressed graphs, saving some
computing time. They also related the Dulmage-Mendelsohn decomposition to the solution of a
maximum network flow problem. Solving a max flow-min cut problem can be used to improve
the partition. Numerical experiments in [53] support the fact that these powerful graph techniques
are efficient to refine partitions.

3.9.3 The multisection algorithm

It is generally accepted that the minimum degree and the nested dissection algorithms produce
good orderings. However, the results are not uniformly good. The minimum degree algorithm
can produce results far from optimal. Optimal results are given by the nested dissection ordering
on grid problems. But there are more general problems for which the recursive ordering of the
separators can be improved.

In the approach of C.C. Ashcraft and J.W.H. Liu [54], nested dissection algorithms are used
to find recursive bisectors. But, the numbering is different from nested dissection since all the
vertices in the union of the separators are numbered last. This is referred as a multisector. The
constrained minimum degree algorithm is used to order the vertices in the remaining domains.
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To order the vertices in the multisector, C.C Ashcraft and J.W.H. Liu considered the elimination
graph after the elimination of the vertices in the domains. The vertices of that graph are ordered
by the multiple minimum degree. Experimental results in [54] showed that this method performs
uniformly well on large sets of examples, at least better than both the minimum degree and nested
dissection.

3.10 Supernodal methods
In sparse matrix factorization there are often columns and rows with a similar nonzero pattern.
A supernode is a set of such contiguous columns. Formally, a supernode is a set of contiguous
nodes {j, j + 1, . . . , j + s}, such that

AdjG(T [j]) = {j + 1, . . . , j + s} ∪AdjG(T [j + s]).

Supernodal factorizations take advantage of that to save computing time and storage by storing
les integer information and using dense matrix techniques for a supernode which is stored as a
lower trapezoidal dense matrix for the nonzero entries. In the elimination tree the nodes of a
supernode can be almagamated and treated as a single computational unit.

Consider an example with the graph of Figure 3.24 and the corresponding elimination tree in
Figure 3.25. The supernodal elimination tree is given in Figure 3.26. We have

AdjG(T [7]) = {8, 9} = {8, 9} ∪AdjG(T [9]) = {8, 9} ∪ ∅.

Therefore, {7, 8, 9} is a supernode. All the nodes in a supernode are eliminated in the same step
of the algorithm.

1

2 34

5 6

78

9

Figure 3.24. An example of graph

Sometimes, supernodes are extended to columns having almost the same pattern to obtain
larger supernodes. The numerical factorization computes the supernodes of L one after the other.

Although there were early papers mainly using these block ideas, C.C. Ashcraft, R.G. Grimes,
J.G. Lewis, B.W. Peyton, and H.D. Simon [52] described the first left-looking supernodal factor-
ization. E. Rothberg and A. Gupta [960, 961] proposed a right-looking supernodal algorithm. An
efficient method for finding supernodes was proposed by J.W.H. Liu, E.G. Ng, and B.W. Peyton
[763].

Supernodal methods were later extended to nonsymmetric problems, see J.W. Demmel, S.C. Eisen-
stat, J.R. Gilbert, X.S. Li, and J.W.H. Liu [333].

3.11 The multifrontal method
The multifrontal method was introduced by I.S. Duff and J.K. Reid [381, 382] as a generalization
of the frontal method developed by B. Irons [666] for finite element problems in the 1970s. The
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Figure 3.25. The elimination tree
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Figure 3.26. The supernodal elimination tree

origin of the multifrontal method can be seen in the generalized element method developed by
B. Speelpenning [1037].

The main goal of the multifrontal method is to be able to use dense matrix technology for
sparse matrices, and also to allow more parallelism. A possible downside of the method is that
technical details are quite complex and many refinements are necessary to make the method
efficient. A nice description of the principles of the method was given by J.W.H. Liu [761].

The basis of the method for a symmetric matrix is the block outer product Cholesky factor-
ization,

A =

(
D BT

B C

)
=

(
LD 0

BL−T
D I

)(
I 0
0 C −BD−1BT

)(
LT
D L−1

D BT

0 I

)
,

with D = LDL
T
D. The Schur complement C − BD−1BT is the next matrix to be factored. Let

D be of order j − 1,

BD−1BT = (BL−T
D )(L−1

D BT) =

j−1∑
k=1

 `j,k
...

`n,k

 ( `j,k . . . `n,k ) ,
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`i,k being the entries of the Cholesky factors.

During the symbolic phase, the elimination tree is computed, as well as the assembly tree after
amalgamation of some nodes. It allows the factorization to be done as the partial factorizations
of several smaller dense matrices (or fronts) located at each node of the assembly tree. The
constraint is that the computation of a parent front must be done after the computation of all its
child fronts is finished. Dense matrix kernels are used for the frontal matrices. I.S. Duff and
J.K. Reid [381] implemented the first multifrontal method in the code MA27.

Let us look at a small example,

A =



1 2 3 4 5 6

1 x x x x
2 x x
3 x x x
4 x x x
5 x x x x x
6 x x x x x

.

The graph of the matrix A is shown in Figure 3.27.
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Figure 3.27. The graph of A

Gaussian elimination on A yields

L =



1 2 3 4 5 6

1 x
2 x
3 x
4 x x
5 x x x • x x
6 x x x x x

.

The elimination tree T (A) is shown in Figure 3.28.
From the elimination tree, we see that we can eliminate the nodes 1, 2 and 3 independently. If

we consider node 1, we can restrict ourselves to the following matrix (rows and columns where
there are nonzero entries in the first row and first column),

F1 =


1 4 5 6

1 a1,1 a1,4 a1,5 a1,6

4 a4,1

5 a5,1

6 a6,1

.
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Figure 3.28. The elimination tree of A

Eliminating node 1 creates contributions in a reduced matrix Ū4,

Ū4 =


4 5 6

4 x • x
5 • x x
6 x x x

,
where the bullet • represents a fill-in. In parallel, we can eliminate node 2, defining

F2 =

( 2 5

2 a2,2 a2,5

5 a5,2

)
.

Elimination of node 2 creates a contribution to the (5, 5) term,

Ū2
5 =

( 5

5 x
)
.

Simultaneously, we can also eliminate node 3,

F3 =


3 5 6

3 a3,3 a3,5 a3,6

5 a5,3

6 a6,3

.
Elimination of node 3 creates contributions,

Ū3
5 =

( 5 6

5 x x
6 x x

)
.

Then, we eliminate node 4. To do this, we have to consider the matrix resulting from the elimi-
nation of node 1, that is,

F4 =


4 5 6

4 a4,4 0 a4,6

5 0
6 a6,4

+ Ū4.
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Elimination of node 4 creates contributions,

Ū4
5 =

( 5 6

5 x x
6 x x

)
.

Before eliminating node 5, we must sum the contributions from the original matrix and what we
get from the eliminations of nodes 2, 3 and 4. We must extend Ū2

5 to the proper set of indices,
that is, 5, 6. We do this as in J.W.H. Liu [761] by considering an operator that we denote by ◦.
For two matrices A and B, the set of indices of A ◦B is the union of the sets of indices of A and
B and whenever they coincide, and the result is the sum of the entries. Let

Ū5 = Ū2
5 ◦ Ū3

5 ◦ Ū4
5 ,

then

F5 =

(
a5,5 a5,6

a6,5 0

)
+ Ū5.

Elimination of node 5 gives a matrix of order 1 that is added to a6,6 to give the last entry of the
factorization.

In this example, we have seen that all the elimination steps can be carried out by working on
small dense matrices of different orders, extending and summing these matrices by looking at
the elimination tree.

Let us formalize the process of the multifrontal method. Giving the elimination tree T (A),
we define the subtree update matrix for column j as

Ūj = −
∑

k∈T [j]−{j}


`j,k
`i1,k

...
`ir,k

 ( `j,k `i1,k . . . `ir,k ) ,

where, i0 = j, i1, . . . , ir are the row indices of the nonzero entries in column j of L, that is,
(L:,j).

The matrix Ūj contains the contributions for the columns preceding j which are proper de-
scendants of j in the tree. The frontal matrix Fj is defined as

Fj =


aj,j aj,i1 . . . aj,ir
ai1,j

...
air,j

+ Ūj .

The first column of Fj contains all the nonzero updated entries to column j. Then, we perform
one step of Gaussian elimination on Fj ,

Fj =


`j,j 0
`i1,j

...
`ir,j

I

( 1 0
0 Uj

)(
`j,j `i1,j . . . `ir,j
0 I

)
.

The dense matrix Uj is called the update matrix. It was proved by J.W.H. Liu [761] that

Uj = −
∑
k∈T [j]

 `i1,k
...

`ir,k

 ( `i1,k . . . `ir,k ) .



216 3. Gaussian elimination for sparse linear systems

If c1, . . . , cs denotes the children of j in T (A),

Fj =


aj,j aj,i1 . . . aj,ir
ai1,j

...
air,j

 ◦ Uc1 ◦ . . . ◦ Ucs .
The multifrontal method is defined as

for j = 1 : n
1) form the update matrix Uc1 ◦ . . . ◦ Ucs ,
2) form the frontal matrix Fj ,
3) factorize Fj ,

end

Many issues have to be considered to obtain an efficient multifrontal code. The first one is the
storage of the frontal and update matrices. Update matrices must be stored and easily retrieved
when they are needed in the algorithm to contribute to a frontal matrix. A way to do this is to
use a topological ordering of T (A) and to number the nodes in every subtree consecutively. The
update matrices can be stored in a stack using a last-in first-out algorithm. Using this technique,
the update matrices appear at the top of the stack in the order they are needed.

This was not very well suited for parallel computations. To manage the storage working
space, I.S. Duff proposed to use a buddy system. In that technique, each block of storage has
a buddy with which it can be combined to form a larger block. In a binary buddy system, the
sizes of the block are c2i. Each block keeps some associated information, a flag to indicate if the
block is free or not and the logarithm of the size of the block. Free blocks are linked through a
doubly linked list. There is also a free list for each block size. When a working area of memory
of size m is needed, the system allocates a block of list i, where c2i ≥ m. If there is no block on
the i-th free list, a level i+ 1 block must be split in two, and part is used to serve the request, the
other part is put on the i-th free list. When a block is deallocated, the system checks if the block’s
buddy is free and of the correct size. If the answer is positive, the two blocks are combined and
put on the i+ 1-rst free list.

The second issue is the use of dense techniques. As we said above, an advantage of the
multifrontal method is to allow to use dense matrix kernels in the sparse case. Dense algorithms
based on the use of Level 3 BLAS can be used when factoring the frontal matrices. Furthermore,
there is much less indirect addressing than in pure sparse factorizations.

The third issue is node amalgamation. There are some performance advantages to have large
submatrices. It was suggested by I.S. Duff and J.K. Reid [382] to amalgamate some nodes,
treating some zero entries as nonzero, see P.R. Amestoy [23].

3.12 Nonsymmetric sparse matrices
There is an additional difficulty in Gaussian elimination for nonsymmetric sparse problems,
namely the need of pivoting to improve the numerical stability. When dealing with sparse sym-
metric positive definite systems, the ordering of the unknowns can be chosen for the purpose of
maintaining, as much as possible, the sparsity of the factors during elimination. This is not true
any longer for nonsymmetric problems, except in special cases.

We would like to obtain an LU factorization of a nonsymmetric sparse matrix A, or of
a permutation of A. An early paper considering the nonsymmetric case was by N. Sato and
W.F. Tinney [991] in 1963. Symbolic factorization without pivoting was studied by D.J. Rose
and R.E. Tarjan [952] using directed graphs, see also S.C. Eisenstat and J.W.H. Liu [406, 408].
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If we choose the pivots as for dense systems, for instance, using partial pivoting, there is no
room for preserving sparsity. For sparse matrices, we have to relax the constraints for choosing
the pivot. A common strategy is to consider candidate pivots satisfying the inequality,

|a(k)
i,j | ≥ ω max

l
|a(k)
l,j |,

where ω is a user defined parameter such that 0 < ω ≤ 1. This limits the overall growth of the
entries since

max
i
|a(k)
i,j | ≤

(
1 +

1

ω

)pj
max
i
|ai,j |,

where pj is the number of off-diagonal entries in column j of U , see I.S. Duff, A.M. Erisman
and J.K. Reid [373]. From these pivot candidates, one is selected that minimizes

(r
(k)
i − 1)(c

(k)
j − 1),

where r(k)
i is the number of nonzero entries in row i of the remaining (n− k)× (n− k) matrix

in Ak, and c(k)
j is the number of nonzero entries in column j. This is known as the Markowitz

criterion since something similar was used by H. Markowitz [786] in 1957. This choice modifies
the smallest number of entries in the remaining submatrix. If A is symmetric, this is exactly
the minimum degree algorithm. Many variations of the Markowitz criterion have been studied
over the years, see [373]. Most of these other methods are generally not as efficient as the
Markowitz criterion. Another possibility is to choose the (not too small) entry that introduces
the least amount of fill-in at step k. This is much more expensive than the Markowitz criterion.
Moreover, having a local minimum fill-in does not always gives a globally optimal fill-in count.
There are even some examples where the Markowitz criterion is better at globally reducing the
fill-in. As for the minimum degree algorithm, the tie-breaking strategy is important when using
the Markowitz criterion. Details are discussed in [373].

About this type of pivoting, see A.R. Curtis and J.K. Reid [298], Y.T. Chen and R.P. Tewarson
[249], I.S. Duff and J.K. Reid [379, 380, 383], Z. Zlatev [1165], O. Østerby and Z. Zlatev [886],
I.S. Duff [368], M. Arioli, J.W. Demmel, and I.S. Duff [40], T.A. Davis and I.S. Duff [313], and
T.A. Davis [310].

The structures of the triangular factors of a nonsymmetric matrix without pivoting can be
characterized, see J.R. Gilbert and J.W.H. Liu [527]. They used two directed acyclic graphs
(DAGs). Acyclic means that there is no directed cycles. Let w = (w1, . . . , wn)T. We define

Struct(w) = {i ∈ {1, . . . , n} |wi 6= 0}.

Theorem 3.14. If Lx = b, then Struct(x) is given by the set of vertices reachable from vertices
of Struct(b) in the DAG G(LT ).

An economical way to represent the information contained in a DAG G is to consider its
transitive reduction G0. In Theorem 3.14, we can replace G(LT ) by G0(LT ). The transitive
closureG∗ of a directed graphG is a graph having an edge (u, v) wheneverG has a directed path
from u to v. With nonzero diagonal entries and without numeric cancellationG∗(A) = G(A−1).

Let A be factored as A = LU without pivoting. G0(L) and G0(U) are called the lower and
upper elimination DAGs (eDAGs) of A. For a symmetric matrix, G0(L) and G0(U) are both
equal to the elimination tree.



218 3. Gaussian elimination for sparse linear systems

If B and C are two matrices with nonzero diagonal entries, G(B) +G(C) is the union of the
graphs of B and C, that is, the graph whose edge set is the union of those of G(B) and G(C).
G(B) · G(C) is the graph with an edge (i, j) if (i, j) is an edge of G(B) or (i, j) is an edge
of G(C) or if there is a k such that (i, k) is an edge of G(B) and (k, j) is an edge of G(C).
J.R. Gilbert and J.W.H. Liu [527] proved the following result.

Theorem 3.15. If A = LU and there is a path in G(A) from i to j, there exists a k, 1 ≤ k ≤ n
such that G0(U) has a path from i to k and G0(L) has a path from k to j. That is,

G∗(A) ⊆ G0∗(U) ·G0∗(L).

If there is no numeric cancellation in the factorization A = LU , then

G(L) ·G(U) = G(L) +G(U).

From these results, the row and column structures of L and U can be obtained.

Theorem 3.16. If `i,j 6= 0, there exists a path from i to j in G0(L). Let i > j. Then `i,j 6= 0 if
and only if there exists k ≤ j such that ai,k 6= 0 and there is a directed path in G0(U) from k to
j,

Struct(L:,j) = Struct(A∗,j) ∪
⋃
{Struct(L:,k) | k < j, uk,j 6= 0} − {1, . . . , j − 1}.

The structure ofU can be characterized in the same way. From these results, an algorithm can
be derived for the symbolic fill computation when there is no pivoting. The use of elimination
trees in sparse nonsymmetric elimination was discussed by S.C. Eisenstat and J.W.H. Liu [409,
410].

Symbolic LU factorization with pivoting was studied by A. George and E.G. Ng [514, 515].
If PA = LU and A = QR, with Q orthogonal and R upper triangular, the pattern of R is an
upper bound on the pattern of U . They relied on that result to preallocate storage for L and U .
Their result was improved by J.R. Gilbert and E.G. Ng [529], and J.R. Gilbert and L. Grigori
[525]. They showed that the upper bound is tight if A has the strong Hall property, which means
that it cannot be permuted to block upper triangular form with more than one block. When
the matrix is not strong Hall, see L. Grigori, M. Cosnard, and E.G. Ng [573], and L. Grigori,
J.R. Gilbert, and M. Cosnard [576].

When the nonsymmetric matrix A has a (nearly) symmetric nonzero structure, the nonzero
structures of L and U are identical to those of the Cholesky factors of a matrix with the nonzero
structure of A+AT , and an ordering to reduce the fill-in in A+AT can be used. There are also
cases for which it is not necessary to use pivoting. For instance, when A is strictly diagonally
dominant.

Over the years, like for the symmetric case, many variants of Gaussian elimination were used
for nonsymmetric linear systems. A left-looking variant was used by A.H. Sherman [1004, 1003],
J.R. Gilbert and T. Peierls [531], S.C. Eisenstat and J.W.H. Liu [407], T.A. Davis [312], and
X. Chen, Y. Wang, and H. Yang [248]. Right-looking LU factorization was used by S.C. Eisen-
stat, M.H. Schultz, and A.H. Sherman [413], and A. George and E.G. Ng [514, 516].
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As we said above, J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li and J.W.H. Liu [333]
introduced the idea of nonsymmetric supernodes, and used them in a left-looking method. Like
for the symmetric case, a supernode is a range of columns in L corresponding to a full triangular
diagonal block and with the same structure below the diagonal block. This allows a supernode
to do column updates using BLAS routines. The authors observed that the corresponding rows
in U have a special nonzero pattern and they took advantage of that. They also computed an
upper bound on the nonzero structure of L and U that allowed to do partial pivoting with row
swaps. The column elimination tree T is defined as the elimination tree of ATA. It gives the
dependencies among columns in the LU factorization. In particular, if `i,j 6= 0 then, i is an
ancestor of j in T , if ui,j 6= 0 then, j is an ancestor of i in T . Before factoring the matrix,
the columns are permuted according to a postordering of the column elimination tree. For an
overview of the SuperLU code and its parallel implementations, see X.S. Li [740, 741]. For a
recent update on that software, see X.S. Li, P. Lin, Y. Liu, and P. Sao [742].

Another code using supernodes was described by O. Schenk, K. Gärtner, W. Fichtner, and
A. Stricker [993].

The multifrontal algorithm we have previously described for symmetric matrices was gener-
alized to nonsymmetric matrices by I.S. Duff and J.K. Reid [382]. Their idea was to consider
the sparsity pattern of A + AT to construct the elimination tree. Although the frontal matrices
may be numerically nonsymmetric, they are square and with a symmetric structure. Numerical
pivoting takes place within the frontal matrices. This works well if the pattern of A is nearly
symmetric. The results may be poor if the pattern of A is far from being symmetric.

T.A. Davis and I.S. Duff introduced a nonsymmetric pattern multifrontal algorithm using
rectangular frontal matrices that are related either by the column elimination tree or by a directed
acyclic graph (DAG), see T.A. Davis and I.S. Duff [313], and T.A. Davis [308, 309, 310, 312].

P.R. Amestoy and C. Puglisi [34] introduced a nonsymmetric version of the multifrontal
method that can be regarded as being an intermediate between the nonsymmetric-pattern and the
symmetric-pattern multifrontal methods.

A. Gupta [581, 582] used two assembly DAGs that can be constructed before the symbolic
factorization for the nonsymmetric pattern multifrontal method.

3.13 Numerical stability for sparse matrices
Componentwise error analysis for sparse systems was considered in M. Arioli, J.W. Demmel,
and I.S. Duff [40]. They computed estimates of the backward error. The perturbation f of the
right-hand side is computed a posteriori and is not equal to |b| to keep the perturbation on A
sparse and the iterative refinement algorithm convergent.

Let w = |A| |y| + |b|, y being the computed solution. A threshold τi is chosen for each wi
such that if wi > τi, then fi = |bi|. Otherwise, if wi ≤ τi, fi is chosen larger. The value of τi
suggested in [40] is τi = 1000 n u(‖Ai,∗‖∞‖y‖∞ + |bi|), where Ai,∗ is the ith row of A.

Let f (1) (resp. f (2)) be the components of f for which wi > τi (resp. wi ≤ τi). Then f (2) is
defined as f (2) = ‖b‖∞e where e is the vector of all ones. With this choice, we can compute an
estimate of the backward error,

|b−Ay|i
(|A||y|+ f)i

.

Remember that the componentwise condition number is defined as

KBS(A, b) =
‖ |A−1|(E|x|+ f)‖∞

‖x‖∞
.

IfE = |A|, we may use the estimate ‖ |A−1| |A| ‖∞ = ‖ |A−1| |A|e‖∞. This can be obtained by
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an algorithm due to W.W. Hager [607] that uses multiplications by the matrix and its transpose.
Numerical experiments in [40] using iterative refinement showed that it is possible to guar-

antee solutions of sparse linear systems that are exact solutions of a nearby system with a matrix
of the same nonzero structure. Estimates of the condition number and of the backward error can
be easily obtained.

3.14 Parallel algorithms for sparse matrices
As for dense matrices, it is important to be able to solve efficiently sparse linear systems on
parallel computers. On one hand, it is easier to solve sparse linear systems rather than dense
ones since there is more natural parallelism. Data dependencies are weaker in the sparse case
since in the LU factors some columns are independent of each other. On the other hand, it is
more difficult to obtain significant performances since the granularity of independent tasks is
often quite small and indirect addressing could lead to a poor data locality.

Thousands of papers have been written on parallel methods for sparse matrices, and a lot
of research is still going on to obtain efficient algorithms since the computer architectures are
evolving with time.

Let us first consider symmetric matrices. We have seen that there is no need to pivot for
stability, and Gaussian elimination is done in three phases: ordering, symbolic factorization and
numerical factorization. The problem researchers are facing is to have parallel implementations
of the three phases. For the first phase, it is not only necessary to find an ordering that reduces
the fill-in and gives a good degree of parallelism during the factorization phase, but also, ideally,
to be able to compute this ordering in parallel.

We have seen that a widely used algorithm for reducing fill-in is the minimum degree al-
gorithm. Unfortunately, this method is quite sequential by nature. It must be modified to run
efficiently on parallel computers. J.W.H. Liu [756] proposed to look for multiple elimination of
independent nodes of minimum degree.

An ordering that is more promising regarding parallelism is nested dissection since it is a
“divide and conquer” algorithm. Good graph partitioners like MeTis, ParMeTis, Scotch and PT-
Scotch [910, 250] are available to generate a nested dissection ordering. Combinations of the
minimum degree and nested dissection were proposed by J.W.H. Liu [759].

I.S. Duff, N.I. Gould, M. Lescrenier, and J.K. Reid [374] compared the minimum degree
and nested dissection orderings. They concluded that minimum degree produces very tall and
thin trees while nested dissection produces short and large trees which thus give more potential
parallelism.

An approach to introduce parallelism in the factorization phase is to first use an ordering
reducing the fill-in. Then, it is modified by restructuring the elimination tree to introduce more
parallelism. This was described by J.A.G. Jess and H.G.M. Kees [680]. Their method considers
PAPT , with a permutation P chosen to preserve sparsity. Then, the natural ordering is a perfect
elimination one for F = L+LT . Their goal was to find another permutation matrixQ giving also
a perfect elimination, but with more parallelism. A node in the graphGF whose adjacency set is a
clique is called simplicial. Such a node can be eliminated without causing any fill-in. Two nodes
are independent if they are not adjacent in GF . Until all nodes are eliminated, the Jess and Kees
algorithm chooses a maximum set of independent simplicial nodes, numbers them consecutively
and eliminates these nodes. It was shown by J.W.H. Liu [758] that this method gives an ordering
that has the shortest elimination tree over all orderings that yield a perfect elimination of F . An
implementation using clique trees was described by J.G. Lewis, B.W. Peyton, and A. Pothen
[735]. Another one was proposed by J.W.H. Liu and A. Mirzaian [762]. In their method, the cost
of detecting simplicial nodes is O(nν(F )) where ν(F ) is the number of off diagonal entries in
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L+ LT .
Larger elimination trees, having more leaf nodes, introduce more parallelism. The number

of nodes being fixed, larger trees mean shorter trees. Therefore, finding an ordering that gives a
short tree would increase the level of parallelism. J.W.H. Liu [758] proposed to use tree rotations
to reach this goal. The purpose of this algorithm is to find a reordering by working on the
structure of the elimination tree. A node x in a tree T (B) is eligible for rotation if

AdjG(B)(T [x]) 6= Anc(x),

where Anc(x) is the set of ancestors of x in T and

AdjG(B)(T [v]) = Anc(v), ∀v ancestor of x.

A tree rotation at x is a reordering ofG(B) such that the nodes inAdjG(B)(T [x]) are labeled last
while keeping the relative order of the nodes. Implementation details and experimental results
were given in [758]. Unfortunately, tree rotations do not always give a tree of minimum height.

For the numerical factorization, the first parallel algorithms that were studied were column
oriented with a distribution of columns in the processors’ memories. Leaf nodes of the elim-
ination tree are independent of each other and can be processed first. A fan-in algorithm was
described by C.C Ashcraft, S.C. Eisenstat, and J.W.H. Liu [51].

An important issue in these column oriented algorithms is the mapping of columns to the
processors. Most implementations used a static mapping of computational tasks to processors.
This can lead to load balancing problems. In the fan-out or fan-in algorithms, the assignment
of columns to processors is guided by the elimination tree. The goals are good load balancing
and low processor communications. The first implementations were based on wrap mapping
of the levels of the elimination tree starting from the bottom up. It gives good load balancing
properties but too many communications. Another technique is the subtree to subcube mapping,
see A. George, M.T. Heath, J.W.H. Liu, and E.G. Ng [506]. This was specifically designed for
hypercube architectures but can be easily generalized to other distributed memory architectures.
Of course, one can assign supernodes to processors instead of single columns.

All these mappings are based on column distribution of the matrix to the processors. E. Roth-
berg and A. Gupta [962] used a block oriented approach for sparse Gaussian elimination.

The multifrontal method is well suited for parallel computers. We have seen that there is a
natural parallelism in the early (bottom) stages of the multifrontal method. Dense frontal matrices
are assigned to one processor and can be processed in parallel. When moving towards the root of
the tree, there is less and less parallelism. However, frontal matrices are getting larger and larger
and dense techniques, using BLAS3 kernels, can be used to handle these matrices if they are
distributed on several processors. This was discussed by I.S. Duff [369, 370, 371] who showed
how to interleave both tree and node parallelism during the factorization.

The multifrontal method was implemented by G. Kapyris and V. Kumar [693] using a sub-
forest to subcube mapping. In this method, many subtrees of the elimination tree are assigned to
each subcube. They are chosen in order to balance the work.

The first nonsymmetric pattern multifrontal algorithm and the code UMFPACK were de-
scribed by T.A. Davis and I.S Duff [313]. A parallel nonsymmetric version of the multifrontal
method was studied by S.M. Hadfield and T.A. Davis [603]. They used different levels of par-
allelism and provided experimental results. Later on, T.A. Davis [310] added a symbolic pre-
ordering and analysis, using the COLAMD ordering.

P.R. Amestoy, I.S Duff, and J.Y. L’Excellent [29] and P.R. Amestoy, I.S. Duff, J.Y. L’Excellent,
and J. Koster [30] presented a fully asynchronous approach with distributed dynamic scheduling.
This led to the parallel code MUMPS.
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P.R. Amestoy, I.S. Duff, J.Y. L’Excellent, and X.S.Li [31] compared the code SuperLU DIST,
implementing a synchronous supernodal method with static pivoting and iterative refinement,
and MUMPS, implementing an asynchronous multifrontal method with partial threshold and
delayed pivoting. P.R. Amestoy, A. Guermouche, J.Y. L’Excellent, and S. Pralet [33] improved
the MUMPS scheduling strategy.

Since many high performance computers rely on GPUs to obtain most of their performance,
it became necessary to port sparse codes to these architectures or to write new ones. This started
at the end of the 2000s.

These architectures work well for regular parallelism, but pose a challenge for sparse di-
rect methods because of the irregular nature of the algorithms. D. Pierce, Y. Hung, C.C. Liu,
Y.H. Tsai, W. Wang, and D. Yu [918] factorized large frontal matrices in the GPU in their mul-
tifrontal Cholesky code. G. Krawezik and G. Poole [714] accelerated the ANSYS direct sparse
solver with GPUs. Multifrontal Cholesky or LU factorizations using GPUs were described by
R.F. Lucas, G. Wagenbreth, D.M. Davis, and R. Grimes [767], T. George, V. Saxena, A. Gupta,
A. Singh, and A.R. Choudhury [518], and S.C. Rennich, D. Stosic, and T.A. Davis [941, 942].
C.D. Yu, W. Wang, and D. Pierce [1148] extended GPU acceleration to the nonsymmetric pat-
tern multifrontal method. A sparse symmetric indefinite solver with pivoting for GPUs was
described by J.D. Hogg, E. Ovtchinnikov, and J.A. Scott [644]. High performance sparse multi-
frontal solvers on modern GPUs were considered by P. Ghysels and R. Synk [521]; see also the
contribution of Y. Xia, P. Jiang, G. Agrawal, and R. Ramnath [1130].

P. Sao, R. Vuduc, and X.S. Li [990] presented a GPU-based algorithm for the supernodal
code SuperLU_DIST. In [989] they introduced what they called a communication-avoiding 3D
algorithm. The last developments of this code and the use of GPUs were described by X.S. Li,
P. Lin, Y. Liu, and P. Sao [742].

The use of heterogeneous and distributed architectures for the supernodal code PaSTiX is
discussed in X. Lacoste’s thesis [718].

3.15 Low rank approximations
There are some problems for which submatrices taken from the lower and upper triangular parts
are of low rank, or can be approximated by low rank matrices. This can be exploited to decrease
the storage and the complexity of the linear solves. These low-rank properties are generally
defined recursively, based on block partitioning,

A =

(
A1,1 A1,2

A2,1 A2,2

)
.

The HODLR (Hierarchically Off-Diagonal Low-Rank) class is defined with a binary cluster
tree Tp with p + 1 levels which represents a recursive partitioning of the set of integers I =
{1, 2, . . . , n}. The root of the tree is I0

1 = I. The nodes at level ` are denoted as I`1, . . . , I
`
2` with

I`i = {n(`)
i−1 + 1, . . . , n

(`)
i − 1, n

(`)
i },

for integers 0 = n
(`)
0 ≤ n

(`)
1 ≤ · · · ≤ n

(`)

2`
= n with 0 ≤ ` ≤ p. Each node has two children and,

at each level, we have a partitioning of I. The nodes at level ` gives a partitioning of a matrix A
of order n into 2` × 2` blocks AI`

i
,I`
j

with i, j = 1, . . . , 2`.
Given a cluster tree Tp and an integer k, a matrix A is an HODLR matrix if, for all ` =

1, . . . , p, every off-diagonal block AI`
i
,I`
j
, where I`i and I`j are nodes on the same level under the

same parent node, is of rank at most k.
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A matrix A is an HSS (Hierarchically SemiSeparable) matrix if every HSS block row or
column is at most of rank k. An HSS block row (resp. column) is AI`

i
,I\I`

i
(resp. AI\I`

i
,I`
i
).

A matrix A is called semiseparable if every submatrix taken out from the upper or lower
triangular part of A has rank at most one, see [1093]. For more general classes of hierarchical
matrices, see W. Hackbusch [601].

Solvers that exploit these low-rank properties may be used as direct solvers or as precondi-
tioners for iterative methods, depending on the accuracy that is required.

These type of matrices have been used in supernodal and multifrontal matrices. This is
based on the assumption that submatrices close to the diagonal have a high rank while sub-
matrices far away from the diagonal have low rank. J. Xia, S. Chandrasekaran, M. Gu, and
X.S.Li [1128, 1129] relied on an HSS representation of the frontal matrices in a multifrontal
method. These submatrices are partitioned into four blocks. The two off-diagonal blocks are
compressed through a truncated SVD and the diagonal blocks are recursively partitioned; see
also J. Xia [1127], S. Wang, X.S. Li, F.H. Rouet, J. Xia, and M.V. De Hoop [1112], as well as
F.H. Rouet, X.S. Li, P. Ghysels, and A. Napov [963]. The STRUMPACK code has support for
several types of hierarchical matrices.

P.R. Amestoy, C.C. Ashcraft, O. Boiteau, A. Buttari, J.Y. L’Excellent, and C. Weisbecker [21]
discussed the use of block low-rank (BLR) representations in the multifrontal code MUMPS. The
performance and scalability on multicore architectures were reported by P.R. Amestoy, A. But-
tari, J.Y. L’Excellent, and T. Mary [25, 26]; see also T. Mary’s PhD. thesis [788]. G. Pichon,
E Darve, M. Faverge, P. Ramet, and J. Roman [917] presented a sparse supernodal solver using
block low-rank compression.

A Matlab toolbox for manipulating HODLR and HSS matrices was described by S. Massei,
L. Robol, and D. Kressner [789]. Use of GPUs with hierarchically low-rank approximations was
discussed by C. Chen and P.-G. Martinsson [240].

Fast hierarchical solvers for more general structured matrices were considered by H. Pouransari,
P. Coulier, and E. Darve [928].

3.16 Mixed precision
Since many modern computers offer the possibility to use several precisions, the sparse matrix
community did not escaped the mixed precision wave. It is sometimes used for iterative refine-
ment, see E.C. Carson and N.J. Higham [204, 205].

A. Buttari, J.J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov [187] used mixed preci-
sion for sparse matrix computations to enhance the performance while achieving 64-bit accu-
racy. J.D. Hogg and J.A. Scott [645] described a mixed-precision solver for symmetric systems.
P.R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.Y. L’Excellent, and T. Mary
[22] used mixed precision low rank approximations. M. Zounon, N.J. Higham, C. Lucas, and
F. Tisseur [1168] studied the performance impact of precision reduction in sparse linear solvers.

3.17 Historical and bibliographical comments
We do not know who used the expression “sparse matrix” for the first time. An Internet search
for “sparse matrix” did not give answers relative to mathematics before the end of the 1950s.
The first occurrence with these words in the title was a paper by W. Orchard-Hays [883] in some
conference proceedings in 1956.

The connection between sparse matrices and graphs was established at the end of the 1950s.
It was considered by D. Rosenblatt [955] in 1957, and by F. Harary [616] in 1959. The relation-
ship to Gaussian elimination was pointed out by S.V. Parter [906] in 1961.
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The study of sparse matrices really started in the 1960s. The first works considered band
matrices and envelope storage schemes. The envelope schemes and algorithms for storing sparse
matrices are mainly due to A. Jennings, see [678]. Other storage schemes were proposed in the
1960s and 1970s. A.R. Curtis and J.K. Reid [298] in 1971, and F.G. Gustavson [587] in 1972
used what is now known as the compressed storage by rows (CSR).

The main reordering techniques to minimize the bandwidth or the fill-in became popular in
the 1970s with the works of W.F. Tinney and J.W. Walker [1062] in 1967 and E.H. Cuthill and
J. McKee [301] in 1969. Nested dissection was developed by A. George and his collaborators
[502, 503] in the 1970s. These results were summarized in the book by A. George and J.W.H. Liu
[511]. J.W.H. Liu studied several improvements of the minimum degree algorithm [512] in
the 1980s. Spectral methods were proposed in the 1990s by A. Pothen, H.D. Simon and their
collaborators [98].

An important tool to study the relations between Gaussian elimination for symmetric matrices
and graphs is the elimination tree, see R.S. Schreiber [998] in 1982 and J.W.H. Liu [757, 760] in
1986-1990.

Efficient sparse techniques were developed through the work of I.S. Duff and J.K. Reid and
their collaborators, starting in the 1970s. It gave rise to sparse codes in the Harwell Subroutine
Library (HSL) for different types of matrices. An important development was the multifrontal
method which was first derived for symmetric matrices [381], following ideas of the frontal
method devised by B. Irons [666] in 1970 for finite element problems. A nice exposition of the
principles of the method was given by J.W.H. Liu [761] in 1992. The method was later extended
to nonsymmetic problems in different instances. I.S. Duff and J.K. Reid [382] considered the
sparsity pattern of A + AT to construct the elimination tree in 1984. The parallel aspects of the
multifrontal method were considered by I.S. Duff in [369] in 1986. In the 1990s, T.A. Davis and
I.S. Duff introduced another extension of the multifrontal algorithm to nonsymmetric matrices
[313]. This led to the codes UMFPACK and MUMPS.

The supernodal method was also first developed for symmetric problems. C.C. Ashcraft,
R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon [52] proposed a left-looking method
in 1987. A supernodal symbolic factorization to identify the supernodes was described by
J.W.H. Liu, E.G. Ng, and B.W. Peyton [763] in 1993. E. Rothberg and A. Gupta [960, 961]
showed in 1991-1993 that the method can be implemented as a right-looking algorithm quite
similar to the multifrontal method. In 1993, E.G. Ng and B.W. Peyton [854] described a parallel
left-looking algorithm. The generalization of the supernodal method to nonsymmetric matrices
was far from being trivial. In 1995-1999, J.W Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, and
J.W.H. Liu [333] introduced the idea of nonsymmetric supernodes and described a left-looking
code named SuperLU. Parallel versions of this code were developed later.

In the last years much research was devoted to the implementation of sparse techniques on
parallel computers. Details can be found in the review paper [315] by T.A. Davis, S. Rajaman-
ickam, and W.M. Sid-Lakhdar in 2016. A list of available software for solving sparse linear
systems is given in that paper.

A short history of sparse techniques for linear systems is given in [160, pp. 84-94].
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Classical iterative
methods

Almost every evening I make a new edition of the tableau, which is always
easy to improve. With the monotony of the measuring business, this always
makes a pleasant distraction; you also always immediately see if something
doubtful has crept in, what still remains to be done, etc. I recommend this
method for imitation. You will hardly ever again eliminate directly, at least
not if you have more than two unknowns. The indirect method can be per-
formed half asleep or you can think about other things when you use it.

– Carl Friedrich Gauss, translation of a letter to Christian Ludwig Gerling, December 26, 1823

An iterative method for solving a linear system Ax = b constructs a sequence of vectors
{xk}, k = 0, 1, . . ., which is expected to converge to the solution x, starting from a given vector
x0. The method is said to be convergent if limk→∞ ‖x− xk‖ = 0.

The classical iterative methods studied in this chapter are not used too much anymore because
they were superseded by Krylov methods that we will consider in the next chapters. Neverthe-
less, it is worth knowing their properties since they are sometimes used as preconditioners or
smoothers in other methods.

Most classical iterative methods use a splitting of the nonsingular matrix A, denoted as

A = M −N,

where M is a nonsingular matrix. Then, the sequence xk is defined by

Mxk+1 = Nxk + b, (4.1)

and x0 is given. Clearly, if this method is convergent, it converges towards the unique solution
of the linear system. We would like to find conditions for this sequence of vectors to converge.

Let εk = x− xk be the error at iteration k. Since Mx = Nx+ b, we obtain

M(x− xk+1) = N(x− xk),

εk+1 = M−1Nεk.

Iterating this relation, we obtain the characterization of the error,

εk+1 = (M−1N)k+1ε0. (4.2)

225
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From relation (4.2), the iterative method defined by (4.1) converges for all starting vectors x0 if
and only if

lim
k→∞

(M−1N)k = 0.

A condition for the limit of matrix powers to be zero was given in Theorem 1.25 using the spectral
radius ρ. We have the following fundamental result.

Theorem 4.1. The iterative method defined by (4.1) converges for every x0 if and only if

ρ(M−1N) < 1.

Proof. This results straightforwardly from Theorem 1.25.

Unfortunately, it is usually not easy to check if ρ(M−1N) < 1 since, for most problems,
the eigenvalues of M−1N are not explicitly known. Hence, we have to rely mainly on sufficient
conditions for convergence. In this chapter we describe a few well known iterative methods.

4.1 The Jacobi method
Even though this is not the simplest method one can think of (see Section 4.5), let us start with
the Jacobi method. We split the matrix as A = D + L + U where D is a diagonal matrix with
the same diagonal entries as A, L (resp. U ) is the strictly lower (resp. upper) triangular part of A.
A simple choice for the iterative method (4.1) is to take M = D, N = −(L+ U). This method
is known as the (point) Jacobi method. The iteration matrix of this method is usually denoted by
J(A),

J(A) = M−1N = −D−1(L+ U). (4.3)

It is straightforward to solve the linear system with matrix M in (4.1) since M is diagonal.
Writing (4.1) componentwise, the components of xk+1 are given by

[xk+1]i =
1

ai,i

(
bi −

n∑
j = 1
j 6= i

ai,j [xk]j

)
. (4.4)

A simple code for the Jacobi method is the following.

[x,nit,res] = jacobi(A,b,x0,nitmax,epss)
res = zeros(1,nitmax+1);
d = spdiags(A,0);
d1 = 1 ./ d;
nb = norm(b);
x = x0;
dx = d .* x;
r = b - A * x;
nit = 0;
resid = norm(r);
res(1) = resid;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
dx = r + dx;
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x = d1 .* dx;
r = b - A * x;
resid = norm(r);
res(nit+1)= resid;
end % while
res = res(1,1:nit+1);

Sufficient convergence conditions for the Jacobi method are easily obtained.

Theorem 4.2. Let A be a strictly diagonally dominant matrix. Then, the Jacobi method con-
verges.

Proof. (
D−1(L+ U)

)
i,j

=
ai,j
ai,i

∀i 6= j and 0 otherwise.

Hence,

‖D−1(L+ U)‖∞ = max
i

∑
j 6=i

|ai,j |
|ai,i|

.

The matrix A being strictly diagonally dominant,
∑
j 6=i

|ai,j |
|ai,i| < 1, for all i. Then,

‖D−1(L+ U)‖∞ < 1.

This is a sufficient condition for
lim
k→∞

J(A)k = 0,

and the method converges.
This result can be generalized from strictly diagonally dominant matrices to H-matrices.

Theorem 4.3. Let A be a nonsingular H-matrix. Then, the Jacobi method converges.

Proof. From Theorem 1.47 and Definition 1.33, there exists a diagonal matrixE with positive
diagonal entries such thatE−1AE is strictly diagonally dominant. The iteration matrix J(A) can
be written as,

J(A) = −D−1(L+ U) = −D−1(A−D) = I −D−1A.

The matrix E−1AE has the same diagonal as A and

J(E−1AE) = I −D−1(E−1AE) = E−1(I −D−1A)E = E−1J(A)E.

This is a consequence of E−1D−1 = D−1E−1. Hence, J(A) and J(E−1AE) are similar, and
they have the same eigenvalues. The matrixE−1AE being strictly diagonally dominant, we have

ρ(J(A)) = ρ(J(E−1AE)) < 1.

From Theorem 4.3, we can derive the following results which are useful in some practical
cases.

Corollary 4.4. Let A be a matrix having one of the two following properties,
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1) A is irreducibly diagonally dominant,

2) A is a nonsingular M-matrix.

Then, the Jacobi method converges.

Proof. Each of the two conditions implies that A is an H-matrix, and we can apply Theo-
rem 4.3.

When A is an L-matrix, we have a stronger result which also gives a characterization of a
nonsingular M-matrix.

Theorem 4.5. Let A be a nonsingular L-matrix. Then, A is a nonsingular M-matrix if and only
if ρ(J(A)) < 1.

Proof. If A is an M-matrix, Corollary 4.4 shows that ρ(J(A)) < 1. Conversely, we observe
that, A being an L-matrix, we have

L ≤ 0, U ≤ 0, di,i > 0,

and
M−1 = D−1 ≥ 0, N = −(L+ U) ≥ 0.

By Definition 1.48, A = M − N is a regular splitting with ρ(M−1N) < 1. Hence, by Theo-
rem 1.49, A is an M-matrix.

The (point) Jacobi method is very well suited for vector and parallel computing. The method
is inherently parallel since the computation of the components of xk+1 depends only on xk.
Therefore, the computation can be split into as many tasks as we need depending on how the
matrix is stored and partitioned between computational units.

This method looks satisfactory but, unfortunately, its convergence can be very slow. For
the Poisson model problem (that is, the finite difference discretization of −∆u = f in the unit
square) we are able to compute the spectral radius ρ(J(A)) since

D = 4I, J(A) = I − 1

4
A.

The eigenvalues λp,q of J(A) are

λp,q =
1

2
(cos pπh+ cos qπh), p, q = 1, . . . ,m,

where h = 1
m+1 is the mesh size, and the order of A is n = m2. It is easy to see that

maxp,q |λp,q| = |λ1,1| = |λm,m| and that

ρ(J(A)) = cosπh.

Unfortunately limh→0 ρ(J(A)) = 1. As we use more discretization points, the convergence
slows down, and the number of iterations becomes larger and larger since

ρ(J(A)) = 1− π2h2

2
+O(h4).

An heuristic explanation for this slow convergence is obtained by considering a constant vector
y, having all its components equal. Then, most components of Ay are zero. The Jacobi method
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makes very small modifications to smooth modes of the error vector. The situation is similar
for matrices arising from discretization of elliptic partial differential equations. For example,
consider the problem of solving Ax = 0 with

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ,

a matrix of order 100. Starting from a random vector with components in [0, 1], it takes about
28, 000 iterations to obtain maxi |[xk]i| < 10−6.

One may try to improve the performance using the Jacobi method in block form. Assuming
that the matrixA is partitioned in blocks with square diagonal blocks, the definition of the method
is straightforward. Note that at each iteration we have to solve independent linear systems whose
matrices are the diagonal blocks. Regarding convergence, one can show the following result.

Theorem 4.6. Let A be a strictly diagonally dominant matrix. Then, the block Jacobi method is
convergent.

Proof. The proof uses the same technique as the more general proof used for Theorem 4.20
below.

Similarly to what we did for the point version, we can generalize this result to H-matrices.

Theorem 4.7. Let A be a nonsingular H-matrix. Then, the block Jacobi method is convergent.

Proof. The proof is the same as for Theorem 4.3.
For symmetric matrices, results can be given both for point and block Jacobi methods.

Theorem 4.8. Let A be a symmetric positive definite matrix. If 2D −A is positive definite, then
the Jacobi method is convergent.

Proof. This a straightforward application of the Householder-John theorem 1.57. with Q =
M +MT −A = 2D −A.

Even the block Jacobi method is not really efficient. For the model problem, if the diagonal
blocks are tridiagonal matrices corresponding to mesh lines, the spectral radius also tends to 1
when h→ 0.

A common technique to improve the convergence is relaxation, that is, taking an average
between the last iterate and the previous one. For the Jacobi method it yields,

Dx̃k+1 = −(L+ U)xk + b,

xk+1 = ωx̃k+1 + (1− ω)xk,

where ω is a real parameter, ω > 0. This method is called the relaxed Jacobi method. When
ω = 1, we recover the Jacobi method. We can eliminate x̃k+1 in these relations,

Dxk+1 = −ω(L+ U)xk + ωb+ (1− ω)Dxk,

1

ω
Dxk+1 = b− (L+ U)xk +

1− ω
ω

Dxk. (4.5)
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The corresponding splitting is

M =
1

ω
D, N =

1− ω
ω

D − (L+ U).

The iteration matrix is denoted as Jω(A). For the relaxed Jacobi method we have results similar
to those for the case ω = 1.

Theorem 4.9. Let A be a symmetric positive definite matrix. If 2
ωD−A is positive definite, then

the relaxed Jacobi method (4.5) converges.

Proof. This is a straightforward application of Theorem 1.57.
The problem is to know when 2

ωD − A is positive definite. The answer to this question was
given by D.M. Young in his book [1144].

Proposition 4.10. Let A be a symmetric matrix with D positive definite. Then, 2
ωD − A is

positive definite if and only if 0 < ω < 2
1−µmin

where µmin is the smallest eigenvalue of J(A).

Proof. We first observe that J(A) = −D−1(L + LT ) is similar to −D− 1
2 (L + LT )D−

1
2

which is a symmetric matrix with real eigenvalues µi that we order as µ1 ≤ µ2 ≤ · · · ≤ µn. The
diagonal entries of J(A) are zero. Hence, trace[J(A)] = µ1 +µ2 + · · ·+µn = 0. It implies that
µn ≥ 0 and µ1 ≤ 0. The matrix 2

ωD −A is positive definite if and only if D−
1
2 ( 2
ωD −A)D−

1
2

is positive definite. But,

D−
1
2 (

2

ω
D −A)D−

1
2 =

2

ω
I −D− 1

2AD
1
2 = (

2

ω
− 1)I +D

1
2 J(A)D−

1
2 ,

because D−1A = I − J(A). The eigenvalues of ( 2
ω − 1)I +D

1
2 J(A)D−

1
2 are 2

ω − 1 +µi, i =
1, . . . , n. They are all positive if ω < 2

1−µmin
.

One may ask what is the value of ω for which the spectral radius is minimum. Let µωi be the
eigenvalues of Jω(A)

Jω(A) = ωD−1(
1− ω
ω

D − (L+ U)),

= (1− ω)I + ωJ(A),

µωi = (1− ω) + ωµi = 1− ω(1− µi).

We have to study |µωi | as a function of ω, see Figure 4.1.
The optimal value ωopt is given by the intersection of the graphs of the functions 1−ω(1−µn)

and ω(1− µ1)− 1. It yields

ωopt =
2

2− (µ1 + µn)
.

This tells us again that the method converges for 0 < ω < 2
1−µmin . The downside of this method

is that we need to know the extreme eigenvalues of J(A) to compute the optimal parameter ωopt.
Unfortunately, in most cases, we do not know the eigenvalues. However, for the Poisson model
problem,

µ1 = cos(πh), µn = − cos(πh).

It yields ωopt = 1, and the Jacobi method is optimal! This is the case for all matrices which have
property A, see Definition 1.35.
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1 - µmin

1

1

1 - µi
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1 - µmax

ω opt ω

ωµ
i

Figure 4.1. |µω
i | as a function of ω

4.2 The Gauss-Seidel and SOR methods
We observe that in the Jacobi method we only use xk to compute all the components of xk+1.
We compute the components of xk+1 sequentially one at a time and it was tempting to use
components of xk+1 as soon as they become available. We can also use a relation parameter ω.

The (point) successive overrelaxation (SOR) method is defined by

[xk+1]i =
ω

ai,i

bi − i−1∑
j=1

ai,j [xk+1]j −
n∑

j=i+1

ai,j [xk]j

+ (1− ω)[xk]i, (4.6)

where ω is a real parameter. Writing (4.6) in matrix form with A = D + L+ U , we have

(D + ωL)xk+1 = ωb− ωUxk + (1− ω)Dxk. (4.7)

Taking ω = 1 gives the Gauss-Seidel method. Relation (4.7) also defines the block SOR method
if D, L and U are in block form. The iteration matrix is denoted by Lω ,

Lω =

(
1

ω
D + L

)−1 [
1− ω
ω

D − U
]
.

A code for the SOR method is the following.

[x,nit,res] = sor(A,b,x0,nitmax,epss,om)
res = zeros(1,nitmax+1);
nb = norm(b);
n = size(A,1);
d = diag(A);
DD = spdiags(d,0,n,n);
L = tril(A,-1);
U = triu(A,1);
x = x0;
r = b - A * x;
resid = norm(r);
res(1) = resid;
DDom = DD + om * L;
nit = 0;
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while resid >= epss * nb && nit < nitmax
nit = nit + 1;
rhs = om * b - om * U * x + (1 - om) * DD * x;
x = DDom \ rhs;
r = b - A * x;
resid = norm(r);
res(nit+1) = resid;
end % while
res = res(1,1:nit+1);

The relaxation parameter ω cannot take any real value since we have a necessary condition
for the convergence of the method.

Proposition 4.11. If the SOR method converges then, 0 < ω < 2.

Proof. The iteration matrix can be written as

Lω = (I + ωD−1L)−1[(1− ω)I − ωD−1U ].

The matrix I + ωD−1L is lower triangular with 1’s on the diagonal, and (1− ω)I − ωD−1U is
an upper triangular matrix with 1−ω on the diagonal. Therefore, the determinant of the iteration
matrix is

detLω = (1− ω)n.

Since detLω is the product of the eigenvalues of Lω , we obtain

|1− ω|n ≤ ρ(Lω)n.

Therefore, |1−ω| ≤ ρ(Lω). If SOR converges, ρ(Lω) < 1. This implies that |1−ω| < 1, which
yields

0 < ω < 2.

Let us consider strictly diagonally dominant matrices.

Theorem 4.12. Let A be a strictly diagonally dominant matrix and 0 < ω ≤ 1. Then, the point
SOR method converges for every x0.

Proof. Let εk = x− xk be the error vector. We have

[εk+1]i = −ω
i−1∑
j=1

ai,j
ai,i

[εk+1]j − ω
n∑

j=i+1

ai,j
ai,i

[εk]j + (1− ω)[εk]i,

| [εk+1]i| ≤ ω
i−1∑
j=1

∣∣∣∣ai,jai,i

∣∣∣∣ · ‖εk+1‖∞ + ω

n∑
j=i+1

∣∣∣∣ai,jai,i

∣∣∣∣ · ‖εk‖∞ + (1− ω)‖εk‖∞.

Assume ‖εk+1‖∞ = maxi |[εk+1]i| is given for i = `. Then,1− ω
`−1∑
j=1

∣∣∣∣a`,ja`,`

∣∣∣∣
 ‖εk+1‖∞ ≤ ω

n∑
j=`+1

∣∣∣∣a`,ja`,`

∣∣∣∣ · ‖εk‖∞ + (1− ω)‖εk‖∞.
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With ω > 0, strict diagonal dominance implies

ω

n∑
j = 1
j 6= `

∣∣∣∣a`,ja`,`

∣∣∣∣ < ω ⇒ ω

n∑
j=`+1

∣∣∣∣a`,ja`,`

∣∣∣∣ < ω

1−
`−1∑
j=1

∣∣∣∣a`,ja`,`

∣∣∣∣
 .

Then, 1− ω
`−1∑
j=1

∣∣∣∣a`,ja`,`

∣∣∣∣
 ‖εk+1‖∞ < ω

1−
`−1∑
j=1

∣∣∣∣a`,ja`,`

∣∣∣∣
 ‖εk‖∞ + (1− ω)‖εk‖∞,

<

1− ω
`−1∑
j=1

∣∣∣∣a`,ja`,`

∣∣∣∣
 ‖εk‖∞,

and
‖εk+1‖∞ < ‖εk‖∞ < · · · < ‖ε0‖∞.

Hence, εk is a converging sequence with limit ε. But, sinceA is nonsingular, Aε = 0, and ε = 0.

Corollary 4.13. Let A be a strictly diagonally dominant matrix. Then, the point Gauss-Seidel
method converges for every x0.

Proof. We just have to set ω = 1.
Let A be a nonsingular H-matrix and 0 < ω ≤ 1. Theorem 4.12 shows that the (point) SOR

and the Gauss-Seidel methods converge. However, a better upper bound for ω can be obtained
for SOR. To establish that we need an auxiliary result.

Lemma 4.14. Let A = D + L + U be an H-matrix and Ãω = 1−|1−ω|
ω |D| − |L| − |U |. Then,

Ã−1
ω ≥ 0 if 0 < ω < 2

1+ρ(|J(A)|) .

Proof.

Ãω =
1− |1− ω|

ω
|D| − |L| − |U |,

= |D|
(

1− |1− ω|
ω

I − |J(A)|
)
.

We first consider the case with 0 < ω < 1. Then, 1−|1−ω|
ω = 1, and Ãω = |D|(I − |J(A)|).

Since A is an H-matrix, ρ(|J(A)|) = ρ(J(M(A))) < 1, see Chapter 1 for the definition of
M(A). Theorem 1.26 proves that Ã−1

ω exists and

Ã−1
ω = (I + |J(A)|+ · · ·)|D|−1 ≥ 0.

Now, assume 1 < ω < 2. Then,

Ãω = |D|(2− ω
ω

I − |J(A)|).

The matrix 2−ω
ω I − |J(A)| is nonsingular if

ω

2− ω
ρ(|J(A)|) < 1.
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It implies

ω <
2

1 + ρ(|J(A)|)
.

Theorem 1.26 shows that Ã−1
ω ≥ 0.

Let us now consider the convergence of SOR for H-matrices.

Theorem 4.15. Let A be a nonsingular H-matrix. The SOR method converges if

0 < ω <
2

1 + ρ(|J(A)|)
,

Proof. Let A = D + L + U be a splitting of the matrix A. Then, J(A) = I −D−1A. Let
M(A) = |D| − |L| − |U | and J(M(A)) = I − |D|−1(|D| − |L| − |U |). The diagonal entries of
matrices |J(A)| and J(M(A)) are equal to zero and the off-diagonal entries are |ai,jai,i

|. Therefore
|J(A)| = J(M(A)), but M(A) is an M-matrix and by Theorem 4.3, we have

ρ(|J(A)|) = ρ(J(M(A))) < 1.

Let Mω = 1
ωD + L, Nω = 1−ω

ω D − U . Then,

Lω = M−1
ω Nω.

Denote

M̃ω =
1

ω
|D| − |L|, Ñω =

|1− ω|
ω
|D|+ |U |,

and

L̃ω = M̃−1
ω Ñω, Ãω = M̃ω − Ñω =

1− |1− ω|
ω

|D| − |L| − |U |.

Clearly, Ñω ≥ 0 and |Nω| ≤ Ñω . Moreover,

|M−1
ω | ≤

∣∣∣∣( 1

ω
D + L)−1

∣∣∣∣ = |(I + ωD−1L)−1ωD−1|.

Since D−1L is strictly lower triangular, we have (D−1L)n = 0 and

(I + ωD−1L)−1 = I − ωD−1L+ · · ·+ (−1)n−1(ωD−1L)n−1.

Hence,

|M−1
ω | ≤ ω|I − ωD−1L+ · · ·+ (−1)n−1(ωD−1L)n−1| · |D−1|,
≤ ω(I + ω|D−1L|+ · · ·+ ωn−1|D−1L|n−1) · |D−1|.

Since D−1 is diagonal, |D−1L| = |D−1| · |L| and

0 ≤ |M−1
ω | ≤ (

|D|
ω
− |L|)−1 = M̃−1

ω .

It proves that Ãω = M̃ω − Ñω is a regular splitting. We conclude using Lemma 1.51. From that
lemma, we know that Ã−1

ω ≥ 0 implies ρ(M̃−1
ω Ñω) < 1. But, we have also shown that

|Lω| = |M−1
ω Nω| ≤ |M−1

ω ||Nω| ≤ M̃−1
ω Ñω = L̃ω.
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By Lemma 1.52, this shows that
ρ(Lω) ≤ ρ(L̃ω) < 1,

if 0 < ω < 2
1+ρ(|J(A)|) .

M. Neumann and R.S. Varga [852] have shown that this bound is sharp. They gave examples
of H-matrices for which if ω = 2

1+ρ(|J(A)|) , then ρ(Lω) = 1. These results imply that SOR
converges for all H-matrices if and only if 0 < ω ≤ 1.

If we now assume that the matrix A is symmetric, we have the following result.

Theorem 4.16. LetA be a symmetric matrix with positive diagonal entries. Then, SOR converges
for 0 < ω < 2 if and only if A is positive definite.

Proof. This result is called the Ostrowski-Reich theorem [937, 887]. It is a straightforward
consequence of the more general Householder-John theorem 1.57 since

Q =
2− ω
ω

D.

An important issue for SOR is the choice of the relaxation parameter ω. Obviously, we
would like to choose the ω that minimizes the spectral radius of the iteration matrix ρ(Lω). This
problem was solved for a large class of matrices by D.M. Young (1950) in his Ph.D. thesis [1143].
This is explained in great detail in his book [1144]. Young proves that, under some hypothesis,
there exists an optimal value ωb,

ωb =
2

1 + (1− ρ(J(A))2)
1
2

, (4.8)

and ρ(Lωb) = ωb − 1. Young’s theory relies on the fact that, for matrices with a consistent
ordering, there is a relationship between the eigenvalues λ of Lω and µ of J(A),

(λ+ ω − 1)2 = ω2µ2λ.

It is unfortunate that we need ρ(J(A)) to compute the optimal ωb because in many practical
problems ρ(J(A)) is not known. Trying to find approximate values of ωb was the subject of
many research papers. Some researchers devised clever schemes to obtain an approximation of
ωb during the SOR iterations. For details, see the book by L.A. Hageman and D.M. Young [606].
For the Poisson model problem it is easy to compute ωb since we know the eigenvalues of J(A).
We obtain

ωb =
2

1 + sin(πh)
and ρ(Lω) =

1− sin(πh)

1 + sin(πh)
.

It yields ρ(Lωb) = 1 − 2πh + O(h2). One can see that for ω = 1, that is, for the Gauss-Seidel
method, ρ(L) = 1 − π2h2 + O(h4). For small values of h, SOR with ωb gives a very large
improvement over Gauss-Seidel. This explains the great interest for this method in the 1950s
and 1960s. However, ρ(Lωb)→ 1 when h→ 0.

Figure 4.2 shows the log10 of the maximum norm of the error when solving the Poisson
model problem with a 20×20 mesh for Jacobi, Gauss-Seidel and SOR with the optimal parame-
ter. The convergence of SOR is much faster than that of the two other methods. For this problem
Gauss-Seidel converges twice as fast as Jacobi.

Figure 4.3 shows the spectral radius of the SOR iteration matrix Lω as a function of ω for a
10 × 10 mesh. We observe that the spectral radius if non-differentiable for ω = ωb and that the
curve is a straight line for ω > ωb. If we do not know ωb exactly, it is clearly better to over-relax.
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Figure 4.2. Poisson problem with a 20 × 20 mesh, Jacobi (solid), Gauss-Seidel (dashed), SOR
with optimal ω (dot-dashed)
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Figure 4.3. Spectral radius of the SOR iteration matrix as a function of ω for the Poisson problem
with a 10× 10 mesh

In many cases, Gauss-Seidel and SOR converge faster than Jacobi. However, the Jacobi
method has the great advantage of being well suited for parallel computers. In Gauss-Seidel
and SOR the components of the iterates have to be computed one after the other, and the two
algorithms appear to be very sequential. For sparse matrices, one way to introduce parallelism
is to consider the graph of the matrix and to assign colors to the nodes in such a way that a node
is not connected to another node of the same color. The matrix can be reordered in block form
such that the diagonal blocks are diagonal matrices. Then, the components of a given color can
be computed in parallel. However, if we reorder the unknowns, the SOR iteration matrix may
not have the same eigenvalues and the convergence of the method can be different. But, there are
cases for which the convergence does not deteriorate.

Let us consider the simplest case. For problems arising from five point difference approxi-
mations, we can use the so-called Red-Black ordering. A small example of a square domain is
shown on Figure 4.4. The Red points ◦ (resp. Black points x) are only connected to Black points
(resp. Red points). Using this ordering, the linear system can be written in block form asDR F

FT DB

 xR

xB

 =

 bR

bB

 , (4.9)

where DR and DB are diagonal matrices. The matrix F represents the coupling between Red
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and Black points. The Gauss-Seidel method can be written in block form as

DRx
R
k+1 = bR − FxBk ,

DBx
B
k+1 = bB − FTxk+1

R . (4.10)

x x x x x

x x x x x

x x x x x

x x x x x

xxxxx

x x x x x

xxxxx

x x x x x

xxxxx

x x x x x

Figure 4.4. The Red-Black ordering

It is clear that we can first compute all the components of xRk+1 simultaneously and then, all
the components of xBk+1. Thus, this method can be used on a parallel computer. What are the
convergence properties of the method defined by (4.10)? The interesting fact is that for a large
class of matrices, the eigenvalues of the iteration matrix for (4.10) are the same as those for the
natural ordering. Let us compute the eigenvalues of the iteration matrix,(

0 −D−1
R F

0 D−1
B FTD−1

R F

)
.

Note that 0 is a multiple eigenvalue of this matrix and that there exists a set of linearly indepen-
dent eigenvectors associated with the eigenvalue 0. Let

x =

(
xR

xB

)
,

be an eigenvector. Then

−D−1
R FxB = λxR, D−1

B FTD−1
R FxB = λxB .

Therefore, λ is an eigenvalue of D−1
B FTD−1

R F . Let

y =

(
yR

yB

)
,

be an eigenvector of the Jacobi iteration matrix for (4.9) corresponding to an eigenvalue µ,

D−1
R FyB = µyR, D−1

B FT yR = µyB .

Eliminating yR gives
D−1
B FTD−1

R FyB = µ2yB .

It shows that µ2 is an eigenvalue of the Gauss-Seidel iteration matrix. We note that the Jacobi
iterates are independent of the ordering of the unknowns. Therefore, the Red-Black Jacobi it-
eration matrix has the same eigenvalues as that of the natural ordering Jacobi matrix. For the
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Poisson model problem, we have proved that the squares of the Jacobi eigenvalues are eigen-
values of L. Hence, the Red-Black Gauss-Seidel iteration matrix has the same eigenvalues as
L. This is more generally true for matrices having a consistent ordering in the terminology of
D.M. Young [1144]. For more general problems with larger stencils or finite element problems,
more than two colors have to be used to introduce parallelism. The influence of the ordering on
the convergence of SOR was studied by L.M. Adams and H.F. Jordan [3].

For extensions of the SOR method, see [4, 604, 605].

4.3 The SSOR method
The results of the SOR method are dependent upon the ordering of the unknowns. The given
ordering may not be well suited to the physical problem. In the 1950s appeared the idea of
symmetrizing the iteration. This is done by doing one SOR sweep computing the components
from 1 to n, and then another sweep computing the components from n to 1. This trick gives a
symmetric iteration matrix. This method is known as SSOR (Symmetric SOR). An iteration is
defined by

(D + ωL)xk+ 1
2

= ωb+ (1− ω)Dxk − ωUxk,
(D + ωU)xk+1 = ωb+ (1− ω)Dxk+ 1

2
− ωLxk+ 1

2
. (4.11)

To obtain the iteration matrix, we eliminate xk+ 1
2

. It yields

xk+1 = (
1

ω
D + U)−1(

1− ω
ω

D − L)(
1

ω
D + L)−1(

1− ω
ω

D − U)xk

+(
1

ω
D + U)−1(

2− ω
ω

)D(
1

ω
D + L)−1b. (4.12)

We have a splitting of A = M − N with M = ω
2−ω ( 1

ωD + L)D−1( 1
ωD + U) and N =

ω
2−ω ( 1

ωD+L)D−1( 1−ω
ω D−L)( 1

ωD+L)−1( 1−ω
ω D−U). The iteration matrix denoted by Sω

is

Sω = (
1

ω
D + U)−1(

1− ω
ω

D − L)(
1

ω
D + L)−1(

1− ω
ω

D − U).

As above, for the Gauss-Seidel and SOR methods, it can be shown that if A is strictly diagonally
dominant and if 0 < ω ≤ 1, then the method converges. This result can be extended to H-
matrices. G. Alefeld and R.S. Varga [11] proved the following stronger result.

Theorem 4.17. Let A be a nonsingular H-matrix. Then, the SSOR method converges if

0 < ω <
2

1 + ρ(|J(A)|)
.

Proof. The proof is similar to that of Theorem 4.15.

A. Neumaier and R.S. Varga [851] proved the following result which gives insights on the
convergence or divergence of the method. Let ν such that 0 ≤ ν < 1, Hν = {A | A is an
H-matrix with ρ(|J(A)|) = ν} and

ω̂(ν) =

{
2, if 0 ≤ ν ≤ 1

2 ,
2

1+
√

2ν−1
, if 1

2 < ν < 1.
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For each matrix A in Hν , for every ω with 0 < ω < ω̂(ν), ρ(Sω) < 1. For every ω with ω ≤ 0
or ω > ω̂(ν), there exists a matrix inHν for which ρ(Lω) ≥ 1.

Of course, one can also define block SSOR methods. Let us now consider the case of sym-
metric positive definite matrices. The following result also holds for the block case.

Theorem 4.18. Let A be a symmetric positive definite matrix with a positive definite diagonal
D. Then, the SSOR method converges for 0 < ω < 2.

Proof. This is a consequence of the Householder-John theorem 1.57, becauseM is symmetric
and it is easy to see that

Q = 2M −A =
ω

2− ω
(A+ 2LD−1LT ).

Since D is positive definite, LD−1LT is positive semi-definite and Q is positive definite.

We have seen that the SOR iteration matrix is nonsymmetric even when A is symmetric and,
consequently, it may have complex eigenvalues. This could lead to difficulties when one tries
to accelerate this method. One nice property of the SSOR method is that Sω has real positive
eigenvalues as shown in the next theorem.

Theorem 4.19. Let A be a symmetric matrix with D positive definite. Then, the eigenvalues of
Sω are real and non-negative.

Proof.

Sω = (
1

ω
D + LT )−1(

1− ω
ω

D − L)(
1

ω
D + L)−1(

1− ω
ω

D − LT ).

Let L = D−
1
2LD−

1
2 . Then,

Sω = D−
1
2 (

1

ω
I + L

T
)−1(

1− ω
ω

I − L)(
1

ω
I + L)−1(

1− ω
ω

I − LT )D
1
2 .

We observe that as L is strictly lower triangular, ( 1
ω I + L)−1 is a polynomial in L (since by the

Cayley-Hamilton theorem L
n

= 0), and it commutes with ( 1−ω
ω I − L). We may rewrite the

iteration matrix as

Sω = D−
1
2 (

1

ω
I + L

T
)−1(

1

ω
I + L)−1(

1− ω
ω

I − L)(
1− ω
ω

I − LT )D
1
2 .

The matrix

S ′ω = (
1

ω
I + L

T
)D

1
2SωD−

1
2 (

1

ω
I + L

T
)−1,

= (
1

ω
I + L)−1(

1− ω
ω

I − L)(
1− ω
ω

I − LT )(
1

ω
I + L

T
),

has the same eigenvalues as Sω . If G(ω) = ( 1
ω I + L)−1( 1−ω

ω I − L), then

S ′ω = G(ω)G(ω)T ,

and Sω is similar to a symmetric positive definite matrix.
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When A is symmetric positive definite, it can be shown (see D.M. Young [1145]) that there
exists an optimal parameter but, unlike for SOR, the analytical form of this optimal value is not
known. Nevertheless, Young [1145] showed that a “good” parameter is

ω =
2

1 +
√

2(1− ρ(J(A)))2
. (4.13)

With this parameter the convergence speed is almost twice as fast as with SOR. But, unfortu-
nately, an SSOR iteration cost is twice that of an SOR iteration. Therefore, the benefits are not so
obvious. However, there are two facts which are nice with SSOR. First, the number of iterations
is less sensitive to the value of ω than it is with SOR and second, SSOR can be used in combina-
tion with acceleration methods. Figure 4.5 shows the spectral radius for the model problem as a
function of ω for the Poisson model problem with a 10× 10 mesh. One can see that the curve is
smooth close to its minimum.
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Figure 4.5. Spectral radius of the SSOR iteration matrix for the Poisson problem on a 10× 10 mesh

Regarding parallel computing, the problem with SSOR is clearly the same as with SOR.

4.4 Alternating direction methods
This type of method originated in the 1950s for solving linear problems arising from elliptic
partial differential equations (PDEs) on rectangles. If one uses methods like Jacobi or Gauss-
Seidel, one space direction is favored over the other. A natural idea was to switch or alternate
directions. These methods use a splitting,

A = D +H + V.

Originally, D was diagonal, and the matrix H (resp. V ) represented what comes from the hori-
zontal (resp. vertical) direction in the discretization stencil.

In 1955, D.W. Peaceman and H.H. Rachford [908] defined the following method which was
named ADI (Alternating Direction Implicit),

(
1

2
D +H + ρk+1I)xk+ 1

2
= b− (

1

2
D + V − ρk+1I)xk,

(
1

2
D + V + ρ′k+1I)xk+1 = b− (

1

2
D +H − ρ′k+1I)xk+ 1

2
, (4.14)

where ρk+1 and ρ′k+1 are real positive parameters. When this method is applied to a problem
arising from a PDE on a rectangle, we have to solve as many tridiagonal systems as there are
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rows in the mesh in the first step, and as many tridiagonal systems as there are columns in the
mesh in the second step.

If ρ′k+1 = ρ, ρ′k+1 = ρ′, the method is called the stationary Peaceman-Rachford method.
That method is a special case of a class of methods written as

(D +H + F )xk+ 1
2

= b+ (F − V )xk,

(D + V +G)xk+1 = b+ (G−H)xk+ 1
2
. (4.15)

The decomposition A = D+H +V and the matrices F , G can be chosen as we wish as long as
D+H+F and D+V +G are nonsingular. Different choices of F and G lead to some variants,

- F = ρI − 1
2D, G = ρ′I − 1

2D gives the stationary Peaceman-Rachford method,

- F = G = 0 gives the block Jacobi alternating method,

- if H = HL + HU where HL (resp. HU ) is the lower (resp. upper) triangular part of H
and the same for V = VL + VU . With F = VL, G = HL, this is the block Gauss-Seidel
alternating method,

- F = −H , G = −V this is the point Jacobi method.

For a matrix B, we denote by Ii(B) = {j | bi,j 6= 0} the index set of columns with nonzero
entries in row i.

Theorem 4.20. Let A be a strictly diagonally dominant matrix. Assume H and V have zero
diagonals and

Ii(VU ) ∩ Ii(H + VL) = ∅, Ii(HU ) ∩ Ii(V +HL) = ∅

for all rows. Then, the block Gauss-Seidel alternating method is convergent.

Proof. The hypothesis on the index sets simply means that an entry of A is either in H or in
V , but not split between the two. Let εk = x− xk, then

(D +H + VL)εk+ 1
2

= (−VU )εk,

(D + V +HL)εk+1 = (−HU )εk+ 1
2
.

Therefore,
εk+1 = (D + V +HL)−1HU (D +H + VL)VUεk = Tεk.

Let λ, u be an eigenvalue and the corresponding eigenvector of the iteration matrix T , Tu = λu.
Then,

(D +H + VL)−1VUu = v,

(D + V +HL)−1HUv = λu.

Let us show that ‖v‖∞ < ‖u‖∞. We have,

(D +H + VL)v = VUu.

Componentwise, this can be written as

vi =
∑

j∈Ii(VU )

ai,juj
ai,i

−
∑

j∈Ii(H+VL)

ai,jvj
ai,i

,
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|vi| ≤ ‖u‖∞
( ∑
j∈Ii(VU )

|ai,j |
|ai,i|

)
+ ‖v‖∞

( ∑
jßIi(H+VL)

|ai,j |
|ai,i|

)
.

Suppose that ‖u‖∞ ≤ ‖v‖∞, then

|vi| ≤ ‖v‖∞
( ∑
j∈Ii(H+V )

|ai,j |
|ai,i|

)
< ‖v‖∞.

This is a contradiction, therefore ‖v‖∞ < ‖u‖∞. In the same way we can show that

‖λu‖∞ < ‖v‖∞ < ‖u‖∞.

Hence |λ| < 1 and the method converges.
With the same kind of proof it can be shown that the block Gauss-Seidel and Jacobi methods

are convergent. If the diagonals of F and G are zero and the matrices A + 2F and A + 2G are
strictly diagonally dominant, then the method (4.15) is convergent. Unfortunately, the stationary
Peaceman-Rachford method is not covered by Theorem 4.20 because of the diagonal entries.

Theorem 4.21. Let A be a nonsingular H-matrix. Assume H and V have zero diagonals and

Ii(VU ) ∩ Ii(H + VL) = ∅, Ii(HU ) ∩ Ii(V +HL) = ∅

for all rows. Then the block Gauss-Seidel alternating method converges.

Proof. As we did with some other methods, we can prove that there exists a diagonal matrix
E with a positive diagonal such that

T (E−1AE) = E−1T (A)E.

This proves that the method converges.
Let us now consider the stationary Peaceman-Rachford method. It can be written as,

(D +DF +H)xk+ 1
2

= (DF − V )xk + b,

(D +DG + V )xk+1 = (DG −H)xk+1 1
2 + b, (4.16)

where DF and DG are diagonal matrices with positive diagonals. To prove a convergence result,
we use the same techniques as in Theorem 4.15.

Theorem 4.22. Let A be a nonsingular H-matrix with a positive diagonal and let DF and DG

be two diagonal matrices with positive diagonals. Assume that the diagonals of H and V are 0
and Ii(H) ∩ Ii(V ) = ∅ for all rows. Then, the method defined by (4.16) is convergent.

Proof. Let
M1 = D +DF +H, N1 = DF − V.

Then,
|N1| = |DF − V | ≤ DF + |V | = Ñ1,

|M−1
1 | = |[I + (D +DF )−1H](D +DF )−1|.

But,
|(D +DF )−1H| ≤ (D +DF )−1|H|.
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By Lemma 1.52,
ρ((D +DF )−1H) ≤ ρ((D +DF )−1|H|).

But (D+DF , |H|) is a regular splitting of D+DF − |H| which by hypothesis is an M-matrix.
Therefore, ρ((D + DF )−1|H|) < 1. It implies that [I + (D + DF )−1H]−1 exists and is equal
to the sum of the series of matrices,

I − (D +DF )−1H + ((D +DF )−1H)2 − · · ·

Bounding the absolute value of the series we obtain,

| [I + (D +DF )−1H]−1| ≤ (I − (D +DF )−1|H|).

Hence,
|M−1

1 | ≤ (D +DF − |H|)−1 = M̃−1
1 ,

and
M̃1 − Ñ1 = D +DF − |H| −DF − |V | = D − |H| − |V |.

In the same way, if we denote

M2 = D +DG + V, N2 = DG −H.

Then,

|M−1
2 | ≤ (D +DG − |V |)−1 = M̃−1

2 ,

|N2| ≤ DG + |H| = Ñ2,

M̃2 − Ñ2 = D +DG − |V | − |DG| − |H| = D − |H| − |V |.

By hypothesisD−|H|−|V | is an M-matrix. Now, we first apply Lemma 1.53. SinceD−|H|−
|V | is an M-matrix, its inverse is positive and the sequence defined by M̃k, Ñk is convergent.
Then, since |M−1

i | < M̃−1
i , |Ni| ≤ Ñi i = 1, 2 by Lemma 1.54, the method (4.16) is convergent.

As a consequence of Theorem 4.22, we obtain a convergence theorem for the Peaceman-
Rachford method.

Corollary 4.23. Let A be a matrix satisfying the hypothesis of Theorem 4.22. If ρ and ρ′ are
such that

ρ ≥ 1

2
max
i
ai,i,

ρ′ ≥ 1

2
max
i
ai,i,

then the stationary Peaceman-Rachford method is convergent.

Using the same techniques, G. Alefeld [10] proved that the Peaceman-Rachford method is
convergent. The problem with that method is to find the optimal parameters. This question was
only solved for the Poisson model problem, see D.M. Young [1144].

Regarding parallel computing, the situation is the same for the block Gauss-Seidel alternating
method as for the ordinary block Gauss-Seidel method. It can even be worse because the data
on the mesh has to be accessed by rows and by columns and that may cause problems on some
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computers. The situation is simpler for the Peaceman-Rachford method since all the tridiagonal
systems to be solved are independent of each other and can be solved in parallel mode.

Let us now look at the alternating Gauss-Seidel method when the matrix A is symmetric. To
study this method, we need the following result which is interesting by itself.

Lemma 4.24. Let A be a symmetric positive definite matrix and A = M −N = P −Q be two
splittings of A. Consider the iterative method defined by

Mxk+ 1
2

= Nxk + b,

Pxk+1 = Qxk+ 1
2

+ b. (4.17)

Assume MT +N and PT +Q are positive definite. Then, the method (4.17) is convergent.

Proof. This is a direct generalization of the Householder-John theorem 1.57. It can be proved
using exactly the same technique.

Theorem 4.25. LetA be a symmetric positive definite matrix,H and V being symmetric. Assume
D + H and D + V are positive definite. Then, the alternating block Gauss-Seidel method is
convergent.

Proof. In this case, we have

M = D +H + VL, N = −VU , MT +N = D +H + V TL − VU = D +H,

P = D + V +HL, Q = −HU , PT +Q = D + V +HT
L −HU = D + V.

Alternating directions methods are not frequently used any longer since they are closely
related to finite difference discretizations on rectangular meshes. However, these methods can be
used as preconditioners in a more general framework, see T.P. Mathew, P.L. Polyakov, G. Russo,
and J. Wang [790].

More recently, some methods that look formally like alternating direction methods were de-
veloped. A method having a structure quite similar to ADI, although it has no geometrical
meaning, is the Hermitian and skew-Hermitian splitting (HSS) iteration. Note that here HSS has
nothing to see with the class of hierarchical matrices we have seen in Chapter 3. These methods
were proposed by Z.-Z. Bai, G.H. Golub, and M.K. Ng [85, 86] for solving a large class of non-
Hermitian linear systems. LetH = (A+A∗)/2 be the Hermitian part ofA and S = (A−A∗)/2
be its skew-Hermitian part, the HSS method is defined by

(H + αI)xk+ 1
2

= (αI − S)xk + b,

(S + αI)xk+1 = (αI −H)xk+ 1
2

+ b,

where α is a positive parameter. This method alternates between the Hermitian and skew-
Hermitian parts of A. Of course, for this method to be efficient, we need fast methods to solve
linear systems with the Hermitian and skew-Hermitian parts.

The convergence cannot be proved by the techniques used above for ADI methods because
there is some overlap between the two parts of the splitting. Nevertheless, it was proved that ifH
is positive definite, the method converges for any choice of α. This type of method attracted much
attention and many papers were devoted to its various aspects and applications, see [84, 83, 82].
A generalization of the method that can outperform the standard HSS method in some situations
was proposed by M. Benzi [113]. It can be used as an effective preconditioner for certain linear
systems in saddle point form.
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4.5 Richardson methods
As we have seen above, the Jacobi method is quite simple. However, an even simpler method
was introduced by L.F. Richardson [944]. In some cases it can be shown to reduce to the Jacobi
iteration. Let α be a strictly positive real number. The method is defined by

xk+1 = xk + α(b−Axk). (4.18)

This method is known as the stationary Richardson method. As other methods in this chapter, it
is based upon a splitting of A,

1

α
xk+1 =

(
1

α
I −A

)
xk + b.

Hence, the splitting gives M = 1
αI and N = 1

αI − A. A necessary and sufficient condition for
the method (4.18) to converge is ρ(I − αA) < 1.

Theorem 4.26. Let A be a symmetric and positive definite matrix and 0 < λ1 ≤ λ2 ≤ · · · ≤ λn
be the eigenvalues of A. Then, the stationary Richardson method (4.18) converges if and only if
α < 2

λn
.

Proof. It is obvious that |1− αλi| < 1 for all i if and only if α < 2
λn

.
As with any other method depending upon a parameter, the problem is to find the optimal

value of α giving the smallest spectral radius.

Theorem 4.27. With the hypothesis of Theorem 4.26 the optimal value of α for the stationary
Richardson method is αopt = 2

λ1+λn
.

Proof. The optimal value is determined by 1 − αλ1 = −(1 − αλn). Hence, αopt = 2
λ1+λn

and

ρ(I − αoptA) = 1− 2

λ1 + λn
λ1 =

λn − λ1

λ1 + λn
=
κ(A)− 1

κ(A) + 1
,

where κ(A) = λn
λ1

is the condition number of A. The closer κ(A) is to 1, the faster the conver-
gence.

Of course, the downside of this method (as with relaxed Jacobi or SOR) is that we have
to know the maximum and minimum eigenvalues of A to compute the optimal parameter. A
straightforward way of generalizing the stationary Richardson method is to allow the parameter
to change at every iteration,

xk+1 = xk + αk(b−Axk). (4.19)

The problem is again to choose the sequence of parameters αk’s. One choice is to minimize a
norm of the residual at each iteration. Let µ be an integer. IfA is symmetric and positive definite,
A−µ has the same properties. Let us introduce the norm

‖rk‖2µ = (rk, A
−µrk),

and suppose we want to minimize ‖rk‖2µ. Clearly,

rk+1 = rk − αkArk.

Therefore,

(rk+1, A
−µrk+1) = (rk, A

−µrk)− 2αk(rk, A
1−µrk) + α2

k(rk, A
2−µrk).
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Hence,

αk =
(rk, A

1−µrk)

(rk, A2−µrk)
.

Of course, we need to be able to compute αk, and usually one chooses µ = 1. In that case, we
obtain,

αk =
(rk, rk)

(rk, Ark)
. (4.20)

This method is called the gradient or steepest descent method. Note that it can be used for
nonsymmetric problems. The code for this algorithm is quite simple as shown below.

function [x,nit,res] = steepest_descent(A,b,x0,nitmax,epss);
res = zeros(nitmax+1,1);
nb = norm(b);
x = x0;
r = b - A * x;
resid = norm(r);
res(1) = resid;
nit = 0;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
rr = r' * r;
Ar = A * r;
rar = r' * Ar;
alpha = rr / rar;
x = x + alpha * r;
r = r - alpha * Ar;
resid = norm(r);
res(nit+1) = resid;
end % while
res = res(1,1:nit+1);

Note that rr could have been computed as sqrt(resid).

Theorem 4.28. Let A be a symmetric positive definite matrix. Then, the steepest descent method
(4.19), (4.20) is convergent.

Proof. We have

(rk+1, A
−1rk+1) = (rk, A

−1rk)− (rk, rk)2

(rk, Ark)
,

(rk+1, A
−1rk+1)

(rk, A−1rk)
= 1− (rk, rk)2

(rk, Ark)(rk, A−1rk)
.

We then apply the Kantorovich inequality which says that

(rk, Ark)(rk, A
−1rk)

(rk, rk)2
≤

(√
κ(A) + (

√
κA)−1

2

)2

.

Therefore,
(rk+1, A

−1rk+1)

(rk, A−1rk)
≤
(
κ(A)− 1

κ(A) + 1

)2

< 1,
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0 < ‖rk+1‖2−1 < ‖rk‖2−1,

and rk → 0.
We observe that in this method we have the local orthogonality relation (rk+1, rk) = 0.

The reader may wonder if the steepest descent method is optimal. Unfortunately, the answer is
negative.

Let εk = x− xk. Then,
εk+1 = (I − αkA)εk,

and

εk =

k−1∏
i=0

(I − αiA)ε0 = Pk(A)ε0,

where Pk(t) is a polynomial of degree k whose value is 1 at zero. Of course,

‖εk‖ ≤ ‖Pk(A)‖ ‖ε0‖,

and we may try to minimize ‖Pk(A)‖ to get the smallest value of ‖εk‖ for a given ε0. Assume
that A has ` distinct eigenvalues λ1, . . . , λ`. Then, we consider the polynomial

∏̀
i=1

(λi − λ).

By the Cayley-Hamilton theorem, we have
∏`
i=1(λiI −A) = 0. If we choose

αi =
1

λi+1
,

we have P`(A) = 0 and ε` = 0. Of course, as we said before, usually we do not know the
eigenvalues of A. But, if A is symmetric, there exists an orthogonal matrix Q and a diagonal
matrix Λ such that A = QTΛQ. Then, Pk(A) = QTPk(Λ)Q, and

‖Pk(A)‖ = ‖QTPk(Λ)Q‖ = ‖Pk(Λ)‖ = max
i
|Pk(λi)|.

An upper bound of ‖Pk(A)‖ can be found by considering that, if for all i, λi ∈ [a, b], then

max
i
|Pk(λi)| ≤ max

λ∈[a,b]
|Pk(λ)|.

Therefore,
‖εk‖ ≤ max

λ∈[a,b]
|Pk(λ)| ‖ε0‖,

and the problem amounts to find the polynomial of degree k with Pk(0) = 1 minimizing
maxλ∈[a,b] |Pk(λ)|. The solution to this problem with Chebyshev polynomials was given in
Chapter 1,

Pk(λ) =
Ck

(
a+b−2λ
b−a

)
Ck

(
a+b
b−a

) .

With this choice, we obtain

‖εk‖ ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖ε0‖,
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if
1

αi
=
a+ b

2
+
b− a

2
cos

(
2i− 1

k

π

2

)
, 1 ≤ i ≤ k.

The coefficients αi’s depend on k. Usually, one chooses an integer d and uses cyclically the
parameters αk for k = 1, . . . , d. This method is clearly better than the stationary Richardson
method regarding theoretical convergence. Unfortunately, it was noticed very early that it is very
sensitive to rounding errors. The potential instability is linked to the order that is used for the
parameters. R.S. Anderssen and G.H. Golub [36] studied an ordering due to V.I. Lebedev and
S.A. Finoguenov [728] for which one can show that the method is stable. The αk’s are used in
the order defined by the permutation

χk = (i1, i2, . . . , ik).

Suppose d = 2p, then χ1 = 1. If χ2p−1 = (j1, j2, . . . , j2p−1), we take,

χ2p = (j1, 2
p + 1− j1, j2, 2p + 1− j2, . . . , j2p−1 , 2p + 1− j2p−1).

For example,

χ2 = (1, 2), χ4 = (1, 4, 2, 3), χ8 = (1, 8, 4, 5, 2, 7, 3, 6),

χ16 = (1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11).

The problem of finding the optimal polynomial when A is not positive (or negative) definite was
solved by C. De Boor and J.R. Rice [322]. G. Opfer and G. Schober [881] studied the problem
when A is nonsymmetric.

This kind of Richardson method can be extended in two ways. First, one can introduce a
nonsingular matrix M and define

Mxk+1 = Mxk − α(b−Axk). (4.21)

Since we have shown above that the convergence depends on the condition number, it is natural
to choose M to minimize κ(M−1A). M is called the preconditioning matrix or preconditioner.
The second possible generalization is to look for methods using more than one previous iterate.

4.6 Acceleration techniques
Let A be a symmetric matrix. Consider a convergent splitting method,

Mxk+1 = Nxk + b,

or
xk+1 = Bxk + c,

where B = M−1N , c = M−1b, and ρ(B) < 1. We have seen that εk = Bkε0. To accelerate
the convergence, a common technique is to average the iterates xk to obtain another sequence
which, hopefully, will converge faster. Let

yk =

k∑
`=0

α`,kx`.

We require that
∑k
`=0 α`,k = 1, since if x` = x for all `, we need to have yk = x. Let

ηk = x− yk =

k∑
`=0

α`,k(x− x`) =

k∑
`=0

αk,`B
`ε0 = Pk(B)ε0,
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where Pk is a polynomial of degree k with Pk(1) = 1. Once again, we would like to minimize
‖Pk(B)‖. Assume that B has real eigenvalues belonging to [−ρ, ρ], ρ > 0. The solution of this
minimization problem is

Pk(t) =
Ck(t/ρ)

Ck(1/ρ)
.

When Pk is known, one can compute the coefficients α`,k, but it is better to use the recurrence
relations of the Chebyshev polynomials to avoid storing all the vectors x`. We know that

Ck(t/ρ) = Ck(1/ρ)Pk(t),

but,
Ck+1(x) = 2xCk(x)− Ck−1(x).

Therefore,

Ck+1

(
1

ρ

)
Pk+1(t) =

2t

ρ
Ck

(
1

ρ

)
Pk(t)− Ck−1

(
1

ρ

)
Pk−1(t).

With ηk = Pk(B)ε0 and post multiplying by ε0,

Ck+1

(
1

ρ

)
ηk+1 =

2

ρ
Ck

(
1

ρ

)
Bηk − Ck−1

(
1

ρ

)
ηk−1,

or

yk+1 − x =
2Ck( 1

ρ )

ρCk+1( 1
ρ )

(Byk − x+ c)−
Ck−1( 1

ρ )

Ck+1( 1
ρ )

(yk−1 − x).

Noticing that [
2Ck( 1

ρ )

ρCk+1( 1
ρ )
−
Ck−1( 1

ρ )

Ck+1( 1
ρ )

]
x = x,

we obtain,

yk+1 =
2Ck( 1

ρ )

ρCk+1( 1
ρ )

(Byk + c)−
Ck−1( 1

ρ )

Ck+1( 1
ρ )
yk−1.

Therefore, the vectors yk can be computed without any knowledge of the x`’s. A further simpli-
fication can be achieved since

yk+1 =
2Ck( 1

ρ )

ρCk+1( 1
ρ )

(Byk + c− yk−1) +

(
2Ck( 1

ρ )

ρCk+1( 1
ρ )
−
Ck−1( 1

ρ )

Ck+1( 1
ρ )

)
yk−1.

This can be written in a simpler way as

yk+1 = ωk+1(Byk + c− yk−1) + yk−1,

with

ωk+1 =
2Ck( 1

ρ )

ρCk+1( 1
ρ )
, ω1 = 1.

But,

ωk+1 =
2Ck( 1

ρ )

2Ck( 1
ρ )− ρCk−1( 1

ρ )
=

1

1− ρCk−1( 1
ρ )

2Ck( 1
ρ )

=
1

1− ρ2

4 ωk
.
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This shows that we do not need to compute the Chebyshev polynomials to obtain the coefficients
of the method. This algorithm can be rewritten as

yk+1 = ωk+1(zk + yk − yk−1) + yk−1, (4.22)

with
Mzk = rk = b−Ayk.

The method is known as the Chebyshev semi-iterative method, see G.H. Golub and R.S. Varga
[550, 551]. When the eigenvalues belongs to [a, b], straightforward modifications show that the
method becomes

yk+1 =
ωk+1

2− (a+ b)
[2zk + (2− (a+ b))(yk − yk−1)] + yk−1,

Mzk = rk,

with y0 = x0, y1 = x1, and

ωk+1 =
1

1− ωk
4w2

, ω2 =
2w2

2w2 − 1
, ω1 = 1, w =

2− (a+ b)

b− a
.

If ωk+1 is kept constant and equal to 2/(
√

1− ρ(B)2, the method is known as the second-order
Richardson iteration, see [539].

A Chebyshev code to accelerate the Jacobi iteration is the following.

function [x,nit,res] = chebyshev_jacobi(A,b,x0,nitmax,epss)
nb = norm(b);
res = zeros(1,nitmax+1);
M = diag(diag(A));
N = M - A;
eigMN = eig(full(inv(M) * N));
lmin = min(eigMN);
lmax = max(eigMN);
w = coeff(nitmax+1,lmin,lmax);
x = x0;
x_old = x;
r = b - A * x;
res(1) = norm(r);
x = M \ (r + M * x);
r = b - A * x;
resid = norm(r);
res(2) = resid;
ab = 2 - (lmin + lmax);
nit = 2;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
z = M \ r;
xnew = (w(nit) / ab) * ( 2 * z + ab * (x - x_old)) + x_old;
x_old = x;
x = xnew;
r = b - A * x;
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resid = norm(r);
res(nit) = resid;
end % while
res = res(1,1:nit+1);
end % function

function w = coeff(k,lmin,lmax)
% coefficients of the Chebyshev semi iterative method
z = (2 - (lmin + lmax)) / (lmax - lmin);
z2 = z * z;
w = zeros(k,1);
w(1) = 1;
w(2) = 2 * z2 / (2 * z2 - 1);
for i = 3:k
w(i) = 1 / (1 - w(i-1) / (4 * z2));
end
end % function

Other semi-iterative methods and their theory were studied by R.S. Varga and his collabora-
tors, see [394, 398, 399, 400, 1096].

When the matrix A is nonsymmetric the parameters can be estimated dynamically by en-
closing the eigenvalues in ellipses (see T.A. Manteuffel [779, 780]), although the Chebyshev
polynomials over ellipses are not necessarily optimal.

4.7 Stability of classical iterative methods
The stability of classical iterative methods has not been completely studied. There are examples
of well conditioned matrices for which, because of rounding errors, SOR may diverge or stagnate
when it is supposed to converge. For methods derived from a splitting of A, an error analysis
was done by N.J. Higham [631, 633]. Let

Mxk+1 = Nxk + b− ξk,

be the computed iterates where the last term stands for the rounding errors. For the methods we
have been studied,

|ξk| ≤ cu(|M | |xk+1|+ |N | |xk|+ |b|) = µk,

where c is a constant and u is the unit roundoff. Then, the error satisfies

εk+1 = (M−1N)k+1ε0 +

k∑
i=0

(M−1N)iM−1ξk−i.

From this relation, normwise bounds can be derived, see [631, 633]. Let

γx = supk
‖xk‖
‖x‖

,

and q = ‖M−1N‖∞ < 1. Then,

‖εk+1‖∞ ≤ ‖(M−1N)k+1ε0‖∞ + cu(1 + γx)(‖M‖∞ + ‖N‖∞)‖x‖∞
‖M−1‖∞

1− q
.
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Componentwise bounds can also be obtained. Let

θx = supk max
i

(|M |+ |N |)|xk|)i
(|M |+ |N |)|x|)i

,

and c(A) be the smallest ε such that

∞∑
i=0

|(M−1N)iM−1| ≤ ε|A−1|.

Then,
|εk+1| ≤ |(M−1N)k+1ε0|+ cu(1 + 2θx)c(A)|A−1|(|M |+ |N |)|x|.

If M−1 ≥ 0, N ≥ 0 then, c(A) = 1. This is the case if M −N is a regular splitting of A. From
this bound, we can deduce, for instance, that if A is an M-matrix, the Jacobi and Gauss-Seidel
methods are componentwise forward stable. For a backward error analysis, see N.J. Higham
[631, 633]. The stability of the steepest descent method was studied by J.A.M. Bollen [135].
The algorithm is backward stable as long as the condition number is not too large.

The rounding properties of the second-order Richardson method were studied by G.H. Golub
[539]; see also [545] with M.L. Overton.

4.8 Numerical experiments
Let us do numerical experiments with some of the matrices that we have already used in Chap-
ter 2. Their characteristics are described in the Appendix. Table 4.1 shows the spectral radiuses
of the iteration matrices for Jacobi, Gauss-Seidel, and SOR with a parameter ω computed as
in formula (4.8). However, first in some cases ρ(J) > 1 and ω becomes a complex number,
and secondly the hypothesis for applying Young’s theory may not be satisfied, and even if ω can
be computed it may not be the optimal value of the relaxation parameter, see, for instance, the
matrix pde_225 for which SOR is diverging with the computed ω.

In this set of matrices there are many cases for which the spectral radiuses are larger than 1,
which means that the methods do not converge. In cases where everything is fine, the spectral
radius of SOR is generally smaller than those of Jacobi and Gauss-Seidel. Remember that the
spectral radius describes only the asymptotic behavior of the method. Even when the spectral
radiuses are smaller than 1, many of them are very close to 1 and the convergence is slow.

Figure 4.6 shows the spectral radius of the SOR iteration matrix as a function of ω for two
matrices, one (fs_680_1c) for which Young’s theory apply and one (steam2) for which it does
not apply. There is an optimal value of ω for steam2 but is it not the one computed with for-
mula (4.8).

Table 4.2 displays the number of iterations to obtain ‖rk‖/‖b‖ ≤ 10−10 as well as the ab-
solute `2 norms of the residual and the error at convergence. The initial vector is zero and the
maximum number of iterations is 20, 000. SOR is ran with the value of the parameter given by
formula (4.8). On this set of matrices, when both methods converge, the number of iterations
of Gauss-Seidel is smaller than for Jacobi, approximately by a factor of two. When the optimal
value of ω can be computed the number of iterations of SOR is much smaller. The differences
of the residual and error norms can be understood by looking at the norms of the matrix and its
inverse; for instance, for watt1, ‖A‖ = 1, but ‖A−1‖ = 4.3596 109.

Table 4.3 displays the relative `2 norms of the residual and the error at convergence.
Tables 4.4 and 4.5 shows the residual and error norms for the symmetric Gauss-Seidel (SGS),

SSOR with ω computed using formula (4.13), and steepest descent. The number of iterations for
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Table 4.1. Spectral radiuses

matrix Jacobi Gauss-Seidel SOR ω

pde_225 0.988761 0.977649 3.42333 1.73988

gre_343 - - - -
jpwh_991 0.979722 0.959915 0.746060 1.66616

jagmesh1 5.90560 12.0026 - -
bfwa782 1.21863 1.01695 1.09245 1.34675

jagmesh2 5.96954 12.6111 - -
fs_680_1c 0.969742 0.940407 0.617856 1.60755

fs_680_1 0.969742 0.940407 0.617856 1.60755

sherman1 0.999690 0.999380 0.951418 1.95142

nos3 1.63139 0.999840 - -
olm1000 4.24458 - - -
steam2 0.998660 0.996894 5.25310 1.90157

1138bus 0.999996 0.999992 0.995007 1.99430

steam1 1.18377 1.12561 6.10033 1.42723

nos7 1.00000 1.00000 0.999648 1.99965

fs_183_6 0.765285 0.603918 0.944965 1.21677

bcsstk20 2.49830 1.00000 - -
mcfe 37.9076 2.91387 103 - -
lnsp - - - -

bcsstk01 1.10145 0.996914 - -
pde2961 0.987160 0.974485 1.19027 1.72453

add20 0.999662 0.999323 0.953970 1.94929

watt1 0.998696 0.997395 0.902872 1.90287

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

Figure 4.6. ρ(Lω) as a function of ω, fs_680_1c (plain) and steam2 (dashed)

SGS is smaller than for Gauss-Seidel, but remember that the cost of an iteration of SGS is twice
that of a Gauss-Seidel iteration. SSOR with this computation of ω does not always give a smaller
number of iterations than SOR.



254 4. Classical iterative methods

Table 4.2. Number of iterations, and absolute residual and error norms, ε = 10−10

matrix Jacobi Gauss-Seidel SOR ω

pde_225 1929 975 - 1.73988

residual 1.60269 10−9 1.58510 10−9 NaN
error 4.15933 10−10 3.56241 10−10 NaN

jpwh_991 1063 536 82 1.66616

1.20292 10−9 1.17811 10−9 1.04851 10−9

9.57916 10−9 8.31718 10−9 2.82079 10−9

pde2961 1854 954 - 1.72453

1.55039 10−9 1.53695 10−9 NaN
3.83110 10−8 3.58453 10−8 NaN

fs_680_1c 826 302 57 1.60755

2.28946 10−9 2.33863 10−9 41.57680 10−9

1.32638 10−9 1.33854 10−7 1.62057 10−9

add20 20000 20000 535 1.94929

8.30792 10−17 1.49912 10−20 8.94053 10−21

4.36585 10−13 1.34988 10−16 1.50508 10−18

fs_680_1 739 269 48 1.60755

7.93717 103 7.57164 103 5.03969 103

1.94921 10−8 1.02555 10−6 1.25637 10−7

sherman1 20000 20000 491 1.95142

1.74289 10−5 4.31042 10−8 3.78678 10−10

4.43846 10−2 9.00556 10−5 1.30482 10−8

nos3 - 20000 - 0.751473− 0.96862i

NaN 1.41374 10−2 -
Inf 7.38218 10−1 -

watt1 15535 7283 248 1.90287

4.23810 10−9 4.22855 10−9 3.92756 10−9

3.47374 12.2643 5.40654 10−1
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Table 4.3. Number of iterations, and relative residual and error norms, ε = 10−10

matrix Jacobi Gauss-Seidel SOR ω

pde_225 1929 975 - 1.73988

residual 9.91975 10−11 9.81090 10−11 NaN
error 4.13707 10−11 3.54335 10−11 NaN

jpwh_991 1063 536 82 1.66616

9.98970 10−11 9.78364 10−11 8.70743 10−11

3.04292 10−11 2.64204 10−10 8.96053 10−11

pde2961 1854 954 - 1.72453

9.92392 10−11 9.83790 10−11 NaN
7.04052 10−10 6.58738 10−10 NaN

fs_680_1c 826 302 57 1.60755

9.69694 10−11 9.9051910−11 6.67847 10−11

5.08643 10−11 5.13307 10−9 6.21461 10−11

add20 20000 20000 535 1.94929

8.37839 10−7 1.51184 10−10 9.01636 10−11

3.9970710−6 1.23586 10−9 1.37794 10−11

fs_680_1 739 269 48 1.60755e

9.86898 10−11 9.41449 10−11 6.26629 10−11

7.47487 10−10 3.93281 10−8 4.81798 10−9

sherman1 20000 20000 491 1.95142

4.56024 10−6 1.12782 10−8 9.90806 10−11

3.61139 10−4 7.32746 10−7 1.06168 10−10

nos3 - 20000 - 0.751473− 0.96862i

NaN 4.44156 10−5 -
Inf 2.38259 10−2 -

watt1 15535 7283 248 1.90287

9.99658 10−11 9.97405 10−11 9.26411 10−11

1.34398 10−10 4.74501 10−9 2.09177 10−10
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Table 4.4. Number of iterations, and absolute residual and error norms, ε = 10−10

matrix SGS SSOR ω Steep. desc.

pde_225 37 70 1.65094 712
residual 1.10993 10−9 1.37247 10−9 1.58492 10−9

error 1.72582 10−9 1.59195 10−9 3.30690 10−10

jpwh_991 297 194 1.55842 1485
1.19337 10−9 1.17963 10−9 1.19124 10−9

9.78922 10−9 4.84431 10−9 7.05114 10−9

pde2961 468 113 1.63145 2938
1.53321 10−9 1.35070 10−9 1.55939 10−9

3.79086 10−8 3.01899 10−8 2.70660 10−8

fs_680_1c 168 77 1.48671 684
2.24252 10−9 2.18622 10−9 2.30158 10−9

8.62051 10−8 6.53387 10−8 5.37291 10−8

add20 20000 20000 1.92902 20000
1.04423 10−20 4.11000 10−13 3.73052 10−15

1.34952 10−16 1.28427 10−9 3.92475 10−11

fs_680_1 147 68 1.48671 20000
7.46767 103 7.46587 103 1.05230 109

1.02724 10−6 7.94496 10−7 1.04683 10−1

sherman1 20000 20000, 1.93198 20000
6.81163 10−10 3.08831 10−03 3.38688 10−4

1.34822 10−6 3.70904 8.94886 10−1

nos3 20000 20000 0.462655 20000
7.73232 10−4 3.12171 102 1.49296 10−1

3.90825 10−2 3.15268 101 5.98348

watt1 4782 16561 1.86535 20000
4.23667 10−9 4.23853 10−9 4.40261 101

1.02966 101 3.66456 2.58678 109
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Table 4.5. Number of iterations, and relative residual and error norms, ε = 10−10

matrix SGS SSOR ω Steep. desc.

pde_225 37 70 1.65094 712
6.86986 10−11 8.49484 10−11 9.80976 10−11

1.71659 10−10 1.58343 10−10 3.28921 10−11

jpwh_991 297 194 1.55842 1485
9.9104210−11 9.79628 10−11 9.89269 10−11

3.10965 10−10 1.53885 10−10 2.23987 10−10

pde2961 468 113 1.63145 2938
9.81395 10−11 8.64574 10−11 9.98150 10−11

6.9665610−10 5.54808 10−10 4.97399 10−10

fs_680_1c 168 77 1.48671 684
9.49813 10−11 9.25965 10−11 9.74825 10−11

3.30582 10−9 2.50562 10−9 2.06042 10−9

add20 20000 20000 1.92902 20000
1.05309 10−10 4.14486 10−3 3.76216 10−5

1.2355310−9 1.17579 10−2 3.59323 10−4

fs_680_1 147 68 1.48671 20000
9.28521 10−11 9.28298 10−11 1.30842 10−5

3.93928 10−8 3.04675 10−8 4.01443 10−3

sherman1 20000 20000 1.93198 20000
1.78225 10−10 8.08051 10−4 8.86172 10−5

1.0969910−8 3.01789 10−2 7.28133 10−3

nos3 20000 20000 0.462655 20000
2.42928 10−6 9.80754 10−1 4.69046 10−4

1.26138 10−3 1.01752 1.93116 10−1

watt1 4782 16561 1.86535 20000
9.99321 10−11 9.99760 10−11 1.03846

3.98370 10−9 1.41780 10−9 1.00081
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Let us finally illustrate the benefits of Chebyshev acceleration. We solve a symmetric lin-
ear system arising from the 5-point discretization of the Poisson equation in the unit square.
The characteristics of the matrix Lap2500 of order 2500 are given in the Appendix. Figure 4.7
shows the residual norms for Jacobi and its Chebyshev acceleration. Figure 4.8 shows the resid-
ual norms for SSOR with ω = 1.9 and its acceleration. In both cases the convergence is im-
proved. However, for these two splittings, we have to know the smallest and largest eigenvalues
of M−1N . For this example, they are known analytically for Jacobi, but not for SSOR.
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Figure 4.7. Residual norms for Jacobi (plain) and for its Chebyshev acceleration (dashed)
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Figure 4.8. Residual norms for SSOR with ω = 1.9 (plain) and for its Chebyshev acceleration (dashed)
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4.9 Historical and bibliographical comments
It seems that iterative methods were not used for solving linear systems before Carl Friedrich
Gauss (1777-1855), at the beginning of the 1820s. He explained his method in a letter to one
of his former students, Christian Ludwig Gerling (1788-1864); see the quote at the beginning of
this chapter. Gauss used his method to solve linear systems arising from least squares geodesy
problems. Gerling published the method in a book in 1843.

In 1845, Carl Gustav Jacob Jacobi (1804-1851) also used an iterative method for the solu-
tion of the normal equations for least squares problems. He considered diagonally dominant
symmetric systems, where the off-diagonal entries are small compared to the diagonal ones.

Philipp Ludwig Seidel (1821-1896) published his iterative method in 1874, even though he
used it before in 1862. Seidel did not use matrices and did not give many details about the
derivation of his method. The first method proposed by Seidel was to change the components
x1, x2, x3, . . . of the approximation cyclically, but he remarked that any ordering of the compo-
nents can be used.

An analysis of the convergence of Seidel’s method was done in 1885 by the Russian math-
ematician Pavel Alekseevich Nekrasov (1853-1924), who was working mainly on probability.
Nekrasov was the first to relate the convergence to the eigenvalues of the iteration matrix and to
analyze the modern Gauss-Seidel method. After 1890, in correspondence with Rudolf Mehmke
(1857-1944), a German mathematician, he published sufficient convergence conditions. In 1892,
Mehmke described what can be considered a block Seidel’s method.

Sufficient conditions for convergence of Jacobi and Gauss-Seidel methods were given in 1929
by Richard Edler von Mises (1883-1953) and Hilda Pollaczek-Geiringer (1893-1973).

Relaxation methods started to be developed by Richard Vyne Southwell (1888-1970) in the
UK in the second half of the 1930s, at first as a pure engineering method for problems in mechan-
ics. The choices of the unknowns to be relaxed were based on the intelligence and the insight
of the engineer doing the computation. Then, Southwell realized that he could apply the same
techniques to other engineering problems. He summarized his research in a book published in
1940.

Edgar Reich (1927-2009) was a Research Assistant at MIT when, in 1949, he published a
paper in which he proved that if A is a real symmetric matrix with a positive diagonal, Seidel’s
method is convergent if and only if A is positive definite. In 1949, Geiringer proved that the
Gauss-Seidel method is convergent for irreducibly diagonally dominant matrices.

The idea of a symmetric Gauss-Seidel method was introduced by Alexander Craig Aitken
(1895-1967) in 1950.

A landmark in the development of classical iterative methods is the Ph.D. thesis of David
Monaghan Young (1923-2008) in 1950, done under the supervision of Garrett Birkhoff (1911-
1996) at Harvard University. In his thesis, he developed the theory for the choice of the optimal
SOR parameter. The SOR method was also proposed independently by Stanley Phillips Frankel
(1919-1978) in 1950 under the name extrapolated Liebmann method. Even though the work of
Young was more general, since the paper of Frankel was published in 1950 and that of Young
only in 1954 in a journal, the SOR method was often named Frankel’s method or the extrapolated
Liebmann’s method in the 1950s.

The symmetric successive overrelaxation (SSOR) method was introduced by John Waldo
Sheldon (1923-2015) in 1955. A block version was proposed by Louis William Ehrlich (1927-
2007) in 1964.

Regular splittings were introduced by Richard Steven Varga (1928-2022) in 1960. The re-
search on classical iterative methods was summarized in the seminal books by R.S. Varga [1098]
in 1962 and D.M. Young [1144] in 1971.

Alternating direction methods were introduced by Donald William Peaceman (1926-2017)
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and Henry Herbert Rachford Jr. (1925-2022) in 1955, as well as by Jim Douglas Jr. (1927-2016).
In 1910, Lewis Fry Richardson (1881-1953), an English mathematician, physicist, and me-

teorologist, published a 53-page paper in which he considered approximate solutions of partial
differential equations using finite difference schemes, and an iterative method that will be known
later as (first-order) Richardson’s method. The problem of convergence and the choice of the
parameters in Richardson’s method were studied in the second half of the 20th century.

Chebyshev polynomials are named after the famous Russian mathematician Pafnuty Lvovich
Chebyshev (1821-1894). He was the founder of the Saint Petersburg school of mathematics.
A first semi-iterative method was studied by R.S. Varga in 1957. G.H. Golub (1932-2007) and
R.S. Varga wrote a two-part paper that was published in 1961. They considered three methods,
Chebyshev, SOR, and second-order Richardson. The orderings for the parameters of the second-
order Richardson method were studied by R.S. Anderssen and G.H. Golub in 1972.

For more details on the history of classical iterative methods, see Chapter 5 of [160].



5

The conjugate gradient
and related methods

Let A be a symmetric positive definite (SPD) matrix of order n. One of the most efficient
iterative method for solving Ax = b is the conjugate gradient (CG) method, particularly in its
preconditioned form (PCG). This method was introduced by Magnus R. Hestenes and Eduard
Stiefel in 1952 [629]. CG can be derived in several different ways: as a minimization method,
from the Lanczos algorithm, as an orthogonalization method, or as an acceleration method of a
splitting iterative method. Let us explore some of these derivations.

5.1 CG as a minimization method
It is well known that the solution xe of Ax = b gives also the minimum of the functional

φ(x) =
1

2
xTAx− xT b.

The minimum value of φ is −bTA−1b/2 for x = xe = A−1b. The negative gradient of φ is
−∇φ(x) = b − Ax, which is the residual vector r. It is interesting to note that the functional φ
is related to the A-norm of the error e = xe − x which satisfies Ae = r.

Lemma 5.1. Let e = xe − x. Then,

‖e‖2A = eTAe = xTe Axe + 2φ(x). (5.1)

Proof. We have

eTAe = xTe Axe − 2xTAxe + xTAx,

= xTe Axe − 2xT b+ xTAx,

= xTe Axe + 2φ(x).

If we can derive an algorithm to decrease φ at each iteration, this will also decrease the
A-norm of the error.

Let us look for something which is similar to what is done in the steepest descent algorithm,

xk+1 = xk + γkpk,

261
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where p0, p1, . . . are descent directions to be chosen. The value φ(xk+1) is minimized by choos-
ing

γk =
pTk rk
pTkApk

, (5.2)

and

φ(xk + γkpk) = φ(xk)− 1

2

(pTk rk)2

pTkApk
.

To decrease φ we need to have pTk rk 6= 0 and its ratio with pTkApk as large as possible. In the
steepest descent method, the direction pk is chosen as rk = b − Axk. It is a local minimiza-
tion algorithm since it minimizes φ only in the direction of rk. In CG, we choose the descent
directions in a different way. We set p0 = r0, and we would like to solve

min
x∈x0+span{p0,...,pk}

φ(x),

where p0, . . . , pk are linearly independent. If we solve this problem, we have convergence (that
is, a zero residual vector) in at most n steps. Let Pk = ( p0 · · · pk ). If xk+1 = x0 +Pk−1y+
γpk,

φ(xk+1) = φ(x0 + Pk−1y) + γyTPTk−1Apk +
γ2

2
pTkApk − γpTk r0.

Let us assume that pk is orthogonal to span{Ap0, . . . , Apk−1}, that is, pTkAPk−1 = 0. Then,

min
x∈x0+span{p0,...,pk}

φ(x) = min
y,γ

(
φ(x0 + Pk−1y) +

γ2

2
pTkApk − γpTk r0

)
.

This is equal to

min
y
φ(x0 + Pk−1y) + min

γ

(
γ2

2
pTkApk − γpTk r0

)
. (5.3)

Let yk−1 be the solution of the first minimization problem. Then, x0 + Pk−1yk−1 = xk. The
solution of the second one is

γ =
pTk r0

pTkApk
,

but

pTk rk = pTk (b−Axk),

= pTk (b−A(x0 + Pk−1yk−1)) = pTk r0,

since pTkAPk−1 = 0. Therefore, the solution of the second problem is γ = γk defined by (5.2).
The splitting of the minimization problem in two parts shows that we can write

xk+1 = xk + γkpk, rk+1 = rk − γkApk.

Let us show by induction that PTk rk+1 = 0. Since p0 = r0 and r1 = r0 − γ1Ar0, we have
pT0 r1 = 0. Assume that PTk−1rk = 0. Since rk+1 = rk − γkApk, and because of the A-
orthogonality of the pj’s, we have

PTk rk+1 = PTk rk − γkPTk Apk,

=

(
PTk−1rk
pTk rk

)
− pTk rk
pTkApk


0
...
0

pTkApk

 ,
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=

(
PTk−1rk

0

)
,

= 0.

We choose pk+1 as pk+1 = rk+1−APkzk, where zk is the solution of the least squares problem

min
z
‖rk+1 −APkzk‖.

We observe that, writing the normal equations, we have

PTk Apk+1 = PTk A(rk+1 −APkzk) = 0.

So, the A-orthogonality (also called conjugacy) condition is satisfied. Moreover, pk+1 is the
orthogonal projection of rk+1 onto the range of (APk)⊥, and the closest vector to rk+1 in that
space. From the definition of the residuals, we have

{Ap0, . . . , Apk} ⊆ {r0, . . . , rk+1},

and, by the definition of pk+1, we have

span{p0, . . . , pk+1} = span{r0, . . . , rk+1}.

SincePTk rk+1 = 0, rk+1 is orthogonal to any vector in the range ofPk which contains r0, . . . , rk.
Therefore, rk+1 is orthogonal to all the previous residual vectors.

Let us show that pk+1 defined as above is a linear combination of rk+1 and pk. We have to
relate pk+1 to pk by writing

pk+1 = rk+1 −APk
(
w
ω

)
= rk+1 −APk−1w − ωApk.

Using Apk = −(rk+1 − rk)/γk, it yields

pk+1 =

(
1 +

ω

γk

)
rk+1 − sk, sk = −

(
ω

γk
rk +APkw

)
.

Clearly, sk is in span{rk, Ap0, . . . , Apk} which is contained in span{r0, . . . , rk}. Hence, sk
is orthogonal to rk+1. The minimization problem giving pk+1 is equivalent to finding ω and w
minimizing (

1 +
ω

γk

)2

‖rk+1‖2 + ‖sk‖2.

From the definition of sk, we see that the minimization of its norm implies that sk is a multiple
of pk. Therefore, we can write

pk+1 = rk+1 + δk+1pk.

To satisfy the orthogonality condition pTkApk+1 = 0, we must have

δk+1 = −p
T
kArk+1

pTkApk
.

This expression for δk+1 can be simplified since, because of the orthogonality of the residuals,
rTk+1rk+1 = −γkrTk+1Apk. Moreover, pTkApk = pTk rk/γk = rTk rk/γk. Finally, we have the
simpler expression,

δk+1 =
rTk+1rk+1

rTk rk
,
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and γk can be written as

γk =
rTk rk
pTkApk

.

We observe that the CG iterates are in x0 + span{p0, . . . , pk}. This is the same as x0 +
Kk+1(A, r0) where

Kk+1(A, v) = span{v,Av,A2v, . . . , Akv},

which is a so-called Krylov subspace.

Coding CG is particularly simple as one can see in the following.

function [x,nit,res] = cg(A,b,x0,nitmax,epss)
res = zeros(1,nitmax+1);
nb = norm(b);
x = x0;
r = b - A * x;
p = r;
rtr = r' * r;
resid = sqrt(rtr);
res(1) = resid;
nit = 0;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
Ap = A * p;
gamma = rtr / (p' * Ap);
x = x + gamma * p;
r = r - gamma * Ap;
rk = r' * r;
resid = sqrt(rk);
res(nit+1) = resid;
delta = rk / rtr;
rtr = rk;
p = r + delta * p;
end % while

There is one matrix-vector product, two dot products, and three axpy operations per iteration.
The number of operations per iteration is approximately 10n plus what is needed for the matrix-
vector product.

Let us summarize the properties of the CG algorithm obtained from the previous discussion.

Theorem 5.2. The vectors generated by the CG algorithm are such that

1) pTi Apj = 0, i 6= j,

2) rTi rj = 0, i 6= j,

3) pTi rj = 0, i < j.

Moreover, CG minimizes the A-norm of the error at each iteration.
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Iterating the recurrence relation of pk, we have

pk = rk +
‖rk‖2

‖rk−1‖2
rk−1 + · · ·+ ‖rk‖

2

‖r0‖2
r0. (5.4)

and, using the orthogonality of the residual vectors,

‖pk‖2

‖rk‖2
= 1 +

k−1∑
j=0

‖rk‖2

‖rj‖2
. (5.5)

However, the relation (5.5) can also be derived assuming local orthogonality rTj pj−1 = 0 only.
When CG converges fast enough, the descent direction pk and the residual rk tend to be in the
same direction. One can also prove [816, Lemma 2.31] that pTkApk ≤ rTk Ark. From this, and
assuming only local orthogonality of the residuals, it can be shown that CG converges at least as
fast as the steepest descent algorithm which, unfortunately, is known to be quite slow.

CG is almost always used in its precondtioned form to speed up convergence. Let M be an
SPD matrix which is known as the precondtioner, see Chapter 7. The preconditioned CG (PCG)
is obtained by applying CG to the preconditioned linear system

Â x̂ = b̂, Â = M−1/2AM−1/2, b̂ = M−1/2b,

and then, going back to the original variables x, r, p. Note that this is done to preserve symmetry.
Denoting the corresponding CG coefficients and vectors with a hat and defining

xk ≡M−1/2x̂k, rk ≡M1/2 r̂k, pk ≡M−1/2p̂k, zk ≡M−1rk,

where xk and rk represent the approximate solution and residual for the original problem Ax =
b, we obtain the standard version of the preconditioned CG (PCG) method which involves only
M . It is straightforward to see that

‖x̂− x̂k‖M−1/2AM−1/2 = ‖x− xk‖A. (5.6)

Initially, r0 = b−Ax0, Mz0 = r0, and p0 = z0. One iteration of PCG is the following,

γk =
rTk zk
pTkApk

,

xk+1 = xk + γkpk,

rk+1 = rk − γkApk,
Mzk+1 = rk+1,

δk+1 =
rTk+1zk+1

rTk zk
,

pk+1 = zk+1 + δk+1pk.

The residual vectors in PCG satisfy the orthogonality relation

(ri, zj) = rTi zj = rTi M
−1rj = 0, i 6= j.

The matrix M is usually chosen (heuristically) to improve the convergence of the algorithm. We
observe that we have to solve a linear system with the matrix M at each iteration. Hence, M
must also be chosen such that this is not too expensive.

In CG and PCG, the computation of xk+1 and rk+1 are decoupled. In finite precision arith-
metic, this may lead to rk being different from b−Axk. That difference was called the residual
gap in [563].
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5.2 CG from the Lanczos algorithm
Let A be a real nonsingular symmetric matrix of order n, not necessarily positive definite.
Given a starting vector v, the Lanczos algorithm computes an orthonormal basis v1, . . . , vk+1

of the Krylov subspace Kk+1(A, v) defined above. The dimension of these subspaces for k =
0, 1, 2, . . . increases up to an index m ≤ n, called the grade of v with respect to A, at which the
maximal dimension is attained, and Km(A, v) is invariant under multiplication with A. The or-
thonormality condition for the basis vectors means that they are of unit norm and that vTi vj = 0,
i 6= j. We use a particular form of the Gram-Schmidt algorithm. Because the matrix A is sym-
metric, it is enough to orthogonalize against the two previous vectors vk and vk−1 to construct
the next basis vector vk+1. A code implementing the Lanczos algorithm is the following.

function [V,T] = Lanczos(A,u,nitmax)
v = u / norm(u);
T = sparse(nitmax+1,nitmax+1);
V = zeros(n,nitmax+2);
V(:,1) = v;
v1 = v;
u = A * v;
alpha = v' * u;
T(1,1) = alpha;
r = u - alpha * v;
beta = norm(r);
v = r / beta;
V(:,2) = v;

for k = 2:nitmax+1
T(k,k-1) = beta;
T(k-1,k) = beta;
u = A * v - beta * v1;
alpha = v' * u;
T(k,k) = alpha;
r = u - alpha * v;
beta = norm(r);
v1 = v;
v = r / beta;
V(:,k+1) = v;
end % for k

In this code we have used the so-called modified Gram-Schmidt (MGS) form of the algorithm
for the orthogonalization. This algorithm generates basis vectors which are the columns of V and
a tridiagonal matrix T . The basis vectors vj satisfy the relation

AVk = VkTk + βk+1vk+1e
T
k (5.7)

where ek is the last column of the identity matrix of order k, Vk = [v1, · · · , vk] and Tk is the
k× k symmetric tridiagonal matrix constructed with the recurrence coefficients computed in the
algorithm,

Tk =


α1 β2

β2
. . . . . .
. . . . . . βk

βk αk

 .
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The coefficients βj being positive, Tk is often called a Jacobi matrix. WhenA is positive definite,
the matrix Tk is positive definite as well.

The Lanczos algorithm is usually used to compute approximations of the eigenvalues of A.
The approximations at iteration k (the so-called Ritz values) are the eigenvalues of the matrix Tk.
The basis vectors can also be used to solve linear systems. Given an initial vector x0, the approx-
imate solution of a linear system Ax = b is sought as

xk = x0 + Vkyk, k = 1, 2, . . . , (5.8)

by choosing u = r0 and asking the residual vector

rk = b−Axk = b−A(x0 + Vkyk) = r0 −AVkyk

to be orthogonal to Vk. The orthogonality property of the basis vectors leads to

Tk yk = ‖r0‖e1 , (5.9)

that is, the coordinate vector yk is the solution of a linear system with the tridiagonal matrix Tk.
Mathematically, this gives rm+1 = 0.

When A is positive definite, CG is obtained by using a Cholesky-like factorization of the
tridiagonal matrix

Tk = LkDkL
T
k (5.10)

with

Lk ≡


1
√
δ1

. . .

. . . . . .√
δk−1 1

 , Dk ≡


γ−1

0

. . .
. . .

γ−1
k−1

 , (5.11)

where the δj’s and γj’s are the coefficients computed in the standard form of CG derived in the
previous section. A detailed derivation is given in [816].

The relation of CG with the Lanczos algorithm shows that the recurrence coefficients of both
methods are linked through

βk+1 =

√
δk

γk−1
, αk =

1

γk−1
+
δk−1

γk−2
, δ0 = 0, γ−1 = 1. (5.12)

Moreover, the CG residual vectors rk are proportional to the Lanczos basis vectors vk+1 and
hence mutually orthogonal,

vj+1 = (−1)j
rj
‖rj‖

, j = 0, . . . , k.

As we already know, the residual vectors rj yield an orthogonal basis of the Krylov subspaces
Kk+1(A, r0).

5.3 CG as an orthogonalization and acceleration algorithm
In Chapter 4 we study how to accelerate a basic linear iterative method. Let us start from a slight
generalization of Richardson’s method

Mxk+1 = Mxk + α(b−Axk),
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where M is a nonsingular preconditioning matrix. The standard Richardson’s method corre-
sponds to M = I . A formal generalization of the acceleration method is to allow the parameters
to vary with the iteration number,

xk+1 = ωk+1(αkzk + xk − xk−1) + xk−1,

Mzk = rk. (5.13)

Let A and M be SPD. We would like to choose ωk+1 and αk to obtain a converging sequence.
Let us first compute ωk+1, αk, k = 0, 1, . . . such that the generalized residuals zk are mutually
orthogonal for the dot product defined by the SPD matrix M .

Lemma 5.3. Let M be symmetric positive definite and zk, k = 0, 1, . . . , n be a sequence in �n

such that
zTi Mzj = 0, i 6= j. (5.14)

Then, zn = 0.

Proof. The proof is straightforward. Since the vectors zk, k = 0, 1, . . . , n− 1 are orthogonal
in the dot product defined by M , they give a basis of the whole space. Therefore,

zn =

n−1∑
j=0

ηjzj , zTnMzn =

n−1∑
j=0

ηjz
T
j Mzn = 0.

Since M is SPD, this implies that zn = 0.
Let us now show by induction that we can construct ωk and αk to satisfy (5.14). Assume

zTi Mzj = 0, i 6= j, 0 ≤ i, j ≤ k.

From (5.13) it is easy to see that

rk+1 = rk−1 − ωk+1(αkAzk − rk + rk−1). (5.15)

This can be written as

Mzk+1 = Mzk−1 − ωk+1(αkAzk −Mzk +Mzk−1). (5.16)

Lemma 5.4. If αk is chosen as

αk =
zTkMzk
zTk Azk

,

then, zTkMzk+1 = 0.

Proof. Multiplying relation (5.16) by zk, we have,

zTkMzk+1 = zTkMzk−1 − ωk+1[αk z
T
k Azk − zTkMzk + zTkMzk−1].

But, by the induction hypothesis zTkMzk−1 = 0, and

zTkMzk+1 = −ωk+1[αk z
T
k Azk − zTkMzk],

which gives the result if ωk+1 6= 0.
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Lemma 5.5. If ωk+1 is chosen as

ωk+1 =
1

1 + αk
zT
k−1

Azk

zT
k−1

Mzk−1

, (5.17)

then, zTk−1Mzk+1 = 0.

Proof. We multiply relation (5.16) by zk−1. Then

zTk−1Mzk+1 = zTk−1Mzk−1 − ωk+1

[
αk z

T
k−1Azk − zTk−1Mzk + zTk−1Mzk−1

]
.

Therefore,

ωk+1 =
zTk−1Mzk−1

αkzTk−1Azk + zTk−1Mzk−1
.

Note that if zk 6= 0, then zTk Azk 6= 0, so αk can always be computed. For ωk+1 defined
by (5.17), this is not so obvious yet. So far we have not used the hypothesis that A and M are
symmetric to compute the coefficients. Let us now give a cheaper computational expression for
ωk+1. We split A as A = M −N , and

zTk−1Azk = zTk−1(M −N)zk,

= −zTk−1Nzk.

By writing relation (5.16) at iteration k,

Mzk = Mzk−2 − ωk(αk−1(M −N)zk−1 −Mzk−1 +Mzk−2).

Multiplying by zk and using the induction hypothesis, we obtain

zTkMzk = ωkαk−1 z
T
k Nzk−1.

But, N is a symmetric matrix so,

zTk−1Nzk =
zTkMzk
ωkαk−1

.

Therefore,

ωk+1 =
1

1− αk zTkMzk
ωkαk−1 zTk−1

Mzk−1

. (5.18)

Formula (5.18) is more efficient than (5.17) since we do not have to compute the additional dot
product zTk−1Azk. Since the method (5.13) involves two levels of iterations, we need x0 and x−1

to start with. This is overcome by taking ω1 = 1, then

x1 = α0z0 + x0,

Mz0 = r0,

and we need only to define x0. The first step is only a steepest descent iteration. We must now
show that the induction hypothesis about orthogonality holds at level k+1, that is, the new vector
is orthogonal not only to the last two, but to all the previous ones.
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Theorem 5.6. The induction hypothesis holds at iteration k + 1,

zTk+1Mzj = 0, 0 ≤ j < k − 1.

Proof. Multiplying relation (5.16) by zj , 0 ≤ j < k − 1, we have,

zTj Mzk+1 = zTj Mzk−1 − ωk+1[αk z
T
j (M −N)zk − zTj Mzk + zTj Mzk−1].

But, since j < k − 1,
zTj Mzk+1 = ωk+1 αk z

T
j Nzk.

Writing relation (5.16) at iteration j + 1, we obtain

Mzj+1 = Mzj−1 − ωj+1 (αj(M −N)zj −Mzj +Mzj−1).

Multiplying by zk and observing that j + 1 < k,

ωj+1 αjz
T
k Nzj = 0.

This is where we need the hypothesis that N is symmetric to imply (Nzk)T zj = 0. It shows that
zTj Mzk+1 = 0 for all j such that j < k − 1.

This method is the three-term recurrence variant of the PCG method. The computational
steps in PCG are,

Mzk = rk (= b−Axk),

αk =
zTkMzk
zTk Azk

,

ωk+1 =
1

1− αk
ωkαk−1

zT
k
Mzk

zT
k−1

Mzk−1

, ω1 = 1, (5.19)

xk+1 = xk−1 + ωk+1 (αkzk + xk − xk−1).

The residual rk+1 is usually computed by relation (5.15) and not as b − Axk to save a matrix-
vector product.

The two variants of PCG are mathematically equivalent. This is obvious for k = 0. For
k > 0 we can eliminate pk as

pk =
1

γk
(xk+1 − xk).

Therefore,
1

γk
(xk+1 − xk) = zk +

δk
γk−1

(xk − xk−1).

A short manipulation gives

xk+1 = xk−1 + γkzk +

(
1 +

γkδk
γk−1

)
(xk − xk−1).

We can identify the two expressions for xk+1,

ωk+1 = 1 +
γkδk
γk−1

,

αk =
γk

1 + γkδk
γk−1

.

Since γk > 0 and δk > 0, this expression for ωk+1 shows that ωk+1 > 1 and it is always well
defined.
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5.4 The convergence of CG
So far, we have just seen that the two variants of (P)CG must give rj = 0 for some j ≤ n.
However, the A-norm of the error is decreasing and we would like to use CG as an iterative
method. It is straightforward to see that in both variants of PCG we have

xk+1 = x0 + Pk(K)z0, K = M−1A, (5.20)

where Pk is a polynomial of degree k satisfying a three-term recurrence relation. Moreover,

zk+1 = [I −KPk(K)]z0.

The matrix K is nonsymmetric, but it is similar to a symmetric matrix K̄ = M
1
2KM−

1
2 , and its

eigenvalues λi are real and positive. The matrix K̄ has a spectral factorization K̄ = UΛUT with
UTU = I and Λ diagonal.

Let the error be εk = xe − xk. Since Kεk = zk, we have

εk = [I −KPk(K)]ε0.

We denote the square of the A-norm of the error as εk = (xe − xk)TA(xe − xk).

Theorem 5.7.

εk =

n∑
i=1

(1− λiPk(λi))[ε̄0]2i ,

where ε̄j = Λ
1
2UTM

1
2 εj .

Proof. Clearly,
Pk(K) = M−

1
2Pk(K̄)M

1
2 .

Therefore,
εk+1 = M−

1
2 [I − K̄Pk(K̄)]M

1
2 ε0.

Since Pk(K̄) = UPk(Λ)UT ,

εk+1 = M−
1
2UΛ−

1
2 [I − ΛPk(Λ)]Λ

1
2UTM

1
2 ε0.

With our notation, this is simply

ε̄k+1 = [I − ΛPk(Λ)]ε̄0.

Let us compute ε̄Tk+1ε̄
k+1. By definition

ε̄Tk+1ε̄k+1 = [Λ
1
2UTM

1
2 εk+1]TΛ

1
2UTM

1
2 εk+1,

= [M
1
2 K̄M

1
2 εk+1]T εk+1,

= εTk+1Aεk+1.

Therefore,
εk+1 = [(I − ΛPk(Λ))ε̄0]T (I − ΛPk(Λ))ε̄0).

From Theorem 5.7 we learn that the A-norm of the error depends on the distribution of the
eigenvalues of K = M−1A. We can be more precise by using the spectral factorization of
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K̄ = UΛUT , where Λ is the diagonal matrix of the eigenvalues λi of K̄ (which are the same as
those of K). Let

ωi =
(r0, ui)

2

‖r0‖2
, i = 1, . . . , n. (5.21)

For any set Ik of k ordered indices 1 ≤ i1 < · · · < ik ≤ n, we define the quantities

ΘΛ(I1) ≡ 1, ΘΛ(Ik) ≡
∏
i` < ij

i`, ij ∈ Ik

|λij − λi` |2, for k > 1. (5.22)

The following theorem shows that εk can be expressed explicitly in terms of the matrix eigenval-
ues and scaled and squared projections ωi.

Theorem 5.8.

εk = ‖r0‖2
∑
Ik+1

[∏k+1
j=1

ωij
λij

]
ΘΛ(Ik+1)∑

Ik

[∏k
j=1 ωijλij

]
ΘΛ(Ik)

, k = 1, . . . , n− 1, (5.23)

where Ik is a set of k ordered indices 1 ≤ i1 < · · · < ik ≤ n, ωi is defined by (5.21), and
ΘΛ(Ik) is defined by (5.22).

Proof. The proof uses the relationship of the A-norm of the CG error and MINRES residual
norm that we will study in a following section. We see that εk also depends on the mutual
distances of the eigenvalues.

From Theorem 5.7 we can also obtain bounds for the A-norm of the error.

Theorem 5.9.
εk+1 ≤ max

1≤i≤n
(Rk+1(λi))

2ε0, (5.24)

for all polynomials Rk+1 of degree k + 1 such that Rk+1(0) = 1

Proof. The PCG polynomial Pk minimizes εk+1. Therefore, replacing the polynomial Pk by
any other kth degree polynomial, we obtain a larger value. This can be written as

εk+1 ≤
n∑
i=1

(Rk+1(λi))
2[ε̄0]2i ,

for all polynomials Rk+1 of degree k + 1, such that Rk+1(0) = 1, equality holding only if
Rk+1(λ) = 1− λPk(λ). Therefore,

εk+1 ≤ max
1≤i≤n

(Rk+1(λi))
2

n∑
i=1

[ε̄0]2i .

But, we have ‖ε̄0‖2 = ‖ε0‖2A, which proves the result.

Several mathematical results can be obtained by choosing different polynomials in inequal-
ity (5.24).

Theorem 5.10.
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1) εn = 0,

2) If K has only p distinct eigenvalues, εp = 0,

3) εk ≤ 4
(√

κ−1√
κ+1

)2k

ε0, where κ is the condition number of K = M−1A.

Proof. The first item is the finite termination property that we have already seen. In fact, it
happens for some m ≤ n. To prove it again, we choose

Rk(λ) =

k∏
i=1

(
1− λ

λi

)
.

Hence, Rn(λi) = 0, ∀i, 1 ≤ i ≤ n, and εn = 0. To prove assertion 2), we simply take into
account the distinct eigenvalues in Rk and the result follows.

To prove assertion 3), we first observe that max1≤i≤n(Rk(λi))
2 is bounded by

max
λmin≤λ≤λmax

(Rk(λ))2.

For Rk we choose the kth degree polynomial such that Rk(0) = 1, which minimizes that bound.
The solution of this problem was given in Chapter 1,

Rk(λ) =
Ck(λmin+λmax−2λ

λmax−λmin
)

Ck(λmin+λmax

λmax−λmin
)
.

where Ck are the Chebyshev polynomials. Then,

max
λmin≤λ≤λmax

|Rk(λ)| ≤ 2

(√
κ− 1√
κ+ 1

)k
.

This proves the result.
Assertion 3) is the most well known bound on the A-norm of the error. This upper bound

is generally a large overestimate of the A-norm of the error and its only interest is to show that,
mathematically, the A-norm is bounded above by a sequence decreasing to zero when k goes to
infinity. Note that if

√
κ(K) is large, the ratio within parenthesis is close to 1, and the bound is

useless.
Particular distributions of eigenvalues have been studied to improve the upper bound in 3).

The following result was proved by O. Axelsson [57, 69].

Proposition 5.11. Assume that

α ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−m ≤ β ≤ λn−m+1 ≤ · · · ≤ λn,

and let k ≥ m. Then,

εk ≤ 4


√

β
α − 1√
β
α + 1

2(k−m)

ε0.

Proof. In (5.24), we choose

Rk(λ) =

m∏
i=1

(
1− λ

λn−i+1

) Ck−m

(
α+β−2λ
β−α

)
)

Ck−m

(
α+β
β−α

) .
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Because of the first term on the right, Rk(λi) = 0 for all λi, i = n, n−1, . . . , n−m+1. Hence,

max
i

(Rk(λi))
2 = max

i=1,...,n−m
(Rk(λi))

2 ≤ max
α≤λ≤β

(Rk(λ))2.

When λ ∈ [α, β], ∣∣∣∣1− λ

λn−i+1

∣∣∣∣ < 1, ∀i = 1, . . .m.

Therefore,

max
α≤λ≤β

(Rk(λ))2 ≤ max
α≤λ≤β

∣∣∣∣∣∣
Ck−m

(
α+β−2λ
β−α

)
Ck−m

(
α+β
β−α

)
∣∣∣∣∣∣ ,

and the result follows.
This result is of interest when a few of the largest eigenvalues are well separated from the

others. In this case, m is small, and we do not lose too much in the exponent. Moreover, βα can
be much less than κ = λn

λ1
. The ratio β

α can be seen as an effective condition number.
H. van der Vorst and A. van der Sluis [1085] studied the case of the smallest eigenvalues.

They proved the following result. Let us first assume that we have only one isolated eigenvalue.

Theorem 5.12. Assume that 0 < λ1 < α ≤ λ2 ≤ · · · ≤ λn ≤ β, and let ` be an integer ` ≤ k
which will be chosen later on. Then,

εk ≤ 4

[
1

C`(
χ
ξ )

]2

√

β
α − 1√
β
α + 1

2(k−`)

ε0,

with
χ = β − ξ, ξ =

β − λ1

1 + cos( π2` )
.

Proof. We look for a polynomial Q` of degree ` with λ1 as a root, with Q`(0) = 1, and
whose maximum over [λ1, β] is small. The solution is given by

Q`(λ) =
C`(

χ−λ
ξ )

C`(
χ
ξ )

,

with χ = β − ξ and ξ = β−λ1

1+cos( π2` ) . Since

χ =
β cos( π2` ) + λ1

1 + cos( π2` )
,

χ− λ
ξ

=
cos( π2` )(β − λ) + λ1 − λ

β − λ1
,

we have

Q`(λ1) =
C`
(
cos( π2` )

)
C`(

χ
ξ )

= 0.

The choice for Rk is

Rk(λ) = Q`(λ)
Ck−`

(
α+β−2λ
β−α

)
Ck−`

(
α+β
β−α

) .
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We are interested in maxi(Rk(λi))
2. Clearly Rk(λ1) = 0, and

max
i

(Rk(λi))
2 ≤ max

λ∈[λ1,β]
(Q`(λ))2


√

β
α − 1√
β
α + 1

2(k−`)

.

But,

max
λ∈[λ1,β]

|Q`(λ)| ≤ 1

C`(
β
α )
.

To see if there is an improvement, we need a bound on 1
C`(

χ
ξ )

. Let us assume that λ1 is much

smaller than β (α� β).

Proposition 5.13. When λ1 � β, 1
C`(

χ
ξ )

is of the order of ( βλ1
) 1
` .

Proof. Let ρ = χ
ξ =

cos θ+
λ1
β

1−λ1β
where θ = π

2` . Then, with our hypothesis,

ρ =
λ1

β
+

(
1 +

λ1

β

)
cos θ +O

((
λ1

β

)2
)

= cos θ +O

(
λ1

β

)
.

It yields,

C`(ρ) = C`(cos θ) + (ρ− cos θ)C ′`(cos θ) +O

((
λ1

β

)2
)
.

But,

ρ− cos θ =
λ1

β
(1 + cos θ) +O

((
λ1

β

)2
)
,

and C`(cos θ) = 0. From the properties of the Chebyshev polynomials, one can check that,

(1− cos2 θ)C ′`(cos θ) = `C`−1(cos θ),

C ′`(cos θ) =
`C`−1(cos θ)

sin2 θ
,

and

C`(ρ) =
λ1

β

1 + cos θ

sin2 θ
`C`−1(cos θ) +O

((
λ1

β

)2
)
.

But,

C`−1(cos θ) = cos((`− 1) arccos(cos θ) = cos((`− 1)θ),

= cos

(
`− 1

`

π

2

)
= sin

( π
2`

)
= sin θ.

Hence,

C`(ρ) =
λ1

β

1 + cos θ

sin θ
`+O

((
λ1

β

)2
)
.
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Since 0 ≤ sin θ
1+cos θ ≤ 1, we have the bound

εk ≤ 4

[(
β

λ1

)2
1

`2
+O

((
λ1

β

)2
)]

√
β
α − 1√
β
α + 1

2(k−`)

ε0.

This gives us an idea of what the bound looks like when the condition number β
λ1

is large. If we

allow ` to be a real number, the value of ` that minimizes the upper bound is 1
2

√
β
α when β � α.

This suggests we can take ` as the closest integer to 1
2

√
β
α . With this value, the upper bound is

almost

16
αβ

λ2
1


√

β
α − 1√
β
α + 1

2(k−`)

ε0.

The ratio α
λ1

is not necessarily very large. The important thing to observe is that the convergence
rate depends on the separation of the two first eigenvalues. This result can be generalized to the
p smallest eigenvalues. The following theorem is due to H. van der Vorst.

Theorem 5.14. Let

0 < λ1 < λ2 < · · · < λp ≤ α ≤ λp+1 ≤ · · · ≤ λn ≤ β

and let `j be integers such that ` =
∑p
j=1 `j ≤ k. Then,

εk ≤ 4

(
1∏p

j=1 C`j (ρj)

)2

√

β
α − 1√
β
α + 1

2(k−`)

ε0,

where,

ρj =
β cos π

2`j
+ λj

β − λj
.

A detailed study of the case of isolated eigenvalues has also been done by O. Axelsson and
G. Lindskog [69]. However, what we have described above are mathematical results. All these
papers assumed exact arithmetic and it was not obvious that the bounds they obtained are still
valid in finite precision arithmetic. These issues were discussed in a paper by T. Gergelits and
Z. Strakoš [520] in 2014. Their statement is

We conclude and numerically demonstrate that in the presence of large outlying
eigenvalues such bounds have, apart from simple exceptions, little in common with
the finite precision behaviour of the CG method.

We will see how to compute accurate error bounds during the CG iterations in Section 5.6.

5.5 CG in finite precision arithmetic
In this section we assume M = I , but the results also apply to PCG. It has been known almost
since the introduction of the Lanczos and CG algorithms in the 1950s that, in finite precision
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arithmetic, these algorithms do not satisfy all of their mathematical properties. In particular, there
are many cases in which the Lanczos basis vectors and the CG residual vectors lose orthogonality
and even linear independence.

The first significant results for explaining the behavior of the Lanczos algorithm for com-
puting eigenvalues in finite precision arithmetic were obtained by C.C. Paige in his Ph.D. the-
sis [889] in 1971. He improved and extended his results in subsequent papers in journals
[890, 891, 892, 894, 895]. He proved the important result that loss of orthogonality has a close re-
lationship with convergence of Ritz values to the eigenvalues of A, and that the Lanczos method
can be used efficiently, even in finite precision arithmetic, eventually doing a number of iterations
larger than the order of the matrix. For a summary of some of these results, see [816, 825]. The
finite precision Lanczos algorithm was also studied by H.D. Simon [1006, 1008, 1007].

Since CG is a nonlinear algorithm (because of the dot products), it is not easy to analyze its
finite precision behaviour. Numerically, the CG iterates satisfy

xk+1 = xk + γkpk + gxk ,

rk+1 = rk − γkApk + grk, (5.25)
pk+1 = rk+1 + δk+1pk + gpk,

where xk, rk, and pk are the computed vectors and the perturbation terms gxk , grk, and gpk account
for local rounding errors. In finite precision arithmetic, the coefficients γk and δk+1 are not
computed exactly. One can either consider rounding errors in computing the coefficients like in
[1052], or, to incorporate the corresponding rounding errors into the perturbation terms, and as-
sume that the coefficients are computed exactly, see [816]. Let us consider the local orthogonality
properties. The local error terms can be bounded as

‖grk‖ ≤ u‖rk‖
[
1 + κ̄(A)

‖rk‖
‖pk‖

{m+ 2 + (m+ n)κ̄(A) + n+ 1}
]

+O(u2),

‖gpk‖ ≤ u‖rk+1‖
[
1 + (3 + 2n)

‖pk‖
‖rk‖2

‖rk+1‖
]

+O(u2),

with κ̄(A) = ‖ |A| ‖/λ1, λ1 being the smallest eigenvalue of A, n is the order of A, m is the
maximum number of nonzero entries in rows of A and u is the unit roundoff. These inequalities
can be written as

‖grk‖ ≤ u‖rk‖ (1 + Crk) +O(u2),

‖gpk‖ ≤ u‖rk+1‖ (1 + Cpk) +O(u2).

The positive coefficients Crk and Cpk are bounded because the ratios ‖rk‖/‖pk‖, ‖pk‖/‖rk‖, and
‖rk+1‖/‖rk‖ are bounded. It can be shown that, even though rk may not be exactly orthogonal
to rk−1, we have

|(rk, rk−1)| ≤ κ(A)
‖rk−1‖
‖pk−1‖

[
CAk−1u

‖rk−1‖
‖pk−1‖

‖rk−1‖2

‖rk−2‖2
+ ‖rk−1‖ ‖gpk−2‖

]
(5.26)

+ ‖grk−1‖ ‖rk−1‖,

where κ(A) is the condition number of A and CAk−1 is a constant involved in the bound

|(Apk−2, pk−1)| ≤ λnCAk−1u,

where λn is the largest eigenvalue of A.
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The two terms within brackets and the last one in the right-hand side of inequality (5.26) are
small provided that the ratios are bounded and κ(A) is not too large. Local orthogonality is, in
general, well satisfied, but global orthogonality can be lost, sometimes even after a small number
of iterations. This depends on the distribution of the eigenvalues of A and on the convergence of
the Ritz values.

On the foundations provided by C.C. Paige for the Lanczos method for computing eigenval-
ues, an explanation of the behavior of Lanczos and CG algorithms in finite precision arithmetic
was given by A. Greenbaum [560, 561, 562, 564], starting in 1981, see also A. Greenbaum and
Z. Strakoš [571]. She showed that the tridiagonal matrix Tk generated at a given iteration k of a
perturbed Lanczos recurrence is the same as the one generated by an exact Lanczos recurrence
applied to a matrix of larger dimension than A, whose eigenvalues all lie within tiny intervals
about the eigenvalues of A, and some special starting vector. These matrix and vector depend on
the iteration number k. An analogous statement is valid, within a small inaccuracy, also for the
behaviour of finite precision CG. This can be considered as a backward error analysis in a sense
different from the usual one, but this is too technical to be reported here.

A. Greenbaum and Z. Strakoš [571, 1051] demonstrated numerically that the behaviour of
CG in finite precision arithmetic is very similar to that of the exact algorithm applied to any
matrix, say, Ã, which has many eigenvalues spread in tiny intervals about the eigenvalues of A.
Note that this is slightly different from Greenbaum’s previous results where the matrix depended
on the iteration number k. Thus, in practice, CG convergence can be understood by considering
the behavior of the exact algorithm applied to such matrices. The size of the intervals is a modest
multiple of the unit roundoff. However, as far as we know, this result has not been theoretically
proved.

It is well known that, in finite precision arithmetic, the true residual b−Axk may differ from
the recursively updated residual rk,

rk = b−Axk − fk.

The residual gap fk was studied by A. Greenbaum in [564] where bounds can be found. In prac-
tice, the two residuals are quite close until the maximum attainable accuracy is reached. Then,
the true residual norm stagnates whence the norm of the residual computed with the recurrence
continues to decrease.

Using results from Greenbaum, Y. Notay investigated rounding error effects on the conver-
gence of CG [859] in 1993. He analysed theoretically and experimentally how finite precision
arithmetic affects known bounds on iteration numbers when the spectrum of the system matrix
has small or large isolated eigenvalues.

In [893] and in [900] with W. Wülling, C.C. Paige studied the vectors obtained from an
orthonormalization process in finite precision arithmetic. Let vj , j = 1, . . . , k + 1 be vectors of
unit norm and Vj = ( v1, . . . , vj ). Paige introduced a strictly upper triangular matrix Sk,

Sk = (I + Uk)−1Uk = Uk(I + Uk)−1,

where Uk is the strictly upper triangular part of V ∗k Vk = I + Uk + U∗k . This matrix Sk has
interesting properties,

UkSk = SkUk, Uk = (I − Sk)−1Sk = Sk(I − Sk)−1, (I − Sk)−1 = I + Uk.

Moreover, ‖Sk‖ ≤ 1, and V ∗k Vk = I if and only if ‖Sk‖ = 0. The matrix V ∗k Vk is singular if
and only if ‖Sk‖ = 1. So, Sk is an indicator of the loss of orthogonality. Moreover, Sk is the
unique strictly upper triangular matrix of order k such that

Q(k) =

(
Q

(k)
1,1 Q

(k)
1,2

Q
(k)
2,1 Q

(k)
2,2

)
=

(
Sk (I − Sk)V ∗k

Vk(I − Sk) I − Vk(I − Sk)V ∗k

)
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is a unitary matrix of order k+n. Note that in the definition of Q(k) the identity matrices are not
all the same order. Then, in [894, 895], Paige applied this result to the suppposedly orthogonal
basis vectors computed in the Lanczos algorithm. He showed that the tridiagonal matrix Tk
computed by the Lanczos process in finite precision arithmetic can be viewed as the result of a
unitary similarity transformation applied to a slightly perturbed, higher dimensional matrix Ak.
If the columns of Vk+1 are the computed Lanczos basis vectors normalized to have unit norm,
then

[Q(k)]∗AkQ(k)
k =

(
Tk βkekv

∗
k+1

βkvk+1e
T
k Ak

)
where Q(k)

k was defined above, Ak = A− βkvk+1v
∗
k − βkvkv∗k+1, and

Ak =

(
Tk 0
0 A

)
+H(k), ‖H(k)‖ ≤ O(u)‖A‖,

u being the unit roundoff. From [895] we also have[(
Tk 0
0 A

)
+H(k)

](
Sk

Vk(I − Sk)

)
=

(
Sk

Vk(I − Sk)

)
Tk + βk

(
sk+1

vk+1 − Vksk+1

)
eTk ,

where sk+1 = (I − Sk)V ∗k vk+1. This relation appears as to be the exact result of k iterations of
an exact Lanczos process with exact orthogonality arising from the Hermitian matrix Ak. This
can be seen as a strange backward stability result. It is different from Greenbaum’s results, but
we observe that in both approaches the extended matrix to be considered at iteration k depends
on k. Paige’s conclusion for the eigenproblem [895] was that

every converged eigenvalue of Tk is essentially an eigenvalue of A, and eigenvalues
of the developing Tk never lose their level of convergence. Because this is true for
all k, it shows that the Lanczos process is always on track for the eigenproblem, the
accuracy of approximation to eigenvalues of A is only limited by the slowly growing
size of the backward error H(k).

In practice, it turns out that the Frobenius norm of Q(k)
2,2 is decreasing as a function of k and

converging to zero (sometimes very slowly). Using the Lanczos basis vectors to solve a linear
system was analyzed in [895] when Q(k)

2,2 = 0.

5.6 CG error estimates
In this section we show how one can compute estimates or even bounds of the A-norm of the
error during the CG iterations. We first consider obtaining a lower bound of the error A-norm.
The formula in the following theorem appeared in [304] and was proved in [546].

Theorem 5.15. The square of the A-norm of the error in CG is given by

εk = ‖r0‖2
(
[T−1
m ]1,1 − [T−1

k ]1,1
)
, (5.27)

k = 0, 1, . . . ,m − 1, where m is the grade of r0 with respect to A, and Tk is the tridiagonal
matrix of the Lanczos algorithm.

Proof. Using

x− xk = ‖r0‖Vm
(
T−1
m e1 −

(
T−1
k e1

0

))
,
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AVm = VmTm, and the global orthogonality of the Lanczos vectors we obtain

εk = ‖r0‖2
(
T−1
m e1 −

(
T−1
k e1

0

))T
Tm

(
T−1
m e1 −

(
T−1
k e1

0

))
,

= ‖r0‖2
[
eT1 T

−1
m e1 − 2eT1

(
T−1
k e1

0

)
+

(
T−1
k e1

0

)T
Tm

(
T−1
k e1

0

)]
= ‖r0‖2

[
eT1 T

−1
m e1 − 2eT1 T

−1
k e1 + eT1 T

−1
k e1

]
,

where e1 is the first unit vector of length m and e1 is of length k.

Theorem 5.16. For k ≤ m, the squared A-norm of the error satisfies

εk−1 − εk = ∆k−1, ∆k−1 = γk−1‖rk−1‖2. (5.28)

Proof. From the definition of the A-norm, we obtain

εk−1 = ‖xk − xk−1‖2A + 2(x− xk)TA(xk − xk−1) + εk.

The error and residual vectors are linked through A(x − xk) = rk, and using xk − xk−1 =
γk−1pk−1 we get

εk−1 − εk = γ2
k−1p

T
k−1Apk−1 + 2γk−1r

T
k pk−1 = γk−1‖rk−1‖2,

where, in the last equation, we have used the definition of γk−1 and the local orthogonality
between two consecutive vectors rk and pk−1.

From Theorem 5.16, and for 0 ≤ ` < k ≤ m it holds that

ε` − εk = ∆`:k−1, ∆`:k−1 =

k−1∑
j=`

γj‖rj‖2 . (5.29)

At CG iteration k, the sum ∆`:k−1 on the right-hand side of (5.29) is a lower bound on ε`, that
is, the square of the A-norm of the error at iteration `. This bound is sharp if εk � ε`, that is, if
CG converges fast enough. At iteration k the lower bound improves when we increase the delay
d = k − `, but the iteration number ` = k − d at which we obtain the bound decreases.

Since, mathematically, εm = 0 we obtain an expression for εk as a function of the residual
norms,

εk = ∆k:m−1 =

m−1∑
j=k

γj‖rj‖2 . (5.30)

Unfortunately, at iteration k, most of these residual norms are not known yet. This is why we
have to look backwards.

In [629], M.R. Hestenes and E. Stiefel studied the relations of CG with the theory of orthog-
onal polynomials and continued fractions. They showed that CG implicitly computes orthogonal
polynomials corresponding to a dot product defined by a Riemann-Stieltjes integral for a piece-
wise constant measure. Let the spectral factorization of the matrix A be A = UΛUT . For
simplicity, we assume that the eigenvalues of A are distinct and ordered as λ1 < λ2 < . . . < λn.
Let w be a given vector of unit norm. We define ωi as

ωi ≡ (w, ui)
2 so that

n∑
i=1

ωi = 1 , (5.31)
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and the (nondecreasing) distribution function ω(λ) with a finite number of points of increase
λ1, λ2, . . . , λn as

ω(λ) ≡


0 for λ < λ1 ,∑i

j=1 ωj for λi ≤ λ < λi+1 , 1 ≤ i ≤ n− 1 ,

1 for λn ≤ λ .
(5.32)

Then, ωi is the jump at the point of increase λi, see Figure 5.1. Let us assume that ωi 6= 0,

0

1

ω1

ω2

ω3

ω4

ωn

α λ1λ2 λ3
. . . . . . λn β

Figure 5.1. Distribution function ω(λ)

i = 1, . . . , n. With the distribution function ω(λ) and an interval [α, β] such that α < λ1 <
λ2 < . . . < λn ≤ β, we can define the Riemann-Stieltjes integral,∫ β

α

f(λ) dω(λ), (5.33)

for any continuous function f . Since ω(λ) is a piecewise constant function, the integral (5.33)
can be written as a finite sum and∫ β

α

f(λ) dω(λ) =

n∑
i=1

ωif(λi) = wT f(A)w. (5.34)

Choosing f(λ) = 1/λ, the quadratic form wTA−1w can be written as a Riemann-Stieltjes in-
tegral. If w = v1 = r0/‖r0‖, the jumps ωi defining the distribution function ω(λ) which
corresponds to the Lanczos and CG algorithms are given by

ωi = (v1, ui)
2 =

(r0, ui)
2

‖r0‖2
, i = 1, . . . , n.

The Lanczos basis vectors can be written as polynomials in A applied to the initial vector v1.
These polynomials Pk satisfy a three-term recurrence and are orthogonal with respect to the dot
product defined by the distribution function ω(λ),∫ β

α

Pi(λ)Pj(λ) dω(λ) = 0, i 6= j.

Since the CG residual vectors are proportional to the Lanczos basis vectors, we obtain a similar
result for the residuals.
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There is also a relation to Gauss quadrature. Using the Jacobi matrices Tk generated by the
Lanczos process (and implicitly by CG), a Gauss quadrature rule can be written in the form

[f(Tn)]1,1 = [f(Tk)]1,1 +R(G)
k [f ] (5.35)

where the Riemann-Stieltjes integral is given by∫ β

α

f(λ) dω(λ) = [f(Tn)]1,1 , (5.36)

the quantity [f(Tk)]1,1 is the Gauss quadrature approximation to the integral, andR(G)
k [f ] is the

reminder, see [543]. Using the relation (5.27) we obtain[
T−1
n

]
1,1

=
[
T−1
k

]
1,1

+
εk
‖r0‖2

. (5.37)

which corresponds to a Gauss quadrature rule for f(λ) = λ−1 with the remainder

R(G)
k

[
λ−1

]
=

εk
‖r0‖2

.

The reminder is nothing other than the scaled and squaredA-norm of the error at iteration k. The
Gauss quadrature rule (5.37), multiplied by ‖r0‖2, can be written using CG quantities, and the
Gauss quadrature approximation is given by(

T−1
k

)
1,1

=
∆0:k−1

‖r0‖2
.

The nodes of the Gauss quadrature rule are the eigenvalues of Tk and the weights are given by
the squared first components of the normalized eigenvectors of Tk, see [543].

It was shown in [1052] that the lower bound given by the Gauss rule can also be used safely
in finite precision arithmetic since the relation (5.27) is satisfied with only a small inaccuracy.

Upper bounds for theA-norm of the error can be obtained by using a Gauss-Radau quadrature
rule with a prescribed node µ on the left of the integration interval. This was mainly developed
by G.H. Golub and his collaborators and summarized in the book [543]. To obtain the nodes and
weights we have to modify the tridiagonal matrices such that they have a prescribed eigenvalue
µ. The modified quadrature rule for the function f(λ) = λ−1 can be written as

ε0 = ‖r0‖2
[(
T

(µ)
k+1

)−1
]

1,1

+R(µ)
k [λ−1] (5.38)

with

T
(µ)
k+1 =



α1 β2

β2
. . . . . .
. . . . . . βk−1

βk αk βk+1

βk+1 α
(µ)
k+1

 , (5.39)

where the αj’s and βj’s are the Lanczos coefficients, and α(µ)
k+1 is such that µ is an eigenvalue of

the extended tridiagonal matrix (5.39). Subtracting (5.38) and

ε0 = ‖r0‖2
[
T−1
`

]
1,1

+ ε`
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with ` = k − d, we obtain

ε` = ‖r0‖2
([(

T
(µ)
k+1

)−1
]

1,1

−
[
T−1
`

]
1,1

)
︸ ︷︷ ︸

∆
(µ)

`:k

+R(µ)
k [λ−1].

By adding and subtracting
[
T−1
k

]
1,1

and using (5.29), we get

∆
(µ)
`:k = ∆`:k−1 + ∆

(µ)
k ,

where

∆
(µ)
k = ‖r0‖2

([(
T

(µ)
k+1

)−1
]

1,1

− (T−1
k )1,1

)
. (5.40)

The quantity ∆
(µ)
`:k is an upper bound on ε`. In particular, for k = ` and k < n we obtain

εk < ∆
(µ)
k .

How to compute α(µ)
k+1 and ∆

(µ)
k was described in [542, 810, 812, 543]; see also the forthcom-

ing book [830]. It leads to the CGQL algorithm where the Lanczos coefficients needed in the
formulas where computed at each iteration from the CG coefficients.

Later on, it was realized by G.M. and P. Tichý [826, 827, 828] that the Gauss-Radau upper
bound can be computed directly from the CG coefficients by using a Cholesky factorization of
T

(µ)
k+1. We have

∆
(µ)
k = ‖r0‖2

([(
T

(µ)
k+1

)−1
]

1,1

−
(
T−1
k

)
1,1

)
= γ

(µ)
k ‖rk‖

2,

where γ(µ)
k is computed with the recurrence

γ
(µ)
0 =

1

µ
, γ

(µ)
k =

γ
(µ)
k−1 − γk−1

µ
(
γ

(µ)
k−1 − γk−1

)
+ δk

,

where γk−1 and δk are the CG coefficients. Incorporating the computation of lower and upper
bounds of the A-norm of the error in CG is particularly simple as it is shown in the following
code.

function [x,nit,res,estG,estGRu] = cgq(A,b,x0,nitmax,epss,mu,
delay)

res = zeros(1,nitmax+1);
g = zeros(1,nitmax+1);
g1 = zeros(1,nitmax+1);
estG = zeros(1,nitmax+1); % Gauss lower bound
estGRu = zeros(1,nitmax+1); % Gauss-Radau upper bound
nb = norm(b);
x = x0;
r = b - A * x;
p = r;
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rtr = r' * r;
g1(1) = rtr / mu;
resid = sqrt(rtr);
res(1) = resid;
nit = 0;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
Ap = A * p;
gamma = rtr / (p' * Ap);
x = x + gamma * p;
r = r - gamma * Ap;
rk = r' * r;
resid = sqrt(rk);
res(nit+1) = resid;
delta = rk / rtr;
rtro = rtr;
rtr = rk;
p = r + delta * p;
g(nit) = gamma * rtro;
d1 = g1(nit) - g(nit);
g1(nit+1) = rtr * d1 / (mu * d1 + rtr);
t = sum(g(nit-delay+1:nit));
if nit > delay
estG(nit-delay) = sqrt(t);
estGRu(nit-delay) = sqrt(t + g1(nit+1));
end % if
end % while
res = res(1:nit);
estG = estG(1:nit);
estGRu = estGRu(1:nit);

Heuristic algorithms to adaptively compute an almost optimal value of the delay d were pro-
posed in [824] for the Gauss lower bound and in [829] for the Gauss-Radau upper bound. It must
be noted that these quadrature-based bounds also hold for PCG with only slight modifications.

How to compute estimates or bounds for the `2 norm of the error was considered in [815,
830].

There are other ways to obtain bounds or estimates of the error norms. Anti-Gauss quadra-
ture rules were used by L. Reichel and his co-authors, see [199, 197, 15, 16]. However, these
rules do not always provide bounds, but just estimates. Their interest is that they do not need
approximations of the extreme eigenvalues as in Gauss-Radau rules.

Estimates derived from extrapolation techniques were obtained by C. Brezinski [159]. On
that topic, see also [453, 454].

5.7 Parallel variants of CG
The standard version of CG with three two-term recurrences (HS-CG) is not well suited for
parallel computing. On distributed memory computers there must be a synchronization of all
the processors after almost every step. The only operations that can be done in parallel are the



5.7. Parallel variants of CG 285

updates of the iterate and the residual and maybe some parts of the matrix-vector product. The
computation of the two dot products can be a bottleneck since they require a global reduction
involving communications between all the processing elements.

Some early attempts of introducing more parallelism in CG were [685, 686, 1091, 260, 259,
318]. To reduce the CG data dependencies we may use the following result.

Proposition 5.17. In preconditioned CG, we have

(zk+1, rk+1) = γ2
k(M−1Apk, Apk)− (rk, zk). (5.41)

Proof. We have

zk+1 = zk − γkM−1Apk,

rk+1 = rk − γkApk.

Multiplying these two equalities, we obtain

γ2
k(M−1Apk, Apk) = (zk+1 − zk, rk+1 − rk).

But, we have the orthogonality relation (ri, zj) = 0, i 6= j. Therefore,

γ2
k(M−1Apk, Apk) = (zk+1, rk+1) + (rk, zk).

Proposition 5.17 shows that, mathematically, we can compute (zk+1, rk+1) before computing
rk+1 and zk+1. First, we can compute tk by solving Mtk = Apk, and compute in parallel the
two dot products (tk, Apk), (Apk, pk). Then, we compute γk and use relation (5.41) to obtain
δk+1. Finally, we can compute in parallel xk+1, rk+1, zk+1, and pk+1.

However, this algorithm is unstable since using repeatedly relation (5.41) leads to a difference
with the true value of (zk+1, rk+1). It was proposed in [802] to use relation (5.41) as a predictor
for the value of (zk+1, rk+1), and to compute the true value of this dot product at the beginning
of the next iteration. Therefore, at the beginning of iteration k, we have to compute in parallel
three dot products, (tk, Apk), (Apk, pk), and (zk, rk). The price to pay for stability is one more
dot product per iteration. This method was named predictor-corrector CG in [802].

It was put back to life 35 years later in [247] where a slightly different relation is used for the
predictor, and renamed predict-and-recompute PR-CG. In that paper, a rounding error analysis
explained why this method is working nicely. A “pipelined” variant was also proposed to be
able to compute the matrix-vector product, the action of the preconditioner and dot products
simultaneously. This is done by first writing a recurrence for Apk,

sk = Apk = Azk + δk−1Apk−1,

= wk + δk−1sk−1.

Then, we need a recurrence for wk,

wk = Azk = Azk−1 − γk−1As̃k−1,

= wk−1 − γk−1uk−1,

where s̃k−1 = M−1sk, uk−1 = As̃k−1, and M is the preconditioner. Then, we can write

s̃k = M−1sk = w̃k + δk−1s̃k−1,
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with w̃k = M−1wk which can be computed as

w̃k = w̃k−1 − γk−1ũk−1,

with ũk = M−1uk.
At iteration k we can first compute in parallel xk, rk, zk, wk, and w̃k. Then, we compute the

coefficient δk−1 and, in parallel, pk, sk, s̃k, uk, and ũk from which we can compute the three dot
products (pk, sk), (s̃k, sk), and (zk, rk) which yields the coefficient γk. To obtain stability, we
have to recompute wk = Azk and w̃k = M−1wk for the next iteration.

Recent proposals for parallel CG are [522, 281, 282, 278, 202, 277]. Variants with deep
pipelines were proposed in [278]. Although mathematically equivalent to HS-CG, these algo-
rithms do not recompute any dot products or vectors, and the auxiliary recurrences they use can
cause rounding errors to be amplified. The use of such pipelined CG variants is potentially dan-
gerous because the maximum attainable accuracy may be much worse than for HS-CG, or they
may require a larger number of iterations such that there is no benefit in terms of computing time,
see [207]. On the convergence of variants of CG in finite precision arithmetic, see also [568].

5.8 The conjugate residual method
The conjugate residual method (CR) is constructed by requiring the residual vectors to be A-
orthogonal, that is, (ri, Arj) = 0, i 6= j. The corresponding iterates xk minimize the Euclidean
norm (`2-norm) of the residual

‖b−Axk‖ = min{‖b−Ay‖, y ∈ x0 +Kk(A, r0)}.

Here we minimize the `2-norm of the residual when CG minimizes the A-norm of the error,
that is, the A−1-norm of the residual. For the derivation of the algorithm, see R. Chandra [227],
G.H. Golub and C.F. Van Loan [547] or B. Fischer [455]. Without preconditioning, the algorithm
is the following,

function [x,nit,res] = cr(A,b,x0,epss,nitmax)
n = size(A,1);
nb = norm(b);
x = x0;
r = b -A * x;
resid = norm(r);
res = zeros(1,nitmax+1);
res(1) = resid;
w = zeros(n,1);
Aw = w;
rar = 1;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
rar_old = rar;
Ar = A * r;
rar = r' * Ar;
nu = rar / rar_old;
w = nu * w - r;
Aw = nu * Aw - Ar;



5.9. SYMMLQ and MINRES 287

eta = -rar /(Aw' * Aw);
x = x + eta * w;
r = r - eta * Aw;
resid = norm(r);
res(nit+1) = resid;
end % while
res = res(1:nit);

The CR algorithm is well defined if A is SPD. Otherwise, there can be problems computing
the denominator of one of the coefficients. In the case where A is indefinite, we will see a
stable implementation in the next section. The conjugate residual method was generalized by
minimizing ‖rk‖Aµ−1 , see R. Chandra [227].

5.9 SYMMLQ and MINRES
We have seen that, for an SPD matrixA, CG can be derived from the Lanczos algorithm by using
a Cholesky factorization of the tridiagonal matrix Tk constructed during the Lanczos iterations.
This may not be possible when A is symmetric but indefinite, that is, with positive and negative
eigenvalues. One way to obtain a stable factorization of Tk would be to eventually use 2× 2 piv-
ots. This gives rise to a method known as SYMMBK. C.C Paige and M.A. Saunders [898, 899]
proposed instead using an LQ factorization of Tk where L is lower triangular and Q is orthog-
onal or unitary. Such a factorization always exists. They named their algorithm SYMMLQ.
Remember that, when using x0 = 0, the CG approximate solution is obtained (when it exists) by

Tkyk = ‖r0‖e1, xCGk = Vkyk.

Let us write the LQ factorization of Tk as

Tk = LkQk, QTkQk = I,

The matrix Qk is not constructed explicitly, but as the product of matrices of plane rotations. We
have

Tk =


α1 β2

β2 α2 β3

. . . . . . . . .
βk−1 αk−1 βk

βk αk

 ,

Let us consider the first steps of the reduction of Tk to triangular form. We first consider the case
k = 4 since it is enough to see how the factorization is working. To zero the entry in position
(1, 2), we multiply from the right by a rotation matrix denoted by Q1,2,

Q1,2 =


c1 s1

s1 c2
1

1

 .

To annihilate the (1, 2) entry, we must have s1α1 = c1β2. Let ζ1 =
√
α2

1 + β2
2 , we take

s1 = β2/ζ1, c1 = α1/ζ1 and then

T4Q1,2 =


ζ1
ω2 ζ̄2 β3

π3 ω̄3 α3

β4 α4

 ,
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with ζ̄2 = (β2α1α2)/ζ1, π3 = s1β3, ω̄3 = −c1β3. We observe that we have created a fill-in in
position (3, 1). In the next step, we multiply by

Q2,3 =


1

c2 s2

s2 −c2
1

 .

As a result, we obtain

T4Q1,2Q2,3 =


ζ1
ω2 ζ2
π3 ω3 ζ̄3

π4 ω̄4 α4

 ,

ζ2 =
√
ζ̄2
2 + β2

3 , s2 = β3/ζ2, c2 = ζ̄2/ζ2, ζ̄3 = (β3ω̄3 − ζ̄2α3)/ζ2, ω̄4 = −c2β4, π4 = s2β4.
Now, the general process is clear,Qj,j+1 differs from the identity matrix only in the elements

qj,j = −qj+1,j+1 = cj = cos θj , qj,j+1 = qj+1,j = sj = sin θj and

TkQ1,2 · · ·Qk−1,k = TkQ
T
k = Lk =


ζ1
ω2 ζ2
π3 ω3 ζ3

. . . . . . . . .
πk ω4 ζ̄k

 .

The last rotation is defined by

ζk =
√
ζ̄2
k + β2

k+1, sk =
βk+1

ζk
, ck =

ζ̄k
ζk
.

Moreover ζ̄k+2 = −ckβk+2, ωk+1 = ω̄k+1ck + skαk+1, πk+2 = skβk+2. Let us define L̃k as
being identical to Lk except for the (k, k) entry which is replaced by ζk. The principal minor of
order k − 1 of Lk is L̃k−1. Following Paige and Saunders [898], we denote

W k = [w1 · · ·wk−1 w̄k] = [Wk−1 w̄k] = VkQ
T
k ,

q̄k = (χ1, . . . , χk−1, χ̄k)T = ((qk−1)T , χ̄k)T = Qkyk.

With this notation,
Lkq̄k = ‖r0‖e1, xCGk = W kq̄k.

Since Lkq̄k = ‖r0‖e1 and L̃kqk = ‖r0‖e1 we obtain

χk = χ̄k
ζ̄k
ζk

= χ̄kck.

By looking at the last two columns of the matrix equality W k+1 = Vk+1Q
T
k+1, one can see that,

since W k+1 = [Wk w̄k+1],

[w̄k vk+1]

(
ck sk
sk −ck

)
= [wk w̄k+1], w̄1 = v1.

It is not necessary to compute xCGk at each iteration since Lk can be singular. However, L̃k is
nonsingular as long as βk+1 6= 0. Hence, Qk is always well defined. Paige and Saunders chose
to compute and update xSk = Wkzk for which we have the update formula

xSk = xSk−1 + χkwk,
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wk is obtained by applying the plane rotation to w̄k and vk+1. The CG iterate can be obtained
(when it exists) as

xCGk+1 = xSk + χ̄k+1w̄k+1.

Paige and Saunders [898] proved that the residual rCGk = b−AxCGk is given by

rCGk = −β1s1 · · · sk
ck

vk+1.

Therefore, the norm of the residual is available to stop the iteration and we can compute xCGk+1

from xSk when it is small enough. A code for SYMMLQ is following. To obtain a more robust
code one can test for the denominators to be tiny. Clearly, the code is more complicated than for
CG since we have to compute the rotations to reduce Tk to a lower triangular matrix.

function [x,nit,xcg,res,rescg] = symmlq(A,b,x0,nitmax,epss)
n = size(A,1);
nb = norm(b);
x = x0;
r = b - A * x;
normr = norm(r);
res = zeros(1,nitmax+1);
res(1) = normr;
rescg = zeros(1,nitmax+2);
rescg(1) = normr;
vold = r;
u = vold;
v = u;
beta1 = vold' * v;
beta1 = sqrt(beta1);
vv = v / beta1;
wbar = vv;
v = A * vv;
alpha = vv' * v;
v = v - (alpha/beta1) * vold;
volder = vold;
vold = v;
betaold = beta1;
beta = vold' * v;
beta = sqrt(beta);
zetab = alpha;
deltab = beta;
zeta = sqrt(zetab * zetab + beta * beta);
cs = zetab / zeta;
sn = beta / zeta;
chi = beta1 / zeta;
epsz = 0;
normcgcs = abs(beta1 * sn);
normcg = normcgcs / abs(cs);
rescg(2) = normcg;
resid = normr;
nit = 0;
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while resid >= epss * nb && nit < nitmax
nit = nit + 1;
vv = v / beta;
w = cs * wbar + sn * vv;
x = x + chi * w; % SYMMLQ iterate
wbar = sn * wbar - cs * vv;
v = A * vv;
v = v - (beta / betaold) * volder;
alpha = vv' * v;
v = v - (alpha / beta) * vold;
volder = vold;
vold = v;
betaold = beta;
beta = vold' * v;
beta = sqrt(beta);
delta = cs * deltab + sn * alpha;
deltazeta = - delta * chi;
zetab = sn * deltab - cs * alpha;
epsilon = sn * beta;
deltab = - cs * beta;
zeta = sqrt(zetab * zetab + beta * beta);
cs = zetab / zeta;
sn = beta / zeta;
epsdz = epsz + deltazeta;
epsz = -epsilon * chi;
chi = epsdz / zeta;
normr = sqrt(epsdz * epsdz + epsz * epsz);
normcgcs = normcgcs * abs(sn);
normcg = normcgcs / abs(cs);
res(nit+1) = normr;
resid = norm(r);
rescg(nit+2) = normcg;
xcg = x + (epsdz/zetab) * wbar; % CG iterate
end % while
res = res(1:nit+1);
rescg = rescg(1:nit+2);

B. Fischer [455] described a similar algorithm using a QR factorization instead of the LQ
factorization of the Paige and Saunders method. Both methods are mathematically equivalent.
Even though the CG iterates can be computed from SYMMLQ, even when the matrix is positive
definite, the convergence can be slightly different from CG convergence since the rounding errors
are not the same.

The Lanczos basis vectors can be used in a different way. Let us consider iterates written as
x0 + Vky for some y ∈ �k. The residual vector can be written as

b−A(x0 + Vky) = r0 −AVky,
= ‖r0‖Vke1 − VkTky − βk+1[y]kvk+1,

= Vk+1(‖r0‖e1 − T ky),



5.9. SYMMLQ and MINRES 291

where T k is the tridiagonal matrix Tk appended with a row βk+1e
T
k at the bottom. One possibility

for solving the linear system Ax = b is to require that the vector y minimizes the norm of the
residual, that is,

yMk = argminy‖ ‖r0‖e1 − T ky‖. (5.42)

Let us denote the corresponding iterate and residual vector by xMk and rMk ,

xMk = x0 + Vky
M
k , rMk = b−AxMk .

By construction the residual vector rMk is orthogonaal to AKk(A, r0).
This method is called MINRES. It was devised by C.C. Paige and M.A. Saunders [899]. Of

course, for the method to be practical, one has to show how to solve the least squares prob-
lem (5.42). This can be done in several ways by using QR or LQ factorizations. A code imple-
menting MINRES with Givens rotations is following.

function [x,nit,res] = minres(A,b,nitmax,epss)
% we use x_0 = 0
n = size(A,1);
x = zeros(n,1);
y = b;
r1 = b;
beta1 = norm(b);
oldb = 0;
beta = beta1;
dbar = 0;
epsln = 0;
phibar = beta1;
cs = -1;
sn = 0;
w = zeros(n,1);
w2 = zeros(n,1);
r2 = r1;
nr = beta1;
nb = betz1;
res = zeros(1,nitmax);
res(1) = beta;
resid = beta;
nit = 0;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
s = 1 / beta;
v = s * y;
y = A * v;
if nit >= 2
y = y - (beta / oldb) * r1;

end % if
alfa = v' * y;
y = y - (alfa / beta) * r2 ;
r1 = r2;
r2 = y;
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oldb = beta;
beta = norm(y);
oldeps = epsln;
delta = cs * dbar + sn * alfa;
gbar = sn * dbar - cs * alfa;
epsln = sn * beta;
dbar = - cs * beta;
% compute the next plane rotation
gamma = norm([gbar beta]);
gamma = max([gamma eps]);
cs = gbar / gamma;
sn = beta / gamma;
phi = cs * phibar ;
phibar = sn * phibar ;
denom = 1 / gamma;
w1 = w2;
w2 = w;
w = (v - oldeps * w1 - delta * w2) * denom;
x = x + phi * w;
% estimate of the residual norm
resid = abs(phibar);
res(nit+1) = resid;
end % while
res = res(1:nit);

Mathematically, MINRES is equivalent to CR. However, since MINRES uses orthogonal
transformations, it is more stable and can be used for indefinite symmetric matrices.

It is interesting to consider the relations between the CG and MINRES residual norms. It is
a special case of relations between the (quasi-)residual norms of quasi-orthogonal (Q-OR) and
quasi-minimum (Q-MR) methods. This is described in chapters 3 and 5 of [823]. We have the
following result from [823], Theorem 3.3.

Theorem 5.18. Let rM0 = r0. Then,

1

‖rk‖2
=

1

‖rMk ‖2
− 1

‖rMk−1‖2
. (5.43)

By construction the residual norms ‖rMk ‖ are decreasing, but, from (5.43), we see that, if they
almost stagnate, we can have peaks in the CG residual norm curve for indefinite matrices. On the
contrary, if MINRES converges fast, there should not be much difference in the `2 residual norms
of CG and MINRES. The MINRES residual norms can be written as functions of the eigenvalues
and eigenvectors of A. From [823] Theorem 5.17, we have the following expressions.

Theorem 5.19. Let the spectral factorization of A be UΛUT with distinct eigenvalues λi, =
1, . . . , n and c = UT rM0 with no zero component. The MINRES residual norms are given by

‖rMk ‖2 =

∑
Ik+1

[∏k+1
j=1 c

2
ij

]
ΘΛ(Ik+1)∑

Ik

[∏k
j=1 c

2
ij
λ2
ij

]
ΘΛ(Ik)

, k ≥ 1, (5.44)
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where Ik is a set of k ordered indices 1 ≤ i1 < · · · < ik ≤ n, and ΘΛ(Ik) is defined by (5.22).

Using (5.43) and (5.44), we can obtain a (complicated) expression for the CG residual norm
as a function of the eigenvalues ofA and the projection of the initial residual on the eigenvectors.
Once again, it shows that the dependence on the eigenvectors of A is only through UT r0 and
what is important is the eigenvalue distribution through the mutual distances of the eigenvalues.

5.10 Numerical experiments
Let us start with examples showing the influence of the eigenvalue distribution on CG con-
vergence without preconditioning. For the first example of order 30, we consider four eigen-
value distributions shown in Figure 5.2. The top one (a) has eigenvalues regularly distributed
in [0.1, 100], (b) has one isolated simple eigenvalue equal to 0.1 and 100 has multiplicity 5, (c)
has one isolated simple eigenvalue equal to 100 and 0.1 has multiplicity 5, and (d) has isolated
smallest and largest eigenvalues with multiplicities larger than 1. The matrix is diagonal and the
right-hand side is a unit norm vector with equal components 1/

√
30.

Figure 5.3 displays the true residual norms. TheA-norms of the error are given in Figure 5.4.
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Figure 5.2. Eigenvalue distributions
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Figure 5.3. Residual norms, (a) solid, (b) dashed, (c) dot-dashed, (d) dotted

The worst convergence is for case (a) with a regular distribution. The fastest convergence is
obtained for case (b) with one isolated smallest eigenvalue. However, for all cases we obtain the
maximum attainable accuracy at or before iteration 30. With such a regular distribution for most
of the eigenvalues there is not much growth of the rounding errors, and almost no convergence
delay.

The second example with two matrices is more discriminating. The first matrix of order 30
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Figure 5.4. Error A-norms, (a) solid, (b) dashed, (c) dot-dashed, (d) dotted

is diagonal with eigenvalues

λi = λmin +
i− 1

n− 1
(λmax − λmin) ρn−i, i = 1, . . . , n, (5.45)

with λmin = 0.1, λmax = 100, and ρ = 0.9; see [1050]. For the second diagonal matrix, we
reverse the distribution and λ̂i = λmin + λmax − λi. The right-hand sides are the same as for
the first example and x0 = 0. Figure 5.5 shows the eigenvalue distributions. The first one (a) has
well isolated large simple eigenvalues and an accumulation of the smallest eigenvalues towards
λmin, and for (b) it is the opposite. Figures 5.6 and 5.7 show the residual norms and A-norms of
the error.
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Figure 5.5. Distribution (5.45), eigenvalue distributions
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Figure 5.6. Distribution (5.45), residual norms, (a) solid and (b) dashed
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Figure 5.7. Distribution (5.45), error norms, (a) solid and (b) dashed
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Figure 5.8. Distribution (5.45), distance of the smallest Ritz value to λmin, (a) solid and (b) dashed
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Figure 5.9. Distribution (5.45), distance of the largest Ritz value to λmax, (a) solid and (b) dashed

Figures 5.8 and 5.9 show respectively the distance of the smallest (resp. largest) Ritz value to
the smallest (resp. largest) eigenvalue for the two eigenvalue distributions.

With distribution (a), the convergence is hampered by the smallest eigenvalues. Moreover, the
largest Ritz value converges quickly to the isolated largest eigenvalue leading to an increase of the
rounding errors and a delay of convergence. With that distribution we do not have an acceptable
approximate solution in 30 iterations. For distribution (b), the smallest Ritz value converges fast
and the largest converges slowly. As shown from figures 5.6 and 5.7 the convergence is much
faster with distribution (b) and a solution is obtained in less than 30 iterations.
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Tables 5.1 and 5.2 shows results for a set of symmetric positive definite matrices whose char-
acteristics are described in the Appendix. Table 5.1 shows the maximum attainable accuracies for
the true residual norm ‖b−Axk‖ and the A-norm of the error. We do a large enough number of
iterations to reach these maximum accuracies with x0 = 0. Upper bounds for the residual max-
imum attainable accuracy were given in [563], but it is difficult to directly relate the maximum
attainable accuracy to the norm of the matrix.

Table 5.1. Maximum attainable accuracies

Name n nb. it. residual error

Lap2500 2500 250 1.7116 10−13 8.3150 10−14

ash292 292 35 5.9899 10−15 2.7221 10−15

bcsstk01 48 200 2.4502 10−13 3.7144 10−16

bcsstk01I 48 250 1.1293 10−19 4.6561 10−17

bcsstk09 1083 400 1.4953 10−13 9.3888 10−17

Pb26 6400 3000 1.6650 10−12 3.5749 10−13

1138_bus 1138 4000 5.5196 10−10 1.5103 10−11

nos3 960 350 5.4605 10−12 1.1298 10−12

Table 5.2 shows the numbers of iterations to obtain ‖rk‖/‖b‖ ≤ 10−10, the residual norms
and the A-norms of the error at convergence. One can see that for some matrices we have to do
a number of iterations much larger than the order of the matrix to satisfy the stopping criterion.
However, these results were obtained without preconditioning to show the behavior of CG.

Table 5.2. Number of iterations, residual norms, and A-norms of the error, ε = 10−10

Name n nb. it. residual error ‖b‖

Lap2500 2500 164 1.9303 10−8 2.0109 10−8 2.2149 102

ash292 292 18 1.0653 10−9 4.4305 10−10 17.911

bcsstk01 48 148 6.1769 10−11 7.3103 10−14 1

bcsstk01I 48 120 5.8919 10−15 1.9056 10−10 9.5294 10−5

bcsstk09 1083 332 6.9967 10−11 4.0408 10−14 1

Pb26 6400 1692 6.2719 10−8 6.0924 10−10 7.2839 102

1138_bus 1138 3430 3.4700 10−9 6.0924 10−10 34.548

nos3 960 283 2.8382 10−8 3.3501 10−9 3.1830 102

In some of these computations the residual norms are oscillating. Figure 5.10 shows the
residual norm which is widely oscillating and the A-norm of the error which is monotonely
decreasing by construction for the matrix bcsstk01. The two norms are quite different because
the norm of the matrix is large. Note that the matrix is of order 48 and we have to do more
than 160 iterations to reach the maximum attainable accuracy. Moreover, there is not much
convergence before iteration 130. Figure 5.11 shows the same quantities for the matrix Pb26.
Here also the residual norms are oscillating. The residual norms and the A-norms of the error
are not much different because the norm of the matrix is small.

Figure 5.12 shows the residual norms for the Hestenes and Stiefel (HS-CG) using three two-
term recurrences and the three-term variant for bcsstk01. With this matrix there is a large delay
of convergence due to rounding errors. We see that residual norms are the same at the beginning
of the iterations, but in the end the three-term recurrence variant is worse than HS-CG. Moreover,



5.10. Numerical experiments 297

0 50 100 150 200 250
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 5.10. bcsstk01, residual norm (solid) and A-norm of the error (dashed)
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Figure 5.11. Pb26, residual norm (solid) and A-norm of the error (dashed)

its maximum attainable accuracy for the residual norm is larger by several orders of magnitude.
The interest of the three-term variant is that it is more suited to parallel computing.
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Figure 5.12. bcsstk01, residual norm HS-CG (solid) and three-term recurrences (dashed)

Let us do some numerical experiments with the quadrature-based bounds for the A-norm of
the error in CG. We first use the matrix Lap2500. The Gauss and Gauss-Radau bounds are shown
in Figure 5.13. We used a delay d = 1 and µ = (1 − 10−8)λ1 for Gauss-Radau. One can see
that we obtain very good bounds that can be used in a stopping criterion.

Figure 5.14 shows the bounds for bcsstk01, d = 1, and µ = (1 − 10−8)λ1. We see that
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Figure 5.13. Lap2500, A-norm of the error (solid), Gauss lower bound (dashed), Gauss-Radau
upper bound (dot-dashed), d = 1

the Gauss lower is widely oscillating. This is because of the oscillations of the CG residual
norm. The Gauss-Radau upper bound is sharp in the beginning of the iterations and its accuracy
deteriorates in the fast convergence phase. This phenomenon is analyzed and explained in [829].
It is linked to the convergence of the smallest Ritz value to the smallest eigenvalue of A.
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Figure 5.14. bcsttk01, A-norm of the error (solid), Gauss lower bound (dashed), Gauss-Radau
upper bound (dot-dashed), d = 1

As one can see in Figure 5.15, increasing the delay to d = 5 improves the results. There are
less oscillations in the lower bound and the upper bound is more accurate in the last iterations.

We now consider sequential versions of some of the parallel CG variants. First we use the
problem with eigenvalues defined by (5.45) with λmin = 0.1, λmax = 100, and ρ = 0.9.
Figure 5.16 shows the residual norms for HS-CG, GV-CG [522], and CV-CG [280]. The con-
vergence of the three methods is almost the same but the parallel variants have a much worse
attainable accuracy by several orders of magnitude.

Figure 5.17 displays the residual norms for HS-CG, M-CG [802], and CG-CG [260, 259].
The maximum attainable accuracies are much better than what we have in the methods without
recomputations.

The residual norms for pipelined variants Pipe-M-CG and Pipe-PR-CG described in [247]
are shown in Figure 5.18. The maximum attainable accuracies are a little bit worse, but still
satisfactory.

The differences in accuracy depend on the example. For instance, with Lap2500 all the meth-
ods used here give more or less the same residual norms as HS-CG. There are more differences
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Figure 5.15. bcsttk01, A-norm of the error (solid), Gauss lower bound (dashed), Gauss-Radau
upper bound (dot-dashed), d = 5
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Figure 5.16. Distribution (5.45), residual norms, HS-CG (solid), GV-CG (dashed), CV-CG (dot-dashed)
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Figure 5.17. Distribution (5.45), residual norms, HS-CG (solid), M-CG (dashed), CG-CG (dot-dashed)

with bcsstk01 as one can see in Figure 5.19 with convergence delays for GV-CG and CV-CG and
much worse attainable accuracies than for HS-CG. Convergence is much better with M-CG and
CG-CG, see Figure 5.20. Figure 5.21 displays the residual norms for the pipelined variants.

Let us now consider other methods derived from the Lanczos algorithm. Let us choose a
problem easy to solve with the SPD matrix Lap2500. Figure 5.22 shows the true residual norms
for CG, MINRES, SYMMLQ, and the CG iterates obtained from SYMMLQ. The MINRES
residual norms are monotonely decreasing by construction and not much different from the CG



300 5. The conjugate gradient and related methods

0 10 20 30 40 50 60 70
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 5.18. Distribution (5.45), residual norms, HS-CG (solid), Pipe-M-CG (dashed), Pipe-PR-
CG (dot-dashed)

0 50 100 150 200 250
10

-15

10
-10

10
-5

10
0

10
5

Figure 5.19. bcsstk01, residual norms, HS-CG (solid), GV-CG (dashed), CV-CG (dot-dashed)
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Figure 5.20. bcsstk01, residual norms, HS-CG (solid), M-CG (dashed), CG-CG (dot-dashed)

residual norms. The SYMMLQ norms are larger but the CG norms obtained from SYMMLQ
are almost on top of the CG residual norms. All the methods converge similarly.

To obtain a problem with an indefinite matrix we negatively shift the matrix A, Â = A −
0.1I . The shifted matrix Â has 17 negative eigenvalues. From Figure 5.23 we see that CG is
converging (even though the matrix is indefinite), but with many oscillations. Moreover, the
convergence is much slower than for the SPD matrix A with almost no progress for the first 200
iterations. We show the residual norms because when the matrix is indefinite it does not define a
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Figure 5.21. bcsstk01, residual norms, HS-CG (solid), Pipe-M-CG (dashed), Pipe-PR-CG (dot-dashed)

norm. MINRES converges monotonely, but not much faster than CG, except in the last iterations.
SYMMLQ residual norms are a little larger. The CG norms obtained from SYMMLQ match the
genuine CG norms at the beginning, but they became different in the fast convergence phase.
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Figure 5.22. Lap2500, residual norms, CG (solid), MINRES (dashed), SYMMLQ (dot-dashed),
CG-SYMMLQ (dotted)
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Figure 5.23. Lap2500, shift=−0.1, residual norms, CG (solid), MINRES (dashed), SYMMLQ
(dot-dashed), CG-SYMMLQ (dotted)

Figure 5.24 shows the residual norms for a larger negative shift with Â = A− I , this nonsin-
gular matrix having 205 negative eigenvalues. We have a stagnation for almost 800 iterations and
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a lot of oscillations for CG. The other methods converge similarly, but much more slowly than for
the two previous examples. In the fast convergence phase, the residual norms of CG-SYMMLQ
are quite different from the CG norms. Clearly, CG is not reliable for indefinite matrices, but it
was not derived for that. There can even be divisions by zero or very tiny quantities.
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Figure 5.24. Lap2500, shift=−1, residual norms, CG (solid), MINRES (dashed), SYMMLQ (dot-
dashed), CG-SYMMLQ (dotted)

5.11 Historical and bibliographical comments
CG was developed independently by M.R Hestenes in the USA and E. Stiefel in Switzerland at
the beginning of the 1950s. After meeting at the Institute of Numerical Analysis (INA) of the
National Bureau of Standards in 1951, they realized that their algorithms were similar and they
wrote a famous and seminal joint paper [629] which was published in the December 1952 issue
of the Journal of the National Bureau of Standards. In that paper one can read

The method of Conjugate Gradients was developed independently by E. Stiefel of
the Institute of Applied Mathematics at Zürich and by M.R. Hestenes with the co-
operation of J.B. Rosser, G. Forsythe and L. Paige of the Institute for Numerical
Analysis, National Bureau of Standards. The present account was prepared jointly
by M.R. Hestenes and E. Stiefel during the latter’s stay at the National Bureau of
Standards. The first papers on this method were given by E. Stiefel [1952] and
by M.R. Hestenes [1951]. Reports on this method were given by E. Stiefel and
J.B. Rosser at a symposium on August 23-25, 1951. Recently, C. Lanczos [1952]
developed a closely related routine based on his earlier paper on eigenvalue prob-
lems [1950]. Examples and numerical tests of the method have been by R. Hayes,
U. Hoschstrasser and M. Stein.

Many of the ideas that were developed later, including preconditioning, are already described
in [629]; see also Hestenes [626] and Hestenes’ book [628].

At the beginning of the 1950s C. Lanczos was also working at the INA. In [721] published
in 1950, he proposed constructing an orthogonal basis of what we now call a Krylov subspace.
He used the algorithm on practical problems: the lateral vibration of a bar, the vibrations of a
membrane, and a string. In the paper [722] dated September 1951 but published in 1952, he
discussed the solution of linear systems.

In the paper [876] in 1996, D.P. O’Leary reported a personal communication from Hestenes
who said
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I believe it was done in the following order. 1. Stiefel because he had carried out
some large experiments which surely took place more than a month before he came
to UCLA. I invented it within a month of his arrival. 2. Hestenes. 3. Lanczos. He
is third because he would have been talking about it prior to my invention of the
routine. I am sure that when he saw my paper he said to himself, “I knew it all
along”. The remarkable thing is that it took two years of study of iterative methods
at INA before the cg-algorithm was devised.

A booklet [424] was published in 1959 by M. Engeli, T. Ginsburg, H. Rutishauser, and
E. Stiefel from the ETH Zürich. For the numerical experiments they considered two problems in
elasticity analysis: a plate problem with 70 unknowns and a condition number of 1600, and a bar
problem with 44 unknowns and a condition number of 7 105. These problems where solved on
the ERMETH, a computer built at ETH. The plate problem was also solved on an IBM 704 using
a refined grid with 270 unknowns and a condition number of 22,000. For the small plate problem
on the ERMETH, the computing time with CG was around 150 mn to obtain a reduction of 107

of the `2 norm of the residual.
In the 1960s, people started to solve larger linear systems and CG began to acquire a mixed

reputation because of the effect of rounding errors. Moreover, the 1950s and 1960s were the
golden age of the relaxation methods. For instance, CG is not cited in the seminal book about
iterative methods [1098] by R.S. Varga in 1962.

Things started to change at the beginning of the 1970s. We should give credit to J.K. Reid
[938] for having shown that the method could be interesting for iteratively solving “large” sparse
linear systems. What makes the success of CG in the 1970s was its coupling to efficient precon-
ditioners which gave favorable eigenvalue distributions for fast convergence. Another seminal
paper that renewed the interest in CG was [272] by P. Concus, G.H. Golub, and D.P. O’Leary
published in 1976 in the proceedings of the Symposium on Sparse Matrix Computations held at
Argonne National Laboratory in September 1975.

In 1980, D.P. O’Leary developed the block conjugate gradient algorithm [874] whose main
goal is to solve systems AX = B, where B and X are n× s matrices.

After CG was recognized as a method of interest in the beginning of the 1970s, research
was resumed to try to analyze and explain CG convergence. The first most significant results for
explaining the behavior of the Lanczos algorithm for computing eigenvalues in finite precision
arithmetic were obtained by C.C. Paige in his Ph.D. thesis in 1971 [889] and improved and
extended in his subsequent papers in journals [890, 891, 892].

In 1975, G.W. Stewart studied the case with all the eigenvalues of A are contained in an
interval [α, β] except for one outlier λ1; see [1041]. In 1976, O. Axelsson gave bounds for the
A-norm of the error when there are large outliers in the eigenvalues [57]. The influence of the
eigenvalue spectrum on the convergence rate of CG was also studied by A. Jennings [677] in
1977. H.A. van der Vorst and A. van der Sluis studied the case of separated smallest eigenvalues
[1085].

On the foundations provided by C.C. Paige for the Lanczos method for computing eigenval-
ues, an explanation of the behavior of Lanczos and CG algorithms in finite precision arithmetic
was given by A. Greenbaum [560, 561, 562, 564], starting in 1981. A parametrized class of
matrices for which the rate of convergence of CG varies greatly with the parameter choices was
constructed by Z. Strakoš [1050] in 1991 with a distribution of eigenvalues defined as in (5.45).
For some choices, the orthogonality of the residual vectors is lost very rapidly. A. Greenbaum
and Z. Strakoš [571, 1051] demonstrated numerically that the behaviour of CG in finite precision
arithmetic is very similar to that of the exact algorithm applied to any matrix, say, Ã, which
has many eigenvalues spread in tiny intervals about the eigenvalues of A. Using results from
Greenbaum, Y. Notay investigated rounding error effects on the convergence of CG [859] in
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1993. The maximum attainable accuracy of recursively computed residual methods was studied
by A. Greenbaum [563].

In 2000, M.H. Gutknecht and Z. Strakoš studied the accuracy of two three-term and three
two-term recurrences for Krylov subspace solvers [595].

The main results about the Lanczos and CG algorithms in finite precision arithmetic were
summarized and explained in G.M.’s book [816] and in the joint paper with Z. Strakoš [825] in
2006.

An interesting line of research about CG was started by G.H. Golub in the 1970s. His
goal was to find upper and lower bounds for the norm of the error; see the joint papers with
G. Dahlquist and S.C. Eisenstat [303] in 1972, and with G. Dahlquist and S.G. Nash [304] in
1978. This technique was further developed for CG by G.H. Golub in papers with B. Fischer
[457] in 1993, with Z. Strakoš [546] in 194, and G.M. [541, 542]; see also [810, 812, 815] by
G.M., and [1052, 1053] by Z. Strakoš and P. Tichý.

The work of G.H. Golub and G.M. was summarized in the book [543] published in 2010.
Improvements of the computation of the error bounds were obtained by G.M. and P. Tichý [826,
827, 828, 829], and [824] with Jan Papež.

Computation of bounds for matrix function entries and/or for norms of the error in CG was
also considered by D. Calvetti, G.H. Golub, and L. Reichel [196] in 1999 and D. Calvetti, S.
Morigi, L. Reichel, and F. Sgallari [197, 198] in 2000-2001. These publications used anti-Gauss
quadrature rules that were introduced by D.P. Laurie [724] in 1996; see also [199].

Other papers concerned with computing bounds for the norm of the error in methods related
to CG are by C.Brezinski [159] in 1999, by A. Frommer, K. Kahl, T. Lippert, and H. Rittich
[479] in 2013, R. Estrin, D. Orban, and M.A. Saunders [429, 428] in 2019, and E. Hallman [611]
in 2020.

Probably the first proposal to introduce parallelism in CG was made by J. Van Rosendale
in a report for the Institute for Computer Applications in Science and Engineering (ICASE)
of NASA [1091] in 1983; see also the papers by L. Johnson [685, 686] in 1983-1984. The
predictor-corrector method was proposed by G.M. [800] in 1984, using a formula derived by
Y. Saad [973]. This technique was also used in the report [801] in 1985; see also [239, 807].
A paper [802] reporting numerical experiments was published in 1987. The algorithm was also
described in the book [811].

Another method was described by A.T. Chronopoulos and C.W. Gear [260, 259] in 1989. It
is called the s-step conjugate gradient method. This work was an outcome of Chronopoulos’
Ph.D. thesis [258] where several s-step methods were proposed.

In 2014, P. Ghysels and W. Vanroose proposed a preconditioned pipelined CG method [522]
that has a single non-blocking reduction per iteration. The numerical results showed that this
algorithm gave a maximum attainable accuracy which can be much worse than with the standard
HS-CG. This was pointed out by E.C. Carson, M. Rozložník, Z. Strakoš, P. Tichý, and M. Tůma
[207] in 2018. This was followed by papers by S. Cools, E.F. Yetkin, E. Agullo, L. Giraud, and
W. Vanroose [282], as well as [283] by J. Cornelis, S. Cools, and W. Vanroose, and [276] with
P. Ghysels.

G.M.’s 1984 predictor-corrector idea [800] was put back to life more than 35 years later and
extended by E.C. Carson and T. Chen [247] in 2020. They renamed the technique as predict-
and-recompute.

The methods for indefinite matrices were mainly studied by C.C. Paige and M.A. Saunders
[898, 899], see also R. Chandra [227] and the nice book by B. Fischer [455].

For the history of CG up to 1976, see the nice paper by G.H. Golub and D.P. O’Leary [544]
published in 1989. For more details on the history of iterative methods, see Chapter 8 of the book
[160] by C. Brezinski, G.M., and M. Redivo-Zaglia in 2022.
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Krylov methods for
nonsymmetric linear
systems

In this chapter we study some Krylov methods for solving linear systems Ax = b where the
matrix A is nonsingular and nonsymmetric. Since the 1970s many such methods have been pro-
posed. We only consider those which are the most used. In the paper [396] by M. Eiermann and
O.G. Ernst it is stated that almost any Krylov method can be seen as a (quasi-) orthogonal resid-
ual (Q-OR) or (quasi-) minimal residual (Q-OR) method. This is why we start by considering
this general abstract class of methods. The existing Q-OR/Q-MR methods mainly differ in the
type of basis used for the Krylov subspace.

To motivate what we are doing in this chapter, consider a matrix B whose columns give a
basis of �n. We can write the solution of Ax = b as x = By. Let us write AB = BZ. Then,
we have BZy = b and the vector y is given by solving Zy = B−1b. For this process to work we
need that B−1b is easy to compute and that Zy = B−1b is easy to solve. The simplest form for
Z would be a diagonal matrix, but B would be the matrix of the eigenvectors of A provided A
is diagonalizable. Generally, we do not know the eigenvectors of A. The next possibility would
be to have Z as an upper triangular matrix. This would be a Schur decomposition. However, the
first column of B would have to be an eigenvector of A, and this, again, is not feasible. What
we will do in the next sections is to have Z as an upper Hessenberg matrix. We will see that the
basis can be computed column by column with only matrix-vector multiplications.

6.1 Q-OR and Q-MR methods
Let r0 = b − Ax0 be the initial residual vector. We assume that we have an ascending basis of
the nested Krylov subspaces Kk(A, r0). It means that, if v1, . . . , vk are the basis vectors, then
v1, . . . , vk, vk+1 are the basis vectors for Kk+1(A, r0) as long as k + 1 ≤ m where m is the
grade of r0 with respect to A. For such indices, the vector Avk is in Kk+1(A, r0) and we can
write it in the basis v1, . . . , vk, vk+1 as

Avk =

k+1∑
j=1

hj,kvj . (6.1)

We assume that the basis vectors are of unit norm and then write

hk+1,kvk+1 = Avk −
k∑
j=1

hj,kvj ,

305
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with hk+1,k = ‖Avk −
∑k
j=1 hj,kvj‖ real and positive. By induction the vector vk+1 can be

expressed as a polynomial of degree k in A applied to v1 or r0. Because of relation (6.1) the
basis vectors satisfy

AVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk, (6.2)

where Hk is an upper Hessenberg matrix with entries hi,j , the columns of Vk are the basis
vectors v1, . . . , vk, and ek is the last column of the identity matrix of order k. The matrix Hk is
Hk appended with the k first entries of the (k + 1)st row of Hk+1. The matrix Hk is the leading
principal submatrix of order k of a larger upper Hessenberg matrix H in the decomposition

AV = V H (6.3)

valid when k = m in (6.2). Most of the time we will assume that m = n in which case H is a
square matrix.

The iterates xk, k ≥ 1 in Q-OR and Q-MR methods are of the form

xk = x0 + Vkyk, (6.4)

for some unique vector yk ∈ �k or �k if the data is complex. It means that we look for xk
in x0 + Kk(A, r0). Since one chooses v1 = r0/‖r0‖, the residual vector rk, defined as rk =
b−Axk, can be written as

rk = b−Axk = b−Ax0 −AVkyk
= ‖r0‖Vke1 −AVkyk
= Vk (‖r0‖ e1 −Hkyk)− hk+1,k[yk]kvk+1. (6.5)

In a Q-OR method, the kth iterate xOk is defined (provided that Hk is nonsingular) by computing
yk in (6.4) as the solution of the (small) linear system

Hkyk = ‖r0‖ e1. (6.6)

This annihilates the term within parenthesis in the rightmost expression of (6.5). We denote the
solution of equation (6.6) by yOk . The iterates of the Q-OR method are xOk = x0+‖r0‖VkH−1

k e1,
the residual vector, which we denote as rOk , is proportional to vk+1, and

‖rOk ‖ = hk+1,k

∣∣ [yOk ]k
∣∣ .

In case Hk is singular and xOk is not defined, we define the residual norm as being infinite,
‖rOk ‖ =∞.

The residual vector in (6.5) can also be written as

rk = Vk+1(‖r0‖ e1 −Hkyk). (6.7)

Instead of annihilating the term within parenthesis in the rightmost expression of (6.5), it could
be nice to minimize the norm of the residual itself. But this is costly if the columns of the matrix
Vk+1 are not orthonormal. However, we can bound the residual norm,

‖rk‖ ≤ ‖Vk+1‖ ‖ ‖r0‖ e1 −Hkyk‖.

In a Q-MR method where the basis may not be orthogonal, the vector yMk is computed as the
solution of the least squares problem

min
y
‖ ‖r0‖ e1 −Hky‖. (6.8)
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The solution yMk is usually computed, just like the solution of (6.6), using Givens rotations to
zero the subdiagonal entries ofHk and then solving an upper triangular system, see Section 1.18.
Note that if ‖Vk+1‖ 6= 1, yMk does not minimize the norm of the residual but the norm of what is
called the quasi-residual defined as

zMk = ‖r0‖ e1 −Hky
M
k . (6.9)

However, since the basis vectors are of unit norm, we have

‖Vk+1‖ ≤ ‖Vk+1‖F =
√
k + 1,

where ‖ · ‖F is the Frobenius norm. The Q-MR iterates are always defined contrary to the Q-OR
iterates when Hk is singular.

Q-OR and Q-MR methods are studied in detail in the book [823]. Let us cite some of the
main results without proofs.

Theorem 6.1. Let C be the companion matrix corresponding to the eigenvalues of the non-
derogatory matrix A, let r0 = ‖r0‖V e1 for a nonsingular matrix V and let the Krylov matrix
K = ( r0 Ar0 · · · An−1r0 ) be nonsingular. K can be decomposed as

K = ‖r0‖V U, (6.10)

for a nonsingular upper triangular matrix U if and only if Ue1 = e1 and

AV = V H, (6.11)

for an unreduced upper Hessenberg matrix H satisfying H = UCU−1.

The matrix U in the decomposition ofH represents the change of basis from V to the Krylov
matrix K. There is a relationship between the Q-OR and Q-MR iterates.

From relation (6.5), if there is an index k for which hk+1,k = 0 the Q-OR residual vector is
rOk = 0 and xOk is the solution of the linear system. This is also what is obtained with the Q-
MR method since the last row of the matrix Hk is then zero. This index cannot be smaller than
d(A, r0) (the grade of r0 with respect to A) since, otherwise, we would obtain an annihilating
polynomial p(A)r0 = 0 of degree smaller than d(A, r0). It means that, mathematically, Q-OR/Q-
MR methods are direct methods providing the exact solution after a finite number of steps, even
though they are used as iterative methods.

Theorem 6.2. Assume that hk+1,k 6= 0. The vectors of coefficients yOk and yMk in a Q-OR and a
corresponding Q-MR method satisfy

yMk = yOk − γ [yOk ]kH
−1
k H−∗k ek,

with

γ =
h2
k+1,k

1 + h2
k+1,k‖H

−∗
k ek‖2

.

For the iterates and the error vectors we have

xMk = xOk − γ [yOk ]k VkH
−1
k H−∗k ek (6.12)

and
εMk = εOk − γ [yOk ]k VkH

−1
k H−∗k ek.
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For the quasi-residual vector we have

zMk = γ [yOk ]k

(
H−∗k ek
− 1
hk+1,k

)
. (6.13)

From Theorem 6.2 we obtain a relation between the norm of the Q-OR residual and the norm
of the Q-MR quasi-residual.

Proposition 6.3. The norm of the Q-MR quasi-residual zMk is linked to the norm of the Q-OR
residual by

‖zMk ‖2 =
1

1 + h2
k+1,k‖H

−∗
k ek‖2

‖rOk ‖2. (6.14)

The quasi-residual norms can also be related to the sines and cosines of the Givens rotations
used to bring Hk to upper triangular form.

Theorem 6.4. Let sj and cj be the sines and cosines in the Givens rotations used to bring Hk to
upper triangular form. Then the norms of the Q-MR quasi-residuals are

‖zMk ‖ = ‖r0‖ |s1s2 · · · sk|. (6.15)

We have the following relations between the residual norms of the Q-OR method and the quasi-
residual norms of the associated Q-MR method,

‖zMk ‖ = |ck| ‖rOk ‖, (6.16)

1

‖rOk ‖2
=

1

‖zMk ‖2
− 1

‖zMk−1‖2
. (6.17)

Relation (6.17) is responsible for the well-known peak-plateau phenomenon, see [174, 297].
If the quasi-residual norms of the Q-MR method stagnate at iterations k − 1 and k, the iterate
of the corresponding Q-OR method is not defined, that is, Hk is singular. More generally, if we
have near stagnation of the Q-MR method we have peaks for the Q-OR residual norm.

From Theorem 6.4 we have

1 + h2
k+1,k‖H−∗k ek‖2 =

1

|ck|2
=
‖rOk ‖2

‖zMk ‖2
. (6.18)

Hence the coefficient γ in Theorem 6.2 can also be expressed as γ = h2
k+1,k |ck|2. It is shown in

[823] that
rOk = −hk+1,k[yOk ]kvk+1 = −‖r0‖hk+1,k(eTkH

−1
k e1)vk+1,

and

eTkH
−1
k e1 = − 1

hk+1,kϑ1,k+1
, [yOk ]k = − ‖r0‖

hk+1,kϑ1,k+1
,

where the ϑ1,j’s are the entries of the first row ofU−1
k+1 in the factorizationHk+1 = Uk+1C

(k+1)U−1
k+1.

Remember that
Uk+1 = ( e1 Hk+1e1 · · · Hk

k+1 ) .
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The Q-OR residual vector is

rOk =
‖r0‖
ϑ1,k+1

vk+1.

Since vk+1 is of unit norm, it yields that

|ϑ1,k+1| =
‖r0‖
‖rOk ‖

.

The residual vectors rOk of Q-OR and rMk of Q-MR can be expressed as polynomials of degree k
in A applied to the initial residual r0,

rOk = pOk (A)r0, rMk = pMk (A)r0.

These polynomials have the value 1 at 0 by definition of the residual vector. It can be shown that
the residual polynomial pOk of the Q-OR method is proportional to the characteristic polynomial
of Hk.

Let us now consider the Q-MR residual polynomial pMk . If we assume thatHk is nonsingular,
we can define

Ĥk = Hk + h2
k+1,kH

−∗
k eke

T
k . (6.19)

The second term in the right-hand side is only nonzero in the last column. Hence, the matrix Ĥk

is upper Hessenberg and the solution yMk of the least squares problem can be obtained by solving
Ĥky

M
k = ‖r0‖ e1. It is shown in [823] that the residual polynomial pMk of the Q-MR method is

proportional to the characteristic polynomial of Ĥk.
We have already seen that ‖rOk ‖/‖r0‖ = 1/|ϑ1,k+1|, but we also have a characterization of

the quasi-residual norm,
‖zMk ‖
‖r0‖

=
1[∑k+1

j=1 |ϑ1,j |2
] 1

2

. (6.20)

This can be proved from the peak-plateau relations,

|ϑ1,k+1|2

‖r0‖2
=

1

‖zMk ‖2
− 1

‖zMk−1‖2
,

|ϑ1,k|2

‖r0‖2
=

1

‖zMk−1‖2
− 1

‖zMk−2‖2
,

... =
...

|ϑ1,2|2

‖r0‖2
=

1

‖zM1 ‖2
− 1

‖zM0 ‖2
.

Summing up all these relations we obtain

1

‖zMk ‖2
− 1

‖zM0 ‖2
=

1

‖r0‖2
[
|ϑ1,k+1|2 + · · ·+ |ϑ1,2|2

]
.

But noticing that ‖zM0 ‖ = ‖r0‖ and ϑ1,1 = 1 gives the result.
If ϑ1,k+1 = 0, Hk is singular, and the Q-MR quasi-residual norm stagnates. This result

shows that without stagnation the quasi-residual norm is strictly decreasing.
Regarding convergence, it can be shown that any convergence curve is possible for the (rel-

ative) residual norms of Q-OR methods and any non-increasing convergence curve is possible
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for the (relative) quasi-residual norms of Q-MR methods. Moreover, as long as A does not have
to satisfy other constraints (like being symmetric), the eigenvalues of the matrix A can be pre-
scribed for any convergence curve as well as the eigenvalues of the matrices Hk and Ĥk in all
iteration numbers k, see [823]. However, a prescribed convergence curve is also linked to a
particular right-hand side b.

Many papers have been written providing upper bounds depending on the eigenvalues of A
for the residual norms of particular Krylov methods. For simplicity, we consider the case where
the Q-MR algorithm does not stop before iteration n.

Theorem 6.5. Assume the Q-MR algorithm with unit norm basis vectors terminates at iteration
n. Let H , such that AV = V H , which is assumed to be diagonalizable as H = XHΛX−1

H .
Then, the Q-MR residual norm at iteration k is bounded as

‖rMk ‖ ≤ ‖r0‖ ‖XH‖ ‖X−1
H ‖
√
k + 1 min

p ∈ πk
p(0) = 1

max
λ∈σ(A)

|p(λ)|, (6.21)

where πk is the set of polynomials of degree k.

We observe that, if the matrix V of the basis vectors is unitary, we can replace XH in the
bound (6.21) by the matrix X of the eigenvectors of A. Moreover, if the matrix A is normal
then the term κ(X) = ‖X‖ ‖X−1‖ can be replaced by 1. Using Theorem 6.5 and the relations
between the Q-MR and Q-OR methods we obtain an upper bound for the norm of the Q-OR
residual.

Corollary 6.6. Using the same notation as in Theorem 6.5, the Q-OR residual norm is bounded
as

‖rOk ‖ ≤
‖r0‖
|ck|
‖XH‖ ‖X−1

H ‖
√
k + 1 min

p ∈ πk
p(0) = 1

max
λ∈σ(A)

|p(λ)|, (6.22)

where ck is the cosine of the kth Givens rotation used to reduce to triangular form the upper
Hessenberg matrices.

More importantly, the residual norms can be written as functions of the eigenvalues and
eigenvectors.

Theorem 6.7. Let A be a diagonalizable matrix with a spectral factorization XΛX−1 where
Λ = diag(λ1, . . . , λn) contains the distinct eigenvalues, let b be the right-hand side and r0 =
b − Ax0 such that c = X−1r0 has no zero entries and let Z = V −1X with V the matrix of the
basis vectors. Then for 0 < k < n, let

µN1 =

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

Zi,j cj λj

∣∣∣∣∣∣
2

,

and for k ≥ 2

µNk =
∑
Ik

∣∣∣∣∣∣
∑
Jk

det(ZIk,Jk) cj1 · · · cjk λj1 · · ·λjk
∏

j`<jp∈Jk

(λjp − λj`)

∣∣∣∣∣∣
2

,
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and for k ≥ 1

µDk+1 =
∑
Ik+1

∣∣∣∣∣∣
∑
Jk+1

det(ZIk+1,Jk+1
) cj1 · · · cjk+1

∏
j`<jp∈Jk+1

(λjp − λj`)

∣∣∣∣∣∣
2

.

The summations are over all sets of indices Ik+1,Jk+1, Ik,Jk defined as I` (or J`) to be a set
of ` indices ( i1, i2, . . . , i` ) such that 1 ≤ i1 < · · · < i` ≤ n and ZI`,J` is the submatrix of
Z whose row and column indices of entries are defined, respectively, by I` and J`.

Then,

‖zMk ‖2 =
µDk+1

µNk
, ‖rOk ‖2 =

(
µNk
µDk+1

−
µNk−1

µDk

)−1

,

where µN0 is defined as µN0 = µD1 .

The last theorem shows that the (quasi)-residual norms in Q-OR/Q-MR methods depend
upon three types of objects: Eigenvalues, components of the right-hand side in the eigenvector
basis and determinants of submatrices of Z, that is, of the eigenvector matrix multiplied with the
inverse of the generated basis for the Krylov subspaces. Even if the matrix A is normal, that is,
if X∗X = I , it does not imply that the determinants in µNk , µ

D
k+1 can be simplified. However, if

V is unitary, and if the matrix A is normal, we have X∗X = I and the sums over Jk and Jk+1

reduce to only one term (Jk = Ik, respectively, Jk+1 = Ik+1).
The formulas in Theorem 6.7 are quite complicated expressions but they describe exactly the

dependence of (quasi)-residual norms on eigenvalues and eigenvectors. However, we can obtain
simpler bounds by using the following result which was proved in [108].

Lemma 6.8. Let E and F be two matrices of sizes n× (k+1) and n×n respectively, k ≤ n−1.
If the matrix E is of full rank

σmin(F )2

eT1 (E∗E)−1e1
≤ 1

eT1 (E∗(F ∗F )E)−1e1
≤ σmax(F )2

eT1 (E∗E)−1e1
. (6.23)

It yields lower and upper bounds for the norm of the quasi-residual of the Q-MR method.

Theorem 6.9. Let A be a diagonalizable matrix, A = XΛX−1, c = X−1r0 and

µk =

∑
1≤i1<...<ik+1≤n

(∏k+1
j=1 |cij |2

) ∏
i1≤i`<ip≤ik+1

|λip − λi` |2∑
1≤i1<...<ik≤n

(∏k
j=1 |cij |2 |λij |2

) ∏
i1≤i`<ip≤ik |λip − λi` |

2
.

Then,
µk [σmin(V −1X)]2 ≤ ‖zMk ‖2 ≤ µk ‖V −1X‖2.

6.2 The Arnoldi process
The basis which is the best conditioned one is an orthonormal basis, since all the singular values
of Vk are equal to 1. In theory it can be obtained by computing the QR factorization of the Krylov
matrix Kk. However, numerically, we do not want to compute matrices Ajr0 since for large j’s
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these vectors tend to be in the same direction and Kk may not be of full rank. A more stable
method to compute an orthonormal basis is to use a variant of the Gram-Schmidt algorithm.
When it is tailored to the columns of the Krylov matrix, it is called the Arnoldi process.

Let v1 = r0/‖r0‖. Let us assume that we have already computed orthonormal basis vectors
v2, . . . , vj of unit norms. To obtain the next basis vector which has to be orthogonal to all the
previous ones and has to belong toKj+1(A, r0), we orthogonalizeAvj against the previous basis
vectors. Let

ṽj = Avj −
j∑
i=1

(Avj , vi)vi. (6.24)

Clearly,

(ṽj , v`) = (Avj , v`)−
j∑
i=1

(Avj , vi)(vi, v`) = 0, ` = 1, . . . , j,

since in the sum only the term with i = ` is nonzero. The vector ṽj is orthogonal to the previous
basis vectors. To obtain the next basis vector vj+1 we just have to normalize it as vj+1 =
ṽj/‖ṽj‖. Denoting,

hi,j = (Avj , vi), i = 1, . . . , j, hj+1,j = ‖ṽj‖,

using j = 1, . . . , k, we have what is known as the Arnoldi relation,

AVk = VkHk + hk+1,kvk+1e
T
k , (6.25)

where Vk is an orthonormal matrix with columns vj , j = 1, . . . , k, and Hk is upper Hessenberg
with real positive entries on the first subdiagonal. This can be continued as long as hk+1,k 6= 0
that is, when k is less than the grade of r0 with respect to A. The orthogonality of the basis
vectors implies

V Tk AVk = Hk.

We observe that if the matrix A is symmetric, then Hk is also symmetric. A symmetric upper
Hessenberg matrix is tridiagonal and the Arnoldi process reduces to the Lanczos algorithm. The
symmetry allows to orthogonalize only against the last two vectors. When the matrix is nonsym-
metric we need to explicitly orthogonalize against all the previous vectors. Thus, unfortunately,
in the Arnoldi process we have to keep these vectors, and the storage grows linearly with k.

The algorithm described above is the classical Gram-Schmidt (CGS) variant of the Arnoldi
process. From relation (6.24), in matrix form we have

vj+1 =
1

hj+1,j
(I − VjV Tj )Avj .

The matrix I − VjV Tj represents the projection on the orthogonal complement of the subspace
Kj(A, r0). In the CGS algorithm all the dot products (Avj , vi) are independent of each other and
can be computed in parallel. However, for reasons of stability the algorithm which is the most
used in practice is the modified Gram-Schmidt (MGS) variant of the Arnoldi process. Mathe-
matically the two algorithms are equivalent, but their behaviors in finite precision arithmetic are
different and MGS is more stable than CGS. In MGS, instead of computing all the dot products
with Avj , we compute the dot products with the last known vector which is the result of the
subtraction of the components of Avj . A code implementing the Arnoldi process with MGS is
following.
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function [V,H] = Arnoldi_MGS(A,u,nitmax)
n = size(A,1);
V = zeros(n,nitmax);
H = zeros(nitmax,nitmax);
u = u / norm(u);
V(:,1) = u;
for j = 1:nitmax
Av = A * V(:,k); % matrix vector product
w = Av;
for i=1:j
vAv = V(:,i)' * w;
H(i,j) = vAv;
w = w - vAv * V(:,i);
end % for i
nw = norm(w);
if nw == 0;
return;
end; % if
if j < n
H(j+1,j) = nw;
V(:,j+1) = w / nw; % next basis vector
end % if j
end % for j

In MGS we have

vj+1 =
1

hj+1,j
(I − vjvTj ) · · · (I − v1v

T
1 )Avj .

Another way of computing an orthonormal basis, proposed in [1106, 1107], is to use House-
holder reflections, which are usually exploited in the QR algorithm; see, for instance, [548].
In fact, one orthogonalizes against each other the vectors v1, Av1, . . . , Avj where v1, v2, . . .
are the consecutively generated basis vectors, similarly in spirit as in the Arnoldi process. But
the orthogonalization is based on QR factorization instead of the Gram-Schmidt process. The
Householder variant is more costly than CGS or MGS.

6.3 FOM, GMRES and related methods
FOM (Full Orthogonalization Method) and GMRES (Generalized Minimal RESidual) is a pair of
Q-OR/Q-MR methods using an orthonormal basis for the Krylov subspaces constructed with the
Arnoldi process. FOM is a Q-OR method for which the residual vectors are orthogonal to each
other. It is a true OR (Orthogonal Residual) method. In GMRES, since the basis is orthonormal,
the norm of the quasi-residual is equal to the norm of the residual. Therefore GMRES is a true
MR (Minimum Residual) method. The minimization of the norm of the residual implies that in
GMRES the residual norms are decreasing.

In FOM and GMRES we construct the orthonormal basis vectors vk as well as the upper
Hessenberg matrices Hk and Hk. The construction of the basis is done by one of the variants
of the Arnoldi process. This yields several variants of FOM and GMRES. For instance, we have
GMRES-CGS using the classical Gram-Schmidt orthonormalization, GMRES-MGS using the
modified Gram-Schmidt algorithm and GMRES-H using Householder reflections to orthogonal-
ize the basis vectors [1106, 1107].
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To compute the iterates we need to solve problems involving Hk or Hk. This could also lead
to several variants of the algorithms. Generally, as in [972] and [980], the matrices Hk and Hk

are transformed to upper triangular form by using Givens rotations. This can be done in place,
without any additional storage. In these implementations of the algorithms the computation of
the basis vectors and the transformation of the upper Hessenberg matrix H to upper triangular
form are intertwined. A code implementing GMRES with MGS is following.

function [x,nit,res] = GMRES_MGS(A,b,x0,epss,nitmax)
n = size(A,1);
rhs = zeros(nitmax+1,1);
V = zeros(n,nitmax+1);
H = zeros(nitmax+1,nitmax);
rot = zeros(2, nitmax); % init Givens rotations
res = zeros(1,nitmax);
x = x0;
r = b - A * x;
nb = norm(b);
bet = norm(r);
res(1) = bet;
rhs(1) = bet;
resid = bet;
v = r / bet;
V(:,1) = v;
nit = 0;

while resid >= epss * nb && nit < nitmax
nit = nit + 1;
w = A * v;
for j=1:nit % modified Gram-Schmidt
vj = V(:,j);
vw = vj' * w;
H(j,nit) = vw;
w = w - vw * vj;
end % for j
nw = norm(w);
v = w / nw;
H(nit+1,nit) = nw;
V(:,nit+1) = v; % next basis vector
nw1 = nw;
% apply the preceding Givens rotations to the last column
for kk=1:nit-1
h1 = H(kk,nit);
h2 = H(kk+1,nit);
H(kk+1,nit) = -rot(2,kk) * h1 + rot(1,kk) * h2;
H(kk,nit) = rot(1,kk) * h1 + conj(rot(2,kk)) * h2;
end % for kk
% compute, store and apply a new rotation to zero
% the last term in nit th column
nw = H(nit,nit);
cs = sqrt(abs(nw1)^2 + abs(nw)^2);
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if abs(nw) < abs(nw1)
mu = nw / nw1;
tau = conj(mu) / abs(mu);
else
mu = nw1 / nw;
tau = mu / abs(mu);
end % if abs
% store the rotation for the next columns
rot(1,nit) = abs(nw) / cs; % cosine
rot(2,nit) = abs(nw1) * tau / cs; % sine
% modify the diagonal entry and the right-hand side
H(nit,nit) = rot(1,nit) * nw + conj(rot(2,nit)) * nw1;
c = rhs(nit);
rhs(nit) = rot(1,nit) * c;
rhs(nit+1) = -rot(2,nit) * c;
resid = abs(rhs(nit+1)); % estimate of the residual norm
res(nit+1) = resid;
end % while
% computation of the solution
y = triu(H(1:nit,1:nit)) \ rhs(1:nit);
x = x0 + V(:,1:nit) * y;
res = res(1:nit+1);

The CGS variant is obtained by changing w = A * v; to Av = A * v; w = Av; and vw
= vj’ * w; to vw = vj’ * Av;.

The code for FOM is almost the same as for GMRES except that we do not want to apply
the last rotation if we wish to compute the iterate xk at iteration k and we have to compute the
residual norm differently. Hence, the following lines in the GMRES code above,

H(nit,nit) = rot(1,nit) * nw + conj(rot(2,nit)) * nw1;
c = rhs(nit);
rhs(nit) = rot(1,nit) * c;
rhs(nit+1) = -rot(2,nit) * c;
resid = abs(rhs(nit+1)); % estimate of the residual norm
res(nit+1) = resid;

have to be changed to

% estimate of the residual norm
resid = H(nit+1,nit) * abs(rhs(nit) / H(nit,nit));
res(nit+1) = resid;
if nit < nitmax
H(nit,nit) = rot(1,nit) * nw + conj(rot(2,nit)) * nw1;
c = rhs(nit);
rhs(nit) = rot(1,nit) * c;
rhs(nit+1) = -rot(2,nit) * c;
end % if nit

Since GMRES minimizes the norm of the residual, the residual norms given by FOM are
larger than or equal to those given by GMRES. Moreover, if GMRES residual norms exactly
stagnate for some iterations, the corresponding matrices Hk are singular and the FOM iterates
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are not defined, but this does not prevent to continue iterating. Moreover, exact stagnation almost
never happens in finite precision arithmetic.

As we have seen above for general Q-MR methods, the GMRES residual vectors are polyno-
mials in A times the initial residual vector. At iteration k we have rGk = pGk (A)r0 where pGk is
a polynomial of degree k whose value is one at the origin. It is the solution of the minimization
problem

‖rGk ‖ = min
p ∈ πk
p(0) = 1

‖p(A)r0‖. (6.26)

Then, we have the following result which appeared in [415] Theorem 5.4, [403] Theorem 3.3
and [980] Proposition 4. It follows from the results for general Q-MR methods described above.

Theorem 6.10. Let A be a diagonalizable matrix A = XΛX−1 with a spectrum σ(A) =
{λ1, . . . , λn} and πk be the set of polynomials of degree k. The norm of the residual vector at
iteration k < n of GMRES with the initial residual r0 = b−Ax0 satisfies

‖rGk ‖ ≤ ‖r0‖ ‖X‖ ‖X−1‖ min
p ∈ πk
p(0) = 1

max
λ∈σ(A)

|p(λ)|. (6.27)

If the matrix A is normal we have

‖rGk ‖ ≤ ‖r0‖ min
p ∈ πk
p(0) = 1

max
λ∈σ(A)

|p(λ)|. (6.28)

Unfortunately, the solution of the min-max problem is not known explicitly. Several tech-
niques have been considered to obtain upper bounds. One such approach is based on the field of
values of A which is defined as

F(A) = {v∗Av | v∗v = 1, v ∈ �n}.

The field of values is a convex set containing the spectrum σ(A). If the matrix A is normal the
field of values is the convex hull of the eigenvalues. If the origin is not in F(A), and

µ(F(A)) = min
z∈F(A)

|z|,

that is, the distance of F(A) from the origin, we have

‖rGk ‖ ≤ ‖r0‖
(
1− µ(F(A))µ(F(A−1))

)k/2
.

A refined bound is proved in [396], Theorem 6.1; see also [395].
When the Hermitian part M = (A + A∗)/2 of A (whose eigenvalues are real) is positive

definite, we have the bound

‖rGk ‖ ≤ ‖r0‖
(

1− λmin(M)2

λmax(A∗A)

)k/2
. (6.29)

which was proved in [415], Theorem 5.4. In this case the GMRES residual norms decrease
strictly monotonically without stagnation.

A generalization of the field of values is the polynomial numerical hull introduced in [853],
for any k, as

Hk(A) = {z ∈ � | ‖p(A)‖ ≥ |p(z)|, ∀p ∈ πk}.
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It has been shown that H1(A) = F(A). The polynomial numerical hull provides a lower bound
on the quantity involved in the upper bound of ‖rGk ‖,

min
p ∈ πk
p(0) = 1

max
z∈Hk(A)

|p(z)| ≤ min
p ∈ πk
p(0) = 1

‖p(A)‖.

The polynomial numerical hull has been studied in [565, 434, 185, 566, 186, 567] for different
types of matrices.

Another tool that has been used to try to explain GMRES convergence is the ε-pseudospectrum
of A which is defined as

Λε(A) = {z ∈ � | ‖(zI −A)−1‖ ≥ ε−1}.

For properties and applications of the ε-pseudospectrum, see [1072]. As in [1071], let Lε be the
arc length of the boundary Γε of Λε(A). Then, using the Cauchy integral formula,

p(A) =
1

2πı

∫
Γε

(zI −A)−1p(z) dz,

where ı is the square root of −1 and taking norms, we obtain the bound,

min
p ∈ πk
p(0) = 1

‖p(A)‖ ≤ Lε
2πε

min
p ∈ πk
p(0) = 1

max
z∈Λε(A)

|p(z)|.

The problem is, of course, the choice of the parameter ε. It has to be chosen for the multiplicative
factor to be of moderate size but small enough for the set Λε to be not too large.

There is a discussion of the relative merits and failures of the bound (6.27) based on eigen-
values and those based on the field of values and the pseudospectrum in [422]. Unfortunately,
depending on the chosen example, it is not always the same bound which is descriptive of the
behavior of the residual norms. Moreover, there are examples for which none of the bounds is
satisfactory.

Bounds that depend on the initial residual vector were considered in [1065]. The idea was to
keep the residual vector together with the polynomial and to write

‖p(A)r0‖ = ‖Xp(Λ)X−1r0‖ ≤ ‖X‖ ‖p(Λ)X−1r0‖.

Let c = X−1r0/‖r0‖. Then,

‖rGk ‖
‖r0‖

≤ ‖X‖ min
p ∈ πk
p(0) = 1

‖p(Λ)c‖ = ‖X‖ min
p ∈ πk
p(0) = 1

 n∑
j=1

|cj |2|p(λj)|2
 1

2

.

We observe that min p ∈ πk
p(0) = 1

‖p(Λ)c‖ is the residual norm at iteration k when using GMRES with

x0 = 0 for solving Λx = c.
FOM convergence has been less studied than GMRES convergence. There can be iterations

for which Hk is singular and the FOM iterates are said to be infinite. Bounds of the residual
norm must include a factor that can be potentially very large, if not infinite. In fact, we can use
results in Theorem 6.4, relation (6.16) which yields

‖rFk ‖ =
1

|ck|
‖rGk ‖,
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where ck is the cosine of the Givens rotation. When GMRES stagnates (‖rGk ‖ = ‖rGk−1‖) the
sine sk of the rotation is equal to 1 and ck = 0. In any case we can write

|ck| =

(
1− ‖rGk ‖
‖rGk−1‖

) 1
2

.

Therefore, the residual norms of FOM and GMRES are linked by the relation,

‖rFk ‖ =
‖rGk−1‖

(‖rGk−1‖2 − ‖rGk ‖2)
1
2

‖rGk ‖.

We observe that if ‖rGk−1‖ � ‖rGk ‖ that is, when GMRES converges fast, the multiplying factor
is close to 1 and the FOM and GMRES residual norms are almost the same. When GMRES
almost stagnates, the FOM residual norms are much larger than those of GMRES. This is the
peak-plateau phenomenon that we have already seen for general Q-OR/Q-MR methods.

Unfortunately, the known bounds of the residual norms do not tell us what are the properties
of the matrix A determining the convergence of GMRES residual norms. The fact that GMRES
convergence can be prescribed as well as the eigenvalues shows that everything can happen for
the GMRES residual norms as long as they are decreasing and their behavior cannot be only
linked to the eigenvalues of A, at least for non-normal matrices. To prescribe the residual norms
in FOM and GMRES we use the general construction in [823].

Theorem 6.11. Let fj , j = 0, . . . , n − 1, f0 = 1 be n nonzero, finite positive real numbers,
λj , j = 1, . . . , n be n nonzero complex numbers and θ(k)

j , k = 1, . . . , n − 1 and j = 1, . . . , k
be given nonzero complex numbers and α a positive real number. There exist matrices A and
right-hand sides b such that when applying the FOM method for solving Ax = b starting with a
given vector x0, the norms of the residual vectors satisfy

‖rFk ‖
‖r0‖

= fk, k = 0, . . . , n− 1,

the eigenvalues of A are λj , j = 1, . . . , n, the eigenvalues of Hk, k = 1, . . . , n − 1 (the Ritz
values) are θ(k)

j , j = 1, . . . , k and ‖r0‖ = α. The matrices are of the form A = V UCU−1V ∗

and the right-hand sides are of the form Ax0 +αV e1 for a unitary matrix V , for the companion
matrix C corresponding to the eigenvalues λj , j = 1, . . . , n and for an upper triangular matrix
U such that the entries ϑi,j of its inverse satisfy ϑ1,1 = 1 and for k = 1, . . . , n− 1,

|ϑ1,k+1| = 1/fk,

ϑj,k+1 =
α

(k)
j−1

α
(k)
0 fk

, j = 2, . . . , k,

ϑk+1,k+1 =
1

α
(k)
0 fk

,

where the coefficients of the monic polynomial with roots θ(k)
j , j = 1, . . . , k are α(k)

0 , . . . , α
(k)
k−1

(in ascending order of powers).

The converse of this theorem is also true, that is, any pair of matrix and right-hand side gener-
ating given prescribed FOM residual norms, Ritz values and spectrum are of the described form.
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We also note that the constructed matrix A is nonderogatory since it is similar to a companion
matrix. One can also prescribed the harmonic Ritz values instead of the Ritz values, see [823].
To prescribe the residual norms in GMRES (that must be decreasing) we choose a strictly de-
creasing sequence gj , j = 0, . . . , n−1. We compute the corresponding prescribed FOM residual
norms by using the following result which is following from relation (6.17),

1

‖rFk ‖2
=

1

‖rGk ‖2
− 1

‖rGk−1‖2
. (6.30)

Therefore,
1

f2
k

=
1

g2
k

− 1

g2
k−1

,

and we construct the matrix A using these values of fk. If we do not want to prescribe the Ritz
values, the rows from 2 to n of the upper triangular matrix Û−1 can be chosen arbitrarily with
nonzero entries on the diagonal. The only freedom in prescribing GMRES residual norms and
the Ritz values of all n iterations using the previous construction is in the unitary matrix V which
represents a unitary basis for the Krylov subspace Kn(A, r0).

To obtain closed-form expressions for the residual norms as functions of the eigenvalues and
eigenvectors we specialized what we have seen for general Q-OR/Q-MR methods for the case
where V is unitary. The proof use the Cauchy-Binet formula. Remember that I` (or J`) is
defined to be a set of ` ordered indices ( i1, i2, . . . , i` ) such that 1 ≤ i1 < · · · < i` ≤ n.

Theorem 6.12. Let A be a diagonalizable matrix with a spectral factorization XΛX−1 where
Λ = diag(λ1, . . . , λn) contains distinct eigenvalues, let b be the right-hand side and r0 = b −
Ax0 such that c = X−1r0 has no zero components. Then for k < n,

‖rGk ‖2 = µNk+1/µ
D
k ,

where µD1 =
∑n
i=1

∣∣∣∑n
j=1Xi,j cj λj

∣∣∣2 , and for k ≥ 2

µDk =
∑
Ik

∣∣∣∣∣∣
∑
Jk

det(XIk,Jk) cj1 · · · cjk λj1 · · ·λjk
∏

j`<jp∈Jk

(λjp − λj`)

∣∣∣∣∣∣
2

,

µNk+1 =
∑
Ik+1

∣∣∣∣∣∣
∑
Jk+1

det(XIk+1,Jk+1
) cj1 · · · cjk+1

∏
j`<jp∈Jk+1

(λjp − λj`)

∣∣∣∣∣∣
2

.

The summations are over all sets of indices Ik+1,Jk+1, Ik,Jk and XI`,J` is the submatrix of
X whose row and column indices of entries are defined, respectively, by I` and J`.

In the case of GMRES, the formula for the residual norm simplifies when the matrix A is
normal. The notation is the same as in Theorem 6.12.

Theorem 6.13. Let A be a normal matrix with a spectral factorization XΛX∗ with Λ diagonal
(with distinct diagonal entries λi) and X unitary and let r0 be the initial residual vector such
that c = X∗r0 has no zero components. Applying GMRES to (A, r0), the residual norms are
given by

‖rG1 ‖2 =

∑
I2 |ci1 |

2|ci2 |2
∏

i1 ≤ i` < ij ≤ i2
i`, ij ∈ I2

|λij − λi` |2∑n
i=1 |ci|2|λi|2

, (6.31)
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‖rGk ‖2 =

∑
Ik+1

[∏k+1
j=1 |cij |2

] ∏
i1 ≤ i` < ij ≤ ik+1

i`, ij ∈ Ik+1

|λij − λi` |2∑
Ik

[∏k
j=1 |cij |2|λij |2

] ∏
i1 ≤ i` < ij ≤ ik

i`, ij ∈ Ik
|λij − λi` |2

. (6.32)

In the normal case the residual norms depend on the eigenvectors of A only through the
projections of the initial residual on the eigenvectors, whereas in the non-normal case they also
depend on determinants of submatrices of X . Hence, generally, the dependence on the eigen-
vectors is stronger in the non-normal case. Formula (6.32) for the GMRES residual norm with
a normal matrix offers an insight to the fact that outlying eigenvalues can often be associated
with an initial stage of slow GMRES convergence, see, for instance, the example in [746]. From
(6.32) we see that if there is one tight cluster of eigenvalues and, say, m other eigenvalues well
separated from this cluster, then after m + 1 iterations there will be at least one small factor
|λij − λi` |2 in every summation term of the numerator because m+ 2 eigenvalues are involved
and at least one pair of eigenvalues will belong to the cluster. If the weights are of similar size,
one can therefore expect acceleration of convergence after the m initial steps. An analogous
argument can be used in the presence of multiple clusters.

We can obtain simple bounds of the residual norms by using Theorem 6.9.

Theorem 6.14. Let A be a diagonalizable matrix, A = XΛX−1, with Λ diagonal (with distinct
diagonal entries λi), the initial residual r0 such that c = X−1r0 has no zero components and

µk =

∑
1≤i1<···<ik+1≤n

[∏k+1
j=1 |cij |2

] ∏
i1≤i`<ip≤ik+1

|λip − λi` |2∑
1≤i1<···<ik≤n

[∏k
j=1 |cij |2 |λij |2

] ∏
i1≤i`<ip≤ik |λip − λi` |

2
.

Then,
µk [σmin(X)]2 ≤ ‖rGk ‖2 ≤ µk ‖X‖2.

We observe that µk is the same as the result for normal matrices, except for the definition of
c. In these bounds the right-hand side is contained in µk through c = X−1r0 and there is no
need for ‖X−1‖ as in many other bounds in the literature. If the matrix is “almost” normal in the
sense that σmin(X) is not much different from ‖X‖, then the dependence on the eigenvalues is
“almost” the same as for a normal matrix.

The upper bound of Theorem 6.14 is equivalent to the one in [1065] which is

‖rGk ‖
‖r0‖

≤ ‖X‖ min
p ∈ πk
p(0) = 1

‖p(Λ)c‖,

with c = X−1r0. Since Λ is diagonal and therefore normal, we can apply the result of The-
orem 6.13. The value µk defined in Theorem 6.14 is an explicit expression for the minimum
min p ∈ πk

p(0) = 1

‖p(Λ)c‖.

The case of non-diagonalizable matrices is discussed in [823]. Closed-form expressions for
the coefficients of the FOM and GMRES residual polynomials are given in [820, 823].

As we have said above, the GMRES residual norms may stagnate. Let us assume for sim-
plicity that GMRES does not stop before iteration n. Partial stagnation for a given matrix A and
right-hand side b can be defined as having

‖rGk ‖ < ‖rGk−1‖, k = 1, . . . ,m, ‖rGk ‖ = ‖rGk−1‖, k = m+ 1, . . . ,m+ p− 1,
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and
‖rGk ‖ < ‖rGk−1‖, k = m+ p, . . . , n.

Hence the norms of the residual stay the same for p iterations starting from k = m. Complete
stagnation corresponds to m = 0 and p = n. Thus

‖rGk ‖ = ‖r0‖, k = 1, . . . , n− 1, and ‖rGn ‖ = 0.

Complete stagnation of GMRES was studied in [1149, 1150], see also [1014, 1011] where con-
ditions for non-stagnation were studied, and [748] where the worst-case convergence of GMRES
for normal matrices was considered. A study of necessary and sufficient conditions for com-
plete stagnation when n ≤ 4 is given in [818]. A complete characterization of matrices yielding
complete or partial stagnation was given in [819]. This is summarized in the following results.

Theorem 6.15. We have partial stagnation in GMRES for iterationm ≥ 0 to iterationm+p−1
if and only if the matrix A and the right-hand side b can be written as

A = WRQW ∗, b = Ax0 +WQ∗e1,

whereW is unitary,R is upper triangular,Q is unitary and the columns j = m+1, . . . ,m+p−1,
of Q are zero except for the subdiagonal entries (j + 1, j) which are ±e−iφi , and the rows
i = m + 2, . . . ,m + p are zero for columns i to n. We have also the same partial stagnation if
and only if A = V QRV ∗ and b = Ax0 + V e1 with V unitary and Q andR as before.

Theorem 6.16. We have complete stagnation in GMRES if and only if the matrix A and the
right-hand side b can be written as in one of the four cases:

(1) A = WUPW ∗, b = Ax0 +Wen,

(2) A = WPTLW ∗, b = Ax0 +Wen,

(3) A = V PUV ∗, b = Ax0 + V e1,

(4) A = V LPTV ∗, b = Ax0 + V e1.

where W and V are unitary matrices, U is a nonsingular upper triangular matrix, L is a non-
singular lower triangular matrix and P is the permutation matrix

P =

(
0 · · · 0 1

I 0

)
.

Corollary 6.17. We have complete stagnation in GMRES if and only if the matrix A is A =
V BV ∗ with V unitary, the matrix B being one of the four matrices below and the right-hand
sides b are chosen properly,

(1) B is an upper Hessenberg matrix with the last column proportional to e1 and b = Ax0 +
V en,

(2) B is a lower Hessenberg matrix with the last row proportional to eT1 and b = Ax0 +V en,

(3) B is an upper Hessenberg matrix with the first row proportional to eTn and b = Ax0+V e1,
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(4) B is a lower Hessenberg matrix with the first column proportional to en and b = Ax0 +
V e1.

Stagnation of the residual norms implies that the residual vectors stay the same. This is also
the case for the iterates and the error vectors. In practice, when solving real-life problems, exact
stagnation is a rather rare phenomenon. However, what is more likely to happen are phases of
quasi-stagnation where the residual norms still decrease but very slowly. This leads to large
values of the FOM residual norms for these iterations.

In [817], it is shown how to compute estimates of the `2 norm of the error during the FOM
or GMRES iterations. This can be used to derive robust stopping criteria.

The advantage of GMRES is that it minimizes the residual norm at each iteration. However,
because of the long recurrence, the storage grows with the iteration number as well as the number
of floating-point operations per iteration. When solving large problems, the storage capacity that
is needed may become an issue and the standard GMRES method, which is sometimes referred
as “full GMRES”, cannot be used. This problem was noticed very early, see [971, 979] where
remedies were proposed.

The most used technique is to periodically restart the algorithm. One runs the algorithm for
a given number m of iterations and then the algorithm is restarted from the current approximate
solution or using more sophisticated techniques. When restarting from the current iterate, these
methods are denoted as FOM(m) and GMRES(m) respectively. The set of iterations between two
restarts is called a cycle. In this way, only at most m iterations of the Arnoldi process have to be
computed successively and the storage is under control, as well as the number of floating-point
operations per cycle.

Mathematically, full FOM and GMRES obtain the solution of the linear system in at most n
iterations. This is not true for the restarted versions. Restarting usually slows down convergence
compared to the full algorithms. In fact, there are cases for which FOM(m) or GMRES(m) does
not converge to the solution even though GMRES(m) produces non-increasing residual norms. It
is possible that this method stagnates forever. GMRES(m) may produce identical approximations
during an entire cycle ofm iterations, and consequently all subsequent cycles behave in the same
way.

A common misconception about restarted methods is to believe that increasing the restart
parameter m could always improve convergence. There exist examples where convergence is
faster for a given value m than for other values m′ > m, see [397, 423], and the numerical
experiments of Section 6.8.

Even though in restarted GMRES we throw away the previous basis vectors at the beginning
of the second cycle, the second cycle depends strongly on the first cycle. The following theorem
proved in [823] shows that stagnation for some of the last iterations of the first cycle implies
stagnation for the same number of iterations at the beginning of the second cycle.

Theorem 6.18. Let A be a nonderogatory matrix such that A = V HV ∗ with V ∗V = I and H
an unreduced upper Hessenberg. Let us assume that

‖r(1)
m−j−1‖ > ‖r

(1)
m−j‖ = . . . = ‖r(1)

m ‖.

Then,
‖r(2)

0 ‖ = ‖r(2)
1 ‖ = · · · = ‖r(2)

j ‖,

which means that we have stagnation for the first j iterations of the second cycle.
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The result of Theorem 6.18 holds for any two successive cycles of GMRES(m) and stagna-
tion at the end of a cycle implies stagnation at the beginning of the next cycle. The correspond-
ing FOM(m) iterates are not defined, the upper Hessenberg matrices involved being singular.
This result shows that it is a bad idea to restart with the current iterate in case of stagnation of
GMRES(m) at the end of a cycle.

There are not many theoretical results about GMRES(m) convergence in the literature. We
can cite [688, 1009, 397, 497]. Sufficient conditions for convergence are given in [1160, 1161,
1163, 1162, 1164]. But the conditions in these papers are not easy to check a priori.

All the bounds for the full GMRES residual norms described above can be iterated. For
instance, from Theorem 6.10 we have, for a diagonalizable matrix A and after nc cycles,

‖r(nc)
m ‖ ≤ ‖r0‖

(
‖X‖ ‖X−1‖ min

p ∈ πm
p(0) = 1

max
λ∈σ(A)

|p(λ)|

)nc
.

Of course, this bound is not of any help if the term within parenthesis is larger than 1. If the
matrix A is normal, we can replace ‖X‖ ‖X−1‖ by 1.

For the ith cycle we have the bound ‖r(i)
k ‖2 ≤ µ

(i)
k ‖X‖2 with k = 1, . . . ,m and

µ
(i)
k =

∑
1≤i1<···<ik+1≤n

[∏k+1
j=1 |cij |2

] ∏
i1≤i`<ip≤ik+1

|λip − λi` |2∑
1≤i1<···<ik≤n

[∏k
j=1 |cij |2 |λij |2

] ∏
i1≤i`<ip≤ik |λip − λi` |

2
,

where c = X−1r
(i−1)
m for i = 1, . . . When A is normal, we have an equality and c = X∗r

(i−1)
m .

We observe that, when we restart from the current approximate solution, the only thing which
changes in the upper bound from one cycle to the next is the vector c. Hence, we have a fast
convergence only if one cycle decreases the components of |c| efficiently.

In the ith cycle we have r(i)
k = p

(i)
k (A)r

(i−1)
m with a polynomial of order k. It yields

r
(i)
k = p

(i)
k (A)p(i−1)

m (A) · · · p(1)
m (A)r0.

The vector r(i)
k is given by a polynomial of degree (i − 1)m + k applied to the initial residual

vector r0. However, the residual norm is not minimized over the global Krylov subspace defined
by the polynomial.

In recent years some results appeared about constructing linear systems that generate pre-
scribed residual norms for restarted FOM or GMRES. In [1001] it was proved that any residual
norms can be generated in the restarted FOM method. It was shown in [1103] that any history of
decreasing residual norms at the last iteration of every cycle of GMRES(m) is possible, provided
that at the end of every cycle, there is a strict decrease of the residual norm for the mth iterate
in comparison with the previous iteration of that cycle. The residual norm history at the last
iteration of every cycle is sometimes referred to as cycle convergence. A possible stagnation at
the end of one cycle implies stagnation at the beginning of the next cycle, as we have seen above.
Thus in that case, the admissible decreasing residual norm history inside the next cycle is not
arbitrary anymore.

The most general result was proved in [823]. The GMRES(m) residual norms are prescribed
inside cycles instead of cycle convergence assuming that there is no stagnation at the end of
any cycle. In fact, [823] constructs linear systems that generate in every cycle fully prescribed
Hessenberg matrices (all their entries are prescribed values). This allows to choose the residual
norms inside cycles and as a by-product, one can prescribe the Ritz values or the harmonic Ritz
values generated in the restart cycles as well.
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GMRES(m) is not always very efficient, particularly for small values ofm. Hence, a straight-
forward idea is to change adaptively the restart parameter m to try to improve convergence. This
is not easy since we have already said that increasing m does not always give an improved con-
vergence. Papers about this topic are [688, 1036, 1075, 597, 1155, 842, 89, 294].

A technique for restarting GMRES with vectors different from the current iterate is aug-
mentation. In [90], a method named LGMRES (meaning “Loose” GMRES) is proposed, aug-
menting the Krylov subspace with what is supposed to be an approximation of the error vector,
z(i) = x

(i)
m − x

(i−1)
m . Of course, if m is small, this can only be a very crude approximation

of the error vector. The rationale for doing this is that if we add the exact error vector to the
current approximate solution we obtain the exact solution of the linear system. LGMRES(m, k)
augments the standard Krylov subspace with k previous approximations of the error vector,

x(i+1)
m = x(i)

m + q
(i)
m−1(A)r(i)

m +

i∑
j=i−k+1

α
(i)
j z(j),

where the polynomial and the coefficients are chosen to minimize the corresponding residual
norm.

The idea which is most used is to augment the Krylov subspace with approximate eigen-
vectors. The development of these methods is based on the belief that, for some problems,
eigenvalues of A of small modulus slow down the convergence of GMRES. Unfortunately, we
have seen that this is not always true. In GMRES-E [838], k approximate harmonic Ritz vectors
are added at the end of the Krylov subspace. The harmonic Ritz vectors yi are obtained from
GMRES iterations by solving

(Hj + h2
j+1,jH

−∗
j eje

T
j )gi = ζigi, yi = Vjgi, i = 1, . . . , k,

when Hj with j ≥ k is nonsingular, which means that GMRES does not stagnate. Generally, the
vectors corresponding to the smallest harmonic Ritz values in magnitude are chosen.

Let s = m + k, Ws = (Vm y1 · · · yk ) and Q be an n × (s + 1) matrix whose first
m+1 columns are Vm+1 and the k last columns are obtained by orthogonalizing the vectorsAyi
against the previous columns of Q. We have the relation

AWs = QHs,

where Hs is an (s + 1) × s upper Hessenberg matrix. The approximate solution is x0 + Wsy
where y is obtained by minimizing the residual norm, that is, by solving miny ‖Q∗r0 −Hsy‖.

The implicitly restarted GMRES, GMRES-IR [839], uses also harmonic Ritz vectors. It
is mathematically equivalent to GMRES-E if the same approximate eigenvectors are used. In
this method ideas from the implicit Arnoldi algorithm (IRA) are used, see [1035, 729, 730].
Compared to GMRES-E the number of matrix-vector products is smaller. GMRES-IR uses the
same subspace as GMRES-E.

Another method [840] is known as GMRES with deflated restarting or GMRES-DR, even
though it is an augmentation method. It is mathematically equivalent to the methods GMRES-E
and GMRES-IR. This method generalizes the thick restarting technique developed in [1125] for
symmetric problems. The idea is to add the harmonic Ritz vectors yi = Vmgi at the beginning
of the subspace for the next cycle. This is cleverly implemented in [840] using only the vectors
gi. These vectors are orthonormalized giving the columns p1, . . . , pk of a matrix Pm,k. This
matrix is extended to the size (m + 1) × k by appending a zero row at the bottom. The least
squares residual (of lengthm+1) is orthonormalized against the columns of the extended matrix
yielding a vector pk+1 and a matrix Pm+1,k+1 of size (m + 1) × (k + 1). The matrices Hk =



6.3. FOM, GMRES and related methods 325

PTm+1,k+1H̃mPm,k and Vk+1 = Ṽm+1Pm+1,k+1 are the beginning of the upper Hessenberg
matrix and of the basis vectors of the new cycle. For stability reasons, the last basis vector vk+1

is orthogonalized against the other columns of Vk+1. Then, the Arnoldi recurrence is used to
compute the other basis vectors and the rest of the upper Hessenberg matrix. At the end of a
cycle we obtain a relation

AVm = Vm+1Hm,

whereHm is upper Hessenberg except for the (small) leading block of order k+1 which is a full
matrix with nonzero entries. At the end of the cycle, we have to solve the least squares problem

min
y
‖c−Hmy‖,

for yM with c = V ∗m+1rold, rold being the residual vector at the end of the previous cycle
and the approximate solution is xm = xold + Vm+1y

M , xold being the approximate solution
corresponding to rold. This may seem strange since rold normalized is not the first basis vector.
But this can be done as long as rold belongs to the subspace generated by the basis vectors
because we can write rold = Vm+1c. Here, since the basis vectors are orthonormal we obtain
c = V ∗m+1rold. In the general case we would have c = (V ∗m+1Vm+1)−1V ∗m+1rold.

Solving the least squares problem is slightly different from what is usually done in GMRES
because of the dense block at the top-left of Hm. A QR factorization is used to transform this
block to triangular form and then Givens rotations are used for the rest of Hm.

GMRES-DR is simpler and more efficient than GMRES-IR. A variant was proposed in [948].
In [841] it was suggested to use pseudo-eigenvectors to augment the Krylov subspace.

Another possibility to control the storage in FOM and GMRES is to truncate the long recur-
rences used to compute the basis vectors. The incomplete orthogonalization method (IOM) was
introduced in [971]. The basis vectors are computed as

ṽ = Avk −
k∑

i=i0

hi,kvi, hk+1,k = ‖ṽ‖, vk+1 =
1

hk+1,k
ṽ,

and i0 = max(1, k − m + 1). The upper bandwidth of the matrix Hk is m. In the original
IOM(m) method the linear system Hky

(k) = ‖r0‖e1 is solved using an LU factorization with
partial pivoting and xk = x0 + Vky

(k). This is a FOM-like Q-OR method since the basis is only
locally orthogonal. The algorithm in [972] is based on updating the LU factorization Hk.

A GMRES-like algorithm, named IGMRES, using a truncated Arnoldi basis was proposed in
[175]. Quasi-GMRES (QGMRES), described in [982], is just standard GMRES with a truncated
Arnoldi recurrence as described above. This is similar to IGMRES. The direct quasi-GMRES
(DQGMRES) method, proposed in [982], is a better implementation of the truncated version of
GMRES where xk is updated from xk−1 using the fact that the (k + 1) × k upper Hessenberg
matrixHk is banded. This matrix is transformed to upper triangular form by applying the product
of rotation matrices. Restarted variants of the truncated method are proposed in [1124].

Methods that are mathematically equivalent to FOM or GMRES have been proposed over
the years. Some of them are based on the following result.

Theorem 6.19. The norm of the residual vector rk is minimized in x0 +Kk(A, r0) if and only if
rk is orthogonal to AKk(A, r0).

Proof. We can write

min
xk∈x0+Kk(A,r0)

‖rk‖ = min
xk∈x0+Kk(A,r0)

‖b−Axk‖,
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= min
y∈Kk(A,r0)

‖r0 −Ay‖,

= min
w∈AKk(A,r0)

‖r0 − w‖.

The solution to the last minimization problem is given by the orthogonal projection of r0 onto
AKk(A, r0). Let Pk be this orthogonal projector. Then, the solution is w = Pkr0 and rk = (I −
Pk)r0. But I − Pk is the orthogonal projector onto the orthogonal complement of AKk(A, r0).
Hence, rk ⊥ AKk(A, r0).

Let us assume that we have a basis of Kk(A, r0) given by the columns of the matrix Vk with
basis vectors of unit norm. Let Wk be an orthonormal matrix obtained by the QR factorization
of AVk,

AVk = WkTk, (6.33)

where Tk is upper triangular of order k. The columns of Wk give an orthonormal basis of
AKk(A, r0). To have residual vectors which are orthogonal to AKk(A, r0) we define rk =
(I −WkW

∗
k )r0. This is obtained by

rj = rj−1 − αjwj , αj = (wj , rj−1), j ≤ k. (6.34)

Let Rk+1 = ( r0 · · · rk ), Dk be a diagonal matrix with the αj’s as diagonal entries and
Lk+1,k be a lower bidiagonal matrix with 1’s on the diagonal and −1’s on the first subdiagonal.
Then, we have the matrix relation,

Rk+1Lk+1,k = WkDk.

As in GMRES the iterates are defined as

xk = x0 + Vk yk.

From relation (6.33) it yields
rk = r0 −WkTk yk.

Multiplying by W ∗k and using the orthogonality property of the residual vectors, the vector of
coefficients yk is obtained by solving a triangular linear system,

Tkyk = W ∗k r0 =

α1
...
αk

 .

The last equality is obtained because (wj , r0) = (wj , rj−1) = αj , see (6.34).
We have to choose the matrices Vk. The simpler GMRES method (which we abbreviate as

SGMRES) proposed in [1108] corresponds to choosing

Vk =
( r0
‖r0‖ Wk−1

)
. (6.35)

If r0 is not inAKk−1(A, r0), the columns of Vk give a basis ofKk(A, r0). The condition number
of the matrix Vk was computed in [745, 823],

κ(Vk) =
‖r0‖+ ‖α(k−1)‖
‖rk−1‖

,

where α(k−1) = (α1 · · · αk−1 )
T . The SGMRES basis is well conditioned if and only if the

residual norms do not decrease too fast. Small residual norms lead to a badly conditioned basis
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and to large condition numbers forAVk and for Tk. This may lead to instability of SGMRES. The
interest of SGMRES compared to GMRES is that we do not have to compute the QR factorization
of the upper Hessenberg matrix Hk using Givens rotations. We just have to compute the upper
triangular matrix Tk and to solve a triangular system.

Another choice for Vk was proposed in [683]. The method is called the residual-based SGM-
RES (RB-SGMRES for short) and

Vk =
( r0
‖r0‖ · · · rk−1

‖rk−1‖
)
. (6.36)

If r0 is not in AKk−1(A, r0) and the residual norms are strictly decreasing, the columns of Vk
are linearly independent. If stagnation occurs, the residual vectors are linearly dependent and the
method breaks down. Bounds for the condition number of Vk are given in [823]. RB-SGMRES
is a Q-OR method since the basis vectors of K(A, r0) are proportional to the residual vectors.
However, this method minimizes the residual norms, and the matrix V ∗k AVk is upper triangular.

An adaptive version of this method was proposed in [682] to cure the problems we may
have with SGMRES and RB-SGMRES. Whenever the residual norm nearly stagnates it uses the
vector wk−1 at iteration k. Otherwise, when there is a sufficient residual norm decrease, it sets
the new direction vector equal to the normalized residual vector rk−1/‖rk−1‖. This adaptive
choice keeps the basis well conditioned.

The Generalized Conjugate Residual method (GCR) was introduced in [415, 403] as a gener-
alization of the Conjugate Residual (CR) method for symmetric matrices. Let p0 = r0 = b−Ax0.
Then, for k = 0, . . . the iterates and the residual vectors are constructed as

αk =
(rk, Apk)

(Apk, Apk)
,

rk+1 = rk − αkApk,
xk+1 = xk + αkpk.

This choice of αk minimizes the norm of ‖b−A(xk+αpk)‖. In the steepest descent method, one
takes pk = rk. But, we would like to minimize the residual norm inKk+1(A, r0). This is done by
constructing the direction vectors pj to be ATA (or A∗A in the complex case) orthogonal. Since
the vectors Apj will give a basis of AKk+1(A, r0), we will obtain residual vectors orthogonal
to AKk+1(A, r0). The vectors pj are defined by a long recurrence involving all the previous
direction vectors,

pk+1 = rk+1 +

k∑
j=0

β
(k)
j pj .

The coefficients β(k)
j are

β
(k)
j = − (Ark+1, Apj)

(Apj , Apj)
.

We observe that to compute the coefficients we need to have Ark+1 and Apj for j = 0, . . . , k.
To avoid having two matrix-vector products per iteration, the vectors Apj are constructed as

Apk+1 = Ark+1 +

k∑
j=0

β
(k)
j Apj .

The properties of the residual and direction vectors are given in the following theorem from [403]
(Theorem 3.1, p. 348).

Theorem 6.20. For the GCR method we have the following properties,



328 6. Krylov methods for nonsymmetric linear systems

- (Api, Apj) = 0, i 6= j,

- (ri, Apj) = 0, i > j,

- (ri, Api) = (ri, Ari),

- (ri, Arj) = 0, i > j,

- (rj , Api) = (r0, Api), i ≥ j,

- {p0, . . . , pk−1} and {r0, . . . , rk−1} span Kk(A, r0),

- xk+1 minimizes the residual norm over x0 + span(p0, . . . , pk).

The residual vectors rk are orthogonal to AKk(A, r0). From Theorem 6.19 this minimizes
the norm of rk over the Krylov subspace. Therefore, GCR is mathematically equivalent to GM-
RES. GCR is easy to implement as one can see in the following code.

function [x,nit,res] = GCR(A,b,x0,epss,nitmax)
n = size(A,1);
nb = norm(b);
x = x0;
r = b - A * x;
P = zeros(n,nitmax+1);
AP = zeros(n,nitmax+1);
res = zeros(1,nitmax+1);
pAAp = zeros(nitmax+1,1);
p = r;
Ap = A * p;
Ar = Ap;
P(:,1) = p;
AP(:,1) = Ap;
pAAp(1) = Ap' * Ap;
resid = norm(r);
res(1) = resid;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
alpha = (r' * Ap) / pAAp(nit);
r = r - alpha * Ap;
x = x + alpha * p;
resid = norm(r);
res(nit+1) = resid;
Ar = A * r;
beta = -(Ar' * AP(:,1:nit))' ./ pAAp(1:nit);
p = r + P(:,1:nit) * beta;
Ap = Ar + AP(:,1:nit) * beta;
P(:,nit+1) = p;
AP(:,nit+1) = Ap;
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pAAp(nit+1) = Ap' * Ap;
end % while
res = res(1:nit+1);

GCR is easier to code than GMRES, but contrary to GMRES, GCR can potentially break
down if for some index j, (Apj , Apj) = 0.

A method named GCRO, based on GCR with inner GMRES iterations was proposed by E. de
Sturler and D.R. Fokkema [326, 324]. Let Uk and Ck be two n× k matrices such that

AUk = Ck, CTk Ck = I,

with columns uj and cj . Let x0 = 0 and xk ∈ range(Uk) such that the norm of the residual is
minimized. Then,

rk = b−AUkyk = b− Ckyk,

with
yk = argminy‖b− Cky‖ = CTk b.

The iterates are xk = UkC
T
k b and rk = (I−CkCTk )b. But one has to compute uk+1 and ck+1 for

the next iteration. GCRO requires that the inner iteration maintains orthogonality to the columns
of Ck. The storage for GCRO increases with each outer iteration. A truncated version named
GCROT was derived in [325]. The truncation strategy was based on determining which subspace
in range(Ck) is the most important for convergence of the inner GMRES iteration and throwing
away the rest of Ck. A simplified strategy was considered by J.E. Hicken and D.W. Zingg [630].

A predecessor of GCR named Orthomin(d) was proposed in [1104]. The recurrence defining
the direction vectors is truncated as

pk+1 = rk+1 +

k∑
j=k−d+1

β
(k)
j pj .

Thus pk+1 is only ATA-orthogonal to the last d vectors pj . Orthomin is only mathematically
equivalent to GCR when we keep all the vectors pj . This is known as Orthomin(∞). The
convergence of Orthomin(d) when the symmetric part of A is positive definite was proved in
[415, 403].

Orthodir was introduced in [1146], see also [672, 673]. The method was defined using an
auxiliary matrix Z which defined the dot product. A simplified version using Z = AT was given
in [415], see also [1151]. The residual vectors and the approximate solutions are computed as in
GCR, and the direction vectors are computed by

pk+1 = Apk +

k∑
j=0

β
(k)
j pj , β

(k)
j = − (A2pk, Apj)

(Apj , Apj)
.

The coefficients are chosen to give a set of ATA-orthogonal vectors. As GCR, Orthodir can
eventually break down.

Orthores was proposed in [1146], see also [672, 673] as a generalization of the three-term
variant of CG. The simplest version of Orthodir is mathematically equivalent to FOM. These
three methods, Orthomin, Orthodir, and Orthores are not much used nowadays.

An algorithm called GCG-LS was proposed in [59, 62] with long recurrences for the residuals
and short recurrences for the pk’s.
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GMRES is almost always used with a preconditioner M . One possibility is to use another
iterative method as a preconditioner with a given stopping criterion. This is sometimes called
inner-outer iterations. However, in that case the preconditioner Mk is not the same at every
iteration and we do not have a Krylov subspace based on M−1A. Y. Saad has proposed a mod-
ification of GMRES known as Flexible GMRES (FGMRES) to handle that case, see [975]. The
algorithm is as follows

Let x0 be given, r0 = b−Ax0,

v1 =
r0

‖r0‖
, f = ‖r0‖e1,

for k = 1, . . .
Mkzk = vk, w = Azk,

for i = 1, . . . , k
hi,k = (w, vi), w = w − hi,kvi,

end i
hk+1,k = ‖w‖, vk+1 =

w

hk+1,k
,

Apply the rotations of iterations 1 to k−1 to (h1,k . . . hk+1,k)T . Compute the rotationRk+1,k to
zero hk+1,k, f = Rk+1,kf , solve the triangular system for yk. Compute the norm of the residual
which is related to the last component of f , if it is small enough, compute xk = x0 + Zkyk,
where Zk = [z1 · · · zk] and stop
end k.

The main difference with GMRES is that we have to store the vectors zj . In matrix form, we
have

AZk = Vk+1Hk.

Theorem 6.21. The approximate solution xk given by FGMRES minimizes the Euclidean norm
(`2-norm) of the residual over x0 + span(z1, . . . , zk).

Proof. See Y. Saad [975].
It must be noted that convergence results about GMRES do not carry over to FGMRES

because the subspace where the solution is sought is not a Krylov subspace.

6.4 CGNR and CGNE
Another possibility to solve Ax = b when A is nonsymmetric is to symmetrize the problem and
to apply the conjugate gradient algorithm. The first method applies CG to the problem

ATAx = AT b,

when the matrix A is real. This method is known as CGNR.

Theorem 6.22. At each iteration CGNR minimizes the Euclidean norm (`2 norm) of the residual
in x0 +Kk(ATA,AT r0).

Proof. We know that CG minimizes the norm of the error in the norm given by the matrix of
the system. But,

‖εk‖2ATA = (ATAεk, εk) = (rk, rk) = ‖rk‖2.
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The second method solves
AAT y = b, x = AT y. (6.37)

When using CG on these equations, the method is denoted as CGNE. Solving equation (6.37)
was used by E.J. Craig in his Ph.D. thesis [288] in 1954, see also [289] in 1955.

Theorem 6.23. At each iteration CGNE minimizes the Euclidean norm (`2 norm) of the error in
x0 +ATKk(AAT , r0).

Proof. The iterates xk are given by xk = AT yk where yk is the CG iterate with the matrix
AAT . Then, x− xk = AT (y − yk) where AAT y = b and

‖εk‖2 = (x− xk, x− xk) = (AT (y − yk), AT (y − yk)) = ‖y − yk‖2AAT .

Moreover, yk ∈ y0 +Kk(AAT , r0).
A downside of these approaches is that the condition number is worse than in the original

problem.

6.5 CMRH
This method uses a Hessenberg basis of the Krylov subspace. Let k < n, we consider a rectan-
gular LU factorization of the n× k Krylov matrix Kk of the form Kk = Ln,kRk where Ln,k is
a lower trapezoidal n × k matrix (that is, its top k × k submatrix is lower triangular) and Rk is
an upper triangular matrix of order k with ones on the main diagonal. This factorization exists if
the leading principal minors (the determinants corresponding to leading principal submatrices)
of Kk are nonzero. The following result was proved in [984].

Theorem 6.24. Let Kk be the Krylov matrix corresponding to Kk(A, r0) for k < n. Let us as-
sume that the principal minors of Kk are nonzero. Then, the columns `j of the lower trapezoidal
matrix Ln,k, such that Kk = Ln,kRk with Rk upper triangular and ones on the main diagonal,
are given by `1 = r0 and

`j = A`j−1 − Ln,j−1L
L
j−1,nA`j−1, j = 2, . . . , k, (6.38)

where LLj−1,n =
(

[L
(1)
j−1]−1 0

)
, L(1)

j−1 being the top (j − 1) × (j − 1) submatrix of Ln,j−1.
Moreover, `1, . . . , `k span the Krylov subspace Kk(A, r0) and

ALn,k−1 = Ln,kH̃k−1, (6.39)

where H̃k−1 is a k × (k − 1) upper Hessenberg matrix with ones on the subdiagonal, the other
nonzero entries of the jth column being LLj,nA`j .

Two things have to be modified to obtain a practical algorithm. First, the factorization can
break down if [`j ]j = 0 for some j and if we have a small [`j ]j we may have stability problems.
This was solved in [984] by using a pivoting strategy as in Gaussian elimination. Doing this, the
matrix Ln,k is no longer trapezoidal, but there exists a permutation matrix P such that PLn,k is
trapezoidal. Second, we have to normalize the vectors `j in some way.

We introduce a permutation vector s to represent P . We assume that s1, . . . , sj are known,
and we would like to determine sj+1. We compute w = A`j , and we subtract multiples of the



332 6. Krylov methods for nonsymmetric linear systems

vectors `1, . . . , `j to annihilate the components s1, . . . , sj of w. This yields a new vector w, and
we look for the index i giving the maximum of the moduli of the components of w. Then, we set
sj+1 = i and we normalize w by the maximum. Because of the permutations the subdiagonal
entries of H are no longer equal to 1.

We remark that there is no dot product in this algorithm. However, since we have to pivot
for stability, we have to look for the maximum of the components of a vector, and this is also a
reduction operation.

CMRH (which is an acronym for Changing Minimal Residual method based on the Hessen-
berg process) uses the Hessenberg basis. GMRES can be interpreted as solving the problem

min
w∈�k+1,z∈Kk(A,r0)

‖w‖, Az = r0 + Vk+1w.

CMRH was introduced in [984] by solving

min
w∈�k+1,z∈Kk(A,r0)

‖w‖, Az = r0 + Ln,k+1w,

where Ln,k+1 is the matrix computed by the Hessenberg process. This method produces an
upper Hessenberg matrix Hk. Then, the CMRH algorithm is similar to GMRES, the differences
being that

xk = x0 + Ln,kyk,

where yk is the solution minimizing ‖ ‖r0‖∞e1 −Hky‖. This is very similar to GMRES. How-
ever, a CMRH iteration is cheaper than a GMRES iteration. CMRH is a Q-MR method.

A code for CMRH is following. The maximum number of iterations nitmax has to be smaller
than or equal to n−1. If one reaches this number of iterations without convergence the algorithm
has to be restarted.

function [x,nit,res] = CMRH(A,b,x0,epss,nitmax)
n = size(A,1);
nitmax = min(nitmax,n);
rhs = zeros(nitmax+1,1);
H = zeros(nitmax+1,nitmax);
rot = zeros(2, nitmax); % init Givens rotations
res = zeros(1,nitmax+1);
LP = zeros(n,nitmax+1);
LPs = zeros(n,nitmax+1);
s = [1:n]';
x = x0;
r = b - A * x;
nb = norm(b);
i0 = index(r);
LP(:,1) = r / r(i0);
s = swap(s,1,i0);
LPs(:,1) = swap(LP(:,1),1,i0);
bet = r(i0);
resid = norm(r);
res(1) = resid;
rhs(1) = bet;
nit = 0;
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while resid > epss * nb && nit < nitmax
nit = nit + 1;
w = A * LP(:,nit);
ws = w(s);
wst = LPs(1:nit,1:nit) \ ws(1:nit);
H(1:nit,nit) = wst;
ws(1:nit) = 0;
ws(nit+1:n) = ws(nit+1:n) - sum(LPs(nit+1:n,1:nit) * wst,2);
sp = invperm(s);
w = ws(sp);
if nit+1 < n
sj = s(nit+1:n);
i1 = index(w(sj));
i0 = i1 + nit;
s = swap(s,nit+1,i0);
maxw = w(sj(i1));
else
maxw = w(n);
end % if
H(nit+1,nit) = maxw;
LP(:,nit+1) = w / maxw;
LPs(:,nit+1) = ws / maxw;
LPs = swapLP(LPs,nit+1,i0);
nw1 = maxw;
% apply the preceding Givens rotations to the last column
for kk = 1:nit-1
h1 = H(kk,nit);
h2 = H(kk+1,nit);
H(kk+1,nit) = -rot(2,kk) * h1 + rot(1,kk) * h2;
H(kk,nit) = rot(1,kk) * h1 + conj(rot(2,kk)) * h2;
end % for kk
% compute, store and apply a new rotation to zero
% the last term in nit th column
nw = H(nit,nit);
[cc,ss] = givens(nw,nw1);
% store the rotation for the next columns
rot(1,nit) = cc; % cosine
rot(2,nit) = ss; % sine
% modify the diagonal entry and the right-hand side
H(nit,nit) = rot(1,nit) * nw + conj(rot(2,nit)) * nw1;
c = rhs(nit);
rhs(nit) = rot(1,nit) * c;
rhs(nit+1) = -rot(2,nit) * c;
resid = abs(rhs(nit+1)); % estimate of the residual norm
res(nit+1) = resid;
end % while
% computation of the solution
y = triu(H(1:nit,1:nit)) \ rhs(1:nit);
x = x0 + LP(:,1:nit) * y;
res = res(1:nit+1);
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end

function ip = invperm(perm)
%inverse permutation of perm
n = length(perm);
in = [1:n];
ip(perm) = in;
end

function s = swap(s,i,j);
ss = s(i);
s(i) = s(j);
s(j) = ss;
end

function L = swapLP(L,i,j)
ss = L(i,:);
L(i,:) = L(j,:);
L(j,:) = ss;
end

function [i0,val] = index(u);
[y,I] = max(abs(u));
i0 = I(1);
val = u(i0);
end

The residual norms are related by the following result which was proved in [986].

Theorem 6.25. We have the following relations between the residual norms of GMRES and
CMRH,

‖rGMRES
k ‖ ≤ ‖rCMRH

k ‖ ≤ κ(Ln,k+1) ‖rGMRES
k ‖. (6.40)

Theorem 6.25 shows that, as long as the condition number of Ln,k+1 is not too large, the
residual norm of CMRH is not much larger than the residual norm of GMRES at a given iteration.
The norm of Ln,k+1 is bounded by the Frobenius norm. It yields

‖Ln,k+1‖ ≤
(
k + 1

2
(2n− k)

) 1
2

.

6.6 BiCG, BiCGStab and related methods
When the matrix A is nonsymmetric it is in general not possible to construct an orthogonal
basis with a three-term recurrence using only matrix-vector products with A, see [437, 435, 436,
747]. However, a three-term recurrence algorithm for nonsymmetric matrices was introduced by
C. Lanczos in [721], see also [722]. It uses the transpose matrix AT (or the conjugate transpose
A∗ in the complex case) and generates two sets of biorthogonal basis vectors.
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Let v1 and w1 be two starting vectors such that (v1, w1) = 1. We set v−1 = w−1 = 0. Then,
for k = 0, 1, . . .,

ṽk = Avk − δkvk − ηkvk−1,

w̃k = ATwk − δkwk − η̃kwk−1.

The coefficient δk is computed as
δk = (wk, Avk).

The coefficients ηk and η̃k are chosen such that

ηk+1η̃k+1 = (ṽk, w̃k).

Finally, the new vectors are normalized to obtain the basis vectors,

vk+1 =
ṽk
η̃k+1

, wk+1 =
w̃k

ηk+1
.

The relations defining the basis vectors can be written in matrix form. Let

Tk =


δ1 η2

η̃2 δ2 η3

. . . . . . . . .
η̃k−1 δk−1 ηk

η̃k δk

 ,

and
Vk = [v1 · · · vk], Wk = [w1 · · ·wk].

Then, we can write

AVk = VkTk + η̃k+1vk+1e
T
k ,

ATWk = WkT
T
k + ηk+1wk+1e

T
k .

The first relation can also be written as AVk = Vk+1T k, where

T k =

(
Tk

η̃k+1e
T
k

)
,

is a (k + 1) × k matrix, and we have V Tk AVk = Tk. We have the following properties for this
nonsymmetric Lanczos process.

Theorem 6.26. If the nonsymmetric Lanczos process does not break down, it computes biorthog-
onal vectors, that is, such that

(wi, vj) = 0, i 6= j, i, j = 1, . . . , k

The vectors v1, . . . , vk span Kk(A, v1) and w1, . . . , wk span Kk(AT , w1). The two sequences
of vectors can be written as

vk = Pk(A)v1, wk = Pk(AT )w1,

where Pk is a polynomial of degree k.

There exist several variants of the nonsymmetric Lanczos process with different scalings for
the basis vectors, see M.H. Gutknecht [593].

The previous algorithm breaks down if at some step we have (ṽk, w̃k) = 0. Either,
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a) vk = 0 and/or wk = 0. In both cases we have found an invariant subspace. If vk = 0 we
can compute the “exact” solution of the linear system. If only wk = 0, almost the only
way to deal with this situation is to restart the algorithm with another vector w1. Usually,
using a random initial vector is enough to avoid this kind of breakdown,

b) The more dramatic situation (which is called a “serious breakdown”) is when (ṽk, w̃k) = 0
with ṽk and w̃k 6= 0. A way to solve this problem is to use a look-ahead strategy, the solu-
tion being to construct also the vectors vk+1 and wk+1 at step k maintaining biorthogonal-
ity in a blockwise sense. If this is not possible, one tries to construct also the vectors vk+2

andwk+2 and so on. The worst case is when we reach the dimension of the system without
being able to return to the normal situation. This is known as an “incurable breakdown”.

Look-ahead techniques were studied in [474, 589, 592, 477], as well as [164, 166, 165, 167,
168, 169]. For details, see [823].

The BiConjugate Gradient (BiCG) algorithm can be derived from the nonsymmetric Lanc-
zos process in the same way as CG was derived from the Lanczos process in the symmetric case.
To derive algorithms that use short recurrences we have to use the LU factorization of the non-
symmetric tridiagonal matrix Tk (without permutations). Depending on the version of the non-
symmetric Lanczos process we use, we obtain different versions of BiCG, see M.H. Gutknecht
[593].

The classical version of BiCG introduced by R. Fletcher [459] using coupled two-term re-
currences is the following. A detailed derivation is given in [823].

function [x,nit,res] = BiCG(A,b,x0,epss,nitmax)
nb = norm(b);
x = x0;
r = b - A * x;
res = zeros(1,nitmax+1);
resid = norm(r);
res(1) = resid;
rt = r;
p = r;
pt = rt;
At = A';
rrt = rt' * r;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
Ap = A * p;
Atp = At * pt;
gamma = rrt / (pt' * Ap);
x = x + gamma * p;
r = r - gamma * Ap;
rt = rt - gamma * Atp;
resid = norm(r);
res(nit+1) = resid;
rrtn = rt' * r;
mu = rrtn / rrt;
rrt = rrtn;
p = r + mu * p;
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pt = rt + mu * pt;
end % while

The interest of this method is that it is very simple to code. Moreover, when A is symmetric,
it is the same as the CG method. However, this algorithm breaks down if (r̃k, rk) = 0 and/or
(p̃k, Apk) = 0.

Theorem 6.27. If BiCG does not break down we have the following properties for k 6= j,

(r̃k, rj) = 0,

(p̃k, Apj) = 0,

(r̃k, pj) = 0,

(rk, p̃j) = 0.

BiCG was obtained from the Lanczos process but this method can also be derived from
scratch from the conditions

xk ∈ x0 +Kk(A, r0), rk ⊥ Kk(AT , r̃0),

r̃k ∈ r̃0 +ATKk(AT , r̃0), r̃k ⊥ K(A, r0).

This was done in [1060].

Above we chose r̃0 = r0 but this is not mandatory. The initial vector r̃0 is often called the
shadow vector. Its choice for the nonsymmetric Lanczos process was considered in [563, 1059].
In [1059] it is shown that for a given linear system with a given starting vector, one can choose
the shadow vector in such a way to have the same residual vector as another Krylov method
at one given iteration k. Defining the shadow vector in another way, one can obtain the same
residual vectors every 2` iterations with ` = 0, 1, . . . , k. However, there is no mathematical
study in the literature about the influence of the shadow vector on the BiCG convergence curve.
The two most common choices are r̃0 = r0 and r̃0 random. The latter is sometimes used to try
to avoid breakdowns.

Contrary to what happens for the symmetric case, there are not many papers proving results
about the behavior of nonsymmetric Lanczos methods in finite precision arithmetic. The author
of [80] was interested in eigenvalue computations. His analysis was in the same spirit as what
C.C. Paige did for the symmetric Lanczos algorithm; see [889] and [816, 825] for a summary of
the results. In finite precision arithmetic the biorthogonality among the basis vectors vj and wj
can be lost. Under the assumption that local biorthogonality is satisfied up to machine precision
and that no (near-)breakdown has occurred, it is shown in [80] that the loss of biorthogonality is
linked to the convergence of the Lanczos process as it was the case for symmetric problems.

Another analysis of BiCG in finite precision arithmetic was done in [1068]. We have seen
that we can derive BiCG from the Lanczos process. In that paper the opposite direction is taken.
The authors first derived the terms due to rounding errors in all the steps of BiCG and then
eliminate the r̃j and p̃j to obtain a matrix equation for the computed residual vectors.

The nonsymmetric Lanczos process (there called the two-sided Lanczos tridiagonalization
process) was also considered in [896]. In [894] an “augmented” rounding error analysis was
done for the symmetric case. This means that the computed tridiagonal matrix comes from an
error-free Lanczos process applied to a slightly symmetrically perturbed block diagonal matrix
which is not the same at each iteration. At iteration k + 1 this matrix is diag(Tk, A) where Tk
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is the Lanczos tridiagonal matrix at iteration k. The authors of [896] studied how this can be
extended to the nonsymmetric case. They considered perturbed recurrences relations,

AVk + Ek = VkT k,

ATWk + Fk = WkT
T
k .

When there is no perturbation, the basis vectors satisfy WT
k Vk = I . Through a slight modifica-

tion of the perturbation terms it can be assumed that the diagonal entries of WT
k Vk are exactly

equal to 1. Then, it is proved in [896] Corollary 4.1 that running k steps of the Lanczos process
on A in the presence of perturbations is equivalent to running k steps of an exact Lanczos pro-
cess on a perturbation of the augmented matrix diag(Tk, A). However, contrary to the symmetric
case, the perturbation terms cannot be bounded a priori in terms of ‖Ek‖ and ‖Fk‖ because the
perturbation terms depend on Vk and Wk whose column norms can grow unboundedly. Hence,
the nonsymmetric Lanczos process is not numerically stable in the augmented sense that the
symmetric Lanczos process was proved to be.

Parallel versions of BiCG can be derived from parallel variants of the nonsymmetric Lanc-
zos algorithm, see [702, 639, 201]. One of these variants is the CA-Lanczos algorithm, a
communication-avoiding method. A CA-BiCG algorithm was derived from it in [91]. How-
ever, CA-BiCG can be derived from scratch without referring to CA-Lanczos, see [206, 201].
Analyses of CA-BiCG in finite precision arithmetic were done in [203, 201]. It was shown that
bounds for the residual norms and the maximum attainable accuracy can be written in the same
form as the corresponding bounds for the standard method multiplied by an amplification factor
depending on the condition number of the local bases.

Another variant of BiCG was proposed in [179, 180]. The goal was to reduce the data depen-
dencies of standard BiCG by introducing new vectors and to be able to overlap computation and
communication. Today this could be called a communication-hiding algorithm. In this variant
there are 5 vector updates and 4 independent dot products that can be all computed in parallel
instead of 3 in standard BiCG (if we compute the norm of the residual).

An s-step nonsymmetric Lanczos algorithm was presented in [448] from which a BiCG al-
gorithms was derived. It is a synchronization-reducing algorithm which, unfortunately, uses the
monomial basis and only small values of s ≤ 5 can be used. It has only one single global
synchronization point per s iterations for which it needs 2s dot products.

Methods like BiCG have two shortcomings. First, they can suffer from breakdowns, but this
can be solved, in some cases, by using look-ahead techniques or by changing the shadow vector.
Second, in each iteration there is a matrix-vector product with AT (or A∗ in the complex case).
This can be a problem if the transpose matrix is not easily available. This could be the case,
for instance, on parallel computers where the data for the matrix A is distributed in the local
memories. This is why some people developed Krylov methods with short recurrences but not
needing multiplications with AT . These methods are based on the useful remark that if we have
two polynomials p and q with real coefficients then,

(q(AT )r̃0, p(A)r0) = (r̃0, q(A)p(A)r0). (6.41)

They are sometimes called product-type or transpose-free methods.

The Conjugate Gradient Squared (CGS) was proposed in [1030]. It is based on the BiCG
method in which we have

rk = φk(A)r0, pk = θk(A)r0,

r̃k = φk(AT )r̃0, p̃k = θk(AT )r̃0,
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where φk and θk are polynomials of degree less than or equal to k. These polynomials satisfy
the following recurrences,

φk+1(ξ) = φk(ξ)− γk ξ θk(ξ), θk+1(ξ) = φk+1(ξ) + µk+1 θk(ξ), (6.42)

In BiCG we have to compute expressions like

(r̃k, rk) = (φk(AT )r̃0, φk(A)r0) = (r̃0, [φk(A)]2r0).

The idea behind CGS (and more generally behind all product-type methods) is to derive recur-
rence relations for all the polynomial products we need. From relation (6.42),

[φk(A)]2 = [φk−1(A)]2 + γ2
k−1A

2[θk−1(A)]2 − 2γk−1Aφk−1(A) θk−1(A). (6.43)

We need to find expressions for the last polynomial in the right-hand side. We also have

[θk(A)]2 = [φk(A)]2 + µ2
k[θk−1(A)]2 + 2µkφk(A) θk−1(A), (6.44)

and we have also to find relations for φk(A) θk−1(A).

Proposition 6.28. For k > 1,

φk−1(A) θk−1(A) = [φk−1(A)]2 + µk−1φk−1(A) θk−2(A),

φk−1(A) θk−2(A) = φk−2(A) θk−2(A)− γk−2A [θk−2(A)]2.

Proof. For the first relation we multiply

θk−1(A) = φk−1(A) + µk−1 θk−2(A),

with φk−1(A) on the left. For the second relation, we multiply

φk−1(A) = φk−2(A)− γk−2Aθk−2(A),

by θk−2(A) on the right.
We would like to construct an algorithm such that the residual vector is rk = [φk(A)]2r0.

Changing the notation, we introduce new vectors

rk = [φk(A)]2r0,

pk = [θk−1(A)]2r0,

uk = φk−1(A) θk−1(A)r0,

qk = φk(A) θk−1(A)r0.

We observe that φk(A)r0 is the residual vector we would have obtained from the BiCG algorithm
starting from r0. Then, we apply again the same polynomial but the resulting residual vector is
not what we would have obtained after k iterations by running BiCG starting from φk(A)r0.

Proposition 6.29. The vectors defined above satisfy the following recurrence relations,

rk = rk−1 − γk−1A(uk + qk),

pk = uk + µk−1[µk−1pk−1 + qk−1],

uk = rk−1 + µk−1qk−1,

qk = uk − γk−1Apk.
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Proof. These vectors satisfy the following recurrence relations,

rk = rk−1 + γ2
k−1A

2pk − 2γk−1Auk = rk−1 − γk−1A [2uk − γk−1Apk],

pk = rk−1 + µ2
k−1pk−1 + 2µk−1qk−1 = rk−1 + µk−1[µk−1pk−1 + 2qk−1],

uk = rk−1 + µk−1qk−1,

qk−1 = uk−1 − γk−2Apk−1.

Then,
rk = rk−1 − γk−1A(uk + qk),

and
pk = uk + µk−1[µk−1pk−1 + qk−1].

We also need to compute the BiCG coefficients γk and µk. Let rBk = φk(A)r0, pBk =
θk(A)r0 (and similar definitions for the vectors with a tilde) be the BiCG vectors. To compute
µk and the numerator of γk we need the dot product of residual vectors,

ρk = (r̃Bk , r
B
k ) = (φk(AT )r̃0, φk(A)r0) = (r̃0, [φk(A)]2r0) = (r̃0, rk),

and µk = ρk/ρk−1. To compute γk we also need

(p̃Bk , Ap
B
k ) = (θk(AT )r̃0, Aθk(A)r0) = (r̃0, θk(A)Aθk(A)r0)

= (r̃0, A [θk(A)]2r0) = (r̃0, Apk+1)

We can easily compute the coefficients provided we store r̃0. The other BiCG vectors r̃Bk and p̃Bk
are not needed. Since the residual vectors are defined as rk = [φk(A)]2r0, mathematically, CGS
has the finite termination property as BiCG.

A code implementing CGS is following.

function [x,nit,res] = CGS(A,b,x0,epss,nitmax)
nb = norm(b);
x = x0;
r = b - A * x;
res = zeros(1,nitmax+1);
resid = norm(r);
res(1) = resid;
p = r;
u = r;
r0 = r;
Ap = A * p;
rho0 = transpose(r0) * r;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
gamma = rho0 / (transpose(Ap) * r0);
q = u - gamma * Ap;
qu = q + u;
x = x + gamma * qu;
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Aqu = A * qu;
r = r - gamma * Aqu;
resid = norm(r);
res(nit+1) = resid;
rho = transpose(r) * r0;
mu = rho / rho0;
rho0 = rho;
u = r + mu * q;
p = u + mu * (q + mu * p);
Ap = A * p;
end % while
res = res(1:nit+1);

CGS needs two matrix-vector products per iteration as BiCG does, but the transpose (or con-
jugate transpose) ofA is not required. If BiCG converges well, the convergence of CGS is better.
However, it is well known that the residual norms of BiCG can be very oscillatory. In this case
the CGS residual norms are also oscillatory and the magnitude of the oscillations is larger since
the residual polynomial has been squared. In some problems the magnitude of the oscillations
can be so large that this may spoil the approximate solution in finite precision arithmetic. We
also note that CGS may have (near-) breakdowns if one or both of the denominators are zero or
too small.

In Lanczos-type methods the residual vectors rk must be orthogonal to the Krylov subspace
Kk(AT , r̃0). In CGS the basis for that subspace is constructed using the residual polynomial for
rk, but we can choose any polynomial we wish for constructing the auxiliary basis as long as the
vectors spanning Kk(AT , r̃0) are linearly independent. We can construct the residual vectors of
the method as

rk = qk(A)φk(A)r0,

as long as qk(0)φk(0) = 1 to be able to obtain xk from rk with any polynomial qk of degree k.
The choice which is made in BiCGStab [1086, 1087] is

qk(ξ) = (1− ωkξ) (1− ωk−1ξ) · · · (1− ω1ξ) = (1− ωkξ) qk−1(ξ),

where the inverses of the roots ωi can be computed during the iterations. In BiCGStab, ωk is
chosen to (locally) minimize the norm of rk. We use as a starting point the BiCG polynomials,

φk(ξ) = φk−1(ξ)− γk−1 ξ θk−1(ξ), θk(ξ) = φk(ξ) + µk θk−1(ξ).

Since qk(A) = (1− ωkA)qk−1(A), we have

qk(A)φk(A) = (1− ωkA)qk−1(A) (φk−1(A)− γk−1Aθk−1(A)),

= qk−1(A) (φk−1(A)− γk−1Aθk−1(A))

−ωkAqk−1(A) (φk−1(A)− γk−1Aθk−1(A)).

We need a recurrence relation for qk(A)θk(A). We have

qk(A)θk(A) = qk(A)(φk(A) + µk θk−1(A)),

= qk(A)φk(A) + µk(1− ωkA)qk−1(A)θk−1(A),

= qk(A)φk(A) + µkqk−1(A)θk−1(A)− ωkµkAqk−1(A)θk−1(A).

We set rk = qk(A)φk(A)r0 and pk = qk(A)θk(A)r0 to obtain

pk = rk + µk(pk−1 − ωkApk−1),
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rk = rk−1 − γk−1Apk−1 − ωkA(rk−1 − γk−1Apk−1).

With sk = rk−1 − γk−1Apk−1, this is

rk = sk − ωkAsk. (6.45)

Finally, we have to find expressions for the BiCG coefficients γk−1 and µk. The two quantities
that were involved in the BiCG coefficients are

(φk(AT )r̃0, φk(A)r0), (θk(AT )r̃0, Aθk(A)r0).

In was observed in [1086] that φk(A)r0 is mathematically orthogonal to all vectors tk−1(AT )r̃0

where tk−1 is any polynomial of degree less than or equal to k − 1. This is based on global
orthogonality properties that may not be valid in finite precision arithmetic. Instead of φk(AT )r̃0,
it is enough to consider only the term of degree k in (φk(AT )r̃0, φk(A)r0). Using the recurrence
relation for φk, it is equal to

(−1)kγk−1 · · · γ0(AT )k,

and

(φk(AT )r̃0, φk(A)r0) = (−1)kγk−1 · · · γ0 ((AT )kr̃0, φk(A)r0), (6.46)
= (−1)kγk−1 · · · γ0 (r̃0, A

kφk(A)r0).

Let us consider

(qk(AT )r̃0, φk(A)r0) = (−1)kωk · · ·ω1 (r̃0, A
kφk(A)r0).

Hence,
(φk(AT )r̃0, φk(A)r0) =

γk−1 · · · γ0

ωk · · ·ω1
(qk(AT )r̃0, φk(A)r0).

The coefficient µk is

µk =
(φk(AT )r̃0, φk(A)r0)

(φk−1(AT )r̃0, φk−1(A)r0)
=
γk−1

ωk

(r̃0, qk(A)φk(A)r0)

(r̃0, qk−1(A)φk−1(A)r0)
.

To obtain µk we just have to compute (r̃0, qk(A)φk(A)r0) = (r̃0, rk) at each iteration and

µk =
γk−1

ωk

(r̃0, rk)

(r̃0, rk−1)
.

For the other coefficient γk−1, we remark, using (6.46), that the leading coefficient of θk is the
same as for φk. All the products of coefficients cancel and we obtain

γk−1 =
(r̃0, A

k−1φk−1(A)r0)

(r̃0, Akθk−1(A)r0)
=

(r̃0, rk−1)

(r̃0, Apk−1)
.

The roots of the polynomials qk are chosen to locally minimize the residual norm. From (6.45),
minimizing the norm of the residual as a function of ω yields

ωk =
(sk, Ask)

(Ask, Ask)
. (6.47)

A code implementing BiCGStab is following. We chose r̃0 = r0, but this is not mandatory. As
in CGS there are two matrix-vector products per iteration.
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function [x,nit,res] = BiCGStab(A,b,x0,epss,nitmax)
nb = norm(b);
x = x0;
r = b - A * x;
res = zeros(1,nitmax+1);
resid = norm(r);
res(1) = resid;
p = r;
r0 = r;
Ap = A * p;
rkrt = r0' * r;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
gamma = rkrt / (r0' * Ap);
s = r - gamma * Ap;
As = A * s;
om = (As' * s) / (As' * As);
x = x + gamma * p + om * s;
r = s - om * As;
resid = norm(r);
res(nit+1) = resid;
rkr = r0' * r;
mu = (rkr / rkrt) * (gamma / om);
rkrt = rkr;
p = r + mu * (p - om * Ap);
Ap = A * p;
end % while
res = res(1:nit+1);

The generalization to complex data is done in [591]. BiCGStab is as simple to code as CGS
and, in many problems, the residual norms are less oscillatory. As BiCG and CGS, BiCGStab
may also suffer from (near-)breakdowns. For recipes to cure breakdowns, see [162].

Motivated by the fact that to have good convergence the residual polynomials must be small
at the eigenvalues of A and that the zeros of the polynomials qk in BiCGStab are real in case
of real data (see (6.47)), it was proposed in [590] to modify the method to let the polynomial
having complex conjugate roots. This was also supposed to give a better damping effect for the
residuals. The resulting method is known as BiCGStab2. To be able to still use real arithmetic
the polynomial qk is not chosen in the same way in the odd and even iterates,

q2j+1(ξ) = (1− ωjξ)q2j(ξ),

q2j+2(ξ) = (1− νj)q2j(ξ) + (νj − ηjξ)q2j+1(ξ).

When the data is real, the coefficients are real and q2j+2 has real or complex conjugate roots. The
parameters are chosen to minimize the residual norms in a one- or two-dimensional subspace.

A reordered BiCGStab algorithm was considered in [713], the aim being to be able to overlap
the communications for the dot products and the computations with the preconditioner. However,
in finite precision arithmetic, the maximum attainable accuracy can be worse than what is ob-
tained with the standard version of BiCGStab.
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Communication-avoiding s-step versions of CGS and BiCGStab were derived in [201]. As
with CA-BiCG, the goal was to be able to use a matrix powers kernel and to reduce the number
of global synchronization points.

A technique called “pipelining” was proposed for BiCGStab in [279]. The authors introduced
auxiliary vectors to decouple matrix-vector products and dot products. The data dependencies
due to the dot products are alleviated by deriving recurrences for the vectors involved and by
computing these dot products with variables of the previous iterations. However, the number
of dot products is larger than with standard BiCGStab (6 instead of 4) as well as the number of
vector updates (8 instead of 4) and the resulting algorithm tends to be unstable. It was proposed to
improve this by replacing the computed residual by the true residual b−Axk every m iterations.
This is a very simple strategy that may not work for all problems. A mathematical study of the
difference between the computed residual and the true residual is done in [275]. The convergence
speeds of parallel variants of BiCGStab are studied in [2].

BiCGStab was further generalized in [1017], see also [1019]. This method, called BiCGStab(`),
is doing ` BiCG-like steps, and then a residual norm minimization in a subspace of dimension `.
The residual vector and the approximate solution are only available at the end of these two steps.
Even though the ideas on which the algorithm is based are easy to understand, its derivation in
[1017] is quite involved. A code implementing BiCGStab(`) is following.

function [x,nit,res] = BiCGStabl(A,b,x0,epss,nitmax,ell,kappa)
if isempty(ell)
l = 2; % BiCGStab(2)
else
l = ell;
end % if
if isempty(kappa)
kappa = 0.7;
end % if
nb = norm(b);
nA = size(A,1);
x = x0;
r = b - A * x;
resid = norm(r);
res = zeros(1,nitmax+1);
res(1) = resid;
rt = r;
u = zeros(nA,1);
gamma = 1;
omega = 1;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
gamma = -omega * gamma;
y = r;
for j=1:l
rho = rt' * y;
beta = rho / gamma;
u = r - beta * u;
y = A * u(:,j);



6.6. BiCG, BiCGStab and related methods 345

u(:,j+1) = y;
gamma = rt' * y;
alpha = rho / gamma;
x = x + alpha * u(:,1);
r = r - alpha * u(:,2:j+1);
y = A * r(:,j);
r(:,j+1) = y;
end % for j
G = r' * r;
Gamma0 = [1; -G(2:l,2:l) \ G(2:l,1); 0];
Gamma1 = [0; -G(2:l,2:l) \ G(2:l,l+1); 1];
NGamma0 = Gamma0' * G * Gamma0;
NGamma1 = Gamma1' * G * Gamma1;
omega = Gamma0' * G * Gamma1;
cosine = abs(omega) / sqrt(NGamma0 * NGamma1);
omega = omega / NGamma1;
if cosine < kappa
omega = (kappa / cosine) * omega;
end % if
Gamma = Gamma0 - omega * Gamma1;
x = x - r * [Gamma(2:l+1); 0];
r = r * Gamma;
u = u * Gamma;
resid = norm(r(:,end));
res(nit+1) = resid;
end % while
res = res(1:nit+1);

Usually BiCGStab(`) is used with small values of `. Note that BiCGStab(2) is not equivalent
to BiCGStab2. The relatively good performances and the ease of coding of CGS, BiCGStab
and BiCGStab(`) triggered an interest for this type of methods in the 1990s and a plethora of
product-type or transpose-free methods appeared. Some of them are described in [823].

The QMR algorithm was proposed in [474], see also [473, 469, 476, 470, 477, 478]. It was
designed to have a smoother behavior of the residual norms than with BiCG, but still using only
short recurrences. In its basic form it can be seen as using the general Q-MR framework with the
biorthogonal basis generated by the nonsymmetric Lanczos process. Instead of minimizing the
residual norm as in GMRES, QMR minimizes the quasi-residual norm that is,

min
y
‖ ‖r0‖e1 − T ky‖. (6.48)

The matrix T k is a (k + 1) × k tridiagonal matrix. The least squares problem (6.48) is solved
using Givens rotations. Since T k is tridiagonal, the upper triangular matrix that is obtained when
applying the Givens rotations has only three nonzero diagonals, the main diagonal and the two
diagonals next to it. The iterates are defined as

xk = x0 + Vky
(k),

where y(k) is the solution of the least squares problem. However, the iterates can be computed
with short recurrences, see, for instance, [823]. Moreover, coupled two-term recurrences can be
used as in the following code.



346 6. Krylov methods for nonsymmetric linear systems

function [x,nit,res] = qmr_2t(A,b,x0,epss,nitmax)
n = size(A,1);
res = zeros(1,nitmax);
v = b;
nb = norm(b);
rho = nb;
v = v / rho;
w = v;
p = zeros(n,1);
q = p;
d = p;
s = q;
At = transpose(A);
r = b - A * x0;
x = x0;
resid = norm(r);
res(1) = resid;
c1 = 1;
epsi = 1;
zeta = 1;
theta = 0;
eta = -1;
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
delta = transpose(w) * v;
p = v - ((zeta * delta) / epsi) * p;
q = w - ((rho * delta) / epsi) * q;
Ap = A * p;
Atq = At * q;
epsi = transpose(q) * Ap;
beta = epsi / delta;
v = Ap - beta * v;
w = Atq - beta * w;
rho1 = rho;
rho = norm(v);
zeta = norm(w);
theta1 = theta;
theta = rho / (c1 * abs(beta));
c = 1 / sqrt(1 + theta^2);
eta = -eta * (rho1 * c^2) / (beta * c1^2);
c1 = c;
d = eta * p + (theta1 * c)^2 * d;
s = eta * Ap + (theta1 * c)^2 * s;
v = v / rho;
w = w / zeta;
x = x + d;
r = r - s;
resid = norm(r);
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res(nit+1) = resid;
end % while
res = res(1:nit+1);

Since QMR is based on the nonsymmetric Lanczos process, there may be (near-) break-
downs. In [477] a QMR algorithm with look-ahead using coupled two-term recurrences is de-
scribed. QMRPACK, a Fortran 77 package implementing QMR with look-ahead, is still avail-
able in Netlib (www.netlib.org). There are relations between the BiCG and QMR iterates, see
[474].

Theorem 6.30. Let the QMR iterates be written as xQMR
k = xQMR

k−1 + τkpk and let sk and ck be
the sine and cosine of the Givens rotations used to reduce T k to upper triangular form. We have

‖rQMR
k ‖ ≤ ‖r0‖

√
k + 1|s1s2 · · · sk|,

xBiCGk = xQMR
k +

τk|sk|2

c2k
pk.

Therefore, the BiCG iterates can be computed from the QMR ones and vice versa. Usually,
QMR has a much smoother residual norm convergence curve than BiCG. Other residual bounds
can be obtained from those of the general Q-MR framework.

From the parallel Lanczos algorithm, a parallel QMR algorithm was derived in [178], see
also [1136]. An s-step QMR algorithm was devised in [471, 472].

The TFQMR method [468] construct iterates that satisfy a quasi-minimum residual property
without using the matrix transpose. However, TFQMR is not mathematically equivalent to the
original QMR algorithm in [474]. Let

ym = uk if m = 2k − 1, ym = qk if m = 2k

where uk and qk are CGS vectors, and

wm = [φk(A)]2r0 if m = 2k − 1, wm = φk(A)φk−1(A)r0 if m = 2k.

Let
Ym = ( y1 y2 · · · ym ) , Wm+1 = (w1 w2 · · · wm+1 ) .

One can check that the two bases are related by AYm = Wm+1Bm, where Bm is a lower
bidiagonal (m+ 1)×m matrix whose nonzero entries depend on the CGS coefficients µj . The
vectors y1, . . . , ym span the Krylov subspaceKm(A, r0). Writing the iterates as xm = x0+Ymz,
we can choose z to minimize the norm of the quasi-residual. It turns out that, since Bm has
a simple nonzero structure, the solution of the least squares problem can be updated cheaply
during the iterations, see [468]. The resulting algorithm only needs two matrix-vector products
per iteration.

6.7 IDR methods
The acronym IDR means “Induced Dimension Reduction”. The idea is to generate residual
vectors which are in subspaces of decreasing dimensions until obtaining a zero residual vector.

The first IDR algorithm, published in [1115], is based on the so-called IDR theorem. We use
the formulation given in [1018].
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Lemma 6.31. Let G0 and S be subspaces of �n, µ0, µ1 be complex numbers and G1 = (µ0I −
A)(G0 ∩ S). Then,

1. If G1 ⊂ G0, then (µ1I −A)(G1 ∩ S) ⊂ G1.

2. If G1 = G0 6= 0 then G0 ∩ S contains an eigenvector of A.

In most IDR algorithms the subspace S is defined as the orthogonal complement of the linear
subspace spanned by the columns of a given matrix that we denote as R̃0 which is n× s where s
is a given (small) integer. This is denoted as S = R̃⊥0 . Then, we can formulate the IDR theorem.

Theorem 6.32. Let G0 = �n and µj , j = 1, . . ., be a sequence of complex numbers. We define

Gj+1 = (µjI −A)(Gj ∩ R̃⊥0 ), j = 0, 1, . . . (6.49)

If R̃⊥0 does not contain an eigenvector of A, then for j = 0, 1, . . . and unless Gj = {0}, Gj+1 ⊂
Gj and dim(Gj+1) < dim(Gj).

The proof uses Lemma 6.31. This theorem also holds if G0 = Kn(A, v) for a given vector
v. The first IDR algorithm generates residual vectors which are in subspaces of decreasing
dimensions. This is done by enforcing orthogonality against a single given vector p, which
means that s = 1. It uses a variable splitting I − ωjA instead of µjI − A. The coefficients
ωj are computed every second iteration to minimize the residual norm, see [1115]. We observe
that, even though the IDR theorem is more general, this first algorithm used only one vector p to
define R̃0.

The subspaces defined in Theorem 6.32 are related to Krylov subspaces, see [1015, 1018].
Let pj be the polynomial of degree j defined as pj(ξ) =

∏j−1
i=0 (µi − ξ) where the µj’s are those

of Theorem 6.32. The following proposition was proved in [1018].

Proposition 6.33. Assume R̃⊥0 does not contain an eigenvector of A. The subspaces Gj defined
by (6.49) are characterized by

Gj = {pj(A)v | v ⊥ Kj(A∗, R̃0)} = pj(A)[Kj(A∗, R̃0)]⊥, (6.50)

where Kj(A∗, R̃0) is defined as

Kk(Ã, B) = span


k−1∑
j=0

(Ã)jBcj | cj ∈ �s
 =

s∑
j=1

Kk(Ã, bj), k ≥ 1,

where B is an n× s matrix with n ≥ s ≥ 1 of rank s with columns bi. Moreover, let

K(A∗, R̃0) = ∪∞j=0Kj(A∗, R̃0).

Then the following statements are equivalent:

1. There is an eigenvector of A that is orthogonal to R̃0.

2. K(A∗, R̃0) 6= �n.
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3. There exists x 6= 0 such that K(A, x) ⊥ R̃0.

Even though the dimension of Gj depends on the choice of R̃0, the generic situation is that
dim(Gj) = n − dim(Kj(A∗, R̃0)). Let us assume that none of the µj’s is an eigenvalue of A
and, following [1015], letWj = [pj(A)]−∗Kj(A∗, R̃0). Then,

Wj = Kj(A∗, [pj(A)]−∗R̃0),

and let dj = dim(Wj) = dim(Kj(A∗, R̃0)). The subspacesWj are nested and

dj+1 − dj ≤ dj − dj−1 ≤ s,

see [1015].
The idea behind IDR(s) is to generate residual vectors such that rk ∈ Gj for j = bk/(s+1)c.

The following result was proved in [1015], see also [1018].

Proposition 6.34. Let Wj = [pj(A)]−∗Kj(A∗, R̃0). A vector r belongs to Gj if and only if
r ⊥ Wj .

The IDR subspaces Gj are polynomial images of the orthogonal complements of subspaces
of increasing dimensions. Hence, they are a sequence of nested spaces of shrinking dimension.
There exist several variants of IDR(s). The first one was proposed in [1034]. Another variant
was proposed later in [1090] that enforces biorthogonality conditions of the intermediate residual
vectors and the columns of R̃0. The residual vectors are computed from the previous residual
vectors as rk+1 = (I − ωjA)vk with vk defined as

vk = rk −
s∑
`=1

γ
(k)
` gk−`, (6.51)

where the vectors gi are made orthogonal to columns of R̃0. This is done using the modified
Gram-Schmidt algorithm, meaning that we have to compute dot products. For details on the
construction of the vectors, see [823]. In the following code the matrices U are used to update the
approximate solution and the matrices G=A U to update the residual. Note that to avoid additional
matrix-vector products these matrices are computed independently. Therefore, if s is large, the
relation G=A U may not be satisfied up to working precision in finite precision arithmetic. The
matrix P corresponds to R̃0. For its columns we chose s random vectors that we orthogonalize.
The function orth orthogonalizes the columns of its input matrix.

function [x,nit,res] = IDR_Bio(A,b,x0,epss,nitmax,s)
nb = norm(b);
nA = size(A,1);
x = x0;
r = b - A * x;
res = zeros(1,nitmax+1);
resid = norm(r);
res(1) = resid;
rng('default');
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P = randn(nA,s); % shadow vectors
P = orth(P);
Pt = P';
om = 1;
G = zeros(nA,s);
U = zeros(nA,s);
M = eye(s);
nit = 0;

while resid > epss * nb && nit < nitmax
nit = nit + 1;
Ptr = Pt * r;
for kk=1:s
% solve small system and make v orthogonal to P
c = M(kk:s,kk:s) \ Ptr(kk:s);
v = r - G(:,kk:s) * c;
U(:,kk) = U(:,kk:s) * c + om * v;
G(:,kk) = A * U(:,kk);
% bi-orthogonalize the new basis vectors
for j=1:kk-1
alp = (Pt(j,:) * G(:,kk)) / M(j,j);
G(:,kk) = G(:,kk) - alp * G(:,j);
U(:,kk) = U(:,kk) - alp * U(:,j);
end % for j
M(kk:s,kk) = Pt(kk:s,:) * G(:,kk);
% make r orthogonal to p_j, j = 1,...,kk
beta = Ptr(kk) / M(kk,kk);
r = r - beta * G(:,kk);
x = x + beta * U(:,kk);
if kk < s
Ptr(kk+1:s) = Ptr(kk+1:s) - beta * M(kk+1:s,kk);
end % if
end % for kk
v = r;
t = A * v;
om = omega(t,r);
r = r - om * t;
x = x + om * v;
resid = norm(r);
res(nit+1) = resid;
end % while
end

function om = omega(t,s)
% om = (s' * t) / (t' * t); % standard formula
angle = 0.7;
ns = norm(s);
nt = norm(t);
ts = t' * s;
rho = abs(ts / (nt * ns));
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om = ts / (nt * nt);
if rho < angle
om = om * angle / rho;
end % if
end

Not much is known about the convergence of IDR when considered as an iterative method;
however, see [1032, 823]. Other IDR algorithms are described in [1020, 1089, 940, 1152]. An
interesting paper about IDR is [594].

Concerning parallel computing, the IDR(s) algorithm in [1034] has a single global synchro-
nization point per matrix-vector product. The IDR(s)-Bio variant has s(s + 1)/2 + 2 global
synchronization points per cycle. Another variant named IDR(s)-minsync derived from IDR(s)-
Bio was proposed in [271], see also [270]. It has only one global synchronization point per
step.

A predecessor of IDR(s) was proposed in [1142]. It was submitted ten years before IDR(s)
was proposed. This algorithm called ML(k)BiCGStab by its authors uses k (k > 1) left starting
vectors or shadow vectors. Unfortunately, this algorithm did not draw too much attention, prob-
ably because its derivation was too complicated. A new derivation and a reformulation of the
algorithm as well as some simplifications were proposed by one of the authors in [1140]. IDR(s)
is related to ML(k)BiCGStab but not completely equivalent, although this depends on the variant
of ML(k)BiCGStab that is considered, see [1140].

6.8 Numerical experiments
Surprisingly, let us start with the symmetric matrix bcsstk01. We use this matrix to show the
difference in results with a method like CG using short recurrences and FOM using long recur-
rences. Mathematically, these two methods are equivalent for a symmetric matrix, but Figure 6.1
shows the difference in convergence. The residual norms are almost the same at the beginning of
the iterations, but there is a delay in convergence due to rounding errors for CG and a large dif-
ference in the number of operations to reach the maximum attainable accuracy which is smaller
for CG.
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Figure 6.1. bcsstk01, true residual norms, CG (solid), and FOM (dashed)

Table 6.1 shows the maximum attainable accuracies for the true residual norms for a set
of nonsymmetric matrices. We compare full GMRES and FOM with BiCG, BiCGStab and
BiCGStab2. The maximum accuracies are of the same order except for two of the matri-
ces, jpwh_991 for which the short recurrence methods do not converge, and watt1 for which
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BiCGStab2 has a breakdown. The maximum accuracies are very large for fs_680_1 because the
initial residual norm 8.0425 1013 is very large.

Table 6.1. Maximum attainable accuracy for the true residual norm

matrix GMRES FOM BiCG BiCGStab BiCGStab2

pde_225 2.691 10−14 4.475 10−14 3.605 10−14 2.497 10−14 2.851 10−14

pde_2961 2.684 10−13 4.883 10−13 6.647 10−11 1.45 10−12 1.921 10−12

jpwh_991 1.299 10−13 2.073 10−13 breakdown no conv. NaN
fs_680_1c 2.325 10−13 4.425 10−13 1.439 10−11 3.978 10−13 3.605 10−13

fs_680_1 5.651 10−1 9.136 10−1 9.277 10−1 7.850 10−2 2.220 10−1

sherman1 1.804 10−13 2.575 10−13 2.387 10−13 2.417 10−13 2.771 10−13

nos3 2.021 10−11 5.666 10−11 5.432 10−12 5.879 10−12 6.297 10−12

add20 3.012 10−23 1.150 10−22 1.466 10−23 1.965 10−23 1.579 10−23

watt1 2.840 10−7 1.085 10−8 3.877 10−12 1.660 10−11 NaN

In Table 6.2 we display the number of iterations to have ‖rk‖ ≤ 10−10‖b‖, the norm of
the residual at convergence, the number of matrix-vector products (mv), and the number of dot
products (dp). The number of iterations seems much smaller for BiCGStab2 than for BiCGStab,
but this is because one iteration of BiCGStab2 corresponds in fact to two iterations of BiCGStab.
The number of matrix-vector products is smaller for GMRES and FOM than for the short recur-
rence methods, but the number of dot products is much larger because of the long recurrences.
For watt1 GMRES converges but the maximum attainable accuracy does not satisfy the stopping
criterion.

Figures 6.2-6.4 show the true residual norms as functions of the number of matrix-vector
products for three matrices. One can see that BiCGStab converges faster than BiCG. There are
less oscillations, but the convergence curve is not smooth. For these examples, BiCGStab2 does
not converge faster than BiCGStab. Since GMRES converges fast, there is not much differences
between FOM and GMRES.
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Figure 6.2. pde_2961, true residual norms as a function of the number of matrix-vector products,
GMRES (solid), FOM (dashed), BiCG (dot-dashed), BiCGStab (dotted), and BiCGStab2 (+)

As we have seen above, to control the storage GMRES is usually used in its restarted form
GMRES(m). Table 6.3 shows the number of iterations, the number of matrix-vector products,
and the number of dot products for full GMRES and GMRES(m) for m = 5, 10, 20, 40 for the
same matrices as in Table 6.2. For the matrices not in the table, the restarted versions do not
converge in 500 iterations. One can see that, as we said above, increasing m does not always
reduce the number of iterations (see pde_225 and pde_2961). Generally, using small values of
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Table 6.2. Number of iterations and absolute residual norms, ε = 10−10

matrix GMRES FOM BiCG BiCGStab BiCGStab2

pde_225 75 75 81 53 25
residual 1.012 10−9 1.233 10−9 1.118 10−9 3.837 10−10 1.121 10−9

mv 76 76 163 108 101
dp 2927 2927 245 267 252

pde_2961 238 241 300 163 81
residual 1.534 10−9 1.488 10−9 9.904 10−10 5.404 10−10 7.345 10−10

mv 239 242 601 328 325
dp 28681 29404 902 817 812

jpwh_991 68 69 breakdown no conv. NaN
residual 1.170 10−9 1.150 10−9 - - -

mv 69 70 - - -
dp 2416 2486 - - -

fs_680_1c 86 86 97 57 31
residual 1.058 10−9 1.143 10−9 1.587 10−9 1.723 10−9 2.266 10−9

mv 87 87 195 116 125
dp 3829 3829 293 287 312

fs_680_1 100 100 407 258 144
residual 4.213 103 4.777 103 6.976 103 6.851 103 7.989 103

mv 101 101 815 518 577
dp 5152 5152 122 1292 1442

sherman1 388 391 604 479 249
residual 3.367 10−10 3.049 10−10 3.602 10−10 2.442 10−10 3.753 10−10

mv 389 392 1209 960 997
dp 75856 77029 1814 2397 2492

nos3 266 267 283 229 113
residual 2.649 10−8 2.956 10−8 2.838 10−8 2.144 10−8 3.104 10−8

mv 267 268 567 460 453
dp 35779 36047 851 1147 1132

add20 370 389 428 588 275
residual 9.401 10−21 8.041 10−21 7.349 10−21 7.755 10−21 9.698 10−21

mv 371 390 857 1178 1101
dp 69007 76246 1286 2942 2752

watt1 - - 493 286 -
residual - - 3.131 10−9 3.622 10−9 -

mv - - 987 574 -
dp - - 1481 1432 -

m implies having more matrix-vector products because the number of iterations is large and less
dot products because the recurrences are not too long.

Figures 6.5-6.6 show the true residual norms as functions of the number of matrix-vector
products for different values of m. For fs_680_1c a value of m larger than 30 is necessary to
have convergence with the restarted versions. It illustrates the fact that the value of m has to be
chosen carefully.

Figure 6.7 shows the residual norms for BiCG and CGS. In the first 100 iterations the CGS
residual norms are larger than those of BiCG because there is no convergence. Later, CGS
converges faster than BiCG, but the maximal attainable accuracy is much worse.
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Figure 6.3. fs_680_1c, true residual norms as a function of the number of matrix-vector products,
GMRES (solid), FOM (dashed), BiCG (dot-dashed), BiCGStab (dotted), and BiCGStab2 (+)
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Figure 6.4. sherman1, true residual norms as a function of the number of matrix-vector products,
GMRES (solid), FOM (dashed), BiCG (dot-dashed), BiCGStab (dotted), and BiCGStab2 (+)

Table 6.3. GMRES(m), number of iterations, ε = 10−10

matrix full 5 10 20 40

pde_225 75 169 139 155 111
mv 76 203 153 163 114
dp 2927 762 927 1761 2253

pde_2961 238 814 590 471 501
mv 239 977 649 495 514
dp 28681 3580 3953 5415 10598

jpwh_991 68 212 163 107 77
mv 69 255 180 113 79
dp 2416 931 1023 1197 1604

Figure 6.8 compares the residual norms of full GMRES and CMRH. There is not too much
difference betweens the two. Table 6.4 displays the number of iterations to satisfy ‖rk‖ ≤
10−10‖b‖. The number of iterations for CMRH are only slightly larger than those of GMRES.

Figure 6.9 compares BiCG and the two-term recurrence version of QMR for the matrix
pde_2961. The convergence curve of QMR is smooth but it does not converge faster than BiCG.

Table 6.5 displays the results for IDR biorthogonal for different values of the number of
shadow vectors, s = 1, 2, 4, 8. Increasing s decreases the number of iterations, but the number of
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Figure 6.5. pde_2961, true residual norms as a function of the number of matrix-vector products,
GMRES(m), full (solid), m = 5 (dashed), m = 10 (dot-dashed), m = 20 (dotted), and m = 40 (+)
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Figure 6.6. fs_680_1c, true residual norms as a function of the number of matrix-vector products,
GMRES(m), full (solid), m = 5 (dashed), m = 10 (dot-dashed), m = 20 (dotted), and m = 40 (+)
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Figure 6.7. pde_2961, true residual norms as a function of the number of iterations, BiCG (solid)
and CGS (dashed)

matrix-vector products is sometimes only slightly smaller. This is apparently problem dependent.
Figure 6.10 shows the residual norms as functions of the number of matrix-vector products

for pde_2961. The convergence is only slightly improved when increasing s, and the maximum
attainable accuracy is getting worse.
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Figure 6.8. pde_2961, true residual norms as a function of the number of iterations, GMRES
(solid) and CMRH (dashed)
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Figure 6.9. pde_2961, true residual norms as a function of the number of iterations, BiCG (solid)
and QMR (dashed)
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Figure 6.10. pde_2961, true residual norms as a function of the number of matrix-vector prod-
ucts, IDR bio, s = 1 (solid), s = 2 (dashed), s = 4 (dot-dashed) and s = 8 (dotted)

6.9 Historical and bibliographical comments
A very nice paper was published in 2001 by M. Eiermann and O. Ernst [396]. Rather than
studying the Krylov methods one by one, they show that most methods can be studied in a
general abstract framework. In their own words,
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Table 6.4. Number of iterations and absolute residual norms, ε = 10−10

matrix GMRES CMRH

pde_225 75 76
residual 1.012 10−9 1.289 10−9

mv 76 77
dp 2927 1

pde_2961 238 245
residual 1.534 10−9 1.061 10−8

mv 239 246
dp 28681 1

jpwh_991 68 72
residual 1.170 10−9 1.00610−9

mv 69 73
dp 2416 1

fs_680_1c 86 87
residual 1.058 10−9 1.536 10−9

mv 87 88
dp 3829 1

fs_680_1 100 101
residual 4.213 103 3.881 103

mv 101 102
dp 5152 1

sherman1 388 395
residual 3.367 10−10 3.579 10−10

mv 389 396
dp 75856 1

nos3 266 271
residual 2.649 10−8 1.925 10−8

mv 267 272
dp 35779 1

add20 370 388
residual 9.401 10−21 9.915 10−21

mv 371 389
dp 69007 1

watt1 - -
residual - -

mv - -
dp - -

We show that essentially any Krylov subspace method for solving a linear system
can be classified as either an MR or OR method by appropriate choice of the inner
product.

This motivated our interest in the Q-OR/Q-MR framework. The relation between the entries of
the first row of the inverse of Uk and the Q-OR and Q-MR residual norms was proved by J. Duin-
tjer Tebbens and G.M. [387] in 2016 following some previous results for FOM and GMRES.

The methods for computing an orthonormal basis of a Krylov subspace originated in the
techniques used to orthogonalize a given set of vectors or functions. It goes back to the 19th cen-
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Table 6.5. IDR bio, number of iterations and absolute residual norms, ε = 10−10

matrix 1 2 4 8

pde_225 51 32 18 10
residual 5.717 10−10 9.280 10−10 1.095 10−9 1.730 10−10

mv 103 97 91 91

pde_2961 173 104 56 30
residual 3.422 10−11 6.307 10−10 1.203 10−9 7.397 10−10

mv 347 313 281 271

jpwh_991 41 26 16 9
residual 1.123 10−9 1.061 10−10 4.092 10−10 1.338 10−10

mv 83 79 81 82

fs_680_1c 63 39 22 11
residual 9.509 10−10 1.561 10−9 9.489 10−12 1.169 10−10

mv 127 118 111 100

fs_680_1 351 165 60 25
residual 7.540 103 7.594 103 7.791 103 5.371 103

mv 703 496 301 226

sherman1 793 406 198 75
residual 2.497 10−10 1.841 10−10 4.154 10−10 4.651 10−10

mv 1587 1219 991 676

nos3 237 129 66 35
residual 2.751 10−8 2.923 10−8 1.072 10−8 5.878 10−9

mv 475 388 331 316

add20 979 571 158 59
residual 4.671 10−21 9.764 10−21 7.046 10−21 5.049 10−20

mv 1959 1714 791 532

watt1 410 289 184 -
residual 1.198 10−8 5.296 10−6 2.369 10−7 -

mv 821 868 921 -

tury. But, the main origin is in the works of J.P. Gram, a Danish actuary and mathematician and
E. Schmidt, a German mathematician. Gram published a paper in 1883 where he orthogonalized
a set of linearly independent vectors. Schmidt orthogonalized a set of functions with respect
to a dot product defined by a Riemann integral. He used what is now known as the classical
Gram-Schmidt process in 1905 and 1907.

The paper [43] describing the Arnoldi process was received in May 1950. W.E. Arnoldi was
an American engineer working for Hamilton Standard Propellers in Wethersfield (Connecticut).
There were not many references to Arnoldi’s paper in the 1960s and 70s, a few tenths, even
though it was cited and commented in J.H. Wilkinson’s book [1120] in 1965, pages 382-385.

An early paper on iterative minimization techniques for general matrices is by I.M. Khabaza
[594] in 1963. Essentially the same method (without a reference to Khabaza) was proposed by
G.I. Marchuk and Y.A. Kuznetsov [784] in 1968, see also [785]. The formulation for the residual
was slightly more general. Their algorithm is essentially restarted GMRES with a different
orthogonal basis. The differences are that the basis vectors are not of unit norm and the Gram-
Schmidt algorithm is used to orthogonalize Aiv1 and not Avi.

In 1980, Y. Saad [970] used the Arnoldi process for computing approximations of eigen-
values and proved some convergence results. He introduced the Incomplete Orthogonalization
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Method (IOM) by truncating the Arnoldi relation. In 1981, Saad [971] introduced FOM (Full
Orthogonalization Method) under the name “The method of Arnoldi” to solve linear systems. He
considered again the IOM method and proved some convergence results using ellipses enclosing
the eigenvalues. The name FOM was first used in [972].

GMRES was presented in the report [979] in May 1985 by Y. Saad and M.H. Schultz. How-
ever, the original version of the report was from August 1983. They used the Arnoldi process
and Givens rotations to solve the least squares problems, a technique which is now considered as
the standard implementation of GMRES. The paper [980] was received originally by the editors
in November 1983, in revised form in May 1985 and published in July 1986.

P.N. Brown [174] in 1991 established the relation between FOM and GMRES residual norms
and the fact that when GMRES stagnates the upper Hessenberg matrices Hk are singular. This
phenomenon is called the peak-plateau behavior. It has also been studied in a more general
setting by J.K. Cullum [295, 296] in 1995 and J.K. Cullum and A. Greenbaum [297] in 1996.

It was known at the beginning of the 1990s that eigenvalues alone cannot explain GMRES
convergence for non-normal matrices. This was first clearly shown in the 1994 paper [572]
by A. Greenbaum and Z. Strakoš. They studied the matrices B that generate the same Krylov
residual space as the one given by the pair (A, b). Moreover, it was shown that the spectrum
of B can consist of arbitrary nonzero values. In [569] with V. Pták, this was extended in 1996
by proving that any non-increasing sequence of residual norms can be generated by GMRES.
The paper [41] by M. Arioli, V. Pták and Z. Strakoš in 1998 closed this series of papers with a
full parametrization of the class of matrices and right-hand sides giving prescribed convergence
history while the system matrix has prescribed nonzero spectrum. In [385] by J. Duintjer Tebbens
and G.M. in 2012 a parametrization was given of the class of matrices and right-hand sides
generating, in addition to prescribed residual norms and eigenvalues, prescribed Ritz values in
all iterations. In the paper [366] with K. Du in 2017 it was shown that, instead of the Ritz
values, one can prescribe the harmonic Ritz values. Prescribing the behavior of early terminating
GMRES was studied in the paper [386] in 2014. A study of the role eigenvalues play in forming
GMRES residual norms with non-normal matrices was done in 2015 [822].

Complete stagnation of GMRES was studied by I. Zavorin, D.P. O’Leary and H.C. Elman
[1150] in 2003, see also Zavorin’s thesis [1149] in 2001. In 2008, V. Simoncini and D.B. Szyld
[1014] gave conditions involving the symmetric (or Hermitian) part and the skew-symmetric
parts of A implying that GMRES is not stagnating. These results were extended by V. Simoncini
[1011] in 2010. Necessary and sufficient conditions for GMRES complete and partial stagnation
were given in the paper [819] in 2014.

Exact expressions for the residual norms were found starting in 2000. I.C.F. Ipsen gave in
2000 an exact expression for the GMRES residual norm with normal matrices using a mini-
mization problem over k + 1 distinct eigenvalues [665]. H. Sadok [985] in 2005 established
expressions for the residual norms involving the singular values of the matrices Hk and Hk.
J. Duintjer Tebbens, G.M., H. Sadok and Z. Strakoš [388] gave in 2014 exact expressions for
the GMRES residual norms for normal matrices. G.M. and J. Duintjer Tebbens [822] in 2015
extended these results to diagonalizable matrices.

The backward stability of GMRES-MGS was finally proved by C.C. Paige, M. Rozložník
and Z. Strakoš [897] in 2006.

Analyses of augmented Krylov methods were published by Y. Saad [977] and A. Chapman
and Y. Saad [234] in 1997. This was also considered by M. Eiermann, O. Ernst and O. Schneider
[397] in 2000, and V. Simoncini and D.B. Szyld [1013] in 2007. Augmented GMRES methods
were considered by J. Baglama and L. Reichel [158] in 1998.

An augmented method named LGMRES was proposed by A.H. Baker, E.R. Jessup and
T.A. Manteuffel [90] in 2005. Another implementation was published by A.H. Baker, J.M. Den-
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nis and E.R. Jessup [87] in 2003, see also [88]. Augmenting GMRES with approximate eigen-
vectors was mainly considered in a series of papers by R.B. Morgan. He proposed different
implementations of this idea, GMRES-E [838] in 1995, GMRES-IR [839] in 2000 based on the
implicitly restarted Arnoldi algorithm and GMRES-DR [840] in 2002 generalizing to nonsym-
metric problems the idea of thick restarting by K. Wu and H. Simon [1125] in 2000.

The construction of the Hessenberg basis originated in the work of K. Hessenberg [624] in
1940. This basis was considered by J.H. Wilkinson [1120] page 377 as a particular case of
the generalized Hessenberg process (as well as the Arnoldi process). It does not seem that this
basis attracted much attention until H. Sadok used it to define a new Q-MR method in the paper
[984] introducing CMRH in 1999. In 2012, H. Sadok and D.B. Szyld published theoretical
comparisons of the residual norms in GMRES and CMRH in [986].

The biorthogonal basis was introduced by C. Lanczos in 1950 [721], see also [722]. For
a good introduction to these methods, see M.H. Gutknecht [593]. BiCG was proposed by
R. Fletcher in 1976 and published in the proceedings of the 1975 Dundee Conference on Nu-
merical Analysis, see [459]. Originally the method was introduced to solve symmetric indefinite
problems.

After their work on methods with long recurrences [1146] in 1980, D.M. Young and K.C. Jea
considered Lanczos/Orthodir, Lancos/Orthores and Lanczos/Orthomin [673] in 1983; see also
Jea’s thesis [672].

The Conjugate Gradient Squared (CGS) was developed by P. Sonneveld in the 1980s. The
paper was submitted to the SIAM J. on Scientific and Statistical Computing (SISSC) on April
24, 1984 but the revised version was only accepted on February 2, 1988 and finally published in
January 1989.

A collaboration between Sonneveld and H. Van der Vorst resulted in 1990 in a report [1088]
whose title was CGSTAB, a more smoothly converging variant of CG-S. Finally, H. van der Vorst
published a paper whose title is Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems [1086]. The paper was submitted to SISSC May
21, 1990, accepted for publication (in revised form) February 18, 1991 and finally published in
March 1992.

M.H. Gutknecht proposed BiCGStab2, a complex version of BiCGStab in 1993 [590]. That
same year, G.L.G. Sleijpen and D.R. Fokkema proposed BiCGStab(`) [1017].

A review of Lanczos-type solvers for nonsymmetric linear systems of equations was pub-
lished by M.H. Gutknecht in Acta Numerica in 1997 [593]. This 127-page paper describes many
variants of Lanczos-like methods.

In 1991, C. Brezinski and H. Sadok [170] showed how to avoid breakdown in Sonneveld’s
CGS algorithm. Near-breakdowns were handled using formal orthogonal polynomials in [161]
in 1994 by C. Brezinski and M. Redivo-Zaglia. Look-ahead for BiCGStab was considered in
[162] in 1995. In 1998 they considered look-ahead for transpose-free Lanczos-type algorithms
[163].

Communication-avoiding CGS and BiCGStab methods were described in the Ph.D. thesis
[201] of E.C. Carson. A communication-hiding pipelined variant of BiCGStab was proposed in
2016 by S. Cools and W. Vanroose [279], see also [275, 278].

The QMR algorithms were introduced at the beginning of the 1990s as an improvement of
BiCG. The first paper [474] in 1991 was by R.W. Freund and N.M. Nachtigal. They used the
three-term Lanczos nonsymmetric process with look-ahead, see also Natchtigal’s thesis. A joint
paper with M.H. Gutknecht [470] was published in 1993. These papers followed the technical
reports [473, 469, 476, 475] from 1990 to 1992. An algorithm using two-term recurrences was
proposed [477] in 1994.

The TFQMR algorithm from R.W. Freund [468] used the CGS basis vectors to compute



6.9. Historical and bibliographical comments 361

iterates satisfying a quasi-minimal residual property. The paper was submitted in September
1991 and published in 1993. Note that TFQMR and the QMR algorithm of Freund and Nachtigal
which uses AT are not equivalent.

The development of IDR algorithms is largely due to P. Sonneveld. For the history of IDR
methods, see Sonneveld’s paper [1033]. The first algorithm was published in the proceedings of
the IUTAM Symposium on Approximation Methods for Navier-Stokes Problems in 1980 as a
contribution with P. Wesseling [1115]. The outcome of the 2008 revival of this type of algorithm
was the first IDR(s) algorithm and the paper [1034] with M. Van Gijzen, see [1031, 1033].

In 2010, M.H. Gutknecht published an expository paper whose title is “IDR explained” [594]
in which he gave details on the IDR algorithms, related them to other Krylov methods and sum-
marized the early history of IDR methods. V. Simoncini and D.B. Szyld [1015] in 2010 showed
how one can interpret IDR(s) as a Petrov-Galerkin method.

To improve the stability of the first IDR algorithm, M.B. Van Gijzen and P. Sonneveld pro-
posed in 2011 another variant of IDR using biorthogonality properties [1090]. In 2011 T.P. Col-
lignon and M.B. Van Gijzen studied how to minimize the number of synchronization points in
IDR(s) for its implementation on parallel computers [271].

In 2013 O. Rendel, A. Rizvanolli and J.-P.M. Zemke [940] summarized what was known
about IDR algorithms by describing in detail the generalized Hessenberg relations correspond-
ing to different variants of IDR. This allows to transfer techniques known for classical Krylov
subspace methods to IDR-based methods, in particular, to develop eigenvalue or Q-MR algo-
rithms.

Recent developments on IDR are given in a paper by J.-P.M. Zemke [1152] who proposed
variants in which some blocks of “basis” vectors are orthogonalized, this is called partial orthog-
onalization.

In 1999, M.-C. Yeung and T.F. Chan published a paper [1142] (received in 1997) describing
a method called ML(k)BiCGStab which can be seen as a predecessor of IDR. It can be seen as
a transpose-free extension à la BiCGStab of a method ML(k)BiCG which is using k left vectors.
A simpler derivation was done by M.C. Yeung [1140] in 2012.
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7

Preconditioning

The convergence of many iterative methods for solving a linear system depends on the condition
number κ(A) and/or the distribution of the eigenvalues of the matrix A. A natural idea is to
transform the original linear system Ax = b in such a way that the new system has the same
solution (or a solution from which the original one is easily recovered) and the transformed
matrix has better numerical properties for the iterative method to be used. Given a nonsingular
matrix M (that is called a preconditioner), we can transform the linear system into

M−1Ax = M−1b. (7.1)

Then we solve the system (7.1) instead of the original one. This is usually called left precon-
ditioning since we multiply the matrix A from the left by M−1. We could also transform the
system by right preconditioning as

AM−1y = b, Mx = y. (7.2)

If M = M1M2, we could use a two-sided preconditioner,

M−1
1 AM−1

2 y = M−1
1 b, M2x = y. (7.3)

If the matrix A is symmetric positive definite (SPD), it is generally important to keep the trans-
formed system symmetric. Assuming that M is symmetric positive definite, we could solve

M−
1
2AM−

1
2 y = M−

1
2 b, (7.4)

and we recover the solution of the original system by M
1
2x = y. Of course, we do not want to

explicitly compute M−1 or M−
1
2 . But, we can eliminate this problem by a change of variables

and for all the methods we have described in this book the only thing we have to do is solving a
linear system whose matrix is M at each iteration.

Considering a symmetric linear system, the properties that would like for the preconditioner
M are

- M being symmetric and positive definite,

- if A is sparse, M must be sparse, since we do not want to use much more storage for M
than for A,

- M being easy to construct since we do not want to spend most of the computing time
constructing M ,

363
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- M such that a linear system Mz = r is easy to solve,

- M such that we have good numerical properties for the iterative method to be used, what-
ever that means.

For most problems, it is almost impossible to construct preconditioners that satisfy all these
criteria. The properties that are mandatory for sparse SPD matrices are the first two, and only
the second one if the matrix A is nonsymmetric. For the third one, everything really depends
on the rate of convergence that we could obtain for the preconditioned system (7.4). There is
usually a trade-off between spending more time constructing a better preconditioner and having
fewer iterations with a better convergence rate that could give a smaller iteration time. What is
of interest is the total computing time. The choice also depends on knowing if we want to solve
a single linear system or if we have to solve several systems with the same matrix and different
right-hand sides. In that case, we can spend more time constructing a good preconditioner only
once. The fourth item is also important since we must not generate auxiliary problems that are as
hard to solve as the original one. The property about which we generally do not have too much
control is the last one.

The optimal preconditioner giving the best rate of convergence is always M = A, but ob-
viously this is not feasible since we won’t get any gain over the original problem. However,
this suggests that we would like to construct M such that M−1 is, in some sense, a good sparse
approximation to A−1.

There is an infinite number of degrees of freedom to construct preconditioners. It has been
said that this is more an art than a science. One thing people generally agree on is that the more
one knows about the problem to be solved, the easier it is to construct a “good” preconditioner.
Hence, some preconditioners are very specific of the problems whence other ones try to be as
general as possible. In the following sections we describe what are the most used general pre-
conditioners. For the sake of simplicity, we mainly consider symmetric matrices but explain how
the preconditioners can be extended to the nonsymmetric case.

7.1 Diagonal preconditioner
Using a diagonal preconditioner corresponds to a scaling of the matrix, see Section 2.9. The
diagonal matrix D which is usually used is constructed from the diagonal entries of A.

Theorem 7.1. If the matrix A is symmetric and has property A, that is, it is similar to(
D1 F
FT D2

)
,

withD1 andD2 being square diagonal matrices, then the diagonal preconditioner that minimizes
the condition number is D with di,i = ai,i, and

κ(D−
1
2AD−

1
2 ) = min

D̂ diagonal
κ(D̂−

1
2AD̂−

1
2 ).

Proof. See G.E. Forsythe and E.G. Straus [462].
If the matrix A does not have property A, the following result shows that D is not too far

from being optimal when A is sparse.

Theorem 7.2. If the matrix A is symmetric positive definite, then

κ(D−
1
2AD−

1
2 ) ≤ pmin

D̂
κ(D̂−

1
2AD̂−

1
2 ),
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where p is the maximum number of nonzero entries in any row of A.

Proof. See A. van der Sluis [1083].
However, these results do not tell if there really is an improvement of the condition number.

For instance, for the Poisson model problem using the diagonal of the matrixA as preconditioner
does not change the condition number since all the diagonal entries of A are equal to 4. A nu-
merical check of the Forsythe and Straus result was done by A. Greenbaum and G.H. Rodrigue
[570]. They used an optimization code to numerically compute the optimal diagonal precondi-
tioners for several model problems. For the Poisson model problem, the code converges to the
diagonal of A.

The main interest of a diagonal preconditioner is that it is well suited for parallel computers.
However, in most cases it is not the best preconditioner, even on parallel computers.

One can also use a block diagonal preconditioner provided that the linear systems with the
chosen diagonal blocks are easy to solve. Theorem 7.2 has been generalized to block diagonal
preconditioners, in which case p is the number of blocks in a block row.

7.2 SSOR preconditioner
The diagonal preconditioner corresponds to using the matrix M = D from the Jacobi splitting
A = M − N with N = −(L + U). It was a natural idea to use the matrices arising from
the Gauss-Seidel, SOR and SSOR iterative methods that we described in Chapter 4. When the
matrix A is symmetric, one can use the symmetric Gauss-Seidel or the SSOR matrices.

The SSOR preconditioner has been proposed by D.J. Evans [430] and O. Axelsson [56, 57].
If the symmetric matrix A is written as A = D + L + LT where L is strictly lower triangular,
the preconditioner M is defined as

M =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT ), 0 < ω < 2. (7.5)

The factor ω(2 − ω) is just a technical convenience and does not change the results for the
condition number. Taking ω = 1 corresponds to the symmetric Gauss-Seidel preconditioner.
The matrix M is straightforward to construct since it is directly obtained from the entries of A.
Moreover, no additional storage is needed for M and linear systems Mz = r are easy to solve
by forward and backward sweeps computing the solutions of two triangular systems, but this is
a problem on parallel computers. As we have seen in Chapter 4 a renumbering of the unknowns
can be used to introduce some parallelism.

SSOR can be straightforwardly generalized to nonsymmetric matrices, A = D + L + U ,
setting

M =
1

ω(2− ω)
(D + ωL)D−1(D + ωU).

Of course, M is not symmetric and Gauss-Seidel can be used instead.

Proposition 7.3. Let A be a symmetric positive definite matrix and λi be the eigenvalues of
M−1A where M is defined by (7.5). Then, λi ∈ (0, 1],∀i.

Proof. Since A is positive definite, the diagonal of D is strictly positive and M is positive
definite. The matrix M−1A is similar to a symmetric matrix and its eigenvalues are real. Let

B =
2− ω
ω

D, C =
ω − 1

ω
D + L.
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We can write M and A as

M = (B + C)B−1(B + CT ), A = B + C + CT .

It implies that M = A+ CB−1CT . From this relation, B being positive definite, we obtain

(Mx, x) = (Ax, x) + (B−1CTx,CTx) ≥ (Ax, x) > 0, ∀x 6= 0.

This proves that the largest eigenvalue of M−1A is less than or equal to 1.

If ω = 1, 1 is an eigenvalue of M−1A with the first column e1 of the identity matrix as an
eigenvector. If ω 6= 1, all the eigenvalues of M−1A are strictly less than 1.

The condition number κ(M−1A) was studied in the context of problems arising from finite
element methods by O. Axelsson [57] who proved the following result.

Theorem 7.4. Let M be the SSOR preconditioner and let µ and δ be real numbers such that

max
x 6=0

(Dx, x)

(Ax, x)
≤ µ, max

x 6=0

(LD−1LTx, x)− 1/4(Dx, x)

(Ax, x)
≤ δ.

Then, there exists an optimal parameter

ωopt =
2

1 + 2
√

1
µ ( 1

2 + δ)
,

such that

κ(M−1A) ≤ 1

2
+

√
(
1

2
+ δ)µ.

For ω = 1, the condition number is bounded by

κ(M−1A) ≤ 1

2
+
µ

4
+ δ.

For the Poisson model problem we have

µ =
4

λmax(A)
, δ = 0.

Theorem 7.4 shows that there exists an optimal ω (≈ 2/(1 + h)) such that

κ(M−1A) ≤ 1

2
+

1

2 sin
(
πh
2

) = O

(
1

h

)
.

Remember that for that problem κ(A) = O
(

1
h2

)
. Therefore, we gain an order of magnitude if

we are able to compute the optimal value of ω.

We can also easily define a block SSOR preconditioner provided the diagonal blocks are
nonsingular. As for the point case, the eigenvalues are in (0, 1], see [811].
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7.3 Incomplete factorizations
Factorizations arising from Gaussian elimination and its variants have been used to define pre-
conditioners. The main idea is to neglect some entries during the elimination process. Let us
start with a Cholesky factorization and the outer product algorithm described in Chapter 2. If A
is a sparse symmetric positive definite matrix, this algorithm can go through since all the pivots
are nonzero. At each step some fill-in may be generated. As we have seen, the fill-ins can only
appear within the profile of the matrix A. For symmetric M-matrices or positive definite matri-
ces, there are also some properties of decay of the absolute values of the entries of the L factor,
see [809]. Therefore, a way to generate an approximation of A, is to neglect a part of or all the
fill-in during the steps of the factorization. There are different ways to accomplish this.

Let us first assume that we have a given set of indices G = {(i, j), i > j}. We would like to
construct a splitting,

A = LΣLT −R,

L being lower triangular with `i,i = 1 for i = 1, . . . , n and Σ diagonal. We construct L in such
a way that `i,j = 0 if (i, j) 6∈ G. Let us describe the first steps of the algorithm,

A = A1 =

(
a1,1 aT1
a1 B1

)
=

(
a1,1 bT1
b1 B1

)
−
(

0 rT1
r1 0

)
= M1 −R1,

with
a1 = b1 − r1,

(b1)i = 0, if (i, 1) 6∈ G⇒ (r1)i = −(a1)i,

(b1)i = (a1)i, if (i, 1) ∈ G⇒ (r1)i = 0.

Then, if this is feasible, we factorize the matrix M1,

M1 =

(
1 0
`1 I

)(
a1,1 0

0 A2

)(
1 `T1
0 I

)
= L1Σ1L

T
1 .

By identification, we obtain

`1 =
b1
a1,1

,

A2 = B1 −
1

a1,1
b1b

T
1 .

Then, we use the same process on the matrix A2,

A2 =

(
a

(2)
2,2 aT2
a2 B2

)
=

(
a

(2)
2,2 bT2
b2 B2

)
−
(

0 rT2
r2 0

)
= M2 −R2,

where b2 is obtained from a2 by zeroing the entries whose indices (i, 2) do not belong to G. We
define

L2 =

(
1 0

0

(
1 0
`2 I

))
.

With this notation, at the end of the second step, we have

A = L1L2Σ2L
T
2 L

T
1 − L1

(
0 0
0 R2

)
LT1 −R1,
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with

L1L2 =

(
1 0

`1

(
1 0
`2 I

))
and L1

(
0 0
0 R2

)
LT1 =

(
0 0
0 R2

)
.

Of course, it is not mandatory to have ones on the diagonal of L and we have the same variants
as for the complete factorization.

The previous algorithm constructs a complete factorization of M = A+R, where the matrix
R is a priori unknown. Such an algorithm for M-matrices was described by J.A. Meijerink and
H.A. van der Vorst [795]. An interesting question is to know under which conditions such a
decomposition is feasible. We observe that the previous algorithm, which is generically known
as IC for Incomplete Cholesky, can be easily generalized to nonsymmetric matrices (ILU) pro-
vided all the pivots are nonzero. As we said,any variant of Gaussian elimination can be used to
construct incomplete factorizations; see, for instance, N. Li, Y. Saad, and E. Chow [738].

Theorem 7.5. Let A be a nonsingular H-matrix with positive diagonal entries. Then, all the
pivots of the incomplete factorization are nonzero for any set of indices G.

Proof. First, let us show that if we set to zero some non-diagonal entries of an H-matrix A,
we obtain an H-matrix. Let A = B + R, R having a zero diagonal and bi,j = ai,j or 0. There
exists a diagonal matrix E with a positive diagonal whose entries are denoted by ei,i such that
E−1AE is strictly diagonally dominant, that is,

|ai,i| >
∑
i6=j

|ai,j |
ej,j
ei;i

.

The matrix E−1BE is also strictly diagonally dominant since

|bi,i| = |ai,i| >
∑
i6=j

|ai,j |
ej,j
ei,i

>
∑
i 6=j

|bi,j |
ej,j
ei,i

.

The second step of the proof is to show that in one step of the complete factorization, if we start
from an H-matrix, then we obtain an H-matrix. Assume that at step k, Ak is an H-matrix. There
exists a diagonal matrix Ek whose diagonal entries are denoted e(k)

i > 0 and

a
(k)
i,i e

(k)
i >

∑
j 6= i
j ≥ k

|a(k)
i,j |e

(k)
j .

We have
a

(k+1)
i,j = a

(k)
i,j −

1

a
(k)
k,k

a
(k)
k,ia

(k)
k,j .

Therefore, ∑
j 6= i

j ≥ k + 1

|a(k+1)
i,j |e(k)

j =
∑
j 6= i

j ≥ k + 1

|a(k)
i,j −

1

a
(k)
k,k

a
(k)
k,ia

(k)
k,j |e

(k)
j ,

≤
∑
j 6= i

j ≥ k + 1

|a(k)
i,j |e

(k)
j +

|a(k)
k,i |

a
(k)
k,k

∑
j 6= i

j ≥ k + 1

|a(k)
k,j |e

(k)
j .

But, ∑
j 6= i

j ≥ k + 1

|a(k)
i,j |e

(k)
j =

∑
j 6= i
j ≥ k

|a(k)
i,j |e

(k)
j − |a

(k)
i,k |e

(k)
k ≤ a(k)

i,i e
(k)
i − |a

(k)
i,k |e

(k)
k .
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We also have∑
j 6= i

j ≥ k + 1

|a(k)
k,j |e

(k)
j =

∑
j≥k+1

|a(k)
k,j |e

(k)
j − |a

(k)
k,i |e

(k)
i ≤ a(k)

k,ke
(k)
k − |a

(k)
k,i |e

(k)
i .

It yields ∑
j 6= i

j ≥ k + 1

|a(k+1)
i,j |e(k)

j ≤ ai,ie(k)
i − |a

(k)
i,k |e

(k)
k

+
|a(k)
k,i |

a
(k)
k,k

(a
(k)
k,ke

(k)
k − |a

(k)
k,i |e

(k)
i )

≤ (a
(k)
i,i −

1

a
(k)
k,k

|a(k)
k,i |

2)e
(k)
i = a

(k+1)
i,i e

(k)
i .

This shows that a(k+1)
i,i > 0 and the matrix at step k+1 of the factorization is an H-matrix. Putting

together the two results that we have just proved, we have that at each step of the incomplete
factorization we are left with an H-matrix and the process can go on to completion whatever the
set of indices G is.

If we suppose that A is a symmetric M-matrix, we have the following result.

Theorem 7.6. Let A be a nonsingular symmetric M-matrix. Then, for all sets of indices G, the
incomplete Cholesky factorization,

A = LΣLT −R,

is a regular splitting.

Proof. With almost the same proof as for Theorem 7.5, we can show that starting from an
M-matrix, the matrices Ak are also M-matrices. Therefore, a(k)

i,i > 0 and a(k)
i,j ≤ 0, i 6= j. It

implies that Rk ≥ 0 and (lk)j ≤ 0. Then,(
1 0

0

(
1 0
`k I

))−1

=

(
1 0

0

(
1 0
−`k I

))
≥ 0.

Hence, R ≥ 0 and L−1 ≥ 0 and this shows that we have a regular splitting.
R.S. Varga, E.B. Saff, and V. Mehrmann [1100] characterized the matrices that are incom-

pletely factorizable. Let Fn be this set and Hn be the set of nonsingular H-matrices. We know
thatHn ⊂ Fn. Let

Ω(A) = {B|M(B) = M(A)},
Ωd(A) = {B| |bi,i| = |ai,i|, |bi,j | ≤ |ai,j |, i 6= j},
Fdn = {A ∈ Fn,Ωd(A) ⊆ Fn}.

Varga et al. showed thatHn = Fdn. Moreover, if

Fcn = {A ∈ Fn, Ω(A) ⊆ Fn},

Hn is strictly contained in Fcn which is also strictly contained in Fn. It shows that there exist
matrices that can be incompletely factorized which are not H-matrices.
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One can find examples of SPD matrices which are not H-matrices and for which the in-
complete Cholesky factorization fails. It was suggested by T.A. Manteuffel [782] to factorize
A(α) = (1 +α)D+L+LT instead of A, where α is a positive real parameter chosen such that
A(α) is an H-matrix. For instance, α can be chosen to make A+αI diagonally dominant. How-
ever, it is not always easy to find a value of the parameter such that the incomplete factorization
does not fail and such that the number of iterations is reduced.

In the nonsymmetric case, one can also use pivoting. An ILU factorization with pivoting
based on monitoring the growth of the inverse factors was proposed by M. Bollhöfer [136, 137].

An algorithm for SPD matrices was proposed by Y. Robert [946] using ideas from A. Jen-
nings and G.M. Malik [679]. Let

A =

(
a1,1 aT1
a1 B1

)
, a1 = b1 − r1.

The remainder R1 is constructed as

R1 =

(
r1
1,1 rT1
r1 DR1

)
,

with DR1
diagonal such that (DR1

)j,j = |(r1)j | and r1
1,1 =

∑n−1
j=1 |(r1)j | > 0. We split A as

A = A1 =

(
a1,1 + r1

1,1 bT1
b1 B1 +DR1

)
−
(
r1
1,1 rT1
r1 DR1

)
= M1 −R1, (7.6)

and we factorize the matrix M1,

M1 =

(
1 0
`1 I

)(
a1,1 + r1

1,1 0
0 A2

)(
1 `T1
0 I

)
.

By identification we obtain,

`1 =
b1

a1,1 + r1
1,1

, A2 = B1 +DR1 −
1

a1,1 + r1
1,1

b1b
T
1 .

Proposition 7.7. In the previous construction, R1 is semi positive definite and A2 is positive
definite.

Proof. R1 is the sum of matrices of the following form,



|r| 0 . . . 0 r

0
. . . 0

...
. . .

...

0
. . . 0

r 0 . . . 0 |r|

 0

0 0


,

with only four nonzero entries. The eigenvalues of this matrix are 0 and 2|r|. Therefore, M1 is
semi-positive definite, and M1 = A+R1 is positive definite. Let y be such that

y =

(
α
x

)
,
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with α ∈ �. We have (M1y, y) > 0 which yields

α2(a1,1 + r1
1,1) + 2α(b1, x) + ((B1 +DR1)x, x) > 0.

If we choose α = − (b1,x)
a1,1+r11,1

, we have

− (b1, x)2

a1,1 + r1
1,1

+ (x, (B1 +DR1)x) > 0,

which shows that A2 is positive definite.

Then, we use the same algorithm for A2. In this factorization, R is positive definite and the
eigenvalues of M−1A are less than 1.

This preconditioner is a so-called modified incomplete factorization. More generally, the
idea is to try to compensate for entries left in the remainder R by summing them up to the
diagonal of M . An early method (known as DKR), derived for for matrices arising from finite
difference approximations of elliptic partial differential equations in rectangles, was proposed by
T.F. Dupont, R.P. Kendall, and H.H. Rachford [391], following some older ideas by N.I. Buleev
[181] and R.S. Varga [1097] in the 1960s. This method was studied by I. Gustafsson [585].

This type of method can be extended to more general sparse problems (MIC). Let us assume
that we have a diagonally dominant symmetric M-matrix. We use a splitting as in (7.6), but with
r1 such that (r1)j = −aj,1 if (j, 1) 6∈ G, r(1)

1,1 = −
∑n
j=2(r1)j ≤ 0, and D(1)

R a diagonal matrix

of order n − 1 such that (D
(1)
R )j,j = −(r1)j . Note that here we subtract something from the

diagonal. The rowsums of R1 are equal to zero, a1,1 + r
(1)
1,1 > 0 and B1 + D

(1)
R is diagonally

dominant. It means that the algorithm can proceed with the next steps. A small perturbation
can be added to the diagonal to obtain a strictly diagonally dominant matrix. For more general
M-matrices which are generalized diagonally dominant with a vector d (such that Ad > 0),
we could require that Rd = 0. These methods are easily extended to the nonsymmetric case
(MILU).

The relaxed incomplete Cholesky factorization (RIC or RILU in the nonsymmetric case) is
basically the same as MIC except that the values that are added to the diagonal are multiplied by
a relaxation parameter ω such that 0 ≤ ω ≤ 1. Therefore, ω = 0 gives IC and ω = 1 gives the
unperturbed MIC.

Bounds for the eigenvalues and the condition number are given in O. Axelsson’s book [64].

Theorem 7.8. Let A and M be SPD matrices and let µ1, µ2 > 0 ∈ � such that λmax(µ1M −
A) ≥ 0, λmin(µ2M −A) ≥ 0. Then,

µ1λi(A)

λi(A) + λmax(µ1M −A)
≤ λi(M−1A) ≤ µ2λi(A)

λi(A) + λmin(µ2M −A)
.

Axelsson’s result can be used to derive upper bounds for λmax(M−1A) and lower bounds for
λmin(M−1A). If A = αI+L+LT where α is a positive real number, M = (X+L)X−1(X+
LT ) with X being an M-matrix and β = λmin(X), then if 2β − α > 0,

λi(M
−1A) ≤

{
4βλi(A)

(2β−α+λi(A))2 , if λi(A) ≤ 2β − α,
β

2β−α , if λi(A) ≥ 2β − α.
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For the incomplete Cholesky factorization where the nonzero structure of L is the same as that
of the lower triangular part of A and the Poisson model problem β ≈ 2 +

√
2 and it yields

λmax(M−1A) ≤ 2 +
√

2

2
√

2
≈ 1.2071 . . .

Moreover, we have

λi(A)

λi(A) + 2
β

≤ λi(M−1A) ≤ 4(2 +
√

2)λi(A)

(2
√

2 + λi(A))2
.

It shows that λmin(M−1A) = O(h2). For the smallest eigenvalues we have

λi(M
−1A) =

2 +
√

2

2
λi(A) +O(λi(A)2).

This result essentially shows that the distribution of the smallest eigenvalues of M−1A is al-
most the same as for the original problem. For this incomplete factorization and this problem,
R. Chandra [227] proved that

1

17
κ(A) ≤ κ(M−1A) ≤ 17κ(A),

That is, the condition number of M−1A is of the same order as the condition number of A. As
far as we know, there is no theoretical results for the nonsymmetric case.

Since we know how to compute some incomplete factorizations, we need a strategy for choos-
ing the set of indices G for the nonzero entries in L (and U in the nonsymmetric case). The most
widely used strategy is to use a sparsity pattern of L identical to that of the lower triangular
part of A. This is generally known as IC(0) or ILU(0). However, more accurate and efficient
factorizations can be obtained by retaining a part of the fill-in that is generated.

There exist several ways to enlarge the set G, starting from the nonzero pattern of the lower
triangular part of A. One possibility is to associate a number called the level to any entry com-
puted in the factorization. Entries which are nonzero in A are of level 0 and all the zero entries
are of level∞. Then, in the steps of the decomposition, fill-ins generated by level 0 entries are
said of to be of level 1, fill-ins generated by fill-ins are of level 2, etc. . . This is formalized in the
following way. Let lev(k)

i,j be the level of fill-in of a(k)
i,j , then, after one elimination step, the new

level is computed as

lev
(k+1)
i,j = max(lev

(k)
i,j , lev

(k)
i,k + lev

(k)
j,k + 1).

The strategy for the incomplete factorization is to keep only the fill-ins having a level which is
below a given threshold p. When the matrix is symmetric we have seen that the structure of
the complete factors can be determined in a preprocessing phase. The same thing holds for the
incomplete factorization where the level of fill-in and the structure of the incomplete factor L can
be computed before the numerical factorization takes place. The rationale behind this strategy is
that if some fill-ins are small, then, the fill-ins generated by those previous fill-ins will be even
smaller and so on. Therefore, neglecting the fill-ins beyond a certain level is supposed to drop
only small entries.

Another strategy was introduced in the 1970s by A.D. Tuff and A. Jennings [1076] and
others. In this method, we not only look at the structure of the incomplete factors but also at the
actual (absolute) values of the entries. At some step k, the fill-in is computed and it is discarded
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or not according to some dropping strategy. The most used one is to compare |a(k+1)
i,j | to some

threshold and to drop the fill-in if it is too small. Different ways of dropping the entries have
been proposed over the years. For instance, one can drop the entry if

|a(k+1)
i,j | < ε [ max

`≥k+1
|a(k)
i,` |, max

`≥k+1
|a(k)
j,` |].

Another possibility is to compare |a(k+1)
i,j | to the norm of the ith row of A. The main drawback

of these methods is that the structure of L is not known before the elimination as when factoring
nonsymmetric sparse matrices with pivoting. Moreover, we do not know a priori how much
storage is needed. This kind of method can be slightly modified and, for instance, the fill-ins in
the kth column can be compared to a threshold, but only the p largest ones are kept provided
they satisfy the given criteria. In this way the amount of storage can be controlled. This type of
method for nonsymmetric problems (named ILUT) was considered by Y. Saad [976], see also
[770, 12].

The following code computes the incomplete Cholesky factorization IC(0), A = LDLT

where L has a unit diagonal and the vector d is the diagonal of D.

function [L,d] = IC0(A)
B = A;
n = size(A,1);
L = sparse(n,n);
d = zeros(n,1);
for k=1:n-1
m = size(B,1);
b1 = 1 / B(1,1);
i = find(A(k:n,k));
sl = sparse(i,1,B(i,1)*b1,m,1);
L(k:n,k) = sl;
L(k,k) = 1;
d(k) = B(1,1);
% Schur complement
ind = i(2:end)-1;
sl = sl(2:m);
BB = B(2:m,2:m);
% do not take care of symmetry (faster)
for i=ind
BB(i,ind) = BB(i,ind) - B(1,1) * sl(i) * sl(ind)';
end
B = BB;
end
L(n,n) = 1;
d(n) = B(1,1);
ind = find(d <= 0);
if length(ind) > 0
error('Pb with the incomplete factorization , negative diagonal

entries')
end % if

A (non-optimal) code for computing a level-based IC factorization is following.
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function [L,d] = IC_level(A)
B = A;
n = size(A,1);
L = sparse(n,n);
Lev = Inf * ones(n,n);
for i=1:n
for j=1:n
if A(i,j) ~= 0
Lev(i,j) = 1;
end % if
end % for j
end % for i
d = zeros(n,1);
for k=1:n-1
m = size(B,1);
b1 = 1 / B(1,1);
ii = find(B(:,1));
sl = sparse(ii,1,B(ii,1)*b1,m,1);
L(k:n,k) = sl;
% dropping strategy
i = find(Lev(2:end,1) > levmax);
L(i+k,k) = zeros(length(i),1);
L(k,k) = 1;
d(k) = B(1,1);
ind = find(L(k+1:n,k))';
sl = sl(2:m);
% update of levels
for i=1:m
for j=1:m
Lev(i,j) = min(Lev(i,j), Lev(i,1) + Lev(1,j) + 1);
end % for j
end % for j
BB = B(2:m,2:m);
Lev = Lev(2:m,2:m);
% Schur complement
% do not take care of symmetry (faster)
for i = ind
BB(i,ind) = BB(i,ind) - B(1,1) * sl(i) * sl(ind)';
end % for i
B = BB;
end
L(n,n) = 1;
d(n) = B(1,1);
ind = find(d <= 0);
if length(ind) > 0
error('Pb with the incomplete factorization , negative diagonal

entries')
end

IC is one of the most popular preconditioners since it is relatively efficient on most problems
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and easy to implement. We have seen in Chapter 3 that for Gaussian elimination the issue of how
the unknowns are ordered is of great importance. Some orderings as the reverse Cuthill-McKee,
the minimum degree or nested dissection can reduce the work and storage for the factorization
of the matrix. The effect of the ordering of the unknowns for incomplete factorizations was
studied experimentally for symmetric problems arising for finite difference matrices methods by
I.S. Duff and G.M. [377].

Seventeen different orderings are considered in [377]. We simply report results from [377]
for orderings we have studied in Chapter 3. They are listed in Table 7.1 together with the abbre-
viations used in the tables.

Table 7.1. Orderings

ordering Abbreviation

row ordering row
reverse Cuthill-McKee rcm

minimum degree mind
nested dissection nest

In tables 7.2-7.3 we give the number of PCG iterations using IC(0) as a preconditioner to
satisfy ‖rk‖ ≤ 10−6‖b‖, the number of modifications that would occur in the complete factor-
ization, the number of entries in the remainder R, the Frobenius norm of R and maxi,j |ri,j |.
The number of operations per iteration is the same for all orderings, therefore the number of
iterations is a good measure of the relative merits of the orderings. All examples use a 30 × 30
regular grid, that is, n = 900.

Table 7.2. Results for the Poisson model problem, IC(0)

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 23 24389 841 142.5 0.293
rcm 23 16675 841 142.5 0.293

mind 39 7971 1582 467.3 0.541
nest 25 15228 1012 157.1 0.293

The second test problem is arising from the finite difference discretization of a 2D diffusion
equation with a diffusion coefficient of 100 in the x direction and 1 in the y direction.

Table 7.3. Results for the anisotropic problem, IC(0)

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 9 24389 841 0.12 104 0.87
rcm 9 16675 841 0.12 104 0.87

mind 48 7971 1582 0.18 107 49.51
nest 26 15228 1012 0.43 106 49.51

From these results, we see that the number of PCG iterations is not related to the number of
fill-ins we are dropping, but it is almost directly related to the norm of the remainder matrix R.
The number of fill-ins is related to the structure of the matrix, but the incomplete factorization is
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dependent on the value of the entries. Some orderings like the minimum degree have very small
number of fill-ins but a “large” matrix R and give a large number of iterations.

Table 7.4. Results for the Poisson model problem, MIC(0)

ordering # of iter. # of modifs # of elts in R ‖R‖2F maxi,j |ri,j |

row 18 24389 1741 1010. 0.979
rcm 18 16675 1741 1010. 0.979

mind >200 7971 2482 3568. 3.000
nest 38 15228 1912 1107. 1.666

Let us now consider the modified incomplete decomposition MIC. As we can see in Table 7.4,
the norm ‖R‖F is much larger than for IC(0), although the number of iterations for the row
ordering is smaller. Some of the orderings do not even converge when the modified factorization
is used. Some other experiments were conducted keeping more fill-in. The first one uses a single
level of fill-in. In tables 7.5 and 7.6, we add a column giving the number of entries in L.

Table 7.5. Results for the Poisson model problem, IC with one level of fill-in

ordering # iter. # modifs # elts in R ‖R‖2F maxi,j |ri,j | # elts in L

row 17 24389 1653 2.43 0.087 3481
rcm 17 16675 1653 2.43 0.087 3481

mind 23 7971 2467 38.81 2.509 4282
nest 19 15228 2187 35.34 0.173 3652

Table 7.5 shows the results of IC using one level of fill-in. The second experiment with
results in Table 7.6 uses a drop tolerance to keep or discard the fill-ins.

Table 7.6. Results for the Poisson model problem, IC, tol=0.05

ordering # iter. # modifs # elts in R ‖R‖2F maxi,j |ri,j | # elts in L

row 12 24389 1595 4.26 0.039 4293
rcm 10 16675 1540 2.846 0.041 4293

mind 10 7971 1657 2.285 0.049 5531
nest 12 15228 2622 3.890 0.049 5574

For the factorizations using one level of fill-in, the reduction in the number of iterations does
not compensate for the extra work done within each iteration. The reverse is true for the drop
tolerance results where the greater reduction in iterations more than compensates the increased
work. An interesting feature is that the relative performance of the different ordering schemes
has changed. For example, the minimum degree algorithm does much better when some fill-in is
allowed in L. An explanation is that many of the first level fill-ins for these orderings are quite
large, unlike for the standard row ordering where the values of the fill-ins rapidly decrease.

These experimental results about the effect of changing the ordering before the incomplete
factorization have been partly explained by V. Eijkhout [401] and S. Doi and A. Lichnewsky
[345, 346] who also provided numerical experiments with nonsymmetric problems. Orderings
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for nonsymmetric problems were also considered by M. Benzi, D.B. Szyld, and A. Van Duin
[118]; see also L. Oliker, X. Li, P. Husbands, and R. Biswas [877], as well as D. Osei-Kuffuor,
R. Li, and Y. Saad [885].

E.F. D’Azevedo, P.A. Forsyth and W.-P. Tang [319] proposed an algorithm for constructing
an ordering for general sparse matrices that reduces the discarded fill-in during the incomplete
factorization. This is called the Minimum Discarded Fill (MDF) algorithm. The main problem
with MDF is that the construction of the preconditioner is quite costly.

A popular technique to introduce parallelism in the computation and use of an incomplete
factorization is using a multicolor ordering. The nodes of the graph of the matrix A are colored
with several different colors in such a way that the neighbours of a node of a given color all
are of a different color. In earlier studies, like the one by E.L. Poole and J.M. Ortega [921],
only a small number of colors was considered. Their conclusion was that the convergence of the
iterative method was slowed down. This was also the conclusion in [377] where a red-black and
a 4-color ordering were used. Orderings with a large number of colors were later considered by
S. Doi and A. Hoshi [344] and S. Fujino and S. Doi [481] with some successes.

A completely different method for computing an ILU factorization was proposed by E. Chow
and A. Patel [255]. They used the fact that

[LU ]i,j = ai,j , (i, j) ∈ G.

Taking L with a unit diagonal, this relation can be written for (i, j) ∈ G as

`i,j =
1

ui,i

(
ai,j −

i−1∑
k=1

`i,kuk,j

)
,

ui,j = ai,j −
i−1∑
k=1

`i,kuk,j .

This can be considered as a nonlinear system where the unknowns are the nonzero entries in
the strictly lower triangular part of L and in U . This system can be written as w = F (w)
and solved by an iterative method. Since the formulas above for (i, j) depend only on other
unknowns in row i of L to the left of j, and in column j of U above i, there is some structure
in the mapping F . Iterative methods which are the nonlinear equivalents of the linear Jacobi
and Gauss-Seidel methods and their convergence were considered in [255]. Different results are
obtained by changing the ordering of the unknowns. In many cases it is only necessary to do a
few iterations (called “sweeps” in [255]) to obtain a good ILU factorization. One of the interest
of this method is that it has a high degree of parallelism.

A method which combine such a fixed point iteration for approximating the incomplete fac-
tors for a given sparsity pattern with a process that adaptively changes the sparsity pattern was
proposed by H. Anzt, E. Chow, and J.J. Dongarra [38]. Nonzero entries are added and removed
from the sparsity pattern in each adaptive step. Only one sweep of the fixed point method is
used in between adjusting the sparsity pattern. To add nonzero entries to the sparsity pattern the
remainder R = A−LU is used. The candidate indices are the union of the nonzero entries in A
and the matrix product LU that are not already in the current sparsity pattern. A candidate can be
added to G if |ri,j | is larger than a given threshold, or all candidates can be added to G. Entries
with a small absolute value in L and U are removed from the sparsity pattern. Additionally, the
number of entries added or removed can be controlled by given parameters.

Of course, block incomplete factorizations have been developed. Let us first consider block
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tridiagonal matrices. Let A be a symmetric matrix of order n written in block form as

A =


D1 AT2
A2 D2 AT3

. . . . . . . . .
Am−1 Dm−1 ATm

Am Dm

 ,

each block being square of order m, n = m2. Let L the block lower triangular part of A. A
block (complete) factorization of A can be written as

A = (Σ + L)Σ−1(Σ + LT ),

where Σ is a block diagonal matrix whose diagonal blocks are denoted by Σi. By inspection, the
diagonal blocks are given by

Σ1 = D1, Σi = Di −Ai(Σi−1)−1ATi , i = 2, . . . ,m

For instance, for finite difference discretizations of elliptic (or parabolic) partial differential equa-
tions, the matrices Di are tridiagonal and the matrices Ai are diagonal. This implies that Σ1 is
tridiagonal, but all the other matrices Σi, i = 2, . . . ,m are dense. The idea to obtain a block
incomplete factorization is to replace the inverses by sparse approximations. Let

M = (∆ + L)∆−1(∆ + LT ),

where ∆ is a block diagonal matrix whose diagonal blocks are computed as

∆1 = D1,

∆i = Di −Ai approx(∆−1
i−1)ATi ,

where approx(∆−1
i−1) is a sparse approximation of ∆−1

i−1. This preconditioner was first pro-
posed in a slightly different form by R. Underwood [1080] and then generalized by P. Concus,
G.H. Golub, and G.M. [273]. There are many ways to define approx(∆−1

i−1), see [273]. One
of the most efficient method, named INV, just considers tridiagonal approximations of the in-
verses. We denote by tridiag(B) the tridiagonal matrix whose nonzero entries are the same as
the corresponding ones of B. Then, in INV ∆i is defined as

∆i = Di −Aitridiag(∆−1
i−1)ATi .

This choice was motivated by the case where the Di’s are tridiagonal. If A is a diagonally
dominant L-matrix, then it is easy to show that the entries in a row of the inverses of the ∆i’s
decay away from the diagonal. Therefore, the absolute values of the entries that are thrown away
are smaller than the ones that are kept. One can also define a modified variant MINV for which
the remainder R has zero rowsums.

The idea of block incomplete Cholesky or LU factorizations which was developed for block
tridiagonal matrices can be straightforwardly generalized to any block structure with square diag-
onal blocks. This was proposed by O. Axelsson [61]. He also obtained bounds for the eigenvalues
of M−1A, see [64, 70].

7.4 Approximate inverses
Approximate inverse preconditioners directly construct the matrix M−1, the goal being to have
M−1A close to the identity matrix in a certain sense. Having M−1, solving Mz = r is done by
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a matrix-vector product which is parallelizable. As for incomplete factorizations, there are many
ways to construct approximate inverses.

We may try to compute C = M−1 such that some norm of AC − I or CA− I is minimized.
The Frobenius norm is particularly appealing because we have

‖AC − I‖2F =

n∑
k=1

‖(AC − I)ek‖2.

We just have to minimize the `2 norms ‖Ack−ek‖, k = 1, . . . , n where the ck’s are the columns
of C. We observe that the n least squares problems are independent of each other. Since we want
to compute a sparse C, we have to choose a given sparsity pattern for the vectors ck. We can
just consider a vector ĉk which contains the nonzero components of ck. Let Âk be the matrix
whose columns are the columns of A corresponding to the set of indices Gk = {j|(ck)j 6= 0}
and whose rows i are such that there exists ai,j 6= 0, j ∈ Gk. Everything reduces to a set of
(small) least squares problems,

min
ĉk
‖Âk ĉk − ek‖, k = 1, . . . , n.

Since Â is of full rank, we could solve the least squares problems with the QR factorization, see,
for instance, G.H. Golub and C.F. Van Loan [547, 548].

Different approaches can be used to choose the set of indices G of the nonzero entries.
T. Huckle and M. Grote [657] proposed an incremental method for choosing the sparsity pat-
terns. Starting from a set of indices G0

k, usually corresponding to a diagonal matrix C or to the
nonzero pattern of A, one solves the least squares problems and then, iteratively, enlarges the
sets of indices and solve again the least squares problems until some criteria are satisfied.

Assume we are at iteration p. To extend the set of indices, we consider the residual r =
Acpk − ek. We would like to reduce ‖r‖. Let L = {j|(r)j 6= 0} and ∀` ∈ L let N` = {j|a`,j 6=
0, j 6∈ Gpk}. The candidates for indices of new nonzero entries in the solution vector are chosen
in ∪`∈LN`. For j in this set of indices, we consider solving the problem

min
µj∈�

‖r + µjAej‖ =⇒ µj = − (r,Aej)

‖Aej‖2
.

The norm of the new residual is

‖r‖2 − (r,Aej)
2

‖Aej‖2
.

There exist indices such that (r,Aej) 6= 0. We choose those which give the smallest residuals.
This process is repeated until the norm of the residual is smaller than a prescribed criterion or
until we have reached the maximum storage we have allowed for that column. Adding new
indices to the solution vector will add some columns and some rows to the matrices of the least
squares problems and we have to update the QR factorization. There are efficient techniques for
doing that, see [547, 548].

Bounds for some norms of AC − I and also sufficient conditions for C being nonsingular
were given by T. Huckle and M. Grote. This implementation is known as SPAI; for details, see
[657, 658, 656, 338] and also [254]. A drawback of this algorithm is that there is no guarantee
that M−1 is symmetric when A is symmetric.

Some improvements to the preceding algorithm were proposed by N.I. Gould and J.A. Scott
[553]. Let Â be the matrix with the compressed set of column indices. If we add a new column
c, the new least squares problem is

σ+c = min
z,ξ
‖Âz + ξc− d‖2.
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In [657] the choice of the new column is based on the solution of the minimization of ‖ξc− r‖2
where r is the residual Âz − d. But the solution σ+c is known as

σ+c = σ −
(c, PÂd)2

‖PÂc‖2
= σ − (c, r)2

‖PÂc‖2
,

where σ is the previous solution and PÂ = I − Â(ÂT Â)−1ÂT . This can be computed from the
QR factorization of Â. It turns out that the value of ‖PÂc‖2 can be easily updated. Then, the
choice of the updating column is based on σ+c. Numerical experiments and numerical compar-
isons with ILU(0) are given in [553].

To address the problem of nonsymmetry of the approximate inverses, preconditioners of the
form M−1 = GGT were described by L.Y. Kolotilina and A.Y. Yeremin [710]. This precondi-
tioner is known as FSAI. Factored approximate inverse preconditioners and their relations with
ILU factorizations were also considered by M. Bollhöfer and Y. Saad [139, 140].

E. Chow and Y. Saad proposed a few methods for computing sparse inverses for general
sparse matrices [256]. One method is to compute a crude approximation of the solution of
Acj = ej with an iterative method. Some of the entries of this crude solution are then dropped
to preserve a given sparsity pattern of the approximate inverse.

As we said in Chapter 2, an inverse factorization algorithm was used by M. Benzi, C.D. Meyer,
and M. Tůma [117] to construct preconditioners for SPD matrices. If Z = [z1, z2, . . . , zn] is
a set of conjugate directions for A, D = ZTAZ is a diagonal matrix with diagonal entries
di = (zi, Azi). It gives an expression for the inverse A−1 = ZD−1ZT . A set of conjugate
directions zi can be constructed by a Gram-Schmidt orthogonalization algorithm applied to a
set of linearly independent vectors v1, v2, . . . , vn. If we choose V = [v1, v2, . . . , vn] = I , Z is
upper triangular. The algorithm in [117] is the following,

1) z(0)
i = ei, i = 1, . . . , n

2) for i = 1, . . . , n d
(i−1)
j = (ai, z

(i−1)
j ), j = i, . . . , n where ai is the ith column (or

row) of A

if j 6= n, z(i)
j = z

(i−1)
j −

(
d
(i−1)
j

d
(i−1)
i

)
z

(i−1)
i , j = i+ 1, . . . , n

3) zi = z
(i−1)
i , di = d

(i−1)
i , i = 1, . . . , n

To obtain a sparse approximate inverse we have to drop some fill-ins (in Z) outside some
prescribed positions or the fill-ins whose absolute values are below a given drop tolerance. It can
be also necessary to control the amount of storage used. This method is known as AINV.

It has been shown that AINV is feasible for H-matrices. Numerical examples are given in
[117] comparing AINV, dropping fill-ins by values, to IC factorization using the same strategy.
A variant, named SAINV, which is applicable to any SPD matrix, was developed by M. Benzi,
J.K. Cullum, and M. Tůma [114].

A code for computing the AINV preconditioner for a symmetric matrix is following. It
discards entries according to their absolute values and keep only the q largest in a row.

function [Z,d] = AINV_temp(A,epss,q)
n = size(A,1);
Z = speye(n);
d = zeros(n,1);
anorm = epss * max(abs(A'))'; % for dropping

for i=1:n-1
xold = Z(:,i);
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xold(i) = 0;
x = abs(Z(1:i-1,i));
if size(x,1) ~= 0
ind = find(x(1:i-1) < anorm(1:i-1) & x(1:i-1) > 0);
Z(ind,i) = 0;
% keep only the q largest entries
[x,indx] = sort(abs(Z(1:i-1,i)));
qq = min(q,i-1);
indl = indx(1:i-1-qq);
Z(indl,i) = 0;
x = abs(Z(:,i));
if nnz(x) == 1
% there is just a diagonal entry
% keep also the largest non diagonal entry
[~,iold] = max(abs(xold));
Z(iold(1),i) = xold(iold(1));
end
end
d(i:n) = A(i,:) * Z(:,i:n);
d1 = 1 / d(i);
indp = find(abs(d(i+1:n)) > 0) + i;
for j=indp'
Z(:,j) = Z(:,j) - d(j) * d1 * Z(:,i);
end % for j
end % for i
% last column
xold = Z(:,n);
xold(n) = 0;
for j=1:n-1
x = abs(Z(j,n));
if x < anorm(j) && x > 0
Z(j,n) = 0;
end % if
end % for j
[~,indx] = sort(abs(Z(1:n-1,n)));
qq = min(q,n-1);
indl = indx(1:n-1-qq);
Z(indl,n) = 0;
x = abs(Z(:,n));
if nnz(x) == 1
% keep the largest non diagonal entries
[~,iold] = max(abs(xold));
Z(iold(1),n) = xold(iold(1));
end % if
d(n) = A(n,:) * Z(:,n);

AINV was generalized to nonsymmetric matrices by M. Benzi and M. Tůma [120]. Two
sets of vectors Z = [z1, . . . , zn] and W = [w1, . . . , wn] are constructed such that the matrix
D = WTAZ is diagonal. The matrices W and Z are constructed by a biconjugation process
applied to W (0) = Z(0) = I . The formulas are quite similar to the ones for the symmetric case.
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Numerical experiments comparing SPAI and AINV are described in [121]; see also [119, 122,
711, 712, 1002]. A multilevel AINV algorithm was proposed by G.M. [813, 814].

7.5 Polynomial preconditioners
Another idea to directly construct M−1 is to use a polynomial,

M−1 = Pk(A) =

k∑
j=0

αjA
j .

In fact, this was the first ever constructed preconditioner to accelerate the convergence of an
iterative method by L. Cesari [211, 212, 213, 214] in 1937. We observe that, by the Cayley-
Hamilton theorem, the inverse A−1 is a polynomial in A. But, the degree is generally large and
its coefficients are unknown.

If the matrix A is SPD, it may be strange to use a polynomial preconditioner with PCG. We
have seen in Chapter 5 that the polynomial implicity generated by CG is optimal in a certain
sense. Applying m CG iterations to Pk(A)A will generate a polynomial of degree k + m that
will be less efficient than k + m iterations of CG without preconditioning for reducing the A-
norm of the error. However, using a polynomial preconditoner, there will be less dot products
and this could be beneficial on parallel computers.

One of the simplest way of constructing a polynomial preconditioner is to use Neumann
series. Let A be a SPD matrix that we write as A = D − L− LT where D is a diagonal matrix,
the minus signs being just a technical convenience. We symmetrically scale A by its diagonal,

A = D
1
2 (I −D− 1

2 (L+ LT )D−
1
2 )D

1
2 ,

A−1 = D−
1
2 (I −D− 1

2 (L+ LT )D−
1
2 )−1D−

1
2 .

We observe that
D−

1
2 (L+ LT )D−

1
2 = I −D− 1

2AD−
1
2 ,

and
ρ(I −D− 1

2AD−
1
2 ) = ρ(I −D−1A).

If the spectral radius satisfies ρ(I −D−1A) < 1, we can expand I −D− 1
2AD−

1
2 in a Neumann

series and only use a few terms of the series for the preconditioner. Generally, a small number of
terms is used. For instance, the first order Neumann polynomial is

M−1 = D−1 +D−1(L+ LT )D−1 = 2D−1 −D−1AD−1.

Generally, polynomials of even degree are not used because it was shown by P.F. Dubois, A. Green-
baum, and G.H. Rodrigue [367] that a Neumann polynomial of odd degree k is more efficient
than the Neumann polynomial of degree k + 1.

Since we have M−1A = Pk(A)A, the polynomial qk which is involved is qk+1(λ) =
λPk(λ). It satisfies qk(0) = 0. The ideal situation for PCG would be to have qk(λ) ≡ 1, ∀λ.
However, this is not possible because of the value at the origin.

O.G. Johnson, C.A. Michelli, and G. Paul [684] defined a generalized condition number. Let
a and b such that the eigenvalues λi of A are in [a, b],∀i. Let

cond(q) =
maxλ∈[a,b] q(λ)

minλ∈[a,b] q(λ)
,
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with Qk = {polynomials qk|∀λ ∈ [a, b], qk(λ) > 0, qk(0) = 0}. The first constraint gives a
positive definite preconditioner. We look for the solution of the problem

Find qk ∈ Qk such that ∀q ∈ Qk, cond(qk) ≤ cond(q).
The solution of this problem was given in [684], see also S.F. Ashby [46].

Theorem 7.9. The solution of the previous minimization problem is

qk(λ) = 1− Ck(µ(λ))

Ck(µ(0))
,

where Ck is the Chebyshev polynomial of order k and

µ(λ) =
2λ− b− a
b− a

.

Proof. Let θ = |Ck(µ(0))|. Then,

cond(qk) =
θ + 1

θ − 1
,

since we have

cond(qk) =
maxλ∈[a,b]{Ck(µ(0))− Ck(µ(λ))}
minλ∈[a,b]{Ck(µ(0))− Ck(µ(λ))}

=
Ck(µ(0)) + 1

Ck(µ(0))− 1
,

because minCk = −1 and maxCk = 1. Moreover, |Ck(µ(λ))| ≤ 1 on [a, b] andCk(µ(0)) > 1.
Let q ∈ Qk and v = minλ∈[a,b] q(λ), V = maxλ∈[a,b] q(λ). We would like to show that

θ + 1

θ − 1
≤ V

v
,

or equivalently,
V + v

V − v
≤ θ.

Outside [−1, 1] the Chebyshev polynomials are those with the fastest increase. Let uk be a
polynomial of degree k. Then, for µ(λ) ≥ 1,

|uk(µ(λ))|
max|t|≤1 |u(t)|

≤ |Ck(µ(λ))|.

We use this result with uk(µ(λ)) = 1− 2q(λ)
V+v . Clearly,

max
|t|≤1
|uk(λ)| = V − v

V + v
.

Therefore,
V + v

V − v
≤ |Ck(µ(0))|.

Theorem 7.10. Let κ = b/a and ν =
√
κ−1√
κ+1

. Then, cond(qk) =
(

1+νk

1−νk

)2

.
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Proof. See O. Perlot [914].
A frequently used technique is to use a least squares polynomial, that is, to look for the

polynomial pk of degree k that minimizes∫ b

a

(1− λq(λ))2w(λ) dλ, q ∈ Qk, (7.7)

where w(λ) is a positive weight, see Y. Saad [973]. Usually, one chooses the Jacobi weights,

w(λ) = (b− λ)α(λ− a)β , α ≥ β ≥ −1

2
,

because the orthogonal polynomials associated with these weights are known. Let si(λ) be this
normalized orthogonal polynomial and

Jk(σ, λ) =

k∑
j=0

sj(σ)sj(λ).

To derive the solution of this problem, let us prove two technical results.

Lemma 7.11. Let r(λ) be a polynomial of degree ≤ k. Then,

1− r(σ) =

∫ b

a

Jk(σ, λ)(1− r(λ))w(λ) dλ.

Proof. We can write 1− r(λ) =
∑
l αlsl(λ). Then,∫ b

a

Jk(σ, λ)(1 − r(λ))w(λ) dλ

=
∑
j

sj(σ)
∑
l

∫ b

a

sj(λ)sl(λ)αlw(λ) dλ,

=
∑
j

sj(σ)
∑
l

αl

∫ b

a

sj(λ)sl(λ)w(λ) dλ,

=
∑
j

αjsj(σ) = 1− r(σ).

Lemma 7.11 explains why Jk(σ, λ) is called a reproducing kernel. The next result gives a
lower bound for Jk(0, 0).

Lemma 7.12. Let r(λ) be a polynomial of degree ≤ k such that r(0) = 0. Then

1 ≤ Jk(0, 0)

∫ b

a

(1− r(λ))2w(λ) dλ.

Proof. Using the Cauchy-Schwarz inequality,

1 = (1− r(0))2 =

∫ b

a

Jk(0, λ)(1− r(λ))w(λ) dλ,

≤
∫ b

a

Jk(0, λ)2w(λ) dλ

∫ b

a

(1− r(λ))2w(λ) dλ.



7.5. Polynomial preconditioners 385

But, ∫ b

a

Jk(0, λ)2w(λ) dλ =
∑
j

sj(0)2 = Jk(0, 0).

Theorem 7.13. The solution of the least squares minimization problem (7.7) is

λq(λ) = rk(λ) = 1− Jk(0, λ)

Jk(0, 0)
.

Proof. The polynomial 1− rk(λ) is collinear to Jk(0, λ) and equal to 1 in λ = 0. Therefore,
we have equality in the Cauchy-Schwarz inequality,

1

Jk(0, 0)
=

∫ b

a

(1− rk(λ))2w(λ) dλ,

which is the minimum value as Lemma 7.12 shows.
The solution of (7.7) can be rewritten as

qk(λ) =

k+1∑
j=0

bjtj(λ),

where

bj =
sj(0)∑k+1
l=0 sl(0)2

, tj(λ) =
sj(0)− sj(λ)

λ
.

Generally, one uses the Chebyshev weight corresponding to α = β = − 1
2 .

Evaluating the matrix polynomial applied to a given vector can be done with the Horner’s
scheme. However, a more specific method can be developed using a generalization of Clenshaw’s
formula.

Lemma 7.14. Let

µ(λ) =
2λ− (a+ b)

b− a
,

and

sj+1(λ) = αjµ(λ)sj(λ)− γj−1sj−1(λ), tj(λ) =
sj(λ)− sj(0)

λ
.

Then,
tj+1(λ) = δj+1 + αjµ(λ)tj(λ)− γj−1tj−1(λ), ∀j ≥ 1,

with δj+1 = Kαjsj(0), K = µ(0)−ν(λ)
λ .

Proof. We have

tj+1(λ) =
sj+1(0)− sj+1(λ)

λ
,

=
1

λ
(αjµ(0)sj(0)− γj−1sj−1(0)

−αjµ(λ)sj(λ) + γj−1sj−1(λ)),
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= αj
µ(0)− µ(λ)

λ
+ αjµ(λ)

sj(0)− sj(λ)

λ

−γj−1
sj−1(0)− sj−1(λ)

λ
,

= Kαjsj(0) + αjµ(λ)tj(λ)− γj−1tj−1(λ).

Theorem 7.15. For the least squares polynomial we have

pk(λ) = t1(λ)η1(λ) + ω2(λ),

where the ηj’s are defined by

ηj(λ) = bj + αjµ(λ)ηj+1(λ)− γjηj+2(λ), j = k + 1, . . . , 1

ηk+3 = ηk+2 ≡ 0 and ωj is defined by

ωj(λ) = δjηj(λ) + ωj+1(λ), j = k + 1, . . . , 2, ωk+2 ≡ 0.

Proof. Let Ak(λ) =
∑k
j=0 bjtj(λ) and let H` denote the hypothesis that

pk(λ) = Ak−`(λ) + ωk−`+2(λ) + ηk−`+1(λ)tk−`+1(λ)− γk−`ηk−`+2(λ)tk−`(λ).

We know that pk(λ) = Ak+1(λ), therefore H−1 holds. Let us assume that H` is true, then let us
show that H`+1 holds.

pk(λ) = Ak−`−1(λ) + bk−`tk−`(λ) + ωk−`+2(λ)

+ ηk−`+1(λ)tk−`+1(λ)− γk−`ηk−`+2(λ)tk−`(λ),

= Ak−`−1(λ) + bk−`tk−`(λ) + ωk−`+2(λ)− γk−`ηk−`+2(λ)

+ ηk−`+1(λ)(δk−`+1αk−`µ(λ)tk−`(λ)− γk−`−1tk−`−1(λ)),

= Ak−`−1(λ) + (bk−` + αk−`µ(λ)ηk−`+1(λ)

− γk−`ηk−`+2(λ))tk−`(λ) + ωk−`+2(λ) + ηk−`+1(λ)δk−`+1

− γk−`−1ηk−`+1(λ)tk−`−1(λ)

Ak−`−1(λ) + ηk−`(λ)tk−`(λ) + ωk−`+1(λ)

− γk−`−1ηk−`+1(λ)tk−`−1(λ).

Finally, using ` = k, we have

pk(λ) = A0(λ) + ω2(λ) + η1(λ)t1(λ)− γ0η2(λ)t0(λ) = ω2(λ) + η1(λ)t1(λ).

Theorem 7.16. For the least squares polynomial, z = Pk(A)r can be computed as follows. Let

s0(0) =
1√
π
, s1(0) =

√
2

π

a+ b

a− b
, s2(0) =

√
2

π

[
2

(
a+ b

a− b

)2

− 1

]
,

and
sj(0) = 2µ(0)sj−1(0)− sj−2(0), j = 3, . . . , k + 1
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bj =
sj(0)∑k+1
i=0 s

2
i (0)

, j = 1, . . . , k + 1.

Then,

zk+1 = bk+1r, zk = bkr +
2

b− a
(2A− (a+ b)I)zk+1,

zj = bjr +
2

b− a
(2A− (a+ b)I)zj+1 − zj+2, j = k − 1, . . . , 1

and
uk+1 =

4

a− b
sk(0)zk+1,

uj+1 =
4

a− b
sj(0)zj+1 + uj+2, j = k − 1, . . . , 1

Finally,

z =

√
2

π

2

a− b
z1 + u2.

The two following functions compute the coefficients sj(0) and evaluate Pk(A)r for A sym-
metric positive definite. If they are not given λmin and λmax (denoted as a and b above) are
computed using Gerschgorin bounds.

[s,lmin,lmax] = poly_ls(A,k,lmin,lmax)
k = abs(k);
if nargin == 1
k = 1;
end % if
if nargin < 3
% compute the Gerschgorin bounds
n = size(A,1);
un = ones(n,1);
AA = abs(A);
DA = spdiags(diag(AA),0,n,n);
% put zeros on the diagonal
AA = spdiags(zeros(n,1),0,AA);
b = (DA - AA) * un;
bb = (DA + AA) * un;
lmin = max(min(b),0);
lmax = max(bb);
end % if
s = zeros(k+2,1);
mu0 = -(lmin + lmax) / (lmax - lmin);
s(1) = 1 / sqrt(pi);
s(2) = sqrt(2 / pi) * (lmin + lmax) / (lmin - lmax);
s(3) = sqrt(2 / pi) * ((2 * (lmin + lmax)^2 / (lmin - lmax)^2)

- 1);
for j = 4:k+2
s(j) = 2 * mu0 * s(j-1) - s(j-2);
end % for j
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function z = eval_poly_ls(r,A,s,lmin,lmax);
k = length(s) - 2;
ss = sum(s(1:k+2).^2);
b = s / ss; % normalization
z(:,k+1) = b(k+2) * r;
z(:,k) = b(k+1) * r + (2 / (lmax - lmin)) * (2 * A * z(:,k+1) -

(lmax + lmin) * z(:,k+1));
for j = k-1:-1:1
z(:,j) = b(j+1) * r + (2 / (lmax - lmin)) * (2 * A * z(:,j+1)

- (lmax + lmin) * z(:,j+1)) - z(:,j+2);
end
u = (4 / (lmin - lmax)) * s(k+1) * z(:,k+1);
for j = k-1:-1:1
u = (4 / (lmin - lmax)) * s(j+1) * z(:,j+1) + u;
end
z = sqrt(2 / pi) * (2 /(lmin - lmax)) * z(:,1) + u;

A drawback of the min-max and least squares polynomials is that they need estimates of the
smallest and largest eigenvalues of A. The least squares polynomial is rather insensitive to the
choice of a and a = 0 can also be chosen since the polynomial stays positive definite. When
a = 0, it can be computed in a simpler way. Let d0 = 1, d1 = 3

2 and

dj+1 =
2j + 1

j + 1
dj −

(j + 1/2)(j − 1/2)

j(j + 1)
dj−1, j = 1, . . . , k.

The solution of z = M−1r is computed as

z0 =
2

3
r, z1 = −4

5
Ar + 2r,

zj =
2j + 1

j + 1

dj
dj+1

(r + (I −A)zj−1)− (j2 − 1/4)

j(j + 1)

dj−1

dj+1
zj−2, j = 2, . . . , k.

Finally, z = zk.

If the matrix A is symmetric but indefinite, it is more difficult to find a “good” polynomial.
There are cases where the optimal polynomial is explicitly known, see B. Fischer [455]. For
the general case, C. de Boor and J.R. Rice [322] formulated a Remez-type algorithm for the
numerical computation of the optimal polynomial. The classical Remez algorithm is an itera-
tive technique for computing the minimax polynomial approximation to a real function f on a
compact set S. It can also be modified to solve a constrained minimization problem. A detailed
description is given by S.F. Ashby [45].

The problem of constructing a polynomial preconditioner is even more difficult when the
matrix A is nonsymmetric. Since the eigenvalues of A are complex (conjugate) numbers, we
have first to locate these eigenvalues and to find a region S of the complex plane that contains
them. This problem was considered by T.A. Manteuffel [779, 780] who suggested computing
an ellipse (not containing the origin) that contains the convex hull of the spectrum. Then, the
min-max polynomial can (sometimes) be expressed in terms of Chebyshev polynomials.

H.C. Elman, Y. Saad, and P.E. Saylor [419] also used an ellipse enclosing the Ritz values ob-
tained from the Arnoldi process and Chebyshev polynomials. H.C. Elman and R.L. Streit [420]
considered the union of convex hulls of subsets of the Ritz values and an L∞ optimal approxima-
tion polynomial. D.C. Smolarski and P.E. Saylor [992] enclosed the Ritz values in a polygon and
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used a least squares polynomial. This was previously used by Y. Saad [974], but his least squares
polynomial was computed in a different and more stable way using modified moments. On that
topic, see also the Ph.D. thesis of S.F. Ashby [45], as well as [47] by S.F. Ashby, T.A. Manteuffel,
and J.S. Otto.

7.6 Domain decomposition
Domain decomposition (DD) is a natural framework to develop solution methods for solving
problems on parallel computers. Although the idea is quite old and it has been used for many
years, mainly in structural mechanics (see [490]), the interest in domain decomposition was re-
newed at the end of the 1980s. DD methods were initially proposed for solving partial differential
equations on a domain which is partitioned into subdomains. Subproblems are solved on each
subdomain and their solutions are glued together to obtain the global solution. DD methods can
be considered for continuous problems or for algebraic linear systems.

It is generally admitted that the first ever DD method was due to Hermann A. Schwarz (1843-
1921) in August 1870. It was described in [1000]. As explained in the historical paper [491] by
M.J. Gander and G. Wanner, Schwarz’s goal was to prove the existence of a solution to Laplace’s
equation ∆u = 0 with Dirichlet boundary conditions u = g on complicated domains. Schwarz
considered a two-dimensional domain which was the union of a disk and an overlapping rectan-
gle, see Figure 7.1. It was known that solutions of Laplace’s equation existed for the disk and the
rectangle and Schwarz constructed an iterative method by solving alternatively subproblems in
the disk using a Dirichlet boundary condition from the solution in the rectangle and then, in the
rectangle using a Dirichlet boundary condition from the previous solution in the disk, and so on
by iterating the process. He proved the convergence of the method using the maximum principle,
even though his argument lacked some rigor.

Figure 7.1. Schwarz domain decomposition in [1000]

Since the 1980s, thousands of papers have been written about DD. We will just describe the
main ideas. We can divide DD methods into two main categories: with and without overlapping.
Another important distinction between methods is the algorithm which is used for solving the
subproblems. One can use either a direct method (like Gaussian elimination ) or iterative methods
or simply a preconditioner for the matrix of the subproblem. Combining all these possibilities
gives rise to a very large number of algorithms. A good source of information on DD methods
are the proceedings of the DD conferences that started in 1987 in Paris, see www.ddm.org.

We first study some methods with overlapping. They are generically known as Schwarz
methods. An interesting paper about Schwarz methods and their history is [487] by M.J. Gander.
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7.6.1 Schwarz methods

Let us assume that we would like to solve a second order elliptic PDE in a bounded two-
dimensional domain Ω. For simplicity, we consider the domain Ω split into two overlapping
subdomains Ω1 and Ω2. Let Γi, i = 1, 2, be the part of the boundary of Ωi enclosed in Ω, see
Figure 7.2. Let us consider an iterative method similar to what was used by Schwarz.

Ω

Ω

1

2

Γ

Γ
1

2

Figure 7.2. Overlapping subdomains

The rate of convergence of the Schwarz method depends on the extent of overlapping. The
larger the overlapping, the faster the convergence. If Ω1 = Ω2 = Ω, the method converges in one
iteration. However, when the overlapping is larger, the cost of solving the subproblems is higher.
It is assumed that the subproblems are solved exactly. Therefore, there is a trade-off between
the number of iterations and the cost of solving the subproblems. A general convergence theory
for PDE problems was provided by P.L. Lions [751, 752, 753] in terms of projections in Hilbert
spaces. Let us follow [751]. We consider the Poisson model problem, but the results hold true
for other bilinear forms. Let the problem be

−∆u = f in Ω, u|∂Ω = 0.

The Schwarz alternating method can be formulated at the continuous level, when u1 is given, as

−∆u2k = f in Ω1, u2k|Γ1
= u2k−1|Γ1

,

−∆u2k+1 = f in Ω2, u2k+1|Γ2
= u2k|Γ2

,

for k = 1, 2, . . . with the given boundary conditions on the other parts of the boundary. The
bilinear form a of the problem is defined as

a(u, v) =

∫
Ω

∇u · ∇v dx.

The Poisson model problem can be written in variational form,

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω).

Let V1 = H1
0 (Ω1) and V2 = H1

0 (Ω2) and the projectors P1 and P2 defined by

a(Piv, w) = a(v, w), ∀w ∈ Vi, i = 1, 2.

The functions defined only on a subdomain are extended by 0 to H1
0 (Ω). Then, we have

a(u2k − u, v1) = 0, ∀v1 ∈ V1, u2k − u2k−1 ∈ V1,
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a(u2k+1 − u, v2) = 0, ∀v2 ∈ V2, u2k+1 − u2k ∈ V2.

It yields
u− u2k = (I − P1)(u− u2k−1),

u− u2k+1 = (I − P2)(u− u2k).

Therefore, by eliminating u2k, we obtain

u− u2k+1 = (I − P2)(I − P1)(u− u2k−1).

This relation explains why this type of algorithm is more generally known as a multiplicative
Schwarz method. The mathematical problem for studying convergence is

v0 ∈ V, v2k = (I − P1)v2k−1, v2k+1 = (I − P2)v2k.

We have to study the convergence of iterated projections. The following result shows that the
method converges.

Theorem 7.17. If V = V1 + V2, where the bar denotes the closure of the set, then v(k) −→ 0.
Moreover, if V = V1 + V2 then,

‖(I − P2)(I − P1)‖ ≤ c < 1.

Proof. See P.L. Lions [751].
We observe that the original Schwarz method is not parallel since the subproblems are solved

in sequence. It is a block Gauss-Seidel-like method with overlapping. P.L. Lions [752] proposed
a parallel variant by using u2k+1|Γ2

= u2k−1|Γ2
. This is similar to a block Jacobi-like algorithm.

The multiplicative Schwarz method can also be formulated at the discrete level for a linear
system Ax = b. We have to partition the unknowns in (overlapping) subsets corresponding to
the subdomains. Let us assume that we have two such subsets and restriction operators R1 and
R2. The transposes of R1 and R2 are prolongation (extension) operators. We define

A(1) = R1AR
T
1 , A(2) = R2AR

T
2 .

In the first half step of the iteration, we restrict the residual with R1, we apply the inverse of
R1AR

T
1 , and extend the result by RT1 . This is finally written as

x2k = x2k−1 +RT1 (A(1))−1R1(b−Ax2k−1).

Similarly, the second half step is

x2k+1 = x2k +RT2 (A(2))−1R2(b−Ax2k).

Proposition 7.18. The matrix Pi = RTi (RiAR
T
i )−1RiA, i = 1, 2 is an orthogonal projection in

the dot product defined by A.

Proof. We have

PiPi = RTi (RiAR
T
i )−1RiAR

T
i (RiAR

T
i )−1RiA = Pi.
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Moreover,
APi = ARTi (RiAR

T
i )−1RiA = (APi)

T .

If εk is the error vector, we have

ε2k = (I − P1)ε2k−1, ε2k+1 = (I − P2)ε2k.

This could appear as a discretization of what we have seen at the continuous level. For a dis-
cussion of this point, see [487]. Without overlap, the Schwarz alternating method is just a block
Gauss-Seidel method. The method can be generalized to S subdomains,

xk+ s
S

= xk+ s−1
S

+RTs (A(s))−1Rs(b−Axk+ s−1
S

), s = 1, . . . , S.

Let us study the convergence of the method for a one-dimensional Poisson model problem. The
matrices which are involved are

A(1) =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


of order p − 1 and A(2) which is the same matrix but of order n − `. We explicitly know the
inverses of these matrices.

Proposition 7.19. For the one-dimensional Poisson problem, we have

[ε2k]i =
i

p
[ε2k]p, i = 1, . . . , p− 1,

[ε2k+1]i =
n− i+ 1

n− `+ 1
[ε2k+1]`, i = `+ 1, . . . , n.

Proof. Because we use exact solves for the subproblems, the equations corresponding to the
unknowns inside the subdomains are exactly satisfied and we have

A(1)

 [ε2k]1
...

[ε2k]p−1

 =


0
...
0

[ε2k−1]p

 .

The components 1 to p − 1 of the error vector at iteration 2k are the components of the last
column of the inverse of A(1) times [ε2k−1]p. Since the inverse is known explicitly, we obtain
the result. The proof is the same for the other relation. We observe that [ε2k]p = [ε2k−1]p and
[ε2k+1]` = [ε2k]`.

Then, it is clear how the error is reduced during the iterations. At the end of the first half step,
the error is maximum for the node p and linear (being 0 at the ends of the interval). At the end
of the second half step, the error is maximum for the node ` and linear, see Figure 7.3 where the
errors for three half steps are shown for a problem of order 30. The left subdomain uses mesh
points 1 to 20 and the right one points 10 to 30. The error in the first half step is the solid line.
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Figure 7.3. Errors for three half steps of the Schwarz method

The error in the second half step is the dashed line (partially hidden by the others). The error in
the third half step is the dash-dotted line.

Theorem 7.20. At odd steps, the maximum of (the absolute value of) the error is obtained for
node ` and

‖ε2k+1‖∞ =
`

p

n− p+ 1

n− `+ 1
‖ε2k−1‖∞.

Proof. The result is obvious from the previous discussion. We note that both multiplying
factors are less than 1 since

n− p+ 1

n− `+ 1
= 1− p− `

n− `+ 1
.

The previous theorem shows that the larger the overlap (p − `), the faster the convergence.
The same analysis can be done for this problem with a larger number of subdomains since the
error is still linear on each subdomain. Unfortunately, the rate of convergence is slower when
we have a large number of subdomains as shown by Figure 7.4 where we plot the number of
iterations for two and three subdomains as a function of the extent of overlap (number of points
in the overlapping region) for the one-dimensional Poisson model problem. When we increase
the extent of overlapping we have a large decrease in the number of iterations at first and then the
numbers of iterations level off meaning that it is only marginally better to have a large overlap.

Like Gauss-Seidel, the multiplicative Schwarz method is sequential and the iteration matrix
is nonsymmetric, even when A is symmetric. A way to introduce parallelism when there is more
than two subdomains is to color them in such a way that two neighboring subdomains do not
have the same color. Another possibility is to use the additive Schwarz method introduced by
M. Dryja and O.B. Widlund [1118, 364, 365]. A similar method was introduced earlier at the
continuous level by A.M. Matsokin and S.V. Nepomnyaschikh [791]. With two subdomains and
the same notation as above, the system to be solved is written as

M−1
ASAx = M−1b, M−1

AS = RT1 (R1AR
T
1 )−1R1 +RT2 (R2AR

T
2 )−1R2.

However, used as a stationary iterative method xk+1 = xk+M−1
AS(b−Axk), it does not converge

in the overlap, see [487]. Nevertheless, it can be used as a preconditioner for Krylov iterative
methods. Since the convergence is not always fast enough, a coarse grid correction is sometimes
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Figure 7.4. Number of iterations as a function of the length of the overlap, two subdomains
(solid), three subdomains (dashed)

added,

M−1
AS =

S∑
i=1

RTi [A(i)]−1Ri +RT0 [A(0)]−1R0.

Another method was introduced by X.-C. Cai and M. Sarkis [194] under the name restricted
additive Schwarz method. For two subdomains,

M−1
RAS = R̃T1 (R1AR

T
1 )−1R1 + R̃T2 (R2AR

T
2 )−1R2,

where R̃1 and R̃2 correspond to a non-overlapping decomposition of the domain. For a study
of this method, see [480] by A. Frommer and D.B. Szyld. Unfortunately, the matrix M−1

RAS is
nonsymmetric.

A way to enhance the convergence of Schwarz methods is to change the boundary (transmis-
sion) conditions on the interfaces between subdomains. At the continuous level, P.L. Lions [753]
proposed to use Robin-like boundary conditions,(

∂

∂n1
+ p1

)
u1

2k =

(
∂

∂n1
+ p1

)
u2

2k−1 on Γ1,

(
∂

∂n2
+ p2

)
u2

2k+1 =

(
∂

∂n2
+ p2

)
u1

2k on Γ2,

where nj , j = 1, 2 denotes the unit outward normal, and pj , j = 1, 2 can be constants or func-
tions defined along the interface.

This type of transmission conditions was also advocated by W.-P. Tang [1057]. More general
operators can be used for the transmission conditions and a lot of research has been done on
that topic, see, for instance, the work of F. Nataf and his collaborators [347]; this is described at
length in the survey paper [493] by M.J. Gander and H. Zhang.

7.6.2 DD without overlapping

In DD without overlapping and when using exact solvers for the subdomains, one generally elim-
inates the unknowns strictly inside the subdomains, obtaining a linear system for the interface
unknowns.
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Figure 7.5. Partitioning of the rectangle with non-overlapping subdomains

For the sake of simplicity we first consider a square domain Ω decomposed into two subdo-
mains. Let Ω1 and Ω2 be the two subdomains and Γ1,2 the interface which is a mesh line, see
Figure 7.5.

Let x1 (resp. x2) be the vector of unknowns in Ω1 (resp. in Ω2) and x1,2 be the vector of
the unknowns on the interface. Within each subdomain we order the unknowns with the usual
rowwise ordering. With this numbering of the unknowns, the linear system can be rewritten
blockwise as  A1 0 E1

0 A2 E2

ET1 ET2 A12

 x1

x2

x1,2

 =

 b1
b2
b1,2

 . (7.8)

The matrix A1 (resp. A2) represents the coupling of the unknowns within Ω1 (resp. Ω2). The
matrix A12 represents the coupling of the unknowns on the interface. The matrix E1 (resp. E2)
represents the coupling of Ω1 (resp. Ω2) with the interface. We eliminate the unknowns x1 and
x2 corresponding to the subdomains. This gives a reduced system for the interface unknowns

Sx1,2 = b1,2, (7.9)

with
b1,2 = b1,2 − ET1 A−1

1 b1 − ET2 A−1
2 b2,

and
S = A12 − ET1 A−1

1 E1 − ET2 A−1
2 E2.

The matrix S is the Schur complement of A12 in A. Of course, A−1
1 and A−1

2 are generally
dense matrices. Therefore, it is too costly to construct and factor S. A cheaper solution is to
solve the reduced system with matrix S on the interface with an iterative method. The choice
of the iterative method depends on the properties of the Schur complement. If the matrix A is a
symmetric positive definite M-matrix, S is also a symmetric positive definite M-matrix and we
can use the preconditioned conjugate gradient method.

One of the operations that has to be done for performing an iteration of PCG is the product of
the matrix S by a given vector, say p. This may seem a costly operation. However the product,
Sp can be computed easily as

Sp = A1,2p− ET1 A−1
1 E1p− ET2 A−1

2 E2p,

p being a vector defined on the interface. Then, w1 = A−1
1 E1p is computed by solving

A1w1 = E1p, (7.10)
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This is solving a linear system corresponding to a problem in Ω1. Similarly, w2 = A−1
2 E2p is

computed by solving
A2w2 = E2p, (7.11)

a problem in Ω2. Finally, we have

Sp = A1,2p− ET1 w1 − ET2 w2.

Generally, we do not need all the components of w1 and w2, but this depends on the nonzero
pattern of E1 and E2. We have just seen that we do not need to explicitly construct S to be able
to compute Sp since this can be done through subdomain solves. Regarding parallel computing,
the important fact is that the linear systems (7.10) and (7.11) are independent and therefore can
be solved in parallel.

To improve the convergence rate of CG on the reduced system, a preconditionerM is needed.
We would ideally like to find a preconditioner M such that

κ(M−1S) = O(1).

This will imply that when the order of the matrix increases, the number of iterations stays ap-
proximately constant to reach a given precision. Then, the total number of operations will be
proportional to the number of operations for one iteration. The main problem with this approach
is to find an approximation of the Schur complement S.

Let us now assume that the matrix A is symmetric positive definite and that we do not want
to use direct solvers for solving the problems with A1 and A2. We must construct a global
preconditioner for the matrix A. Let us look for M in the form

M = L

M−1
1

M1
2

M−1
1,2

LT ,

where M1 (resp. M2) is of the same order as A1 (resp. A2) and M1,2 is of the same order as
A1,2. L is a block lower triangular matrix

L =

M1

0 M2

ET1 ET2 M1,2

 .

At each PCG iteration, we have to solve a linear system like

Mz = M

 z1

z2

z1,2

 = r =

 r1

r2

r1,2

 .

This is done by first solving Ly = r, where the first two steps are

M1y1 = r1, M2y2 = r2.

The two solves can be done in parallel. Then, we solve for the interface

M1,2y1,2 = r1,2 − ET1 y1 − ET2 y2.

The backward solve to obtain the solution is I 0 M−1
1 E1

I M−1
2 E2

I

 z1

z2

z1,2

 =

 y1

y2

y1,2

 .
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It yields z1,2 = y1,2 and
M1w1 = E1z1,2, z1 = y1 − w1,

M2w2 = E2z1,2, z2 = y2 − w2.

The last two steps can be done in parallel. Therefore, we have to perform two independent solves
on the subdomains, a solve on the interface and two other independent solves on the subdomains.
The problem we are facing is to choose the approximations M1, M2 and M1,2. If we multiply
together the three matrices whose product defines M , we obtain

M =

M1 0 E1

0 M2 E2

ET1 ET1 M∗1,2

 ,

where
M∗1,2 = M1,2 + ET1 M

−1
1 E1 + ET2 M

−1
2 E2.

Therefore, since we would like M to be an approximation of A, it makes sense to choose

M1 ≈ A1, M2 ≈ A2,

and
M∗1,2 ≈ A1,2 =⇒M1,2 ≈ A12 − ET1 M−1

1 E1 − ET2 M−1
2 E2.

That is, if the inverse of M1 (resp. M2) is a good approximation of the inverse of A1 (resp.
A2), we are back to the same problem as before, M1,2 must be an approximation of the Schur
complement S.

The two different classes of methods we studied above give rise to the same fundamental
problem of constructing an approximate Schur complement. Let us review a few preconditioners
for a model problem arising from the finite difference discretization of a second order partial
differential equation in a rectangle divided in two subdomains like in Figure 7.5 with m1 and m2

mesh lines in the subdomains and the mesh size h = 1/(m+ 1).

Dryja’s preconditioner [361] is defined as follows. Let T2 be the matrix corresponding to the
finite difference discretization of the one-dimensional Laplacian. We have

T2 = Q2Σ2Q
T
2 ,

where Σ2 is the diagonal matrix of the eigenvalues whose diagonal entries are

σi = 2− 2 cos(iπh), i = 1, . . . ,m

and Q2 is the orthogonal matrix of the (normalized) eigenvectors whose components are

qi,j =

√
2

m+ 1
sin(ijπh), i, j = 1, . . . ,m.

Let
√

Σ2 be the diagonal matrix whose diagonal entries are the square roots of the corresponding
diagonal entries of Σ2. The preconditioner MD is

MD = Q2

√
Σ2Q

T
2 .

Symbolically, we denote this by
√
−∆1D.
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Theorem 7.21. Let λ` = 2 + σ` be the eigenvalues of A and γ` =

(
1 + σ`

2 −
√
σ` +

σ2
`

4

)2

,

then the eigenvalues of S are

θ` =

(
1 + γm1+1

`

1− γm1+1
`

+
1 + γm2+1

`

1− γm2+1
`

)√
σ` +

σ2
`

4
, ∀` = 1, . . . ,m. (7.12)

Moreover,

λ`(M
−1
D S) =

(
1 + γm1+1

`

1− γm1+1
`

+
1 + γm2+1

`

1− γm2+1
`

)√
1 +

σ`
4
, ` = 1, . . . ,m.

Proof. See [811].
For the Poisson model problem, κ(M−1

D S) = O(1).
The Golub and Mayers’ preconditioner [540] is an improvement upon Dryja’s preconditioner.

It retains the term under the square root which was replaced by
√
σ` in the Dryja’s method. It is

defined as

MGM = Q2

√
Σ2 +

Σ2
2

4
QT2 .

Symbolically, we denote this by
√
−∆1D +

∆2
1D

4 .

Theorem 7.22. The eigenvalues of M−1
GMS are

λ`(M
−1
GMS) =

1 + γm1+1
`

1− γm1+1
`

+
1 + γm2+1

`

1− γm2+1
`

, ` = 1, . . . ,m

where γ` is defined as in Theorem 7.21.

For the Poisson model problem, κ(M−1
GMS) = O(1).

The Neumann-Dirichlet preconditioner was introduced by P. Bjørstad and O.B. Widlund
[131]. Since in the two subdomains case, A is written as A1 0 E1

0 A2 E2

ET1 ET2 A1,2

 x1

x2

x1,2

 =

 b1
b2
b1,2

 ,

we can distinguish what in A1,2 comes from subdomain Ω1 and what comes from Ω2. Let

A1,2 = A
(1)
1,2 +A

(2)
1,2.

This is easy to do for finite element methods. For finite difference methods, it is a little more
difficult. However, for instance, for the one dimensional Poisson model problem, we have

A
(1)
1,2 = A

(2)
1,2 =


2 − 1

2
− 1

2 2 − 1
2

. . . . . . . . .
− 1

2 2 − 1
2

− 1
2 2

 =
1

2
A1,2.
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Since
S = A1,2 − ET1 A−1

1 E1 − ET2 A−1
2 E2,

we can define
S(1) = A

(1)
1,2 − ET1 A

−1
1 E1, S(2) = A

(2)
1,2 − ET2 A

−1
2 E2.

With this notation, S = S(1) + S(2). The Neumann-Dirichlet preconditioner is defined as

MND = S(1). (7.13)

We observe that we could also have chosen S(2) instead of S(1).

Theorem 7.23.
The eigenvalues of MND are

λ`(MND) =

(
1 + γm1+1

`

1− γm1+1
`

)√
σ` +

σ2
`

4
, ` = 1, . . . ,m,

and the eigenvalues of M−1
NDS are

λ`(M
−1
NDS) = 1 +

(
1− γm1+1

`

1 + γm1+1
`

)(
1 + γm2+1

`

1− γm2+1
`

)
, (7.14)

where γ` is defined as in Theorem 7.21.

For the Poisson model problem, κ(M−1
NDS) = O(1). This preconditioner is called “Neumann-

Dirichlet” because solving a linear system

S(1)y12 = (A
(1)
1,2 − ET1 A

−1
1 E1)y1,2 = c1,2,

is equivalent to solving (
A1 E1

ET1 A
(1)
1,2

)(
y1

y1,2

)
=

(
0
c1,2

)
.

For second order elliptic PDEs, it is easy to see that this is simply solving a problem in Ω1

with given Neumann boundary conditions on the interface. When the solution is known on the
interface, it is enough to solve a Dirichlet problem in Ω2.

The Neumann-Neumann preconditioner was introduced by P. Le Tallec [727]. With the same
notation as above, it is defined as

M−1
NN =

1

2

[
(S(1))−1 + (S(2))−1

]
. (7.15)

We observe that we directly define the inverse of the preconditioner as an average of inverses of
“local” inverses of Schur complements.

Theorem 7.24. The eigenvalues of M−1
NN are given by

λ`(M
−1
NN ) =

1

2

(
1− γm1+1

`

1 + γm1+1
`

+
1− γm2+1

`

1 + γm2+1
`

)
1√

σ` +
σ2
`

4

,
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and the eigenvalues of M−1
NNS are

λ`(M
−1
NNS) = 1 +

1

2

(
1− γm1+1

`

1 + γm1+1
`

)(
1 + γm2+1

`

1− γm2+1
`

)

+
1

2

(
1− γm2+1

`

1 + γm2+1
`

)(
1 + γm1+1

`

1− γm1+1
`

)
.

For the Poisson model problem, κ(M−1
NNS) = O(1).

There are other ways to construct preconditioners for the Schur complement S. One idea is
to use probing. We compute the entries of M by requiring that

Mvi = Svi, i = 1, . . . , q

for a given set of vectors vi, i = 1, . . . , q. This idea was introduced in the preconditioning area
by T.F. Chan [223] and O. Axelsson and B. Polman [72, 73]. Assume, for instance, that we
would like to compute a tridiagonal approximation M of S. We set q = 3 and a possible choice
of probing vectors is

v1 = ( 1 0 0 1 0 0 1 0 0 . . . )
T
,

v2 = ( 0 1 0 0 1 0 0 1 0 . . . )
T
,

v3 = ( 0 0 1 0 0 1 0 0 1 . . . )
T
.

If we denote yi = Mvi, i = 1, 2, 3, we have

y1 = (m1,1 m2,1 m3,4 m4,4 m5,4 . . . )
T
,

y2 = (m1,2 m2,2 m3,2 m4,5 m5,5 . . . )
T
,

y3 = ( 0 m2,3 m3,3 m4,3 m5,6 . . . )
T
.

We see that if we have computed Sv1, Sv2, Sv3 by solving six subproblems, we obtain the
nonzero entries of M right away. This can be generalized in a straightforward way to construct a
banded matrix M=Probe(S, d) with 2d+ 1 diagonals. However, constructing the approximation
in this way leads to a nonsymmetricM even for a symmetric S. Nevertheless, this approximation
possesses nice properties since T.F. Chan has shown that

Probe(αS1 + S2, d) = αProbe(S1, d) + Probe(S2, d)

and if a row of S is strictly diagonally dominant, the corresponding row of Probe(S, d) is also
strictly diagonally dominant. A way to solve the symmetry problem is to use

M =
1

2
(Probe(S, d) + Probe(S, d)T ),

but then, the diagonal dominance property is not preserved. A better way to obtain a symmetric
preconditioner is to define MProbe(S, d) by computing the i, j entry from M=Probe(S, d) as
mi,j if |mi,j | = min(|mi,j |, |mj,i|) and mj,i otherwise. This preserves symmetry and strict
diagonal dominance.

By the way it is constructed, we cannot expect the tridiagonal probing approximation to give
a condition number independent of the mesh size. T.F. Chan and T. Mathew [224] proved that,
for the Poisson model problem

κ(M−1S) = O

(
1√
h

)
.
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With two subdomains, let

B =

 B1 0 F1

0 B2 F2

FT1 FT2 B1,2


and let A be another matrix

A =

 A1 0 E1

0 A2 E2

ET1 ET2 A1,2


spectrally equivalent to B that is, there exist constants c0 and c1 such that

c0(Bx, x) ≤ (Ax, x) ≤ c1(Bx, x), ∀x.

It implies that
κ(B−1A) ≤ c1

c0
.

Let x = (x1 x2 x1,2 )
T and y = (−A−1

1 E1x1,2 −A−1
2 E2x1,2 x1,2 )

T . Then

Ay =

 0
0

(A1,2 − ET1 A−1
1 E1 − ET2 A−1

2 E2)x1,2

 =

 0
0

Sx1,2

 .

With this choice of y we have
(Ay, y) = (Sx1,2, x1,2),

and

By =

 (−B1A
−1
1 E1 + F1)x1,2

(−B2A
−1
2 E2 + F2)x1,2

(B1,2 − FT1 A−1
1 E1 − FT2 A−1

2 E2)x1,2

 .

Let us compute (By, y),

(By, y) = (y1, (−B1A
−1
1 E1 + F1)x1,2)

+ (y2, (−B2A
−1
2 E2 + F2)x1,2)

+ (x1,2, (B1,2 − FT1 A−1
1 E1 − FT2 A−1

2 E2)x1,2).

Let us assume that there exist nonsingular matrices D1 and D2 such that

Ai = DiBi, Ei = DiFi, i = 1, 2.

Then, the first and second terms in (By, y) are zero and the third one is (SBx1,2, x1,2), SB being
the Schur complement of B. This shows that we have

c0(SBx1,2, x1,2) ≤ (Sx1,2, x1,2) ≤ c1(SBx1,2, x1,2),

and S is spectrally equivalent to SB . Hence, we can use the same preconditioners for S as for
SB . This happens, for instance, for the case Ai = ρiBi, Ei = ρiFi, i = 1, 2.

Of course, we have to consider what to do when we have more than two subdomains. If the
problem arises from the discretization of a partial differential equation, we have to partition the
mesh, whence for more general problems we have to partition the graph of the matrix. There are
at least two ways to partition the mesh or the graph. The first one is to partition into strips (like
in Figure 7.6 for a rectangle) and the second one is to allow more general subdomains like in
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Figure 7.6. Multi strips partitioning

Figure 7.7. Partitioning with boxes

Figure 7.7. Most of the automatic mesh or graph partitioners, like parMETIS [694, 695], provide
irregular subdomains.

A domain decomposition with strips can be done for general domains by finding pseudo-
peripheral nodes and constructing the level structure corresponding to one of these nodes, see
Chapter 3. This is similar to one-way dissection. If we partition the domain or graph into strips,
when eliminating exactly the subdomain unknowns, the Schur complement S is block tridiagonal
since an interface can only be linked to two other interfaces. In some simple cases the eigenvalues
of S are known analytically, see [811].

The problem is to define preconditioners for S. A first idea is to use block diagonal precon-
ditioners, the diagonal blocks being the preconditioners we define for the two subdomains case.
Dryja’s preconditioner removes the mesh dependency but not that on the number k of subdo-
mains and, in fact, we have κ(M−1

D S) = O(k2) for model problems. The same result holds for
the Golub and Mayers’ preconditioner although the condition number may be a little smaller. It
is more difficult to generalize the Neumann-Dirichlet preconditioner to many subdomains. One
obvious way is to use as preconditioner a block diagonal matrix whose blocks are the two sub-
domains Neumann-Dirichlet preconditioner. Another way to derive a preconditioner is to apply
the same principle as with two subdomains, that is, to decompose the Schur complement into
S(1) + S(2). M. Dryja and W. Proskurowski [362] proved that the condition number is of order
k2.

The Neumann-Neumann preconditioner can be easily extended to many subdomains, the
inverses of partial Schur complements have to be weighted by the inverse of the number of
subdomains which share a given node.

If we cannot solve exactly for the subproblems, we are not able to use an iterative method
with S since we cannot compute the matrix-vector product Sv. Hence, we have to iterate on all
the unknowns and we need a global parallel preconditioner. For a partitioning into k strips we
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can define the preconditioner as

M = L



M−1
1

M−1
2

. . .
M−1
k

M−1
1,2

. . .
M−1
k−1,k


LT ,

L =



M1

M2

. . .
. . .

Mk

CT1 ET2 M1,2

CT2 ET3 H2 M2,3

. . . . . . . . . . . .
CTk−1 ETk Hk−1 Mk−1,k


.

The matrices Mi can be chosen as in the two subdomains case. For the matrices Mi,i+1 and
Hi, we have many possibilities since there are many different ways to construct an incomplete
factorization of a block tridiagonal matrix.

Let us now consider domain decomposition with boxes, see the right part of Figure 7.7. With
this decomposition interfaces are made of two kinds of sets, the edges as before and the points
where the interfaces cross which are known as vertices or cross points. We use an index Ei
for the edges, E = ∪Ei and V for the vertices. We observe that with the most standard finite
element or finite difference approximations the cross points are not linked to points inside the
subdomains but only to points on the edges. Moreover, there is no direct connection between the
cross points since we require at least one mesh point per edge.

The nonzero structure of the Schur complement S depends on the choice of numbering of
the points. Let us consider an example for the Poisson model problem with 121 nodes and 9
subdomains arranged as 3× 3, each subdomain having 3× 3 points with the following ordering
of the points,

61 62 63 114 70 71 72 117 79 80 81
58 59 60 113 67 68 69 116 76 77 78
55 56 57 112 64 65 66 115 73 74 75
103 104 105 120 106 107 108 121 109 110 111
34 35 36 99 43 44 45 102 52 53 54
31 32 33 98 40 41 42 101 49 50 51
28 29 30 97 37 38 39 100 46 47 48
88 89 90 118 91 92 93 119 94 95 96
7 8 9 84 16 17 18 87 25 26 27
4 5 6 83 13 14 15 86 22 23 24
1 2 3 82 10 11 12 85 19 20 21

The points within the subdomains are numbered first, then the points on the edges, and, finally,
the four vertices. With this ordering the nonzero structure of S is shown in Figure 7.8 with 3× 3
blocks.
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Figure 7.8. Nonzero structure of S with boxes

Because this is a small problem, one block is only linked to a maximum of 5 blocks. More-
over, the entries of S outside a tridiagonal nonzero structure are quite small except for the last 4
rows and 4 columns corresponding to the links with the cross points, see Figure 7.9. For the Pois-
son model problem, the magnitude of the entries depends only on the distance between points.
However, this is not true for more general problems. We observe that there is a coupling between
the points on different neighboring edges and this must be taken into account when constructing
preconditioners.
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Figure 7.9. Poisson model problem, S with boxes

Let us describe a preconditioner that was proposed by J.H. Bramble, J.E. Pasciak, and A.H. Schatz
in [144] and the subsequent papers [145, 146, 147] for finite element problems in two dimensions.
This is a preconditioner, denoted as BPS, that had an important influence on the development of
domain decomposition methods. It relies on deriving a simpler finite element approximation of
the problem. Assume that we have to solve the problem

a(u, v) = (f, v), ∀v ∈ V

where a is a coercive bilinear form arising from a second order elliptic partial differential equa-
tion, V being a Hilbert space, say H1

0 (Ω) for homogeneous Dirichlet boundary conditions. Let
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us construct another spectrally equivalent bilinear form b(u, v) that is, satisfying

c0b(v, v) ≤ a(v, v) ≤ c1b(v, v), ∀v ∈ V.

Then, we use b as a preconditioner for a. The domain Ω is divided into non-overlapping sub-
domains Ωk, the edges between two subdomains being denoted as E`,m. Another intermediate
form is introduced to allow for some averaging of the coefficients,

ã(u, v) =
∑
k

∑
i,j

∫
Ωk

aki,j
∂u

∂xi

∂v

∂xj
dx =

∑
k

ãk(u, v).

The method separates interior, edges and vertices unknowns in the following way,

u = uP + uH ,

where uP is in
∑
⊕ V

0(Ωk) with functions in V 0(Ωk) having homogeneous Dirichlet boundary
conditions and

uP = 0 on E`,m.

The function uP is defined as the solution of

ãk(uP , φ) = ãk(u, φ), ∀φ ∈ V 0(Ωk).

The function uH is defined by

ãk(uH , φ) = 0, ∀φ ∈ V 0(Ωk).

The method goes one step further and split uH on the interfaces as

uH = uE + uV ,

where uE stands for edge unknowns, uV for vertices unknowns, uV (vj) = u(vj) and uV |Eij is
linear, uE(vj) = 0. In [144] an operator `0 on the edges is defined, V 0(Ei,j)→ V 0(Ei,j) by∫

Ei,j

c−1`0(w)φ =

∫
Ei,j

cw′φ′, ∀φ ∈ V 0(Ei,j),

where c is piecewise constant. This defines something which behaves like the one-dimensional
Laplace operator. The bilinear form b is defined as

b(w, φ) = ã(uP , φP )

+
∑
Ei,j

∫
Ei,j

αi,jc
−1`

1/2
0 (uE)φE

+
∑
Ei,j

(uV (vi)− uV (vj))(φV (vi)− φV (vj)).

The basis functions are the usual polynomial ones for the interior nodes, one-dimensional hat
functions vanishing at the vertices for the edges, and functions which are linear on each edge,
being 1 at one vertex, 0 at the other ones for the vertices. The BPS preconditioner perform the
following steps:

1) solve Dirichlet problems on each subdomain in parallel to obtain uP ,
2) solve one dimensional edge equations in parallel for uE
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3) solve a coarse mesh linear system on the set of vertices for uV . From uE and uV we obtain
the boundary values of uH . The last step is

4) solve Dirichlet problems on each subdomain in parallel to obtain uH .
The solution is uP + uH . For possible choices for the averaged coefficients, see [144].

Theorem 7.25. Under suitable hypotheses, the condition number for the preconditioned system
given by BPS in two-dimensional problems is

κ ≤ C
(

1 + log2

(
H

h

))
,

where H is the coarse mesh size.

Proof. See J.H. Bramble, J.E. Pasciak, and A.H. Schatz [144].
There is only a slight h-dependency in the condition number and this gives a fast convergence

when solving with CG. This dependency arises from the fact that the vertices are not directly
linked to the neighboring edge nodes. Variants of the BPS preconditioner can also be defined as

M−1v =
∑
edges

RTEi(αiMi)
−1REiv +RTHA

−1
H RHv,

where REi denotes the restriction to the edge Ei and RH is a weighted restriction onto the
coarse mesh, Mi being one of the preconditioners for the two subdomains case, either Dryja’s or
Golub-Mayers’.

A way to improve on BPS was proposed by B. Smith [1023, 1024, 1025, 1026]. It allows for
a coupling between the vertices and the edge points. Let Vk be a set of points around each vertex
on each of the edges. The preconditioner is defined as

M−1v = RTHA
−1
H RHv +

∑
edges

RTEi(MEi)
−1REiv +

∑
vertices

RTVk(MVk)−1RVkv.

It includes some coupling between neighboring edges. The edge preconditioner can be chosen
as a weighting of Dryja’s or Golub-Mayers’ preconditioners. This is known as the vertex space
preconditioner.

The use of probing to define MVk was proposed by T.F. Chan and T. Mathew [223]. The
restriction to the edges is tridiagonal and an edge is only linked to the cross point and to the
two points adjacent to the cross point on the neighboring edges. Five probing vectors are chosen
to construct this approximation. If enough points are used around each vertex, the condition
number is independent of the mesh size h and of the number of subdomains.

The finite element tearing and interconnecting (FETI) method was introduced by C. Farhat
and F.X. Roux [443], initially for structural mechanics. FETI is a domain decomposition method
where Lagrange multipliers are introduced at the subdomain interfaces to enforce the continu-
ity of the solution. Its convergence was studied by J. Mandel and R. Tezaur [778]. Optimized
interface preconditioners for FETI were proposed by M.J. Gander and H. Zhang [492]. An en-
hanced algorithm named FETI-DP (DP standing for “dual-primal”) was described by C. Farhat,
M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen [441], see also [442].

In these algorithms the interface unknowns are partitioned into corners (cross points) which
can have different definitions, and the remainder of the interface unknowns. FETI-DP insures
the continuity of the corner unknowns, whereas all other unknowns are defined at the subdomain
level. The continuity is obtained by using Lagrange multipliers. The problem is formulated as a
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dual-primal problem relating the dual Lagrange multiplier unknowns λ to the primal unknowns.
These latter ones are eliminated giving a symmetric positive definite linear system for the La-
grange multipliers which is solved by PCG. In doing so, one has to solve a subproblem for the
corner unknowns that can be interpreted as a coarse problem.

Hundred of papers have been written over the years about variants of FETI-DP or about
applications to particular problems.

The balancing domain decomposition (BDD) preconditioner was introduced by J. Mandel
[774] by adding a coarse component to the Neumann-Neumann preconditioner. The algorithm
is well explained in [775] by J. Mandel and M. Brezina. For problems arising from finite ele-
ment discretization of two- and three-dimensional elliptic problems, the condition number of the
preconditioned matrix is bounded from above by

c

(
1 + log2

(
H

h

))
,

where the constant c does not depend on H , h, or the coefficients of the PDE.
A balancing domain decomposition with constraints (BDDC) was proposed in [341] by

C.R. Dohrmann, mainly for problems in solid mechanics. This method minimizes the energy
norm xTAx/2 under some constraints Cixi = ej where xi = Rix for the ith subdomain and
ej is the jth column of the identity matrix. Each row of Ci is associated with a coarse unknown
(cross points) common to two or more subdomains. Implementation details and numerical exper-
iments are given in [341]. The BDDC algorithm involves the choice of a set of primal unknowns
and the choice of an averaging operator which restores the continuity of the approximate solution
across the interfaces between the subdomains. The choice of this last component of the algorithm
was further discussed by O.B. Widlund and C.R. Dohrmann [1117] with an algorithm named
“BDDC deluxe”. Inexact solvers for the coarse problem were considered by C.R. Dohrmann,
K.H. Pierson, and O.B. Widlund [342].

FETI-DP and BDDC are two methods which are very closely related, see J. Mandel and
C.R. Dohrmann [776], as well as J. Mandel and B. Sousedík [777] where the equivalence of the
two methods is discussed.

In [208] L. Carvalho considered a few preconditioners whose spirit is close to the vertex
space preconditioner. They involve some overlapping between the edge and vertex parts. This
is why they are denoted as algebraic additive Schwarz (AAS). He studied several local block
preconditioners for the subdomains and several coarse space preconditioners. For the local pre-
conditioners, the main difference with the vertex space preconditioner is that the edge and the
adjacent vertices are considered together, see Figure 7.10.

* *

* *

Figure 7.10. The points in the vertex space

Another proposal was to consider the complete boundary of one subdomain, to be able to
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take into account all the couplings between the edge points and the vertices when the interior
points are eliminated. The local preconditioners are obtained by probing [208]. A set of numer-
ical experiments on elliptic problems shows that there is a 1/H2 dependency in the number of
iterations. Therefore, a coarse space component is added to the algorithm. A restriction operator
R0 is defined and the coarse component of the preconditioner is defined as RT0 A

−1
0 R0 where A0

is the Galerkin coarse space operator A0 = R0SR
T
0 . Several possibilities were considered,

i) a subdomain-based coarse space where all the boundary points of a subdomain are considered.
The coarse space is spanned by vectors which have nonzero components for the points around a
subdomain, for all subdomains.
ii) a vertex-based coarse space where the vertices and some few adjacent edge points are consid-
ered.
iii) an edge-based coarse space where the points of an edge and the adjacent vertices are consid-
ered.

The combination of one of these coarse space preconditioners with the local parts gives a
preconditioner for which the condition number is insensitive to the mesh size or the number
of subdomains, except for very highly anisotropic problems. For more details and numerical
experiments, see L.M. Carvalho, L. Giraud, and G.M. [209].

Domain decomposition is still an active area of research, see the proceedings of the DD
conferences. The developments are now more focused on the application of these ideas to many
more difficult problems in science and engineering.

There are several books about domain decomposition: B.F. Smith, P.E. Bjørstad, and W.D. Gropp
[1026] in 1996, A. Quarteroni and A. Valli [934] in 1999, A. Toselli and O. Widlund [1069] in
2004, C. Pechstein [909] in 2013, and V. Dolean, P. Jolivet, and F. Nataf [347] in 2015.

7.7 Algebraic multigrid and multilevel methods
The multigrid method was originally devised as an iterative method for solving problems arising
from the discretization of elliptic partial differential equations on simple domains. This method
is now known as geometric multigrid. Let us briefly describe the ingredients of the method on a
simple example.

Let us assume that we would like to compute an approximate solution of a second order
linear elliptic partial differential equation Lu = f in a square domain Ω with Dirichlet boundary
conditions. The domain Ω is covered with a regular mesh of stepsize h = 1

m+1 , m being odd,
giving a grid Ωh. The PDE is discretized using the classical five-point finite difference scheme.
An example of such a problem is given by the Poisson model problem we have already seen
in preceding chapters. It yields a linear system Au = b. This change of notation from x to u
means we are solving a system arising from a continuous problem and it is motivated by using a
notation which is almost standard in the multigrid literature.

A two-grid method uses a coarse grid whose stepsize isH = 2h. Let uk be an approximation
of the solution u and εk = u− uk be the error. We have already seen that

Aεk = Au−Auk = b−Auk = rk.

Solving this equation is as difficult as the original problem. The idea of multigrid is to solve this
problem on the coarse grid. The error being defined on Ωh, we need a method to go from Ωh to
ΩH . Therefore we define a linear restriction operator R

R : Ωh → ΩH , (�m
2

→ �p
2

)
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The representation of R is a p2 ×m2 rectangular matrix. When we have solved the problem on
ΩH , we need to go back to Ωh. A linear prolongation (interpolation) operator P is defined,

P : ΩH → Ωh, (�p
2

→ �m
2

).

We also have to define the problem to be solved on the coarse grid. The coarse grid matrix is
most often defined as AH = RAP . The coarse grid linear system can be solved by a direct
method. The iteration matrix of such a two-grid method would be I−PA−1

H RA. Unfortunately,
whenA is symmetric positive definite, the eigenvalues of that matrix are 0 and 1, and the method
does not converge. The eigenvectors of A span a basis of �n. It corresponds to (or converges
towards when h→ 0) the eigenfunctions of L. Some of these eigenfunctions vary rapidly (high
frequencies), some others are smooth (low frequencies). The components of any vector on the
high frequency eigenvectors cannot be well approximated on the coarse grid. Hence, to have a
method that converges, we need smooth residuals such that rHk = Rrk is a good approximation
of rk.

It is well known that classical iterative methods such as relaxed Jacobi or Gauss-Seidel give
smoother and smoother errors and residuals as the methods proceed. Therefore, a few iterations
of these methods can be used as a smoother for the residual vectors. We denote by S the iteration
matrix of the chosen smoothing method. The two-grid algorithm is the following,
1) Starting from uk, do ν1 iterations of the smoothing method. Let ūk be the resulting vector.
2) r̄k = b−Aūk,
3) r̄Hk = Rr̄k,
4) solve exactly AHεHk = r̄Hk ,
5) vk = PεHk ,
6) starting from ūk + vk, do ν2 iterations of the smoothing method. Let uk+1 be the result.
7) if no convergence go to 1.

The iteration matrix of the two-grid method is

M = Sν2(I − PA−1
H RA)Sν1 = Sν2KSν1 .

What we have just described is only a general framework. By combining the different possibili-
ties for each component of the method, many variants can be generated. We have to choose

- the smoothing method S,

- the integers ν1 and ν2,

- how to construct the coarse grid,

- the restriction operator R,

- the prolongation operator P ,

- how to define the coarse matrix AH .

The multigrid method is defined by using the two-grid method recursively. The method uses
a sequence of grids Ω` whose mesh sizes are h`, ` = 0 corresponding to the coarsest grid and
` = L to the finest grid.

We denote

- A` the approximation of A on Ω`,

- R` the restriction operator: Ω` → Ω`−1,
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- P`−1 the interpolation operator: Ω`−1 → Ω`,

- S` the iteration matrix of the smoothing operator on Ω`.

Let w̄` = smoothν(w`, A`, b`) be the result of ν smoothing iterations for the problem
A`u` = b` starting from w`. The multigrid algorithm is the following,

If ` = 1 apply the two-grid algorithm.
If ` > 1
1) ū`k = smoothν1(u`k, A`, b`),
2) r̄`k = b` −A`ūk`,
3) r̄`−1

k = R`r̄
`
k,

4) compute v̄`−1
k as the approximate solution of

A`−1v
`−1
k = r̄`−1

k

on Ω`−1 by doing γ iterations of the `-grid algorithm (Ω`−1, . . . ,Ω0) starting from 0.
5) v̄`k = P`−1v̄

`−1
k ,

6) u`k+1 = smoothν2(ū`k + v̄`k, A`, b`).

In this algorithm there is a new parameter γ which indicates how we solve the problem on the
grid Ω`−1. If γ = 1, we have what is called a V-cycle since we visit the grids from the finest one
to the coarsest one and back to the finest one. The value γ = 2 gives what is called a W-cycle.
Another way of navigating through the levels that is not described by the previous algorithm is
the F-cycle. Starting from the finest level ` = L, one goes down to the coarsest level ` = 0 as in
the V-cycle, then up to ` = 1, down to ` = 0, up to ` = 2, down to ` = 0, up to ` = 3, down to
` = 0, and so on until back to ` = L.

For one step, the V-cycle is the fastest method, the W-cycle is the more expensive, and the
F-cycle is in between. However, the convergence of the V-cycle is usually the worst, and that of
the W-cycle the best.

Let us denote by M `−1
` the iteration matrix of the two-grid method with grids Ω` and Ω`−1.

As we have seen above,

M `−1
` = Sν2` (I − P`−1A

−1
`−1R`A`)S

ν1
` .

Using the multigrid method is replacing A−1
`−1 by γ iterations of the `-grid method starting from

0, that is,
A−1
`−1 → (I −Mγ

`−1)A−1
`−1,

Let M`−1 be the iteration matrix of the `-grid method. Then,

M` = Sν2` (I − P`−1(I −Mγ
`−1)A−1

`−1R`A`)S
ν1
` ,

for ` > 2 and
M1 = Sν21 (I − P0A

−1
0 R1A1)Sν11 .

By straightforward algebra, we obtain a recursive relation for the iteration matrix,

M` = M `−1
` + (Sν2` P`−1)Mγ

`−1(A−1
`−1R`A`S

ν1
` ).

Many papers have been written about geometric multigrid convergence. Most of these papers
made some assumptions on the smoother and the restriction and prolongation (interpolation)
operators. Let us just cite a result by W. Hackbusch [600]. The first assumption is known as the
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smoothing property4, one assumes that there are functions η(ν) and ν̄(h) independent of ` such
that

‖A`Sν` ‖ ≤ η(ν)‖A`‖ for all 0 ≤ ν ≤ ν̄(h`).

These functions are such that limν→∞ η(ν) = 0 and limh→0 ν̄(h) = ∞ or ν̄(h) = ∞. The
second assumption is known as the approximation property,

‖A−1
` − PA

−1
`−1R‖ ≤

C

‖A`‖
,∀` ≥ 1.

Using these properties and assuming that ‖Sν` ‖ ≤ C, C1‖x`−1‖ ≤ ‖Px`−1‖ ≤ C2‖x`−1‖,
γ ≥ 2, W. Hackbusch proved that

‖M`‖ < 1, for ν ≤ min ν̄(h`),

provided the mesh size h is small enough. If ν̄(h) = ∞ the choice of the mesh size is not
restricted.

The theory for geometric multigrid is described in several books: W. Hackbusch [599, 600],
P. Wesseling [1114], J.H. Bramble [143], W.L. Briggs, V.E. Henson, and S.F. McCormick [173],
and U. Trottenberg, C.W. Oosterlee, and A. Schüller [1074]

Algebraic multigrid (AMG) was designed to be able to use multigrid ideas for linear systems
not necessarily arising from the discretization of a PDE. The word “algebraic” refers to the fact
that these methods use only the matrix A of the linear system. But, in the multigrid framework,
we have to define coarse problems. In geometric multigrid the finest levels are often obtained
by refinements of a coarse mesh. AMG proceeds in the opposite way, obtaining coarse levels
by coarsening. This is done by using the graph of the matrix A. The n vertices (nodes) of the
graph are split into two sets: fine nodes F and coarse nodes C, with F ∪ C = {1, . . . , n} and
F ∩ C = ∅. The coarsening operation is then applied recursively to the set C until obtaining a
number of nodes for which the problem can be solved efficiently by a given linear solver. In the
following we will still speak of coarse grids, even though we are just working with (sub)graphs.

As in geometric multigrid, we have to choose a smoother, a restriction R, and a prolongation
P (often chosen as RT ). Many choices have been proposed over the years. Here we can just
briefly describe a few of them.

Let us assume that the matrix A is symmetric and start with the coarsening. For each node i,
we define a set of dependencies Σi and an influence matrix Σ whose rows are the Σi’s. Again,
this can be done in many ways. The goal is to find the strong connections between nodes using
the matrix entries. What can be considered as the standard AMG algorithm [965, 173] for an
M-matrix defines

Σi = {j| − ai,j > τ max
k 6=i

(−ai,k), τ < 1},

where τ is a given parameter that defines which entries are strongly connected to i. The set of
points that i influences is ΣTi = {j| i ∈ Σj}. This definition can be generalized to any matrix as

ΣAi = {j | |ai,j | > τ max
k 6=i
|ai,k|, τ < 1}.

We observe that this influence matrix is local since we are looking only at the neighbours of i in
the graph of A.

4Note that there are other definitions of the smoothing property in the literature, see [1131]
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Rather than using an influence matrix given by the entries of A, it seems more natural to
measure the influences of the points by the inverse of A since it describes how the unknowns are
linked together. Therefore, the idea is to use an approximate inverse of A with entries mi,j ,

ΣMi = {j ∈ [1, . . . , n], j 6= i|mi,j 6= 0}.

We can use the approximate inverse given by AINV [117, 114] or that in [1058]. When using
AINV the approximate inverse is only given in factored form ZD−1ZT . Thus we could also
define the influence matrix as

ΣZi = {j ∈ [1, . . . , n], j 6= i| ni,j 6= 0}.

with N = Z̃ + Z̃T − Q, where Q is a diagonal matrix whose diagonal entries are the square
roots of those of D−1 and Z̃ = ZQ.

When solving anisotropic PDE problems, using AINV to define the set of dependencies can
lead to obtain too many connections and coarse grids with very few points. A way to avoid this
is to compute the coarse grid and then to check if every F node has at least one C node in its
neighbours in the graph of A. If this is not the case, we can choose one of the neighbours and
change its status to a C node.

Once the matrix Σ is obtained by any method, there are different ways we can follow to de-
cide which are the F and C nodes. What can be considered as the standard coarsening algorithm
is based on two principles:

1. For each i ∈ F , each node j ∈ Σi should either be in C or should depend on at least one
node in Ci which is the set of coarse nodes used for the interpolation at node i,

2. C should be (as most as possible) a maximal subset with the property that no C node
depends on another C node.

The first principle tends to increase the number of C nodes. The second one is used to limit
the number of nodes in the coarse grid. The coarsening algorithm is defined by two passes.
The first one uses weights wi which are the number of nodes that depend on i. One step of the
algorithm is the following,

1. Choose the first node i with maximal weight as a C node.

2. Assign the nodes that i influences as F points.

3. Increment by 1 the weights of the nodes influencing these new F nodes.

4. Decrease by 1 the weights of nodes that depends on i.

This guarantees that each F node has at least one connection to a C node. This is needed for
the standard interpolation scheme. It tends sometimes to produce too many F nodes. A second
pass could be added in which someF nodes are changed into C nodes to enforce the first criterion
and to minimize C-C connections. The idea is to test each F node to see if the first criterion is
satisfied. The neighbours of i are split into the coarse nodes Ci, the strongly connected non
interpolatory nodes DS

i (those which belong to Σi) and the weakly connected non interpolatory
nodes DW

i . If there is a node in DS
i which is not connected to Ci, it is tentatively flag as a C

node. If the first criterion is satisfied with this new C node, it is definitely considered as a C node
and testing on other F nodes continues. There are many cases for which this expensive second
pass is not needed.
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There are many others ways to generate the F and C nodes; see, for instance, the algorithm
proposed by A.J. Cleary, R.D. Falgout, V.E. Henson, and J.E. Jones [269]. Their algorithm was
designed to be used on parallel computers. Another possibility is to use a greedy aggregation
algorithm. For example, we set nc = 0, and for i = 1, . . . , n we do the following steps:

1. If i and all its neighbours have not been visited yet, we set nc = nc + 1, the subgraph
whose nodes are i and its neighbours is labelled nc, and we mark i and its neighbours as
visited.

2. If at least one neighbour of i has been visited, we continue the loop over the nodes.

At the end of the loop on i it may happen that there are nodes which do not belong to any
aggregate. They are added to the neighbouring aggregate having the least number of nodes.

For AMG algorithms based on aggregation, see P. Vaněk, J. Mandel, and M. Brezina [1094,
1095], and Y. Notay [864, 865], as well as A. Napov and Y. Notay [850].

We observe that the construction of the coarse grids depends on the matrices on the coarse
levels and therefore also on the interpolation scheme which gives P and R. This implies that if
we change the interpolation scheme, the number and location of the coarse nodes also change.

Let us now consider the interpolation scheme. The geometric multigrid algorithm uses bi-
linear interpolation. But, it is well known that this is not satisfactory for general problems. The
standard AMG algorithm uses instead an interpolation based on the equations of the linear sys-
tem. We know the values at the C nodes, arising from the solve on the next coarsest grid, and we
have to compute interpolated values at the F nodes. For a node i in F , the interpolation weight
with a coarse node j is

ωi,j = −
ai,j +

∑
k∈DS

i

ai,kak,j∑
m∈Ci

ak,m

ai,i +
∑
k∈DW

i
ai,k

.

This is obtained by writing the equations forAz = 0 and by doing some approximations; namely,
writing that zj ≈ zi for weak connections and using a weighted average for F connections. Note
that the given F node i needs to have at least one coarse point in its neighbourhood in the graph
of A in order to be able to use this interpolation scheme.

We can also use an approximate inverse to compute the interpolation weights, see [814]. For
an F point i, the interpolation weights wi,j are defined as

wi,j =
ni,j∑
`∈Ci ni,`

j ∈ Ci,

where ni,j = mi,j or N = Z̃ + Z̃T − Q. The rationale behind this choice is that the points
which are more important for interpolation are the ones with the strongest connections.

Another possibility is the energy minimization interpolation described by W.L. Wan, T.F. Chan,
and B.F. Smith in the finite element framework, see [1109]. However, this algorithm can be used
in a more general setting. The prolongation operator relates the coarse grid basis functions φHi
to the fine grid basis functions φhi ,

[φH1 · · ·φHm] = [φh1 · · ·φhn]P.

The coarse grid functions can be expressed in the fine grid basis,

φHi =

n∑
j=1

ϕijφ
h
j ,
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and we are looking for coefficientsϕij that minimize theA-norm of the coarse grid basis functions
satisfying the property that the interpolation of a constant value is exact. Let

ϕi = (ϕi1 . . . ϕ
i
n)T , φ = (ϕ1 . . . ϕm)T .

Then, the minimization problem is

min
1

2
φTQφ, BTφ = 1,

where 1 is the vector of all ones, Q is a block diagonal matrix whose diagonal blocks Qi are
given by (Qi)k,` = ak,` if k and ` are neighbours of i in the graph of A and δk,` otherwise. The
constraint matrix B is given as BT = (IT1 · · · ITm), with (Ii)k,` = 1 if k = `, i being a neighbour
of k and 0 otherwise. The minimization problem is solved using a Lagrange multiplier Λ. This
gives a linear system (

Q B
BT 0

)(
φ
Λ

)
=

(
0
1

)
.

This is solved by eliminating φ to get (BTQ−1B)Λ = −1. Fortunately, Q−1 is not difficult to
obtain since Q is block diagonal with small blocks. Once, we have φ and therefore the ϕj’s, we
set the prolongation (interpolation) matrix as P = (ϕ1 · · ·ϕm).

More interpolation schemes are described in [813]. For a long-range interpolation scheme,
see U. Meier Yang [794].

The coarse grid matrix is generally defined as A`−1 = R`A`P`−1.

There exist many choices for the smoother in the literature. Let us describe a few. One of
the most used smoother for symmetric problems is the symmetric Gauss-Seidel iteration. The
relaxed Jacobi iteration is also popular because it is a parallel iteration. Overlapping Schwarz
methods give another possibility.

Another smoother which has been proposed is the incomplete Cholesky (IC) factorization
LD−1LT , where L is lower triangular and D diagonal, see Section 7.3. As we have seen above,
there are many variants of this algorithm. The most popular one is to use a factorization for
which the nonzero structure of L is the same as the structure of the lower triangular part of A.
However, one can also keep a part of the fill-in either by looking at the size of the entries or by
using the levels of fill-in.

One can also use an approximate inverseM−1 as a smoother in a Richardson iteration defined
as

xk+1 = xk +M−1(b−Axk),

when solving Ax = b, see [814]. This can be used with the approximate inverses described
for the coarsening algorithm. A few iterations of the preconditioned conjugate gradient has also
been proposed as a smoother.

A least squares polynomial can also be used in a Richardson iteration, see [813] where nu-
merical experiments are described.

The smoother and the coarse spaces are closely related. As stated in [1131], “any chosen
smoother is expected to converge well only on certain components of the solution, which will
be known as algebraic high frequencies with respect to the given smoother. With the smoother
fixed, the main task of an AMG method is then to identify a sequence of coarse spaces that would
complement this smoother well”.

We must add that, nowadays, algebraic multigrid is most often used as a preconditioner in
Krylov iterative methods and not as a stand-alone algorithm.
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Since the multigrid methods became popular, the idea of using several levels has been used
in different areas of numerical linear algebra.

The use of multilevel orderings for incomplete Cholesky and LU preconditioners has been
considered starting in the 1990s. Research in this direction was done by O. Axelsson [65, 66],
O. Axelsson and P.S. Vassilevski [74, 75, 76, 77], and O. Axelsson and V. Eijkhout [68]. We can
also refer to the work of Y. Notay [860, 862, 863].

Let us assume that A is an M-matrix. We first consider a two-level algorithm, the matrix A
being partitioned as

A =

(
A1,1 A1,2

A2,1 A2,2

)
.

The block (1, 1) refers to unknowns corresponding the “fine” grid and (2, 2) to unknowns on the
“coarse” grid. A two-level preconditioner is defined as

M =

(
M1,1

A2,1 S

)(
I M−1

1,1A1,2

I

)
,

where M1,1 is a (modified) incomplete LU factorization of A1,1 without fill-in, and S = A2,2 −
A2,1KA1,2 is an approximation of the Schur complement of A, K being a diagonal matrix to
be defined. By choosing a diagonal approximation, the reduced system has the same structure
as the original problem. When M1,1 is a modified ILU preconditioner, we have M1,1e = A1,1e,
where e = (1, 1, . . . , 1)T . Let D be a diagonal matrix such that De = A1,1e. Then, ki,i can be
set equal to d−1

i,i if the diagonal entry is nonzero and zero otherwise. When A is symmetric, S is
a symmetric M-matrix.

Bounds for the condition number of M−1A are given in [862]. The multilevel method is
obtained by a recursive application of the two-level preconditioner. LetMS be the preconditioner
for the next coarsest level. A solve with S is replaced by a multiplication by P2(M−1

S S)S−1

where P2 is a second order polynomial such that P2(0) = 0. It was proposed to use shifted
Chebyshev polynomials. Using a second order polynomial leads to a kind of W-cycle algorithm.
Numerical results in [862] show that this method seems quite robust. In [860] Y. Notay proposed
using a V-cycle with a similar algorithm by replacing the use of the second order polynomial by
some smoothing (for instance, a relaxed Jacobi iteration).

The incomplete factorization multigraph algorithm was proposed by R.E. Bank and R.K. Smith
[95] and the multilevel ILU decomposition by R.E. Bank and C. Wagner [96].

For multilevel incomplete factorizations we can also cite (in alphabetical order), O. Axels-
son and S. Margenov [71], Z.Z. Bai [81], M. Bollhöfer and V. Mehrmann [138], M. Bollhöfer
and Y. Saad [141], T.F. Chan, C.C.J. Kuo, and C. Tong [222], W. Dahmen and A. Kunoth
[305], H.C. Elman and X.-Z. Guo [418], Y.A. Erlangga and R. Nabben [427], T. Grauschopf,
M. Griebel, and H. Regler [555], T. Huckle and J. Staudacher [659], R. Kehl, R. Nabben,
and D.B. Szyld [696], C.C.J. Kuo and T.F. Chan [669, 670], Y. Kuznetsov and A. Prokopenko
[717], Z. Li, Y. Saad, and M. Sosonkina [744], Y. Notay [861, 864], Y. Saad [978], Y. Saad
and B. Suchomel [981], Y. Saad and J. Zhang [983], P.S. Vassilevski [1101], A. van der Ploeg,
E.F.F. Botta, and F.W. Wubs [1082], H. Yserentant [1147], Y. Xi, R. Li, and Y. Saad [1126],
T. Xu, V. Kalantzis, R. Li, Y. Xi, G. Dillon, and Y. Saad [1132], J. Zhang [1154], and X. Zhang
[1156]. Many other papers were devoted to applications of the multilevel techniques.

We have seen above that it is useful to add a coarse space component to the additive Schwarz
preconditioners. It is relatively easy to generalize these two-level methods to a multilevel algo-
rithm. Assume that we have L + 1 levels, the mesh or graph of each level ` being decomposed
into N (`) subdomains denoted as Ω`i . Then, the multilevel additive Schwarz preconditioner is
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defined as

M−1 =

L∑
`=0

N(`)∑
i=1

(R`i)
T (A`i)

−1R`i .

The index ` = 0 corresponds to the coarsest grid. Note that the subdomains Ω`i overlap each
other as in the one-level case. A particularly simple algorithm is the multilevel diagonal scaling
preconditioner. Then, if the coarsest grid has only a single subdomain

M−1 = (R0)T (A0)−1R0 +

L−1∑
`=1

(R`)T (D`)−1R` + (DL)−1,

where D` is the diagonal of A`. A closely related preconditioner (known as BPX) was proposed
by J.H. Bramble, J.E. Pasciak, and J. Xu [149]. They observed that in finite element methods
with linear approximations, the diagonal entries of the matrix at level ` must be of order (h`)d−2

where h` is the mesh size and d is the dimension (1, 2 or 3). The BPX preconditioner is defined
as

M−1 = (R0)T (A0)−1R0 +

L−1∑
`=1

(h`)2−d(R`)TR` + (hL)2−dI.

The BPX preconditioner discards all information about the coefficients of the problem except for
the coarsest mesh. However, it has been proved that it is theoretically optimal for the problems
it was designed for, the condition number being O(1).

Additive Schwarz methods can be mixed with multiplicative methods in different ways. One
can define as before fully additive methods which are additive among subdomains and between
levels. Another possibility is to be multiplicative between subdomains on one level and additive
between levels. A third kind of algorithm is being multiplicative between both subdomains and
levels.

For multilevel Schwarz methods we can also cite (in alphabetic order), H. Al Daas, L. Grigori,
P. Jolivet, and P.H. Tournier [7], H. Al Daas and P. Jolivet [8], H. Al Daas, P. Jolivet, and T. Rees
[9], X.-C. Cai and O.B. Widlund [195], T.F. Chan and J. Zou [226], M. Dryja, M.V. Sarkis, and
O.B. Widlund [363], G. Migliorati and A. Quarteroni [832], E.E. Prudencio and X.-C. Cai [931],
and X. Zhang [1156].

7.8 Other ideas
Many other ideas have been proposed to construct preconditioners. Let us consider just a few of
them. Note that there exist block variants of many of the methods we have described above.

M. Bollhöfer [136, 137] constructed ILU factorizations with pivoting by monitoring the
growth of the inverse factors.

In the context of finite element methods, element by element preconditioners were introduced
by T.J. Hughes, I. Levit, and J. Winget [660] in 1983.

T.F. Chan and K. Chen [219, 220], T.F. Chan, W.-P. Tang, and W.L. Wan [225], and P.S. Vas-
silevski and J. Wang [1102] proposed preconditioner based on the use of wavelets.

Preconditioners using low-rank approximations were devised by R. Li and Y. Saad [739],
Y. Xi, R. Li, and Y. Saad [1126], N.J. Higham and T. Mary [637], Q. Zheng, Y. Xi, and Y. Saad
[1157], and T. Xu, V. Kalantzis, R. Li, Y. Xi, G. Dillon, and Y. Saad [1132].

For the construction of preconditioners, we can cite the following interesting works (in al-
phabetical order),
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O. Axelsson [58, 63], M. Benzi [112], M. Benzi, J.C. Haws, and M. Tůma [115], D. Bertac-
cini and F. Durastante [126], C.W. Brand [150], S.C. Brenner [156], R. Bru, J. Cerdán, J. Marín,
and J. Mas [176], R. Bru, J. Marín, J. Mas and M. Tůma [177], B. Carpentieri, I.S. Duff, and
L. Giraud [200], T.F. Chan, C.C.J. Kuo, and C. Tong [222], D. Chen and S. Toledo [241], K. Chen
[242], E. Chow and Y. Saad [257], G. Ciaramella and M.J. Gander [263], J.D.F. Cosgrove,
J.C. Diaz, and A. Griewank [285], E.F. D’Azevedo, P.A. Forsyth, and W.-P. Tang [320], S. Doi
and A. Hoshi [344], Z. Dostál [356], H.C. Elman [416, 417], Y.A. Erlangga and R. Nabben
[426, 427], B. Fischer and R.W. Freund [456], J. Frank and C. Vuik [466], R.W. Freund [467],
M.J. Gander [488], M.J. Gander, S. Loisel, and D.B. Szyld [489], T. Gergelits, K.A. Mardal,
B.F. Nielsen, and Z. Strakoš [519], L. Giraud and S. Gratton [532], N.I. Gould and J.A. Scott
[553], L. Grigori and S. Moufawad [577], P. Guillaume, Y. Saad, and M. Sosonkina [579], R. Guo
and R.D. Skeel [580], I. Gustafsson and G. Lindskog [586], J. Hrnčíř, I. Pultarová, and Z. Strakoš
[652], D. Hysom and A. Pothen [661, 662], I.E. Kaporin [691], J. Kopal, M. Rozložník, and
M. Tůma [712], H.-C. Lee and A.J. Wathen [596], J. Màlek and Z. Strakoš [772], J. Mandel [773],
T.A. Manteuffel and J.S. Otto [783], G. Meurant [799, 803, 805, 804, 806, 808], M.M. Monga
Made and H.A. van der Vorst [835, 836], R. Nabben and C. Vuik [848], B. Nour-Omid and
B.N. Parlett [866], P. Novati, M. Redivo-Zaglia, and M.R. Russo [867], D.P. O’Leary [875],
M.E. Ong [880], D.V. Perevozkin and G.A. Omarova [913], I. Pultarová and M. Ladecký [932],
P. Raghavan and K. Teranishi [935], G.H. Rodrigue and D. Wolitzer [947], Y. Saad [973], V. Si-
moncini [1010], V. Simoncini and M. Benzi [1012], E. de Sturler and J. Liesen [327], J. Duintjer
Tebbens and M. Tůma [389, 390], M. Tismenetsky and I. Efrat [1063, 1064], K. Wang and
J. Zhang [1111], J. Zhang [1154, 1153].

7.9 Numerical experiments
Let us do some numerical experiments with four symmetric matrices and PCG with different
preconditioners (listed in Table 7.7) to solve Ax = b. In Table 7.8 the first row gives the maxi-
mum attainable accuracy of the true residual norm ‖b−Axk‖, the second row gives the number
of iterations to obtain ‖rk‖ ≤ 10−10‖b‖, the third row gives the norm of the residual at con-
vergence, and the fourth row gives the number of dot products. The number of matrix-vector
products is the number of iterations plus one. We do not give computing times since they are not
very reliable in Matlab and depend very much on the coding.

Table 7.7. Preconditioners

no without preconditioning
d diagonal preconditioner
ic IC(0)

lv 2 IC with dropping if level > 2
lv 4 IC with dropping if level > 4
ss SSOR preconditioner with ω = 1

ai 0.025 AINV with parameter = 0.025
ai 0.01 AINV with parameter = 0.01
po 2 least squares polynomial of degree 2
po 4 least squares polynomial of degree 4
ml standard AMG

Lap 2500 is a linear system which is relatively easy to solve and all the preconditioners work
well. The diagonal preconditioner does not give any improvement since the diagonal entries ofA
are all equal to 4. With IC(0) the number of iterations is divided by three, but the total computing
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time, that is, the time for computing the preconditioner plus the time for the PCG iterations, is
larger than the time without preconditioning. Keeping some fill-ins in the incomplete factoriza-
tion decrease the number of iterations, but the time for computing the preconditioner is larger
than for IC(0). AMG is very efficient at reducing the number of iterations, but the preconditioner
is expensive to compute.

For Pb26 the diagonal preconditioner reduces significantly the number of iterations, which
means that the matrix A is badly scaled. We obtain an even better result using IC(0). The
polynomial preconditioners do not work well, probably because the estimates of the extreme
eigenvalues given by the Gerschgorin disks are not accurate enough.

The same conclusions applied for 1138bus and nos3 except for AINV for which the parame-
ters we use are not well suited for that problem.

For all problems there must be a balance between the time spent for the computation of
the preconditioner and the time spent for the iterations. Usually, preconditioners giving a large
decrease of the number of iterations are expensive to compute and this can be the bottleneck of
the computation when solving a single linear system.

7.10 Historical and bibliographical comments
Some people believe that preconditioning goes back to the works of C.F. Gauss and C.G.J. Jacobi
in the 19th century. In fact, Jacobi used rotations in 1845 to improve the diagonal dominance of
the linear system he was considering. In a way this can be interpreted as preconditioning. The
first scholar to use preconditioning purposely was L. Cesari in Italy in 1937. He left multiplied
the matrix of his system by a polynomial of small order.

The word “preconditioning” appeared in the paper [1078] by A.M. Turing in 1948. We may
also consider that preconditioning was already implicitly included in the 1952 paper [629] of
M.R. Hestenes and E. Stiefel.

The real development of preconditioners started in the 1960s. One of the pioneers of incom-
plete factorization was the Russian mathematician N.I. Buleev with the paper [181] published in
1960. Another important early paper was [1097] by R.S. Varga. As noted by Varga, a similar
method was proposed by T.A. Oliphant in 1958, with a paper [878] published in 1962. In 1968,
T.F. Dupont, R.P. Kendall, and H.H. Rachford proposed an incomplete factorization where the
diagonal is modified with a parameter [391]; see also the work of H.L. Stone [1048] that same
year.

In 1973, A.D. Tuff and A. Jennings described a method called “partial elimination” in which
they discarded some entries based on their values [1076]. J.A. Meijerink and H.A. van der Vorst
described in 1977 a general incomplete factorization method [795] for M-matrices. It was the
starting point of the popularity of this type of preconditioners. This paper has been widely cited;
see also the papers [698, 699] by D.S. Kershaw.

T.A. Manteuffel considered an incomplete Cholesky preconditioner for symmetric positive
definite matrices [781, 782] in 1980 by using a shift of the diagonal of the matrix.

R.S. Varga, E.B. Saff, and V. Mehrmann [1100] characterized the matrices that are incom-
pletely factorizable in 1980. A clever way of implementing an LDLT incomplete factorization
in the conjugate gradient algorithm allowing to decrease the number of operations was described
by S.C. Eisenstat [402] in 1981. It is known as Eisenstat’s trick.

Y. Robert [946] defined a general factorization for general symmetric positive definite matri-
ces A in 1982.

The effect of the ordering of the unknowns on incomplete factorizations used with the con-
jugate gradient algorithm was investigated experimentally by I.S. Duff and G.M. [377] in 1989.



7.10. Historical and bibliographical comments 419

Table 7.8. Results for different preconditioners

precond Lap 2500 Pb26 1138 bus nos3

4.7783 10−13 1.5668 10−12 1.0248 10−10 5.5754 10−12

no 177 1691 3484 283
4.0073 10−9 6.8080 10−8 1.4620 10−10 2.8382 10−8

534 5076 10455 852

4.7783 10−13 6.1101 10−13 4.6898 10−11 5.2458 10−12

d 177 226 1084 246
4.0073 10−9 7.1218 10−8 8.9962 10−11 2.6049 10−8

534 681 3255 741

2.9297 10−13 5.0460 10−13 1.3888 10−11 2.5525 10−12

ic 60 73 161 53
3.8025 10−9 6.0867 10−8 6.4047 10−11 1.0105 10−8

183 222 486 162

5.0460 10−13 3.1321 10−13 1.2253 10−11 2.6000 10−12

lv 2 39 45 75 50
4.1487 10−9 7.1720 10−8 8.1401 10−11 1.4711 10−8

120 138 228 153

2.1969 10−13 2.6674 10−13 1.0102 10−11 2.4162 10−12

lv 4 34 39 40 41
2.3780 10−9 5.1162 10−8 3.1397 10−11 1.3875 10−8

105 120 123 126

3.1628 10−13 3.8608 10−13 2.8148 10−11 3.2202 10−12

ss 71 85 535 81
3.5797 10−9 6.7531 10−8 6.1641 10−11 3.0500 10−8

216 258 1608 246

3.0860 10−13 3.7243 10−13 5.4836 10−11 5.1062 10−12

ai 63 123 1151 246
0.025 2.6316 10−9 6.4265 10−8 1.0066 10−10 2.5788 10−8

192 372 3456 741

2.2472 10−13 3.0726 10−13 5.2953 10−11 5.3603 10−12

ai 39 75 1169 246
0.01 2.6839 10−9 6.2959 10−8 8.2241 10−11 2.5917 10−8

120 228 3510 741

2.8945 10−13 1.5208 10−12 6.3778 10−11 1.9568 10−11

po 2 69 946 2212 2478
4.3581 10−9 7.2717 10−8 9.2382 10−11 3.0597 10−8

210 2841 6639 7437

2.4864 10−13 1.2171 10−12 5.7113 10−11 1.7234 10−11

po 4 43 612 1595 1512
4.7076 10−9 6.5057 10−8 9.7010 10−11 3.1617 10−8

132 1839 4788 4539

1.0696 10−13 1.8497 10−13 8.7625 10−12 1.8959 10−12

ml 6 11 37 19
2.0735 10−9 1.2687 10−8 5.6231 10−11 1.5651 10−8

21 36 114 60
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These experimental results have been explained theoretically to some extent by V. Eijkhout [401],
S. Doi [343], and S. Doi and A. Lichnewsky [345, 346] in 1991.

In 1994, Y. Saad considered several techniques for incomplete factorizations in [976]. One
was to keep fill-ins according to their level. Another possibility was to drop fill-ins according to
their value, but to keep only a given number of the largest ones in modulus to control the storage
for the preconditioner.

That same year, O. Axelsson published a book about iterative methods [64] in which he
described and studied several preconditioners.

Incomplete factorizations were still a topic of research in the 2000s, even though the basic
principles were known since the 1960s. For instance, M. Bollhöfer presented in 2001 an ILU
factorization with a refined dropping strategy that monitored the growth of the inverse factors
of L and U [136, 137] and R. Bru, J. Marín, J. Mas, and M. Tůma [177] introduced balanced
incomplete factorizations in 2008. They computed the triangular factors and their inverses at the
same time. In 2015, E. Chow and A. Patel [255] described a parallel ILU algorithm which was
very different from existing approaches.

When the matrix has a block structure, efficient incomplete factorizations can be developed
taking advantage of that structure. This was done by several authors in the 1980s and 1990s. In
1985, following the work of R.R. Underwood, P. Concus, G.H. Golub, and G.M. [273] proposed
several block incomplete factorization methods for block tridiagonal matrices; see also [274].
Another proponent of block factorizations was O. Axelsson, who published many papers on that
topic; see [67, 60, 61, 63, 72, 73]. Approximate block factorizations were also proposed by
R. Beauwens and M. Ben Bouzid [106, 107] in 1987-1988.

Using the SSOR iteration matrix as a preconditioner for symmetric positive definite matrices
was proposed by D.J. Evans [430] in 1967; see also the book [431]. SSOR was also considered
by O. Axelsson [56] in 1974.

As we wrote in this chapter, a polynomial preconditioner of small degree was used in 1937
by L. Cesari [211, 212, 213, 214]. In 1979, P.F. Dubois, A. Greenbaum, and G.H. Rodrigue
[367] used a Neumann series as a polynomial preconditioner. O.G. Johnson, C.A. Micchelli, and
G. Paul [684] defined a generalized condition number in 1983, and used the polynomial mini-
mizing this condition number. Least squares polynomial preconditioners for symmetric matrices
were mainly studied by Y. Saad [973]. Another polynomial preconditioner for CG was proposed
by D.P. O’Leary [875] in 1991. She used the polynomial defined by the conjugate gradient
iteration in an adaptive recursive procedure on an already preconditioned system.

About polynomial preconditioners for nonsymmetric matrices we can cite the works of T.A Man-
teuffel [779, 780] in 1977, H.C. Elman, Y. Saad, and P.E. Saylor [419], H.C. Elman and Streit
[420] in 1986, Y. Saad [974] in 1987, and D.C. Smolarski and P.E. Saylor [992] in 1991. We can
also refer to the Ph.D. thesis of S.F. Ashby [45].

The computation of approximate inverses as precontioners started in the 1990s. Norm min-
imization was used by M.J. Grote and H.D. Simon [578] in 1993, T. Huckle and M.J. Grote
[657, 658] in 1994, and L.Y. Kolotilina and A.Yu. Yeremin [710]. Improvements of the method
of Huckle and Grote were described by N.I.M. Gould and J.A. Scott [553] in 1995-1998.

Another approach using A-conjugate vectors was developed by M. Benzi, C.D. Meyer, and
M. Tůma [117] in 1996; see also [120, 119, 121, 122, 114].

Interesting documents about preconditioning are the review article by M. Benzi [112] in 2002
and the book [242] by K. Chen in 2005.

As we wrote above, it is generally admitted that the first ever domain decomposition method
was due to H.A. Schwarz in August 1870. Domain decomposition methods came back to life
in the 1980s. The first Domain Decomposition Conference was organized in Paris in 1987. The
first paper in the proceedings [536] was by P.L. Lions who gave a nice proof of convergence of
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the alternating Schwarz method; see also [752, 753]. For the history of Schwarz methods and a
summary of some variants, see [487] by M.J. Gander.

Since the 1980s thousands of papers have been written about domain decomposition meth-
ods. Besides the conference proceedings, a few books were devoted to DD methods, [1026] by
B.F. Smith, P. Bjørstad, and W.D. Gropp in 1996, [934] by A. Quarteroni and A. Valli in 1999,
[1069] by A. Toselli and O.B. Widlund in 2004, [347] by V. Dolean, P. Jolivet, and F. Nataf in
2015, and [263] by G. Ciaramella and M.J. Gander.

Multigrid methods were developed in the USSR in the 1960s for solving linear systems aris-
ing from discretization of partial differential equations. Such a method was proposed by R.P. Fe-
dorenko who published three papers on this topic [445, 446, 447] in 1961, 1964, and 1973. Multi-
grid methods were popularized by A. Brandt who was one of the first to recognize their potential
in the 1970s by solving many different and difficult problems; see [151, 152, 153, 154, 155].

Many papers were written on multigrid in the 1980s and 1990s. Multigrid convergence for
indefinite problems [857] was studied by R.A Nicolaides in 1978; see also [856, 858]. Conver-
gence of multigrid iterations applied to difference equations was the topic of a paper [598] by
W. Hackbusch in 1980. K. Stüben and U. Trottenberg published in 1982 a study of multigrid
methods [602]. Convergence estimates for multigrid algorithms without regularity assumptions
were given by J.H. Bramble, J.E. Pasciak, J.P. Wang, and J. Xu [148] in 1991. A unified con-
vergence theory for multigrid or multilevel algorithms [359] was proposed by C.C. Douglas in
1993; see also [357, 358].

An important step was the introduction of algebraic multigrid in 1985 by J.W. Ruge and
K. Stüben [964, 965].

A few books were devoted to multigrid in the 1980s and 1990s: [599] by W. Hackbusch in
1985, [172] by W.L. Briggs in 1987, an updated and extended version [173] was published by
W.L. Briggs, V.E. Henson, and S.F. McCormick in 2000, [793] edited by S.F. McCormick in
1987, [1114] by P. Wesseling in 1992, [143] by J.H. Bramble in 1993, and [1074] by U. Trotten-
berg, C.W. Oosterlee, and A. Schüller in 2000.

Algebraic multilevel preconditioning methods were studied in 1989 and 1990 by O. Axelsson
and P.S. Vassilevski [74, 76]. A multilevel block incomplete factorization preconditioning [861]
was introduced by Y. Notay in 1999. He published a robust parameter-free algebraic multilevel
preconditioner [863] in 2002. That same year an algebraic recursive multilevel solver (ARMS)
for general sparse linear systems [981] was proposed by Y. Saad and B. Suchomel. A parallel
version (pARMS) [744] was published by Z. Li, Y. Saad, and M. Sosonkina in 2003; see also
[978] by Y. Saad in 2005.

Aggregation-based algebraic multilevel preconditioners [864] were studied by Y. Notay in
2006. Multilevel preconditioners constructed from inverse-based ILU factorizations [141] were
proposed by M. Bollhöfer and Y. Saad in 2006.
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Appendix: Test matrices

The matrices are ordered by increasing condition number; nnz is the number of nonzero
entries, κ(A) is the condition number (computed by Matlab), min svd is the smallest singular
value of A and fov tells that 0 is inside the field of values when it is equal to 1. The last col-
umn tells if the matrix is normal. In fact, all the normal matrices in the list are symmetric and
denoted by an “s”. All these matrices can be obtained from the SuiteSparse matrix collection
https://sparse.tamu.edu.
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Table 9. Properties of test matrices

Matrix n nnz κ(A) min svd fov normal?

pde225 225 1065 3.90638e+01 2.50580e-01 0 -

gre 343 343 1310 1.11976e+02 9.01565e-03 1 -

jpwh 991 991 6027 1.42045e+02 1.14696e-01 0 -

pde2961 2961 14585 6.42493e+02 1.61532e-02 1 -

jagmesh1 936 6264 1.22765e+03 5.62507e-03 1 s

bfwa782 782 7514 1.74061e+03 7.22416e-03 1 -

dw2048 2048 10114 2.09321e+03 4.67610e-04 1 -

jagmesh2 1009 6865 2.36649e+03 2.94509e-03 1 s

lshp1009 1009 6865 2.36649e+03 2.94509e-03 1 s

raefsky2 3242 293551 4.25194e+03 8.76027e-04 1 -

fs 680 1c 680 2184 8.69443e+03 4.38996e-04 1 -

add20 2395 13151 1.20471e+04 5.99434e-05 0 -

raefsky1 3242 293409 1.28851e+04 2.87892e-04 1 -

jagmesh4 1440 9504 1.51630e+04 4.52739e-04 1 s

fs 680 1 680 2184 1.54052e+04 4.66822e+09 1 -

sherman1 1000 3750 1.55953e+04 3.23487e-04 0 -

nos3 960 15844 3.77236e+04 1.82884e-02 0 s

sherman5 3312 20793 1.87941e+05 2.41965e-02 1 -

cavity05 1182 32632 5.77065e+05 2.25403e-05 0 -

e05r0500 236 5846 1.15887e+06 4.93622e-05 1 -

comsol 1500 97645 1.41522e+06 4.47174e-07 0 -

olm1000 1000 3996 1.48722e+06 6.19384e-02 1 -

cavity10 2597 76171 2.95507e+06 4.41707e-06 0 -

steam2 600 5660 3.78313e+06 1.23855e+03 0 -

1138bus 1138 4054 8.57265e+06 3.51686e-03 0 s

steam1 240 2248 2.82750e+07 7.67886e-01 0 -

bcsstk26 1922 30336 1.65934e+08 9.53833e+02 0 s

nos7 729 4617 2.37451e+09 4.15413e-03 0 s

watt1 1856 11360 4.35964e+09 2.29377e-10 1 -

bcsstk14 1806 63454 1.19232e+10 9.99998e-01 0 -

fs 183 6 183 1000 1.73678e+11 6.79901e-03 1 -

bcsstk20 485 3135 3.89279e+12 3.24066e+03 0 s

mcfe 765 24382 4.24182e+13 3.17699e+03 1 -

nnc 261 1500 2.90962e+14 3.57651e-12 1 -

lnsp 511 2796 3.32894e+15 1.26332e-05 1 -
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Table 10. Symmetric test matrices

Name n nnz λmin λmax κ(A) Rhs

Lap2500 2500 12300 7.586685051 10−3 7.992413314 1.053478991 103 random
ash292 292 2208 2.9944579613 9.6312493108 3.2163581641 random

bcsstk01 48 400 3417.267562666 3.0151790899 109 8.823362627 105
ones(48,1)√

48

bcsstk01I 48 2304 3.316552583 10−10 2.9263146115 10−4 8.823362627 105 xex
bcsstk09 1083 18437 7.102229057 103 6.760303645 107 9.51856606 103 random

Pb26 6400 31680 1.189952486 10−3 167.2150583486 1.405224665 105 A∗random
1138_bus 1138 4054 3.516860 10−3 3.014879 104 8.572646 106 random
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