
Complex conjugate gradient method

P. Joly
C.N.R.S. Laboratoire d’Analyse Numérique
Université Pierre et Marie Curie

G. Meurant
C.E.A. Centre d’Etudes de Limeil-Valenton

1 Introduction

Complex linear systems arise from many various problems, such as the Helmholtz
equation approximated by finite differences or finite elements method, or also by integral
equations method; the resulting matrix is generally non-Hermitian, and consequently the
classical conjugate gradient method is no more usefull. However the increasing number of
unknowns (specially for 3D-problems) leads to give up the direct methods solvers, because
of the giant memory core they need. So iterative methods are still attractive, even if their
convergence is not always guaranteed. This paper is devoted to the study of complex
conjugate gradient methods, and is a generalisation of a previous paper related to the real
case [Joly 84]. (See also a recent publication [Ashby, Manteuffel, Saylor 90] for a complete
review of those methods).

2 A general algorithm

To solve the linear system Ax = b, where A ∈ Cn×n is a regular matrix and b ∈ Cn,
we introduce the function J : Cn �→ R+, ∀r ∈ Cn J(r) = (r,Hr), with (·, ·) the usual

complex scalar product Cn : (x, y) =
n∑

i=1

xiyi and H ∈ Cn×n a definite matrix. In the

following, r stands for the residual b − Ax. As J is a strictly convex function on Cn, it
admits an unique minimum in rm ∈ Cn. From the property J(r) ≥ 0 ∀r ∈ Cn, it follows
that rm = 0; the corresponding vector xm = A−1(b− rm) is then solution of the problem
(P).

By an appropriate choice of the matrix H, many different conjugate gradient methods
can be generated. A new matrix K ∈ Cn×n, is also introduced, which we suppose to be
definite.

A general minimization algorithm of the function J can be then generated as
- choose x0 in Cn, then generate vectors {d 0, d1, . . . , dk} in Cn orthogonal in the scalar

product related to the Hermitian matrix N = AH ×H ×A
- minimize J over each subspace x0+ < Kg 0,Kg 1, . . . ,Kgk > with gk gradient of J in
xk

1

The general algorithm is

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

g0 = AHHr0

d 0 = Kg0

Iterations : for k = 0, 1, . . . untill convergence do

1) minimize J over x0+ < d 0, d 1, . . . , dk >

αk = (gk, dk)/(dk, Ndk)
xk+1 = xk + αkdk

rk+1 = rk − αkAdk

gk+1 = gk − αkNdk

2) generate the new direction

dk+1 = Kgk+1 +
k∑

l=0

βk+1
l dl

βk+1
l = −(Kgk+1, Ndl)/(dl, Ndl) 0 ≤ l ≤ k

Remark
This algorithm is formally equivalent to the classical conjugate gradient method, but

the function J to minimize, and the directions generation are abstracted.

• Some properties of the complex algorithm

(dk, Ndl) = 0 ∀k �= l1)
(gk, dl) = 0 0 ≤ l < k2)
(gl, dk) = (g0, dk) 0 ≤ l ≤ k3)
(gk, dk) = (gk,Kgk)4)

(Kgk, Ndk) = (dk, Ndk)5)
(gk,Kgl) = 0 0 ≤ l < k6)

Ek =< d 0, d 1, . . . , dk >7)
=< Kg0,Kg 1, . . . ,Kgk >

=< d 0,KNd 0, . . . , (KN)kd 0 >

dimension Ek = k + 1 if gk �= 08)

2

xk+1 realize the minimum of J over x0 + Ek9)
gn = 010)

if K is Hermitian βk+1
l = 0 0 ≤ l < k11)

and βk+1
k = (gk+1,Kgk+1)/(gk,Kgk)

Demonstration : 1 to 6) are obtained by induction:
1) (d 1, Nd 0) = (Kg 1 + β1d 0, Nd 0) = 0 by definition of β1

0

2) (g 1, d 0) = (g0 − α0Nd 0, d 0) = 0 by definition of α0

3) (g 1, d 1) = (g0 − α0Nd 0, d 1) = (g0, d 1) by 1)
4) (g0, d 0) = (g0,Kg0) by definition of d 0

5) (Kg0, Nd 0) = (d 0, Nd 0) by definition of d 0

6) (g 1,Kg0) = (g0 − α0Nd 0,Kg0) = (g0,Kg0) − α0(Nd 0,Kg0)
= (g0, d 0) − α0(Nd 0, d 0) = 0 by definition of α0

Suppose these properties satisfied untill k − 1, then

1) (dk, Ndl) = (Kgk−1 +
k−1∑
i=1

βk−1
i di, Ndl) = (Kgk−1, Ndl) + βk−1

l (dl, Ndl) = 0

for 0 ≤ l < k by definition of βk−1
i ; 1) follows because N is Hermitian.

2) (gk, dl) = (gl −
k−1∑
i=l

αiNdi, dl) = (gl, dl) − αl(dl, Ndl) = 0 for 0 ≤ l < k

from 1) and the definition of αl

3) (gl, dk) = (g0 −
l−1∑
i=0

αiNdi, dk) = (g0, dk) for 0 ≤ l ≤ k from 1)

4) (gk, dk) = (gk,Kgk +
k−1∑
i=1

βk−1
i di) = (gk,Kgk) from 2)

5) (Kg k, Nd k) = (d k −
k−1∑
i=1

βk−1
i di, Nd k) = (d k, Nd k) from 1)

6) (gk,Kgl) = (gk, dl −
l−1∑
i=1

βl−1
i di) = 0 for 0 ≤ l < k from 2)

So properties 1) to 6) are satisfied for all k.

7) et 8) This is obviously true for k = 1, suppose it true untill k − 1 included. Then

Kgk = Kgk−1 − αk−1KNdk−1by definition
Kgk−1 ∈< d 0,KNd 0, . . . , (KN)k−1d 0 >but
dk−1 ∈< d 0,KNd 0, . . . , (KN)k−1d 0 >and
Kgk ∈< d 0,KNd 0, . . . , (KN)kd 0 >so

3

dk = Kgk +
k−1∑
l=0

βk
l d

lFrom another hand

dl ∈< Kg0,Kg 1, . . . ,Kgk−1 > 0 ≤ l < kbut
dk ∈< Kg0,Kg 1, . . . ,Kgk >so

Combining these results with the induction hypothesis, we obtain :

< d 0, d1, . . . , dk >⊂< Kg0,Kg 1, . . . ,Kgk >⊂< d 0,KNd 0, . . . , (KN)kd 0 >

But from 1) dimension < d 0, d1, . . . , dk >= k + 1 and finally

< d 0, d1, . . . , dk >=< Kg0,Kg 1, . . . ,Kgk >=< d 0,KNd 0, . . . , (KN)kd 0 >

The case gk = 0 will be examined later
9)

J(rk) = J(r0 −
k∑

l=0

αlAdl)

= J(r0) −
k∑

l=0

αl(Adl, Hr0) −
k∑

l′=0

αl′(r0, HAdl′) +
k∑

l,l′=0

αlαl′(dl, Ndl′)

Now using 1), the relation gl = AHHrl and 3) , we obtain

J(rk) = J(r0) −
k∑

l=0

αl(gl, dl) + αl(gl, dl) +
k∑

l=0

αlαl(dl, Ndl)

For given x0, k and l, J(rk) is a quadratic function in αl.

Define now Jl(α) = −(αl(gl, dl)+αl(gl, dl)+αlαl(dl, Ndl) (0 ≤ l ≤ k), where α ∈ C
The minimum of Jl is realized with αl = (gl, dl)/(dl, Ndl). Finally, from the calculation
of αl 0 ≤ l ≤ k, at each step of the algorithm xk+1 realize the minimum of J over the
subspace x0 + Ek.

10) If at step k < n− 1, gk = 0, then the algorithm has converged, because
gk = AHHrk otherwise, for k = n − 1, En−1 has the dimension n, and xn realize the
minimum of J , that is J(rn) = 0 = (rn, Hrn), hence rn = 0 !

Remark
This result comes directly from 6)

4

11) Suppose now that the matrix K is Hermitian, then

(Kgk+1, Ndl) = (Kgk+1,
1
αl

(gl − gl+1))

=
1
αl

(gk+1,K(gl − gl+1))

= 0 pour 0 ≤ l ≤ k

and βk+1
l = 0 pour 0 ≤ l < k.

At least αk = (gk, dk)/(dk, Ndk) = (gk,Kgk)/(dk, Ndk), where

βk+1
k = −(Kgk+1, Ndk)/(dk, Ndk)

= −(Kgk+1,
1
αk

(gk − gk+1))/(dk, Ndk)

=
1
αk

(Kgk+1, gk+1)/(dk, Ndk)

= (gk+1,Kgk+1)/(gk,Kgk)

It follows that βk+1
k is real when the matrix K is Hermitian.

Remark
No breakdown can occur : αk = 0 leads to (gk,Kgk) = 0
that is gk = 0, because matrix K is definite.
Similarly (dk, Ndk) = 0 leads to dk = 0, that is gk = 0 from 4).

• Convergence
From the definitions of J(r) = (r,Hr) and αk, it follows that

J(rk+1) = J(rk) − |(gk,Kgk)|2/(dk, Ndk)

so the convergence of the algorithm is monotonous, in case of equality J(rk+1) = J(rk)
then (gk,Kgk) = 0, and gk = 0. Furthermore as J(rk) = (rk, Hrk) = (gk, N−1gk):

J(rk+1)/J(rk) = 1 − |(gk,Kgk)|
(gk, N−1gk)

× |(gk,Kgk)|
(dk, Ndk)

Suppose now that the matrix K is Hermitian, we obtain

(dk, Ndk) = (Kgk, NKgk) −
k−1∑
l=0

|(Kgk, Ndl)|2/(dl, Ndl) ≤ (Kgk, NKgk)

and then

J(rk+1)/J(rk) ≤ 1 − |(gk,Kgk)|
(gk, N−1gk)

× |(gk,Kgk)|
(Kgk, NKgk)

5

we introduce L : K = LH × L, M = LH ×N × L and hk = Lgk, we obtain

J(rk+1)/J(rk) ≤ 1 − (hk, hk)
(hk,M−1hk)

× (hk, hk)
(hk,Mhk)

now using the Kantorovitch’s inequality

J(rk) ≤ J(r0)
(
cond(M) − 1
cond(M) + 1

)2k

Remark
Following [Golub, Meurant 81], and with the Tchebyshev’s polynomials properties

J(rk) ≤ J(r0)
(
cond(M)1/2 − 1
cond(M)1/2 + 1

)2k

Many algorithms can be generated by an appropriate choice of matrices H and K. For
example the choice H = A−1 and K = I leads to the classical complex conjugate gradient
method; with H = A−1 and K = lH × l (incomplete complex Cholesky factorization), we
obtain the complex conjugate gradient method preconditioned by the matrix K. The next
table resume the most popular methods. The convergence rate is related to the condition
number of the matrix M similar to the matrix K ×N

Algorithm H K M Convergence

Conjugate Gradient A−1 I A A herm.

Prec. Conjugate Gradient A−1 l−H × l−1 l−H ×A× l−1 A herm.

Gen. Conjugate Residual I A−H (AL)H × (AL)(1) A def.

Orthomin I A−H (AL)H × (AL)(1) A def.

Gmres I A−H (AL)H × (AL)(1) A def.

Normal Equation I I AH ×A A reg.

Minimal Error (A×AH)−1 AH ×A AH ×A A reg.

(1) with L× LH = (K + KH)/2

6

It is not the aim of this paper to study all the possibilities of the general algorithm,
so we limit ourselves to the most interesting ones : the normal equation method (see
for example [EISENSTAT, ELMAN, SCHULTZ 83], the complex Orthomin method (see
[VINSOME 76]), the complex Gmres algorithm (see [SAAD, SCHULTZ 86]), the Biconju-
gate Gradient method ([FLETCHER 76]) and the accelerated variant Conjugate Gradient
Squared ([SONNEVELD 89]).

3 The normal equation method
The normal equation method is very popular to solve non-Hermitian linear systems

. It follows from the choice H = I, K = I and minimize the function J(r) = (r, r). The
algorithm can be written as

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

d 0 = r0

Iterations : for k = 0, 1, . . . untill convergence do

1) minimize J over x0+ < d 0, d1, . . . , dk >

αk = (AHrk, AHrk)/(Adk, Adk)
xk+1 = xk + αkdk

rk+1 = rk − αkAdk

2) generate the new direction

dk+1 = AHrk+1 + βk+1dk

βk+1 = (AHrk+1, AHrk+1)/(AHrk, AHrk)

If we suppose A regular, this algorithm converges in at most n iterations, but two
difficulties have to be overcome :

- it needs two products matrix × vector by iteration, that is time consuming.
- the convergence is related to the condition number of A to the square.

Remark
As the convergence rate of the normal equation method is governed by the singular

values of the matrix A, rather than its eigenvalues, so it remains competitive towards Gmres
or the Biconjugate Gradient method for a class of linear systems (see [NACHTIGAL,
REDDY, TREFETHEN 90]).

7

4 Complex Orthomin

With H = I and K = A−H , we obtain the General Residual algorithm, which mini-
mize J(r) = (r, r). This method is summarized by

Initialisation

Choose x0 ∈ Cn

set r0 = b−Ax0

d 0 = r0

Iterations : for k = 0, 1, . . . untill convergence do

1) minimize J over x0+ < d 0, d1, . . . , dk >

αk = (rk, Adk)/(Adk, Adk)
xk+1 = xk + αkdk

rk+1 = rk − αkAdk

2) generate the new direction

dk+1 = rk+1 +
k∑

l=0

βk+1
l dl

βk+1
l = −(Ark+1, Adl)/(Adl, Adl)

If the matrix A is definite (corresponding to the case K definite, this algorithm con-
verges in at n iterations, but there are two drawbacks

- all the generated directions dl and products Adl, have to be stored (1 ≤ l ≤ k), that
makes this algorithm core consuming when the iterations number is too large

- two products matrix × vector have to be computed each step.
Vinsome first proposed to limit the directions number to a fixed value m set in ad-

vance, and depending on the memory core available. The new direction generation is then
modified in :

dk+1 = rk+1 +
k∑

l=k−m+1

βk+1
l dl

Then a new set of vectors zl such that zl = Adl is introduced.

Combining these two modifications leads to the well-known Orthomin formula

Initialization

8

Choose x0 ∈ Cn

set r0 = b−Ax0

d 0 = r0

z0 = Ad 0

Iterations : for k = 0, 1, . . . untill convergence do

1) minimize J over x0+ < d 0, d 1, . . . , dk >

αk = (rk, zk)/(zk, zk)
xk+1 = xk + αkdk

rk+1 = rk − αkzk

2) generate the new direction

dk+1 = rk+1 +
k∑

l=k−m+1

βk+1
l dl

zk+1 = Ark+1 +
k∑

l=k−m+1

βk+1
l zl

βk+1
l = −(Ark+1, zl)/(zl, zl)

Now subsists just one product matrix × vector by iteration : Ark+1, and the number
of stored vectors is 2m.

• Property of the Orthomin method

(Adk, Adl) = 0 k −m ≤ l < k1)
(rk, Adl) = 0 k −m ≤ l < k2)
(rl, Adk) = (rk−m, Adk) k −m ≤ l ≤ k3)
(rk, Adk) = (rk, Ark)4)

(Ark, Adk) = (Adk, Adk)5)
(rk, Arl) = 0 k −m ≤ l < k6)

Ek =< dk−m, dk−m+1, . . . , dk−1 >7)
dimension Ek = m if rk �= 08)

xk+1 realize the minimum of J over xk−m + Ek9)
‖rk‖ �→ 0 quand k �→ +∞ if A is definite10)

Demonstration : properties 1) to 9) are obtained by induction as in paragraph 2. To

9

demonstrate 10), we use the equality

J(rk+1) = J(rk) − |(gk,Kgk)|2/(dk, Ndk)

that is in this particular case

‖rk+1‖2
= ‖rk‖2 − |(rk, Ark)|2/(Adk, Adk)

So the alternative is :
- there exists one finite number k such as J(rk+1) = J(rk), then gk = 0, and rk = 0;
- otherwise, the serial

(
J(rk)

)
k∈N

is strictly decreasing, and lower bounded by 0. So
it converges towards a finite limit J∞,
Then we notice that

‖rk+1 − rk‖ = ‖rk+1‖ + ‖rk‖ − (rk+1, rk) − (rk, rk+1)
= ‖rk+1‖ − ‖rk‖ + 2 |(rk, Ark)|2/(Adk, Adk)
= ‖rk‖ − ‖rk+1‖
= J(rk) − J(rk+1)

Then the serial
(
rk

)
k∈N

converges towards a finite limit r∞. Furthermore from the
relation

(Adk, Adk) = (Ark, Adk)

we deduce the following inequality ‖Adk‖ ≤ ‖Ark‖.
All these results show that |(rk, Ark)| �→ 0 quand k �→ ∞, and finally (r∞, Ar∞) = 0,

that is r∞ = 0. So the restrained variant of the general residual algorithm is an iterative
method! This drawback of the method is not really important because n iterations are not
needed in a realistic computation, for which an approximation of the solution is requiered,
according to the criterion ‖rk‖ < ε ‖r0‖. This method is used successfully for a large class
of rather well-conditionned problems.

Remark
It is also possible to restart the algorithm after m iterations (once xm has been com-

puted, the method is restarted with x0 = xm). This method is referenced as GCR(m),
Generalized Conjugate Residual algorithm with m directions, and is not equivalent to
Orthomin(m).

10

5 Complex Gmres

To the vector storage of the previous algorithm, Saad and Schultz ([SAAD, SCHULTZ
86]) have proposed another modification, orthogonalizing the directions d 0, d1, . . . , dk in
the natural scalar product of Cn, so the storage of vectors Ad 0, Ad1, . . . , Adk is avoided.
But then the coefficients αl have to be computed as the solution of a least-squared problem.

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

d 0 = r0/‖r0‖
Iterations :

1) generation of the m directions : for k = 0, 1, . . . ,m− 1, compute

d̃k+1 = Adk +
k∑

l=0

γk+1
l dl

γk+1
l = −(Adk, dl) 0 ≤ l < k

γk+1
k = ‖d̃k+1‖
dk+1 = d̃k+1/γk+1

k

2) minimize J over x0+ < d 0, d1, . . . , dm >

Dm−1 = (d 0, d1, . . . , dm−1) ∈ Cn×m

Γ̃m = DH
m−1 ×A×Dm−1 ∈ Cm×m

Γm =
(

Γ̃m

0 . . . 0 γm
m−1

)
∈ Cm+1×m

em+1 = (1, 0, . . . , 0)T ∈ Cm+1

zm ∈ Cm solution of min
z∈Cm

‖em+1 − Γmz‖

xm = x0 + Dmzm

11

6 The Biconjugate gradient method
In the previous methods, two drawbacks have been encountered:
- the use of an Hermitian matrix K may slow down the convergence, as in the normal
equation method.
- on the other hand, when the matrix K is not Hermitian the vector storage leads to
use approximated variants of the complete algorithm.
A promising way is to modify the general algorithm with symmetric non-Hermitian

matrices H et K:

H =
(

0 AH

A 0

)−1

et K =
(

0 I
I 0

)

This is equivalent to solve the 2n rank linear system:(
0 AH

A 0

) (
x1

x2

)
=

(
b2
b1

)

From paragraphs 2 and 3, we obtain

Initialization

Choose x0
1, x

0
2 ∈ Cn

set r0
1 = b1 −Ax0

1

r0
2 = b2 −AHx0

2

d 0
1 = r0

1

d 0
2 = r0

2

Iterations : for k = 0, 1, . . . untill convergence do

1) compute the extremum of J

αk = Re{(rk
1 , r

k
2)}/Re{(Adk

1 , d
k
2)}

xk+1
1 = xk

1 + αkdk
1

xk+1
2 = xk

2 + αkdk
2

rk+1
1 = rk

1 − αkAdk
1

rk+1
2 = rk

2 − αkAHdk
2

2) generate the new direction

βk+1 = Re{(rk+1
1 , rk+1

2)}/Re{(rk
1 , r

k
2)}

dk+1
1 = rk+1

1 + βk+1dk
1

dk+1
2 = rk+1

2 + βk+1dk
2

The CPU cost is approximatively twice than in the Hermitian conjugate gradient
method : two vectors serials xk, rk and dk, two products matrix × vector by step, but the

12

storage all of the previous directions is avoided. It is not necessary to compute xk
2 ; for

example the choice r0
2 = r0

1, which corresponds to an arbitrary choice of b2 and x0
2, allows

calculations.

Remark
This algorithm is different form the Jacobs’ method ([JACOBS 80]), recalled in Ap-

pendix.

In the important case where A is complex symmetric (A = AT), the relation r0
2 = r0

1

leads to
rk
2 = rk

1 , dk
2 = d

k

1 ∀k
This corresponding algorithm can be written as

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

d 0 = r0

Iterations : for k = 0, 1, . . . untill convergence do

1) compute the extremum of J

αk = Re{(rk, rk)}/Re{(Adk, d
k
)}

xk+1 = xk + αkdk

rk+1 = rk − αkAdk

2) generate the new direction

βk+1 = Re{(rk+1, rk+1)}/Re{(rk, rk)}
dk+1 = rk+1 + βk+1dk

13

7 Accelerated Biconjugate gradient method

The Conjugate gradient squared method was introduced in [SONNEVELD 89] . In
the Bcg method, the different vectors rk

1 , rk
2 , dk

1 et dk
2 satisfy

rk
1 = φk(A)r0

1 dk
1 = θk(A)r0

1

rk
2 = φk(AH)r0

1 dk
2 = θk(AH)r0

1

where φk and θk are polynomials of degree less or equal to k, and satisfy

φk+1(A) = φk(A) − αkAθk(A)

θk+1(A) = φk+1(A) + βk+1θk(A)

To speed-up the Bcg Method, Sonneveld defined a new algorithm, where the residual
after k iterations is φ2

k(A)r0 instead of φk(A)r0. When the Biconjugate Gradient method
converges, φk(A) is a contraction for large values of k , and so φ2

k(A) is a contraction of
smaller norm.

With the help of the induction relations between φk and θk, the desired residual
φ2

k(A)r0 is obtained after a few lines of algebra (displayed in Appendix). The resulting
algorithm, called Cgs (Conjugate Gradient Squared method) is then developped

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

q0 = p0 = r0

Iterations : for k = 0, 1, . . . untill convergence do

αk = Re{(rk, r0)}/Re{(Aqk, r0)}
uk = pk − αkAqk

xk+1 = xk + αk(pk + uk)
rk+1 = rk − αkA(pk + uk)
βk+1 = Re{(rk+1, r0)}/Re{(rk, r0)}
pk+1 = rk+1 + βk+1uk

qk+1 = pk+1 + βk+1(uk + βk+1qk)

The CPU cost is almost the same than in the Biconjugate Gradient method, but
multiplications by AH are avoided, so Cgs is easy to vectorize when a vectorization of the
product matrix × vector is available. In the case of a symmetric complex matrix, this
method has to converge twice faster to remain efficient!

14

8 Preconditioning the iterations

The use of a preconditioning matrix to speed-up convergence is very usefull, specially
in the case of non-Hermitian matrices. When the matrix has no particular structure, it
seems more efficient to use the incomplete factorization developped by [BEHIE, FORSYTH
83], [WALLIS 83] and [WATTS 81], which works in two steps. The first step is a logical
factorization of the matrix, in order to obtain the matrix L + U skeleton, that is the
locations of non-zeros elements in L and U , by the fill-in level notion. During the second
step, the corresponding elements of matrices L and U are computed.

To summarize the logical factorization (first step), the fill-in level notion is introduced
according to :

- all the non-zeros elements of A have the level value zero.
- each fill-in element created by k-level elements is set to the level value k + 1.
It is obvious that the exact factorization of A is obtained for a finite level value, say

l(A). Any value of level l, 0 ≤ l < l(A) leads to an incomplete factorization.

9 Numerical results

Some of the test-problems introduced by [FREUND 90] are used to compare the
previous algorithms. The linear system matrix satisfies A = A0 − σ1h

2I + ih2D, where
A0 is the Laplacian operator matrix for a squared shape domain, σ1 ∈ R, i2 = −1, and
D is a diagonal matrix. The components of the right-hand side x are choosen randomly
in [−10., 10.]. In a first time, an incomplete factorization of level value 2 is used to define
the preconditioning matrix. All algorithms are initialized to x0 = 0, and the convergence
criterion is ‖rk‖ < 10−6‖r0‖. We use an Apollo DN1000 work-station.

• example 1
For the first example h = 1/64, σ1 = 200., and D is a diagonal matrix arising from the

boundary conditions
∂u

∂n
= iσ2u (on a part of the boundary) and σ2 = 10.. There are 3969

unknowns, and non-zeros elements of the matrices are respectively , 15624 for the system
matrix, and 30876 for the preconditioning matrix (the factorization time is .55 seconds).

15

Algorithm Iterations Number Time (in seconds)

Normal Equation 121 33.07

Orthomin(10) NC 3969 Q = 1.10−3 *

Orthomin(20) NC 3969 Q = 1.10−3

Gmres(10) 24 48.39

Gmres(20) 15 74.44

Bcg (Jacobs) 58 16.80

Bcg (JM) 60 17.58

Cgs (Jacobs) NC 3969 Q = 1.104

Cgs (JM) 165 44.07

Gauss (Direct Method) 1 18.14

Table 1

∗ For non convergent methods, we give the value of Q = ‖rn‖/‖r0‖ at the end of
iterations

16

• example 2
For the second example, h = 1/32, σ1 = 100., and the Di’s are random numbers in

[0.,10.]. There are 961 unknowns, and non-zeros elements of the matrices are respectively
, 3720 for the system matrix, and 7260 for the preconditioning matrix (the factorization
time is .11 seconds).

Algorithm Iterations Number Time (in seconds)

Normal Equation 42 2.6

Orthomin(10) 279 9.70
Orthomin(20) 279 9.75

Gmres(10) 10 4.55
Gmres(20) 2 2.22

Bcg (Jacobs) 22 1.44

Bcg (JM) 54 3.50

Cgs (Jacobs) NC 961 Q = 7.109

Cgs (JM) NC 961 Q = 2.1026

Gauss (Direct Method) 1 .99

Table 2

17

• example 3
For the third example, h = 1/32, σ1 = 100., and the matrix D arises from the

boundary conditions
∂u

∂n
= iσ2u , σ2 = 10.. There are 961 unknowns, and non-zeros

elements of the matrices are respectively , 3720 for the system matrix, and 7260 for the
preconditioning matrix (the factorization time is .11 seconds).

Algorithm Iterations number Time (in seconds)

Normal Equation 47 2.91

Orthomin(10) NC 961 Q = 2.10−2

Orthomin(20) NC 961 Q = 2.10−2

Gmres(10) 13 5.91
Gmres(20) 3 3.31

Bcg (Jacobs) 24 1.57

Bcg (JM) 32 2.08

Cgs (Jacobs) NC 961 Q = 2.106

Cgs (JM) NC 961 Q = 8.103

Gauss (Direct Method) 1 .99

Table 3

18

• example 4
At least h = 1/32, σ1 = 1000., and Di = 100. . There are 961 unknowns, and non-

zeros elements of the matrices are respectively , 3720 for the system matrix, and 7260 for
the preconditioning matrix (the factorization time is .11 seconds).

Algorithm Iteration number Time (in seconds)

Normal Equation 22 1.38

Orthomin(10) NC 961 Q = 1.10−1

Orthomin(20) 18 1.18

Gmres(10) NC 961 Q = 1.
Gmres(20) NC 961 Q = 1.

Bcg (Jacobs) 53 3.44

Bcg (JM) 609 39.22

Cgs (Jacobs) NC 961 Q = 1.105

Cgs (JM) NC 961 Overflow . . .

Gauss (Direct Method) 1 .99

Table : Solution of Problem 4

Conclusion

19

Bibliography

[S.F. ASHBY, T.A. MANTEUFFEL, P.E. SAYLOR 90] A taxonomy for conjugate
gradient methods.
SIAM J. Num. Anal. vol 27
[A. BEHIE, P. A. FORSYTH Jr 83] Practical Considerations for Incomplete Factor-
ization Methods in Reservoir Simulation. Proceedings of the Seventh Symposium on
Reservoir Simulation of the Society of Petroleum Engineers. San Francisco
[S.C. EISENSTAT, H.C. ELMAN, M.H. SCHULTZ 83] Variational iteration methods
for non symmetric systems of linear equations.
SIAM J. Num. Anal. vol 20
[R. FLETCHER 76] Conjugate gradient methods for indefinite systems.
Proceedings of the Dundee Conference in Numerical Analysis 1975
Springer Verlag
[R. FREUND 90] On Conjugate Gradient Type Methods and Polynomial Precondi-
tioners for a Class of Complex Non-Hermitian Matrices. Numer.Math. vol 57
[G. GOLUB, G. MEURANT 81] Résolution numérique des grands systèmes
linéaires. Eyrolles
[D.A.H. JACOBS 86] A Generalization of the Conjugate-Gradient Method to Solve
Complex Systems. I.M.A. Journal of Numerical Analysis. vol 6
[P. JOLY 84] Méthodes de gradient conjugué.
Publications du Laboratoire d’Analyse Numérique
Université Pierre et Marie Curie. Paris
[N.M. NACHTIGAL, S.C. REDDY, L.N. TREFETHEN 90] How Fast are Nonsym-
metric Matrix Iterations.
Numerical Analysis Report 90-2. Massachusetts Institute of Technology
[J. A. MEIJERINK, H.A. VAN DER VORST 77] An iterative solution method for
linear systems of which the coefficient matrix is a symmetric M-matrix.
Math. of Comp. vol 31
[Y. SAAD, M.H. SCHULTZ 86] Gmres a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. vol 7
[P. SONNEVELD 89] CGS a Fast Lanczos-type Solver for Nonsymmetric Linear Sys-
tems. SIAM J. Sci. Stat. Comput. vol 10
[P. K. W. VINSOME 76] Orthomin : an iterative method for solving sparse sets of
simultaneous linear equations. Proceedings of 4th symposium on reservoir simulation
[J.R. WALLIS 83] Incomplete Gaussian Elimination as a Preconditioning for Gener-
alized Conjugate Gradient Acceleration.
Proceedings of the Seventh Symposium on Numerical Simulation of Reservoir Perfor-
mance of the Society of Petroleum Engineers. Dallas
[J.W. WATTS 81] Society of Petroleum Engineers Journal 21

20

Appendix 1 : Biconjugate Gradient method acceleration
The residuals and the directions are binded by the relations

rk
1 = φk(A)r0 dk

1 = θk(A)r0

rk
2 = φk(AH)r0 dk

2 = θk(AH)r0

where φk(z) and θk(z) are complex polynomial of degree at most k in the variable z, and
satisfying

φk+1(z) = φk(z) − αkzθk(z)

θk+1(z) = φk+1(z) + βk+1θk(z)

From the previous equations, it follows that

φk+1
2(z) = φk

2(z) − 2αkzφk(z)θk(z) + (αk)2z2φ2
k(z)

θk+1
2(z) = φk+1

2(z) + 2βk+1φk+1(z)θk(z) + (βk+1)2θ2
k(z)

Define now
r̃k = φk

2(A)r0

pk = φk(A)θk(A)r0

qk = θk
2(A)r0

these vectors satisfy

r̃k+1 = r̃k − 2αkApk + (αk)2A2qk

qk+1 = r̃k+1 + 2βk+1(pk − αkAqk) + (βk+1)2qk

pk+1 = qk+1 + βk+1(pk − αkAqk)

Define now x̃k, and αk, βk+1 From

r̃k+1 = r̃k − αkA
(
pk + (pk − αkAqk)

)
we get

x̃k+1 = x̃k − αk
(
pk + (pk − αkAqk)

)

and
αk = Re{(rk

1 , r
k
2)}/Re{(dk

2 , Adk
1)}

βk+1 = Re{(rk+1
1 , rk+1

2)}/Re{(rk
1 , r

k
2)}

so
(rk

1 , r
k
2) = (φk(A)r0, φk(AH)r0) = (φ2

k(A)r0, r0) = (r̃k, r0)

(dk
2 , Adk

1) = (θk(AH)r0, Aθk(A)r0) = (r0, Aθ2
k(A)r0) = (r0, Aqk)

αk = Re{(r̃k, r̃0)}/Re{(r̃0, Aqk)}
βk+1 = Re{(r̃k+1, r̃0)}/Re{(r̃k, r̃0)}

21

Appendice 2 : Jacobs’ Biconjugate Gradient method

In [JACOBS 80] is proposed an algorithm using the residuals rk
1 and rl

2 orthogonality.
This algorithm is written as :

Initialization

Choose x0
1, x

0
2 ∈ Cn

set r0
1 = b−Ax0

1

r0
2 = r0

1

d 0
1 = r0

1

d 0
2 = r0

2

Iterations : for k = 0, 1, . . . untill convergence do

1) compute αk

αk = (rk
1 , r

k
2)/(Adk

1 , d
k
2)

xk+1 = xk + αkdk
1

rk+1
1 = rk

1 − αkAdk
1

rk+1
2 = rk

2 − αkAHdk
2

2) generate the new direction

βk+1 = (rk+1
1 , rk+1

2)/(rk
1 , r

k
2)

dk+1
1 = rk+1

1 + βk+1dk
1

dk+1
2 = rk+1

2 + β
k+1

dk
2

The CPU cost of this algorithm is exactly the same as in section 5.

Remark
It is possible to obtain this algorithm from the general formulation, but (·, ·) must be

changed to the real scalar product, and the matrices H et K are defined as

H =
(

0 AT

A 0

)−1

K =
(

0 I
I 0

)

22

The following relations are deduced by induction:

(rk
1 , r

l
2) = 0 ∀k �= l1)

(Adl
1, d

k
2) = (dk

1 , A
Hdl

2) = 0 ∀k �= l2)
(rk

1 , d
l
2) = (rk

2 , d
l
1) = 0 ∀k �= l3)

Furthermore :

αk = (rk
1 , r

k
2)/(Adk

1 , d
k
2)

= (dk
1 , r

k
2)/(Adk

1 , d
k
2)

= (rk
1 , d

k
2)/(Adk

1 , d
k
2)

βk+1 = − (rk+1
1 , AHdk

2)/(Adk
1 , d

k
2)

= − (Adk
1 , r

k+1
2)/(Adk

1 , d
k
2)

= (rk+1
1 , rk+1

2)/(rk
1 , r

k
2)

This algorithm may be also accelerated, as in section 5 :

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

q0 = p0 = r0

r̃0 = r0 or any other choice �= 0
Iterations : for k = 0, 1, . . . untill convergence do

αk = (r̃0, rk)/(r̃0, Aqk)
uk = pk − αkAqk

xk+1 = xk + αk(pk + uk)
rk+1 = rk − αkA(pk + uk)
βk+1 = (r̃0, rk+1)/(r̃0, rk)
pk+1 = rk+1 + βk+1uk

qk+1 = pk+1 + βk+1(uk + βk+1qk)

If A is symmetric complex, then

rk
2 = rk

1 , dk
2 = d

k

1 ∀k

23

and the algorithm can be rewritten in

Initialization

Choose x0 ∈ Cn

set r0 = b−Ax0

d 0 = r0

Iterations : for k = 0, 1, . . . untill convergence do

1) compute the extremum of J

αk = (rk, rk)/(Adk, d
k
)

xk+1 = xk + αkdk

rk+1 = rk − αkAdk

2) generate the new direction

βk+1 = (rk+1, rk+1)/(rk, rk)
dk+1 = rk+1 + βk+1dk

24

