
MATRICES, MOMENTS AND QUADRATURE II
OR

HOW TO COMPUTE THE NORM OF THE ERROR IN
ITERATIVE METHODS ∗

G.H. GOLUB1 AND G. MEURANT2 †

1Computer Science Department, Stanford University, Stanford
CA 94305, USA. email: golub@sccm.stanford.edu

2CEA/Limeil–Valenton

94195 Villeneuve St Georges cedex, France. email: meurant@limeil.cea.fr

Abstract. In this paper, we study the numerical computation of the errors in linear systems
when using iterative methods. This is done by using methods to obtain bounds or approximations
of quadratic forms uT A−1u where A is a symmetric positive definite matrix and u is a given vector.
Numerical examples are given for the Gauss–Seidel algorithm.

Moreover, we show that using a formula for the A–norm of the error from [2], very good bounds
of the error can be computed almost for free during the iterations of the conjugate gradient method
leading to a reliable stopping criteria.

Key words. Iterative methods, Error computation, Conjugate gradient.

1. Introduction.. Let A be a large, sparse symmetric positive definite matrix of
order n and suppose an iterative method is used to compute an approximate solution
x̃ of the linear system

Ax = b,(1)

where b is a given vector. The residual r is defined as,

r = b−Ax̃.

The error e being e = x− x̃, we obviously have,

e = A−1r.

Therefore, if we consider the A–norm of the error,

‖e‖2
A = eTAe = rTA−1AA−1r = rTA−1r.

It is sometimes also of interest to study or compute the l2–norm, for which ‖e‖2 =
rTA−2r.

In order to bound or estimate ‖e‖A, we must obtain bounds or estimates of
rTA−1r, see [1] and [2]. Notice that r is something we can compute but, of course,
we do not want to compute A−1.

Therefore, our task is to obtain computable bounds for quadratic forms

uTA−1u,(2)

without computing A−1. This problem has been considered at length in [5] and
[6], see also [4]. In [5], algorithms combining quadrature formulas and the Lanczos

∗Received ?? 1996.
†The work of the first author was partially supported by NSF Grant CCR–950539.

1

2 G.H. GOLUB AND G. MEURANT

algorithm have been defined that allows us to compute bounds for quadratic forms
such as (2) and more generally for uTA−1v. These algorithms are described in Section
2. Then, in Section 3, we see how to compute approximations of the A–norm of the
error for iterative methods. As an example we consider the Gauss–Seidel method and
give numerical examples. Section 4 is devoted to the particular case of the conjugate
gradient (CG) algorithm. Using the connection of CG with the Lanczos algorithm,
and a formula from [2], we derive a method to compute reliable bounds of the A–norm
of the error during the CG iterations. This improves on the results in [6]. This method
adds only a few floating point operations to CG meaning that one can estimate the
norm of the error almost for free. Numerical examples are given in Section 5.

2. Quadrature algorithms.. In [5], the more general problem of finding bounds
for

uT f(A)v,(3)

where u and v are given vectors and f is some smooth (possibly C∞) function on a
given interval of the real line was considered. In the applications we are interested
here, we have u = v and f(x) = 1

x .
The first step of the method is to express the bilinear form in (3) as a Stieljtes

integral. Since A = AT , we write A as

A = QΛQT ,

where Q is the orthonormal matrix whose columns are the normalized eigenvectors
of A and Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi of A,
which we order as

0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

By definition, we have

A−1 = QΛ−1QT .

Therefore,

uTA−1u = uTQΛ−1QTu

= αTΛ−1α,

=
n∑

i=1

λ−1
i α2

i .

This last sum can be considered as a Riemann–Stieltjes integral

I[A, u] = uTA−1u =
∫ b

a

λ−1 dα(λ),

where the measure α is piecewise constant and defined by

α(λ) =

0 if λ < a = λ1∑i

j=1 α
2
j if λi ≤ λ < λi+1∑n

j=1 α
2
j if b = λn ≤ λ

Matrices, moments and quadrature II 3

The idea is to use quadrature formulas to approximate the Riemann–Stieltjes inte-
gral. We use the Gauss, Gauss–Radau and Gauss–Lobatto quadrature formulas. The
general formula we will use for a function f is

∫ b

a

f(λ) dα(λ) =
N∑

j=1

wjf(tj) +
M∑

k=1

vkf(zk) +R[f],

where the weights [wj]Nj=1, [vk]Mk=1 and the nodes [tj]
N
j=1 are unknowns and the nodes

[zk]Mk=1 are prescribed. If M = 0, that is no prescribed nodes, this leads to the Gauss
rule. IfM = 1 and z1 = a or z1 = b we have the Gauss–Radau formula. IfM = 2 and
z1 = a, z2 = b, this is the Gauss–Lobatto formula. It is known that the remainder is

R[f] =
f (2N+M)(η)
(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)

 N∏

j=1

(λ− tj)

2

dα(λ), a < η < b.

The nodes and weights are obtained by considering the sequence of orthonormal poly-
nomials p0(λ), p1(λ), . . . that are associated to the measure α. This set of orthonormal
polynomials satisfies a three term recurrence relationship:

γjpj(λ) = (λ− ωj)pj−1(λ)− γj−1pj−2(λ), j = 1, 2, . . . , N

p−1(λ) ≡ 0, p0(λ) ≡ 1,

if
∫
dα = 1.
In matrix form, this recurrence can be written as

λp(λ) = JNp(λ) + γNpN (λ)eN ,

where

p(λ)T = [p0(λ) p1(λ) · · · pN−1(λ)],

eT
N = (0 0 · · · 0 1),

JN =

ω1 γ1

γ1 ω2 γ2

.
γN−2 ωN−1 γN−1

γN−1 ωN

 .

The eigenvalues of JN (which are the zeroes of pN) are the nodes of the Gauss quadra-
ture rule (i. e. M = 0). The weights are the squares of the first elements of the nor-
malized eigenvectors of JN . To obtain the Gauss–Radau and Gauss–Lobatto rules,
we must extend the matrix JN in such a way that is has the prescribed eigenvalues.
Details are given in [5].

We note that

N∑
l=1

wlf(tl) = (e1)T f(JN)e1,

4 G.H. GOLUB AND G. MEURANT

where e1 is the first unit vector, see [5]. Therefore, as the sign of the remainder is
known, it is enough to compute the (1,1) element of the inverse of the tridiagonal
matrix JN to obtain a bound for the integral. The same statement is true for the
Gauss–Radau and Gauss–Lobatto rules. The Gauss rule gives a lower bound, the
Gauss–Radau rule gives both a lower and an upper bound and the Gauss–Lobatto
rule gives an upper bound.

The last ingredient of the algorithm is to obtain the coefficients of the recur-
rences for the orthonormal polynomials. This is done through the use of the Lanczos
algorithm.

Let h−1 = 0 and h0 be given such that ‖h0‖ = 1. The Lanczos algorithm is
defined by the following relations,

γjhj = h̃j = (A− ωjI)hj−1 − γj−1hj−2, j = 1, . . .

where

ωj = hT
j−1Ahj−1,

and

γj = ‖h̃j‖.
The sequence {hj}l

j=0 is an orthonormal basis of the Krylov space

span{h0, Ah0, . . . , A
lh0}.

Obviously, the vector hj is given by

hj = pj(A)h0,

where pj is a polynomial of degree j defined by the three term recurrence

γjpj(λ) = (λ− ωj)pj−1j(λ)− γj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1.

The (1,1) element of the inverse of the tridiagonal matrix JN can be computed incre-
mentally as we go through the Lanczos algorithm (see [5]) and the following algorithm
GQL (Gauss Quadrature and Lanczos) is finally obtained. Algorithm GQL[A, u, l]

Suppose ‖u‖ = 1, the following formulas yield a lower bound bj of uTA−1u by
the Gauss quadrature rule, a lower bound bj and an upper bound b̄j through the
Gauss–Radau quadrature rule and an upper bound b̆j through the Gauss–Lobatto
rule.

Let h−1 = 0 and h0 = u, ω1 = uTAu, γ1 = ‖(A − ω1I)u‖, b1 = ω−1
1 , d1 = ω1,

c1 = 1, d̄1 = ω1 − a, d1 = ω1 − b, h1 = (A− ω1I)u/γ1.
Then for j = 2, . . . , l we compute

ωj = hT
j−1Ahj−1,

h̃j = (A− ωjI)hj−1 − γj−1hj−2,

γj = ‖h̃j‖,

Matrices, moments and quadrature II 5

hj =
h̃j

γj
,

bj = bj−1 +
γ2

j−1c
2
j−1

dj−1(ωjdj−1 − γ2
j−1)

,(4)

dj = ωj −
γ2

j−1

dj−1
,

cj = cj−1
γj−1

dj−1
,

d̄j = ωj − a− γ2
j−1

d̄j−1
,

dj = ωj − b− γ2
j−1

dj−1

,

ω̄j = a+
γ2

j

d̄j
,

ωj = b+
γ2

j

dj

,

b̄j = bj +
γ2

j c
2
j

dj(ω̄jdj − γ2
j)
,

bj = bj +
γ2

j c
2
j

dj(ωjdj − γ2
j)
,

ω̆j =
d̄jdj

dj − d̄j

(
b

d̄j
− a

dj

)
,

γ̆2
j =

d̄jdj

dj − d̄j
(b− a),

b̆j = bj +
γ̆2

j c
2
j

dj(ω̆jdj − γ̆j
2)
.

Notice that the bulk of the computations in Algorithm GQL comes about from the
matrix vector product Ahj−1.

6 G.H. GOLUB AND G. MEURANT

3. Numerical computation of the A–norm of the error.. As an example for
solving Ax = b, we consider one of the simplest methods: the Gauss–Seidel algorithm.
Let x0 be given and A = D + L + LT , where D is diagonal and L is strictly lower
triangular. Then, the iterates xk are computed by

(D + L)xk = b− LTxk−1.

Suppose we want to compute bounds for the A–norm of the error at iteration k. The
algorithm is the following:
1) Compute the residual rk = b−Axk = LT (xk−1−xk). Note that LTxk is computed
in the algorithm.
2) To compute bounds at iteration k, we set u = rk/‖rk‖ and run GQL[A, u, l] for a
given l.

It is of interest to know how many iterations l of Lanczos we need to obtain at
least the order of magnitude of the error. We consider the following simple numerical
example.
Example 1: the matrix arises from the 5–point finite difference of the Poisson equation
in a unit square. This gives a linear system Ax = b of order n = m2, where

A =

T −I
−I T −I

.
−I T −I

−I T

each block being of order m and

T =

4 −1
−1 4 −1

.
−1 4 −1

−1 4

 .

We choose n = 900, b such that the exact solution xex is xex = (1, . . . , 1)T and a
zero initial guess x0. We use a = 0.02, b = 8 when the “exact” eigenvalues are
λ1 = 0.0205227, λn = 7.979472. The computations were done using Matlab 4.1 on an
Apple Macintosh Quadra 650.

Although we do not recommend this procedure, at each iteration k of Gauss–
Seidel we computed the residual and ran Lanczos to compute bounds for ‖ek‖A.
Figure 1 shows the relative differences between the bounds and the exact value of
the A–norm of the error as a function of k for l = 2. Figure 2 shows the relative
differences for Gauss–Seidel iteration k = 300 as a function of l. This shows that
good estimates (less than 2% can be obtained for only 2 Lanczos iterations. Figure 3
shows the sensitivity of the bounds to the given value of a for 2 iterations of Lanczos
and k = 10. Remember that the lower bound from the Gauss rule is independent of a
and b. Notice that the lower bound from Gauss–Radau seems independent of a. The
upper bounds do depend on a but only a rough estimate is needed. When a becomes
too large the estimates are not upper bounds anymore and for very large values of
a they converge to the lower bounds. The bounds are almost independent of b.

Remarks:

Matrices, moments and quadrature II 7

0 50 100 150 200 250 300
-0.5

0

0.5

1

1.5

2

Fig. 1. Gauss–Seidel,
estimate−‖ek

ex‖
‖ek

ex‖ for l = 2 as a function of k, solid line: Gauss, dots and

dashed line: Gauss–Radau, dot–dashed line: Gauss–Lobatto

i) The bounds are only very slightly dependent on the eigenvalue estimates.
ii) The same method can be used with any iterative method and also with any process
that computes an approximation of the solution of Ax = b.
iii) Notice we have the following relationship between the A–norm of the error and
the l2–norm,

λ1‖ek‖2 ≤ ‖ek‖2
A ≤ λn‖ek‖2.

Therefore, if we have ‖ek‖A ≤ ε then, ‖ek‖ ≤ ε/
√
λ1. We have also

‖rk‖√
λn

≤ ‖ek‖A ≤ ‖rk‖√
λ1

.

Therefore, if λ1 is not too much different from λn, the l2 norm of the residual can be
a good approximation of the norm of the error.

8 G.H. GOLUB AND G. MEURANT

1 2 3 4 5 6 7 8 9
-0.01

-0.005

0

0.005

0.01

0.015

Fig. 2. Gauss–Seidel,
estimate−‖ek

ex‖
‖ek

ex‖ for k = 300 as a function of l, solid line: Gauss, dots

and dashed line: Gauss–Radau, dot–dashed line: Gauss–Lobatto

iv) The l2 norm of the error can also be estimated directly. In that case we have to
deal with J−2

k . This will be considered in details in a future paper.
v) We note that the Gauss–Seidel iterates can be improved by the Lanczos steps that
we ran for computing the error as an approximate solution y of Ay = rk can be
computed from the Lanczos iterates and added to the current approximation xk. In
this way the work that is done to estimate the error is not lost.

4. Computation of the A–norm of the error for CG.. Regarding the com-
putation of the A–norm of the error, the situation of CG is different from other
iterative methods. The most common form of CG is the following:

Algorithm CG
Let x0 be given, r0 = b−Ax0, p0 = r0, for k = 1, . . . until convergence

Matrices, moments and quadrature II 9

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
2

3

4

5

6

7

8

9

Fig. 3. Gauss–Seidel, estimate as a function of a for k = 10, l = 2, b = 8, solid line: Gauss,
dots and dashed line: Gauss–Radau, dot–dashed line: Gauss–Lobatto, The exact value 4.1208 is
indicated by a solid line

αk−1 =
rk−1T

rk−1

pk−1T
Apk−1

,

xk = xk−1 + αk−1p
k−1,

rk = rk−1 − αk−1Ap
k−1,

βk =
rkT

rk

rk−1T
rk−1

,

10 G.H. GOLUB AND G. MEURANT

pk = rk + βkp
k−1.

It is well known that, in some sense, CG is equivalent to Lanczos. In fact, if we start

Lanczos from r0/‖r0‖, then

hk+1 = (−1)k rk

‖rk‖ ,

and we have the following relationship between the Lanczos and CG coefficients, for
k = 1, . . .

ωk =
1

αk−1
+

βk−1

αk−2
, β0 = 0, α−1 = 1

γk =
√
βk

αk−1
.

Therefore, it is “the same” to run CG for l iterations or GQL[A, r0/‖r0‖, l]. This
means that when running CG we can compute bounds for r0T

A−1r0 that will improve
when k grows. So, it would be wasteful to run GQL[A, rk/‖rk‖, l] starting from CG
results to get bounds of the error at step k.

How can we estimate rkT
A−1rk ? We can use a formula from [2] (see [6] for a

proof) that relates the A–norm of the error at step k and the inverse of matrix Jk,

‖ek‖2
A = ‖x− xk‖2

A = r0T
A−1r0 − ‖r0‖2(J−1

k)(1,1)(5)

= ‖r0‖2((J−1
n)(1,1) − (J−1

k)(1,1)).(6)

Notice, we also have

‖ek‖2
A = r0T

A−1r0 −
k−1∑
j=0

αj‖rj‖2,

and hence,

k−1∑
j=0

αj‖rj‖2 = ‖r0‖2(J−1
k)(1,1).

Formula (6) has been used in [6] for reconstructing the A–norm of the error but the
(1, 1) element of the inverse was computed by means of continued fractions. A round
off error analysis given in [6] shows that below a certain value of ‖ek‖2

A, then no more
useful information can be obtained from this algorithm.

Formula (6) has also been used in [3] but, the computations of ‖ek‖A were not
calculated below 10−5. We will show below that these difficulties can be overcome
and that reliable estimates of ‖ek‖A can be computed.

For the sake of simplicity, let us just consider the lower bound bk computed by
the Gauss rule and let sk be the estimate of ‖ek‖2

A. Let d be a positive integer, then
the idea is to use the following formula at CG iteration k,

sk−d = ‖r0‖2(bk − bk−d),(7)

where bk is defined as in (4) to get an estimate of the error at iteration k − d. The
larger is d, the better will be the estimate.

Matrices, moments and quadrature II 11

If we use a naive approach by computing bk by formula (4), then we run into some
difficulties which are similar to the ones described in [6]. Roughly speaking what we
see in the numerical experiments is that, for k sufficiently large, γk−1/dk−1 < 1, and
therefore ck → 0. Let us denote

fk−1 =
γ2

k−1c
2
k−1

dk−1(ωkdk−1 − γ2
k−1)

> 0,

then since the denominator is bounded, fk → 0 (fk being a decreasing sequence).
Then computing bk, we start by summing the largest terms of the sequence. It

happens that when k > k̃, fk adds no significant digit to bk. Therefore if k > k̃,
bk = bk̃ and sk−d = 0 up to working precision when k > k̃ + d, and no useful
information can be gotten from (7).

But the solution of this problem is very simple. As bk = bk−1 + fk−1 and we are
not interested in bk itself but only in bk −bk−d, we can reliably compute the difference
by only summing up some of the fk’s. Notice it is likely that they are going to be of
the same order of magnitude. The algorithm is the following: Algorithm CGQL

Let x0 be given, r0 = b−Ax0, p0 = r0, β0 = 0, α−1 = 1, c1 = 1.
For k = 1, . . . until convergence

αk−1 =
rk−1T

rk−1

pk−1T
Apk−1

,

ωk =
1

αk−1
+

βk−1

αk−2
,

if k = 1 —————————————————–

f1 =
1
ω1

,

d1 = ω1,

d̄1 = ω1 − a,

d1 = ω1 − b,

else ——————————————————–

fk =
γ2

k−1c
2
k−1

dk−1(ωkdk−1 − γ2
k−1)

,

ck = ck−1
γk−1

dk−1
,

dk = ωk − γ2
k−1

dk−1
,

12 G.H. GOLUB AND G. MEURANT

d̄k = ωk − a− γ2
k−1

d̄k−1
,

dk = ωk − b− γ2
k−1

dk−1

end ———————————————————

xk = xk−1 + αk−1p
k−1,

rk = rk−1 − αk−1Ap
k−1,

βk =
rkT

rk

rk−1T
rk−1

,

γk =
√
βk

αk−1
,

pk = rk + βkp
k−1,

ω̄k = a+
γ2

k

d̄k
,

ωk = b+
γ2

k

dk

,

ω̆k =
d̄kdk

dk − d̄k

(
b

d̄k
− a

dk

)
,

γ̆2
k =

d̄kdk

dk − d̄k
(b− a),

f̄k =
γ2

kc
2
k

dk(ω̄kdk − γ2
k)
,

f
k
=

γ2
kc

2
k

dk(ωkdk − γ2
k)
,

f̆k =
γ̆2

kc
2
k

dk(ω̆kdk − γ̆k
2)
,

Matrices, moments and quadrature II 13

if k > d —————————————————–

tk =
k∑

j=k−d+1

fj ,

sk−d = ‖r0‖2tk,

s̄k−d = ‖r0‖2(tk + f̄k),

sk−d = ‖r0‖2(tk + f
k
),

s̆k−d = ‖r0‖2(tk + f̆k)

end ———————————————————–

This algorithm gives lower bounds sk−d, sk−d and upper bounds s̄k−d, s̆k−d of
‖ek−d‖2

A.
Notice that in the practical implementation we do not need to store all the fks

but only the last d. We can also compute only some of the estimates. Remember that
the lower bound sk−d does not depend on the eigenvalue bounds a and b.

The additional number of operations is approximately 50 + d if we compute the
four estimates, which is almost nothing compared to the 10 n operations plus the
matrix–vector product of CG.

An interesting question is to know how large d has to be to get a reliable estimate
of the error. We are going to see this in the numerical experiments in the next section.

5. Numerical experiments.. Example 1 is the Poisson problem we considered
in Section 3. We will consider three more examples. Example 2 arises from the
5–point finite difference approximation of a diffusion equation in a unit square,

−div(a∇u)) = f,

with Dirichlet boundary conditions. a(x, y) is a diagonal matrix with equal diagonal
elements. This element is equal to 1000 in a square]1/4, 3/4[×]1/4, 3/4[, 1 otherwise.
Example 3 is the same with different diffusion coefficients. The coefficient in the x
direction is 100 if x ∈ [1/4, 3/4], 1 otherwise. The coefficient in the y direction is
constant and equal to 1. For the first three problems, we choose n = 900, b such that
the exact solution xex is xex = (1, . . . , 1)T and a random initial guess x0.

Example 4 is taken from [6]. The matrix A is diagonal. The diagonal elements
are defined as

µi = a+
i− 1
n− 1(b− a)ρn−i, i = 2, . . . , n− 1 µ1 = a, µn = b

As in [6], we take n = 48, a = 0.1, b = 100 and ρ = 0.875.

14 G.H. GOLUB AND G. MEURANT

5.1. Results for Example 1.. As before a = 0.02 and b = 8. The naive
algorithm gives a zero estimate after 85 iterations of CG. Figure 4 shows the exact
error and the bound from the Gauss rule with d = 2 on a logarithmic scale. After
60 iterations the two curves are indistinguishable. Figure 5 is a plot of the relative
differences between the error and the lower bounds from the Gauss rule for different
values of d. We see that when d increases, the bounds get significantly better. Note
it is not difficult to take a large value of d. The only drawbacks are:
1) the number of operations increase, but not very significantly,
2) we only get bounds for the error d iterations before the current one. If we use this
to stop the iterations, we are loosing d iterations as the actual error will be smaller.

Figure 6 is a picture of the relatives differences for d = 10 as a function of k. We
see that the lower bounds are better than the upper ones. But this improves when d
increases. Moreover, the bounds improve when k gets larger.

We see that the bounds depend only slightly on the estimates of the smallest
eigenvalue. However, it is well known that the smallest and largest eigenvalues of
Jk approximate the smallest and largest eigenvalues of A. Therefore, we can devise
an adaptive algorithm for estimating a. For some CG iterations, we compute the
smallest eigenvalue of Jk by an inverse power iteration. This is cheap as we have
at hand the LDLT decomposition of the tridiagonal matrix Jk. In fact, the dk that
are computed in CGQL are the diagonal elements of the decomposition. When, the
smallest eigenvalue has converged it replaces the initial estimate. In this way, even
though the bounds can be very crude in the first CG iterations, as soon as we switch,
we recover very good upper bounds.

5.2. Results for Example 2.. In the next two examples, we scale the matrix
by its diagonal. Therefore, b = 2. For example 2, we take a = 10−5 when the exact
eigenvalue is 1.022 10−5. Figure 7 shows the logarithm of the error and the bounds
for d = 20. Note that the results are not as good as for example 1, especially for
the upper bounds. But, after 50 CG iterations the bounds are very good. This is
exemplified even more in Figure 8. We see that when k > 50, the percentage of error
is around 10%.

5.3. Results for Example 3.. This example is more difficult than the preceding
ones as the error does not decrease too much for 300 iterations. We take a = 1.49 10−4

which is a little bit less than the exact value. Figure 9 shows the logarithm of the
error and the bounds for d = 10. The percentage of error is given on Figure 10. Once
again, the lower bounds are better than the upper ones. But the later ones improve
when k gets large. A larger value of d will give better results.

5.4. Results for Example 4.. This example was devised by Z. Strakoš to
produce large rounding errors in CG. Note that we need 100 iterations to reach an
error of 10−10 when the order of the matrix is n = 48. However CGQL gives good
bounds for the error even with a small value of d. In Figure 11, we choose d = 2.
Figure 12 gives the relative differences for d = 10. The results are quite satisfactory.

6. Conclusion.. In this paper, we have shown that bounds for the A–norm of
the error can be easily computed by using Lanczos and quadrature rules. Moreover
in the case of CG, bounds can be computed during the CG iterations almost for
free. These bounds can be much better than some obtained by other ways when a
sufficiently large value of the delay d is used. In CG, the estimate of the smallest
eigenvalue can be obtained also during the iterations leading to an algorithm which

Matrices, moments and quadrature II 15

Fig. 4. CG, Example 1, Log10 of ‖ek‖A (dotted line) and of the square root of sk (solid line)
for the Gauss rule, d = 2

16 G.H. GOLUB AND G. MEURANT

0 20 40 60 80 100 120
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Fig. 5. CG, Example 1,
estimate−‖ek‖A

‖ek‖A
as a function of k for the Gauss rule, solid line:

d = 2, dashed line: d = 3, dotted line: d = 4, dot–dashed line: d = 10

is only slightly dependent on the eigenvalues estimates. This gives a more reliable
stopping criteria for CG.

REFERENCES

[1] G. Dahlquist, S.C. Eisenstat and G.H. Golub. Bounds for the error of linear systems of equa-
tions using the theory of moments J. Math. Anal. Appl. 37 (1972) pp. 151–166.

[2] G. Dahlquist, G.H. Golub and S.G. Nash. Bounds for the error in linear systems. In Proc. of
the Workshop on Semi–Infinite Programming, R. Hettich ed, Springer (1978), pp. 154–172.

[3] B. Fischer and G.H. Golub. On the error computation for polynomial based iteration methods.
Report NA 92–21, Stanford University (1992).

[4] G.H. Golub. Matrix computation and the theory of moments. In Proceedings of the International
Congress of Mathematicians, Birkhäuser, (1995).

Matrices, moments and quadrature II 17

0 20 40 60 80 100 120
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 6. CG, Example 1,
estimate−‖ek‖A

‖ek‖A
, d = 10 as a function of k, solid line: Gauss, dashed

and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

[5] G.H. Golub and G. Meurant. Matrices, moments and quadrature. In Numerical Analysis 1993,
D.F. Griffiths & G.A. Watson, Eds. Pitman Research Notes in Mathematics, v 303, (1994),
pp. 105–156.

[6] G.H. Golub and Z. Strakoš. Estimates in quadratic formulas. Report SCCM–93–08, Stanford
University, accepted for publication in Numerical Algorithms.

18 G.H. GOLUB AND G. MEURANT

0 50 100 150
-14

-12

-10

-8

-6

-4

-2

0

2

Fig. 7. CG, Example 2, Log10 of ‖ek‖A (solid line) and of estimates, d = 20, solid line:
Gauss, dashed and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

Matrices, moments and quadrature II 19

0 50 100 150
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 8. CG, Example 2,
estimate−‖ek‖A

‖ek‖A
, d = 20 as a function of k, solid line: Gauss, dashed

and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

20 G.H. GOLUB AND G. MEURANT

0 50 100 150 200 250 300 350 400 450
-16

-14

-12

-10

-8

-6

-4

-2

0

2

Fig. 9. CG, Example 3, Log10 of ‖ek‖A (solid line) and of estimates, d = 10, solid line:
Gauss, dashed and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

Matrices, moments and quadrature II 21

0 50 100 150 200 250 300 350 400
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 10. CG, Example 3,
estimate−‖ek‖A

‖ek‖A
, d = 10 as a function of k, solid line: Gauss, dashed

and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

22 G.H. GOLUB AND G. MEURANT

0 10 20 30 40 50 60 70 80 90 100
-12

-10

-8

-6

-4

-2

0

2

Fig. 11. CG, Example 4, Log10 of ‖ek‖A (solid line) and of estimates, d = 2, solid line:
Gauss, dashed and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

Matrices, moments and quadrature II 23

0 10 20 30 40 50 60 70 80 90 100
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 12. CG, Example 4,
estimate−‖ek‖A

‖ek‖A
, d = 10 as a function of k, solid line: Gauss, dashed

and dotted lines: Gauss–Radau, dot–dashed line: Gauss–Lobatto

