
Numerical Algorithms ? (2000) ?–? 1

Numerical experiments in computing bounds for the

norm of the error in the preconditioned conjugate

gradient algorithm

Gérard Meurant

CEA/DIF, BP 12, 91680 Bruyères le Châtel, France

In this paper we consider algorithms to compute bounds of the A–norm of the error in the

preconditioned conjugate gradient (PCG) algorithm. We extend to PCG formulas that were

given in an earlier paper [8]. We give numerical experiments which show that good upper and

lower bounds can be obtained provided estimates of the lowest and largest eigenvalues of the

preconditioned matrix are given or adaptively computed.

Keywords: Errors bounds, Preconditioned Conjugate Gradient

AMS Subject classification: 65F50

1. Introduction

Let A be a large and sparse symmetric positive definite matrix of order n.
Assume we have an approximate solution x̃ for the linear system

Ax = g, (1.1)

where the right hand side g is a given vector. The residual r is defined as

r = g −Ax̃. (1.2)

The error e being e = x− x̃, we have the following relationship between the error
and the residual

e = A−1r. (1.3)

Therefore, the A–norm of the error ‖e‖A is given by

‖e‖2
A = eTAe = rTA−1AA−1r = rTA−1r. (1.4)

2 G. Meurant / Bounds for errors in PCG

In a series of papers ([1], [3], [4], [5], [7]) it was shown how to compute
lower and upper bounds for the quadratic form rTA−1r. Basically the quadratic
form is considered as a Stieltjes integral with an (unknown) positive measure.
Quadrature rules are then used to obtain approximations of the integral. For
the case we consider, the Gauss rule gives a lower bound and the Gauss–Radau
rule both a lower and an upper bound when the prescribed nodes are either
the left or right ends of a segment containing the (positive) eigenvalues of A.
Prescribing both ends of the segment, we obtain the Gauss–Lobatto rule and an
upper bound. Nodes and weights of the quadrature formulas can be computed
by using the orthogonal polynomials associated with the measure. In turn, the
recurrence relations of these orthogonal polynomials are given by the Lanczos
algorithm starting from the (normalized) residual.

In [5] and [8] it was shown how to use these ideas to compute bounds for the
A–norm of the error in the conjugate gradient algorithm. In this paper we extend
these results to the preconditioned conjugate gradient algorithm and we provide
numerical experiments showing that we can reliably compute good estimates of
the A–norm of the error. The contents of the paper are as follows. In section 2, we
recall the results of [5] and [8] for CG without preconditioning. Section 3 shows
how to incorporate a preconditioner and Section 4 gives numerical experiments.

2. CG without preconditioning

Let xk be the CG approximation at iteration k and rk be the corresponding
residual. For computing the A–norm of the error it was proposed in [5] to use
the following formula (see [7] and section 3 below for a proof),

‖ek‖2
A = ‖x− xk‖2

A = r0T
A−1r0 − ‖r0‖2(J−1

k)1,1 (2.1)

= ‖r0‖2((J−1
n)1,1 − (J−1

k)1,1). (2.2)

where

Jk =

ω1 γ1

γ1 ω2 γ2
.

γk−2 ωk−1 γk−1

γk−1 ωk

, (2.3)

G. Meurant / Bounds for errors in PCG 3

is the tridiagonal matrix of the coefficients in the Lanczos algorithm. These
coefficients are related to those in CG by

ωk =
1

αk−1
+

βk−1

αk−2
, β0 = 0, α−1 = 1 (2.4)

γk =
√
βk

αk−1
, (2.5)

αk and βk being the CG coefficients: let x0 be given, r0 = g − Ax0, p0 = r0, for

k = 1, . . . until convergence

αk−1 =
rk−1T

rk−1

pk−1T
Apk−1

, (2.6)

xk = xk−1 + αk−1p
k−1, (2.7)

rk = rk−1 − αk−1Apk−1, (2.8)

βk =
rkT

rk

rk−1T
rk−1

, (2.9)

pk = rk + βkp
k−1. (2.10)

In [8] it is shown how formula (2.2) can be used to estimate the error. At CG
iteration k, we do not know (J−1

n)1,1. But it is known that (J−1
k)1,1 → (J−1

n)1,1.
Therefore, we use the current value of (J−1

k)1,1 to approximate the final value.
Let bk be the computed value of (J−1

k)1,1. It is obtained (see [8]) in an additive
way by using the Sherman–Morrison formula (see [6]). Let jk be the last column
of the inverse of Jk, then

(J−1
k+1)1,1 = (J−1

k)1,1 +
γ2

k(jkj
T
k)1,1

ωk+1 − γ2
k(jk)k

. (2.11)

The first and last elements of the last column of the inverse of Jk that we need are
easily computed using the Cholesky decomposition of Jk. Let sk be the estimate
of ‖ek‖2

A and d be a positive integer (the delay). At CG iteration number k, we
set

sk−d = ‖r0‖2(bk − bk−d). (2.12)

4 G. Meurant / Bounds for errors in PCG

This will give us an estimate of the error d iterations before the current one. It
is shown in [5] how to efficiently compute the difference bk − bk−d. Numerical
results in [5] and [8] show the effectiveness of this approach. What is needed
to obtain lower and upper bounds of the error are estimates of the lowest and
largest eigenvalues of A. This can be computed when running the CG iterations.
In [8] an adaptive algorithm is described which starts from rough approxima-
tions of the eigenvalues. It improves these approximations during the first CG
iterations by computing the extreme eigenvalues of the Lanczos matrix which is
implicitly constructed by CG and switch to the “converged” eigenvalues when
certain criteria are reached.

3. CG with preconditioning

Let M be a symmetric positive definite matrix which is going to be the pre-
conditioner. It is well known that PCG for solving (1.1) is obtained by applying
CG to the transformed system

M−1/2AM−1/2(M1/2x) = M−1/2g, (3.1)

for which the matrix is still symmetric positive definite. Then we obtain recur-
rences for the approximations to x by going back to the original variables. Let
rk = g −Axk and yk = M1/2xk. For (3.1) the residual is

r̂k = M−1/2g −M−1/2AM−1/2yk = M−1/2(g −Axk) = M−1/2rk. (3.2)

Let zk be given by solving Mzk = rk. Then, the scalar product we need in PCG
is

(r̂k)
T
r̂k = (r̂k, r̂k) = (M−1rk, rk) = (zk, rk). (3.3)

Moreover, let p̂k = M1/2pk. Then

(p̂k,M−1/2AM−1/2p̂k) = (pk, Apk). (3.4)

By using this change of variable, the PCG algorithm is the following: let x0 be

given, r0 = g −Ax0, Mz0 = r0, p0 = z0, for k = 1, . . . until convergence

αk−1 =
zk−1T

rk−1

pk−1T
Apk−1

, (3.5)

G. Meurant / Bounds for errors in PCG 5

xk = xk−1 + αk−1p
k−1, (3.6)

rk = rk−1 − αk−1Apk−1, (3.7)

Mzk = rk, (3.8)

βk =
zkT

rk

zk−1T
rk−1

, (3.9)

pk = zk + βkp
k−1. (3.10)

Let êk = yk − y where y = M1/2x and ek = xk − x. Then,

‖êk‖2
M−1/2AM−1/2 = (M−1/2AM−1/2(yk−y), yk−y) = (A(xk−x), xk−x) = ‖ek‖2

A.

(3.11)
This shows that we can use the formula

‖ek‖2
A = (z0, r0)((J−1

n)1,1 − (J−1
k)1,1), (3.12)

where the Lanczos matrix Jk is constructed from the PCG coefficients. This
result can also be proved directly in the following way (we give this proof for
the convenience of the reader. It is essentially similar to the proof in the report
from where [7] is issued). Let K = M−1A. It is well known (see for instance
Lemma 6.9 of [9]) that PCG generates a polynomial Pk of degree k which satisfies
a three–term recurrence and such that

zk+1 = [I −KPk(K)]z0. (3.13)

This implies that we have

rk+1 = r0 −APk(K)M−1r0. (3.14)

Because of the orthogonality relations which hold for PCG (namely orthogonality
of rk+1 and pk), we have

‖ek+1‖2
A = (rk+1, A−1r0) = (r0, A−1r0)− (Pk(K)M−1r0, r0). (3.15)

Let Zk = [z0 z1 . . . zk] be the matrix whose columns are the vectors zj . Then we
have

ZT
k KZk = ZT

k ZkTk, (3.16)

6 G. Meurant / Bounds for errors in PCG

where Tk is a tridiagonal matrix of order k+1. Let Dk be a diagonal matrix such
that ZT

k MZk = D2
k and Z̃k = M1/2ZkD

−1
k . We have (see [9])

(Z̃k)TM1/2KM−1/2Z̃kDk = DkTk (3.17)

and

(Z̃k)T Z̃k = D−1
k ZT

k MZkD
−1
k = I. (3.18)

Therefore Z̃k is an orthonormal matrix. The matrix Tk is similar to (Z̃k)T K̂Z̃k

where K̂ = M−1/2AM−1/2 which is similar to M−1A. Then,

(Z̃k)TM1/2Pk(K)M−1/2Z̃k = DkPk(Tk)D−1
k . (3.19)

From this we can compute (Pk(K)M−1r0, r0) by noticing that

z̃k =
M1/2zk√
(zk, rk)

=
M1/2zk

δk
. (3.20)

Therefore, since z̃0 = Z̃ke1 where e1 is the first column of the identity matrix of
order k + 1,

(Pk(K)M−1r0, r0) = (Pk(K)z0,Mz0), (3.21)

= δ2
0(M

1/2Pk(K)M−1/2z̃0, z̃0), (3.22)

= δ2
0(Z̃

T
k M1/2Pk(K)M−1/2Z̃ke1, e1), (3.23)

= (z0, r0)(DkPk(Tk)D−1
k e1, e1). (3.24)

Now it is useful to look at the recurrences which are verified by the vectors z̃k.
We know (see chapter 6 of [9]) that the vectors zk satisfy a three–term recurrence
relation:

zk+1 = zk−1 − θk+1(ζkM
−1Azk − zk + zk−1). (3.25)

This gives

δk+1z̃
k+1 = δk−1z̃

k−1 − θk+1(δkζkK̂z̃k − δkz̃
k + δk−1z̃

k−1), (3.26)

or

K̂z̃k = − δk+1

θk+1ζkδk
z̃k+1 +

1
ζk

+
δk−1(1− θk+1)

θk+1ζkδk
z̃k−1. (3.27)

In the Lanczos algorithm applied to K̂ we have

K̂qk = ηk+1q
k+1 + εkq

k + ηkq
k−1, (3.28)

G. Meurant / Bounds for errors in PCG 7

where εk = (qk, K̂qk) and ηk = (qk−1, K̂qk). In PCG we have (see [9])

ζk =
(zk,Mzk)
(zk, Azk)

. (3.29)

This implies that

1
ζk

= (z̃k, K̂z̃k). (3.30)

Moreover (see [9])

θk+1 =
(zk−1, rk−1)

ζk(zk−1, Azk) + (zk−1, rk−1)
. (3.31)

From this we can show that

ρk =
δk−1(1− θk+1)

θk+1ζkδk
= (z̃k−1, K̂z̃k). (3.32)

It is also easy to show that

− δk+1

θk+1ζkδk
= ρk+1. (3.33)

By looking at the first two iterates, this shows that the vectors z̃k are the Lanczos
iterates qk. From (3.3) we have

χk+1z̃
k+1 = [I − K̂Pk(K̂)]z̃0, (3.34)

where

χk+1 =
δk+1

δ0
=

√
(rk+1, zk+1)√

(r0, z0)
. (3.35)

Therefore,

1
χk+1

[I − K̂Pk(K̂)] (3.36)

is the Lanczos polynomial of degree k + 1 which we denote by qk+1(K̂). Let us
write

qk+1(λ) = qk+1(0) − λq̄k(λ). (3.37)

Obviously, we have

qk+1(0) =
1

χk+1
(3.38)

8 G. Meurant / Bounds for errors in PCG

and

q̄k(λ) =
1

χk+1
Pk(λ). (3.39)

Being the Lanczos polynomial for K̂, the polynomial qk+1 is proportional to the
characteristic polynomial of Jk+1 the Lanczos matrix. From the Cayley–Hamilton
theorem we have qk+1(Jk+1) = 0. Then,

qk+1(0)I = Jk+1q̄k(Jk+1). (3.40)

Multiplying by J−1
k+1 we obtain

J−1
k+1 =

q̄k(Jk+1)
qk+1(0)

= Pk(Jk+1). (3.41)

It is also easily seen that

DkTkD
−1
k = Jk+1. (3.42)

This shows that

(Pk(K)M−1r0, r0) = (r0, z0)(Pk(Jk+1)e1, e1) = (r0, z0)(J−1
k+1e1, e1). (3.43)

Using this result the modified version of the preconditioned conjugate gradient
algorithm is:

Algorithm PCGQL
let x0 be given, r0 = g −Ax0, Mz0 = r0, p0 = z0, β0 = 0, α−1 = 1, c1 = 1,
for k = 1, . . . until convergence

αk−1 =
zk−1T

rk−1

pk−1T
Apk−1

, (3.44)

ωk =
1

αk−1
+

βk−1

αk−2
, (3.45)

if k = 1 —————————————————–

f1 =
1
ω1

,

d1 = ω1,

d̄1 = ω1 − a,

G. Meurant / Bounds for errors in PCG 9

d1 = ω1 − b, (3.46)

else ——————————————————–

ck = ck−1
γk−1

dk−1
,

dk = ωk − γ2
k−1

dk−1
,

fk =
γ2

k−1c
2
k−1

dk−1(ωkdk−1 − γ2
k−1)

=
c2k
dk

, (3.47)

d̄k = ωk − a− γ2
k−1

d̄k−1
= ωk − ω̄k−1, (3.48)

dk = ωk − b− γ2
k−1

dk−1

= ωk − ωk−1 (3.49)

end ———————————————————

xk = xk−1 + αk−1p
k−1, (3.50)

rk = rk−1 − αk−1Apk−1, (3.51)

Mzk = rk, (3.52)

βk =
zkT

rk

zk−1T
rk−1

, (3.53)

γk =
√
βk

αk−1
, (3.54)

pk = zk + βkp
k−1, (3.55)

ω̄k = a +
γ2

k

d̄k
, (3.56)

ωk = b +
γ2

k

dk

, (3.57)

ω̆k =
d̄kdk

dk − d̄k

(
b

d̄k
− a

dk

)
, (3.58)

10 G. Meurant / Bounds for errors in PCG

γ̆2
k =

d̄kdk

dk − d̄k
(b− a), (3.59)

f̄k =
γ2

kc
2
k

dk(ω̄kdk − γ2
k)

, (3.60)

f
k
=

γ2
kc

2
k

dk(ωkdk − γ2
k)

,

f̆k =
γ̆2

kc
2
k

dk(ω̆kdk − γ̆k
2)

, (3.61)

if k > d —————————————————–

tk =
k∑

j=k−d+1

fj ,

sk−d = (r0, z0)tk, (3.62)

s̄k−d = (r0, z0)(tk + f̄k), (3.63)

sk−d = (r0, z0)(tk + f
k
), (3.64)

s̆k−d = (r0, z0)(tk + f̆k) (3.65)

end ———————————————————–
In this algorithm sk−d, sk−d are lower bounds of ‖ek−d‖2

A and s̄k−d, s̆k−d are
upper bounds, a and b are lower and upper bounds of the smallest and largest
eigenvalues of M−1A. Notice that the value of sk is independent of a and b, s̄k

depends only on a and sk only on b.

4. Numerical experiments

As test problems, we use two of the examples that were used in [5]. Example
1 and 2 arises from the 5–point finite difference approximation of a diffusion
equation in a unit square,

−div(a∇u)) = f, (4.1)

with Dirichlet boundary conditions. Example 1 is the Poisson model problem,
that is to say a ≡ 1. In Example 2 a(x, y) is a diagonal matrix with equal

G. Meurant / Bounds for errors in PCG 11

Table 1

Example 1, IC(1,1)

d Gauss Gauss–Radau Gauss–Lobatto

1 2.24253 2.39271, 4.62705 6.32828

2 2.50579 2.5370, 3.15325 3.93472

3 2.56254 2.57011, 2.73920 2.93778

5 2.57958 2.57978, 2.58555 2.59949

10 2.58011 2.58011, 2.58011 2.58011

diagonal elements. This element is equal to 1000 in a square]1/4, 3/4[×]1/4, 3/4[,
1 otherwise. For these two problems, we choose n = 900 (this corresponds to
a 30 × 30 mesh), a right hand side such that the exact solution xex is xex =
(1, . . . , 1)T and a random initial guess x0.

As preconditioners, we use the Incomplete Cholesky decomposition IC(1,1)
and its modified version MIC(1,1) where the structure of the triangular factors
is the same as the corresponding part of A (see [9]) as well as a sparse inverse
suggested by Benzi, Meyer and Tuma (see [2]).

Let us consider first Example 1 and IC(1,1). The smallest eigenvalue
λmin(M−1A) is 0.0342, the largest one λmax(M−1A) = 1.2045. We ran PCGQL
with different values of the delay d and choosing a = 0.03 and b = 1.3. Table
1 gives the computed bounds (multiplied by 109) at a given iteration where the
exact A–norm of the error is 2.58011 10−9. One can see that the best bounds
are given by the Gauss–Radau rule. A delay d = 1 already gives the order of
magnitude of the error and excellent bounds are obtained with d = 5. We do not
give plots of the error and the estimates as in [5] since the curves are indistin-
guishable on a logarithmic scale. In this example we need 46 iterations to have
the A–norm of the error less than 10−12.

Then, we use MIC(1,1). As it is well known theoretically, the smallest
eigenvalue λmin(M−1A) is 1. The largest eigenvalue λmax(M−1A) is 9.0068. We
choose a = 1 and b = 9.5. Table 2 gives the computed bounds (multiplied by
109) at a given iteration where the exact A–norm of the error is 6.87286 10−9.
We have the same conclusions as for IC(1,1). The number of iterations is 36.

We now turn to using a sparse inverse AINV (see [2]) for which the dropping
threshold is chosen to have almost the same number of non zeros as in A. The
smallest eigenvalue λmin(M−1A) = 0.0168 and λmax(M−1A) = 1.7058. Here we
choose a = 0.015 and b = 1.8. Table 3 gives the computed bounds (multiplied by

12 G. Meurant / Bounds for errors in PCG

Table 2

Example 1, MIC(1,1)

d Gauss Gauss–Radau Gauss–Lobatto

1 6.5243 6.60422, 6.99839 7.65775

2 6.82197 6.83503, 6.89233 6.96741

3 6.86437 6.86666, 6.87598 6.8871

5 6.87269 6.87273, 6.87292 6.87316

10 6.87286 6.87286, 6.87286 6.87286

Table 3

Example 1, AINV

d Gauss Gauss–Radau Gauss–Lobatto

1 2.78502 2.9482, 8.52972 12.6287

2 3.06797 3.09879, 4.84314 6.75785

3 3.12475 3.13187, 3.60187 4.20977

5 3.14160 3.1420, 3.1731 3.2158

10 3.14193 3.14294, 3.14321 3.14341

1010) at a given iteration where the exact A–norm of the error is 3.14294 10−10.
The results are a little bit worse than for the two previous preconditioners

but they are still quite good. The reason for this is that the preconditioner was
probably a little too sparse. In fact the number of iterations is twice the one
for MIC(1,1) and greater than for IC. Keeping more non zero terms will improve
upon that.

Figure 1 illustrates the use of the adaptive algorithm described in [8]. During
the first PCG iterations we compute the smallest eigenvalue of Jk by inverse
iteration (in fact we only do 10 iterations of inverse iteration at each PCG step).
When we have decided that the smallest eigenvalue has converged (in practice
when the relative change from the previous PCG iteration is less than 10−4) we
switch and take this estimate as the new value of a. Figure 1 shows the result
for the Gauss–Radau upper bound with IC(1,1) when we start with a = 10−10

and with d = 2. The switch occurred at iteration 14. To compare with the
results of Table 1, the upper bound for Gauss–Radau is 3.07928 10−9 and the
Gauss–Lobatto bound is 3.77352 10−9. Note they are slightly better than using
the value a = 0.03 for the whole computation.

The chosen value for b does not matter too much. For instance, if we take
a = 0.03 and b = 10 with d = 2, the lower bound for Gauss–Radau is 2.51269 10−9

G. Meurant / Bounds for errors in PCG 13

Figure 1. PCG, Example 1, d = 2, log10 of A–norm of the error, dashed line: adaptive Gauss–

Radau upper bound

Figure 2. PCG, Example 2, upper bounds, log10 of A–norm of the error, dashed line: d = 2,

dash–dotted line: d = 5

Figure 3. PCG, Example 2, lower bounds, log10 of A–norm of the error, dashed line: d = 2,

dash–dotted line: d = 5

and the upper bound for Gauss–Lobatto is 4.56235 10−9.
Example 2 is a little bit harder to solve, specially for low precisions as the

error stagnates for a while. Using IC(1,1) we have to do 53 iterations to have
the A–norm of the error less than 10−12. We have λmin(M−1A) = 7.11 10−5

and λmax(M−1A) = 1.238. Figure 2 shows the exact error and the results of
the Gauss–Radau adaptive algorithm with d = 2 (dashed line) and d = 5 (dash–
dotted line). We see that d = 5 gives excellent results. The switch for the smallest
eigenvalue occurs at iteration 28. Figure 3 shows the Gauss–Radau lower bounds.
At a given iteration where the exact error is 0.298541 10−3 we obtain (multiplied
by 103) with d = 5, Gauss: 0.298521, Gauss–Radau: 0.298526, 0.400587, Gauss–
Lobatto: 0.679173.

We now use MIC(1,1) for Example 2. Then λmin(M−1A) = 1 and
λmax(M−1A) = 23.223. We use a = 1 and b = 30. With d = 2, at a given
iteration where the exact error is 1.63947 10−7 we obtain (multiplied by 107)
Gauss: 1.61508, Gauss–Radau: 1.61821, 1.65132 and Gauss–Lobatto: 1.67212.

When using AINV, it was recommended to symmetrically scale the matrix.
So now the next results were obtained for the scaled system. In AINV by changing
the threshold parameter we can obtain different approximate inverses which are
more or less sparse. The number of non zeros in the lower triangular part of A is
2640. We ran a few experiments using different thresholds. The number of non
zeros and the number of iterations are given in Table 4.

The computations were done using Matlab, so the computing time does not
mean too much; but it was decreasing when going from case 1 to case 7. We use
the adaptive algorithm starting with a = 10−5 and b = 2 on cases 4 and 7 with
d = 5. For case 4 the switch occurred at iteration 30. At iteration 45 the A–norm
of the error is 4.81028 10−10. We obtained (multiplied by 1010), Gauss: 4.81016,
Gauss–Radau: 4.81020, 5.40958, Gauss–Lobatto: 7.09893.

For case 7 the switch occurred at iteration 10. At iteration 13 the A–norm

14 G. Meurant / Bounds for errors in PCG

Table 4

Example 2, AINV

case threshold nnz λmin λmax nb. iter

1 0.25 2652 3.78 10−5 1.771 79

2 0.2 3271 4.61 10−5 1.783 74

3 0.15 3613 5.14 10−5 1.824 70

4 0.1 6883 1.14 10−4 1.699 52

5 0.07 10017 1.59 10−4 1.713 41

6 0.05 14485 3.04 10−4 1.699 36

7 0.01 51881 2.28 10−3 1.648 18

of the error is 8.79542 10−8. We obtained (multiplied by 108), Gauss: 8.79542,
Gauss–Radau: 8.79542, 8.79542, Gauss–Lobatto: 8.79543.

It should be noted that due to the eigenvalue distributions using good pre-
conditioners the values of the delay d needed to obtain good bounds are much
less than for the non–preconditioned case, see the results in [8]. Moreover, the
better the preconditioner, the better are the bounds and the smaller could be
the value of the delay d. In fact the Gauss lower bound (which is not dependent
on the eigenvalue estimates) already gives with d = 1 a very reliable stopping
criterion for PCG.

References

[1] Z. BAI and G.H. GOLUB, Bounds for the trace of the inverse and the determinant of

symmetric positive definite matrices, Ann. Numer. Math. 4, (1997), pp 29–38

[2] M. BENZI, C.D. MEYER and M. TUMA, A sparse approximate inverse preconditioner for

the conjugate gradient method, SIAM J. Sci. Comput., vol 17, (1996), pp 1135–1149

[3] B. FISCHER & G.H. GOLUB, On the error computation for polynomial based iteration

methods, Report NA 92–21, Stanford University (1992)

[4] G.H. GOLUB & G. MEURANT, Matrices, moments and quadrature, in Numerical Analysis

1993, D.F. Griffiths & G.A. Watson, Eds. Pitman Research Notes in Mathematics, v 303,

(1994), pp 105–156

[5] G.H. GOLUB & G. MEURANT, Matrices, moments and quadrature II or how to compute

the norm of the error in iterative methods, BIT, v 37 no 3, (1997), pp 687–705

[6] G.H. GOLUB and C. VAN LOAN, Matrix computations, Johns Hopkins University Press,

(1989)

[7] G.H. GOLUB & Z. STRAKOŠ, Estimates in quadratic formulas, Numerical Algorithms v 8

no II–IV, (1994)

G. Meurant / Bounds for errors in PCG 15

[8] G. MEURANT, The computation of bounds for the norm of the error in the conjugate

gradient algorithm, Numerical Algorithms v 16, (1997), pp 77–87

[9] G. MEURANT, Computer solution of large linear systems, North–Holland, (1999)

