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The computation of bounds for the norm of the error

in the conjugate gradient algorithm
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In this paper we consider computing estimates of the norm of the error in the

conjugate gradient (CG) algorithm. Formulas were given in an earlier paper [4].

Here, we first prove that these expressions are indeed upper and lower bounds for

the A–norm of the error.

Moreover, starting from these formulas, we investigate the computation of the

l2–norm of the error. Finally, we define an adaptive algorithm where the approx-

imations of the extreme eigenvalues that are needed to obtain upper bounds are

computed when running CG leading to an improvement of the upper bounds for the

norm of the error. Numerical experiments show the effectiveness of this algorithm.
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1. Introduction

Let A be a large and sparse symmetric positive definite matrix of order n

and suppose we have an approximate solution x̃ of the linear system

Ax = g, (1)

where g is a given vector. The residual r is defined as,

r = g −Ax̃. (2)

The error e being e = x− x̃, we obviously have,

e = A−1r. (3)

Therefore, if we consider the A–norm of the error,

‖e‖2
A = eTAe = rTA−1AA−1r = rTA−1r. (4)
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It is sometimes also of interest to use the l2–norm, for which ‖e‖2 = rTA−2r.
Hence, if we want approximations of the A–norm of the error, we must con-

sider the quadratic form rTA−1r. This has been done in several papers ([2], [3],
[4], [6]). We will not repeat here the contents of these papers. Let us just say
that the quadratic form is considered as a Stieltjes integral with an (unknown)
positive measure. Then, quadrature rules are used to obtain approximations of
the integral. It turns out that for the case we consider the Gauss rule gives a
lower bound and the Gauss–Radau rule both a lower and an upper bound when
the prescribed nodes are either the left or right ends of a segment containing the
(positive) eigenvalues of A. Prescribing both ends of the segment, we obtain the
Gauss–Lobatto rule and an upper bound. Nodes and weights of the quadrature
formulas can be computed by using the orthogonal polynomials associated with
the measure. In turn, the recurrence relations of these orthogonal polynomials
are given by the Lanczos algorithm starting from the (normalized) residual. Fi-
nally, everything amounts to computing the (1, 1) element of the inverse of the
tridiagonal matrix constructed from the Lanczos coefficients, see [3]. For the
Gauss–Radau and the Gauss–Lobatto rules, the tridiagonal matrix has to be
extended in order to have the prescribed nodes as eigenvalues.

The contents of the paper are as follows. In Section 2, we recall how to com-
pute approximations of the A–norm and then, we show that these approximations
are lower and upper bounds. Section 3 show how to compute approximations of
the l2–norm. Finally in Section 4, we introduce an adaptive algorithm that com-
putes estimates of the smallest eigenvalue of A that is needed to obtain upper
bounds of the norm. We also give some numerical experiments showing the ef-
fectiveness of this approach.

2. Bounds for the A–norm

If we have an approximate solution of equation 1, we can compute the resid-
ual and then, we run a few steps of the Lanczos algorithm to obtain bounds for
the A–norm of the error. Numerical experiments in [4] show that this method is
quite efficient. However, this algorithm does not seem to make too much sense
when the approximate solution is computed by CG. As the Lanczos algorithm
and CG are in some sense equivalent, it would be strange to use the Lanczos
method starting from CG residuals. Instead, it was proposed in [4] to use the
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following formula,

‖ek‖2
A = ‖x− xk‖2

A = r0T
A−1r0 − ‖r0‖2(J−1

k )1,1 (5)

= ‖r0‖2((J−1
n )1,1 − (J−1

k )1,1). (6)

where

Jk =




ω1 γ1

γ1 ω2 γ2
. . . . . . . . .

γk−2 ωk−1 γk−1

γk−1 ωk




, (7)

is the tridiagonal matrix of the Lanczos coefficients and

ωk =
1

αk−1
+

βk−1

αk−2
, β0 = 0, α−1 = 1 (8)

γk =
√
βk

αk−1
, (9)

αk and βk being the CG coefficients: let x0 be given, r0 = g − Ax0, p0 = r0, for

k = 1, . . . until convergence

αk−1 =
rk−1T

rk−1

pk−1T
Apk−1

, (10)

xk = xk−1 + αk−1p
k−1, (11)

rk = rk−1 − αk−1Apk−1, (12)

βk =
rkT

rk

rk−1T
rk−1

, (13)

pk = rk + βkp
k−1. (14)

Formula 6 has already been used in [6] for reconstructing the A–norm of
the error when CG has converged but the (1, 1) element of the inverse of the
tridiagonal matrix was computed by means of continued fractions. A round off
error analysis given in [6] shows that below a certain value of ‖ek‖2

A, no more
useful information can be obtained from this algorithm.

Formula 6 has also been used in [2] but there, the computations of ‖ek‖A

were not done below 10−5 and the same difficulties arise as in [6]. It has been
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shown in [4] that these difficulties can be overcome and that reliable estimates of
‖ek‖A can be computed whatever the value of the norm is.

Of course, equation 6 cannot be used directly as, at CG iteration k, we do
not know (J−1

n )1,1. But it is known that (J−1
k )1,1 → (J−1

n )1,1. So, we will use the
current value of (J−1

k )1,1 to approximate the final value. Let bk be the computed
value of (J−1

k )1,1. This is obtained in an additive way by using the Sherman–
Morrison formula. Let jk = J−1

k ek be the last column of the inverse of Jk, ek

being the k–th column of the identity matrix, then

(J−1
k+1)1,1 = (J−1

k )1,1 +
γ2

k(jkj
T
k )1,1

ωk+1 − γ2
k(jk)k

. (15)

The first and last elements of the last column of the inverse of Jk that we need
can be computed using the Cholesky decomposition of Jk. Let d1 = ω1 and

di = ωi −
γ2

i−1

di−1
, i = 2, . . . , k (16)

then, let

(jk)1 = (−1)k−1 γ1 · · · γk−1

d1 · · · dk
, (jk)k =

1
dk

. (17)

Using these results, we have

fk =
γ2

k−1c
2
k−1

dk−1(ωkdk−1 − γ2
k−1)

, bk = bk−1 + fk. (18)

Notice that by using the definition of dk, fk can be computed as c2
k/dk. As Jk is

positive definite, this shows that fk > 0. Let sk be the estimate of ‖ek‖2
A we are

looking for and d be a positive integer (to be named the delay), at CG iteration
number k, we set

sk−d = ‖r0‖2(bk − bk−d). (19)

This will give us an estimate of the error d iterations before the current one.
However, it was shown in [4] that if we compute bk and use straightforwardly
(2.2), there exists a kmax such that if k > kmax then, sk = 0. This happens
because, when k is large enough, γk/dk < 1 and ck → 0 and consequently fk → 0.
Therefore, when k > kmax, bk = bkmax.

But, as it was noticed in [4], we can compute sk−d in another way as we just
need to sum up the last d values of fj . The algorithm computing the iterates
of CG and estimates from the Gauss (sk−d), Gauss–Radau (sk−d and s̄k−d) and
Gauss–Lobatto (s̆k−d) rules is the following (with slight simplifications from [4]):
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Algorithm 1 CGQL.
let x0 be given, r0 = g −Ax0, p0 = r0, β0 = 0, α−1 = 1, c1 = 1,
for k = 1, . . . until convergence

αk−1 =
rk−1T

rk−1

pk−1T
Apk−1

, (20)

ωk =
1

αk−1
+

βk−1

αk−2
, (21)

if k = 1 —————————————————–

f1 =
1
ω1

, (22)

d1 = ω1, (23)

d̄1 = ω1 − a, (24)

d1 = ω1 − b, (25)

else ——————————————————–

ck = ck−1
γk−1

dk−1
, (26)

dk = ωk − γ2
k−1

dk−1
, (27)

fk =
γ2

k−1c
2
k−1

dk−1(ωkdk−1 − γ2
k−1)

=
c2
k

dk
, (28)

d̄k = ωk − a− γ2
k−1

d̄k−1
= ωk − ω̄k−1, (29)

dk = ωk − b− γ2
k−1

dk−1

= ωk − ωk−1 (30)

end ———————————————————

xk = xk−1 + αk−1p
k−1, (31)

rk = rk−1 − αk−1Apk−1, (32)
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βk =
rkT

rk

rk−1T
rk−1

, (33)

pk = rk + βkp
k−1, (34)

ω̄k = a +
γ2

k

d̄k
, (35)

ωk = b +
γ2

k

dk

, (36)

ω̆k =
d̄kdk

dk − d̄k

(
b

d̄k
− a

dk

)
, (37)

γ̆2
k =

d̄kdk

dk − d̄k
(b− a), (38)

f̄k =
γ2

kc
2
k

dk(ω̄kdk − γ2
k)

, (39)

f
k
=

γ2
kc

2
k

dk(ωkdk − γ2
k)

, (40)

f̆k =
γ̆2

kc
2
k

dk(ω̆kdk − γ̆k
2)

, (41)

if k > d —————————————————–

tk =
k∑

j=k−d+1

fj , (42)

sk−d = ‖r0‖2tk, (43)

s̄k−d = ‖r0‖2(tk + f̄k), (44)

sk−d = ‖r0‖2(tk + f
k
), (45)

s̆k−d = ‖r0‖2(tk + f̆k) (46)

end ———————————————————–
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In this algorithm a and b are lower and upper bounds of the smallest and largest
eigenvalues of A. Notice that the value of sk is independent of a and b, s̄k depends
only on a and sk only on b. Let us now prove that this algorithm do give lower
and upper bounds for the A–norm of the error.

Lemma 2. Let Jk, Jk, J̄k and J̆k be the tridiagonal matrices of the Gauss,
Gauss–Radau (with b and a as prescribed nodes) and the Gauss–Lobatto rules.
Then, if 0 < a ≤ λmin(A) and b ≥ λmax(A), ‖r0‖(J−1

k )1,1, ‖r0‖(J−1
k )1,1 are lower

bounds of ‖e0‖2 = r0A−1r0, ‖r0‖(J̄−1
k )1,1 and ‖r0‖(J̆−1

k )1,1 are upper bounds of
r0A−1r0.

Proof. see [4]. The proof is obtained easily as we know the sign of the remainder
in the quadrature rules. Notice that Jk and J̄k are of order k + 1 and J̆k is of
order k + 2. We have that f̄k > f

k
and therefore, ω̄k < ωk.

Theorem 3. At iteration number k of CGQL, sk−d and sk−d are lower bounds
of ‖ek−d‖2

A, s̄k−d and s̆k−d are upper bounds of ‖ek−d‖2
A.

Proof. We have

‖ek−d‖2
A = ‖r0‖2((J−1

n )1,1 − (J−1
k−d)1,1) (47)

and

sk−d = ‖r0‖2((J−1
k )1,1 − (J−1

k−d)1,1). (48)

Therefore,

‖ek−d‖2
A − sk−d = ‖r0‖2((J−1

n )1,1 − (J−1
k )1,1) > 0, (49)

showing that sk−d is a lower bound of ‖ek−d‖2
A. The same kind of proof applies

for the other cases as, for instance,

s̄k−d = ‖r0‖2((J̄−1
k )1,1 − (J−1

k−d)1,1). (50)

Therefore, the quantities that we are computing in CGQL are indeed upper
and lower bounds of the A–norm of the error. It turns out that the best bounds
are the ones computed by the Gauss–Radau rule.
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3. Estimates for the l2–norm

The computation of the l2–norm is more complicated as there is no such
formula as 6 for the l2–norm. We are going to use a technique introduced by Bai
and Golub [1] for computing estimates of the trace of the inverse of a matrix.
Consider a given iteration k of CG and for simplicity let r = rk and

µp =
∫ b

a
λp dα(λ) = (r,Apr). (51)

Notice that we know µ1, µ0. The moment µ1 can be computed during CG
iterations by computing Ark. Then, Apk is computed recursively by Apk =
Ark + βkApk−1 to save a matrix multiply at the expense of storing one more
vector. Moreover, we know upper and lower bounds of µ−1. We are interested in
computing estimates of µ−2. As in [1], we use a one point Gauss–Radau formula
to compute an estimate µ̃−2. We have

µ̃p = w0t
p
0 + w1t

p
1, (52)

where t0 = a or b is the prescribed node. Moreover,

cµ̃p + dµ̃p−1 − µ̃p−2 = 0, (53)

t0 being a solution of cξ2 + dξ − 1 = 0. In fact, we know the exact values of
µ̃1 = µ1 = rTAr and µ̃0 = µ0 = rT r. Then,

(
c

d

)
=

(
µ1 µ0

t20 t0

)−1 (
µ̃−1

1

)
. (54)

This gives

c =
1

µ1t0 − µ0t20
(t0µ̃−1 − µ0), (55)

d =
1

µ1t0 − µ0t20
(µ1 − t20µ̃−1). (56)

Finally,

µ̃−2 =
1

µ1t0 − µ0t20
[(t0µ̃−1 − µ0)µ0 + (µ1 − t20µ̃−1)µ̃−1]. (57)

If we would know the exact value µ−1, setting t0 = a would give an upper bound
and t0 = b a lower bound. We compute two estimates of µ−2 by taking t0 = a

and an upper bound of µ−1 from the Gauss–Radau rule for rTA−1r as well as
t0 = b and a lower bound of µ−1. Unfortunately, so far, we have not been able to
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prove that this gives an upper and a lower bound for µ−2. All we know is that
µ1t0 − µ0t

2
0 > 0. It turns out, in the numerical examples we have ran, that the

quadratic function µ̃−2 is an increasing function of µ̃−1 giving numerically upper
and lower bounds.

4. An adaptive algorithm

The lower bound sk is independent of the extreme eigenvalues a and b.
However, to compute the upper bound s̄k we need an estimate of the smallest
eigenvalue of A. We can see that s̄k → ∞ if a → 0. Therefore, if we take
a value of a that is too small, we could obtain a large overestimate of the A–
norm. Of course, there are cases where we can obtain good analytic estimates
of the smallest eigenvalue, for example if the matrix A arises from finite element
methods. However, as we are using CG we can obtain numerical estimates of the
smallest eigenvalue when running the algorithm.

It is well known that the extreme eigenvalues of Jk are approximations of
the extreme eigenvalues of A that are getting better and better as k increases.
Therefore, we propose the following algorithm. We start the CGQL iterations
with a = a0 an underestimate of λmin(A). An estimate of the smallest eigenvalue
can be easily obtained by inverse iteration (see [5]) as, for computing the bounds
of the norm, we already compute incrementally the Cholesky factorization of
Jk. The smallest eigenvalue of Jk is obtained by repeatedly solving tridiagonal
systems. We use a fixed number na of (inner) iterations of inverse iteration at
every CG iteration, giving a value δk. When δk is such that

|δk − δk−1|
δk

≤ εa, (58)

with a prescribed εa, then we switch by setting a = δk, we stop computing the
eigenvalue estimate and we go on with CGQL.

5. Numerical experiments

As test problems, we use three of the examples that were used in [4]. Ex-
ample 2 arises from the 5–point finite difference approximation of a diffusion
equation in a unit square,

−div(a∇u)) = f,
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Figure 1. CG, Example 3, d = 20, solid line: log10 of l2–norm, dashed and dotted lines: estimates

Figure 2. CG, Example 4, d = 10, solid line: log10 of l2–norm, dashed and dotted lines: estimates

Figure 3. CG, Example 4, d = 10, relative differences between the l2–norm and the estimates

with Dirichlet boundary conditions. a(x, y) is a diagonal matrix with equal di-
agonal elements. This element is equal to 1000 in a square ]1/4, 3/4[×]1/4, 3/4[,
1 otherwise. Example 3 is the same with different diffusion coefficients. The
coefficient in the x direction is 100 if x ∈ [1/4, 3/4], 1 otherwise. The coefficient
in the y direction is constant and equal to 1. For this two problems, we choose
n = 900, the right hand side of equation 1 such that the exact solution xex is
xex = (1, . . . , 1)T and a random initial guess x0.

Example 4 is taken from [6]. The matrix A is diagonal. The diagonal
elements are defined as

µi = a +
i− 1
n− 1

(b− a)ρn−i, i = 2, . . . , n− 1 µ1 = a, µn = b

As in [6], we take n = 48, a = 0.1, b = 100 and ρ = 0.875.
We start by computing estimates of the l2–norm of the error for Example 3

and a delay d = 20. The log10 of the l2–norm of the error and of the estimates
are given on Figure 1. We see that we can compute good bounds of the order of
magnitude of the l2–norm.

Figure 2 gives the results for the l2–norm on Example 4 with d = 10. The
results are quite good. This is confirmed by Figure3 that shows the relative
differences between the l2–norm and the two estimates.

Let us now look at the results of the adaptive algorithm for computing
bounds of the A–norm of the error. We consider Example 2 with d = 20. The
exact smallest eigenvalue is 1.022 10−5. We start CGQL with a0 = 10−10 and
we use na = 2, ε = 10−4. We can see on Figure 4 that, at the beginning, we
have a large overestimate of the norm. It takes 80 CG iterations for the smallest
eigenvalue to converge within the prescribed accuracy. Then, we switch to the
new value of a and the upper bound becomes very close to the actual value of
the A–norm. Numerical experiments show that the results are not very sensitive
to the value of na. The value of εa has to be taken small enough to prevent an
early convergence of the smallest eigenvalue because in that case we can obtain
a value that is much larger than the exact value, in which case the estimate is no
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Figure 4. CG, Example 2, d = 20, solid line: log10 of the A–norm of the error, dashed line:

adaptive algorithm

longer an upper bound. However, we do not loose too much work by taking εa

small as, for instance, we need only 92 iterations to converge if εa = 10−7.
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