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BLOCK PRECONDITIONING
FOR THE CONJUGATE GRADIENT METHOD*

P. CONCUS’, G. H. GOLUB AND G. MEURANT

Abstract. Block preconditionings for the conjugate gradient method are investigated for solving
positive definite block tridiagonal systems of linear equations arising from discretization of boundary
value problems for elliptic partial differential equations. The preconditionings rest on the use of
sparse approximate matrix inverses to generate incomplete block Cholesky factorizations. Carrying
out of the factorizations can be guaranteed under suitable conditions. Numerical experiments on test
problems for two dimensions indicate that a particularly attractive preconditioning, which uses special
properties of tridiagonal matrix inverses, can be computationally more efficient for the same computer
storage than other preconditionings, including the popular point incomplete Cholesky factorization.

Key words, conjugate gradient method, elliptic partial differential equations, incomplete factoriza-
tion, iterative methods, preconditioning, sparse matrices

1. Introduction. In this paper we study some preconditioning techniques for
the conjugate gradient method to solve the linear systems of equations that arise
from the discretization of partial differential equations. We consider for example
elliptic equations such as

},,() - +z(0u f
i----1

with

in ft c Rd, (1,2 d) (1)

Ouu () g(O or g(O on Of,
On

where n is the exterior normal, ki() > 0, and a() > 0. The techniques that we
describe are suitable for standard finite-difference discretizations of equations such
as the above that yield certain symmetric positive definite block tridiagonal linear
systems of the form

where
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Such equations can arise also from finite element discretizations (for example, see
[11]).

The prototype model problem in two dimensions is the Dirichlet problem,
r 0, ,i 1, g 0, ft the unit square,

--Au f,

u 0 on the boundary,

with standard five-point differencing on a uniform mesh of width h. We focus
attention on the matrix structure obtained for natural ordering, which yields for
the model problem (after multiplication by h a)

4 -1
-1 4 --1

Ai -I, Di ". ". ".

-1 4 -1
-1 4

In three dimensions, standard 7-point differencing with this ordering would yield
Di that have two additional nonzero diagonals. Different orderings or higher
order approximations would give rise to different structures, to which our tech-
niques could be applied also.

To solve (2) we use the generalized or preconditioned conjugate gradient
method, which may be written as follows [3]. Let x be given, define p- arbi-
trarily, and let r b -Ax. For k 0, 1,... perform the steps

Mzk l.k

(gk’ Mgk) k 1, 30 0,3k
(Zk_ l, Mzk- 1)’

pk zk .+_ flkpk-1,

(Z k MZk

(pk ,Apk

Xk+l Xk -Jrakpk,

rk+l rk_ckApk.

The matrix M is the preconditioning matrix, which should be in some sense
an approximation of A. It is known that the preconditioned conjugate gradient
method converges rapidly if the condition number r(M-1A ), which is the ratio of
the largest to the smallest eigenvalue of M-A, is small or if the eigenvalues are
clustered (e.g., [3] and the references therein).

The goal of this study is to devise good preconditioning matrices M. For this
purpose we exploit the structure of A in constructing some block precondition-
ings, one special case of which is the one introduced by R. R. Underwood I20].

In 2 to motivate the use of our block techniques we recall some results on
block Cholesky factorization. Section 3 deals with the main problem finding
good approximate inverses for tridiagonal matrices that are diagonally dominant.
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New block techniques for two-dimensional problems (d 2 in (1)) are introduced
in 4. Three-dimensional problems will be discussed in detail in a subsequent
study.

In 5 we present the results of numerical experiments for several test prob-
lems, including comparisons with point preconditioning techniques. We compare
techniques on the basis of number of iterations and number of floating point
operations required for convergence. Also, we illustrate graphically the spectral
properties of the matrices corresponding to the various preconditionings.

2. Block Cholesky factorization.
block tridiagonal matrix of (2).
block Di and N 7=1mi the order ofA. We denote

D1 0

DE A2
D= ". L=

Dn-1
Dn

Let mi be the order of the th
Let A be the symmetric positive definite

square diagonal

0

An-I
An 0

A D +L +LT

and we denote by aij the elements (pointwise) ofA.
Since A is positive definite, there holds a, > 0, ,N.

that the following holds also.
HYPOTHESIS (H 1).
(a) The off-diagonal elements aij, j ofA are nonpositive.
(b) A is (weakly) diagonally dominant; i.e., there holds

We assume

aii > a0 i=l ,N,
j4=i

and there exists at least one k, k < N, such that

akk > a ag.
j =/: k

(c) Each column ofAi, 2 n, has at least one nonzero element.
Hypothesis (H 1)(a) implies that the positive definite symmetric matrix A is a

Stieltjes matrix, i.e., a positive definite M-matrix [21], [22].
If the inequality of Hypothesis (H 1)(b) holds strictly for all rows,

aii > ]a/j, i=1 ,N,
j =/=

then A is termed strictly diagonally dominant.
Let ; be the symmetric block diagonal matrix with mi )< mi blocks i satisfy-

ing

E D 1,
(3)

,i Di Ai ,[-SiAiT, 2 < < n.

Then the block Cholesky factorization ofA can be written as

A (Z + L);-l( @ L r).
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The factor ; / L is block lower bidiagonal. Since A is positive definite sym-
metric, the factorization can be carried out.

The following results concerning the properties of the i are well known, but
as we did not find them in the literature in a form suitable for our application, we
give them here for completeness. These properties provide guidance in our selec-
tion of preconditioning matrices for the conjugate gradient method.

Let

B -C B2
with B and B2 square, be a symmetric positive definite M-matrix, which implies
that the diagonal elements are positive and the off-diagonal elements are nonposi-
rive.

LEMMA 1. B B2- CB(-1CT is a symmetric positive definite M-matrix.
B is called the Schur complement of B in B. For properties of the Schur

complement see [4].
Proof We can write

0 B2-CBi--CT CBi-I I B 0 I

Since the leading principal minors of B are unchanged by the transformation on
the right side of the equality, the matrix on the left side is positive definite, and
hence so is B. In particular the diagonal elements of B are positive and, as
B 1-1 0 and C > 0 hold, it follows that the off diagonal elements are nonposi-
tive.

It can be shown easily that if BE is strictly diagonally dominant, then B is
also.

Now we apply these results to A with B D , -Cr (A 2
r 0 0), and

D2 .A 3

A3 D3 T

An-1 Dn-I ATn
An Dn

We have

TD2-A2D i-A A 3
TA3 D3 A4

An-1 Dn-I ATn
An Dn

There follows
THEOREM 1. Under Hypothesis (H1) all the Y,i are symmetric strictly diago-

nally dominant M-matrices.
It is of interest to note, that in the particular case of the model problem, the

block Cholesky factorization can be shown to reduce to a Fast Poisson Solver [18].
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3. Incomplete block Cholesky factorization. Because of the work and storage
that may be required in large problems for computing the 2;i, carrying out the
complete block Cholesky factorization is not of interest to us here as a general
means for solving (2). For example, for the two-dimensional model problem,
although 2; D1 is tridiagonal, 2;1- and hence 2;i, > 2, are dense.

In this paper our interest focuses on approximate block Cholesky factoriza-
tions obtained by using in (3) instead of 2;/-_1 a sparse approximation Ai-1. One
thereby obtains instead of 2; the block diagonal matrix A with m m blocks A
satisfying

A D , (4a)

Ai Di AiAi- 1A]’, 2 < < n, (4b)

where for each in (4b), Ai-1 is the sparse approximation to A/--ll. The incom-
plete block Cholesky preconditioning matrix for use with the conjugate gradient
algorithm is then

One has

M (A+L)A-l(A+LT).

M A +A--D +LA-1Lr A +R,

where R is a block diagonal matrix

R
R2

(5)

with

Rn
Rn

RI AI--D1 O,

Ri Ai Di + Ai A/---IlA/T, 2 < < n.

The factor A+L in (5) is lower block bidiagonal.
Li of Ai,

Ai LiL,

Using the Cholesky factors

one can express M in terms of (point) lower and upper triangular factors

LI LIT ’V"

0

where

0

Wn-I Ln-1
Ln

(6)

Wi =AiLi--r, i=2 ,n.

This form is generally more efficient computationally than is (5). For specific Ai
of interest, we show in subsequent sections that all the Ai are positive definite,
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which implies that the above factorization can be carried out.
Note that in the conjugate gradient algorithm M is not required explicitly,

only the linear system Mk --rk need be solved for zk. Since this can be done
with block backward and forward substitution, the block off-diagonal elements Wi
need not be computed explicitly. The requisite products with vectors can be
obtained by solving linear systems with triangular coefficient matrices Li and L/r.
Generally, for preconditionings of interest, the Ai, and correspondingly the Li, will
be sparse. These features were first used in this context by R. R. Underwood in
[20], where block incomplete Cholesky preconditioning for the conjugate gradient
algorithm was introduced.

For the standard five-point discretization of (1) in two dimensions, Di is tridi-
agonal, and Ai is diagonal. This is the case on which this paper focuses. Of cen-
tral interest is the choice that the _A_i- be tridiagonal, so that all the/x in (4b) are
tridiagonal. Correspondingly, in the remainder of this section we discuss tech-
niques for approximating the inverse of a tridiagonal, diagonally-dominant matrix.

al -bl
-bl a2

Let

--bE

-bm-I
am

(7)

Since the inverse of T is

(T- )ij ui vj for < j.

b/1 vl U lV2 1,1 lVm

UlV2 U2V2 U2Vm

U Vm U21m Um lm

be a nonsingular tridiagonal matrix. We assume that the following holds.
HYPOTHESIS (H2). The elements ai and bi of T satisfy

a > O, <i <m,
b > O, <i <m-1,

and T is strictly diagonally dominant.

3.1. Diagonal approximation. The simplest approximation of T- we
consider is the diagonal matrix whose elements are

(T1)ii (T)ii" (8)

3.2. Banded approximation flora the exact inverse. One can do much better
than the diagonal approximation T by using the following powerful result, which
characterizes the inverses of symmetric tridiagonal matrices, (cf. [1 ], [10]).

THEOREM 2. There exist two vectors u and v e Rm Sl,lch that
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one can compute recursively the components of u and v. Under Hypothesis (H2)
T is positive definite, so that T- is also, which implies that ui #= O, vi O, for all
i. We remark that all of Hypothesis (H2), which will be used later, is not required
for Theorem 2. It is necessary only that T in (7) be nonsingular and irreducible
(all of the bi nonzero).

LEMMA 2. The components ofu and v can be computed as follows:
al

U 1, U2 bl
ai-lUi-1 bi-2ui-2

3i m,ui b_

Vm bm Um + am Um (9)

+ bilgiVi+l
v 2i m-1,

ai ui bi Ui-

4- buv2
111 a 1/,/1

Proof By substitution.
Alternative recurrences for generating u and v can be obtained by several

means, such as by computing the first and last columns of T- from the Cholesky
factors of T. For numerical computation scaling may be required in (9) to
prevent underflow or overflow, or it may be desirable to work with the ratios
ui + /ui and vi + /vi considered below. If only a few of the main diagonals of T-are required and not u and v explicitly, the diagonals can be computed con-
veniently from the Cholesky factors of T.

Several papers have characterized the elements of inverses of diagonally dom-
inant matrices. In [15] results are proved for tridiagonal matrices and in [5] they
are extended to matrices of larger bandwidth. It is known that the elements of
(T-)ij are bounded in an exponentially decaying manner along each row or
column. Specifically, there exist p < and a constant Co such that

(T-) < Co -.
This result does not imply that the elements actually decay along each row; it
merely provides a bound. With Hypothesis (H2), however, one can prove the fol-
lowing:

LEMMA 3. Under Hypothesis (H2) the sequence {ui}/m= is strictly increasing
and the sequence {vi }/m= is strictly decreasing.

Proof It is clear that u2 a /b > u . The proof continues by induc-
tion, using formulas of Lemma 2. Since ui- > ui-2, one has from (9) that

li-- bi-2 ] . bli- 1,Ui Ui- bi-

because ai-1- bi-- bi-2 > O. To prove that the vi are decreasing we need to
modify the formulas of Lemma 2 slightly, using the ones for u to simplify those
for v. Note that

ai ui bi ui bi ui + 0
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and

Thus

and

(ai+lUi+l biui)vi+l + bi+lUi+lVi+2

ai+lUi+lVi+l bi+lUi+lVi+2 ai + bi +
biUi+l bi Vi+l bi

Vi+2, for < rn -2,

am
Vm bm

Clearly Vm --1 > Vm, and by induction vi > vi + ((ai + bi + )/bi) > vi + .
Note that we can prove the same result if we suppose only that T is diago-

nally dominant with a > b and am > bm- .
One can characterize the decay of the element along a row away from the

diagonal. Let i and #i be such that ui a--i-ui-, vi vi-/#i-, > 2. We
have

ai bi- a
oti bi bi Oti

a
b

am
Oi

ai + bi + [3m -1 bmbi bi +1
In the general case we do not know the solution of the recurrences (which are

simply the recurrences for computing the elements of T-), but the previous dis-
cussion gives us the bounds

ai bi-a.> > 1,
bi

ai+ bi+ > 1.>
bi

In particular, we have, for > j,

(T-1)ii
(T_l)ij (T_)ii <

tX"-i_ j
i--

( ak --bkbk- )

If 1/O min ((a/ b/_ )/bk) we find, for > j,
k>2

(T-)ij < (T-l)iiPi-j, p < 1.

This latter bound is not very sharp. For example, for the matrix T with
ai 4, m and bi 1, m- 1, which will be of interest later,
we get p 1/3. But for this case

=4, a. =4 -,_ i>2.
cti-i

The i form a decreasing sequence that converges very quickly towards
2 + X/ 3.732, which corresponds to a reduction factor of 1/(2 + V) 0.2679,
which is considerably less than 1/3. Of course if the ai’s and bi’s are constant, we
could construct the inverse in another way from the eigenvalues and eigenvectors
of T, which are known in this case.
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It is of importance to observe that if T is strictly diagonally dominant the ele-
ments of the inverse decrease strictly away from the diagonal the stronger the
diagonal dominance the faster the decay. This suggests the following means for
approximating the inverse of T with a matrix of small bandwidth.

IfA is any matrix, denote by B(A, p) the band matrix consisting of the 2p +
main diagonals of A. For a banded approximation TE(P) to the inverse of T we
consider

2(P)-- B(T-I,P) (10)

with p small, say or 2.

3.3. Approximation from Cholesky factors.
T-1 is to use the Cholesky factorization of T,

with

T= UrU,

"Y2

Another way of approximating

a lower bidiagonal matrix. We have

-l
2 a , "Yll b 1,

/2_ + .t/2 a, -/ b, > 2.

The/i’s are positive, and the diagonal dominance of T implies

<y, i m--1.

The matx U-r is lower tangular and dense. We denote

uT

l’/m 2 ’m--I

It is easy to see that the elements of U-r
since

’i , l<i<m-1,
"Yi’Yi +

can be computed diagonal by diagonal,
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and so on. We note also that U-r can be generated diagonal by diagonal by tak-
ing successive terms of its Neumann series in Ur.

We have the following result similar to the one for the inverse of T.
LEMMA 4. For each row, the elements of U-r decrease away from the diago-

nal
Proof Since ti/’Yi < we have ni-I < ’i < 1/,i+l; the proof is the same

for the other elements.
As an approximation for U-r we can, therefore, take B(U-r,p) with p

small. As an approximation for T- we can use correspondingly

3(P) B(U- I, p)B(U- T, P). (I 1)

Note that T3(P) is positive definite. For p 1, one has the tridiagonal matrix

T3(1) I__ +"Y

Unless the Cholesky decomposition is needed explicitly, it is necessary to compute
only the square of the "ri’s to obtain T3(1), because

Thus one obtains 3(1) directly from a, bi, and v/2.
Note that T3(1)T is the five diagonal matrix

-b2UlV3 b2u11:2
-b2u 11:3 -b3u2v4 b3u2v3

T3(1)T bEUlV2. -b3uEv4. -b4u3v3 b4u3v4

Since the uiv are expected to be small, T3(1) can be expected to be a good
approximation to T- .

3.4. Polynomial approximation. A classical way to obtain an approximation
of T-l is to use a polynomial expansion in powers of T. Let Dr be the diagonal
of T and denote

Then

T T-DT.

T-1 (I + D-IT)-ID-1.

Since T is strictly diagonally dominant, the corresponding Jacobi iteration is con-
vergent, which implies that the eigenvalues of the Jacobi iteration matrix -D-T
(which are real) are contained in (-1,+1) (see for example [12], [21]). Thus one can
write

(I + DT-1 )-1 (__ 1)k(DT-I )k,
k--O
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the series being convergent_
The powers of D-T contain more and more nonzero diagonals as k

increases. As an approximate inverse we can take simply the first few terms,
which ar.e.e the sparsest ones (Taking only the first term gives the diagonal approxi-
mation T of {}3.1.). It is well known, however, that if the eigenvalues of D-T
are not close enough to zero, the truncated series could be a poor approximation.
Better polynomialapproximations can be found (cf. [14]).

Let S --Dr- T, and suppose we want to find a polynomial P of degree less
than or equal to that minimizes II(I+S)-- P(S)ll2. Since S is similar to a
symmetric matrix there exists a unitary matrix Q such that

S QOQr,
where 0 is a diagonal matrix whose elements are the eigenvalues of S.

We have

so that

P(S) QP(O)Q r,

I1(I +S)- P(S)II2 I1(I +0)- P(O)II2 < Clmaxll P(Oi)ll,
l+Oi

where C is constant and Oi, m, are the eigenvalues of S. To minimize
the fight-hand side (the minimum, of course, need not minimize also the left-hand
side) we must find the polynomial approximation of 1/(1 +x) on the set of eigen-
values 0i of S. Instead we could solve the simpler problem of finding

min max P(0)II,
0[0,,0.] + 0

where 01 (respectively, Ore) is the smallest (respectively, largest) eigenvalue of S.
The solution to this problem is given by Chebyshev polynomials.

In general, however, even the extremal eigenvalues 0 and Om are not known;
all one knows is that -1 < 0 < Om < holds. Since 1/(1 +x) is discontinuous at
x -1, we could simply compute P to yield

min max P(0)II.
e 0[0,] 1+0

This should give a good result for the eigenvalues between 0 and 1, but a poor one
for the smaller eigenvalues. For a first degree polynomial we obtain

P() 0.9412- 0.4706 .
As will be seen later, it is possible to obtain a better approximation when

additional information about the eigenvalues is avai..lable. In general, we shall be
considering tridiagonal polynomial approximations T to T- of the form

4(a,/3) aDf +/3D- fDr--, (12)
where the coefficients a and/3 are real.

3.5. Comparison of approximations for the model problem. We now compare
the above approximations for the model problem, for which in (7) ai-4,
i=l ,m, andbi=l,i=l ,m-1. The casem =10isconsidered. The
upper triangular part of the inverse T- as computed in double precision
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FORTRAN on an IBM 3081 by MATLAB [19] to four places is

0.2679 0.0718 0.0192 0.0052 0.0014 0.0004
0.2872 0.0770 0.0206 0.0055 0.0015

0.2886 0.0773 0.0207 0.0056
0.2887 0.0773 0.0207

0.2887 0.0773
0.2887

illustrating the rapid decay away from Lhe diagonal.
For the different approximations Ti to T- we get the following results (using

MATLAB), as summarized in Table and Figure 1. The last entry

TABLE

Values of i T- for the model problem, m 10.

Approximation to T-

Diagonal ({}3.1)
Banded from exact inverse ({}3.2)
Banded from exact inverse ({}3.2)
From Cholesky factors ({}3.3)
From Cholesky factors ({}3.3)
Polynomial ({}3.4)
Polynomial ({}3.4)
Polynomial ({}3.4)

T2(1)
T2(2)

T3(2)
T4(1,- 1)
T4(.9412,-.4706
T4( 1.1429,- 1.1429)

I1i T-1112

0.2305
0.0456
0.0104
0.0569
0.0134
0.1106
0.1888
0.0577

T2(

T2(2)

T3(

T3(2)

(t,-t)

T,,

(.9412,-.4706)

T,,

(1.1429,- 1.1429)

2,8

1,6

.6 .7

9

7,7

4

3,9

8,8

2,2,9,9

8,8

1,5,9

6,7,8,9

3,3

7,7,7,9

6,6,9,9

1,7

4,4

1.0

1,7,8

0,0,1,3,3,4

0,0,1,3,3,3

2,4,6,6

2,2,9,9

3,4

3,3

4,4

FIG.I. Tabular display ofeigenvalue distributions of T.

1.2 1.3 1.4

2,8
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T4(1.1429,-1.1429) corresponds to the min max polynomial over 06[-0.5,0.5],
which interval is approximately the one bounded by the extremal eigenvalues
0 -0.4797, Om 0.4797 of S for this problem. Thus one should expect this
polynomial to give a better approximation than the other two. Values of
Ti2-- T- 112 to four places are given in Table 1. Figure depicts the eigenvalues

of Ti T in a format that permits a rough comparison of their distributions: The
eigenvalues are rounded to two decimal places, and the least significant digit is
entered in the column corresponding to the first digit(s).

It is evident that for this model problem the banded approximations from the
exact inverse and the approximations from Cholesky factors can give better
approximations to T- than thee polynomial expansion_s, in the sense of clustering
about of the eigenvalues of Ti T and smallness of Ti T- 112 It would be of
interest to know if the same results would hold for matrices T of larger
bandwidth.

4. Block preconditionings for the two-dimensional case. Based on the approx-
imate inverses of 3, we define the corresponding block preconditionings for the
two-dimensional problem. For this case the D are tridiagonal, and our goal is to
keep the Ai, > 2, in (4b) tridiagonal, or possibly of slightly greater bandwidth.
For the preconditionings discussed below, only the Cholesky factors Li of the A
are actually stored for computational purposes, corresponding to (6).

4.1. The block preconditionings.

4.1.1. BDIA. The diagonal approximation T in (8) is used; Ai- is diagonal
with

(i-- l)jj (Ai_ l)jj
The A’s are tridiagonal matrices at each stage differing from D only in their diag-
onal elements.

4.1.2. INV(1). The banded approximation T2(1) in (10) from the exact
inverse is used,

Ai- B(A[--ll, 1).

Each of the A’s is tridiagonal. At each stage we compute two vectors u and v
and use them to obtain the three main diagonals of A_ll. We then compute and
store the Cholesky factors of Ai. 2N words of storage are needed for M, as in
BDIA. We do not consider here keeping more diagonals in the approximation to
A/’--11 for this case, as the particularly simple expression in Theorem 2 becomes
more complex if the Ai’s have more than 3 diagonals.

4.1.3. CHOL(p). We use T3(p) from (11),

i- B( Ui-_.ll, lo)B( Ui-_,
where Ai_ UT- Ui- 1, with Ui an upper triangular matrix. At each stage we
compute Ui-1, which is (except for 2) a matrix with p + nonzero main diag-
onals. The first p + diagonals of Ui-_ll can be computed diagonalwise starting
from the main diagonal. Since Ai_ is a symmetric matrix of bandwidth 2p + 1,
approximately 2m -t" (i0 + 1) ffi2 mi words of storage are needed for Ai.
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CHOL(p) is a special case of the following method proposed by Underwood [20]
in a slightly different setting.

4.1.4. UND(p,q). For this case

Ai-1 B(B(Ui q-1)B(Ui--T q 1),2p- 1),

with q p. One computes the q main diagonals of UiZr, but then stores only
the 2p- main diagonals of the product to form A_. More information about
Ui-_r is used in UND(p,q) than in CHOL(p). The storage needed is
2m + p ’=2 m. Note that UND(p,p) CHOL(p 1).

4.1.5. POL(a,/). We use the polynomial approximation T4(a,) defined in
3.4,

Ai-1 DT,i-I-k Ti-1,

+
Each A is tridiagonal. Different values of a and/3 are used. The storage require-
ments are the same as for BDIA and INV(1).

4.2. Properties of the Ai. Now we study the properties of the A in order to
prove that all of the methods described above can be carried out (i.e., we prove
that the Ai satisfy hypothesis (H2) placed on T).

THEOREM 3. Under Hypothesis (H1) each Ai computed by BDIA, INV(1),
CHOL(p), UND(p,q), and POL(a,) with [ < O, 0 < a < 1, [ + a 0 is strictly
diagonally dominant with positive diagonal elements and nonpositive off diagonal
elements.

Proof This can be proved by induction using the same technique as in
Lemma 1. As the proof is essentially the same for all cases, we carry it out only
for CHOL(p).

Let

B -C B2

be a positive definite M-matrix satisfying (H1) with B and BE square, and let
B L,L be the Cholesky decomposition ofB . Denote

LB’ /B -l- RB,,

where L- contains the p + diagonals ofL that are kept for the approxima-
tion, and R, contains the remaining diagonals. Under hypothesis (HI) both LB
and R, are nonnegative. From the remark following Lemma we know that
B- CLNrLNICr is strictly diagonally dominant. We have

T-lB2 CLr., 1Cr B2 CLrL Cr + C(,rR,, + R,L,, + RR,,)Cr

The last matrix on the right is nonnegative, which implies that
BE-CL-,r,Cr is at least as strongly diagonally dominant as is
BE- CLrLI,1Cr. The desired result for CHOL(p) then follows by induction,
taking B D, the first diagonal block ofA.
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4.3. Modified block preconditionings. It is known that point incomplete
Cholesky decomposition can be modified to yield a better approximation to A in
some cases. The modified decomposition is obtained from R by altering the diag-
onal elements of the Cholesky factors so that the row sums ofM are equal to the
corresponding row sums of,4 (i.e., the row sums of R are zero). This gives an
improvement of the condition number of M-A for natural ordering of the un-
k nowns and for A diagonally dominant [7], [13].

As noted in {}3, the remainder R for the block incomplete Cholesky precondi-
tioning is a block diagonal matrix whose elements are

R1 --0,

Ri Ai Di -+- Ai A/--llA/T Ai(A/--ll Ai-)A/, 2 <i < n.

Thus the row sum of A/--ll must be available if Ri is to have row sum zero.

4.3.1. MINV(I). For the case of INV(1), A/-_ itself is readily available, thus
it is easy to define MINV(1), the modified form of INV(1): Compute A/-_ at each
stage from the two vectors u and v. Form the product
Ri Ai[A--- B(A/--,I)A/r, which is a matrix with positive elements except for
the 3 main diagonals, which are zero. Then subtract from Di --AiB(A/--,I)A/r the
diagonal matrix made up of the row sums of Ri, to yield the modified Ai
corresponding to a remainder with a zero row sum.

We note that it follows from Hypothesis (H1) that the remainder matrix is
nonpositive definite, hence the eigenvalues ofM-1A are greater than or equal to
for MINV(1).

THEOREM 4. Under Hypothesis (H1) each Ai given by MINV(1) is a strictly
diagonally dominant matrix with positive diagonal elements and negative off diag-
onal elements.

Proof Consider

-C B2

Let S2 C[Bi- -B(B-,I)]Cr and let R2 be the diagonal matrix of row sums
of $2. Since B 1-1 0, the elements of $2 and hence ofR 2 are positive. Note that
B2 CB(B{-1,1)CT R2 has the same row sums as
BE- C[B(B-I,1)]Cr $2 BE- CB-ICr. This, together with the positivity
of the elements, shows that B CB(B 1-1,1)CT R is diagonally dominant.

4.3.2. MUND(p,q). For the other block preconditionings the row sums of
Ri can be calculated easily, but not quite so directly. However, in UND(p,q) with
q > p a part of the remainder is immediately available and can be subtracted
from the diagonal. Recall that

Ai- Li- Lir-
Ri Ai[A- B(B(Li=T ,q 1)B(Li=I ,q 1),2p 1)].

Denote by/i--] B(L.-_],q-1) the q diagonals of the inverse of L._ that are
computed, and by Qi-1 the diagonals that are not computed

LiCll ,,-- + Qi-I.
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Then

Ri Ai[i--7i--.ll -’t- i-_.lai_ -.t- Q"_ li-_ll -.t.- QiT_ ai_ B(i-_Tl__,i-_ ,2p 1)}A/.
We can obtain Li-Li-~-T"- B(i-_Ti-_ ,2p- 1), since it is made up of the diago-
nals of the product that are not kept in the algorithm. Thus, instead of discarding
these diagonals we could subtract their row sums from the main diagonal. This
constitutes the algorithm MUND(p,q): Compute q diagonals of LiZ. Form the
product /.,/.,- . Use the 2p main diagonals to form

Di- AiB(i--i-- ,2p- 1)A/r. Let Si- be the matrix made up of the q-p outer

diagonals of rLi- 1Li-I. Compute the row sums of Ai Si- 1AiT and subtract them
from the diagonal of Di -AiB(i--i-- ,2p- 1)A/r to obtain Ai.

THEOREM 5. Under Hypothesis (H1) each Ai given by MUND(p,q) is a
strictly diagonally dominant matrix with positive diagonal elements and negative
off-diagonal elements.

Proof. Along the same lines as for Theorem 4.

4.4. Higher dimensions. One can develop block incomplete Cholesky factori-
zations for three dimensional problems similarly, using, for example, incomplete
instead of complete factorizations Li for the Ai. It is planned to investigate these
preconditionings in a subsequent study.

5. Numerical experiments. In this section we present the results of numerical
experiments on two-dimensional test problems comparing the preconditionings
introduced in the previous sections and some other, commonly used, point and
block preconditionings. The other preconditionings include: the point incomplete
Cholesky decomposition IC(p,q) introduced by Meijerink and van der Vorst I16],
[17], in which p bands adjacent to the main diagonal and q outer bands are kept
in the factorization; its modified version MIC(p,q), of which the simplest
MIC(1,1), first introduced by Dupont, Kendall, and Rachford for five diagonal
matrices [7], is denoted here by DKR (and is used without parameters); symmetric
successive overrelaxation (SSOR) and its block version BSSOR (which in our case
is line SSOR); and for a few cases l-line Jacobi preconditioning (LJAC). In addi-
tion, results will be given for some problems for the point Jacobi preconditioning
DIAG, for which M is a diagonal matrix whose diagonal elements are those ofA,
and for conjugate gradients without preconditioning (M I, the identity matrix).

For a five diagonal matrix the work per iteration and storage for each of the
methods is given in Table 2. (For simplicity, the technique of [8] for reducing the
work requirements of the conjugate gradient method is not incorporated.) The
work is represented by number of floating point multiplies; about the same
number of additions are required also.

Table 2 does not include the overhead operations required to construct M. If
one carries out many iterations or solves several systems with different right-hand
sides, then this overhead can usually be neglected. Specific cases are discussed in
5.1. Also not included in Table 2 is the work that might be required for evaluat-
ing iteration termination criteria.

It should be noted that the work requirements for the preconditionings
depend on the manner in which the computer programs are written. Generally we
have organized our programs with a preference toward multiplication over divi-
sion; for example, in INV(1) we use Varga’s implementation of Gauss elimination
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TABLE 2

Work per iteration and storagefor the preconditionings.

Preconditioning M

DIAG

IC(1,1), DKR

SSOR

IC(1,2), MIC(1,2)

IC(I,3), MIC(I,3)

IC(2,4)

BSSOR

BDIA, INV(1),
MINV(1), POE(a,3)

CHOL(p), UND(p + l,q),
MUND(p + 1,q)

Mults.

10N

llN

16N

17N

18N

20N

24N

18N

18N

(4p + 14)N

Storage

o
0

N

0

3N

4N

6N

2N

2N

(p + I)N

for tridiagonal matrices, which stores the reciprocals of the diagonals [21]. If a
division is carried out, as in DIAG when it is desired neither to scale the matrix
in advance nor to store the reciprocals of the diagonal, then, as is customary, a
division is counted as equivalent to a multiply. In CHOL(p: p > 1), UND(p,q),
and MUND(p,q) routines from LINPACK [6] are used, but the operation counts
entered in Table 2 are made to correspond to the manner in which we implement
the other preconditionings. Thus the entries in Table 2, though basically con-
sistent, should be considered as approximate. They are used in subsequent tables
to convert observed number of iterations to computational work.

Our implementation of the conjugate gradient algorithm requires 4 N-vectors
of storage, plus 3 N-vectors for the matrix A and N-vector for the right-hand
side. If it is not necessary to save the right-hand side, then N-vector of storage
could be eliminated. The additional storage required by each of the precondition-
ings is given in the last column of Table 2.

5.1. First test lroblem. The first test problem is the model problem

Au f in fl the unit square (0,1) (0,1)

with
U "-0.

We use the standard five point stencil on a square mesh with h --(n + l)-1,
N n 2, and natural ordering to obtain the corresponding linear algebraic system
(2). The experimental results are given for different values of h and different
stopping criteria. An estimate of the condition number ofM-A is given for each
of the preconditionings, as obtained from the conjugate gradient algorithm (cf. [3]),
and for small dimension (n 10) the complete spectrum ofM-A is visualized.

The computations were carried out in double precision FORTRAN on an
IBM 3081. Unless otherwise noted the solution of the linear system is smooth



BLOCK PRECONDITIONING 237

(the right-hand side b in (2) corresponds to the solution i(i- 1)nj(nj-1)exp(inj)
at a point (i,nj)), and the starting vector has random elements in [-1,1]. As the
number of additions is roughly the same as the number of multiplications, we
indicate only the work required for the multiplications. The divisions that may
appear to be needed by some methods are not indicated, since they can be
removed with alternative coding. In Table 3 are given the number of iterations

TABLE 3

Number ofiterations and total work
per pointfor rk oo/II r Iloo < 10-6.

Test problem 1, N 2500.

M

DIAG
IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(I,3)

SSOR o

SSOR o 1.7

LJAC
BSSOR o

BSSOR o 1.7
BDIA

POL(1,-1)
POE(0.9412,-0.4706)
POL(1.143,-1.143)

INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(2,4)
UND(3,4)
UND(3,5)
UND(4,5)
UND(4,6)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

# iterations

109
109
33
21
17
12
23
17
14
40
21

8O
28
16
22
18
21
17
15
11
16
12
9
8
7

15
15
11
11
9
9
7

12
10
9
10
8
8
8
7
7

work/N

1090
1199
528
378
340
288
368
306
280
680
357

1040
504
288
396
324
378
306
270
198
288
264
234
240
238
270
270
242
242
234
234
210
216
180
162
220
176
176
208
182
210
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and the corresponding total work per point required to achieve the stopping cri-
teflon rk lifo/II r Iloo < 10-6, for the case N 2500. The value 1.7 for SSOR
and BSSOR is the observed optimal for each case to the nearest 0.1 for minimiz-
ing the number of iterations required for convergence.

From Table 3, the following observations can be made.

(i) For the patterns chosen, the larger the number of diagonals in the incom-
plete Cholesky decomposition, the fewer the number of iterations required
for convergence, as observed in I17] for the point preconditionings.

(ii) The modified versions of the preconditionings give better results (for this
problem and ordering of the mesh points).

(iii) In general, there is a trade off between storage and execution speed, but if a
low storage point-preconditioning is desired, DKR seems a good choice.
SSOR can give good results, but suitable parameter values are needed.

(iv) For methods of comparable storage the block methods give better results
than point methods, both in terms of number of iterations and work require-
ments.

(v) For CHOL(p) it is not effective to go to values of p larger than p 3, and,
as observed also in [2], for UND(p,q) to values of q beyond q =p + 1. It is
better to use the additional information given by UND(p,q) for larger q to
obtain a modified version of the factorization for q p + 1.

(vi) The best polynomial, as expected, is POL(1.1429,- 1.1429).
(vii) For this problem the best all-around preconditioning appears to be

MINV(1), because it has very low storage requirements and gives almost the
best work count approximately half of IC(1,2) and two thirds of MIC(1,2),
which require more storage.

Table 4 gives a comparison of some of the methods for solving the test prob-
lem to only moderate accuracy IIrk Iloo/IIrOIIoo < 10-4, comparable to discretiza-
tion error. The conclusions drawn for the smaller residuals in Table 3 are in gen-
eral unchanged.

TABLE 4

Number ofiterations and total work
per point for rk oo/II r0 IIoo < 10-4.

Test problem 1, N 2500.

M

IC(1,1)
IC(2,4)
DKR

SSOR o 1.7

BSSOR 0 1.7
INV(1)
MINV(I)
CHOL(1)
CHOL(5)

iterations

63
20
7
16
13

10
9
7
9
4

work/N

630
320
168
256
221

180
162
126
162
136
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In Table 5 are given the values of the smallest and largest eigenvalues of
M-1A, as estimated by the conjugate gradient algorithm, as well as the
corresponding condition numbers. It is seen that a considerable reduction in the
condition number can be achieved with some of the modified preconditionings,
with only a low cost in storage.

TABLE 5

Extremal eigenvalues and condition number ofM-IA.
Test problem 1, N 2500.

M

IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(I,2)
MIC(1,3)

SSOR = 1.
SSOR o-- 1.7

LJAC
BSSOR o 1.
BSSOR o-- 1.7

BDIA
POL(1,-1)

POL(0.9412,-0.4706)
POL(1.143,-1.143)

INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(2,4)
UND(2,5)
UND(3.4)
UND(3,5)
UND(4,5)
UND(4,6)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

Xmin(M- IA

0.0076
0.0128
0.033
0.049
0.091
1.003
1.003
1.006
0.0075
0.040

0.0038
0.0150
0.074
0.024
0.035
0.027
0.043
0.059
1.006
0.050
0.090
0.142
0.204
0.272
0.058
0.059
0.059
0.104
0.106
0.162
0.166
0.228
0.102
0.202
0.380
0.164
0.291
0.483
0.234
0.375
0.309

Xmax(M- IA

7.992
1.206
1.179
1.131
1.138

15.36
8.83
6.19
1.
1.

1.99
1.
1.
1.023
1.
1.002
1.023
1.073
4.261
1.050
1.065
1.076
1.078
1.078
1.07
1.073
1.073
1.086
1.089
1.091
1.096
1.088
1.242
1.564
2.024
1.242
1.518
1.887
1.221
1.449
1.197

r(M-IA

1053
94.0
35.6
23.2
12.5
15.3
8.3
6.15

132.5
25.1

527.
66.8
13.5
42.6
28.7
37.2
23.8
18.2
4.24

20.8
11.8
7.56
5.29
3.97

18.5
18.2
18.2
10.5
10.2
6.75
6.59
4.78
12.2
7.74
5.33
7.58
5.22
3.91
5.21
3.87
3.88
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In Table 6 are given the estimated condition numbers (M-1A for different
values of n --(1/h)- 1. The quantity a is the estimated value, from the n 25
and n 50 data, of the exponent corresponding to the assumed asymptotic rela-
tionship r(M-1A )" Ch-’, where C is a constant. It is known theoretically that
for M=I and M=IC(1,1) there holds r(M-1A)--O(h -2) and that for
M DKR, r(M-A )= O(h-). The values of a obtained from the numerical

TABLE 6

Estimated condition numberfor different mesh sizes
and exponent a ofasymptotic dependence on h 1/(n + 1).

Test problem 1.

M

IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(1,3)

SSOR ,, 1.

LJAC
BSSOR w 1.

BDIA
POE(I,-1)

POL(0.9412,-0.4706)

r(M-1A
n=lO n=20 n=25 n=50

48.37 178.1 273.3 1053
5.10 16.59 25. 94
2.38 6.67 9.8 35.6
1.80 4.56 6.6 23.2
1.32 2.75 3.8 12.5
3.04 5.93 7.4 15.3
1.84 3.36 4.2 8.3
1.49 2.56 3.15 6.1
6.88 23.12 35. 132

24.68 89.5 137. 527
3.93 12.04 18. 66.7
2.76 7.9 11.7 42.5
2.09 5.52 8. 28.6
2.5 7. 10.3 37.1

POL(1.143,-1.143)
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(2,4)
UND(3,4)
UND(3,5)
UND(4,5)
UND(4,6)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

1.86 4.7 6.7 23.8
1.61 3.74 5.3 18.2
1.3 1.94 2.31 4.23
1.73 4.18 6. 20.8
1.32 2.65 3.65 11.85
1.14 1.93 2.53 7.54
1.06 1.55 1.95 5.28
1.026 1.34 1.61 3.98
1.63 3.8 5.4 18.52
1.62 3.75 5.33 18.24
1.26 2.42 3.3 10.47
1.25 2.39 3.24 10.24
1.12 1.8 2.33 6.73
1.11 1.77 2.28 6.54
1.05 1.47 1.82 4.8
1.39 2.76 3.79 12.95
1.29 2.1 2.72 7.74
1.28 1.89 2.26 5.33
1.18 1.97 2.58 7.55
1.15 1.67 2.04 5.22
1.14 1.6 1.85 3.9
1.09 1.57 1.96 5.22
1.07 1.43 1.68 3.8
1.04 1.35 1.62 3.9

2.00
1.97
1.91
1.87
1.77
1.08
1.01
0.98
1.97

2.00
1.94
1.91
1.89
1.90
1.88
1.83
0.90
1.85
1.75
1.62
1.48
1.34
1.83
1.83
1.71
1.71
1.57
1.56
1.44
1.82
1.55
1.27
1.59
1.39
1.11
1.45
1.21
1.30
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experiments are in accord with these relationships. We see that all the point
incomplete decompositions IC(p,q) seem to be O(h-2), although the more diago-
nals that are taken the slower is the convergence to this asymptotic behavior. The
MIC methods are O(h-).

For the block methods INV and CHOL the limiting value of a seems to be
two, and for MINV one. The observed values of a for the range of h considered
are smaller for the block methods than for the point methods with the same
storage. It is difficult to assess from the results the order of the MUND methods;
we believe that they are somewhere between and 2, closer to if more diagonals
are used to form M. Finally, Table 6 shows that even for smaller values of n
block methods give better reduction of the condition number than point methods.

It is well known that the rate of convergence of the conjugate gradient method
depends not only on the condition number but on the distribution of the interior
eigenvalues as well. It is therefore of interest to compare the eigenvalue spectra
for the different methods. These are compared for n--l0 in Figs. 2-4. Each
eigenvalue is designated by a vertical bar drawn at the appropriate abscissa value.
This representation depicts in an easily observable manner the separation and
clustering of the eigenvalues.

The spectra for all of the methods shown in Fig. 2 are on the same scale for
easy comparison. From the figure it is seen that for the block methods the eigen-
values are more clustered than for the point ones having the same storage require-
ments. (The relatively greater clustering for block SSOR over point SSOR is a
well-known property, cf. [9].) The values 1.7 and 1.5 are to the nearest 0.1
those for which the condition numbers for SSOR and BSSOR, respectively, are
smallest. The point modified methods, for which the eigenvalue range is different
than for the other methods, are shown separately in Fig. 3. Fig. 4 shows on the
same scale four methods with comparable storage: IC(1,1) and DKR, with one
vector of storage, and INV(1) and MINV(1) with two. Spectra for block SSOR
preconditioning for the values 1.0(0.1)1.9 can be found in I2], and enlarge-
ments showing the fine structure of the spectra of Figs. 2-4 are in an Appendix to
[2], available separately from the authors.

Table 7 gives the number of iterations required to solve the test problem for
different convergence criteria. For these cases the initial approximation was
x- 0, and the solution was the same smooth vector as for Tables 4 and 5 with
N 2500.

From these results, it appears that, at least for the test problem with a smooth
solution, the relative norm of the residual gives a good stopping criterion.

In Table 8 we give results for N 2500 for the same smooth solution as for
previous tables, with two different choices of the starting vector, x-- 0 and x
consisting of random numbers in [-1,1]. The stopping criterion is
IIr Iloo/llrlloo 10-6. The initial approximation x random appears to give
better results. This feature will be developed in a subsequent study.

From the tables one can conclude that for this test problem block methods
give better results than point ones. The most promising block method is
MINV(1). Since the setup time for constructing M was not included in the tables,
it is of interest to consider it, as it can be of importance if only one problem is to
be solved or only a few iterations taken. Table 9 gives the effect of including the
setup time for three of the preconditionings for the N 2500 test problem. Times
are in CPU seconds for an IBM 3081 computer. Even if the setup times are
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included, MINV(1) still gives considerable improvement for this problem.
The effects of Neumann boundary conditions were examined as well in [2],

where it was found that the relative merits of the different preconditionings are
about the same as for this test problem.

TABLE 7

Number ofiterations for different convergence criteria.
Test problem l, x =- O.

M

IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(I,3)

SSOR -- 1.
SSOR -- 1.7

BSSOR o-- 1.
BSSOR -- 1.7

BDIA
POL(I,-I)
INV(1)
MINV(1)
CHOL(I)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

Number of iterations

117
38
26
21
16
25
18
18

IIx--xk Iloo 10-6

99
31
22
19
14
18
14
16

IIx-xk 10-6

114
36
26
22
16
22
17
18

44
22

36
18
27
23
19
13
20
15
12
10
9
19
14
12
9
15
13
12
12
11
10
9
9

37
17

28
15
24
20
16
9
18
13
11
9
8
16
13
10
8
14
11
9
11
9
9
8
8

43
20

34
18
28
24
19
11
21
16
13
10
9
19
15
12
10
16
13
11
13
11
10
9
9

IIx-xk I1, 10-6

110
35
24
20
15
21
16
17
41
19

32
16
26
22
18
11
19
14
12
10
8
18
14
11
9
15
12
10
12
10
10
9
8
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TABLE 8

Number ofiterations
for rk oo/II r I1o 10-6

for different starting vectors.
Test problem 1.

M

IC(I,I)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(1,3)

SSOR o-- 1.
SSOR o 1.7

BSSOR o 1.
BSSOR -- 1.7

BDIA
POL(I,-I)
INV(1)
MINV

CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

# of iterations
x=0 xrandom
117
38
26
21
16
25
18
18
44
22

36
18
27
23
19
13
20
15
12
10
9
19
14
12
9
15
13
12
12
11
10
9
9

109
33
21
17
12
23
17
14
40
21

28
16
22
18
15
11
16
12
9
8
7
15
11
9
7
12
10
9
10
8
8
7
7

TABLE 9

Total time including
setup in CPU secondsfor
litk Iloo/llrlloo 10-6.

Test problem 1.

M

IC(1,1)
INV(1)
MINV(1)

total time

1.37
0.963
0.723
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1.5 .5

DKR

MIC(I,2)

MIC (I,3)

2.5

Pe. 3. Spectra ofM-IA for modified preconditionings.
Test problem 1. N-- 100.

Ill DKR

INV (I)

MINV(I)

Re. 4. Spectra ofM- IA forfour preconditionings
with comparable, minimal storage. Test problem 1. N 100.
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5.2. Second test problem. We solve the linear system obtained by the stan-
dard five point discretization of the problem

01 -1 02 -2 f in fl (0,1) (0,1),

u=0 on Off,

for the discontinuous , depicted in Fig. 5. The solution is the same smooth one
as for the first test problem, the starting vector is random, and the stopping cri-
teflon is rk I1/II r I1o < 10-6.

Table 10 gives the results for the number of iterations, the work required, and
an estimate of the condition number as obtained from the conjugate gradient
parameters. The values w= 1.6 for SSOR and o= 1.5 for BSSOR are the
observed optimal ones to the nearest 0.1.

The very large condition numbers for most of the entries result from the
small first eigenvalue, which is isolated from the others. Thus the number of
iterations does not change much, for example from IC(1,1), which has a small iso-
lated eigenvalue, to DKR, which has all eigenvalues greater than one. It is the
distribution of the other eigenvalues that is important. In terms of work per
point, block methods give better results than point ones. Again MINV(1) seems a
good compromise between efficiency and storage. This example shows that block
methods can be effective for problems with coefficients having large jump discon-
tinuities.

5.3. Third test problem. This example, which is frequently used in the litera-
ture, was presented in [21]. The problem is to solve

0
Xl X + ru 0 in f (0,2.1)(0,2.1),

OU

The domain is shown in Fig. 6 and depicts the values of the coefficients, which
are discontinuous. The solution is u 0.

We take h 1/42, x a vector with random elements in [-1,1], and stopping
criterion IIxk I1 < 10-6. The results are given in Table 11. The values w 1.7
for SSOR and w 1.5 for BSSOR are the observed optimal ones to the nearest 0.1.

Table 11 indicates that for this problem the larger the number of diagonals
retained, the lower the work required for convergence. This holds both for point
and block methods. Generally, the block methods are slightly better.

In order to compare our methods with those presented by Meijerink and Van
der Vorst [17] for this problem, we give the results in Table 12 for convergence cri-
teflon rk 2 10-6. For the IC methods, we obtain about the same results as in
[17], within a few iterations. (The distribution from which the starting vectors
were drawn is differentour random numbers are between -1 and 1, while theirs
are between 0 and 1.)

To compare point and block methods with the same storage, one can take, for
example, IC(1,2) or MIC(1,2) and CHOL(2). It is clear that the block method is
better. The situation is the same if more diagonals are taken. To get down to 16
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(0,0)

(1/4,1/4)

,I)

1000, (,rt) e fll
h 1, (,r/) e 22’

FIG. 5. Test problem 2.

TABLE 10

Number ofiterations, total work per point,
and estimated condition number ofM-IA.

Test problem 2, N 2500, rk oo/II r0 I1o < 10-6.

M

DIAG
IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(1,3)

SSOR w 1.
SSOR o 1.6

BSSOR w 1.
BSSOR w 1.5

BDIA
POL( 1,-
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

LJAC

# iterations

137
47
30
25
18
32
23
20
55
36

41
23
34

work/N

1507
752
540
5OO
432
512
414
400
935
612

738
414
612

(M-IA

46770
17062
11102
5668
40
26
24

66162
16620

33929
14777
21489

28
22
17
24
18
14
12
10
22
17
14
12
19
17
16
15
14
14
12
12
11
111

504
396
306
432
396
364
360
340
396
374
364
360
342
306
288
330
308
308
312
312
330
1443

14182
8790
20

10288
5531
3307
2154
1490
8946
4762
2876
1899
5825
3472
2135
3355
2135
1379
2136
1416
1451
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2.1
2-

0
0 22.1

XI

21 1.

92 2.
9 3.

X2

0.02
0.03
0.05

FZG. 6. Test problem 3,

TABLE 11

Number ofiterations and total work
per point for IIxk IIoo < 10-6.
Test problem 3, N 1849.

M

IC(I,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(I,3)

SSOR o= 1.
SSOR o 1.7

BSSOR o 1.
BSSOR o 1.5

BDIA
POE(I,-1)
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

# iterations

74
47
38
29
53
36
29
88
52

65
46
52
43
34
25
36
28
22
19
16
34
26
21
18
28
25
23
23
21
19
18
17

work/N

1184
846
760
696
848
648
580
1496
884

1170
828
936
774
612
450
648
616
572
570
544
612
572
546
540
504
450
414
506
462
494
468
510
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TABLE 12

Number ofiterations and total work
per point for rk 2 < 10-6.
Test problem 3, N 1849.

M

IC(I,I)
IC(I,2)
IC(I,3)
IC(2,4)
DKR

MIC(I,2)
MIC(I,3)

SSOR o 1.
SSOR Oopt

BSSOR o 1.
BSSOR Oopt

BDIA
POL(I,-I)
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

# iterations

79
49
39
30
66
43
35
94
56

68
48
55
45
36
29
38
29
23
20
17
36
28
22
19
30
26
24
24
22
20
19
17

work/N

1264
882
780
720
1056
774
700
1598
952

1224
864
990
810
648
522
684
638
598
600
578
648
616
572
570
540
468
432
528
484
520
494
510

iterations with point preconditioning IC(5,7) is used in [17], but approximately the
same goal can be achieved with only six instead of 12 vectors of storage using the
block preconditioning CHOL(5).

6. Concluding remarks. The above examples show that, for linear problems
coming from finite-difference approximations of elliptic partial differential equa-
tions, the block preconditionings we have introduced can give better results for
two-dimensional problems than the corresponding point ones currently in use.
The results are better also than for block SSOR preconditioning. Generally, for
natural ordering of the unknowns, the modified methods give better results for our
test problems than unmodified ones. Particularly attractive is the preconditioning
INV(1)and its modified form MINV(1)because of the low storage require-
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ments and rapid convergence. The results for three dimensional problems await
further study. It would be of interest to explore the behavior of our block precon-
ditioning methods on more general problems such as the ones arising from finite
element approximation with node orderings leading to a block tridiagonal matrix.

7. Acknowledgment. We are pleased to acknowledge that much of this work
has been stimulated by the paper of R. R. Underwood [20] and our personal asso-
ciation with him.
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