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BLOCK PRECONDITIONING
FOR THE CONJUGATE GRADIENT METHOD"

P. CONCUS!, G. H. GOLUB* anp G. MEURANT?S

Abstract. Block preconditionings for the conjugate gradient method are investigated for solving
positive definite block tridiagonal systems of linear equations arising from discretization of boundary
value problems for elliptic partial differential equations. The preconditionings rest on the use of
sparse approximate matrix inverses to generate incomplete block Cholesky factorizations. Carrying
out of the factorizations can be guaranteed under suitable conditions. Numerical experiments on test
problems for two dimensions indicate that a particularly attractive preconditioning, which uses special
properties of tridiagonal matrix inverses, can be computationally more efficient for the same computer
storage than other preconditionings, including the popular point incomplete Cholesky factorization.

Key words. conjugate gradient method, elliptic partial differential equations, incomplete factoriza-
tion, iterative methods, preconditioning, sparse matrices

1. Introduction. In this paper we study some preconditioning techniques for
the conjugate gradient method to solve the linear systems of equations that arise
from the discretization of partial differential equations. We consider for example
elliptic equations such as

d
—i=1 aigl- [AI(E) :Tlf ] +O‘(E)u = f in Q CRd’ E = (El’£2» CRS sgd) (1)
with
u@=g@® or L =ge)  on

where n is the exterior normal, \;(§) > 0, and o(£) = 0. The techniques that we
describe are suitable for standard finite-difference discretizations of equations such
as the above that yield certain symmetric positive definite block tridiagonal linear
systems of the form

Ax = b, 0))
where N
rDl AT
A, D, A

An—l Dn—l Ar?
Ay D, |

\

*Received by the editors May 2, 1983, and in revised form January 16, 1984. This paper is an abridged
version of [2], which was presented at the SIAM 30th Anniversary Meeting, Stanford University, Stanford,
California, 1982. It was typeset at the Lawrence Berkeley Laboratory using a troff program running under
UNIX. The final copy was produced on July 6, 1984. This work was supported in part by the Applied Mathe-
matical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy under con-
tracts DE-AC03-76SF00098 and DE-AC03-76SF00515 and by the National Science Foundation under grant
MCS-78-11985.

fLawrence Berkeley Laboratory and Department of Mathematics, University of California, Berke-
ley, California 94720.

T'Computer Science Department, Stanford University, Stanford, California 94305.

$Commissariat a I’Energie Atomique, Limeil 94190 Villeneuve-Saint-Georges, France, and Com-
puter Science Department, Stanford University, Stanford, California 94305.

220



BLOCK PRECONDITIONING 221

Such equations can arise also from finite element discretizations (for example, see
[11).

The prototype model problem in two dimensions is the Dirichlet problem,
o=0,) =1, g =0, Q the unit square,

—Au = f,

u =0 on the boundary,

with standard five-point differencing on a uniform mesh of width 4. We focus
attention on the matrix structure obtained for natural ordering, which yields for
the model problem (after multiplication by /2)

4 —1

~1 4

In three dimensions, standard 7-point differencing with this ordering would yield
D; that have two additional nonzero diagonals. Different orderings or higher
order approximations would give rise to different structures, to which our tech-
niques could be applied also.

To solve (2) we use the generalized or preconditioned conjugate gradient
method, which may be written as follows [3]. Let x° be given, define p~! arbi-
trarily, and let 7®=b — Ax% For k =0, 1,... perform the steps

Mzk = rk
_ _(z*, MzF) -
ﬁk - (Zk_l MZk_l)’ k>l9 60—0’

p* =z +pp*

o = zk Mzk)

k — s
vk, ap*)
Xk = xk 4 o pk,
rktl = pk — o Ap*.

The matrix M is the preconditioning matrix, which should be in some sense
an approximation of 4. It is known that the preconditioned conjugate gradient
method converges rapidly if the condition number (M ~!4), which is the ratio of
the largest to the smallest eigenvalue of M ~'4, is small or if the eigenvalues are
clustered (e.g., [3] and the references therein).

The goal of this study is to devise good preconditioning matrices M. For this
purpose we exploit the structure of 4 in constructing some block precondition-
ings, one special case of which is the one introduced by R. R. Underwood [20).

In §2 to motivate the use of our block techniques we recall some results on
block Cholesky factorization. Section 3 deals with the main problem — finding
good approximate inverses for tridiagonal matrices that are diagonally dominant.
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New block techniques for two-dimensional problems (d = 2 in (1)) are introduced
in §4. Three-dimensional problems will be discussed in detail in a subsequent
study.

In §5 we present the results of numerical experiments for several test prob-
lems, including comparisons with point preconditioning techniques. We compare
techniques on the basis of number of iterations and number of floating point
operations required for convergence. Also, we illustrate graphically the spectral
properties of the matrices corresponding to the various preconditionings.

2. Block Cholesky factorization. Let 4 be the symmetric positive definite
block tridiagonal matrix of (2). Let m; be the order of the i square diagonal
block D; and N = 37_, m; the order of 4. We denote

4 3 4 )

D, 0
D, A4, 0
Dn_l An—l O

L D, A, O

J \ J

A=D+L+LT,

and we denote by a;; the elements (pointwise) of 4.

Since A is positive definite, there holds a; >0, i =1,...,N. We assume
that the following holds also.

HYPOTHESIS (H1).

(@) The off-diagonal elements a;j, i # j of A are nonpositive.

(b) A is (weakly) diagonally dominant; i.e., there holds

a; = 2|a,~j, i=1...,N,
J#i

and there exists at least one k, 1 <k <N, such that
Ak > 2 fakj {
Jj#k

(c) Each column of A;, i =2, ...,n, has at least one nonzero element.
Hypothesis (H1)(a) implies that the positive definite symmetric matrix 4 is a
Stieltjes matrix, i.e., a positive definite M -matrix [21], [22].
If the inequality of Hypothesis (H1)(b) holds strictly for all rows,
a; > 2'(1,‘1", i=1,...,N,
j#i
then A is termed strictly diagonally dominant.
Let Z be the symmetric block diagonal matrix with m; X m; blocks Z; satisfy-
ing
2 = Dy,
Z, =D "‘A,'Ei—_llAiT, 2<i<n.

Then the block Cholesky factorization of 4 can be written as

3

A=C+L)z'cE+LT.
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The factor T + L is block lower bidiagonal. Since A is positive definite sym-
metric, the factorization can be carried out.

The following results concerning the properties of the 3; are well known, but
as we did not find them in the literature in a form suitable for our application, we
give them here for completeness. These properties provide guidance in our selec-
tion of preconditioning matrices for the conjugate gradient method.

Let
B ) C T
B = -C B, >

with B; and B, square, be a symmetric positive definite M -matrix, which implies
that the diagonal elements are positive and the off-diagonal elements are nonposi-
tive.

LEMMA 1. B; = B, — CB{'CT is a symmetric positive definite M -matrix.

B, is called the Schur complement of B, in B. For properties of the Schur

complement see [4].
Proof. We can write

B, 0 I 0 I BricT
0 B,—cB'cT | = |1 | Blo 1 |

Since the leading principal minors of B are unchanged by the transformation on
the right side of the equality, the matrix on the left side is, positive definite, and
hence so is B,. In particular the diagonal elements of B, are positive and, as
B! >0 and C =0 hold, it follows that the off diagonal elements are nonposi-
tive.

It can be shown easily that if B, is strictly diagonally dominant, then B, is
also.

Now we apply these results to A with By=D,;, —CT = (470 --- 0), and

|
rDz A¥

A; Dy AT
Ap—y Dp—y AT
An Dy |

We have

(D,—A,D[ 4T AT
A; D; AT

B; = C - el Tl

Ap—y Dyp—y Ay
A4, D

nJ
There follows

THEOREM 1. Under Hypothesis (H1) all the Z; are symmetric strictly diago-
nally dominant M -matrices.

It is of interest to note, that in the particular case of the model problem, the
block Cholesky factorization can be shown to reduce to a Fast Poisson Solver [18].
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3. Incomplete block Cholesky factorization. Because of the work and storage
that may be required in large problems for computing the Z;, carrying out the
complete block Cholesky factorization is not of interest to us here as a general
means for solving (2). For example, for the two-dimensional model problem,
although =, = D, is tridiagonal, 2; ! and hence Z;, i = 2, are dense.

In this paper our interest focuses on approximate block Cholesky factoriza-
tions obtained by using in (3) instead of =;~}| a sparse approximation A;_;. One
thereby obtains instead of T the block diagonal matrix A with m; X m; blocks A;
satisfying

A; = Dy, (4a)

A; = D; —AiA,'_lAiT, 2<i<n, (4b)

where for each i in (4b), A;_; is the sparse approximation to A;_. The incom-
plete block Cholesky preconditioning matrix for use with the conjugate gradient
algorithm is then

M = QA+L)A"Y(A+LT). (5)

One has
M=A+A—-D+LA'LT =4 +R,

where R is a block diagonal matrix

;
R,

L J
with
Rl = Al —'Dl = 0,

R; = A, — D; +A,'Ai—._11AiT, 2<i<n

The factor A+ L in (5) is lower block bidiagonal. Using the Cholesky factors
L,' of A,’,

A = LiL,
one can express M in terms of (point) lower and upper triangular factors
[ L, 1 ot wi |
W, L, 0 LT wT
M = ,  (6)
Wy—y Lyp—y 0 L, wr
» Wn Ly JL Ly i

where
W,' = A,’Li__{, i=2... , .

This form is generally more efficient computationally than is (5). For specific A;
of interest, we show in subsequent sections that all the A; are positive definite,
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which implies that the above factorization can be carried out.

Note that in the conjugate gradient algorithm M is not required explicitly,
only the linear system Mz = rk need be solved for z¥. Since this can be done
with block backward and forward substitution, the block off-diagonal elements W;
need not be computed explicitly. The requisite products with vectors can be
obtained by solving linear systems with triangular coefficient matrices L; and L.
Generally, for preconditionings of interest, the A;, and correspondingly the L;, will
be sparse. These features were first used in this context by R. R. Underwood in
[20], where block incomplete Cholesky preconditioning for the conjugate gradient
algorithm was introduced.

For the standard five-point discretization of (1) in two dimensions, D; is tridi-
agonal, and A; is diagonal. This is the case on which this paper focuses. Of cen-
tral interest is the choice that the A;_; be tridiagonal, so that all the A; in (4b) are
tridiagonal. Correspondingly, in the remainder of this section we discuss tech-
niques for approximating the inverse of a tridiagonal, diagonally-dominant matrix.

Let i |

a, —b

—b| a "—bz
T = ™
—bm-2 Am-1 —bm—

- - a
L bml m y

be a nonsingular tridiagonal matrix. We assume that the following holds.
HYPOTHESIS (H2). The elements a; and b; of T satisfy

a >0, 1<i<m,
by >0, 1<i<sm-—1,
and T is strictly diagonally dominant.
3.1. Diagonal approximation. The simplest approximation fl of T7! we
consider is the diagonal matrix whose elements are
(T = ‘(‘5%1‘ 8)

3.2. Banded approximation from the exact inverse. One can do much better
than the diagonal approximation 7'; by using the following powerful result, which
characterizes the inverses of symmetric tridiagonal matrices, (cf. [1], [10]).

THEOREM 2. There exist two vectors u and v € R™ such that

(T_l)ij = U;V; for i<j.
Since the inverse of T is

.
Upvy uvy " Uvm
UVa UV " UVp

Lu,v,,, UVy, = umva
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one can compute recursively the components of # and v. Under Hypothesis (H2)
T is positive definite, so that 7! is also, which implies that u; # 0, v; # 0, for all
i. We remark that all of Hypothesis (H2), which will be used later, is not required
for Theorem 2. It is necessary only that 7 in (7) be nonsingular and irreducible
(all of the b; nonzero).

LEMMA 2. The components of u and v can be computed as follows:

1 21
U = Uy = 4T
b bl b
a; —\Ui— — bi—aui— .
U = —— —1* 3<i<m,
bi—y
Y = L ©
" —by—1Um—1+ amity,’
1+b~u~v'+, .
v = Al , 2<ism-—1,
aju; — bi—ui—
1+b1u|V2
V=
a\u,

Proof. By substitution.

Alternative recurrences for generating ¥ and v can be obtained by several
means, such as by computing the first and last columns of 7! from the Cholesky
factors of T. For numerical computation scaling may be required in (9) to
prevent underflow or overflow, or it may be desirable to work with the ratios
;i +1/u; and v;+1/v; considered below. If only a few of the main diagonals of 7!
are required and not u and v explicitly, the diagonals can be computed con-
veniently from the Cholesky factors of T'.

Several papers have characterized the elements of inverses of diagonally dom-
inant matrices. In [15] results are proved for tridiagonal matrices and in (5] they
are extended to matrices of larger bandwidth. It is known that the elements of
(T '1),~j are bounded in an exponentially decaying manner along each row or
column. Specifically, there exist p <1 and a constant Cg such that

(T~ < Copl' ™\

This result does not imply that the elements actually decay along each row; it
merely provides a bound. With Hypothesis (H2), however, one can prove the fol-
lowing;

LEMMA 3. Under Hypothesis (H2) the sequence {u;}[’%, is strictly increasing
and the sequence {v;}[%, is strictly decreasing.

Proof. 1t is clear that uy = a,/b; > 1 = u,. The proof continues by induc-
tion, using formulas of Lemma 2. Since #; —; > u;—,, one has from (9) that

aj—1— bi—
Ui > Uiy [_Tn__ > Uiy,
i

because a;—; — bj—; — bj—, > 0. To prove that the v; are decreasing we need to
modify the formulas of Lemma 2 slightly, using the ones for u to simplify those
for v. Note that

aiu; — bj—uj—1 — biujy1 =0
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and (@1t 41— bithi)vigy = 1+ bit Ui+ Vita
Thus
v = Qi 4 1Ui+1Vi+1 — bi1Ui+1Vi42 _ 4+ Vool — Di+1 Via for i<m—2
biu;j+y b; by 7% ’
and

am
Ym—-1 = b : Ym-
m—

Clearly v,, -1 > v,,, and by induction v; > v;4+; ((@i+1 — b; +1)/b;) > vi+1.

Note that we can prove the same result if we suppose only that T is diago-
nally dominant with a, > b, and a,, > b,, ;.

One can characterize the decay of the element along a row away from the
diagonal. Let @; and B3; be such that ¥; = a;—\u;—1, Vi = v;—1/Bi-1, i =2. We
have

— =% _ b 1 - _a

! bz bi —&i—l’ ! bl’

- _Gi+1 by 1 = am
61 bi bi ’ﬁ"i+19 :Bm—l bm—l.

In the general case we do not know the solution of the recurrences (which are
simply the recurrences for computing the elements of 7~!), but the previous dis-
cussion gives us the bounds

— a; —b'—l
a; > —l——b’—l—‘ > 1,
—_ a; --b
61. > .L‘i__lil > 1.
b;
In particular, we have, for i > j,
_ 1 - (T~
TNy =——T <5 _2 -
a1 H(ak k—l)
k=) br

If1/p = 1]31;121 ((ax — br—1)/by) we find, for i > j,
(T < (T Y™, p<l.

This latter bound is not very sharp. For example, for the matrix 7 with
a;=4,i=1 ..., mand b;=1,i =1, ...,m—1, which will be of interest later,
we get p = 1/3. But for this case

1

=4 wm=4——— =2
*j—1

The o; form a decreasing sequence that converges very quickly towards
2+ V3 = 3.732, which corresponds to a reduction factor of 1/(2 + V3) = 0.2679,
which is considerably less than 1/3. Of course if the a;’s and b;’s are constant, we
could construct the inverse in another way from the eigenvalues and eigenvectors
of T, which are known in this case.
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It is of importance to observe that if T is strictly diagonally dominant the ele-
ments of the inverse decrease strictly away from the diagonal -- the stronger the
diagonal dominance the faster the decay. This suggests the following means for
approximating the inverse of 7" with a matrix of small bandwidth.

If A is any matrix, denote by B(4, p) the band matrix consisting of the 2p +1
main diagonals of 4. For a banded approximation T,(p) to the inverse of T we
consider

Top) = B(T™",p) (10)
with p small, say 1 or 2.

3.3. Approximation from Cholesky factors. Another way of approximating
T~ !is to use the Cholesky factorization of T,

T=UTU,
with

4 '
Y1
=0 72 0

Ut = .. ..
—O0m-2 Ym-—1
L —O0m—1:Ym )

a lower bidiagonal matrix. We have
v = ay, Y101 = by,
8P+ =a;, vid = b;, i =2
The §;’s are positive, and the diagonal dominance of T implies
6 <wi, I<ism-—1

The matrix U~ 7T is lower triangular and dense. We denote

( 8
1
Y1
1
G = 0
Y2
_ 1
UT=|m & —
Y3
1
L o Mm—2 $m—1
Ym J

It is easy to see that the elements of U~T can be computed diagonal by diagonal,
since
0; . 5: ¢
g‘l= ! . 1<l<m_1, n = l§l+la lglsm—z’
Yivi+1 Yi
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and so on. We note also that U~ T can be generated diagonal by diagonal by tak-
ing successive terms of its Neumann series in U7 .

We have the following result similar to the one for the inverse of T'.

LEMMA 4. For each row, the elements of U™ T decrease away from the diago-
nal.

Proof. Since §;/v; <1 we have n;—; < {; < 1/v;+1; the proof is the same
for the other elements.

As an approximation for U~7 we can, therefore, take B(U™T,p) with p
small. As an approximation for 7~! we can use correspondingly

Ts(p) = B(U™',p)B(U~7, p). (11)
Note that 7~‘3(p) is positive definite. For p =1, one has the tridiagonal matrix
(1 § )
— +if =L
i 72
~ $1 1 $2
TH1) = = = + ==
() 72 v3 i 3

\ J
Unless the Cholesky decomposition is needed explicitly, it is necessary to compute
only the square of the +;’s to obtain 7'3(1), because
G _ b 2 _ aiv1— v
Yi+1 vivA® ! v
Thus one obtains 7~'3(1) directly from a;, b;, and v2.
Note that T3(1)T is the five diagonal matrix

1 —bouvy bauyvy
N —bouyvs 1 —b3uzvs biuyvs
()T = bouva  —biuayv, 1 —bauzvy bausv,

.

Since the wu;v; are expected to be small, T3(1) can be expected to be a good
approximation to T~

3.4. Polynomial approximation. A classical way to obtain an approximation
of T™! is to use a polynomial expansion in powers of 7. Let Dy be the diagonal
of T and denote

T =T-Dr.
Then
= (1 + DT—IT)—ID 1

Since T is strictly diagonally dominant, the corresponding Jacobi iteration is con-
vergent, which implies that the eigenvalues of the Jacobi iteration matrix —Dr T
(which are real) are contained in (—1,+1) (see for example [12], [21]). Thus one can
write

I +DF'T)™' = 3 (-1 D7 T,
k=0
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the series being convergent.

The powers of Df!T contain more and more nonzero diagonals as k
increases. As an approximate inverse we can take simply the first few terms,
which are the sparsest ones (Taking only the first term gives the diagonal approxi-
mation T of §3.1.). It is well known, however, that if the eigenvalues of Dy !T
are not close enough to zero, the truncated series could be a poor approximation.
Better polynomial approximations can be found (cf. [14]).

Let S = D7 !T, and suppose we want to find a polynomial P of degree less
than or equal to » that minimizes (I +S)~' — P(S)ll,. Since S is similar to a
symmetric matrix there exists a unitary matrix Q such that

S = geQ’,

where 0 is a diagonal matrix whose elements are the eigenvalues of S.
We have

P(S) = QP(©)Q7,
so that

I +8)™" = P(S)l; = II+€)™' — P(®)ll < Cimax| — P,

1
1+6;
where C, is constant and 8;, 1 <i <m, are the eigenvalues of S. To minimize
the right-hand side (the minimum, of course, need not minimize also the left-hand
side) we must find the polynomial approximation of 1/(1+.x) on the set of eigen-
values 6; of S. Instead we could solve the simpler problem of finding

. 1
min ag[la%;f..]" 1o P01,
where 6, (respectively, 6,,) is the smallest (respectively, largest) eigenvalue of S.
The solution to this problem is given by Chebyshev polynomials.
In general, however, even the extremal eigenvalues 6, and 6,, are not known;
all one knows is that —1 <6, <#6,, <1 holds. Since 1/(1+x) is discontinuous at
= —1, we could simply compute P to yield

i |
min max ! T+4

This should give a good result for the eigenvalues between 0 and 1, but a poor one
for the smaller eigenvalues. For a first degree polynomial we obtain

P(©) = 0.9412 — 0.4706 O.

As will be seen later, it is possible to obtain a better approximation when
additional information about the eigenvalues is available. In general, we shall be
considering tridiagonal polynomial approximations 7 to T~ ! of the form

— PO

Tya.8) = aD7 ' + D7 ' TD; !, (12)
where the coefficients o and 3 are real.

3.5. Comparison of approximations for the model problem. We now compare
the above approximations for the model problem, for which in (7) a; =4,
i=1...,m,andb;=1,i=1,...,m—1. The case m = 10 is considered. The
upper triangular part of the inverse 77! as computed in double precision
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FORTRAN on an IBM 3081 by MATLAB [19] to four places is

0.2679 0.0718 0.0192 0.0052 0.0014 0.0004
0.2872 0.0770 0.0206 0.0055 0.0015
0.2886 0.0773 0.0207 0.0056

0.2887 0.0773 0.0207

0.2887 0.0773

0.2887

illustrating the rapid decay away from the diagonal.
For the different approximations 7; to 7! we get the following results (using

MATLAB), as summarized in Table 1 and Figure 1.

TABLE 1

Values of | T,- 7! Il for the model problem, m = 10.

231

The last entry

Approximation to 7'~} W7, — 77,
Diagonal (§3.1) T, 0.2305
Banded from exact inverse (§3.2)  Tx(1) 0.0456
Banded from exact inverse (§3.2)  T5(2) 0.0104
From Cholesky factors (§3.3) T4(1) 0.0569
From Cholesky factors (§3.3) T3(2) 0.0134
Polynomial (§3.4) 2_‘4( 1,—1) 0.1106
Polynomial (§3.4) 2‘4(.9412,—.4706) 0.1888
Polynomial (§3.4) T4(1.1429,—1.1429) 0.0577
5 6 7 8 9 1.0 1.1 1.2 1.3 1.4
T, 2,8 7 9 3 7 1 3 28
TA1) 39 1,59 1,7,8 3,4
TA2) 6,7,89 (0,0,1,3,3,4
T(1) 8,8 33 0,0,7,8 3,3
Tx2) 77,29 10,0,1,33,3
T, 7,7 2,299 | 6699
a,-1
T4 1,6 4 2 1,7 2,4,6,6
(.9412,—.4706)
T4 8,8 4,4 2,2,9,9 4,4
(1.1429,—1.1429)

FiG.1. Tabular display of eigenvalue distributions of f, T.
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T4(1.1429,—1.1429) corresponds to the min max polynomial over 6€[—0.5,0.5),
which interval is approximately the one bounded by the extremal eigenvalues
6, = —0.4797, 6,, = 0.4797 of S for this problem. Thus one should expect this
polynomial to give a better approximation than the other two. Values of
IT; — T~ ', to four places are given in Table 1. Figure 1 depicts the eigenvalues
of T;T in a format that permits a rough comparison of their distributions: The
eigenvalues are rounded to two decimal places, and the least significant digit is
entered in the column corresponding to the first digit(s).

It is evident that for this model problem the banded approximations from the
exact inverse and the approximations from Cholesky factors can give better
approximations to 7! than the polynomial expansions, in the sense of clustering
about 1 of the eigenvalues of T; T and smallness of IT; — T~ !ll,. It would be of
interest to know if the same results would hold for matrices T of larger
bandwidth.

4. Block preconditionings for the two-dimensional case. Based on the approx-
imate inverses of §3, we define the corresponding block preconditionings for the
two-dimensional problem. For this case the D; are tridiagonal, and our goal is to
keep the A;, i =2, in (4b) tridiagonal, or possibly of slightly greater bandwidth.
For the preconditionings discussed below, only the Cholesky factors L; of the A;
are actually stored for computational purposes, corresponding to (6).

4.1. The block preconditionings.

4.1.1. BDIA. The diagonal approximation T 1 in (8) is used; A;_ is diagonal
with
1
(Ai-1)j5
The A;’s are tridiagonal matrices at each stage differing from D; only in their diag-
onal elements.

Ai-1)jj =

4.1.2. INV(1). The banded approximation 7~"2(1) in (10) from the exact
inverse is used,

Ai—yp = B0

Each of the A;’s is tridiagonal. At each stage we compute two vectors ¥ and v
and use them to obtain the three main diagonals of A;Z};. We then compute and
store the Cholesky factors of A;. 2N words of storage are needed for M, as in
BDIA. We do not consider here keeping more diagonals in the approximation to
A;—Y for this case, as the particularly simple expression in Theorem 2 becomes
more complex if the A;’s have more than 3 diagonals.

4.1.3. CHOL(p). We use Ts(p) from (11),
Ai—1 = BUZY, pBUZT, p),

where A;—; = UL ,U;_,, with U;_; an upper triangular matrix. At each stage we
compute U; -, which is (except for i = 2) a matrix with p +1 nonzero main diag-
onals. The first p+1 diagonals of U;Z} can be computed diagonalwise starting
from the main diagonal. Since A;_; is a symmetric matrix of bandwidth 2p +1,
approximately 2m;+ (p+1)Y7,m; words of storage are needed for A,;.
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CHOL(p) is a special case of the following method proposed by Underwood [20]
in a slightly different setting.

4.1.4. UND(p,q). For this case
Ai—y = BBWUZY,g—DBUT,q—1),2p 1),

with ¢ =p. One computes the ¢ main diagonals of U;—7, but then stores only
the 2p —1 main diagonals of the product to form A;_;. More information about
U=T is used in UND(p,q) than in CHOL(p). The storage needed is
2m, + p X', m;. Note that UND(p, p) = CHOL(p —1).

4.1.5. POL(a,8). We use the polynomial approximation 7~’4(a,6) defined in
§3.4,

Ai—y = Dr;+ Ty,

Aj—y = aDr )~y +BD7}\Ti—\Drj.

Each A; is tridiagonal. Different values of « and 8 are used. The storage require-
ments are the same as for BDIA and INV(1).

4.2. Properties of the A;. Now we study the properties of the A; in order to
prove that all of the methods described above can be carried out (i.e., we prove
that the A; satisfy hypothesis (H2) placed on T).

THEOREM 3. Under Hypothesis (H1) each A; computed by BDIA, INV(1),
CHOL(p), UND(p,q), and POL(c,8) with <0, 0<a<1, 8+ a=0 is strictly
diagonally dominant with positive diagonal elements and nonpositive off diagonal
elements.

Proof. This can be proved by induction using the same technique as in
Lemma 1. As the proof is essentially the same for all cases, we carry it out only

for CHOL(p).
B, —-CT
B=1|_c B

Let
be a positive definite M -matrix satisfying (H1) with B; and B, square, and let
By =LgLE be the Cholesky decomposition of B;. Denote

LB_II = EBTI +RB|3
where l}‘,‘ contains the p +1 diagonals of Lz ! that are kept for the approxima-
tion, and Rp, contains the remaining diagonals. Under hypothesis (H1) both Lz,

and Rp, are nonnegative. From the remark following Lemma 1 we know that
By — CL5, TL5;'CT is strictly diagonally dominant. We have

By~ CLy,"L5,'CT = By — CL5TLg;'CT + C(Ls, "Rp, + REL5," + RERR)CT.
The last matrix on the right is nonnegative, which implies that
B,—CLg"Lg'cT is at least as strongly diagonally dominant as is

B, — CL5, "L, 'CT. The desired result for CHOL(p) then follows by induction,
taking B, = D,, the first diagonal block of 4.
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4.3. Modified block preconditionings. It is known that point incomplete
Cholesky decomposition can be modified to yield a better approximation to 4 in
some cases. The modified decomposition is obtained from R by altering the diag-
onal elements of the Cholesky factors so that the row sums of M are equal to the
corresponding row sums of 4 (i.e., the row sums of R are zero). This gives an
improvement of the condition number of M !4 for natural ordering of the un-
knowns and for 4 diagonally dominant [7], [13].

As noted in §3, the remainder R for the block incomplete Cholesky precondi-
tioning is a block diagonal matrix whose elements are

Rl = 03
R; = A, —D; +A'A‘_11A'T = A‘(A,‘_ll —Ai— 1)A,'T, 2<i<n.

Thus the row sum of A;—}; must be available if R; is to have row sum zero.

4.3.1. MINV(1). For the case of INV(1), A7} itself is readily available, thus
it is easy to define MINV(1), the modified form of INV(1): Compute A;,_}; at each
stage from the two vectors u# and . Form the product
R, = A,[A, 1 — BAZ ,,l)]A, , which is a matrix with positive elements except for
the 3 main diagonals, which are zero. Then subtract from D; — 4;B(A;~},1)47 the
diagonal matrix made up of the row sums of R;, to yield the modified A;
corresponding to a remainder with a zero row sum.

We note that it follows from Hypothesis (H1) that the remainder matrix is
nonpositive definite, hence the eigenvalues of M ~'4 are greater than or equal to 1
for MINV(1).

THEOREM 4. Under Hypothesis (H1) each A; given by MINV(1) is a strictly
diagonally dominant matrix with positive diagonal elements and negative off diag-

onal elements.
B, —cCT
—C B, '

Progf. Consider
Let S, =C [B — BB ! ,D]C T and let R, be the diagonal matrix of row sums
of Sz Since B! =0, the elements of S, and hence of R, are positive. Note that
—CBB{ ', 1)CT —R, has the same row sums as
B2 CBB',1)[CT — S, = B,— CB{'CT. This, together with the positivity
of the elements, shows that B, — CB(B[ !,1)CT — R, is diagonally dominant.

4.3.2. MUND(p,q). For the other block preconditionings the row sums of
R; can be calculated easily, but not quite so directly. However, in UND(p,q) with
g >p a part of the remainder is immediately available and can be subtracted
from the diagonal. Recall that

Aj—y = LiL",,

R = Ai[a —B®BL=T,¢ —)B(L;Z},g —1),2p — 1)].

Denote by L, V =BW- },g—1) the ¢ diagonals of the inverse of L;_, that are
computed, and by Q;— the diagonals that are not computed

L=y =LY + Qi-y.
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Then
R = ALZTLTY + L2100 + Q5 Ly + QF1Qimy — BILZILZY 2p — AT
We can obtain L;Z]L;=} —B(L,~TL,Z},2p —1), since it is made up of the diago-

nals of the product that are not kept in the algorithm. Thus, instead of discarding
these diagonals we could subtract their row sums from the main diagonal. This
constitutes the algorithm MUND(p,q): Compute ¢ diagonals of L;~}. Form the
product L,ZfL,Z}. Use the 2p—1 main diagonals to form
D; — A;B(L;~TL;Z},2p —1)AT. Let S;_, be the matrix made up of the ¢ —p outer
diagonals of L;=JL,Z}. Compute the row sums of 4;S;—14; and subtract them
from the diagonal of D; — 4;B(L;~1L; =} ,2p —1)4] to obtain A;.

THEOREM 5. Under Hypothesis (H1) each A; given by MUND(p,q) is a
strictly diagonally dominant matrix with positive diagonal elements and negative
off-diagonal elements.

Proof. Along the same lines as for Theorem 4.

4.4. Higher dimensions. One can develop block incomplete Cholesky factori-
zations for three dimensional problems similarly, using, for example, incomplete
instead of complete factorizations L; for the A;. It is planned to investigate these
preconditionings in a subsequent study.

5. Numerical experiments. In this section we present the results of numerical
experiments on two-dimensional test problems comparing the preconditionings
introduced in the previous sections and some other, commonly used, point and
block preconditionings. The other preconditionings include: the point incomplete
Cholesky decomposition IC(p,q) introduced by Meijerink and van der Vorst [16),
[17), in which p bands adjacent to the main diagonal and ¢ outer bands are kept
in the factorization; its modified version MIC(p,q), of which the simplest
MIC(1,1), first introduced by Dupont, Kendall, and Rachford for five diagonal
matrices |7, is denoted here by DKR (and is used without parameters); symmetric
successive overrelaxation (SSOR) and its block version BSSOR (which in our case
is line SSOR); and for a few cases 1-line Jacobi preconditioning (LJAC). In addi-
tion, results will be given for some problems for the point Jacobi preconditioning
DIAG, for which M is a diagonal matrix whose diagonal elements are those of 4,
and for conjugate gradients without preconditioning (M = I, the identity matrix).

For a five diagonal matrix the work per iteration and storage for each of the
methods is given in Table 2. (For simplicity, the technique of 8] for reducing the
work requirements of the conjugate gradient method is not incorporated.) The
work is represented by number of floating point multiplies; about the same
number of additions are required also.

Table 2 does not include the overhead operations required to construct M. If
one carries out many iterations or solves several systems with different right-hand
sides, then this overhead can usually be neglected. Specific cases are discussed in
§5.1. Also not included in Table 2 is the work that might be required for evaluat-
ing iteration termination criteria.

It should be noted that the work requirements for the preconditionings
depend on the manner in which the computer programs are written. Generally we
have organized our programs with a preference toward multiplication over divi-
sion; for example, in INV(1) we use Varga’s implementation of Gauss elimination
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TABLE 2

Work per iteration and storage for the preconditionings.

Preconditioning M Mults. Storage
I 10N 0
DIAG 11N 0
IC(1,1), DKR 16N N
SSOR 17N 0
1C(1,2), MIC(1,2) 18N 3N
IC(1,3), MIC(1,3) 20N 4N
1C(2,4) 24N 6N
BSSOR 18N 2N
BDIA, INV(1), 18N 2N
MINV(1), POL(a,8)
CHOL(p), UND(p +1,9), | (4p+14)N | (p+1)N
MUND(p +1,9)

for tridiagonal matrices, which stores the reciprocals of the diagonals [21]. If a
division is carried out, as in DIAG when it is desired neither to scale the matrix
in advance nor to store the reciprocals of the diagonal, then, as is customary, a
division is counted as equivalent to a multiply. In CHOL(p: p >1), UND(p,q),
and MUND(p,q) routines from LINPACK (6] are used, but the operation counts
entered in Table 2 are made to correspond to the manner in which we implement
the other preconditionings. Thus the entries in Table 2, though basically con-
sistent, should be considered as approximate. They are used in subsequent tables
to convert observed number of iterations to computational work.

Our implementation of the conjugate gradient algorithm requires 4 N-vectors
of storage, plus 3 N-vectors for the matrix 4 and 1 N-vector for the right-hand
side. If it is not necessary to save the right-hand side, then 1 N-vector of storage
could be eliminated. The additional storage required by each of the precondition-
ings is given in the last column of Table 2.

5.1. First test problem. The first test problem is the model problem
—Au =f in Q the unit square (0,1)X(0,1)
with

u 09=0.

We use the standard five point stencil on a square mesh with 4 = (n+1)"},
N = n?, and natural ordering to obtain the corresponding linear algebraic system
(2). The experimental results are given for different values of 2 and different
stopping criteria. An estimate of the condition number of M ~'4 is given for each
of the preconditionings, as obtained from the conjugate gradient algorithm (cf. [3)),
and for small dimension (n» = 10) the complete spectrum of M ~'A4 is visualized.
The computations were carried out in double precision FORTRAN on an
IBM 3081. Unless otherwise noted the solution of the linear system is smooth
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(the right-hand side b in (2) corresponds to the solution &;(¢; — 1)n;(n; — 1)exp(&;n;)
at a point (&,n;)), and the starting vector has random elements in [-1,1]. As the
number of additions is roughly the same as the number of multiplications, we
indicate only the work required for the multiplications. The divisions that may
appear to be needed by some methods are not indicated, since they can be
removed with alternative coding. In Table 3 are given the number of iterations

TABLE 3

Number of iterations and total work
per point for Irk 1l /101, < 1076,
Test problem 1, N = 2500.

T T

M # iterations | work/N
I 109 1090
DIAG 109 1199
1C(1,1) 33 528
1C(1,2) 21 378
1C(1,3) 17 340
1C(2,4) 12 288
DKR 23 368
MIC(1,2) 17 306
MIC(1,3) 14 280
SSOR w=11 40 680
SSOR w=1.7 21 357
LJAC 80 1040
BSSOR w=1 28 504
BSSOR w=1.7 16 288
BDIA 22 396
POL(1,-1) 18 324
POL(0.9412,-0.4706) 21 378
POL(1.143,-1.143) 17 306
INV(1) 15 270
MINV(1) 11 198
CHOL(1) 16 288
CHOL(2) 12 264
CHOL(3) 9 234
CHOL(4) 8 240
CHOL(5) 7 238
UND(2,3) 15 270
UND(2,4) 15 270
UND(3,4) 11 242
UND(3,5) 11 242
UND(®4,5) 9 234
UND(4,6) 9 234
UND(5,6) 7 210
MUND(2,3) 12 216
MUND(2,4) 10 180
MUND(2,5) 9 162
MUND(3,4) 10 220
MUND(3,5) 8 176
MUND(3,6) 8 176
MUND(4,5) 8 208
MUND(4,6) 7 182
MUND(S,6) 7 210
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the corresponding total work per point required to achieve the stopping cri-

terion II7% ll o/ 7%, < 107°, for the case N = 2500. The value w = 1.7 for SSOR

and

BSSOR is the observed optimal for each case to the nearest 0.1 for minimiz-

ing the number of iterations required for convergence.

@)

(ii)
(iii)

@iv)

)

(vi)

(vii)

lem
tion

From Table 3, the following observations can be made.

For the patterns chosen, the larger the number of diagonals in the incom-
plete Cholesky decomposition, the fewer the number of iterations required
for convergence, as observed in [17] for the point preconditionings.

The modified versions of the preconditionings give better results (for this
problem and ordering of the mesh points).

In general, there is a trade off between storage and execution speed, but if a
low storage point-preconditioning is desired, DKR seems a good choice.
SSOR can give good results, but suitable parameter values are needed.

For methods of comparable storage the block methods give better results
than point methods, both in terms of number of iterations and work require-
ments.

For CHOL(p) it is not effective to go to values of p larger than p = 3, and,
as observed also in [2], for UND(p,q) to values of ¢ beyond ¢ =p+1. Itis
better to use the additional information given by UND(p,q) for larger g to
obtain a modified version of the factorization for ¢ = p +1.

The best polynomial, as expected, is POL(1.1429,-1.1429).

For this problem the best all-around preconditioning appears to be
MINV(1), because it has very low storage requirements and gives almost the
best work count -- approximately half of IC(1,2) and two thirds of MIC(1,2),
which require more storage.

Table 4 gives a comparison of some of the methods for solving the test prob-
to only moderate accuracy IIr% /101, < 1074 comparable to discretiza-
error. The conclusions drawn for the smaller residuals in Table 3 are in gen-

eral unchanged.

TABLE 4

Number of iterations and total work
per point for 1r¥ 11/ 101, < 1074
Test problem 1, N = 2500.

M # iterations | work/N
1 63 630
1C(1,1) 20 320
IC(2,4) 7 168
DKR 16 256
SSOR w=1.7 13 221
BSSOR w=1.7 10 180
INV(1) 9 162
MINV(1) 7 126
CHOL(1) 9 162
CHOL(5) 4 136
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In Table 5 are given the values of the smallest and largest eigenvalues of
M™'4, as estimated by the conjugate gradient algorithm, as well as the
corresponding condition numbers. It is seen that a considerable reduction in the
condition number can be achieved with some of the modified preconditionings,
with only a low cost in storage.

TABLE §

Extremal eigenvalues and condition number of M~ 14.
Test problem 1, N = 2500.

M MinM ~14) | AmaxdM T14) | (M 7'4)
I 0.0076 7.992 1053
IC(1,1) 0.0128 1.206 94.0
1C(1,2) 0.033 1.179 35.6
1C(1,3) 0.049 1.131 23.2
1C(2,4) 0.091 1.138 12.5
DKR 1.003 15.36 15.3
MIC(1,2) 1.003 8.83 83
MIC(1,3) 1.006 6.19 6.15
SSOR w=1. 0.0075 L. 132.5
SSOR w=1.7 0.040 L. 25.1
LJAC 0.0038 1.99 527.
BSSOR w = 1. 0.0150 L. 66.8
BSSOR w = 1.7 0.074 L. 13.5
BDIA 0.024 1.023 42.6
POL(1,-1) 0.035 1. 28.7
POL(0.9412,-0.4706) 0.027 1.002 37.2
POL(1.143,-1.143) 0.043 1.023 23.8
INV(1) 0.059 1.073 18.2
MINV(1) 1.006 4.261 4.24
CHOL(1) 0.050 1.050 20.8
CHOL(2) 0.090 1.065 11.8
CHOL(3) 0.142 1.076 7.56
CHOL(4) 0.204 1.078 5.29
CHOL(S) 0.272 1.078 3.97
UND(2,3) 0.058 1.07 18.5
UND(2,4) 0.059 1.073 18.2
UND(2,5) 0.059 1.073 18.2
UND(3.4) 0.104 1.086 10.5
UND(3,5) 0.106 1.089 10.2
UND(4,5) 0.162 1.091 6.75
UND(4,6) 0.166 1.096 6.59
UND(5,6) 0.228 1.088 4.78
MUND(2,3) 0.102 1.242 12.2
MUND(2,4) 0.202 1.564 7.74
MUND(2,5) 0.380 2.024 5.33
MUND(3,4) 0.164 1.242 7.58
MUND(3,5) 0.291 1.518 5.22
MUND(3,6) 0.483 1.887 391
MUND®4,5) 0.234 1.221 5.21
MUND(4,6) 0.375 1.449 3.87
MUND(,6) 0.309 1.197 3.88
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In Table 6 are given the estimated condition numbers (M ~!4) for different
values of n =(1/h) — 1. The quantity « is the estimated value, from the n =25
and n = 50 data, of the exponent corresponding to the assumed asymptotic rela-
tionship (M ~'4) ~ Ch~¢, where C is a constant. It is known theoretically that
for M =1 and M =1IC(1,1) there holds x(M~!'4) = O(h~?) and that for
M =DKR, «(M~'4) = O(h~!). The values of a obtained from the numerical

TABLE 6

Estimated condition number for different mesh sizes
and exponent a of asymptotic dependence on h = 1/(n +1).
Test problem 1.

v M~14)
n=10 n=20 n=25 n=50 | ©
I 4837 178.1 2733 1053  |2.00
1C(1,1) 510 1659 25 94 [1.97
1C(1,2) 238 667 98 356 |1.91
1C(1,3) 1.80 456 6.6 232 |1.87
I1C(2,4) 132 275 38 125 |177
DKR 304 593 74 153 |1.08
MIC(1,2) 1.84 336 42 83 |1.01
MIC(1,3) 149 256 315 61 |0.98
SSOR w = 1. 688 2312 35 132 |1.97
LIAC 2468 895 137. 527 |2.00
BSSOR w=1. 393 1204 18 66.7 |1.94
BDIA 276 79 117 425 [1.91
POL(1,-1) 209 552 8 286 |1.89
POL(0.9412,-0.4706) | 2.5 7. 103 371 |1.90
POL(1.143-1.143) | 1.86 47 67 238 188
INV(1) 161 374 53 182 (183
MINV(1) 1.3 194 231 423090
CHOL(1) 173 418 6. 208 |1.85
CHOL(2) 132 265 365 1185|175
CHOL(3) 114 193 253  7.54 |1.62
CHOL(4) 1.06  1.55 195 528 |1.48
CHOL(5) 1026 134 161 398 |1.34
UND(2,3) 163 38 54 1852 |1.83
UND(2,4) 1.62 375 533 1824 |1.83
UND(3,4) 126 242 33 1047 |1.71
UND(3,5) 125 239 324 1024 |1.71
UND(4,5) L1218 233 673|157
UND(4,6) 111 177 228 654 |1.56
UND(S,6) 1.05 147 18 48 |l.44
MUND(2,3) 139 276 379 1295 |1.82
MUND(2,4) 129 21 272 174|155
MUND(2,5) 128  1.89 226 533|127
MUND(3,4) 118 197 258  7.55|1.59
MUND(3,5) 115 167 204 522139
MUND(3,6) L1416 18 39 |L1I
MUND(4,5) 109 157 196 522|145
MUND(4,6) 107 143 168 38 |1.21
MUND(S,6) 104 135 162 39 [1.30
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experiments are in accord with these relationships. We see that all the point
incomplete decompositions IC(p,q) seem to be O(h~?), although the more diago-
nals that are taken the slower is the convergence to this asymptotic behavior. The
MIC methods are O(h™)).

For the block methods INV and CHOL the limiting value of o seems to be
two, and for MINV one. The observed values of a for the range of 4 considered
are smaller for the block methods than for the point methods with the same
storage. It is difficult to assess from the results the order of the MUND methods;
we believe that they are somewhere between 1 and 2, closer to 1 if more diagonals
are used to form M. Finally, Table 6 shows that even for smaller values of »
block methods give better reduction of the condition number than point methods.

It is well known that the rate of convergence of the conjugate gradient method
depends not only on the condition number but on the distribution of the interior
eigenvalues as well. It is therefore of interest to compare the eigenvalue spectra
for the different methods. These are compared for » = 10 in Figs. 2-4. Each
eigenvalue is designated by a vertical bar drawn at the appropriate abscissa value.
This representation depicts in an easily observable manner the separation and
clustering of the eigenvalues.

The spectra for all of the methods shown in Fig. 2 are on the same scale for
easy comparison. From the figure it is seen that for the block methods the eigen-
values are more clustered than for the point ones having the same storage require-
ments. (The relatively greater clustering for block SSOR over point SSOR is a
well-known property, cf. [9].) The values w = 1.7 and w = 1.5 are to the nearest 0.1
those for which the condition numbers for SSOR and BSSOR, respectively, are
smallest. The point modified methods, for which the eigenvalue range is different
than for the other methods, are shown separately in Fig. 3. Fig. 4 shows on the
same scale four methods with comparable storage: IC(1,1) and DKR, with one
vector of storage, and INV(1) and MINV(1) with two. Spectra for block SSOR
preconditioning for the values w = 1.0(0.1)1.9 can be found in [2], and enlarge-
ments showing the fine structure of the spectra of Figs. 2-4 are in an Appendix to
[2], available separately from the authors.

Table 7 gives the number of iterations required to solve the test problem for
different convergence criteria. For these cases the initial approximation was
x%=0, and the solution was the same smooth vector as for Tables 4 and 5 with
N = 2500.

From these results, it appears that, at least for the test problem with a smooth
solution, the relative norm of the residual gives a good stopping criterion.

In Table 8 we give results for N = 2500 for the same smooth solution as for
previous tables, with two different choices of the starting vector, x®=0 and x°
consisting of random numbers in [-1,1] The stopping criterion is
I7* i/ 17%lloo < 1076, The initial approximation x° random appears to give
better results. This feature will be developed in a subsequent study.

From the tables one can conclude that for this test problem block methods
give better results than point ones. The most promising block method is
MINV(1). Since the setup time for constructing M was not included in the tables,
it is of interest to consider it, as it can be of importance if only one problem is to
be solved or only a few iterations taken. Table 9 gives the effect of including the
setup time for three of the preconditionings for the N = 2500 test problem. Times
are in CPU seconds for an IBM 3081 computer. Even if the setup times are
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included, MINV(1) still gives considerable improvement for this problem.

The effects of Neumann boundary conditions were examined as well in [2],
where it was found that the relative merits of the different preconditionings are
about the same as for this test problem.

TABLE 7

Number of iterations for different convergence criteria.
Test problem 1, x°= 0.

Number of iterations
M
ek _ _ _ _
e <1078 | lx—xkly, <1076 | lx—xFI, <1078 | fx—xki, <1076
Tl
I 117 99 114 110
IC(1,1) 38 31 36 35
1C(1,2) 26 22 26 24
1C(1,3) 21 19 22 20
1C(2,4) 16 14 16 15
DKR 25 18 22 21
MIC(1,2) 18 14 17 16
MIC(1,3) 18 16 18 17
SSOR w=1. 44 37 43 41
SSOR w=1.7 22 17 20 19
BSSOR w = 1. 36 28 34 32
BSSOR w = 1.7 18 15 18 16
BDIA 27 24 28 26
POL(1,-1) 23 20 24 22
INV(1) 19 16 19 18
MINV(1) 13 9 11 11
CHOL(1) 20 18 21 19
CHOL(2) 15 13 16 14
CHOL(3) 12 11 13 12
CHOL(4) 10 9 10 10
CHOL(5) 9 8 9 8
UND(2,3) 19 16 19 18
UND(3,4) 14 13 15 14
UND(4,5) 12 10 12 11
UND(5,6) 9 8 10 9
MUND(2,3) 15 14 16 15
MUND(2,4) 13 11 13 12
MUND(2,5) 12 9 11 10
MUND(3,4) 12 11 13 12
MUND(3,5) 11 9 11 10
MUND(4,5) 10 9 10 10
MUND(4,6) 9 8 9 9
MUND(S,6) 9 8 9 8
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TABLE 8

Number of iterations
for 17k /101, < 1076
Jor different starting vectors.
Test problem 1.

M # of iterations
x%=0_ x%random
1 117 109
IC(1,1) 38 33
1C(1,2) 26 21
1C(1,3) 21 17
1C(2,4) 16 12
DKR 25 23
MIC(1,2) 18 17
MIC(1,3) 18 14
SSOR w=1. 44 40
SSOR w = 1.7 22 21
BSSOR w = 1. 36 28
BSSOR w=1.7 18 16
BDIA 27 22
POL(1,-1) 23 18
INV(1) 19 15
MINV 13 11
CHOL(1) 20 16
CHOL(2) 15 12
CHOL(3) 12 9
CHOL(4) 10 8
CHOL(5) 9 7
UND(2,3) 19 15
UND(3,4) 14 11
UND(4,5) 12 9
UND(5,6) 9 7
MUND(2,3) 15 12
MUND(2,4) 13 10
MUND(2,5) 12 9
MUND(3,4) 12 10
MUND(3,5) 11 8
MUND(4,5) 10 8
MUND(4,6) 9 7
MUND(5,6) 9 7
TABLE 9

Total time including
setup in CPU seconds for
Pk i,/ 1701, < 107,
Test problem 1.

M total time

IC(1,1) 1.37
INV(1) 0.963
MINV() | 0723
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DKR

MIC(1,2)

MIC (1,3)

FiG. 3. Spectra of M4 for modified preconditionings.

Test problem 1. N = 100.

o

T

um
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|
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INV (1)

MINV (1)

FIG. 4. Spectra of M~ for four preconditionings
with comparable, minimal storage. Test problem 1. N = 100.
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5.2. Second test problem. We solve the linear system obtained by the stan-
dard five point discretization of the problem

_ ou|_ o o -
] [x(sl,sz) a&] a [x(el,sz) a&] S in 2=(@ODXOD,

u=0 on 49,

for the discontinuous A depicted in Fig. 5. The solution is the same smooth one
as for the first test problem, the starting vector is random, and the stopping cri-
terion is 7% I,/ 1701, < 1076,

Table 10 gives the results for the number of iterations, the work required, and
an estimate of the condition number as obtained from the conjugate gradient
parameters. The values w= 1.6 for SSOR and w=1.5 for BSSOR are the
observed optimal ones to the nearest 0.1.

The very large condition numbers for most of the entries result from the
small first eigenvalue, which is isolated from the others. Thus the number of
iterations does not change much, for example from IC(1,1), which has a small iso-
lated eigenvalue, to DKR, which has all eigenvalues greater than one. It is the
distribution of the other eigenvalues that is important. In terms of work per
point, block methods give better results than point ones. Again MINV(1) seems a
good compromise between efficiency and storage. This example shows that block
methods can be effective for problems with coefficients having large jump discon-
tinuities.

5.3. Third test problem. This example, which is frequently used in the litera-
ture, was presented in [21]. The problem is to solve

R INY 72 I I N3 o ina-
3, [M 351] 35 [Az 6{-2] +ou =0 in Q= (0,2.1)X(0,2.1),

ou
an

The domain is shown in Fig. 6 and depicts the values of the coefficients, which
are discontinuous. The solution is ¥ = 0.

We take & = 1/42, x° a vector with random elements in [-1,1], and stopping
criterion llx¥ ll, < 1075, The results are given in Table 11. The values w=1.7
for SSOR and w = 1.5 for BSSOR are the observed optimal ones to the nearest 0.1.

Table 11 indicates that for this problem the larger the number of diagonals
retained, the lower the work required for convergence. This holds both for point
and block methods. Generally, the block methods are slightly better.

In order to compare our methods with those presented by Meijerink and Van
der Vorst [17] for this problem, we give the results in Table 12 for convergence cri-
terion lr¥ I, < 1078, For the IC methods, we obtain about the same results as in
[17), within a few iterations. (The distribution from which the starting vectors
were drawn is different— our random numbers are between -1 and 1, while theirs
are between 0 and 1.)

To compare point and block methods with the same storage, one can take, for
example, IC(1,2) or MIC(1,2) and CHOL(2). It is clear that the block method is
better. The situation is the same if more diagonals are taken. To get down to 16

=0
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(1,1
Q2 (3/4,3/4)
ezT Q - {1000, En e
I, (Eney
(1/74,1/74)
(00) — €

FiG. 5. Test problem 2,

TABLE 10

Number of iterations, total work per point,
and estimated condition number of M~ 'A.
Test problem 2, N = 2500, Irk /101, < 107¢,

M # iterations | work/N | (M ~14)
DIAG 137 1507
IC(1,1) 47 752 46770
1C(1,2) 30 540 17062
1C(1,3) 25 500 11102
1C(2,4) 18 432 5668
DKR 32 512 40
MIC(1,2) 23 414 26
MIC(1,3) 20 400 24
SSOR w= 1. 55 935 66162
SSOR w = 1.6 36 612 16620
BSSOR w = 1. 41 738 33929
BSSOR w=1.5 23 414 14777
BDIA 34 612 21489
POL(1,-1) 28 504 14182
INV(1) 22 396 8790
MINV(1) 17 306 20
CHOL(1) 24 432 10288
CHOL(2) 18 396 5531
CHOL(3) 14 364 3307
CHOL(4) 12 360 2154
CHOL(5) 10 340 1490
UND(2,3) 22 396 8946
UND(3,4) 17 374 4762
UND(4,5) 14 364 2876
UND(5,6) 12 360 1899
MUND(2,3) 19 342 5825
MUND(2,4) 17 306 3472
MUND(2,5) 16 288 2135
MUND(3,4) 15 330 3355
MUND(3,5) 14 308 2135
MUND(3,6) 14 308 1379
MUND(4,5) 12 312 2136
MUND(4,6) 12 312 1416
MUND(5,6) 11 330 1451
LJAC 111 1443
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FIG. 6. Test problem 3,
TABLE 11
Number of iterations and total work
per point for I1x* 1, < 1076,
Test problem 3, N = 1849.

M # iterations | work/N
IC(1,1) 74 1184
1C(1,2) 47 846
I1C(1,3) 38 760
1C(2,4) 29 696

DKR 53 848
MIC(1,2) 36 648
MIC(1,3) 29 580

SSOR w=1. 88 1496
SSOR w = 1.7 52 884
BSSOR w= 1. 65 1170
BSSOR w= 1.5 46 828

BDIA 52 936

POL(1,-1) 43 774
INV(1) 34 612
MINV(1) 25 450
CHOL(1) 36 648
CHOL(2) 28 616
CHOL(3) 22 572
CHOL(®4) 19 570
CHOL(5) 16 544
UND(2,3) 34 612
UND(3,4) 26 572
UND(4,5) 21 546
UND(5,6) 18 540
MUND(2,3) 28 504
MUND(2,4) 25 450
MUND(2,5) 23 414
MUND(3,4) 23 506
MUND(3,5) 21 462
MUND(4,5) 19 494
MUND(4,6) 18 468
MUND(S,6) 17 510
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TaBLE 12
Number of iterations and total work
per point for Irk 1, < 1076,
Test problem 3, N = 1849.

M # iterations | work/N
IC(1,1) 79 1264
1C(1,2) 49 882
1C(1,3) 39 780
1C(2,4) 30 720

DKR 66 1056
MIC(1,2) 43 774
MIC(1,3) 35 700

SSOR w = 1. 94 1598
SSOR w,p, 56 952
BSSOR w=1. 68 1224
BSSOR w,, 48 864

BDIA 55 990

POL(1,-1) 45 810
INV(1) 36 648
MINV(1) 29 522
CHOL(1) 38 684
CHOL(2) 29 638
CHOL(3) 23 598
CHOL(4) 20 600
CHOL(5) 17 578
UND(2,3) 36 648
UND(@3,4) 28 616
UND(4,5) 22 572
UND(5,6) 19 570
MUND(2,3) 30 540
MUND(2,4) 26 468
MUND(2,5) 24 432
MUND(3,4) 24 528
MUND(3,5) 22 484
MUND(4,5) 20 520
MUND(4,6) 19 494
MUND(S,6) 17 510

iterations with point preconditioning IC(5,7) is used in [17], but approximately the
same goal can be achieved with only six instead of 12 vectors of storage using the
block preconditioning CHOL(S).

6. Concluding remarks. The above examples show that, for linear problems
coming from finite-difference approximations of elliptic partial differential equa-
tions, the block preconditionings we have introduced can give better results for
two-dimensional problems than the corresponding point ones currently in use.
The results are better also than for block SSOR preconditioning. Generally, for
natural ordering of the unknowns, the modified methods give better results for our
test problems than unmodified ones. Particularly attractive is the preconditioning
INV(1)—and its modified form MINV(1)—because of the low storage require-



252 P. CONCUS, G. H. GOLUB AND G. MEURANT

ments and rapid convergence. The results for three dimensional problems await
further study. It would be of interest to explore the behavior of our block precon-
ditioning methods on more general problems such as the ones arising from finite
element approximation with node orderings leading to a block tridiagonal matrix.

7. Acknowledgment. We are pleased to acknowledge that much of this work
has been stimulated by the paper of R. R. Underwood [20] and our personal asso-
ciation with him.
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