
Local preconditioners for two-level non-overlapping domain

decomposition methods

L. M. Carvalho� L. Giraudy G. Meurantz

CERFACS Technical Report TR/PA/99/38 - November 1999

Abstract

We consider additive two-level preconditioners, with a local and a global component, for

the Schur complement system arising in non-overlapping domain decomposition methods. We

propose two new parallelizable local preconditioners. The �rst one is a computationally cheap

but numerically relevant alternative to the classical block Jacobi preconditioner. The second

one exploits all the information from the local Schur complement matrices and demonstrates

an attractive numerical behavior on heterogeneous and anisotropic problems. We also pro-

pose two implementations based on approximate Schur complement matrices that are cheaper

alternatives to construct the given preconditioners but that preserve their good numerical

behavior. We compare their numerical performance with well-known robust preconditioners

such as BPS [6] and the balanced Neumann-Neumann method [15].

Keywords : Domain decomposition, two-level preconditioning, Schur complement, paral-

lel distributed computing, elliptic partial di�erential equations, parabolic partial di�erential

equations.

1 Introduction

In recent years, there has been an important development of domain decomposition algorithms

for numerically solving partial di�erential equations. Nowadays some preconditioners for Krylov

methods possess optimal convergence rates for given classes of elliptic problems. These optimality

or quasi-optimality properties are often achieved thanks to the use of two-level preconditioners that

are composed by local and global terms acting either in an additive or in a multiplicative way. In

the framework of non-overlapping domain decomposition techniques, we refer for instance to BPS

(Bramble, Pasciak and Schatz) [6] and Vertex Space [12, 19] for additive two-level preconditioners,

and to Balancing Neumann-Neumann [15, 16], as well as FETI [13] for examples of multiplicative

ones. We refer to [10] and [20] for a more exhaustive overview of domain decomposition techniques.

We consider additive two level preconditioners similar to BPS that can be written as the sum of

a local and a global component. In Section 2, we describe a set of parallelizable local preconditioners

that are the main focus of this paper and discuss the connections with well-known preconditioners

like Vertex-Space [19] and Neumann-Neumann [11]. We also briey describe the global/coarse space

component we have used for the numerical experiments reported in Section 3. These numerical

experiments are conducted for two types of partial di�erential equations on two-dimensional do-

mains. For elliptic equations, we show experiments for heterogeneous and/or anisotropic problems.
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We also solve systems arising from the time implicit discretization of linear parabolic equations.

To assess the relevance of the new preconditioners, we compare their numerical behaviors with

well-known robust preconditioners such as the balanced Neumann-Neumann method [15]. Finally,

to alleviate the computational cost for constructing these new local preconditioners, that require

the explicit computation of the local Schur complement, we propose cheaper alternatives and show

experimental results that demonstrate their eÆciency.

2 Preconditioner description

We consider the following 2nd order self-adjoint elliptic problem on an open polygonal domain
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;

v = 0 on @
Dirichlet 6= ;;
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= 0 on @
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(1)

where @
Dirichlet \ @
Neumann = ; and a(x; y); b(x; y) 2 IR2 are strictly positive and bounded

functions on 
. We assume that the domain 
 is partitioned into N non-overlapping subdomains


1; : : : ;
N with boundaries @
1; : : : ; @
N ; this de�nes a coarse mesh, �
H , with mesh sizeH being

the largest diameter of the subdomains. We assume that a mesh is given which is a re�nement of

the subdomain partitioning. We discretize (1) by linear �nite elements resulting in a symmetric

and positive de�nite linear system

Au = f:

Let � be the set of all the indices of the mesh points which belong to the interfaces between the

subdomains. Grouping the unknowns for the mesh points corresponding to � in the vector u�
and the ones corresponding to the unknowns in the interior I of the subdomains in uI , we get the
reordered problem:

�
AII AI�

AT

I� A��

� �
uI
u�

�
=

�
fI
f�

�
: (2)

Eliminating uI from the second block row of (2) leads to the following reduced equation for u�:

Su� = f� �AT

I�A
�1
II
fI ; (3)

where

S = A�� �AT

I�A
�1
II
AI� (4)

is the Schur complement of the matrix AII in A. The matrix S inherits from A the symmetric

positive de�niteness property. Therefore we use preconditioned conjugate gradient iterations for

solving (3).

In Figure 1, we depict an internal subdomain 
i with its edge interfaces Em, Eg , Ek, E`

and vertex points as vl that de�ne �i = @
i � @
. Let R�i
: � ! �i be the canonical pointwise

restriction which maps full vectors de�ned on � into vectors de�ned on �i, and let RT

�i
: �i ! �

be its transpose. For a sti�ness matrix A arising from a �nite element discretization, the Schur

complement matrix (4) can also be written as:

S =

NX
i=1

RT

�i
S(i)R�i

;
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Figure 1: An internal subdomain

where

S(i) = A
(i)

�i
�AT

i�i
A�1
ii
Ai�i

(5)

is referred to as the local Schur complement associated with the subdomain 
i. S(i) involves

submatrices from the local sti�ness matrix A(i), de�ned by

A(i) =

�
Aii Ai�i

AT

�ii
A
(i)

�i

�
: (6)

The matrix A(i) corresponds to the discretization of Equation (1) on the subdomain 
i with

Neumann boundary condition on �i and Aii corresponds to the discretization of Equation (1) on

the subdomain 
i with homogeneous Dirichlet boundary conditions on �i. In a parallel distributed

memory environment, where each subdomain is assigned to one processor, all the local Schur

complement matrices can be computed simultaneously by all the processors and the complete

Schur matrix S de�ned by (4) is never fully assembled.

The local Schur complement matrix, associated with the subdomain 
i depicted in Figure 1, is

dense and has the following block structure:

S(i) =

0
BBBBBB@

S
(i)
mm Smg Smk Sm` S

(i)

mV

Sgm S
(i)
gg Sgk Sg` S

(i)

gV

Skm Skg S
(i)

kk
Sk` S

(i)

kV

S`m S`g S`k S
(i)

``
S
(i)

`V

S
(i)

V m
S
(i)

V g
S
(i)

V k
S
(i)

V `
S
(i)

V V

1
CCCCCCA
;

where V is the set of vertices vl of 
i. The �rst four diagonal blocks represent the local coupling

between nodes on an edge interface introduced by the subdomain 
i and are only contributions to

the diagonal blocks of the complete Schur complement matrix S. For instance, the diagonal block

of the complete matrix S associated with the edge interface Ek is Skk = S
(i)

kk
+ S

(j)

kk
. Assembling

each diagonal block of the local Schur complement matrices and the blocks associated with the

vertices, we obtain the local assembled Schur complement, that is:

�S(i) =

0
BBBB@

Smm Smg Smk Sm` SmV

Sgm Sgg Sgk Sg` SgV
Skm Skg Skk Sk` SkV
S`m S`g S`k S`` S`V
SV m SV g SV k SV ` SV V

1
CCCCA ;
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which corresponds to the restriction of S to the unknowns associated with the interface �i of 
i.

In a parallel distributed memory framework, few neighbor to neighbor communications enable

each processor to get its �S(i) once S(i) has been compuuted locally.

2.1 Local preconditioners

The new local preconditioners can be described using a set of canonical restriction operators. Let

U be the space on which S operates and (Ui)i=1;p a set of subspaces of U such that:

U = U1 + :::+ Up:

Let Ri be the canonical pointwise restriction of nodal values de�ned on Ui. Its transpose extends
grid functions in Ui by zero to the rest of U . Using the above notation, we can de�ne a wide class

of block preconditioners by

Mloc =

pX
i=1

RT

i
M�1

i
Ri (7)

where

Mi = RiSR
T

i
: (8)

The properties of the operators (7) and (8) are given by the following lemma:

Lemma 1 If the operator RT

i
is of full rank and if S is symmetric and positive de�nite, then the

matrix Mi, de�ned in Equation (8), and the matrix Mloc de�ned in Equation (7) are symmetric

and positive de�nite.

Proof

The proof can be done in two steps. We �rst show that M�1
i

is symmetric positive de�nite (SPD)

then that Mloc is SPD.

Let < :; : > denotes the scalar product associated with the 2-norm.

� M�1
i

is SPD is equivalent to show that Mi is SPD.

By de�nition Mi is symmetric.

8x 6= 0 < x;Mix > =< x;RiSR
T

i
x >

=< RT

i
x; SRT

i
x >

In addition

Ri is full rank) RT

i
x 6= 0

S is SPD

�
)< RT

i
x; SRT

i
x > is strictly positive.

� Mloc is SPD.

Let x 2 U .

< x;Mlocx >=< x;

pX
i=1

RT

i
M�1

i
Rix >=

pX
i=1

< Rix;M
�1
i

Rix >; (9)

where 8i < Rix;M
�1
i

Rix >� 0 since M�1
i

is SPD. So the expression (9) can be zero if and

only if 8i < Rix;M
�1
i

Rix >= 0 which implies that x = 0 since Ri are canonical restrictions

such that Ui = Im(Ri) and U = U1 + :::+ Up.

�



5

Remark 1 If U = U1 � :::: � Un, then Mloc is a block Jacobi preconditioner. Otherwise, Mloc is

a block diagonal preconditioner with an overlap between the blocks as Ui \ Uj 6= ;. In this case,

the preconditioner can be viewed as an algebraic additive Schwarz preconditioner for the Schur

complement.

The preconditioners are requested to be eÆcient on parallel distributed memory platforms.

Therefore, we do only consider subspaces Ui that involve information mainly stored in the local

memory of the processors; that is information associated with only one subdomain and its closest

neighborhs. This approach introduces only cheap neighbor to neighbor communications between

processors. In this respect, we present three di�erent decompositions of U by associating each

subspace respectively with:

1. each edge Ek and each vertex vl of the decomposition giving rise to the edge preconditioner

described in Section 2.1.1,
2. each edge Ek enlarged with neighbors of its ended points v` resulting in the vertex-edge

preconditioner presented in Section 2.1.2,
3. each interface �i of the subdomains giving the subdomain preconditioner presented in Sec-

tion 2.1.3.

2.1.1 Edge preconditioners

For each edge Ei we de�ne Ri � REi
as the standard pointwise restriction of nodal values on

Ei. Its transpose extends grid functions in Ei by zero to the rest of the interface. Thus, Sii =
REi

SRT

Ei
= Mi. Similarly, we consider Rvl

the restriction operator for each vertex of the coarse

mesh �H de�ned by the decomposition. Using the above notation we de�ne the edge-based local

preconditioner by

Mloc =ME =
X
Ei

RT

Ei
S�1
ii
REi

+
X
vl

RT

vl
S�1
vlvl

Rvl
: (10)

This preconditioner aims at capturing the interaction between neighboring nodes within the

same edge interface. Notice that Svlvl in (10) is just a scalar which is the diagonal coeÆcient of the
equation associated with the vertex vl; this only corresponds to a diagonal scaling at the vertices

of �H . This preconditioner is the straightforward block Jacobi that is well-known to be eÆciently

parallelizable. The main criticism against ME is that it does not manage consistently neighbor

nodes that are close to a vertex but belong to di�erent edges, see Figure 1. We describe in the

next section a preconditioner that intends to address this de�ciency.

2.1.2 Vertex-edge preconditioners

The vertex-edge preconditioner is similar to the Vertex-Space preconditioner introduced in [19], for

which we merge into a single subspace the edge and vertex subspaces that appear in an additive

way in [12, 19].

In Figure 2, we depict Uk, the image of the restriction operator Rk � RV Ek
associated with

the vertex-edge Ek. With this notation the vertex-edge preconditioner is de�ned by

Mloc =MV E =
X
Ei

RT

V Ei
S�1
ii
RV Ei

:

In that case, two neighbor vertex-edges (for instance, Ek and Eg in Figure 2) intercept each

other, then the associated space splitting (Ui)i does not de�ne a direct sum of the space U and

the number of nodes in the neighborhood of the vertex vl de�nes the amount of overlap between

the blocks Mi of the preconditioner.
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Figure 2: Uk associated to the vertex-edge preconditioner.

2.1.3 Subdomain preconditioner

In this alternative, we try to exploit all the information available on each subdomain and we

associate each subspace Ui with the entire boundary �i of subdomain 
i. Here, we have Ri � R�i
.

Consequently Mi = �S(i) is the assembled local Schur complement. This splitting (Ui)i is not a
direct sum of the space U and we have introduced some overlap between the blocks de�ning the

subdomain preconditioner MS.

We should notice the similitude between MS and the Neumann-Neumann preconditioner,

MNN , originally proposed in [5] and [11].

MS can be written as:

MS =

NX
i=1

RT

�i
( �S(i))�1R�i

;

while the Neumann-Neumann preconditioner is

MNN =

NX
i=1

RT

�i
(Di(S

(i))+Di)R�i
: (11)

In Equation (11) the matrices Di are weighted matrices such that

NX
i=1

RT

�i
DiR�i

= I . I denotes

the identity matrix and (S(i))+ is the Moore-Penrose pseudo-inverse since the local Schur comple-

ment matrices S(i) are singular for internal subdomains. Notice that assembling the local Schur

complement �Si removes these singularities.

2.2 Computing alternatives

The construction of the proposed local preconditioners can be computationally expensive because

the exact local Schur complement S(i) needs to be formed explicitly and then dense matrices Mi

should be factorized. To alleviate these costs we propose two alternatives that can be combined.

The �rst intends to reduce the construction cost of S(i) by using approximated solution of the

local Dirichlet problems Aii; the second intends to reduce the storage and the computational cost

to apply the preconditioner by using sparse approximation of the Mi obtained by dropping the

smallest entries.
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2.2.1 Local Schur with inexact local solvers

Using the up-to-date sparse direct technology of eÆcient sparse direct solver, Aii is factorized

and S(i) can be computed via many forward/backward substitutions. Nonetheless, this procedure

remains computationally expensive. To alleviate this cost, the exact solution of the local Dirichlet

problems A�1
ii

(see Equation (5)) can be replaced by some cheap approximations. For symmetric

positive de�nite problems, approximations can be eÆciently computed either by approximate in-

verses like AINV [3] or by an Incomplete Cholesky factorization, ILLT resulting in an approximate

Schur complement ~S.

Lemma 2 If the matrix A =

�
AII AI�

AT

I� A��

�
is a Stieltjes matrix and (LLT ) is an incomplete

Cholesky factorization of AII then ~S = A�� �AT

I�(LL
T )�1AI� is also an Stieltjes matrix.

Proof

It is enough to show that

0 � (LLT )�1 � A�1
II
;

since Theorem 7.1 in [2] will then insure that the resulting approximate Schur is a M-matrix. By

construction ~S is symmetric then is a Stieltjes matrix consequently SPD.

AII is a symmetric M-Matrix, so by Theorem 2.4 [17], AII = (LLT )�R is a regular splitting (ie.

(LLT )�1 � 0 and R � 0).

AII = (LLT )�R) (LLT )�1AII = I � (LLT )�1R � I:

Since AII is a M-matrix, A�1
II
� 0 then

0 � (LLT )�1 � A�1
II
:

�

We note that the same property holds for approximate Schur complement computed with

AINV. In [4] it is shown that the approximate inverse G of a M-matrix A computed by AINV also

satis�es the inequality 0 � G � A�1.

Notice that Lemma 1 and 2 insure that for M-matrices the local preconditioner built using

either ILLT or AINV are SPD.

2.2.2 Sparse approximation of the local Schur complement

Another possible alternative to get a cheaper preconditioner is to consider a sparse approximation

for S in (8) which may result in a saving of memory to store the preconditioner and saving of

computation to factorize and apply the preconditioner. This approximation Ŝ can be constructed

by dropping the elements of S that are smaller than a given threshold. More precisely the following

dropping strategy can be applied:

ŝij =

�
0 if sij � �(jsiij+ jsjj j)
sij else

(12)

Lemma 3 If the matrix A =

�
AII AI�

AT

I� A��

�
is a Stieltjes matrix then the sparse approximation Ŝ

computed by (12) applied to S = A�� �AT

I�A
�1
II
AI� is also an Stieltjes matrix.
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Proof

It is well-known that S is a Stieltjes matrix (see [2] for instance), then it is easy to see that removing

o� diagonal entries while preserving symmetry preserves this property.

�

The two alternatives can be combined, that is dropping the smallest entries of approximate

Mi, to produce preconditioner cheap to compute and to store. We note that, for M-matrices, this

combination gives rise to preconditioner that are still SPD.

In Section 3.2, we report some experiments using ILLT as well as experiments with Ŝ and com-

bining the two strategies.

2.3 Coarse space preconditioner

It can be shown (see for instance [10]) that the local preconditioners alone are not numerically

scalable for elliptic problems in the sense that

�(MlocS) = O(H�2); (13)

where H denotes the diameter of the subdomains and �(A) is the condition number of the matrix

A. This means that when the number of subdomains increases the number of conjugate gradient

iterations increases as well. To ensure a quasi-optimality property, that is, the condition number

of the associated preconditioned systems is independent from the number of subdomains and only

logarithmically dependent on the size of the subdomains, a coarse problem de�ned on the whole

physical domain should be incorporated into the preconditioner. This global coupling is critical for

scalability. In particular, it has been shown in [6] that, when applying the original BPS technique

to a uniformly elliptic operator, the preconditioned system has a condition number

�(MBPSS) = O(1 + log2(H=h)); (14)

where h is the mesh size. This implies that the condition number depends only weakly on the

numbers of points per subdomain but does no longer depends on the number of subdomains.

Therefore, such a preconditioner is numerically appropriate for large systems of equations on large

processor systems.

Similarly to BPS, we consider a class of additive two-level preconditioners that can be written

in a generic way as:

MBPS�� =Mloc +Mglob;

where Mglob is computed using a Galerkin formula involving S and not the original matrix A, as

it is done in the regular BPS.

Let U0 be a q-dimensional subspace of U . This subspace will be called the coarse space. Let

R0 : U ! U0 be a restriction operator which maps full vectors of U into vectors in U0, and let

RT

0 : U0 ! U be the transpose of R0, an interpolation operator which extends vectors from the

coarse space U0 to full vectors in the �ne space U .
The Galerkin coarse space operator A0 = R0SR

T

0 , in some way, represents the Schur com-

plement on the coarse space U0. The global coupling mechanism is introduced by the coarse

component of the preconditioner which can thus be de�ned as

Mglob = RT

0 A
�1
0 R0:

For the experiments reported in this paper, we consider the space U0 obtained by associating

one degree of freedom with each vertex vl of �
H (corner points) resulting from the partition
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(
i)i=1;N and a restriction operator R0 specially designed to deal with the possible discontinuities

in the PDE coeÆcients. The coarse space matrix A0 can be computed using four matrix-vector

products in a distributed memory environment. We refer to [8] and the references therein for a

more detailed description of this coarse component and its numerical and parallel scalability.

Combining this coarse space preconditioner with the three local preconditioners gives rise to

variants of the BPS preconditioner that will be denoted:

- MBPS�E forMloc =ME . Notice that this local preconditioner is the one used in the genuine

BPS; in this respectMBPS�E is the closest variant to regular BPS. It is a slight improvement

of regular BPS as the coarse component does not rely on the spectral equivalence property

between A and S for uniformly elliptic operators.

- MBPS�V E for Mloc =MV E .

- MBPS�S for Mloc =MS .

3 Numerical experiments

In this section, we report through a set of model problems the numerical behavior of the precondi-

tioners introduced in Section 2. We consider not only the new BPS variants but, additionally, the

well established balanced Neumann-Neumann preconditioner [15]. Before reporting the comparison

results, we briey recall the balanced Neumann-Neumann preconditioner.

The balanced Neumann-Neumann preconditioner has proven to be an eÆcient domain decom-

position preconditioner for some fairly diÆcult problems [14], such as linear systems arising from

structural analysis. At each iteration, two linear systems per subdomain must be solved. One

corresponding to the PDE with Dirichlet boundary conditions (i.e. Aii in (6)) and the other with

Neumann boundary conditions (i.e. A(i) in (6)). It is through the solution of this latter Neumann

problem that the action of (S(i))+ on a vector, de�ning the Neumann boundary conditions, is

e�ectively computed. A global/coarse space problem is solved at each iteration to remove the

possible singularity associated with the Neumann problem. We omit the details and refer to [15]

for a complete description. It is important to note that the balanced Neumann-Neumann precon-

ditioner is scalable and in fact has the same condition number bound as BPS (see Equation (14)).

Henceforth, the balanced Neumann-Neumann preconditioner will be denoted by MBNN .

3.1 Model problems

We consider the solution of two classes of elliptic problems. First, we compute the solution of

Equation (1) discretized by linear �nite elements on a uniform mesh. A second set of experiments

is related to a series of elliptic problems that arises in the solution of parabolic equations when

using a time implicit scheme and a �nite element scheme in space.

3.1.1 Anisotropic and discontinuous elliptic model problems

For the solution of Equation (1), the background of our study is the numerical solution of the

2D drift-di�usion equations for the simulation of semi-conductor devices [7]. In this respect, we

intend to evaluate the sensitivity of the preconditioners to anisotropy and to discontinuity. With

this in mind, we consider the following 2D model problems. In Figure 3, we represent the unit

square divided into �ve regions where piecewise constant functions are used to de�ne a �rst set of

test problems. In addition, we have performed experiments with the problem de�ned by piecewise

constant functions as depicted in Figure 4. Let a and b be the di�usion coeÆcients of the elliptic

problem as described in Equation (1).
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Using this notation and Figure 3, we de�ne the �rst set of model problems with di�erent

degrees of diÆculty:

� Poisson problem: a = 1 and b = 1,

� anisotropic and discontinuous problems with a = 1 and b = c; d or f which depend on x and

y.

{ AD-F1: c=1, d= 102 and f= 10�2.

{ AD-F2: c=1, d= 103 and f= 10�3.

� discontinuous problems with a = b = c; d; f .

{ D-F1: c=1, d= 102 and f= 10�2.

{ D-F2: c=1, d= 103 and f= 10�3.

Using piecewise constant functions on the regions depicted in Figure 4, we de�ne a second set

of test problems:

� anisotropic and discontinuous problems: a = 1 and b = c; d or f .

{ AD-R: c= 101 , d= 10�2 and f= 10�1.

� discontinuous problems: a = b = c; d; f .

{ D-R: c= 101 , d= 10�2 and f= 10�1.

We have also considered a last set of problems associated with (1). We have introduced

anisotropy not necessarily aligned with the axis but making an angle � with the x-direction. For
� = 0, this corresponds to the classical model anisotropic equation:

"
@2u

@x2
+
@2u

@y2
= f with "� 1: (15)

3.1.2 Elliptic problems involved in the solution of parabolic linear equations

As other model problems, let us consider the solution of the linear systems arising from the implicit

discretization of parabolic linear partial di�erential equations like

8><
>:

@v
@t
� @
@x

(a(x; y)@v
@x

)� @
@y

(b(x; y)@v
@y

) = F (x; y) in 
;

v = 0 on @
;
v(x; 0) = v0(x):
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In an abstract form, this problem can be written as

@v

@t
+ Lu = f;

where L is a second-order self-adjoint linear elliptic problem. This problem is discretized in time

using an implicit Crank-Nicholson centered scheme with time step �t and in space by linear �nite

elements with mesh size h giving rise to the sti�ness matrix h�2A. The solution of the parabolic

equation reduces to a sequence of elliptic problems. With um = v(x; tm) at each time step we have

um+1 � um

�t
+

1

2h2
(Aum+1 +Aum) =

1

2
(fm+1 + fm);

so we have to solve

(2
h2

�t
I +A)um+1 = 2

h2

�t
um �Aum + h2(fm+1 + fm):

Let � = 2
h2

�t
, and At = (�I +A), we have to solve the linear systems

AtÆ = h2(fm+1 + fm)� 2Aum; (16)

then advance the solution in time

um+1 = um + Æ:

The linear system (16) can be solved using a Schur complement approach, preconditioned with

the techniques described in Section 2.

3.2 Experimental results

For the experimental results related to MV E , we have considered two extra edge points in the

neighborhood of the vertices vl in each direction. For a more detailed study about the inuence

of the size of the overlap in the neighborhood of the vertices vl on the convergence rate, we refer

to [7]. We just state here that a very small overlap is usually enough to improve the behavior of

MV E with respect to ME. Both preconditioners have a comparable computational complexity and

consequently a similar parallel performance [7].

For all the experimental results reported in the next section, the convergence of the pre-

conditioned conjugate gradient method is attained when the 2-norm of the residual of the current

iteration normalized by the 2-norm of the right hand side is less than 10�6. For all the experiments

reported in the following tables, the number of subdomains varies from 16 (4� 4 decomposition)

up-to 256 (16� 16 decomposition) keeping the size of each subdomain constant (i.e. 16� 16 mesh

for each subdomain, that is H

h
= 16); the initial guess x0 for the conjugate gradient iterations was

the null vector.

3.2.1 Anisotropic and discontinuous elliptic problems

In Table 1, we report results observed on the Poisson equation using the preconditioners with and

without the coarse space component Mglob. When only local preconditioners are implemented, it

can be seen that when the local information is more represented in the preconditioner, the con-

vergence is better. These results also show that without a coarse space component the number

of iterations required by the preconditioned conjugate gradient grows with the number of subdo-

mains as predicted by the estimated condition number given by Equation (13). Using the two-level
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preconditioners, these observations are no longer true. The coarse space component somehow

smoothes the e�ect of the local component. Accordingly to the theoretical bound given by Equa-

tion (14), the number of preconditioned conjugate gradient iterations becomes independent of the

number of domains. Finally, we note that for the two-level preconditioners MBPS�E and MBNN ,

the results are similar to those of other authors [9], [15].

4� 4 8� 8 16� 16

ME 13 28 51

MV E 12 22 40

MS 11 19 32

MBPS�E 9 11 11

MBPS�V E 10 12 12

MBPS�S 10 10 11

MBNN 11 12 12

Table 1: # iterations on the Poisson problem.

In Table 2, we depict the numerical behavior of the preconditioners on the model problems that

only exhibit anisotropy not aligned with the axes. When no coarse space component is implemented

MV E still outperforms ME , MS is the most eÆcient and the number of iterations of all the

preconditioners grows with the number of subdomains. For the two-level preconditioners, we �rst

observe that the anisotropy prevents them to have an optimal convergence behavior independent

of the number of subdomains, even though the number of iterations is quite decreased by the

coarse space component. Furthermore, for some problems MBPS�V E becomes less eÆcient than

the simpler MBPS�E while MBPS�S always ensures the fastest convergence. So the conjecture,

\the richer the local preconditioner, the more eÆcient the preconditioner", is only true when the

local preconditioners run alone.

4� 4 8� 8 16� 16

0 �=8 �=4 0 �=8 �=4 0 �=8 �=4

ME 21 34 30 47 67 77 88 132 164

MV E 21 22 23 44 42 59 72 81 141

MS 14 20 20 25 40 41 53 75 88

MBPS�E 27 24 20 58 34 28 81 43 35

MBPS�V E 25 21 21 48 33 35 85 43 49

MBPS�S 20 19 17 33 26 21 47 33 26

Table 2: # iterations - Anisotropy (" = 10�3) with several angles.

In Tables 3 and 4, we study the numerical behavior of the two-level preconditioners on model

problems arising from the discretization of (1) that exhibit either discontinuity (Table 3) or both

discontinuity and anisotropy (Table 4). For the problems with only discontinuity, all the variants

MBPS�� have comparable convergence behaviors.

As it can be seen in Table 4, problems with anisotropy and discontinuity are more diÆcult

to solve. Again MBPS�V E does not outperform the basic MBPS�E . For those examples, simi-

larly to the pure anisotropic situation reported in Table 2, MBPS�S exhibits once again the best

convergence behavior.

1`* 'means no convergence after 1000 iterations
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# subdomains 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

MBPS�E 12 11 10 11 11 11 14 15 11

MBPS�V E 13 12 11 13 12 12 16 16 12

MBPS�S 12 10 10 11 11 11 14 14 11

MBNN 25 27 21 29 28 38 48 65 52

Table 3: # iterations for problems with discontinuity.

# subdomains 4� 4 8� 8 16� 16

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

MBPS�E 18 24 25 29 65 35 42 103 39

MBPS�V E 18 23 24 33 80 40 56 141 55

MBPS�S 16 20 18 22 43 22 33 79 26

MBNN 37 52 147 60 158 644 97 311 *1

Table 4: # iterations for problems with discontinuity and anisotropy.

The relative poor performance of MBNN , reported in Table 3 and 4, could be improved.

An alternative way, as suggested in [11], should be a better choice of the weight matrices Di,

involved in Equation (11), when the diagonal entries of S are available. With this appropriated

choice of the weights, it can be expected a reduction of the gap between MBNN and MBPS�� for

discontinuous problems, as suggested by the results reported in [16]. However the key trick in the

Neumann-Neumann preconditioner is to get the action of (S(i))�1 on a vector without explicitly

forming S(i) and, thus, in the classical implementation of MBNN those entries are usually not

computed. Furthermore, in Table 5 we report the numerical behavior of MBPS�S and MBNN for

" 1.0 10�1 10�2 10�3

MBNN 12 20 40 98

MBPS�S 12 15 22 33

Table 5: # iterations varying the anisotropy with a 8� 8 subdomain decomposition.

the anisotropic problems de�ned by Equation (15) for di�erent values of the anisotropic coeÆcient

" is varied. For those problems, the choice of the weighted matrices used in [16] for MBNN would

reduce to the simple ones we have considered; that is, 1
2
for the nodes on the edges and 1

4
for the

vertex points vl. For anisotropic problems, we cannot expect MBNN to become competitive with

MBPS�S for " lower than 10�1.

Local Schur with inexact local solvers To alleviate the cost of the preconditioners construc-

tion, the factorization of the local Dirichlet problem can be replaced by an incomplete Cholesky

factorization without �ll-in, i.e. ILLT (0), or with some �ll-in controlled through a threshold, i.e.

ILLT (t). In this later situation the amount of �ll-in can be de�ned by the �ll-in ratio that is the

number of non-zeros in the incomplete factors divided by the number of non-zeros in the lower

part of the original matrices; by de�nition this �ll-in ratio is equal to one for ILLT (0).

In Table 6 and 7, we denote by ~MBPS�E , ~MBPS�V E and ~MBPS�S the preconditioners com-

puted using those inexact local solves. More precisely, we report in Table 6 the number of iterations
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when ILLT (0) is used and in Table 7 those observed when some �ll-in is enabled with a �ll-in ratio
lower than 3.5.

# subdomains 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R
~MBPS�E 14 13 14 13 13 14 17 17 14
~MBPS�V E 20 18 20 19 19 19 24 26 20
~MBPS�S 14 13 15 13 13 12 17 18 13

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

~MBPS�E 24 30 28 36 67 37 50 112 45
~MBPS�V E 27 34 31 40 84 48 64 143 64
~MBPS�S 24 26 23 30 53 31 47 80 41

Table 6: # iterations using inexact local solvers ILLT (0) to build the preconditioners.

# subdomains 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R
~MBPS�E 13 12 12 13 14 12 16 19 11
~MBPS�V E 15 17 12 17 19 13 22 27 12
~MBPS�S 12 12 10 11 12 11 16 18 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

~MBPS�E 23 31 28 35 70 37 48 114 40
~MBPS�V E 21 33 26 36 85 44 59 147 56
~MBPS�S 19 27 20 27 54 24 39 81 29

Table 7: # iterations using inexact local solvers ILLT (t) to build the preconditioners.

The comparison of the results depicted in Table 6 and 7 and those in Tables 3 and 4 shows

that the approximation of the local Schur complement used to build the preconditioners generally

deteriorates the numerical behaviors of the preconditioner. This approximation does not a�ect

signi�cantly the numerical behavior of ~MBPS�E and ~MBPS�S but deteriorates noticeably the

one of ~MBPS�V E . In addition, enabling some �ll-in in the incomplete factorizations generally

improves the convergence rate; the most signi�cant improvements are observed on anisotropic and

discontinuous problems with ~MBPS�V E and ~MBPS�S.

Sparse approximation of the Schur complement In Table 8 we report the number of iter-

ations using an approximate Schur complement Ŝ with � in (12) such that we only retains around

5 % of the entries in S. The resulting preconditioners are denoted respectively by M̂BPS�E,

M̂BPS�V E and M̂BPS�S .
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# subdomains 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M̂BPS�E 13 12 12 11 11 13 14 15 12

M̂BPS�V E 16 16 18 16 16 18 20 20 18

M̂BPS�S 12 11 12 12 12 11 15 16 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

M̂BPS�E 18 25 27 29 65 35 43 111 40

M̂BPS�V E 24 30 26 36 81 42 57 142 57

M̂BPS�S 18 21 18 23 44 23 36 79 27

Table 8: # iterations using sparse Schur to build the preconditioners.

The comparison of these results with those displayed in Table 3 and 4 indicates that, except

for M̂BPS�V E on discontinuous problems, only retaining very few entries in the Schur complement

is enough to ensure the numerical quality of these preconditioners since the number of iterations

are roughly the same in both cases (except for M̂BPS�V E on discontinuous problems).

In addition, as mentioned in Section 2.2.2, the inexact local solvers and dropping strategies

can be combined to build variants of the preconditioners. The resulting preconditioners are respec-

tively denoted by M
BPS�E

, M
BPS�V E

and M
BPS�S

. Numerical experiments where we dropped

the smallest elements of the local preconditioners built using ILLT (t) are reported in Table 9.

Comparing these results with those of Tables 8 and 7 indicates that the numerical quality of the

resulting preconditioners are mainly governed by the use of ILLT .

# subdomains 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M
BPS�E

14 13 12 13 13 13 16 18 13

M
BPS�V E

19 18 18 20 22 18 26 29 18

M
BPS�S

12 12 12 12 13 11 17 19 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

M
BPS�E

22 32 29 35 70 36 47 113 41

M
BPS�V E

26 38 27 39 86 45 61 150 58

M
BPS�S

19 29 21 28 55 28 42 81 31

Table 9: # iterations using preconditioner based on sparse Schur built using inexact local solvers ILLT (t).

3.2.2 Elliptic problems in the solution of parabolic equations

In Table 10, we report experimental results for the solution of elliptic problems involved in the so-

lution of a parabolic equation for one time step. Here the operator L corresponds to an anisotropic

equation with the anisotropy not necessarily aligned with the x or y axis, but making an angle �.
The time step and the mesh size are such that � = 0:02, which gives raise to a well conditioned

linear system (16) (independent of h for the classic heat equation) and consequently a well condi-

tioned associated Schur complement. With this choice we note that the local preconditioners are

numerically scalable with respect to the number of subdomains as it was already observed in an

overlapping domain decomposition approach [18]. On those examples MV E is generally between

20 % up-to 40 % faster than ME , while both, as already noticed, have a similar computational

complexity [7]. MS is still the most eÆcient but for those problems, the gap between this precondi-

tioner and the other two decreases. In that case, MV E may be the most eÆcient alternative as the
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factorizations of its Mi require about 16 times less oating point operations than the factorization

ofMS. Furthermore, forMV E this factorization is performed only once for each edge Ek compared

to two factorizations forMS as each Ek is shared by two subdomains. As before, approximate local

Schur complements based on ILLT (t) factorization can be used to compute the preconditioners

without signi�cantly deteriorating their numerical performances.

4� 4 8� 8 16� 16

0 �=8 �=4 0 �=8 �=4 0 �=8 �=4

ME 10 15 16 16 16 17 19 16 17
~ME 10 15 17 17 16 17 19 15 17

MV E 11 9 12 13 10 13 14 10 14
~MV E 11 11 13 13 11 14 14 12 15

MS 8 10 11 13 10 12 13 10 12
~MS 8 11 12 13 11 12 13 10 12

Table 10: Di�usion with several angles - " = 10�3.

4 Concluding remarks

We have introduced two new local preconditioners. They are based on an explicit computation

of the local Schur complement matrices and can be used in combination with a coarse space

component in an additive way.

The �rst one, MV E , aims at recovering some information relative to the interface nodes close

to the vertices of the coarse mesh �H de�ned by the decomposition. This preconditioner shows

some advantages over the simple block Jacobi preconditionerME for the solution of linear systems

arising in the solution of parabolic problems. These advantages vanish for the solution of elliptic

problems when, to ensure the numerical scalability, the coarse space preconditioner component

smoothes its e�ect compared toME . For those problems, the use of approximate local solvers a�ect

signi�cantly the numeriacl behavior of the resulting preconditioner ~MBPS�V E . For the solution

of the linear system arising in the solution of parabolic problems, MV E is a cheap alternative to

improve the simple block Jacobi preconditioner. Both have similar computational complexity and

parallel performance [7]. In addition, the use of approximate local Schur complement does not

penalize signi�cantly the numerical behavior of MV E .

The second one, closely related to the Neumann-Neumann preconditioner, demonstrates a

very attractive numerical behavior on heterogeneous and anisotropic problems. These problems

appear, for instance, in the solution of the drift-di�usion equations involved in semi-conductor

device modeling. An eÆcient implementation of the local Schur complement construction may

directly bene�t, in the future, from the ongoing development of advanced sparse direct solvers like

MUMPS [1]. However, we propose an alternative based on approximated local Schur complements

built thanks to incomplete Cholesky factorizations. Based on an extensive benchmarking, we show

that the resulting preconditioner, with a cheap construction, retains the main numerical features

of MBPS�S.
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