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Abstract. In their original paper, Golub and Meurant [BIT, 37 (1997), pp. 687–705 ] suggest
to compute bounds for the A-norm of the error in the conjugate gradient (CG) method using Gauss,
Gauss-Radau and Gauss-Lobatto quadratures. The quadratures are computed using the (1, 1)-entry
of the inverse of the corresponding Jacobi matrix (or its rank-one or rank-two modifications). The
resulting algorithm called CGQL computes explicitly the entries of the Jacobi matrix and its mod-
ifications from the CG coefficients. In this paper, we use the fact that CG computes the Cholesky
decomposition of the Jacobi matrix which is given implicitly. For Gauss-Radau and Gauss-Lobatto
quadratures, instead of computing the entries of the modified Jacobi matrices, we directly compute
the entries of the Cholesky decompositions of the (modified) Jacobi matrices. This leads to simpler
formulas in comparison to those used in CGQL.
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1. Introduction. Today the Conjugate Gradient (CG) algorithm is the iterative
method of choice for solving linear systems with a real positive definite symmetric
matrix. It is almost always used with a preconditioner to speed up convergence. CG
was introduced in the beginning of the 1950s by Magnus Hestenes and Eduard Stiefel
[17]. It can be derived from several different perspectives, as an orthogonalization
algorithm or as a minimization process. It can also be obtained from the Lanczos
algorithm [19] that was published almost at the same time.

When using CG for solving a linear system Ax = b an important question is when
to stop the iterations. Ideally, one would like to stop the iterations when the norm
of the error εk = x − xk, where xk are the CG iterates, is small enough. However,
the error is unknown and most CG implementations rely on stopping criteria like
‖rk‖ ≤ ǫ‖b‖ where rk = b − Axk is the residual vector, which is computed in CG or
even ‖rk‖ ≤ ǫ‖r0‖. These types of stopping criteria can be misleading depending on
the norm of A or the choice of the initial approximation. This was already noticed in
the Hestenes and Stiefel paper [17, p. 410]. It can stop the iterations too early when
the norm of the error is still too large, or too late in which case too many floating
point operations have been done for obtaining the required accuracy. This motivated
some researchers to look for ways to compute estimates of some norms of the error
during CG iterations. The norm of the error which is particularly interesting for CG
is the A-norm (also called the energy norm) which is minimized at each iteration. The
A-norm of the error has an important meaning in physics and mechanics, and plays
a fundamental role in evaluating convergence [1, 18]. It is defined as

‖εk‖A ≡ (εTk Aεk)
1/2.(1.1)

Inspired by the connection of CG with Riemann-Stieltjes integrals (already no-
ticed in [17]), a way of research on this topic was started by Gene Golub in the 1970s
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and continued throughout the years with several collaborators ([6, 7, 8, 11, 14, 12]).
In particular, it was known that the A-norm of the error can be written as a Riemann-
Stieltjes integral for an unknown stepwise constant measure depending on the eigen-
values of A. The main idea of Golub and his collaborators was to obtain bounds for
this integral by using Gauss quadrature rules. It turns out that these bounds can be
computed without the knowledge of the stepwise constant measure and at almost no
cost during the CG iterations as we will see in the next sections.

In [11], these techniques were used for providing lower and upper bounds for
quadratic forms uT f(A)u where f is a smooth function, A is a symmetric matrix and
u is a given vector. The algorithm GQL (Gauss Quadrature and Lanczos) was based
on the Lanczos algorithm and on computing functions of Jacobi matrices (and their
rank-one or rank-two modifications). Later [12, 21], these techniques were adapted
to the CG algorithm to compute lower and upper bounds on the A-norm of the error
for which the function is f(x) = 1/x. The idea was to use CG instead of the Lanczos
algorithm, to compute explicitly the entries of the corresponding Jacobi matrices and
their modifications from the CG coefficients, and then to use the same formulas as in
GQL. The formulas were summarized in the CGQL algorithm (QL standing again for
Quadrature and Lanczos). Extensions to preconditioned CG were given in [22, 29].
This research is summarized in the books [23, 13]. The formula for the Gauss rule
was analyzed for finite precision arithmetic in [28] where it is shown that it is still
valid in finite precision up to small terms proportional to the unit roundoff.

The CGQL algorithm, whose most recent version is described in [13], may seem
complicated, particularly for computing bounds with the Gauss-Radau or Gauss-
Lobatto quadrature rules. It uses the tridiagonal Jacobi matrix obtained by trans-
lating the coefficients computed in CG into the Lanczos coefficients. Therefore the
analysis of the formulas is difficult. Our aim in this paper is to show that these
formulas can be considerably simplified by working with the LDLT factorizations of
the Jacobi matrices and their modifications instead of computing the Lanczos coeffi-
cients explicitly. In other words, one can obtain the bounds from the CG coefficients
without computing the Lanczos coefficients. Therefore we hope that with the simpler
new formulas the computation of upper bounds for the A-norm of the error can be
incorporated more easily into existing CG codes.

It is fair to note that there exist other ways to compute estimates of the norms of
the error; see [2, 3]. The paper [3] uses extrapolation techniques. However, this only
gives estimates of the norm of the error and not bounds.

The outline of the paper is as follows. Section 2 recalls some basic facts about the
Lanczos and CG algorithms, their connection to the approximation of the Riemann-
Stieltjes integral using various quadrature rules, about computing quadratures using
a convenient modification of the corresponding Jacobi matrix, and finally about esti-
mating the A-norm of the error in CG. Section 3 describes the algebraic background
for the new formulas; it is shown how to compute efficiently the entries of the LDLT

factorizations of modified Jacobi matrices. These results are then used in Section 4
in the formulation of the new algorithm called CGQ. Section 5 shows how to modify
these new formulas when using preconditioning and finally, Section 6 presents nu-
merical experiments which show that the new formulas are not only simpler but also
slightly more accurate than the previous ones.

Throughout the paper ek denotes the kth column of the identity matrix of ap-
propriate order.
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2. Conjugate Gradient, Lanczos and quadratures. In this section we briefly
recall the Lanczos and Conjugate Gradient algorithms as well as their relationships;
see, for instance, [15, 23].

Algorithm 1 Lanczos algorithm

input A, v
β0 = 0, v0 = 0
v1 = v/‖v‖
for k = 1, . . . do

w = Avk − βk−1vk−1

αk = vTk w
w = w − αkvk
βk = ‖w‖
vk+1 = w/βk

end for

2.1. The Lanczos and CG algorithms. Given a starting vector v and a sym-
metric matrix A ∈ R

N×N , one can consider a sequence of nested subspaces

Kk(A, v) ≡ span{v,Av, . . . , Ak−1v}, k = 1, 2, . . . ,

called Krylov subspaces. The dimension of these subspaces is increasing up to an
index n called the grade of v with respect to A, at which the maximal dimension is
attained, and Kn(A, v) is invariant under multiplication with A. Assuming that k < n,
the Lanczos algorithm (Algorithm 1) computes an orthonormal basis v1, . . . , vk+1 of
the Krylov subspace Kk+1(A, v). In Algorithm 1 we have used the modified Gram-
Schmidt form of the algorithm. The basis vectors vj satisfy the matrix relation

AVk = VkTk + βkvk+1e
T
k

where Vk = [v1 · · · vk] and Tk is the k × k symmetric tridiagonal matrix of the recur-
rence coefficients computed in Algorithm 1:

Tk =




α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk



.

The coefficients βj being positive, Tk is a Jacobi matrix. The Lanczos algorithm works
for any symmetric matrix, but if A is positive definite, then Tk is positive definite as
well.

When solving a system of linear algebraic equations Ax = b with symmetric and
positive definite matrix A, the CG method (Algorithm 2) can be used. CG computes
iterates xk that are optimal since the A-norm of the error defined in (1.1) is minimized
over the manifold x0 +Kk(A, r0),

‖x− xk‖A = min
y∈x0+Kk(A,r0)

‖x− y‖A.

The residual vectors rk = b − Axk are proportional to the Lanczos basis vectors vj
and hence mutually orthogonal,

vj+1 = (−1)j
rj

‖rj‖
, j = 0, . . . , k.
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Algorithm 2 Conjugate gradient algorithm

input A, b, x0

r0 = b−Ax0

p0 = r0
for k = 1, . . . , n until convergence do

γk−1 =
rTk−1rk−1

pT
k−1

Apk−1

xk = xk−1 + γk−1pk−1

rk = rk−1 − γk−1Apk−1

δk =
rTk rk

rT
k−1rk−1

pk = rk + δkpk−1

end for

Therefore, the residual vectors rj yield an orthogonal basis of the Krylov subspaces
Kk+1(A, r0). In this sense, CG can be seen as an algorithm for computing an or-
thogonal basis of the Krylov subspace Kk+1(A, r0) and there is a close relationship
between the CG and Lanczos algorithms. It is well-known (see, for instance [23]) that
the recurrence coefficients computed in both algorithms are connected via

βk =

√
δk

γk−1
, αk =

1

γk−1
+

δk−1

γk−2
. δ0 = 0, γ−1 = 1.

Writing these formulas in a matrix form, we get

Tk = LkDkL
T
k(2.1)

where Tk is the Jacobi matrix resulting from the Lanczos algorithm and

Lk ≡




1
√
δ1

. . .

. . .
. . .√
δk−1 1



, Dk ≡




γ−1
0

. . .

. . .

γ−1
k−1



.(2.2)

In other words, CG implicitly computes an LDLT factorization of the Jacobi matrix
Tk generated by the Lanczos algorithm. In this paper we are interested in computing
bounds for the A-norm of the error. Noticing that the error εk and the residual rk
are related through Aεk = rk, we have

‖εk‖2A = εTkAεk = rTk A
−1rk.

The quantity on the right-hand side is a quadratic form. In the next subsection we
briefly recall how quadratic forms are related to Riemann-Stieltjes integrals. This will
allow us to compute bounds for the norm of the error.

2.2. Connection with Riemann-Stieltjes integrals. Let

A = UΛUT , UUT = UTU = I,(2.3)

be the eigendecomposition of the symmetric matrix A where Λ = diag(λ1, . . . , λN )
and U = [u1, . . . , uN ]. For simplicity of notation we assume that all the eigenvalues
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of A are distinct and ordered as λ1 < λ2 < . . . < λN (the generalization of the below
defined function ω(λ) to the case of multiple eigenvalues is straightforward). Let v1
be a given unit vector. Define the weights ωi by

ωi ≡ (v1, ui)
2 so that

N∑

i=1

ωi = 1 ,(2.4)

and the (nondecreasing) distribution function ω(λ) with a finite number of points of
increase λ1, λ2, . . . , λN ,

ω(λ) ≡





0 for λ < λ1 ,
∑i

j=1 ωj for λi ≤ λ < λi+1 , 1 ≤ i ≤ N − 1 ,

1 for λN ≤ λ .

(2.5)

Having the distribution function ω(λ) and an interval 〈ζ, ξ〉 such that ζ < λ1 < λ2 <
. . . < λN < ξ, for any continuous function f , one can define the Riemann-Stieltjes
integral (see, for instance [13])

∫ ξ

ζ

f(λ) dω(λ).(2.6)

Since ω(λ) is a stepwise constant function and all points of increase lie in the open
interval (ζ, ξ), the integral (2.6) is a finite sum and it holds that

∫ ξ

ζ

f(λ) dω(λ) =

N∑

i=1

ωif(λi) = vT1 f(A)v1.(2.7)

The quantity vT1 f(A)v1 can be expressed using the tridiagonal matrix Tn stem-
ming from the Lanczos algorithm (note that n is the grade of v1 with respect to A). In
the nth step of the Lanczos algorithm we get the full orthonormal basis of Kn(A, v1)
and we have

AVn = VnTn ⇒ f(A)Vn = Vnf(Tn)

and, therefore,

vT1 f(A)v1 = vT1 f(A)Vne1 = vT1 Vnf(Tn)e1 = eT1 f(Tn)e1.

From this it is clear that the quadratic form we are interested in, rTk A
−1rk, can be

written as a Riemann-Stieltjes integral for the function f(λ) = 1/λ.

2.3. Quadrature formulas. The integral (2.7), i.e. the quantity vT1 f(A)v1, can
be approximated by quadrature formulas, for example the Gauss, Gauss-Radau and
Gauss-Lobatto rules; see, for instance, [9, 13]. The general quadrature formula we use
has the form

∫ ξ

ζ

f dω(λ) =

k∑

i=1

wif (νi) +

m∑

j=1

w̃jf(ν̃j) +Rk[f ],

where the weights [wi]
k
i=1, [w̃j ]

m
j=1 and the nodes [νi]

k
i=1 are unknowns and the nodes

[ν̃j ]
m
j=1 are prescribed outside the open integration interval. In our case it is sufficient
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when the prescribed nodes are strictly smaller than λ1 or strictly larger than λN . The
unknown nodes and weights are chosen to maximize the degree of exactness of the
quadrature rule. If m = 0, there are no prescribed nodes, and we obtain the Gauss
rule. If m = 1 we have the Gauss-Radau rule and if m = 2, this is the Gauss-Lobatto
rule. It is known (see, for instance, [27]) that if f ∈ C2k+m, then the remainder is

Rk[f ] =
f (2k+m)(υ)

(2k +m)!

∫ ξ

ζ

m∏

j=1

(λ− ν̃j)

[
k∏

i=1

(λ− νi)

]2
dω(λ) , υ ∈ (ζ, ξ).

For some functions f of interest the sign of the remainder term is known.
Consider first the Gauss rule, i.e. m = 0. The nodes νi and the weights wi of

the kth Gauss quadrature approximation are implicitly determined by the Lanczos
algorithm; the nodes are the eigenvalues of Tk generated by the Lanczos algorithm
started from v1 and the weights are the squares of the first components of the nor-
malized eigenvectors of Tk; see [30, 16].

To obtain the Gauss-Radau and Gauss-Lobatto rules, we must extend the matrix
Tk in such a way that it has the prescribed nodes as eigenvalues; see [10]. Suppose that
µ is a prescribed node. For the Gauss-Radau quadrature rule, we have to determine

the coefficient α̃
(µ)
k+1 so that µ is an eigenvalue of the extended matrix

T̃
(µ)
k+1 =




α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk βk

βk α̃
(µ)
k+1



.(2.8)

Given two prescribed nodes µ and η, for the Gauss-Lobatto quadrature rule we have

to find the coefficients α̃
(µ,η)
k+1 and β̃

(µ,η)
k such that µ and η are eigenvalues of the

extended matrix

T̃
(µ,η)
k+1 =




α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk β̃
(µ,η)
k

β̃
(µ,η)
k α̃

(µ,η)
k+1




.(2.9)

Having the matrices Tk, T̃
(µ)
k+1 and T̃

(µ,η)
k+1 , the Gauss, Gauss-Radau and Gauss-Lobatto

quadrature rules can be respectively written in the form (see [13])

eT1 f(Tn)e1 = eT1 f(Tk)e1 +R(G)
k [f ] ,

eT1 f(Tn)e1 = eT1 f
(
T̃

(µ)
k+1

)
e1 +R(R)

k [f ] ,

eT1 f(Tn)e1 = eT1 f
(
T̃

(µ,η)
k+1

)
e1 +R(L)

k [f ] .

These rules can provide lower and upper bounds on the integral (2.7), based on the
following implications (see, e.g., [13, Theorem 6.4 and 6.5]):
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If f (2k)(λ) > 0 for all λ ∈ 〈ζ, ξ〉, then R(G)
k [f ] > 0.(2.10)

If f (2k+1)(λ) < 0 for all λ ∈ 〈ζ, ξ〉, and µ ≤ λ1, then R(R)
k [f ] < 0.(2.11)

If f (2k+2)(λ) > 0 for all λ ∈ 〈ζ, ξ〉, and µ ≤ λ1 and λN ≤ η, then R(L)
k [f ] < 0.(2.12)

If the derivatives of the function f satisfy the assumptions in (2.10)–(2.12), then
the Gauss rule gives a lower bound and the Gauss-Radau and Gauss-Lobatto rules
give upper bounds for the integral (2.7). Note that the assumptions on the sign of
the derivatives of f in (2.10)–(2.12) are satisfied for the function f(λ) = 1/λ.

2.4. CG and Gauss quadrature. For the quadratic form involved in CG we
are interested in the function f(λ) = 1/λ. Previous results imply that we can express
the Gauss quadrature rule using the Lanczos-related quantities as

(
T−1
n

)
1,1

=
(
T−1
k

)
1,1

+R(G)
k [λ−1].

In [28] the authors show that the same equation multiplied by ‖r0‖2 can be written
using the CG-related quantities

‖x− x0‖2A =

k−1∑

j=0

γj‖rj‖2 + ‖x− xk‖2A .

In other words, CG can be see as a procedure that implicitly determines weights and
nodes of the Gauss quadrature rule applied to the Riemann-Stieltjes integral

∫ ξ

ζ

λ−1 dω(λ) =
‖x− x0‖2A

‖r0‖2

for which the Gauss quadrature approximation is given by

(
T−1
k

)
1,1

=
1

‖r0‖2
k−1∑

j=0

γj‖rj‖2.(2.13)

The remainder is nothing but the scaled and squared A-norm of the kth error,

R(G)
k

[
λ−1

]
=

‖x− xk‖2A
‖r0‖2

.

For more information on this topic see, e.g., [14], [28, Section 3] or [24, Subsection 3.3].

2.5. Estimating the A-norm of the error in CG. Of course, at CG iteration
k we do not know (T−1

n )1,1 or ‖x− x0‖A. For estimating the A-norm of the error in
CG we consider the Gauss quadrature rule at step k,

‖x− x0‖2A = ‖r0‖2
(
T−1
k

)
1,1

+ ‖x− xk‖2A,(2.14)

and a (eventually modified) quadrature rule at step k + d, d > 0,

‖x− x0‖2A = ‖r0‖2
(
T̂−1
k+d

)

1,1
+ R̂k+d

[
λ−1

]
,(2.15)
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where T̂k+d stands for the matrix Tk+d (in the case of using Gauss rule) or a suitable
modification of Tk+d (in the case of using Gauss-Radau or Gauss-Lobatto rules). From
the equations (2.14) and (2.15) we get

‖x− xk‖2A = Q̂k,d + R̂k+d

[
λ−1

]
, Q̂k,d ≡ ‖r0‖2

((
T̂−1
k+d

)

1,1
−
(
T−1
k

)
1,1

)
.(2.16)

Q̂k,d represents either a lower bound on ‖x − xk‖2A if R̂k+d

[
λ−1

]
> 0, or an upper

bound in the case R̂k+d

[
λ−1

]
< 0. It means that at CG iteration k+d, by computing

Q̂k,d, we can obtain a bound for the A-norm of the error at iteration k.

From the computational point of view, as noted in [14] and [21], it is not conve-

nient to compute Q̂k,d by first computing
(
T−1
k

)
1,1

,
(
T̂−1
k+d

)

1,1
, and then taking the

difference. By subtracting both quantities we loose accuracy and, as a result, the
use of the estimate is limited by the square root of machine precision. Instead of
subtracting, it is better to use the following identity

(
T̂−1
k+d

)

1,1
−
(
T−1
k

)
1,1

=
(
T̂−1
k+d

)

1,1
−
(
T−1
k+d−1

)
1,1

+

k+d−2∑

j=k

[(
T−1
j+1

)
1,1

−
(
T−1
j

)
1,1

]
.

From (2.13) we have

‖r0‖2
[(
T−1
j+1

)
1,1

−
(
T−1
j

)
1,1

]
= γj‖rj‖2(2.17)

so that Q̂k,d takes the form

Q̂k,d = ‖r0‖2
[(

T̂−1
k+d

)

1,1
−
(
T−1
k+d−1

)
1,1

]
+

k+d−2∑

j=k

γj‖rj‖2.

Therefore, the problem of computing Q̂k,d reduces to the problem of computing effi-
ciently the difference

‖r0‖2
[(

T̂−1
j+1

)

1,1
−
(
T−1
j

)
1,1

]
, j = k + d− 1,(2.18)

using the CG-related quantities that are available during the CG iterations. This is
easy for the Gauss rule since it is given by (2.17) but, for the Gauss-Radau and Gauss-
Lobatto rules we need to use results about factorizations of tridiagonal matrices. They
are recalled in the next section.

3. Factorizations of tridiagonal matrices. In this section our aim is to show
how to compute the quantities we need for the quadrature rules by relying only on the
LDLT factorizations of the tridiagonal matrices. For doing this we will use variants
of the qd algorithm; see [25]. Although the matrices in our problem are positive defi-
nite in theory, it can happen during finite precision computations that the computed
tridiagonal matrices are indefinite. Therefore, we will assume that our symmetric
tridiagonal matrices are indefinite. However, we also assume that their LDLT factor-
izations exist.
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3.1. LDLT factorization of Tk and of its extension T̂k+1. Consider a sym-
metric tridiagonal matrix Tk with diagonal entries αj and subdiagonal entries βj 6= 0,

Tk =




α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk




(3.1)

and its LDLT factorization, Tk = LkDkL
T
k , denoted as

Tk =




1

ℓ1
. . .

. . .
. . .

ℓk−1 1







d1
. . .

. . .

dk







1 ℓ1
. . .

. . .

. . . ℓk−1

1



.(3.2)

To compute this factorization, one can use the following recurrence relations, see, e.g.,
[13, p.25],

d1 = α1, ℓj =
βj

dj
, dj+1 = αj+1 − βjℓj , j = 1, . . . , k − 1.(3.3)

If Tk is extended by one row and one column to the matrix T̂k+1,

T̂k+1 =

[
Tk β̂kek

β̂ke
T
k α̂k+1

]
,(3.4)

the LDLT factorization of T̂k+1 is just a straightforward extension of the LDLT

factorization of Tk,

T̂k+1 =



1

ℓ1
. . .

. . .
. . .

ℓk−1 1

ℓ̂k 1







d1
. . .

. . .

dk
d̂k+1







1 ℓ1
. . .

. . . ℓk−1

1 ℓ̂k
1




where the additional entries are given by

ℓ̂k =
β̂k

dk
, d̂k+1 = α̂k+1 − β̂k ℓ̂k = α̂k+1 −

β̂2
k

dk
.

3.2. The difference between (1, 1) entries of T̂−1
k+1 and T−1

k . To compute
various types of quadratures, we need to compute efficiently the difference between
(1, 1) entries of inverses of some tridiagonal matrices; see (2.18). This can be done
using the following formula, see Theorem 3.9 in [13, p. 31],

(
T̂−1
k+1

)

1,1
−
(
T−1
k

)
1,1

= d̂−1
k+1

(
β1 . . . βk−1β̂k

)2

(d1 . . . dk)
2 =

ℓ̂2k
d̂k+1

(ℓ1 . . . ℓk−1)
2
,(3.5)
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where we have used that βj = ℓjdj , j = 1, . . . , k − 1 and β̂k = ℓ̂kd̂k. In other

words, having the LDLT factorizations of Tk and T̂k+1, one can compute the required
difference without subtraction.

3.3. LDLT factorization of a shifted tridiagonal matrix. We will see that
for prescribing some eigenvalues we have to deal with shifted tridiagonal matrices.
Let the shift µ be given such that it is different from any eigenvalue of Tk so that
Tk − µI is nonsingular. In the application µ will be smaller (resp. larger) than the
smallest (resp. largest) eigenvalue of A. We denote the LDLT factorization of Tk−µI
(when it exists) as,

Tk − µI = L̄
(µ)
k D̄

(µ)
k

(
L̄
(µ)
k

)T
.(3.6)

The entries of the LDLT factorization of Tk − µI are denoted with a bar, the de-
pendence on the parameter µ is denoted by the superscript within parentheses. This
factorization can be computed from scratch using (3.3) since Tk − µI differs from Tk

only in diagonal entries by

d̄
(µ)
1 = α1 − µ, ℓ̄

(µ)
j =

βj

d̄
(µ)
j

, d̄
(µ)
j+1 = αj+1 − µ− βj ℓ̄

(µ)
j , j = 1, . . . , k − 1.

Algorithm 3 stqds

input µ, d1, . . . , dk, ℓ1, . . . , ℓk−1

d̄
(µ)
1 = d1 − µ

for j = 1, . . . , k − 1 do

ℓ̄
(µ)
j =

djℓj

d̄
(µ)
j

d̄
(µ)
j+1 = (dj+1 − µ) + djℓ

2
j − djℓj ℓ̄

(µ)
j

end for

output d̄
(µ)
1 , . . . , d̄

(µ)
k , ℓ̄

(µ)
1 , . . . , ℓ̄

(µ)
k−1

However, suppose now that Tk is given in the form of its LDLT factorization,
i.e. we know the entries d1, . . . , dk and ℓ1, . . . , ℓk−1 and want to compute the factor-
ization (3.6) directly from these entries. This can be done using the stqds algorithm
(Algorithm 3) which is a variant of the Rutishauser qd algorithm, see [26], [25] or [13,

p. 35]. This can be further improved by introducing the difference s
(µ)
j ≡ dj − d̄

(µ)
j .

It yields another version of the stqds algorithm called dstqds (Algorithm 4) which
avoids some subtractions.

3.4. Rank-one modification of Tk+1 with a prescribed eigenvalue. Given
a real number µ different from any eigenvalue of Tk, our aim in this subsection is to

modify the (k+ 1, k+ 1)st entry of Tk+1 so that the resulting matrix T̃
(µ)
k+1 defined in

(2.8) has µ as a prescribed eigenvalue. In [10] it has been shown that

α̃
(µ)
k+1 = µ+ ξ

(µ)
k
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Algorithm 4 dstqds

input µ, d1, . . . , dk, ℓ1, . . . , ℓk−1

s
(µ)
1 = µ

for j = 1, . . . , k − 1 do

d̄
(µ)
j = dj − s

(µ)
j

ℓ̄
(µ)
j =

djℓj

d̄
(µ)
j

s
(µ)
j+1 = µ+ ℓj ℓ̄

(µ)
j s

(µ)
j

end for

d̄
(µ)
k = dk − s

(µ)
k

output d̄
(µ)
1 , . . . , d̄

(µ)
k , ℓ̄

(µ)
1 , . . . , ℓ̄

(µ)
k−1

where ξ
(µ)
k is the last component of the solution of the tridiagonal system




α1 − µ β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk − µ







ξ
(µ)
1
...

ξ
(µ)
k−1

ξ
(µ)
k



=




0
...
0
β2
k


 ,(3.7)

see also [13, pp. 88-89]. Considering the LDLT factorization (3.6) of Tk − µI , it is
easy to show that

ξ
(µ)
k =

β2
k

d̄
(µ)
k

, i.e. α̃
(µ)
k+1 = µ+

β2
k

d̄
(µ)
k

.

Suppose now that the matrix Tk+1 is given in the form of the LDLT factorization
(Tk+1 is not given explicitly). We would like to modify this factorization in such

a way that we obtain the LDLT factorization of T̃
(µ)
k+1 . First we observe that if

Tk+1 = Lk+1Dk+1L
T
k+1 , then the LDLT factorization of T̃

(µ)
k+1 is given by

T̃
(µ)
k+1 = Lk+1




d1
. . .

. . .

dk

d̃
(µ)
k+1



LT
k+1,(3.8)

(see (3.5)) where

d̃
(µ)
k+1 = α̃

(µ)
k+1 − βkℓk = µ+ ξ

(µ)
k − dkℓ

2
k = µ+

β2
k

d̄
(µ)
k

− dkℓ
2
k.(3.9)

In the following lemma we show that d̃
(µ)
k+1 = dk+1 − d̄

(µ)
k+1 where d̄

(µ)
k+1 is the last

diagonal entry of the factorization of Tk+1 − µI.
Lemma 3.1. Given µ different from any eigenvalue of Tk, consider the LDLT

factorizations of Tk+1 and Tk+1 − µI,

Tk+1 = Lk+1Dk+1L
T
k+1, Tk+1 − µI = L̄

(µ)
k+1D̄

(µ)
k+1

(
L̄
(µ)
k+1

)T
.



12 G. Meurant and P. Tichý

Let T̃
(µ)
k+1 be the rank-one modification (2.8) of Tk+1 such that µ is an eigenvalue of

T̃
(µ)
k+1 and consider its LDLT factorization (3.8). Then it holds that

d̃
(µ)
k+1 = dk+1 − d̄

(µ)
k+1.

Proof. By a simple algebraic manipulation we obtain

dk+1 − d̄
(µ)
k+1 = dk+1 − ((dk+1 − µ) + dkℓ

2
k − dkℓkℓ̄

(µ)
k ) = (µ− dkℓ

2
k) + dkℓk ℓ̄

(µ)
k .

From (3.9) it follows that µ− dkℓ
2
k = d̃

(µ)
k+1 − βk

βk

d̄
(µ)
k

, therefore

dk+1 − d̄
(µ)
k+1 = d̃

(µ)
k+1 − βk

βk

d̄
(µ)
k

+ dkℓkℓ̄
(µ)
k = d̃

(µ)
k+1 − ℓkdk ℓ̄

(µ)
k + dkℓkℓ̄

(µ)
k = d̃

(µ)
k+1

which proves the result.

The formula for d̃
(µ)
k+1 requires not only the (known) entry dk+1, but also the (so

far unknown) entry d̄
(µ)
k+1 from the LDLT factorization of Tk+1 −µI. In the following

we show how to recursively compute the entry d̃
(µ)
k+1 so that the LDLT factorization

of Tk+1 − µI need not to be computed.

Lemma 3.2. With the notation above,

d̃
(µ)
1 ≡ µ, d̃

(µ)
k+1 = µ+ ℓ2k

dkd̃
(µ)
k

dk − d̃
(µ)
k

for k ≥ 1.(3.10)

Proof. From Lemma 3.1 it follows that d̃
(µ)
k+1 is nothing but the difference s

(µ)
k+1 =

dk+1 − d̄
(µ)
k+1 introduced in Algorithm 4. Using

s
(µ)
k+1 − µ = ℓk ℓ̄

(µ)
k s

(µ)
k = ℓk

dkℓk

d̄
(µ)
k

s
(µ)
k = ℓk

dkℓk

dk − s
(µ)
k

s
(µ)
k

and d̃
(µ)
k = s

(µ)
k we obtain the formula (3.10).

Formula (3.10) will be used to compute the inverse of d̃
(µ)
k+1.

3.5. Rank-two modification of Tk+1 with two prescribed eigenvalues.

Given two numbers µ and η different from any eigenvalue of Tk, we would like to find

a rank-two modification of the matrix Tk+1 so that the matrix T̃
(µ,η)
k+1 defined in (2.9)

has µ and η as prescribed eigenvalues. In [10] it has been shown that α̃
(µ,η)
k+1 and β̃

(µ,η)
k

satisfy

α̃
(µ,η)
k+1 = µ+

(
β̃
(µ,η)
k

)2
ζ
(µ)
k , α̃

(µ,η)
k+1 = η +

(
β̃
(µ,η)
k

)2
ζ
(η)
k ,

where ζ
(µ)
k , respectively ζ

(η)
k , is the last component of the tridiagonal system

(Tk − µI)ζ(µ) = ek, ζ(µ) ≡
[
ζ
(µ)
1 , . . . , ζ

(µ)
k

]T
,



On computing quadrature-based bounds 13

respectively,

(Tk − ηI)ζ(η) = ek, ζ(η) ≡
[
ζ
(η)
1 , . . . , ζ

(η)
k

]T
.

Summarizing, we first solve systems (Tk − µI)ζ(µ) = ek, (Tk − ηI)ζ(η) = ek and then

we obtain α̃
(µ,η)
k+1 and

(
β̃
(µ,η)
k

)2
as the solution of the 2× 2 linear system

[
1 −ξ

(µ)
k

1 −ξ
(η)
k

][
α̃k+1(
β̃
(µ,η)
k

)2
]
=

[
µ
η

]
.

We are now interested in the LDLT factorization of the matrix T̃
(µ,η)
k+1 , see (2.9),




1

ℓ1
. . .

. . .
. . .

ℓk−1 1

ℓ̃
(µ,η)
k 1







d1
. . .

dk

d̃
(µ,η)
k+1







1 ℓ1
. . .

. . .

. . . ℓk−1

1 ℓ̃
(µ,η)
k

1



.

(3.11)

In the following lemma we express ℓ̃
(µ,η)
k and d̃

(µ,η)
k+1 using the entries of the LDLT

factorizations of Tk − µI and Tk − ηI.

Lemma 3.3. The entries ℓ̃
(µ,η)
k and d̃

(µ,η)
k+1 from (3.11) can be computed using the

following formulas,

(
ℓ̃
(µ,η)
k

)2
=

d̄
(µ)
k d̄

(η)
k

d2k

η − µ

d̄
(η)
k − d̄

(µ)
k

, d̃
(µ,η)
k+1 =

ηd̄
(η)
k − µd̄

(µ)
k

d̄
(η)
k − d̄

(µ)
k

− dk

(
ℓ̃
(µ,η)
k

)2
.(3.12)

Proof. For simplicity of notation in this proof, we will omit the (µ, η) upper
indices. From (3.11), it follows that ℓ̃k and d̃k+1 satisfy

ℓ̃2k =
β̃2
k

d2k
, d̃k+1 = α̃k+1 − β̃k ℓ̃k = α̃k+1 −

β̃2
k

dk
.

Therefore,

[
d̃k+1

ℓ̃2k

]
=

[
1 −d−1

k

0 d−2
k

] [
α̃k+1

β̃2
k

]
,

[
α̃k+1

β̃2
k

]
=

[
1 dk
0 d2k

] [
d̃k+1

ℓ̃2k

]

and ℓ̃2k and d̃k+1 solve the system

[
µ
η

]
=

[
1 −ζ

(µ)
k

1 −ζ
(η)
k

][
1 dk
0 d2k

] [
d̃k+1

ℓ̃2k

]
=

[
1 dk − d2kζ

(µ)
k

1 dk − d2kζ
(η)
k

] [
d̃k+1

ℓ̃2k

]
.

Using Cramer’s rule we obtain

det

[
1 dk − d2kζ

(µ)
k

1 dk − d2kζ
(η)
k

]
= d2k

(
ζ
(µ)
k − ζ

(η)
k

)
,
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det

[
µ dk − d2kζ

(µ)
k

η dk − d2kζ
(η)
k

]
= dk(µ− η)− d2k

(
µζ

(η)
k − ηζ

(µ)
k

)
, det

[
1 µ
1 η

]
= η− µ,

and, therefore

ℓ̃2k =
η − µ

d2k

(
ζ
(µ)
k − ζ

(η)
k

) ,

d̃k+1 =
µ− η − dk

(
µζ

(η)
k − ηζ

(µ)
k

)

dk

(
ζ
(µ)
k − ζ

(η)
k

) =
ηζ

(µ)
k − µζ

(η)
k

ζ
(µ)
k − ζ

(η)
k

− dk ℓ̃
2
k.

Using

ζ
(η)
k =

1

d̄
(η)
k

, ζ
(µ)
k =

1

d̄
(µ)
k

we obtain

ℓ̃2k =
η − µ

d2k

(
1

d̄
(µ)
k

− 1

d̄
(η)
k

) =
d̄
(µ)
k d̄

(η)
k

d2k

η − µ

d̄
(η)
k − d̄

(µ)
k

,

d̃k+1 =

η

d̄
(µ)
k

− µ

d̄
(η)
k

1

d̄
(µ)
k

− 1

d̄
(η)
k

− dk ℓ̃
2
k =

ηd̄
(η)
k − µd̄

(µ)
k

d̄
(η)
k − d̄

(µ)
k

− dk ℓ̃
2
k,

which completes the proof.

Using the formula (3.10) we can update the entries d̃
(µ)
k and d̃

(η)
k . Then, we can

use the relations

d̄
(µ)
k = dk − d̃

(µ)
k , d̄

(η)
k = dk − d̃

(η)
k

and compute ℓ̃
(µ,η)
k and d̃

(µ,η)
k+1 using d̃

(µ)
k and d̃

(η)
k , as it is shown the following lemma.

Lemma 3.4. The entries ℓ̃
(µ,η)
k and d̃

(µ,η)
k+1 from (3.11) can be computed using the

following formulas,

(
ℓ̃
(µ,η)
k

)2
=

(
dk − d̃

(µ)
k

)(
dk − d̃

(η)
k

)
(η − µ)

(
d̃
(µ)
k − d̃

(η)
k

)
d2k

,(3.13)

d̃
(µ,η)
k+1 =

dk(η − µ) + µd̃
(µ)
k − ηd̃

(η)
k

d̃
(µ)
k − d̃

(η)
k

− dk

(
ℓ̃
(µ,η)
k

)2
.(3.14)

Proof. Using d̄
(µ)
k = dk − d̃

(µ)
k , d̄

(η)
k = dk − d̃

(η)
k we get

d̄
(η)
k − d̄

(µ)
k = dk − d̃

(η)
k − (dk − d̃

(µ)
k ) = d̃

(µ)
k − d̃

(η)
k ,

ηd̄
(η)
k − µd̄

(µ)
k = η(dk − d̃

(η)
k )− µ(dk − d̃

(µ)
k ) = dk(η − µ) + µd̃

(µ)
k − ηd̃

(η)
k
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and by substituting into the formulas (3.12) we obtain

(
ℓ̃
(µ,η)
k

)2
=

d̄
(µ)
k d̄

(η)
k

d2k

η − µ

d̄
(η)
k − d̄

(µ)
k

=

(
dk − d̃

(µ)
k

)(
dk − d̃

(η)
k

)
(η − µ)

(
d̃
(µ)
k − d̃

(η)
k

)
d2k

,

d̃
(µ,η)
k+1 =

ηd̄
(η)
k − µd̄

(µ)
k

d̄
(η)
k − d̄

(µ)
k

− dk

(
ℓ̃
(µ,η)
k

)2
=

dk(η − µ) + µd̃
(µ)
k − ηd̃

(η)
k

d̃
(µ)
k − d̃

(η)
k

− dk

(
ℓ̃
(µ,η)
k

)2
,

which completes the proof.

In the formulas that we will use later, we need the ratio
(
ℓ̃
(µ,η)
k

)2

d̃
(µ,η)
k+1

rather than the values ℓ̃
(µ,η)
k and d̃

(µ,η)
k+1 . The following lemma shows the formula for

computing this ratio.

Lemma 3.5. It holds that

(
ℓ̃
(µ,η)
k

)2

d̃
(µ,η)
k+1

=

((
d̃
(η)
k

)−1

− d−1
k

)((
d̃
(µ)
k

)−1

− d−1
k

)
(η − µ)

η

((
d̃
(µ)
k

)−1

− d−1
k

)
− µ

((
d̃
(η)
k

)−1

− d−1
k

) .(3.15)

Proof. Using formulas (3.13) and (3.14) and simple algebraic manipulations we
get



(
ℓ̃
(µ,η)
k

)2

d̃
(µ,η)
k+1




−1

=
dk(η − µ) + µd̃

(µ)
k − ηd̃

(η)
k

d̃
(µ)
k − d̃

(η)
k

(
ℓ̃
(µ,η)
k

)−2

− dk

=
dk(η − µ) + µd̃

(µ)
k − ηd̃

(η)
k

d̃
(µ)
k − d̃

(η)
k

(
d̃
(µ)
k − d̃

(η)
k

)
d2k(

dk − d̃
(µ)
k

)(
dk − d̃

(η)
k

)
(η − µ)

− dk

= dk


dk

dk(η − µ) + µd̃
(µ)
k − ηd̃

(η)
k(

dk − d̃
(µ)
k

)(
dk − d̃

(η)
k

)
(η − µ)

− 1




=
d2k

(
ηd̃

(µ)
k − µd̃

(η)
k

)
− dk

(
d̃
(µ)
k d̃

(η)
k

)
(η − µ)

(
dk − d̃

(µ)
k

)(
dk − d̃

(η)
k

)
(η − µ)

=
η
(
d̃
(η)
k

)−1

− µ
(
d̃
(µ)
k

)−1

− d−1
k (η − µ)

((
d̃
(µ)
k

)−1

− d−1
k

)((
d̃
(η)
k

)−1

− d−1
k

)
(η − µ)

=

η

((
d̃
(η)
k

)−1

− d−1
k

)
− µ

((
d̃
(µ)
k

)−1

− d−1
k

)

((
d̃
(µ)
k

)−1

− d−1
k

)((
d̃
(η)
k

)−1

− d−1
k

)
(η − µ)

which completes the proof.
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3.6. Another rank-two modification of Tk+1. The last modification of Tk+1

that we consider, is to replace βk in Tk+1 by c βk where c is a given constant. The

corresponding Jacobi matrix T̂
(c)
k+1 has the same LDLT factorization as Tk+1 up to

(
ℓ̂
(c)
k

)2
=

c2β2
k

d2k
= c2 ℓ2k, d̂

(c)
k+1 = αk+1 − c2 dkℓ

2
k = dk+1 + (1− c2) dkℓ

2
k ,

and, therefore,

(
ℓ̂
(c)
k

)2

d̂
(c)
k+1

=
c2

dk+1 + (1− c2) dkℓ2k
ℓ2k .(3.16)

4. Algorithms. In this section we use the results from the previous sections for
the tridiagonal matrices resulting from the Lanczos and CG algorithms. This will
allow us to obtain simple formulas for computing lower and upper bounds for the
A-norm of the error. Matching the LDLT of Tk in (3.2) and (2.1), we obtain

ℓ2j = δj , dj = γ−1
j−1.

Given two prescribed nodes µ and η, let us now consider various modifications of the
matrix Tk+1 and define

γ̃
(µ)
k ≡

(
d̃
(µ)
k+1

)−1

, γ̃
(η)
k ≡

(
d̃
(η)
k+1

)−1

, γ̃
(µ,η)
k ≡

(
ℓ̃
(µ,η)
k

)2 (
d̃
(µ,η)
k+1

)−1

.

Using (3.10) and (3.15) we get the updating formulas

γ̃
(µ)
0 =

1

µ
, γ̃

(µ)
k =

γ̃
(µ)
k−1 − γk−1

µ
(
γ̃
(µ)
k−1 − γk−1

)
+ δk

,

γ̃
(η)
0 =

1

η
, γ̃

(η)
k =

γ̃
(η)
k−1 − γk−1

η
(
γ̃
(η)
k−1 − γk−1

)
+ δk

,

γ̃
(µ,η)
k =

(
γ̃
(µ)
k−1 − γk−1

)(
γ̃
(η)
k−1 − γk−1

)
(η − µ)

η
(
γ̃
(η)
k−1 − γk−1

)
− µ

(
γ̃
(µ)
k−1 − γk−1

) .

Using (3.5) and

‖r0‖2 (ℓ1 . . . ℓk−1)
2
= ‖r0‖2δ1 . . . δk−1 = ‖r0‖2

‖r1‖2
‖r0‖2

. . .
‖rk−1‖2
‖rk−1‖2

= ‖rk−1‖2,

one obtains

‖r0‖2
([(

T̃
(µ)
k+1

)−1
]

1,1

−
(
T−1
k

)
1,1

)
=

ℓ2k

d̃
(µ)
k+1

‖rk−1‖2 =
‖rk‖2

d̃
(µ)
k+1

.

We can now compute the quantities of the form (2.18),

gk ≡ ‖r0‖2
((

T−1
k+1

)
1,1

−
(
T−1
k

)
1,1

)
= γk‖rk‖2,
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g
(µ)
k ≡ ‖r0‖2

([(
T̃

(µ)
k+1

)−1
]

1,1

−
(
T−1
k

)
1,1

)
= γ̃

(µ)
k ‖rk‖2,

g
(η)
k ≡ ‖r0‖2

([(
T̃

(η)
k+1

)−1
]

1,1

−
(
T−1
k

)
1,1

)
= γ̃

(η)
k ‖rk‖2,

g
(µ,η)
k ≡ ‖r0‖2

([(
T̃

(µ,η)
k+1

)−1
]

1,1

−
(
T−1
k

)
1,1

)
= γ̃

(µ,η)
k ‖rk−1‖2.

Hence, the quantities for the three different rules are given almost in the same form.

The index of the residual differs for the Gauss-Lobatto rule because the term (ℓ̃
(µ,η)
k )2

is incorporated in γ̃
(µ,η)
k . Using the updating formulas for the coefficients γ̃

(µ)
k , γ̃

(η)
k

and γ̃
(µ,η)
k we can derive updating formulas for g

(µ)
k , g

(η)
k and g

(µ,η)
k such that the

coefficients γ̃
(µ)
k , γ̃

(η)
k and γ̃

(µ,η)
k need not to be computed. Since

γ̃
(µ)
k =

γ̃
(µ)
k−1 − γk−1

µ(γ̃
(µ)
k−1 − γk−1) + δk

=
‖rk−1‖2γ̃(µ)

k−1 − ‖rk−1‖2γk−1

µ(‖rk−1‖2γ̃(µ)
k−1 − ‖rk−1‖2γk−1) + ‖rk‖2

=
g
(µ)
k−1 − gk−1

µ(g
(µ)
k−1 − gk−1) + ‖rk‖2

,

the formulas for g
(µ)
k and g

(η)
k can be written as

g
(µ)
0 =

‖r0‖2
µ

, g
(η)
0 =

‖r0‖2
η

,(4.1)

g
(µ)
k = ‖rk‖2

g
(µ)
k−1 − gk−1

µ(g
(µ)
k−1 − gk−1) + ‖rk‖2

, g
(η)
k = ‖rk‖2

g
(η)
k−1 − gk−1

µ(g
(η)
k−1 − gk−1) + ‖rk‖2

.

The formula for g
(µ,η)
k = γ̃

(µ,η)
k ‖rk−1‖2 takes the form

g
(µ,η)
k = γ̃

(µ,η)
k ‖rk−1‖2 = ‖rk−1‖2

(
γ̃
(µ)
k−1 − γk−1

)(
γ̃
(η)
k−1 − γk−1

)
(η − µ)

η
(
γ̃
(η)
k−1 − γk−1

)
− µ

(
γ̃
(µ)
k−1 − γk−1

)

=

(
‖rk−1‖2γ̃(µ)

k−1 − ‖rk−1‖2γk−1

)(
‖rk−1‖2γ̃(η)

k−1 − ‖rk−1‖2γk−1

)
(η − µ)

η
(
‖rk−1‖2γ̃(η)

k−1 − ‖rk−1‖2γk−1

)
− µ

(
‖rk−1‖2γ̃(µ)

k−1 − ‖rk−1‖2γk−1

)

=

(
g
(µ)
k−1 − gk−1

)(
g
(η)
k−1 − gk−1

)
(η − µ)

η
(
g
(η)
k−1 − gk−1

)
− µ

(
g
(µ)
k−1 − gk−1

) .

Summarizing, starting with the formulas (4.1) we obtain for k = 1, . . . updating
formulas taking the simple following form,

gk−1 = γk−1‖rk−1‖2, ∆
(µ)
k−1 ≡ g

(µ)
k−1 − gk−1, ∆

(η)
k−1 ≡ g

(η)
k−1 − gk−1,(4.2)
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and

g
(µ)
k = ‖rk‖2

∆
(µ)
k−1

µ∆
(µ)
k−1 + ‖rk‖2

, g
(η)
k = ‖rk‖2

∆
(η)
k−1

η∆
(η)
k−1 + ‖rk‖2

,(4.3)

g
(µ,η)
k = (η − µ)

∆
(µ)
k−1∆

(η)
k−1

η∆
(η)
k−1 − µ∆

(µ)
k−1

.(4.4)

Now we have all the needed material to compute bounds. We distinguish three
parts in the algorithm for running CG and obtaining bounds for the A-norm of the
error.

1. The first part is simply the CG-iteration which computes two scalars and
updates the vectors,

γk−1 =
rTk−1rk−1

pTk−1Apk−1
,

xk = xk−1 + γk−1pk−1,

rk = rk−1 − γk−1Apk−1,

δk =
rTk rk

rTk−1rk−1
,

pk = rk + δkpk−1.

2. The second part is called the Quadrature part. It computes the quantities

gk−1, g
(µ)
k , g

(η)
k and g

(µ,η)
k using the formulas (4.2), (4.3), and (4.4) if we are

interested in computing the Gauss, Gauss-Radau and Gauss-Lobatto bounds.

3. The third part is called the Estimates part for iteration k−d. In this paper,

we use the following way of constructing the estimates from gk−1, g
(µ)
k , g

(η)
k

and g
(µ,η)
k . If k > d, then compute

Qk−d,d =

k∑

j=k−d+1

gj,

Ek−d =
√
Qk−d,d, E

(µ)
k−d =

√
Qk−d,d + g

(µ)
k ,

E
(η)
k−d =

√
Qk−d,d + g

(η)
k , E

(µ,η)
k−d =

√
Qk−d,d + g

(µ,η)
k

Ek−d is the Gauss lower bound. If µ < λ1 (resp. η > λN ) E
(µ)
k−d (resp. E

(η)
k−d) is

the Gauss-Radau upper (resp. lower) bound and E
(µ,η)
k−d is the Gauss-Lobatto upper

bound. Note that d is a given positive integer indicating how many steps of CG should
be precomputed to have the estimate at iteration k − d.

Algorithm 5 recalls the CGQL algorithm described in [21] and [13]. Algorithm 6
is the new version using the simpler formulas derived in this paper. We denote it
as CGQ (in reference to CGQL, dropping the L because we do not use the Lanczos
coefficients any longer). We see that computing the Gauss-Radau upper bound is
almost as simple as computing the Gauss lower bound provided we have a µ < λ1.

In practical computations we usually only use the lower bound based on Gauss
quadrature and the upper bound based on Gauss-Radau when a lower bound of the
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Algorithm 5 CGQL (Conjugate Gradients and Quadrature via Lanczos coefficients)

input A, b, x0, µ
r0 = b−Ax0, p0 = r0
δ0 = 0, γ−1 = 1, c1 = 1, β0 = 0, d0 = 1, α̃

(µ)
1 = µ, α̃

(η)
1 = η

for k = 1, . . . , until convergence do

CG-iteration (k)

αk =
1

γk−1
+

δk−1

γk−2
, β2

k =
δk

γ2
k−1

dk = αk −
β2
k−1

dk−1
, gk = ‖r0‖2

c2k
dk

,

d̄
(µ)
k = αk − α̃

(µ)
k , α̃

(µ)
k+1 = µ+

β2
k

d̄
(µ)
k

, g
(µ)
k = ‖r0‖2

β2
kc

2
k

dk

(
α̃
(µ)
k+1dk − β2

k

)

d̄
(η)
k = αk − α̃

(η)
k , α̃

(η)
k+1 = η +

β2
k

d̄
(η)
k

, g
(η)
k = ‖r0‖2

β2
kc

2
k

dk

(
α̃
(η)
k+1dk − β2

k

)

α̃
(µ,η)
k+1 =

d̄
(µ)
k d̄

(η)
k

d̄
(η)
k − d̄

(µ)
k

(
η

d̄
(µ)
k

− µ

d̄
(η)
k

)
,
[
β̃
(µ,η)
k

]2
=

d̄
(µ)
k d̄

(η)
k

d̄
(η)
k − d̄

(µ)
k

(η − µ)

g
(µ,η)
k = ‖r0‖2

[
β̃
(µ,η)
k

]2
c2k

dk

(
α̃
(µ,η)
k+1 dk −

[
β̃
(µ,η)
k

]2)

c2k+1 =
β2
kc

2
k

d2k

Estimates(k,d)
end for

smallest eigenvalue of A is available. In that case we only need to compute gk and

g
(µ)
k using the formulas from Algorithm 6.

Note that in the same way we can also obtain formulas for the anti-Gauss quadra-
ture rule [20, 4]. Defining

ĝ
(c)
k ≡ ‖r0‖2

([(
T̂

(c)
k+1

)−1
]

1,1

−
(
T−1
k

)
1,1

)

and using the formula (3.16) we obtain

ĝ
(c)
k = c2

gkgk−1

gk−1 + (1− c2)gk
.(4.5)

The anti-Gauss quadrature estimate can be then computed analogously,

Ê
(c)
k−d =

√
Qk−d,d + ĝ

(c)
k .
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Algorithm 6 CGQ (Conjugate Gradients and Quadrature)

input A, b, x0, µ, η
r0 = b−Ax0, p0 = r0

g
(µ)
0 = ‖r0‖

2

µ , g
(η)
0 = ‖r0‖

2

η
for k = 1, . . . , until convergence do

CG-iteration(k)

gk−1 = γk−1‖rk−1‖2,

∆
(µ)
k−1 = g

(µ)
k−1 − gk−1 , g

(µ)
k =

‖rk‖2∆(µ)
k−1

µ∆
(µ)
k−1 + ‖rk‖2

∆
(η)
k−1 = g

(η)
k−1 − gk−1 , g

(η)
k =

‖rk‖2∆(η)
k−1

η∆
(η)
k−1 + ‖rk‖2

g
(µ,η)
k = (η − µ)

∆
(µ)
k−1∆

(η)
k−1

η∆
(η)
k−1 − µ∆

(µ)
k−1

.

Estimates(k,d)
end for

5. Error estimation in preconditioned CG. In the standard view of pre-
conditioning, the CG method is thought of as being applied to a “preconditioned”
system

Âx̂ = b̂, Â = L−1AL−T , b̂ = L−1b,(5.1)

where L represents a nonsingular (eventually lower triangular) matrix. Denoting the
corresponding CG coefficients and vectors with hat and defining

xk ≡ L−T x̂k, rk ≡ L r̂k, pk ≡ L−T p̂k, zk ≡ L−TL−1rk ≡ P−1rk,

(here xk and rk represent the approximate solution and residual for the original prob-
lem Ax = b), we obtain the standard version of the preconditioned CG (PCG) method
which involves only P = LLT ; for more details see, e.g. [22] or [29].

Since

‖r̂k‖2 = rTk L
−TL−1rk = rTk P

−1rk = (rk, zk) ,

‖x̂− x̂k‖Â = (LTx− LTxk)
TL−1AL−T (LTx− LTxk) = ‖x− xk‖2A,

the A-norm of the error in PCG can be estimated similarly as in ordinary CG. One can
compute the quadratures-based estimates of the A-norm of the error using the PCG
coefficients γ̂k−1 and inner products (rk, zk) (instead of using ‖r̂k‖2). The resulting
Algorithm 7 is called PCGQ.

6. Numerical experiments. We present two examples where we demonstrate
the effectivity of the new formula

g
(µ)
k =

‖rk‖2
(
g
(µ)
k−1 − gk−1

)

µ
(
g
(µ)
k−1 − gk−1

)
+ ‖rk‖2
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Algorithm 7 Preconditioned CGQ (PCGQ) algorithm

input A, b, x0, P , µ, η
r0 = b−Ax0, z0 = P−1r0, p0 = z0
g
(µ)
0 = (r0,z0)

µ , g
(η)
0 = (r0,z0)

η
for k = 1, . . . , n until convergence do

γ̂k−1 =
zT
k−1rk−1

pT
k−1Apk−1

xk = xk−1 + γ̂k−1pk−1

rk = rk−1 − γ̂k−1Apk−1

zk = P−1rk

δ̂k =
zT
k rk

zT
k−1rk−1

pk = zk + δ̂kpk−1

gk−1 = γ̂k−1(rk−1, zk−1),

∆
(µ)
k−1 = g

(µ)
k−1 − gk−1 , g

(µ)
k =

(rk, zk)∆
(µ)
k−1

µ∆
(µ)
k−1 + (rk, zk)

∆
(η)
k−1 = g

(η)
k−1 − gk−1 , g

(η)
k =

(rk, zk)∆
(η)
k−1

η∆
(η)
k−1 + (rk, zk)

g
(µ,η)
k = (η − µ)

∆
(µ)
k−1∆

(η)
k−1

η∆
(η)
k−1 − µ∆

(µ)
k−1

.

Estimates(k,d)
end for

that is key for computing the Gauss-Radau quadrature estimate (GR-estimate). Both
examples are chosen such that many iterations are necessary for CG (or PCG) to con-
verge, and such that the influence of rounding errors is substantial (in both examples
we observe a significant delay of convergence). The aim of numerical experiments is
not to focus on the question of how to estimate the A-norm of the error and when
to stop the algorithm, but to compare the new and the old formula for computing
the existing estimate. For further discussion on estimating the A-norm of the error,
stopping criteria, and numerical experiments we refer to [22, 4, 5, 28, 1, 29, 23]. The
following experiments are performed in Matlab 7.13 (R2011b).

In the first numerical experiment we solve the system Ax = b with the matrix
bcsstk01 (Harwell-Boeing collection) of order n = 48; see also numerical experiments
in [23, Chapter 7]. The right-hand side b has been chosen such that b has equal com-
ponents in the eigenvector basis, and such that ‖b‖ = 1. We choose x0 = 0, d = 1, and
µ = 3.417267e+ 3 (the smallest eigenvalue of the matrix is 3.417267562666500e+3).

In the upper part of Figure 6.1 we plot the A-norm of the error (bold solid line),
the Gauss quadrature estimate Ek−1 (solid line, GQ-estimate), and the GR-estimate

E
(µ)
k−1, where g

(µ)
k is computed using CGQ (dashed line) and using CGQL (dotted

line). Visually, it is not possible to distinguish between the estimate E
(µ)
k−1 computed

using CGQ (the new formula) and CGQL (the old formula). However, the lower part
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Fig. 6.1. The upper part: The A-norm of the error (bold solid), the GQ-estimate (solid)
and the GR-estimate computed using CGQ (dashed) and CGQL (dotted). The lower part: Relative
accuracy of the GR-estimate computed using CGQ (dashed) and CGQL (dotted).

of Figure 6.1 indicates that the new formula is not only simpler but also more accurate
than the old one.

In the lower part of Figure 6.1 we compare the relative accuracy of results com-
puted using the two formulas. First, we compute the quantities ‖rk‖2 and γk using the
standard double precision CG. Second, we use variable-precision arithmetic in Matlab

(Symbolic Toolbox, 64 digits) to get a reasonably accurate value of E
(µ)
k−1 (computed

from the double precision quantities ‖rk‖2 and γk). Third, we compute E
(µ)
k−1 using

the standard double precision arithmetic and the two formulas; the corresponding

computed values are denoted by Ê
(µ,new)
k−1 and Ê

(µ,old)
k−1 . Finally, in the lower part of

Figure 6.1 we plot the quantities

∣∣∣∣∣
Ê

(µ,new)
k−1 − E

(µ)
k−1

E
(µ)
k−1

∣∣∣∣∣ (dashed) and

∣∣∣∣∣
Ê

(µ,old)
k−1 − E

(µ)
k−1

E
(µ)
k−1

∣∣∣∣∣ (dotted)

that characterize the relative accuracy of the computed value of E
(µ)
k−1. We can observe

that the new formula is less sensitive to rounding error.
In the second numerical experiment we solve the system Ax = b with the matrix

msc04515 (The University of Florida sparse matrix collection) of order n = 4515;
see also numerical experiments in [23, Chapter 7]. The right-hand side b has again
been chosen such that b has equal components in the eigenvector basis, and ‖b‖ = 1.
We choose x0 = 0, d = 1, and use the diagonal preconditioner (the preconditioned
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Fig. 6.2. The upper part: The A-norm of the error (bold solid), the GQ-estimate (solid)
and the GR-estimate computed using CGQ (dashed) and CGQL (dotted). The lower part: Relative
accuracy of the GR-estimate computed using CGQ (dashed) and CGQL (dotted).

matrix is diagonally normalized with 1’s on the diagonal). The value of µ is given
by µ = 1.75e − 6 (the smallest eigenvalue of the preconditioned matrix is equal to
1.751795139099631e-6).

In Figure 6.2 we observe more or less the same behaviour as for the first example;
the GR-estimate computed using the new formula gives visually the same results,
however, the new formula is simpler and more accurate that the old one.

7. Conclusion. In this paper we have described how the bounds based on Gauss
quadrature rules for the CG A-norm of the error can be computed in a simple way.
In particular, for the Gauss-Radau and Gauss-Lobatto bounds, the preceding imple-
mentations computed explicitly the entries of the (modified) Jacobi matrices and used
them to compute the bounds. Here we exploited the fact that the LDLT factoriza-
tion of the corresponding Jacobi matrix is available in CG and showed how to update
LDLT factorizations of modified Jacobi matrices. The bounds are then computed di-
rectly from the known entries of LDLT factorizations. The algebraic derivation of the
new formulas is more difficult than it was when using Jacobi matrices but, in the end,
the formulas are simpler. Obtaining simple formulas is a prerequisite for analyzing
the behaviour of the bounds in finite precision arithmetic and also for a better un-
derstanding of their dependence on the auxiliary parameters µ and η which are lower
and upper bounds (or estimates) of the smallest and largest eigenvalues. Numerical
experiments predict that the new formulas are less prone to the growth of rounding
errors. Therefore, we hope that these improvements will help the implementation of
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quadrature-based error bounds into existing and forthcoming CG codes.
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