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Abstract. This paper is concerned with the behaviour of the Lanczos algorithm in presence
of close eigenvalues. We numerically study in great details an example with two close eigenvalues.
We show that what happens is very similar to the situation that occurs due to the development of
rounding errors when using the Lanczos algorithm in finite precision arithmetic.

1. Introduction. The Lanczos algorithm is one of the most well-known method
for computing a few eigenvalues of a symmetric matrix A. In this paper we are
interested in the behaviour of the Lanczos algorithm in presence of close eigenvalues.
Contrary to the convergence of the Ritz values towards well separated eigenvalues, the
convergence to a cluster of close eigenvalues is rather peculiar. For a while it seems
that one Ritz value converges to an average value of the eigenvalues belonging to the
cluster. This phenomenon, called “misconvergence”, is described in B.N. Parlett’s
book [7]. This problem has also been studied in a paper by A. van der Sluis and
H.A. van der Vorst [9]. Here we will consider the problem from another perspective
by analyzing an example in great details. Some insights in this phenomenon can be
obtained by using the same tools as when studying the Lanczos algorithm in finite
precision arithmetic; for a summary on this problem, see [2], [3].

Section 2 briefly recalls some details on the Lanczos algorithm. The example
we will study with two close eigenvalues is described in section 3. Numerical results
on this example are given in section 4. An explanation of the observed results is
provided in section 5 using different tools than in [9]. Section 6 briefly considers finite
precision arithmetic. Section 7 provides some numerical experiments with three close
eigenvalues. Finally, we give some conclusions.

2. The Lanczos algorithm. Let A be a symmetric matrix of order n. The
Lanczos algorithm is the following. Starting from vectors v0 = 0 and ṽ1 = v for
k = 1, 2, . . . ,m it computes

ηk−1 = ‖ṽk‖,

vk =
ṽk

ηk−1
,

αk = (vk, Avk) = (vk)TAvk,

ṽk+1 = Avk − αkv
k − ηk−1v

k−1.

This algorithm constructs an orthonormal basis of the Krylov space Km(A, v)
which is spanned by the vectors Ajv for j = 0, . . . ,m− 1. The matrix relation for the
matrix Vk whose columns are the basis vectors vj , j = 1, . . . , k can be written more
compactly as

AVk = VkTk + ηkv
k+1(ek)T ,
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2 G. MEURANT

where ek is the kth column of the identity matrix of order k. Moreover,

V T
k Vk = I, V T

k AVk = Tk,

where Tk is a tridiagonal matrix of order k whose diagonal elements are the αi, i =
1, . . . , k and the subdiagonal elements are ηi, i = 1, . . . , k − 1. We have also

ηk−1 = (Avk, vk−1).

We will use the Lanczos algorithm with double reorthogonalization of the new
basis vector at every iteration. At least for our example, this will give numerical
results which are very close to exact arithmetic. Computations done in extended pre-
cision using the Matlab Symbolic Toolbox with this example confirm that the double
precision results with reorthogonalization well represent exact arithmetic results.

Since we can suppose that ηi > 0, the tridiagonal matrix Tk has real and simple
eigenvalues which we denote by θ

(k)
j . They are known as the Ritz values that we order

as

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k .

The Ritz values are the approximations of the eigenvalues of A given by the Lanczos
algorithm. In exact arithmetic the Lanczos vectors vk are given by a polynomial in
A applied to the initial vector,

vk = p1,k(A)v1, p1,k(λ) = (−1)k−1 χ1,k−1(λ)
η1 · · · ηk−1

,

where χ1,k(λ) denotes the determinant of Tk − λI. The polynomials p1,k of degree
k − 1 are known as the normalized Lanczos polynomials. Their roots are the Ritz
values. Of course, they satisfy a three–term recurrence relation

ηkpk+1(λ) = (λ− αk)pk(λ) − ηk−1pk−1(λ), k = 1, 2, . . .

with initial conditions, p0 ≡ 0, p1 ≡ 1. These polynomials are orthogonal for the
inner product defined by a Riemann-Stieltjes integral with a discrete measure which
depends on the eigenvalues of A; see [2].

3. The example. First we start with a Strakoš matrix; see [8]. The matrix of
order n is diagonal with eigenvalues

λi = λ1 +
(

i− 1
n− 1

)
(λn − λ1)ρn−i, i = 1, . . . , n.

The parameters λ1 and λn are respectively the smallest and largest eigenvalues. The
parameter ρ controls the distribution of the eigenvalues. We will use n = 30, λ1 = 0.1,
λn = 100 and ρ = 0.9. Let us denote this matrix by S. Since this matrix is diagonal,
the matrix of its eigenvectors is the identity matrix. Hence, the projections of the
Lanczos vectors on the eigenvectors (which are the important variables to analyze the
behavior of the algorithm) are the Lanczos vectors themselves. Starting from a vector
v1 having all its components equal to 1/

√
n, the first eigenvalues to be approximated

are the largest ones which are well separated.
The matrix A we use as our example is a modification of the matrix S. We change

the next to last eigenvalue λn−1 to

λn−1 = (1 − gap)λn.
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Therefore the positive real number gap is the relative gap between the two largest
eigenvalues and gap ·λn is the absolute gap. The value gap is to be chosen small such
that we will have a cluster of two close eigenvalues well separated from the other ones.

4. Numerical experiments. As we said before the Lanczos algorithm is used
with double reorthogonalization at every iteration. Let us first consider the approx-
imation of the two largest eigenvalues of A. We take gap = 10−10 which gives an
absolute gap of 1.000000793283107 10−8. Figure 4.1 displays the (log10 of the) mini-
mum distances of a Ritz value θ

(k)
j to λ30 (solid), λ29 (dashed) and λM = (λ30+λ29)/2

(dot-dashed) as a function of the iteration number k. We see that a Ritz value is ap-
proaching the cluster in the first 10 iterations. In fact this Ritz value is the largest
one θ

(k)
k as it can be seen on figure 4.2 since the distance of θ

(k)
k−1 to the cluster is

large until iteration 20. The largest Ritz value θ
(k)
k becomes larger than λn−1 (that is,

enters the cluster) at iteration 12 and it goes almost right away to the average value
λM of λn and λn−1. As we can see in both figures the distance |λn − θ

(k)
k | stagnates

from iterations 12 to 20. This is related to the fact that the distance of the Ritz value
to λM is small and close to 10−14 at the minimum (see dashed curve in figure 4.1) for
a few iterations (roughly between iterations 15 and 20). At iteration 20, θ

(k)
k starts

moving again towards λn and almost reach the minimum distance at iteration 25.
The distance λn−1 − θ

(k)
k−1 becomes small at iteration 19 and then it decreases fast as

we can see in figure 4.2.

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

2
n = 30, gap = 1e−10

 

 

min ln
min l n−1
min l av

Fig. 4.1. gap=10−10, log10 of minimum distances of a Ritz value to λ30 (solid), λ29 (dashed)
and (λ30 + λ29)/2 (dot-dashed)

In fact the third largest eigenvalue λn−2 ≈ 75.4383 has been well approximated by
a Ritz value since iteration 5. It is well approximated by θ

(k)
k−1 until iteration 17 where

the distance is −3.06954 10−12 and then by θ
(k)
k−2, the distance being 6.2243 10−12 at

iteration 18. We see the appearance of a new Ritz value (in between λn−2 and λn−1)
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at iteration 18 where the three largest Ritz values are

75.43837931033860, 85.85112980363365, 99.99999999500002

At iteration 17 the two largest Ritz values were

75.43837931034790, 99.99999999499994

At iteration 24 the two largest eigenvalues (even though they are quite close) are well
approximated by the two largest Ritz values.

This phenomenon has been called “misconvergence” (see [7]) because it seems
that for a while the largest Ritz value has converged to the average value λM . We will
see that the level of stagnation of λM −θ

(k)
k depends on the size of the gap. When the

gap is larger, the level of stagnation is higher and for a “large” gap, the Ritz value
cannot be considered as converged but it stagnates for a while.
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Fig. 4.2. gap=10−10, log10 of distances of Ritz value θ
(k)
k

to λ30 (plain), and θ
(k)
k−1

to λ29

(dashed)

Normally when a Ritz value converges to an eigenvalue the projection of the Lanc-
zos vector vk on the corresponding eigenvector must “converge” to zero. This happens
because (in our notations when A is diagonal) we have vk

i = p1,k(λi)v1
i . If there is

a root of p1,k (that is a Ritz value) which converges to λi then the corresponding
components vk

i must converge to zero. So considering the two largest eigenvalues,
here in our diagonal example, we have to look at the components vk

n and vk
n−1. This

is shown in figure 4.3 where we observe an interesting behavior. The absolute values
of these two components are first decreasing until iteration 12, then they increase un-
til iteration 18 for which the value of vk

30 is 0.6345647. Note that this is much larger
than the initial value v1

30 which was 0.1825741. After iteration 18 the two components
decrease up to the end of the computation. In fact, as we can see in figure 4.4 between
iterations 13 to 27 the two components have the same absolute values but opposite
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signs. This continues until they are at the roundoff level. Both are small (less than
10−5) after iteration 22.

The component vk
n−2 does not have the same behavior as we see in figure 4.5, even

though there is a small perturbation at iteration 18. There is a change of sign of this
component at iteration 18. The logarithms of all the elements of |V30| are displayed
in figure 4.6. It turns out that the smallest eigenvalues of A are well approximated
only at the last iteration. This is why we do not see a decrease of the corresponding
components of the Lanczos vectors.
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Fig. 4.3. gap=10−10, log10 of |vk
30| and |vk

29|

Let us now change the value of the gap between the two largest eigenvalues of
A. The results are displayed in figure 4.7 for different values of the relative gap.
Remember that the absolute gap is almost a hundred times larger. The iteration
number at which |vk

30| starts to increase clearly depends on the size of the gap. Only
when the gap is of the order of the machine precision do we not see this phenomenon
of oscillation. Then the cluster just appears as one double eigenvalue up to machine
precision. Figure 4.8 shows the (log10 of the) minimum distances of a Ritz value to
λ30, λ29 and (λ30 + λ29)/2 for gap = 10−5 (which gives an absolute gap of the order
of 10−3). We see that the level of the stagnation of the distances to the last two
eigenvalues and the accuracy with which the average is approximated for some time
depend on the value of the gap. Moreover, as it can be expected, the two largest
eigenvalues of A are well approximated sooner when the gap is larger. The same
information is displayed in figure 4.9 for a small gap of 10−13. The stagnation phase
is longer (more than 10 iterations).

It is also interesting to look at a comparison with what is obtained with a matrix
Ã for which the two largest eigenvalues are replaced by the average value λM and the
initial vector is the same as before. Remember that the Lanczos algorithm cannot
“see” the double eigenvalue. Everything is just like if we have just one eigenvalue
λM . The last components of the Lanczos vectors are shown in figure 4.10. We see
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Fig. 4.4. gap=10−10, vk
30 and vk

29
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Fig. 4.5. gap=10−10, log10 of |vk
28|

that, up to the point where the curve for A increases, the last components of both
computations are very close. In fact, the tridiagonal matrices that are generated are
also close. Figure 4.11 shows the diagonal elements of Tk for both computations.
They start to differ significantly at iteration 10. Figure 4.12 displays the values of ηk.
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Fig. 4.6. gap=10−10, log10 of all elements of |V30|
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Fig. 4.7. log10 of |vk
30|, gap = 10−10 (solid), 10−5 (dashed), 10−8 (dot-dashed), 10−13 (dotted),

10−15 (points), 10−17 (+)

We have large peaks between iterations 16 to 20. Note that

αk =
n∑

i=1

λi(vk
i )2, ηk−1 =

n∑
i=1

λiv
k
i vk−1

i .
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Fig. 4.8. gap=10−5, log10 of minimum distances of a Ritz value to λ30 (solid), λ29 (dashed)
and (λ30 + λ29)/2 (dot-dashed)
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Fig. 4.9. gap=10−13, log10 of minimum distances of a Ritz value to λ30 (solid), λ29 (dashed)
and (λ30 + λ29)/2 (dot-dashed)

Therefore, differences in the components of the Lanczos vectors induce differences in
the coefficients of the three-term recurrence which in turn give rise to differences in the
next Lanczos vectors. However, after the peaks, the values of the two computations
are not far away and the rate of decrease is almost the same.
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Fig. 4.10. gap=10−10, log10 of |vk
30| for A (solid) and Ã (+)
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Fig. 4.11. gap=10−10, αk for A (solid) and Ã (+)

5. A tentative of explanation. In this section we will provide an explanation
for the experimental results of the previous section.

5.1. The perturbation problem. Since we assume exact arithmetic and we
have a diagonal matrix, the components of the Lanczos vectors are given by a scalar
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Fig. 4.12. gap=10−10, ηk for A (solid) and Ã (+)

three-term recurrence

ηkv
k+1
i = (λi − αk)vk

i − ηk−1v
k−1
i , i = 1, . . . , n(5.1)

whose solution is given by the Lanczos polynomial

vk+1
i = p1,k+1(λi)v1

i , p1,k+1(λi) = (−1)k χ1,k(λi)
η1 · · · ηk

.

The roots of the polynomial p1,k+1 of degree k are the Ritz values θ
(k)
j (the eigenvalues

of Tk and the roots of the characteristic polynomial χ1,k) at iteration k. Hence

p1,k+1(λi) =
(−1)k

η1 · · · ηk

k∏
l=1

(θ(k)
l − λi).(5.2)

Although we assume exact arithmetic, the situation in figures 4.3 and 4.7 reminds
of what happens in finite precision arithmetic (without reorthogonalization), see the
book [2], chapter 4, page 143. There we see an increase of the perturbation terms
due to rounding errors when computing the three-term recurrence in double precision
arithmetic. The growth of the perturbations happens when a Ritz value converges to
an eigenvalue of A. This situation has been analyzed carefully by Chris Paige [4], [5]
and [6]. See also a summary of his results in [2] and [3].

Where does the perturbation come from in our exact arithmetic problem? The
last two equations in (5.1) can be written (somehow artificially) as

ηkv
k+1
n−1 = (λM − αk)vk

n−1 − ηk−1v
k−1
n−1 + (λn−1 − λM )vk

n−1,(5.3)

ηkv
k+1
n = (λM − αk)vk

n − ηk−1v
k−1
n + (λn − λM )vk

n,(5.4)
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with λM = (λn−1 + λn)/2 if we assume that v1
i = 1/

√
n ∀i. In a more general case

λM =
λn(v1

n)2 + λn−1(v1
n−1)2

(v1
n)2 + (v1

n−1)2
.

So what we obtain with equation (5.1) for i = 1, . . . , n−2 and equations (5.3) and
(5.4) is that everything seems to look like if we were computing the last two equations
with perturbations (or in variable precision arithmetic) for a problem with a double
eigenvalue at λM .

Let g be the absolute gap, g = λn − λn−1. The perturbation terms are − g
2v

k
n−1

in equation (5.3) and g
2v

k
n in equation (5.4). Of course, they change at each iteration

with the values of vk
n−1 and vk

n. If the last components decrease for a while then the
perturbation terms in equations (5.3) and (5.4) also decrease.

The matrix equation related to the perturbed system is

ÃVk = VkTk + ηkv
k+1(ek)T + DVk,(5.5)

where Ã is diagonal with λ1, . . . , λn−2, λM , λM on the diagonal and D is diagonal
with a zero diagonal except for the last two terms which are −g/2 and g/2.

The solution of perturbed three-term recurrences like (5.3) and (5.4) is known in
terms of polynomials, see [2], theorem 4.3, page 150.

Theorem 5.1. Let hn−1 = −g/2 and hn = g/2. The solution of recurrences
(5.3) and (5.4) is

vk+1
i = p1,k+1(λM )v1

i + hi

k∑
l=1

pl+1,k+1(λM )
vl

i

ηl
, i = n− 1, n,(5.6)

where

pj,k+1(λ) =
(−1)k−j+1

ηj · · · ηk

k−j+1∏
m=1

(θ(j,k)
m − λ),(5.7)

where θ
(j,k)
m are the eigenvalues of the trailing submatrix Tj,k which is obtained from

Tk by discarding the j − 1 first rows and columns.
The polynomial p1,k satisfies the unperturbed recurrence

ηkp1,k+1(λ) = (λ− αk)p1,k(λ) − ηk−1p1,k−1(λ), k = 1, 2, . . .(5.8)

with p1,0 ≡ 0, p1,1 ≡ 1. The pj,k+1 are known as the associated polynomials. They
satisfy the following three-term recurrence for a given j,

ηkpj,k+1(λ) = (λ− αk)pj,k(λ) − ηk−1pj,k−1(λ), k = j, j + 1, . . .(5.9)

with initial conditions pj,j−1 ≡ 0, pj,j ≡ 1. Note that the perturbation terms in
equation (5.6) depend on the previous vl

i, i = n or n− 1.
Since the gap is small we could also have used a Taylor expansion of the polynomial

p1,k+1 at λ = λM by writing

p1,k+1(λn) = p1,k+1(λn − λM + λM )
= p1,k+1(λM + g)

= p1,k+1(λM ) + g p′1,k+1(λM ) +
g2

2
p′′1,k+1(λM ) + . . . .
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Note that since we have a polynomial of degree k, this expansion is finite. In fact we
can identify the powers of g with the expression in equation (5.6) using the associated
polynomials. The derivatives of p1,k+1 satisfy also recurrence relations. However we
will see that using only the first derivative is not enough to obtain the correct behavior
of p1,k(λn).

Our claim is that the absolute value of the first term |p1,k+1(λM )| decreases (at
least until iteration 17 in the example with a gap of 10−10) and that the absolute values
of the perturbation terms are increasing because the Ritz value θ

(k)
k converges to the

cluster. At some point (iteration 13 in the example) the perturbation terms become
larger than the first term |p1,k+1(λM )| and the (absolute value of the) components are
increasing. However, |vk

i | has to be smaller than 1. So the increase has to be stopped
and this implies the appearance of an eigenvalue close to λM for Tj,k, j ≥ 2, through
increases of αk and ηk. This happens for k = 18. After this, some already existing
perturbation terms are decreasing for a while and new ones are increasing as we will
see.

The questions which are of interest are the following:
-1. What is the behavior of the polynomials p1,k and pj,k, j ≥ 2 as a function of

k at λ = λM?
-2. Why is θ

(k)
k first “converging” to λM?

-3. What is the duration of the stagnation phase?
-4. When and why does θ

(k)
k move towards λn?

These questions were partially answered in [9].

5.2. Question 1. What is the behavior of the polynomials p1,k and pj,k, j ≥ 2
as a function of k for λ = λM?

This question was studied in chapter 4 of [2] (for roundoff perturbations) where
it is proved that when |p1,k| decreases then |pj,k| decreases. Let us first compute
the polynomials p1,k and pj,k at λM . The coefficients αk and ηk are given by our
Lanczos computation with double reorthogonalization. Since when computing the
values of the polynomials using three-term recurrence we cannot use anything like
orthogonalization we have to be careful of not introducing too large rounding errors.
Therefore we computed everything in variable precision using the Matlab Symbolic
Toolbox. The following computations for the polynomials are done with 32 decimal
digits. We use a relative gap of 10−10.

Figure 5.1 displays the polynomial p1,k (in fact the logarithm of |p1,k(λM )v1
n|) at

λM as a function of k. The dashed curve is the last component of the Lanczos vectors.
We see that the values at λM decrease until iteration 17. This happens because the
largest Ritz value is approaching the cluster. The values at the beginning (up to
iteration 11) are close to those of vk

n because the perturbation terms are small. The
values at λM decrease to a value of 6.88518 10−11, and they more or less stagnate
until iteration 20. Finally they increase rapidly up to 108. This happens because
the largest Ritz value (which is a root of the polynomial) moves away from λM . In
fact, as we can see in figure 5.2 the values of the polynomial p1,k(λM ) are positive
until iteration 16 (that is when the largest Ritz value is still smaller than λM ) and
then negative when the absolute values increase. We have large negative values after
iteration 24.

Let us now look at the first associated polynomials pj,k(λM ) for j small. We
have to multiply their values by (g vj−1

n )/(2ηj−1). This is shown in figure 5.3 for
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Fig. 5.1. gap=10−10, log10 of |p1,k(λM )v1
n| (solid) and |vk

n| (dashed)
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Fig. 5.2. gap=10−10, p1,k(λM )v1
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j = 2, . . . , 5. The symbol + gives the sum

p1,k+1(λM )v1
n +

g
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5∑
j=2

pj,k+1(λM )
vj−1

n

ηj−1

The first associated polynomials increase from the beginning up to iteration 18 and
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then decrease up to iteration 25 or 26 and finally they increase again. The sum nicely
approximate the dashed curve which is |vk

n| until iteration 22. Most of the values of the
associated polynomials j = 2, . . . , 5 are positive but not large enough to compensate
for the large negative values of p1,k(λM ). We see that in log scale the increase of the
perturbation terms is almost symmetric to the decrease of the first polynomial until
iteration 16. This phenomenon was studied in [2].
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Fig. 5.3. gap=10−10, log10 of |p1,k(λM )v1
n| (solid), |vk

n| (dashed),

|g pj,k(λM )vj−1
n /(2ηj−1)|, j = 2 : 5 (different symbols) and sum of the values (+)

If the first perturbation terms do not explain the behavior of vk
n, let us consider

more terms. Figure 5.4 displays all the perturbation terms. Even though this figure
is a little messy, we clearly see that the sum of all the terms (+) gives the value of vk

n

(dashed curve) as it should. There are some interesting features in this figure. In the
bottom left we see that the starting values of the first perturbations terms decrease
because they are given by values of vk

n which is decreasing at this moment. After
iteration 12 the perturbation terms are larger than the first term (polynomial p1,k),
therefore vk

n is now increasing and consequently the starting values of the perturbation
terms increase too.

At iteration 18 a new (large) Ritz value appears in Tk (in between λn−2 and
λn−1) as well as in all the trailing submatrices Tj,k, j = 2, . . . , 18 as we will see. This
happens because |vk

n| is now large and this induces a dramatic change of values for αk

and ηk. This stops the increase of the perturbation terms. However, the perturbations
which start after iteration 18 have large initial values which give the fast increase that
we see on the upper right of the figure. As we see in figure 5.5 these last perturbation
terms are large and positive and their sum cancels out the large negative values of
p1,k(λM ). So we do need all the terms in the sum from 2 to 30 in equation (5.6) to
obtain the correct behavior of the last component of the Lanczos vectors.

Does the value of the derivative p′1,k at λM explain the behavior of vk
n? Figure 5.6

shows the values of the second term in the Taylor expansion g p′j,k(λM )v1
n as the dashed
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Fig. 5.4. gap=10−10, log10 of |p1,k(λM )v1
n| (solid), |vk

n| (dashed) and

|g pj,k(λM )vj−1
n /(2ηj−1)|, j = 2 : 30 (different symbols), sum of the values (+)
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Fig. 5.5. gap=10−10, p1,k(λM )v1
n (solid), g pj,k(λM )vj−1

n /(2ηj−1), j = 2 : 30 (different sym-
bols) and sum of the values (+)

curve. As before with the first associated polynomials it gives the right behavior of
vk

n when it increases but after some decrease the first derivative is going up again and
does not explain what happens in the last iterations.
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Fig. 5.6. gap=10−10, log10 of |p1,k(λM )v1
n| (solid), |g p′j,k(λM )v1

n| (dashed) and sum of the

values (+)

How can we prove (or at least understand) that the polynomial p1,k is first de-
creasing at λM and the polynomials pj,k increasing?

Since

p1,k+1(λ) =
(−1)k

η1 · · · ηk

k∏
l=1

(θ(k)
l − λ),

let us first look at the Ritz values and the eigenvalues of Tj,k, j ≥ 2. As long as
θ
(k)
k ≤ λM all the terms θ

(k)
l − λM are negative and due to the factor (−1)k the

polynomial is positive at λM .
Figure 5.7 displays the Ritz values, from those of T1 at the top to those of T30

at the bottom. The vertical (green) dotted lines represent the eigenvalues of A which
are also shown as large (red) dots on the x-axis. The largest Riz value goes very
fast to the cluster. We also see the appearance of a Ritz value between 80 and 90 at
iteration 18. Then it moves close to the cluster. Figure 5.8 is a zoom on the cluster.
The largest Ritz value jumps right to the middle of the cluster and the stagnation
ends when θ

(k)
k−1 arrives quite close to the cluster. Figure 5.9 shows the eigenvalues

of the trailing matrix T2,k. An eigenvalue close to 100 appears at iteration 19. This
happens for all the trailing matrices up to T17,k but not for Tj,k, j ≥ 18 as we can see
in figure 5.10 for j = 18.

When p1,k(λM ) �= 0, the ratio p1,k+1(λM )/p1,k(λM ) can be written as

p1,k+1(λM )
p1,k(λM )

= −θ
(k)
k − λM

ηk

k−1∏
l=1

θ
(k)
l − λM

θ
(k−1)
l − λM

.(5.10)

By interlacing properties of the Ritz values all the ratios in the product are larger
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Fig. 5.7. gap=10−10, eigenvalues of Tk (Ritz values), k = 1 (top) to k = 30 (bottom)

100 100 100 100 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
j = 1

Fig. 5.8. gap=10−10, eigenvalues of Tk, k = 1 (top) to k = 30 (bottom) - Zoom to the cluster

than 1. Hence for |p1,k+1(λM )/p1,k(λM )| to be smaller than 1 we need

|θ(k)
k − λM |

ηk
< 1,

but this is only a necessary condition. More generally this ratio has to be small
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Fig. 5.9. gap=10−10, eigenvalues of T2,k, k = 2 (top) to k = 30 (bottom)
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Fig. 5.10. gap=10−10, eigenvalues of T18,k, k = 18 (top) to k = 30 (bottom)

for the polynomial values to decrease rapidly. The values of this ratio are given in
figure 5.11. Except for the first iteration it is much smaller than 1 but it is increasing
after iteration 20 which is the end of the stagnation phase. Although computing these
quantities in double precision is not really reliable, figure 5.12 displays |θ(k)

k −λM |/ηk

and
∏k−1

l=1 |θ(k)
l − λM |/|θ(k−1)

l − λM |. These two curves are almost the mirror of each
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other. Their product which is the ratio of the polynomial values is shown in figure 5.13
up to iteration 14 because after that point there are some numerical problems to
compute it.

0 5 10 15 20 25 30
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Fig. 5.11. gap=10−10, log10 of |θ(k)
k

− λM |/ηk
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Fig. 5.12. gap=10−10, log10 of |θ(k)
k

− λM |/ηk (solid) and
∏k−1

l=1
|θ(k)

l
− λM |/|θ(k−1)

l
− λM |

(dashed)



20 G. MEURANT

2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5.13. gap=10−10, |p1,k+1(λM )/p1,k(λM )|

Another approach to this problem is to use a result in Belmehdi [1].
Proposition 5.2. Let j > 1, k ≥ j,

pj,k+1p1,k − pj,kp1,k+1 =
ηj−1

ηk
p1,j−1.

Dividing by p1,kpj,k that we suppose to be nonzero, we obtain

p1,kpj,k =
ηj−1

ηk

p1,j−1
pj,k+1
pj,k

− p1,k+1
p1,k

.

Hence, if

ηk

(
pj,k+1

pj,k
− p1,k+1

p1,k

)

does not depend too much on k, then the product p1,kpj,k is independent of k and
pj,k(λ) is increasing when p1,k(λ) is decreasing as a function of k for a given λ.
Figure 5.14 shows that this quantity is indeed almost constant (at least in log scale)
at λM up to iteration 16 and then from iterations 20 to 25.

A third way of looking at the decrease or increase of these polynomials is to
consider the three-term recurrence. If we write Pk(λ) = (p1(λ) · · · pk(λ))T with p1 ≡ 1
and pj ≡ p1,j we have

(Tk − λI)Pk(λ) + ηkpk+1(λ)ek = 0,

where ek is the last column of the identity matrix of order k. The Ritz values θ
(k)
j are

the eigenvalues of Tk and the roots of pk+1. Generally λM �= θ
(k)
j even though it can
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Fig. 5.14. gap=10−10, log10 of |ηk(pj,k+1/pj,k − p1,k+1/p1,k)| at λM , j = 2, . . . , 10

be close to θ
(k)
k . Therefore Tk − λMI is nonsingular. Hence

Pk(λM ) = (λMI − Tk)−1ηkpk+1(λM )ek.

Considering the last component of this vector equation leads to

pk(λM ) = [(λMI − Tk)−1]k,kηkpk+1(λM ).

The ratio of the polynomial values at λM is given by

pk+1(λM )
pk(λM )

=
1

ηk[(λMI − Tk)−1]k,k
.

The k, k element of the inverse is given by the first pivot function δk(λ), see [2], page
11. We have

[(λI − Tk)−1]k,k = − 1
δk(λ)

.

The value δk(λM ) is the last element of the diagonal of a Cholesky-like factorization
of Tk − λMI. It is given by the non linear recurrence

δ1(λ) = α1 − λ, δl(λ) = αl − λ− η2
l−1

δl−1(λ)
, l = 2, . . . , k.

Hence, we have |pk+1(λM )| < |pk(λM )| if and only if

|δk(λM )| < ηk.
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The function δk is a rational function. It has zeros at θ
(k)
j , j = 1, . . . , k and poles

at θ
(k−1)
j , j = 1, . . . , k − 1. It is decreasing between the poles. Here the function of

interest is a scaled version of δk. Let

γ1(λ) =
α1 − λ

η1
, γl(λ) =

αl − λ

ηl
− ηl−1

ηl

1
γl−1(λ)

, l = 2, . . . , k.

We would like to know when |γk(λM )| < 1. Figures 5.15 to 5.21 show parts of the
function γk for different values of the iteration number k. The star where the curve
crosses the x-axis is the root θ

(k)
k . The other star (located to the right for the first

iterations) is the value of λM and the circle is the value of the function γk(λM ) that
we wish to have an absolute value smaller than 1. Let us denote θ

(k−1)
0 = −∞ and

θ
(k−1)
k = ∞. Since the function γk is continuous and decreasing in between the poles

and have a zero in each of these intervals, we know that there exists an interval in
every [θ(k−1)

j , θ
(k−1)
j+1 ], j = 0, . . . , k − 1 for which the values of the function are such

that |γk(λ)| < 1. However, this interval can eventually be very small.

40 50 60 70 80 90 100 110
−5

−4

−3

−2

−1

0

1

2

3

4

5
Function gamma, k=2

Fig. 5.15. gap=10−10, function γk, k = 2

For our example, we are interested in the last interval [θ(k−1)
k−1 ,∞[. There exist

two values λ and λ (which depend on k) defined implicitly by

αk − λ− ηk−1

γk−1(λ)
= −ηk, αk − λ− ηk−1

γk−1(λ)
= ηk,

such that

θ
(k−1)
k−1 < λ < λ,

and γk(λ) = 1, γk(λ) = −1. The question is: when does λM belong to the interval
[λ, λ]? It is not true at the first iteration but become true for iterations 2 to 16. Since
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Fig. 5.16. gap=10−10, function γk, k = 3
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Fig. 5.17. gap=10−10, function γk, k = 4

the largest Ritz value θ
(k)
k moves towards λM the function γk becomes steeper (or

more and more “vertical”). Therefore the interval [λ, λ] shrinks. This steepening of
the functions δk and γk arise because the Ritz value θ

(k)
k is approaching an eigenvalue

of A. Denoting by Zk the orthonormal matrix of the eigenvectors of Tk, we have

Tk − λI = Zk(Θk − I)ZT
k .
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Fig. 5.18. gap=10−10, function γk, k = 6
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Fig. 5.19. gap=10−10, function γk, k = 7

Therefore,

δk(λ) =
1

(ek)TZk(Θk − λI)−1ZT
k ek

.

The vector ZT
k ek has its components equal the last elements of the eigenvectors.
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Fig. 5.20. gap=10−10, function γk, k = 10
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Fig. 5.21. gap=10−10, function γk, k = 19

Therefore,

δk =
1∑k

j=1

(zj
k
)2

θ
(k)
j

−λ

=

∏k
j=1(θ(k)

j − λ)∑k
j=1(zj

k)2
∏k

m=1
m �=j

(θ(k)
m − λ)

.



26 G. MEURANT

When a Ritz value “converges” the last component of the corresponding eigenvector
goes to zero. This explains the behavior of the function δk as k increases. At some
point, θ(k)

k becomes larger than λM and the value of the function γk is now computed
on the next to last branch which is almost vertical close to the pole. Hence, we obtain
a negative value whose absolute value is large.

5.3. Question 2. Why is θ
(k)
k first “converging” to λM?

It is instructive to consider how the Ritz values at iteration k + 1 are obtained
from the Ritz values at the previous iteration. The eigenvalues of Tk+1 are solutions
of the so-called “secular equation” for θ

αk+1 − η2
k

k∑
j=1

ξ2
j

θ
(k)
j − θ

= θ,

where ξj = zj
k = (ZT

k ek)j and Zk is the orthogonal matrix of the eigenvectors of Tk

which means the ξjs are the last components of the eigenvectors of Tk. Solving the
secular equation can be interpreted as finding the intersections of the rational function

g(θ) = η2
k

k∑
j=1

ξ2
j

θ
(k)
j − θ

,

and the straight line of equation αk+1 − θ with slope −1. The function g (not to be
confused with the gap) is increasing in the intervals between the poles θ

(k)
j which are

the Ritz values at the previous iteration. However, the function g tends to be flat in
between the poles when the corresponding value ξj is small. This corresponds to the
“convergence” of a Ritz value. In this case the function is almost vertical close to the
poles and almost horizontal in between, see figure 5.27.

Figure 5.22 displays the situation at the first iteration. The only Ritz value (the
pole) is α1 = 23.9886. At iteration 2, the value of α has moved to α2 = 64.1879
because

αk =
n∑

i=1

λi(vk
i )2,

and the components v2
n−1 and v2

n have increased. Hence, the largest Ritz value is
moving rapidly to the right during the first iterations. This “convergence” gives a
decrease of the components vk

n−1 and vk
n and consequently αk then moves to the left.

At iteration 7 (figures 5.24 and 5.25) we have a good approximation of λn−2 and the
largest Ritz value is close to the cluster. This is why we have this shape of the function
g in the last two intervals. The function is almost flat between the poles and almost
vertical close to the poles. It happens because the last elements of the corresponding
eigenvectors of Tk are small. As long as we have this situation the two largest Ritz
values cannot move by much because they are found on the vertical portions of g since
αk is far away. At iteration 17, α suddenly moves to the right because we have large
values of vk

n−1 and vk
n, see figure 5.26. This allows to have a Ritz value in between

λn−2 and λn−1. At iteration 18, α has moved back to the left but the second largest
Ritz value is now moving fast towards the cluster. It is also interesting to look at
iteration 22 (figures 5.27 and 5.28) for which we obtain Ritz values (at iteration 23)
which are close to λn−1 and λn.
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Fig. 5.22. gap=10−10, solving the secular equation k = 1
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Fig. 5.23. gap=10−10, solving the secular equation k = 2

So we understand why, at the beginning, the Ritz values do not “see” that we
have a cluster of close eigenvalues. In fact the growth of |vk

n−1| and |vk
n| after iteration

12 is a blessing since it allows the appearance of a new Ritz value that can move to
the cluster. It remains to see why in the example the largest Ritz value goes to the
middle of the cluster and stays there for a few iterations.
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Fig. 5.24. gap=10−10, solving the secular equation k = 7
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Fig. 5.25. gap=10−10, solving the secular equation k = 7 (zoom)

Let us assume that θ
(k)
k−1 is far from the cluster and θ

(k)
k is within the cluster. The

Lanczos polynomial can be written as

p1,k+1(λ) = Ck(λ)(θ(k)
k−1 − λ)(θ(k)

k − λ).

The values of Ck(λ) for λ ∈ [λn−1 λn] are not much different. Therefore to look for
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Fig. 5.26. gap=10−10, solving the secular equation k = 17
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Fig. 5.27. gap=10−10, solving the secular equation k = 22

the root located in the cluster we are interested in

t(λ) = (θ(k)
k−1 − λ)(θ(k)

k − λ) = λ2 − (θ(k)
k−1 + θ

(k)
k )λ + θ

(k)
k−1 θ

(k)
k = 0.

For simplicity of notations, let us use θ1 = θ
(k)
k−1 and θ2 = θ

(k)
k . So θ1 is far from the

cluster and θ2 (that we are looking for) is within the cluster. It is not too difficult
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Fig. 5.28. gap=10−10, solving the secular equation k = 22 (zoom on the cluster)

to see that the derivative p′1,k+1 is negative at θ1. Hence going from θ1 to λn the
polynomial is first decreasing and then increasing with a root θ2 in the cluster. We
are interested in the shape of t(λ) within the cluster. To see more clearly the issues,
let us do a change of variable from [λn−1 λn] to [−1 1]. Let

µ =
2
g
λ− λn−1 + λn

g
=

2
g

(λ− λM ).

As a function of µ, t is written as

t(λ(µ)) =
(
g2

4

)
µ2 + (gλM − g

2
(θ1 + θ2))µ + λ2

M − λM (θ1 + θ2) + θ1θ2.

Since g is small and |µ| ≤ 1 the function t must behave as a straight line of equation

g(λM − θ1 + θ2

2
)µ + λ2

M − λM (θ1 + θ2) + θ1θ2.

Figure 5.29 shows the Lanczos polynomial p1,k+1 for k = 15 for λ ∈ [λn−2 λn].
Figure 5.30 displays the polynomial in the cluster interval [λn−1 λn] at the same
iteration. It is a linear function to a good approximation. Now, let us denote by yn

(resp. yn−1) the value of the polynomial at λn (resp. λn−1). The value of the root θ2

within the cluster is approximately

θ2 ≈ ynλn−1 − yn−1λn

yn − yn−1
.

In our example when the perturbations are dominant we have vk
n−1 ≈ −vk

n since the
initial perturbations have opposite signs. Therefore yn−1 ≈ −yn and

θ2 ≈ λn−1 + λn

2
= λM .
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During this phase of the computation we have the remarkable property∣∣∣∣p1,k(λn−1)
p1,k(λn)

∣∣∣∣ ≈ (v1
n)2

(v1
n−1)2

.

As long as the polynomial is almost linear within the cluster the root θ
(k)
k is at the

middle of the cluster (when the initial weights are the same).
As we can observe in figure 5.31 the polynomial is not linear anymore within the

cluster when the second largest Ritz value becomes close to the cluster.
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6 n = 30, gap = 1e−10, k = 15

Fig. 5.29. gap=10−10, values of the Lanczos polynomial k = 15

5.4. Question 3. What is the duration of the stagnation phase?
We have seen that the stagnation starts almost immediately when θ

(k)
k enters the

cluster. It ends soon after we reach the peak of vk
n and obtain a large value of αk

because another Ritz value is moving towards the cluster. In our example we have
the distance of θ

(k)
k to λn−1 and to λn which must be the same but with opposite

signs during and after the stagnation phase. We have (see [2] page 29)

λi − θ
(k)
k = ηk

zk
kv

k+1
i∑k

l=1 z
k
l v

l
i

.

Therefore in our case we must have (approximately)

zk
kv

k+1
n∑k

l=1 z
k
l v

l
n

= − zk
kv

k+1
n−1∑k

l=1 z
k
l v

l
n−1

.

This gives the relation

k∑
l=1

zk
l (vk+1

n vl
n−1 − vk+1

n−1v
l
n).



32 G. MEURANT

100 100 100 100 100 100 100
−8

−6

−4

−2

0

2

4

6

8
x 10

−3 n = 30, gap = 1e−10, k = 15

Fig. 5.30. gap=10−10, values of the Lanczos polynomial k = 15 (zoom on the cluster)
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Fig. 5.31. gap=10−10, values of the Lanczos polynomial k = 25 (zoom on the cluster)

After the beginning of the stagnation phase we have vk+1
n = −vk+1

n−1. Hence we must
have

k∑
l=1

zk
l (vl

n−1 − vl
n) ≈ 0.(5.11)
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At the beginning of the computation (with equal weights) the difference between
vl

n−1 and vl
n is smaller than 10−6 until iteration 12. Then the difference grows up

to iteration 18. Figure 5.32 shows the components of the last eigenvector of Tk

for k = 1, . . . , 30 and figure 5.33 displays the sum in equation (5.11). The sum is
reasonably small until iteration 20 for which the value is 3.04118 10−5.
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Fig. 5.32. gap=10−10, components of the last eigenvector of Tk
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Fig. 5.33. gap=10−10, sum in equation (5.11)
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5.5. Question 4. When and why does θ
(k)
k move towards λn?

We have almost already answered to that question. The largest Ritz value starts
moving again when the second largest Ritz value come close to the cluster. Then
the polynomial p1,k is no longer almost linear within the cluster. So somehow θ

(k)
k is

“pushed” by θ
(k)
k−1. How fast this happens depends on the values of αk.

6. Computations in finite precision arithmetic. When we use the Lanczos
algorithm without reorthogonalization we have also to deal with perturbations arising
from rounding errors. However in our example the gap is large enough such that we
first see the perturbation from the cluster of the two largest eigenvalues. Now we can
do more than 30 iterations. Figure 6.1 displays the logarithm of |vk

n|. There are two
types of oscillations. The ones going down to almost 10−5 are coming from the cluster
and the ones going down to the square root of the machine precision 10−8 arise from
the rounding errors.

We obtain also multiple copies of the eigenvalues in the cluster. For instance, at
iteration 50 we have two copies of each of the two eigenvalues in the cluster.
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Fig. 6.1. gap=10−10, log10 of |vk
30| without reorthogonalization

7. A cluster with 3 eigenvalues. In this example the largest eigenvalue is
still 100 and we have λn−1 = (1 − gap)λn and λn−2 = (1 − 2 gap)λn. The interest-
ing elements of the Lanczos vectors in a computation using reorthogonalization are
displayed in figure 7.1. The component vk

n−1 has a different behavior because in this
example λn−1 is very close to the first stagnation point of θ

(k)
k as explained in the

next paragraph.
The largest Ritz value θ

(k)
k stagnates at a point which is the average of the three

largest eigenvalues from iteration 11 to iteration 19. This is close to λn−1. Then
when θ

(k)
k−1 arrives θ

(k)
k moves towards λn but soon after stagnates again until iteration

27. The second largest Ritz value θ
(k)
k−1 stagnates in the cluster from iteration 21 to
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iteration 27. The distance θ
(k)
k−1 − λn−2 is the same as the distance λn − θ

(k)
k during

this second stagnation phase. It ends when θ
(k)
k−2 becomes close to the cluster.

Figure 7.2 shows the values of the different polynomials at the average of the
three largest eigenvalues.
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Fig. 7.1. gap=10−10, log10 of |vk
30|, |vk

29| and |vk
28|

8. Computations with the Arnoldi algorithm. Even though the matrix A
is symmetric since it is diagonal we can use the Arnoldi algorithm instead of the
Lanczos algorithm. Since the Arnoldi process explicitly orthogonalize against all
the previous basis vectors we do not use any extra reorthogonalization. Figure 8.1
displays the logarithm of |vk

n| for the modified Gram-Schmidt (MGS) implementation
of Arnoldi. The results are comparable with those of the Lanczos algorithm with
double reorthogonalization except at the end when we see a small increase for MGS.
The relative differences can be observed in figure 8.2.

Figure 8.3 shows the results when Arnoldi is implemented using Householder re-
flections. The result is better at the end even though the last iteration is clearly
different from the Lanczos result. Relative differences are given in figure 8.4. Sur-
prisingly they are a little bit higher than with MGS except of course for the last
iterations even though global orthogonality is better preserved in the Householder
implementation.

9. Conclusions. In this paper we have done a detailed numerical study of the
convergence of the Ritz values when using the Lanczos algorithm for a matrix with
two close eigenvalues. We have shown that the behavior of the Ritz values can be
explained (to some extent) using the same tools as for the Lanczos algorithm in finite
precision arithmetic. We hope this study can contribute to a better understanding of
the Lanczos algorithm in presence of close eigenvalues.
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Fig. 7.2. gap=10−10, cluster of 3 eigs, log10 of |p1,k(λM )v1
n| (solid), |vk

n| (dashed) and

|g pj,k(λM )vj−1
n /(2ηj−1)|, j = 2 : 30 (different symbols), sum of the values (+)
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(dashed)
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[3] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite pre-
cision arithmetic, Acta Numerica, v 15, (2006), pp 471–542.



38 G. MEURANT

0 5 10 15 20 25 30
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Fig. 8.4. gap=10−10, log10 of the relative difference on |vk
n| between Householder-Arnoldi and

Lanczos with reorthogonalization

[4] C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices,
Ph.D. thesis, University of London, (1971).

[5] C.C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix,
J. Inst. Maths Applics., v 18, (1976), pp 341–349.

[6] C.C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenprob-
lem, Linear Algebra Appl., v 34, (1980), pp 235–258.

[7] B.N. Parlett, The symmetric eigenvalue problem, Prentice Hall, (1980). Reprinted by SIAM
in the series Classics in Applied Mathematics (1998).
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