
BIT29 (1989), 635-657 

T H E  E F F E C T  O F  O R D E R I N G  O N  

P R E C O N D I T I O N E D  C O N J U G A T E  G R A D I E N T S  

IAIN S. DUFF and GI~RARD A. MEURANT 

Computer Science and Systems Division, CEA, Centre d'Etudes de l_imeil-Valenton, 
Harwell Laboratory, BP 27, 94190 HUeneuve St Georoes, France. 
Oxon O X l l  ORA, UK 

Abstract. 

We investigate the effect of the ordering of the unknowns on the convergence of the preconditioned 
conjugate gradient method. We examine a wide range of ordering methods including nested dissection, 
minimum degree, and red-black and consider preconditionings without fill-in. We show empirically that 
there can be a significant difference in the number of iterations required by the conjugate gradient method 
and suggest reasons for this marked difference in performance. 

We also consider the effect of orderings when an incomplete factorization which allows some fill-in is 
performed. We consider the effect of automatically controlling the sparsity of the incomplete factoriz- 
ation through drop tolerances and level of fill-in. 

AMS Classification: 65F10. 
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1. Introduction. 

One of the most popular and successfull methods for the solution of positive 
definite symmetric systems arising from the discretization of partial differential 
equations is the preconditioned conjugate gradient method. Many kinds of both 
point and block preconditioners are possible (for example, Concus et al. [5]), but 
those based on the incomplete factorization of the coefficient matrix have been the 
most useful in practice since they give a good acceleration of the conjugate gradient 
method while being easy to generate and use. It is particularly simple to write codes 
for a partial factorization where the factors are constrained to have the same sparsity 
pattern as the original matrix. In the parlance of Meijerink and van der Vorst [19], 
this method is called the ICCG(0) method (in later papers they refer to it as 
ICCG(1,1)). 
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Fig. 1.1. The five-diagonal matrix. 

In their original work, Meijerink and van der Vorst [19] only consider a factoriz- 
ation where the unknowns are numbered in a rowwise (or columnwise) fashion so 
that, for the 5-point discretization of Poisson's equation for example, the matrix has 
the five-diagonal band structure of Figure 1.1. In the study of direct solution 
methods for such problems (see, for example, [7]), the issue of how the unknowns are 
ordered is of paramount importance. Some strategies can reduce the work in the 
factorization of the Figure 1.1 matrix on a q x q grid by one full power in q from 
O(q 4) to O(q 3) and the storage from O(q 3 ) to O(q z log2q). However, to our knowledge, 
the effect of the ordering of the unknowns on the performance of ICCG techniques 
has not been fully explored although Simon [22] has observed the effect, and the 
topic is beginning to be discussed more at meetings and conferences. Some ordering 
strategies have been designed to increase parallelism (for example, O'Leary [20], 
Schreiber and Tang [21], Adams and Jordan [1], Lichnewsky [18]), and the 
common strategy of working with a reduced system amounts to a red-black 
ordering followed by a rowwise scheme (for example, Hageman and Young [ 16] and 
Eisenstat et al. [10]. 

In this paper we study the effect of a wide range of orderings on the convergence of 
the point preconditioned conjugate gradient method on both model problems and 
more complicated elliptic equations. We show that some orderings which are widely 
used in the direct solution of equations can cause the conjugate gradient algorithm 
to take over six times the number of steps as the original ICCG(0) scheme. We also 
indicate that some other orderings can be competitive with rowwise ordering. This 
can give insight for finite-element problems for which there is not as straightforward 
an ordering as the row ordering for finite differences. 
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In Section 2, we describe in detail some of the orderings which we consider. Many 
have their origins in direct solution methods or in the oil industry but some we have 
invented for the purpose of these tests. We discuss the preconditioned conjugate 
gradient algorithm which we use in Section 3, the test problems in Section 4, and 
present our results in Section 5. Finally, in Section 6, we give some reasons to explain 
our findings. 

2. Ordering strategies. 

In this secton we discuss the orderings which we use in our experiments. Some 
other orderings were tried but did not add anything to those given here. For  each 
ordering, we show the resulting order of the variables on a 10 x 10 grid and the 
pattern of the reordered matrix. In Table 2.1, we list the orderings together with 
a reference to the application or to the literature. 

Table 2.1. Orderings used in the paper. 

Ordering Reference/application Abbrevation 
used in text 

Row ordering 
Cuthilt McKee (CM) 
Reverse CM 
Block CM 
Minimum degree 
Red black 
Alternating diagonal 
Zebra ordering 

Nested dissection 
One-way dissection 

1 -level 
2-level 

Spiral 
4-colour ordering 
Parallel ordering 1 
Parallel ordering 2 
Union Jack 
Localized row/column 

Partial differential equations 
Cuthill and McKee [6] 
George [1t] 
This paper 
Tinney and Walker [23] 
Partial differential equations 
Oil reservoir modelling (D4 ordering) 
Relaxation methods - oil reservoir 
modelling 
George [12] 
George and Liu [13] 

Duff et al. [8] 
Adams, LeVeque, and Young [2] 
Van der Vorst (1988) 
Van der Vorst (1988) 
This paper 
This paper 

r o w  

cm 
rcm 
block 
mind 
rb 
altd 
zebra 

nest 

dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

Some of the orderings in the table can be parameterized in a simple way. For  
example, we can control the number of levels in one-way dissection or nested 
dissection; the remaining unordered nodes are then numbered rowwise. Since we 
feel that many readers will not be familiar with all of these orderings and, addition- 
ally since we have not seen them all displayed together, we show in Figures 2.1 to 
2.17 the ordering of the variables produced by each ordering where the connectivity 
on the grid is that of the five-point star. 
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81 1 2 3 100 10 9 8 7 65 
64 80 4 5 99 13 12 11 66 22 
63 62 79 6 98 15 14 67 20 21 
61 60 59 78 97 16 68 17 18 19 
90 89 88 87 96 86 85 84 83 82 
52 51 50 49 95 77 23 24 25 26 
55 54 53 69 94 42 76 27 28 29 
57 56 70 48 93 41 40 75 30 31 
58 71 46 47 92 39 38 37 74 32 
72 43 44 45 9t 36 35 34 33 73 

Fig. 2.16. Union Jack orderin 9. 

1 2 3 4 5 26 35 36 45 46 
10 9 8 7 6 27 34 37 44 47 
11 12 13 14 15 28 33 38 43 48 
20 19 18 17 16 29 32 39 42 49 
21 22 23 24 25 30 31 40 41 50 
51 60 61 70 71 76 77 78 79 80 
52 59 62 69 72 85 84 83 82 81 
53 58 63 68 73 86 87 88 89 90 
54 57 64 67 74 95 94 93 92 91 
55 56 65 66 75 96 97 98 99 100 

Fig. 2.17. Localized row~column orderin 9. 

Finally, since we will be concerned with the effect of these orderings on the ICCG 
methods we show, for each ordering, the pattern of the reordered matrix for the 
five-point formula on a 10 x 10 grid (matrix order 100) in Figures 2.18 to 2.32. 

The orderings in Figures 2.2 and 2.3 are standard profile minimization orderings 
widely used with variable-band factorizations and Figure 2.4 illustrates a block 
version of the same. The minimum degree ordering, shown in Figure 2.5, is the most 
widely used scheme for obtaining low fill-in factorizations of general symmetric 
matrices. Since, at any stage, there are usually many variables with the same 
minimum degree, there is normally some strategy (called a tie-breaking strategy) for 
choosing the next variable among those of minimum degree. Thus the minimum 
degree ordering is not unique, and different tie-breaking strategies could result in 
orderings different from that shown. The red-black ordering of Figure 2.6 has been 
widely used in the oil industry because the resulting matrix (Figure 2.21) can be 
trivially reduced to give a system of half the order of the original. The alternating 
diagonal ordering (or D4 ordering) and the zebra (or alternating line) ordering in 
Figures 2.7 and 2.8 are also widely used in the oil industry (Behie and Forsyth [4], 
for example) and show good convergence for standard iterative schemes on 
examples from that application area. The dissection methods in Figures 2.9 to 2.11 
are related to the current vogue for domain decomposition (or substructuring) 
techniques and are now partially motivated by their attractiveness for use on 
parallel computers. The spiral ordering, illustrated in Figure 2.12, was used by Duff 
et al. [8] to illustrate the (bad) effect of tie-breaking on the minimum degree 
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Fig. 2.18. Cuthill McKee matrix• Fig. 2.19. Block Cuthill McKee matrix. 
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Fig. 2.20, Minimum degree matrix, 
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Fig. 2.21. Red-black matrix• 
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Fig. 2.22, Alternating diagonal matrix. 
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Fig. 2.23. Zebra matrix. 
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Fig.  2.24. Nested  dissection matrix.  Fig.  2.25. One way dissection matrix - 1 level. 
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Fig.  2.26. One way dissection matrix  - 2 level. 
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Fig.  2.27. Spiral matrix. 
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Fig.  2.28. Four-colour ordering. Fig.  2.29. Van der Vorst ordering. Version 1. 
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Fig. 2.30• Van der Vorst ordering. Version 2. 
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Fig. 2.31. Union Jack matrzx. 
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Fig. 2.32. localized row~column matrix. 

ordering. In Figures 2.13 to 2.15, we show three orderings designed to enhance 
potential parallelism; the two by van der Vorst (private communication 1988) 
retaining a somewhat local flavour and the popular four-colour ordering discussed 
by Adams, Le Veque, and Young [2,1. Finally, we present two orderings where we 
have tried to minimize bandwidth in a local rather than global sense because our 
initial experiments led us to believe that this might be beneficial to the performance 
of our preconditioner. 

3. Preconditioned conjugate gradients. 

The form of preconditioned conjugate gradients which we use is the two-term 
algorithm as described, for instance, by Golub and Meurant [14-1, p. 221. For the 
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sake of completeness we give this algorithm below. We are assuming the system to 
be solved has the form Ax = b. 

Let x ° be given, r ° = b - Ax °, and define p -  1 arbitrarily. For  k = 0, 1, . . .  until 
convergence perform the steps 

M z k = r k 

flk = (Mzk, Zk) / (Mzk-~,  z~-l)  k >_ 1,flo = 0 

pk = zk + fl~ pk- 

~k = ( M zk, zk)/( A P k, pk) 

x k  + I = x k  4;- O~ k p k  

r k + 1 ~ r k  _ O~g Ap  k. 

The matrix M is the preconditioning matrix and, for the approaches which we 
discuss, we can write 

M = L O l f  

where D is a diagonal matrix and Lhas, for most of our runs, the same sparsity 
pattern as the lower triangular part of A, so that this factorization is not an exact 
factorization of A and 

M = A + R .  

The matrix R is sometimes referred to as the remainder matrix. We also consider 
some runs where Lis allowed a limited number of nonzeros outside the sparsity 
pattern of A. 

Although, for the regular structures which we consider in this paper, a much more 
economic route could be employed, we use a modified version of the Yale Sparse 
Matrix Package (Eisenstat et al. I"9]) to compute the partial factorization used as 
M above. We have modified YSMP to prevent any fill-in, thus obtaining an 
ICCG(0) preconditioning. We also considered using drop tolerances, dropping any 
entry less than a prescribed value from the partial factors. This particular form of 
preconditioning is hard to implement with a specialized, simple approach. 

4. Test problems. 

We ran the preconditioned conjugate gradient method with the various orderings 
on a number of test problems. We discuss these problems in this section. 

Two of our problems were the simple model problem 

- A u = f  

on a square grid with Dirichlet boundary conditions using a five-point and 
a nine-point diseretization of the Laplacian. 
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We wanted to check the effect of discontinuous coefficients, and so we include the 
problem 

8x \  ~gx.]-~yy\ r O y j + a u = f  i n f 2 = ] 0 , 1 [ x ] 0 , 1 [  

~u 
with boundary condition ~ n  = 0 on Of 2, the boundary of f2, where n is the outer 

normal to 0f2. The coefficients are defined by ~ = 0.01 and 2~, 2 v by 

InQ1 = ]0,0.5] x ]0,0.5],2x = 1,2r = 1 
ln122 = ]0.5,1[ x ]0,0.5],2~ = 100,2, = t 
InQ 3 = ]0,0.5] x ]0.5,1[,2~ = 1,2y = 100 
Inf2,  = ]0.5,1[ x ]0.5,1[,2x = 100,2 v = 100. 

To model the anisotropy common in problems from the oil industry we use the 
problem 

0 x \  ~-x ] - ~ y  ~ 2 ' ~ y )  = f  in  O = ]0 ,1 [  x ]0 ,1 [  

with Dirichlet boundary conditions and 2 x = 100, 2 r = 1. 

In both the discontinuous coefficient and anisotropic problems, we use 
a five-point discretization scheme. We call our five test problems LAPD5, LAPD9, 
EIST, and ANIS respectively, the third name being used because the problem was 
suggested by Stan Eisenstat (private communication 1984). 

5.  R e s u l t s .  

The computations were done on a CRAY 1-S and a CRAY X-MP using 
]] rk t] ~ --- 10-6 II r ° 11 ~ as the stopping criterion and choosing the components of the 
initial vector x ° as random numbers between - 1 and 1. 

It should be noticed that, in these results, we have only included the number of 
iterations and not the computing times because, as the number of nonzeros in the 
incomplete factors is the same for all the orderings, the computing time is almost 
directly proportional to the number of iterations. In the column headed "Number of 
modifications" we give the number of modifications (including fill-in) that would 
occur in the factorization if the particular ordering were used for a complete LU 
factorization of the sparse matrix. R is the remainder matrix defined in the previous 
section. In addition to the number of entries in R, we show both the (squared) 

/ \ 

norm (Zlru[ 2) and the maximum entry in R. We have performed Frobenius 
- - i . i - - , , ' , j  / 

experiments on larger and smaller grids and have chosen to illustrate the results by 
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runs on a 30 x 30 grid because  tha t  is the smallest  one that  exhibi ts  the features we 

wish to discuss. 

Table  5.1. Results for LAPD5 on 30 x 30 grid. 

Ordering Number of Number of Number of I1R l[ ~ max [rijl 
iterations modifications entries in R q 

row 
cm 
rcm 
block 
mind 
rb 
altd 
zebra 
nest 
dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

23 
23 
23 
23 
39 
38 
38 
28 
25 

24389 
16675 
16675 
24151 

7971 
12853 
9395 

31305 
15228 

841 
841 
841 
841 

1582 
1681 
1681 
1261 
1012 

142.5 
142.5 
142.5 
142.5 
467.3 
525.5 
525.5 
180.2 
157.1 

23 23996 
24 24785 
23 60173 
33 57253 
20 23080 
20 17413 
28 19218 
23 24375 

871 145.1 
931 150.3 
841 141.0 

1471 353.5 
841 140.7 
841 140.7 

1000 180.6 
855 143.8 

0.293 
0.293 
0.293 
0.293 
0.541 
0.500 
0.500 
0.268 
0.293 
0.293 
0.293 
0.295 
0.517 
0.298 
0.298 
0.539 
0.295 

Table  5.2. Results for LAPD9 on 30 x 30 grid. 

Ordering 

r o w  

c m  

rcm 
block 
mind 
rb 
altd 
zebra 
nest 
diss 1 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

Number of 

iterations 

15 
16 
15 
16 
24 
23 
23 
27 
20 
18 
18 
15 
27 
15 
15 
20 
16 

Number of 

modifications 

23548 
32074 
30450 
30828 
14280 

211764 
211050 

30464 
16162 
23938 
24930 
59278 

159118 
22591 
23570 
32531 
23926 

Number of 

entries in R 

1624 
1735 
1568 
1792 
3093 
2870 
2870 
3248 
2227 
1736 
1960 
1568 
3458 
1621 
1621 
1945 
1664 

IIRIl~ 

600. 
613. 
576. 
560. 

2369. 
2386. 
2386. 
2049. 
1077. 
678. 
835. 
547. 

3039. 
574. 
574. 

1077. 
641. 

max Ir o[ 
/ j  

0.605 
0.605 
0.663 
0.643 
2.049 
1.387 
1.387 
1.160 
1.402 
1.097 
1.097 
0.672 
1.530 
0.630 
0.630 
1.513 
1.193 
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Table 5.3. Results for EISTon 30 x 30 grid. 

Ordering Number of Number of Number of H R II 2 max Irljl 
iterations modifications entries in R 

r o w  

Cln 

rcm 
block 
mind 
rb 
altd 
zebra 
nest 
dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

68 
68 
69 
68 

108 
107 
107 
71 
83 
75 
84 
69 

103 
68 
67 
86 
70 

24389 
16675 
16675 
24151 

7971 
12853 
9395 

31305 
15228 
23996 
24785 
60173 
57253 
23080 
17413 
19218 
24375 

841 
841 
841 
841 

1582 
1681 
t681 
1261 
931 
871 
931 
841 

1471 
841 
841 

I000 
855 

0.73 106 
0.73 106 
0.69 106 
0.73 106 
0.32 107 
0.35 107 
0.35 107 
0.88 106 
0.97 106 
0.81 106 
0.97 106 
0.71 106 
0.22107 
0.69 106 
0.69 106 
0.11 107 
0.75 106 

38.03 
38.03 
31.78 
38.03 
62.34 
58.22 
58.22 
26.79 
49.63 
49.51 
49.63 
38.03 
62,34 
31.78 
31.78 
6ff18 
49.64 

T a b l e  5.4. Results for  A N I S  on 30 x 30 grid. 

Ordering Number of Number of Number of II R I[ ~ max [ru[ 
iterations modifications entries in R 

r o w  

c m  

rcm 
block 
mind 
rb 
altd 
zebra 
nest 
dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
toc 

9 
9 
9 
9 

48 
47 
47 

9 
26 
21 

24389 
16675 
16675 
24151 

7971 
12853 
9395 

31305 
15228 
23996 

841 
841 
841 
841 

1582 
1681 
1681 
1261 
1012 
87i 

0.12104 
0.12104 
• 12 104 
0.12 104 
0.18 107 
0.21 107 
0.2t 107 
0.12 10 ~ 
0.43 106 
0.15 I06 

26 
9 

34 
9 
9 

34 
17 

24785 
60173 
57253 
23080 
17413 
19218 
24375 

931 
841 

1471 
841 
841 

1000 
855 

0.44 106 
0.11 104 
0.10 107 
1.08 103 
1.08 103 
0.52 106 
0.35 105 

0.87 
0.87 
0.87 
0.87 

49.51 
49.51 
49.51 

0.87 
49.51 
49.51 
49.51 

0.87 
49.50 
0.86 
0.86 

49,5t 
49.51 

T o  get  a feel ing for  the  effect o f  d r o p p i n g  ent r ies  f r o m  the  f ac to r i za t ion ,  we s h o w  in 

F i g u r e s  5.1 to  5.7 the  m a g n i t u d e  o f  the  en t r ies  in a " fu l l"  f a c t o r i z a t i o n  o f  the  m a t r i x  

for  the  m o d e l  p r o b l e m  wi th  a f ive -po in t  s c h e m e  ( L A P D 5 )  us ing  the  s y m b o l s  s h o w n  

in T a b l e  5.5 to  i nd i ca t e  b a n d s  o f  m a g n i t u d e .  I t  is i n t e re s t ing  to  see tha t  o r d e r i n g s  
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with much fill-in, for example the row ordering of Figure 5.1, often have most fill-ins 
of low magnitude. The opposite is the case with the minimum degree ordering 
shown in Figure 5.2. 

We have also performed runs with a modified incomplete factorization precondi- 
tioner where the diagonal matrix D is chosen so that the row sums of the R matrix 
are all zero (see, for example, Gustafsson [15]). This strategy has been found 
beneficial on some of the easier problems from the oil industry. Our results on the 

2111tllh 

Fig. 5.1. Row ordered matrix. 
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i 
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%i' i!iiiii 
% 

Fig. 5.2. Minimum degree matrix. 

'" ""'.~.ii" ' "ii.,~ L ~, 

'%1 "~i 
Fig. 5.3. Red-black matrix. Fig.  5.4. Nested dissection matrix. 
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qi 

Fig. 5.5. Sp i ra l  m a t r i x .  

"<iii 
Fig. 5.6. F o u r  co lour  m a t r i x .  

"h! I ! i ! ~ i :. : 

w;i.h . . . .  

. . . .  ? ! 

"~"i i ! i ii i ! :,, 
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';q ]],!!~ ~ 

%1:ii I 
Fig. 5.7. Van der  Vorst  Vers ion  2 m a t r i x .  

Table 5.5. Symbols indicating order of magnitude of entries in factors. 

Magni tude  of entries Symbol  

> I0 
(2, 10) 
(1,2) 

(0.5,1) 
(0.1,0.5) 

(0.01, O. 1) 
0.ool, o.ol) 

< 0.001 

> 
% 
$ 
& 

+ 
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simple LAPD5 model problem are shown in Table 5.6 and indicate that some of the 

ordering schemes do benefit through the use of the modified preconditioner. How- 

ever, some of the orderings do not converge if this preconditioner is used, probably 

because the preconditioning matrix is not positive definite in these cases. Note that 

the number ofnonzeros in R increases when this scheme is used because our original 

choice for D ensured that the diagonal of R was zero. 

Table 5.6. Results Jbr IAPD5 on 30 x 30 9rid usin9 modified 1CCG(O) 

Ordering Number of Number of Number of JJR lie 2 max Iri~l 
iterations modifications entries in R 

row 
cm 
rcm 
block 
mind 
rb 
altd 
zebra 
nest 
dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

18 
18 
18 
18 

> 200 
> 200 
> 200 

59 
38 
22 
29 
t5 

> 200 
16 
16 
81 
20 

24389 
16675 
16675 
24151 
7971 

12853 
9395 

31305 
15228 
23996 
24785 
60173 
57253 
23080 
17413 
19218 
24375 

1741 
1741 
1741 
1741 
2482 
2581 
2581 
2161 
1912 
1771 
1831 
174t 
2371 
1741 
1741 
1900 
1755 

1010. 
1010. 
1010. 
1010. 
3568. 
4143. 
4143. 
1151. 
1107. 
1037. 
1075. 
898. 

2327. 
894. 
894. 

1352. 
1039. 

0.979 
0.979 
0.979 
0.979 
3.000 
3.000 
3.000 
1.333 
1.666 
1.666 
1.166 
1.389 
2.160 
0.960 
0.960 
2.742 
1.445 

Our previous results have all used a preconditioning matrix whose pattern is 

identical to the coefficient matrix. We have also considered the case when some 
fill-in is allowed, both on the basis of a drop tolerance, where values less than a preset 
value are dropped from the structure, or on the basis of the level of fill-in. This 

second criterion is based on the observation that fill-ins that are themselves caused 

by fill-ins tend to be of lower numerical value, particularly for regular problems from 

discretizations of partial differential equations. Indeed, this is evident from studying 
the pattern of the magnitude of the fill-ins in Figures 5.1 to 5.7. We show the results 

of using a single level of fill-in in Table 5.7 where the number of entries in L should be 

contrasted with the 2640 entries present in the original lower triangle of A. We see 
from this that, for most orderings, the reduction in the number of iterations does not 

quite compensate for the extra work for each iteration. The reverse is true of the drop 
tolerance results in Table 5.8 where the greater reduction in iterations more than 
compensates the increased storage and work for L. For other values of drop 
tolerance than shown in that table, the reduction in iterations more or less matches 
the increase in work from a denser L. For example, for the row ordering the number 
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Table 5.7. Resuhs for LAPD5 on 30 x 30 grid using single level of fill-in. 

Ordering 

row 

rcm 
block 
mind 
rb 
altd 
zebra 
nest 
dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

Number of 
iterations 

17 
t7 
17 
17 
23 
16 
16 
21 
19 
18 
18 
17 
25 
17 
17 
20 
17 

Number of Number of 
modifications entries in R 

!IRIL~ 

24389 
16675 
16675 
24151 

7971 
12853 
9395 

31305 
15228 
23996 
24785 
60173 
57253 
23080 
17413 
19218 
24375 

1653 2.43 
1653 2.43 
1653 2,43 
1837 2.44 
2467 38.81 
2016 16,47 
2016 16.47 
2465 50.04 
2187 35.34 
1738 26.70 
1908 30.65 
1624 23.82 
2653 70.94 
1651 25.20 
1651 25.20 
2038 28.81 
1694 25.24 

maxlruI Number of 
entries in L 

0.087 3481 
0.087 3481 
0.087 3481 
0.088 3481 
2.509 4282 
0.090 4321 
0.090 4321 
0.158 3901 
0.173 3652 
0.158 3511 
0.158 3571 
0.186 3481 
0.220 4111 
0.190 3481 
0.190 3481 
0.172 3640 
0.165 3495 

Table  5.8. Resuhs for LAPD5 on 30 x 30 grid using drop tolerance of  0.05. 

Ordering 

row 
cm 
rcm 
block 
mind 
rb 
altd 
zebra 
nest 
dissl 
diss2 
spiral 
4col 
vdvl 
vdv2 
ujac 
loc 

Number of 
iterations 

12 
10 
10 
11 
10 
8 
8 

10 
12 
12 
12 
11 
9 

12 
10 
12 
12 

Number of Number of 
modifications entries in R 

IIRI1~ 

24389 
16675 
16675 
24151 

7971 
12853 
9395 

31305 
15228 
23996 
24785 
60173 
57253 
23080 
17413 
19218 
24375 

1595 4.260 
1540 2,846 
1540 2.846 
t526 3,451 
1657 2.285 
1484 1.683 
1069 1.284 
2636 1.774 
2622 3,890 
1752 4.173 
2066 3.997 
1513 3,779 
2945 1.664 
1612 3,862 
1560 2.732 
2211 3.584 
1645 4.233 

m a x  Ir~jl Number of 
entries in L 

0,039 4293 
0.041 4293 
0.041 4293 
0.045 4474 
0.049 5531 
0.042 4699 
0.048 5037 
0,050 6605 
0.049 5574 
0.049 4519 
0.049 4971 
0,047 4267 
0,050 5909 
0,048 4342 
0.046 4319 
0,049 5229 
0.050 4373 

of iterations for a tolerance of 0.001 and 0.0001 are 3 and 2 respectively, while the 
number of entries in L are 15929 and 22720 respectively. Another interesting feature 
of these preconditioners is that the relative performance of the different ordering 
schemes has changed, for example mind, rb, and altd do somewhat better when some 
fill-in is allowed in L. A reason for this is that many of the first level fill-ins for these 
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orderings are quite large, unlike row, for example, where the fill-ins rapidly decrease 
in value (see Figures 5.1 to 5.7). 

6. Remarks and conclusions. 

As one can see from the results in Section 5, the number of conjugate gradient 
iterations is not related to the number of fill-ins we are dropping (as was conjectured 
by Simon [22]) but is almost directly related to the norm of the residual matrix R. 
We note that HRll can be used to estimate the condition numbers of incomplete 
factorization methods (Axelsson and Eijkhout, [3]). The number of fill-ins is related 
to the structure of the matrix, that is the structure of the underlying grid and to the 
ordering scheme we are using, but the incomplete decomposition is dependent on 
the values of the coefficients. The goal is not the same for direct methods, where the 
aim is usually to minimize storage and the number of floating-point operations. 
However, for incomplete elimination where we allow no fill-in, the structure of the 
approximation and the number of operations will be the same whatever the ordering 
is. What is interesting is how small R is or how close to the identity matrix M -  1 A is. 

We show orderings like mind (minimum degree) with very few fill-ins but with 
a "large" R matrix, which give a large number of iterations, and orderings like spiral 
with a large number of fill-ins but with a "small" R which give a number of iterations 
comparable to the one given by the row ordering. This conclusion holds over all the 
problems. This can be seen from the Figures 5.1 to 5.7 showing the values of the 
fill-ins for the complete factorization. 

Since the factor that determines the convergence of conjugate gradients is the 
spectrum of the iteration matrix M -  1 A, we show an example of this spectrum for 
three of our orderings in Figures 6. I to 6.3 below. The superiority of the spiral 

ordering over the mind ordering is evident. 
Although this is only a sufficient condition, it seems that the orderings which are 

"local" in the sense that neighbouring nodes in the underlying mesh (or unknowns in 
the original system) have numbers that are not too far apart, give the best results. 
This is the case for the row ordering, for cm (or rcm), for loc, vdvl, vdv2 and to a lesser 
extent for zebra. An example which proves that this is only a sufficient condition is 

t 
| 

I I It IIILtll illIIlUiit Iiil! 
t t .5  l . g  

Fig. 6.1. Spectrum of M - l  A for row ordering. 

i 

1.5 
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Fig. 6.2. Spectrum of M-1 A for mind ordering. 

I . . . . . .  

1 . 5  

t I I | 1 
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i 1_ 

9 .5  

Itl ! tl li 1 IIIItilllitlllllllqll 
1 . 9  

Fig. 6.3. Spectrum of M-1 A for spiral ordering. 

1 . 5  

the spiral ordering which is not local and gives very good results on all of our 
examples. It remains an interesting (but non-trivial) problem: given a matrix find the 
"most" local ordering. This amounts to something very close to minimizing the 
bandwidth of a matrix. Another interpretation, suggested by the referee, is that 
"decoupling" orderings are bad. It appears also from the numerical results that, the 
harder is the problem at hand (discontinuous coefficients, anisotropy, etc...), the 
more important is the ordering for the incomplete decomposition. This may explain 
why, in previous work (for example Lichnewsky [18]), the influence of the ordering 
on the convergence of conjugate gradients has been underestimated. It is also 
interesting to see that, if some fill-in is allowed to the incomplete factorization, then 
the relative merits of the orderings differ. In particular, the red-black and alternating 
diagonal orderings are then very competitive. 

Finally, although this study uses only finite-difference discretizations, our con- 
clusions are more generally valid. For example, if one wants to use ICCG with 
finite-element methods, it should be beneficial to order the nodes with the 
Cuthill-McKee algorithm. Unfortunately, another conclusion of this study is that 
many of the orderings which are better suited for parallel computations, like the 
dissection methods or the node colouring ones do not give very good results. For the 
red-black ordering this is confirmed by the analysis of Kuo and Chan [17]. There 
seems to be an incompatibility between parallelism and good orderings for ICCG. 
A solution to this problem might be to use domain decomposition techniques and 
within each subdomain a "local" ordering of the nodes. Very recent orderings 
suggested by van der Vorst seem to have exactly this property although on larger 
grids they show no superiority in iteration count to the best simple orderings. 
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