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Abstract. In this paper we derive a formula relating the norm of the l2 error to the A–norm of
the error in the conjugate gradient algorithm. Approximating the different terms in this formula, we
obtain an estimate of the l2 norm during the conjugate gradient iterations. Numerical experiments
are given for several matrices.

1. Introduction. In this paper we derive a formula relating the l2 norm of
the error to the A–norm of the error in the conjugate gradient algorithm for solving
linear systems with a symmetric positive definite matrix. The problem of computing
estimates for the A–norm of the error was considered in [5], [6], [7], [8], [9]. This is
summarized in [10]. The computation of estimates in finite precision arithmetic was
studied in [11].

Let A be a large and sparse symmetric positive definite matrix of order n and
suppose we have an approximate solution x̃ of the linear system

Ax = g,

where g is a given right hand side vector. The residual r is defined as r = g − Ax̃.
The error e being e = x− x̃, we obviously have, e = A−1r. Therefore, if we consider
the A–norm of the error,

‖e‖2
A = (e,Ae) = eTAe = rTA−1AA−1r = rTA−1r.

Here we are interested to use the l2–norm, for which

‖e‖2 = rTA−2r.

To solve the linear system we use the conjugate gradient (CG) algorithm : let x0 be
given, r0 = g −Ax0, p0 = r0, for k = 1, . . . until convergence

γk−1 =
rk−1T

rk−1

pk−1T
Apk−1

,

xk = xk−1 + γk−1p
k−1,

rk = rk−1 − γk−1Ap
k−1,

βk =
rkT

rk

rk−1T
rk−1

,

pk = rk + βkp
k−1.

We would like to cheaply estimate the l2 norm of the error, eventually some iterations
before the current one.

The contents of the paper are as follows. In section 2 we derive a formula relating
the l2 norm to the A–norm of the error. Section 3 shows how to use this formula to
compute estimates of the l2 norm by introducing a delay. Section 4 gives some numer-
ical experiments. In Section 5 we comment on what can be done when introducing a
preconditioner to speed up convergence. The last section gives some conclusions.
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2. A formula for the norm of the error. Formulas were given in [5], [6], [7],
[8], [9] to compute bounds or estimates for the A–norm of the error for the conjugate
gradient (CG) method. It is well known that CG is closely related to the Lanczos
algorithm. These computations used the formula

(Aεk, εk) = (r0, A−1r0) − ‖r0‖2(T−1
k e1, e1)

where Tk is the matrix of the Lanczos algorithm coefficients and ej is the jth column
of the identity matrix. The relation for the matrix Vk of the Lanczos vectors is the
following:

AVk = VkTk + ηk+1v
k+1(ek)T ,

Tk is a tridiagonal matrix denoted as

Tk =




α1 η2

η2 α2 η3

. . . . . . . . .
ηk−1 αk−1 ηk

ηk αk


 .

This can also be written as

AVk = Vk+1T̃k,

with

T̃k =
(

Tk

ηk+1(ek)T

)
.

We also have

V T
k AVk = Tk.

The entries of Tk are obtained from the CG coefficients by

αk =
1

γk−1
+

βk−1

γk−2
, β0 = 0, γ−1 = 1,

ηk+1 =
√
βk

γk−1
.

Estimates of the l2 norm were considered in [8] using techniques developed in [2],
but this was needing lower and upper bounds of the smallest and largest eigenvalues
of A which cannot be easily available for some problems. In CG the iterates are
(implicitly) given by

xk = x0 + Vku
k.

Enforcing the orthogonality constraint V T
k rk = 0 we find that uk is the solution of

Tku
k = ‖r0‖e1.
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where ej is the jth column of the identity matrix. The CG relations are obtained
from Lanczos by considering the Cholesky decomposition of the tridiagonal matrix Tk

(which is positive definite) and it turns out that the Lanczos basis vectors are related
to the CG residuals rk = b−Axk by

vk+1 = (−1k)
rk

‖rk‖ .

Computing the l2 norm of the error we have

‖εk‖2 = (b−Axk, A−2(b−Axk)) = (b, A−2b) − 2(b, A−1xk) + (xk, xk).

But,

(b, A−1xk) = (b, A−1x0) + (b, A−1Vku
k),

(xk, xk) = (x0, x0) + 2(x0, Vku
k) + (uk, uk).

The last term is obtained because of the orthonormality of the basis vectors.
Putting all this together, we obtain

‖εk‖2 = (r0, A−2r0) − 2(A−1b− x0, Vku
k) + (uk, uk).

We are able to compute upper and lower bounds or at least good estimates of the
first term on the right hand side using Gaussian quadrature. So, it remains to see
what we can do with the two other terms. Let us consider the first one

(A−1b− x0, Vku
k) = (r0, A−1Vku

k).

We have

VkT
−1
k = A−1Vk + ηk+1A

−1vk+1(ek)TT−1
k ,

Then,

(r0, A−1Vku
k) = (r0, VkT

−1
k uk) − ηk+1(r0, A−1vk+1(ek)TT−1

k uk).

The first term is easy to evaluate since

(r0, VkT
−1
k uk) = ‖r0‖(V T

k r0, T−2
k e1) = ‖r0‖2(e1, T−2

k e1).

For the second term, we remark that (ek)TT−1
k uk is a scalar. Therefore

ηk+1(r0, A−1vk+1(ek)TT−1
k uk) = ηk+1‖r0‖[(ek)TT−2

k e1](r0, A−1vk+1).

A we said before, the basis vectors are proportional to the residuals

(r0, A−1vk+1) =
(−1)k

‖rk‖ (r0, A−1rk).

But

(r0, A−1rk) = (r0, εk) = (r0, e0) − (r0, Vku
k).
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Therefore,

(r0, A−1rk) = (r0, A−1r0) − ‖r0‖2(e1, T−1
k e1) = ‖εk‖2

A.

Finally

ηk+1(r0, A−1vk+1(ek)TT−1
k uk) = (−1)kηk+1

‖r0‖
‖rk‖ (ek, T−2

k e1)‖εk‖2
A.

To obtain the l2 norm it remains to see that

(uk, uk) = ‖r0‖2(e1, T−2
k e1).

Grouping these results together we have the following result.
Theorem 2.1.

‖εk‖2 = (r0, A−2r0) − ‖r0‖2(e1, T−2
k e1) + (−1)k2ηk+1

‖r0‖
‖rk‖ (ek, T−2

k e1)‖εk‖2
A.

The formula for the l2 norm can be written in an alternate way since as we have
seen before

rk = −ηk+1‖r0‖(ek, T−1
k e1)vk+1.

Therefore

(−1)k+1‖rk‖
ηk+1

= ‖r0‖(ek, T−1
k e1).

Corollary 2.2.

‖εk‖2 = ‖r0‖2[(e1, T−2
n e1) − (e1, T−2

k e1)] − 2
(ek, T−2

k e1)
(ek, T−1

k e1)
‖εk‖2

A.

3. Estimates of the l2 norm of the error. Our goal is to be able to compute
estimates of the l2 norm of the error using the formula of the previous section. Let us
start by computing (e1, T−2

k e1). This can be done using a QR decomposition of the
tridiagonal matrix Tk

QkTk = Rk,

where Qk is an orthogonal matrix and Rk an upper triangular matrix. We have
T 2

k = RT
k Rk, therefore

(e1, T−2
k e1) = (R−T

k e1, R−T
k e1).

Therefore we just have to solve a linear system with matrix RT
k and right hand side

e1. To compute the decomposition of Tk we use the results of B. Fischer [4]. Let us
look at the first steps of the reduction. To put a zero in the (2, 1) position of

(
α1

η2

)
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we define r̂1,1 = α1, r1,1 =
√
r̂2
1,1 + η2

2 with

c1 =
r̂1,1

r1,1
, s1 =

η2

r1,1
.

When we apply this rotation to
(
α1 η2

η2 α2

)

we obtain (
r1,1 r2,2

0 r̂1,2

)
=

(
r1,1 c1η2 + s1α2

0 −s1η2 + c1α2

)
.

Then we reduce the column 
 r2,2

r̂1,2

η3




by a s2 c2 rotation. We obtain

 r1,1 r2,2 r3,3

0 r1,2 r2,3

0 0 r̂1,3


 .

The general formulas are (see Fischer [4])

r̂1,1 = α1, r̂1,2 = c1α2 − s1η2, r̂1,n = cn−1αn − sn−1cn−2ηn, n ≥ 3,

r1,n =
√
r̂2
1,n + η2

n+1,

r3,n = sn−2ηn, n ≥ 3,

r2,2 = c1η2, r2,n = cn−2cn−1ηn + sn−1αn, n ≥ 3,

cn =
r̂1,n

r1,n
, sn =

ηn+1

r1,n
.

Now, we would like to incrementally compute the solution of the linear systems
RT

k w
k = e1 for k = 1, 2, . . . RT

k is a lower triangular matrix but we have to be
careful that even though the other elements stay the same during the iterations, the
(k, k) element changes when we go from k to k + 1. Therefore, for k = 1 we have

w1
1 =

1
r̂1,1

,

and for k = 2

w2
1 =

1
r1,1

, w2
2 = −r2,2w

2
1

r̂1,2
.
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Hence changing notations, we define

ŵ1 =
1
r̂1,1

, w1 =
1
r1,1

ŵ2 = −r2,2w
2
1

r̂1,2
, w2 = −r2,2w

2
1

r1,2

and more generally for n ≥ 3

ŵi = − (r3,iwi−2 + r2,iwi−1)
r̂1,i

, wi = − (r3,iwi−2 + r2,iwi−1)
r1,i

.

Therefore, ŵk is the last component of the solution at iteration k and wk will be used
in the subsequent steps. Then,

‖R−T
k e1‖2 =

k−1∑
j=1

w2
j + ŵ2

k.

Now we proceed as we did in [8] and [9] for the A–norm of the error. We introduce
an integer delay d and we approximate (r0, A−2r0) − ‖r0‖2(e1, T−2

k−de
1) at iteration k

by the difference of the k and k − d terms computed from the solutions that is

ŵ2
k − ŵ2

k−d +
k−1∑

j=k−d

w2
j , k > d.

To approximate the last term (−1)k−d2ηk+1−d
‖r0‖

‖rk−d‖ (ek−d, T−2
k−de

1)‖εk−d‖2
A we use

the approximation of ‖εk−d‖A we can compute from [8] (a lower bound obtained
using Gauss quadrature) and the value (ek−d, T−2

k−de
1) which is ŵk−d/r̂1,k−d.

We can see that computing an estimate of the l2 norm of the error add only a few
operations to each CG iteration.

4. Numerical experiments. As test problems, we use some of the examples
that were used in [6]. Example 3 arises from the 5–point finite difference approxima-
tion of a diffusion equation in a unit square,

−div(a∇u)) = f,

with Dirichlet boundary conditions. The diffusion coefficient in the x direction is
100 if x ∈ [1/4, 3/4], 1 otherwise. The coefficient in the y direction is constant and
equal to 1. We symmetrically scale the matrix by putting 1’s on the diagonal. This
corresponds to using a diagonal preconditioner. For this problem, we choose n = 900,
the right hand side such that the exact solution xex is xex = (1, . . . , 1)T and a random
initial guess x0. The results are given in figure 1.

Example 4 is taken from [7]. The matrix A is diagonal. The diagonal elements
are defined as

µi = a +
i− 1
n− 1

(b− a)ρn−i, i = 2, . . . , n− 1 µ1 = a, µn = b

As in [7], we take n = 48, a = 0.1, b = 100 and ρ = 0.875. This is a difficult
example for CG since we see in the result that we have to do much more than 48
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Fig. 1. Example 3, d = 10

iterations to reduce the error below 10−10. Since the last term in the error formula
is always negative, it is likely that the sum of the first two terms could give (at least
asymptotically) an upper bound. This is shown in figure 2. The relative difference
between the exact l2 error and the estimate is given in figure 3.

Another example is the matrix 1138 − bus from the Matrix Market collection
(http://math.nist.gov). This is an impedance matrix of order 1138. We symmetrically
scale the matrix. The results are given in figure 4.

5. Using a preconditioner. Let M be a symmetric positive definite matrix
which is going to be the preconditioner. It is well known that PCG for solving our
linear system is obtained by applying CG to the transformed system

M−1/2AM−1/2(M1/2x) = M−1/2g,

for which the matrix is still symmetric positive definite. Then we obtain recurrences
for the approximations to x by going back to the original variables. Let rk = g−Axk

and yk = M1/2xk. For the preconditioned equation the residual is

r̂k = M−1/2g −M−1/2AM−1/2yk = M−1/2(g −Axk) = M−1/2rk.

Let zk be given by solving Mzk = rk. Then, the scalar product we need in PCG is

(r̂k)
T
r̂k = (r̂k, r̂k) = (M−1rk, rk) = (zk, rk).

Moreover, let p̂k = M1/2pk. Then

(p̂k,M−1/2AM−1/2p̂k) = (pk, Apk).

By using this change of variable, the PCG algorithm is the following:
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Fig. 2. Example 4, d = 10, dashed: complete formula, dotted: first two terms
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Fig. 3. Example 4, d = 10, relative difference with the exact error

let x0 be given, r0 = g−Ax0, Mz0 = r0, p0 = z0, for k = 1, . . . until convergence

αk−1 =
zk−1T

rk−1

pk−1T
Apk−1

,

xk = xk−1 + αk−1p
k−1,
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Fig. 4. 1138-bus, d = 10, dashed: complete formula, dotted: first two terms

rk = rk−1 − αk−1Ap
k−1,

Mzk = rk,

βk =
zkT

rk

zk−1T
rk−1

,

pk = zk + βkp
k−1.

Let êk = yk − y where y = M1/2x and ek = xk − x. Then,

‖êk‖2
M−1/2AM−1/2 = (M−1/2AM−1/2(yk − y), yk − y) = (A(xk − x), xk − x) = ‖ek‖2

A.

This shows that for the A–norm we can use the formula

‖ek‖2
A = (z0, r0)((T−1

n )1,1 − (T−1
k )1,1),

where the Lanczos matrix Tk is constructed from the PCG coefficients. Unfortunately,
things are not so nice for the l2 norm since

‖êk‖2 = (yy − y, yk − y) = (M(xk − x), xk − x) = ‖ek‖M .

Therefore, directly translating the formula for the l2 norm will only provide us with
the M–norm of the error. However, let us suppose that M = LLT where L is a
triangular matrix. Then,

‖ek‖ ≤ ‖L−1‖‖êk‖.
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Fig. 5. Example 3, d = 10, IC preconditioner, dashed: complete formula, dotted: first two terms

It is difficult to compute or estimate the l2 norm of L−1. We will replace this by the
l∞ norm of this matrix. We suppose that M is an M–matrix. Then, L−1 is a matrix
with positive elements. If w is the solution of Lw = e where e is the vector of all ones,
then l = ‖L−1‖∞ = maxiwi. Hence,

‖ek‖ � l‖êk‖M .

When the matrix A is symmetrically scaled with 1’s on the diagonal, it turns out that
it is not too bad to use l = 1. Results with this choice are given for example 3 and
an incomplete Cholesky decomposition with no fill as a preconditioner on figure 5.
Figure 6 shows results with an approximate inverse AINV preconditioner, see [1].

6. Conclusion. In this paper we have derived a formula relating the l2 norm
of the error to the A–norm of the error. This allows to compute an approximation
of the l2 norm by introducing a delay and using what was done previously for the
A–norm. We also discussed what can be done when a preconditioner is used. These
estimates are obtained by adding only a few floating point operations for each PCG
iteration. Numerical results demonstrated that good estimates are obtained using
these techniques.
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