
PRESCRIBING THE ERROR IN GMRES

GÉRARD MEURANT∗

Abstract. In this paper we explain how, in the class of real matrices A having the same GMRES
residual norm convergence curve, as defined by the parametrization of Arioli, Pták and Strakoš (BIT
Numerical Mathematics, v 38 1998), we can choose the spectrum (or more exactly the coefficients of
the characteristic polynomial) to obtain a given solution for the linear system Ax = b. This allows
to be able, with a prescribed GMRES residual norm convergence curve, to compute the spectrum
of A to prescribe the error vector at a given iteration. We also consider prescribing the norm of the
error at every iteration. We exhibit a condition that has to be satisfied to be able to construct real
matrices having the prescribed error norms as well as prescribed residual norms.

1. Introduction. We consider solving a linear system

Ax = b(1.1)

where A is a real nonsingular matrix of order n with the Generalized Minimum RESid-
ual method (GMRES) which is an iterative Krylov method based on the Arnoldi
orthogonalization process; see Saad [6], [7] and Saad and Schultz [8].

During the last years, Strakoš and his co-workers studied the class of matrices
giving the same GMRES residual norm convergence curve. Greenbaum and Strakoš
[2] first proved that any GMRES residual norm convergence curve can be obtained
with a non-derogatory matrix having prescribed eigenvalues. Then, it was proved in
Greenbaum, Pták and Strakoš [3] that any nonincreasing sequence of residual norms
can be produced by GMRES. A complete parametrization of all pairs {A, b} gener-
ating a prescribed residual norm convergence curve was given by Arioli, Pták and
Strakoš [1]. In [5] we gave more details on matrices and vectors that are linked to
the Arioli, Pták and Strakoš parametrization. In particular, we provided expressions
for the GMRES iterates and errors. The iterates do not depend on the eigenvalues
of A, in the sense that in the parametrization we can change the companion matrix
C corresponding to the eigenvalues of A (and thus the matrix A) without changing
the iterates. Hence, there are non-derogatory matrices with different eigenvalue dis-
tributions and the same residual norm convergence curves and iterates. However, our
results showed that the error vectors do depend on the matrix C, and therefore on
the eigenvalues of A, through the exact solution of the linear system.

In this paper we are interested in computing the coefficients of the characteristic
polynomial (and therefore the eigenvalues) of A, in the class of matrices with a pre-
scribed residual norm convergence curve, to obtain a prescribed solution for the linear
system (1.1). The coefficients are uniquely determined as functions of the matrices
involved in the parametrization of [1]. This also allows to prescribe the error vector
at a given iteration. Then we study the problem of prescribing the norm of the error
at every iteration. This is not always possible since there is a relation between the
errors and the residuals and the residual norms have to be monotonely decreasing.
Hence we cannot choose the error norms arbitrarily. We exhibit a condition that has
to be satisfied to be able to construct real matrices having the prescribed error norms
as well as prescribed residual norms. Finally to show that there are cases for which
this condition can be fulfilled we consider 2× 2 and 3× 3 matrices.

The contents of the paper are as follows. Section 2 recalls the results of Arioli,
Pták and Strakoš [1] as well as some results from [5] giving expressions for the GMRES
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iterates and error vectors using the parametrization of [1]. In Section 3 we describe
how to choose the coefficients of the characteristic polynomial to obtain a prescribed
exact solution for the system (1.1). This result allows in Section 4 to choose the
coefficients to obtain a prescribed error vector at a given iteration. In Section 5 we
illustrate these results with some numerical experiments on small matrices. Section 6
considers the problem of prescribing the error norms for all iterations. To show that
the condition for obtaining a real solution can sometimes be fulfilled we consider the
case of 2× 2 matrices in Section 7. Numerical experiments for matrices of order 3 are
provided in Section 8. Finally we give some conclusions.

2. The Arioli, Pták and Strakoš parametrization. We recall the following
results that were proved in [1] (Theorem 2.1 and Corollary 2.4).

Theorem 2.1. Assume we are given n + 1 positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0, f(n) = 0,

and n complex numbers λ1, . . . , λn all different from 0. Let A be a matrix of order n
and b an n-dimensional vector. The following assertions are equivalent:

1- The spectrum of A is {λ1, . . . , λn} and GMRES applied to A and b yields
residuals rj , j = 0, . . . , n− 1 such that

‖rj‖ = f(j), j = 0, . . . , n− 1.

2- The matrix A is of the form A = WY CY −1W ∗ and b = Wh, where W is a
unitary matrix, Y is given by

Y =
(

h
R
0

)
,

R being any nonsingular upper triangular matrix of order n − 1, h a vector
such that

h = (η1, . . . , ηn)T , ηj = (f(j − 1)2 − f(j)2)1/2

and C is the companion matrix corresponding to the polynomial q,

q(z) = (z − λ1) · · · (z − λn) = zn +
n−1∑
j=0

αjz
j ,

C =


0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 0 . . . −α2

. . . . . .
...

1 −αn−1

 .(2.1)

We will call the parametrization, A = WY CY −1W ∗, the APS parametrization
in reference to [1].

In the parametrization of Theorem 2.1, the prescribed residual norm convergence
curve is implicitly contained in the vector h which is prescribed by the given residual
norms defined by f . The degrees of freedom defining the class of matrices are the
unitary matrix W , the upper triangular matrix R and the companion matrix C. Thus
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we can change R to obtain another matrix in the class for which we have the same
residual convergence curve as long as the right-hand side is b = Wh. Changing W
change the matrix A and also the right-hand side b but not the residual convergence
curve. Keeping everything else (that is, W , R, h) the same, we can change the com-
panion matrix C, and hence the eigenvalues of A, without changing the norms of the
residuals. So we have a class of matrices all having different eigenvalue distributions
and the same residual norms. This leads some researchers to write that “GMRES
convergence does not depend on the eigenvalue distribution”. However, we will see
that we can compute the coefficients of the characteristic polynomial (and thus the
eigenvalues of A) to obtain prescribed properties of the error. In particular we can
construct matrices having a prescribed residual norm convergence curve and a small
error vector at a given iteration. Hence, in this sense, one can say that GMRES
convergence depends on the eigenvalues.

In this paper we are interested in real matrices and right-hand sides. In this
case all the quantities defined in Theorem 2.1 are real, except the eigenvalues of A.
Throughout the paper we will use the notation of [1] defined in Theorem 2.1. We will
assume that the matrix A is non-derogatory and that the right-hand side is such that
GMRES terminates at iteration n. Therefore all the Krylov subspaces are of maximal
rank. For a square matrix B we denote as Bk the principal submatrix of order k and
ei denotes the ith column of the identity matrix of appropriate dimension. Without
loss of generality, we will choose x0 = 0 and ‖b‖ = 1; this yields the initial residual
r0 = b and ‖h‖ = 1. Let us now recall results from [5].

Theorem 2.2. The GMRES iterates xk are

xk = WY C−1


0

R−1
k hk

0
...
0

 , k < n,(2.2)

with only one zero element at the top of the vector on the right-hand side. The entries
of the vector hk are the first k components of h. Moreover, we have

Y C−1 =

 z(α) h

 Rn−2

0
0

  ,

where z(α) is a vector (depending on the coefficients αj) given by

z(α) =
(
−α1

α0
ĥ + Rt

−α1
α0

ηn

)
= −α1

α0
h +

(
Rt
0

)
(2.3)

with ĥ = hn−1 the vector of the first n− 1 components of h and

t = (−α2
α0

, · · · −αn−1
α0

, − 1
α0

)T
.

We see that only the first column of Y C−1 depends on the coefficients αj . In the
expression (2.2) for the iterates xk, this column is multiplied by zero. Therefore, the
iterates do not depend on the eigenvalues of A. In the parametrization we can change
the matrix C and hence the eigenvalues without changing the GMRES iterates.
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3. Prescribing the solution of the linear system. In this section we show
how to compute the coefficients αj , j = 0, . . . , n of the characteristic polynomial
for prescribing the solution of the linear system (1.1). Using the parametrization of
Theorem 2.1, the exact solution is

x = (WY CY −1WT )−1b = WY C−1Y −1WT b = WY C−1e1 = Wz(α),

since WT b = h and Y −1h = e1. The vector z(α), defined by (2.3), depends only on h,
R and the coefficients αj . One may ask if, given h, R and W , we can determine these n
coefficients to obtain a prescribed solution x̃ to the linear system (1.1). We are looking
for real parameters αj (corresponding to real or complex conjugate eigenvalues). Their
computation is described in the following theorem.

Theorem 3.1. Using the notation of Theorem 2.1, let h, R and W be given. Let
x̃ be a prescribed vector and p = WT x̃. Assume that pn−1ηn − pnηn−1 6= 0. Then
the vector x̃ is the solution of the linear system Ax = WY CY −1WT x = b = Wh if
the coefficients αj , j = 0, . . . , n − 1 in the companion matrix C defined in (2.1) are
computed as the solutions of the following linear systems,(

pn−1 ηn−1

pn ηn

) (
α0

α1

)
=

(
−rn−1,n−1

0

)
.(3.1)

and

Rn−2

 α2
...

αn−1

 = −

 r1,n−1

...
rn−2,n−1

−

 p1 η1
...

...
pn−2 ηn−2

 (
α0

α1

)
.(3.2)

Proof. We would like to find α0, . . . , αn−1 such that z(α) = p. From Theorem 2.2
this is equivalent to solving

−α1

α0
h +

(
Rt
0

)
= p,(3.3)

where R, h and p are given. We have assumed that α0 6= 0. Therefore we can rewrite
(3.3) as

−α1h−

 R


α2
...

αn−1

1


0

 = α0p.

This gives a linear system for the unknowns α0, . . . , αn−1,

p1 η1 r1,1 r1,2 · · · r1,n−2

p2 η2 0 r2,2 · · · r2,n−2

...
...

...
...

...
...

pn−2 ηn−2 0 · · · 0 rn−2,n−2

pn−1 ηn−1 0 · · · 0 0
pn ηn 0 · · · 0 0





α0

α1
...

αn−3

αn−2

αn−1

 = −



r1,n−1

r2,n−1

...
rn−2,n−1

rn−1,n−1

0

 ,(3.4)

where ri,j denotes the entries of R which are known. The matrix in (3.4) has a very
special structure. We see that, using the last two equations, we can first solve for α0
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and α1 which are the solution of the linear system (3.1). With our hypothesis this
system has a unique solution. We then compute α2, . . . , αn−1 by solving the triangular
system (3.2) of order n − 2. This system has a unique solution since R is assumed
to be nonsingular. This uniquely determines the coefficients αj of the characteristic
polynomial as functions of h, R and W . From the knowledge of the matrix C in (2.1),
we can construct the matrix A = WY CY −1WT . The linear system with this matrix
and b = Wh has the prescribed solution x̃ and prescribed residual norms defined by
f . The only condition to be satisfied is pn−1ηn − pnηn−1 6= 0.

Since we can prescribe the exact solution of the linear system (1.1), one may
wonder if we can ask for an exact solution, say x, being equal to one of the iterates,
say xm,m < n. As we can guess, this is not possible since it will give ‖rm‖ = 0 and
this is contradictory with the fact that this norm has already been prescribed to be
different from zero. This can be seen more formally since, if x = xm, we have

p = WT x = WT xm = Y C−1

 0
R−1

m hm

0

 .

Let us denote by ρ the first element of the vector R−1
m hm. Using the structure of C−1,

we can see that ρ is the first element of the vector

C−1

 0
R−1

m hm

0

 .

hen the last two equations of p = WT xm give(
pn−1

pn

)
= ρ

(
ηn−1

ηn

)
.

Therefore we have pn−1ηn − pnηn−1 = 0 and the linear system for α0 and α1 is
singular.

4. Prescribing the error vector at a given iteration. In this section, using
the previous results, we show how to obtain a prescribed error vector at a given
iteration. Let ε be a given vector in �n assumed to be different from zero. The
problem we consider here is: Can we compute the coefficients αj such that the error
vector εk = x − xk at iteration k is the given vector ε? From what we have seen in
the previous section and Theorem 2.2, we have

WT εk = z(α)− Y C−1

 0
R−1

k hk

0

 .(4.1)

Let

p = WT ε + Y C−1

 0
R−1

k hk

0

 .

Then, the problem reduces to solving the equation z(α) = p where p is known since,
according to the structure of Y C−1 described in Theorem 2.2, the second term on
the right-hand side does not depend on the coefficients αj . Solving this problem has
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been done in the previous section. Therefore, in the class of matrices having the
same residual norm convergence curve, we can construct a particular matrix having
a prescribed (nonzero) error vector at a given iteration by computing appropriately
the coefficients of the characteristic polynomial.

5. Numerical experiments. Let us consider a small (5 × 5) example. We
choose a random R, a random orthogonal W and h as

R =


−0.432565 −1.14647 0.327292 −0.588317

0 1.19092 0.174639 2.18319
0 0 −0.186709 −0.136396
0 0 0 0.113931

 ,

W =


−0.767849 0.389048 0.079038 −0.435081 −0.252008
−0.0426702 −0.303441 0.907719 −0.166331 0.233416
0.0688467 −0.654749 −0.108865 −0.344183 −0.660492
0.599116 0.411357 0.0385463 −0.685803 0.00568851
−0.211914 −0.398314 −0.395552 −0.440738 0.667627

 ,

hT = ( 0.99995, 0.00994987, 0.000994987, 9.94987 10−5, 10−5 ) .

This corresponds to GMRES residual norms equal to

1, 0.01, 0.001, 0.0001, 10−5 ,

for k = 0, . . . , 4. Then, let us choose a random eigenvalue distribution with complex
conjugate or real eigenvalues,

0.257304− 1.05647i, 0.257304 + 1.05647i, 1.41514− 0.80509i,

1.41514 + 0.80509i, 0.528743 .

From the eigenvalues we construct the corresponding companion matrix C and the
matrix A. The linear system is

−87520.1 80969.9 −229267 1873.1 231643
17942.1 −16594.5 46997.5 −381.358 −47483
51341.7 −47479.8 134472 −1079.95 −135847
18137.1 −16798.5 47533.5 −406.565 −48044.5
11329.5 −10463.9 29657.5 −224.579 −29946.7

 x =


−0.763906
−0.0447983
0.0621794
0.60315
−0.216297

 ,

whose solution is

x =


2.83717
−1.48457
−4.046
2.05175
−2.43021

 .

The matrix A has a condition number of 2.6 1011 having one small singular value.
When running GMRES on this linear system, starting from x0 = 0, we obtain the
following residual norms

1, 0.01, 0.001, 0.0001, 10−5, 3.5478 10−11
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that are the prescribed ones. The error norms are

6.06129, 6.27366, 6.28074, 6.28699, 6.28649, 7.65631 10−8 .

They are almost constant up to the last step. Now we would like to construct a
matrix with the same residual norm convergence curve and an error vector at the
third iteration which is 10−6e where e is the vector of all ones. From the previous
section we compute the coefficients of the characteristic polynomial and the companion
matrix C̃. The new matrix is Ã = WY C̃Y −1WT and the right-hand side is the same
as before. We obtain

Ã =


−89839.8 83755.7 −236237 2704.11 239572
18451.3 −17205.9 48527.5 −563.751 −49223.3
52831.2 −49268.5 138948 −1613.53 −140938
18640.3 −17402.8 49045.6 −586.831 −49764.5
11729.7 −10944.5 30860.2 −367.948 −31314.6

 .

This matrix has a condition number of 1.7 108. The spectrum of Ã is

−10.1482− 16.3584i, −10.1482 + 16.3584i, 10.5609− 15.6928i,

10.5609 + 15.6928i, −0.426482 .

This matrix cannot be considered as a large modification of A since we have ‖A −
Ã‖/‖A‖ = 0.0333. The largest singular values of A and Ã are not much different
(4.1728 105 and 4.3107 105), however the smallest singular value of Ã is larger than
the smallest singular value of A. Note also that 0 is in the convex hull of the eigenvalues
of Ã when it was outside for A. When we run GMRES on the system Ãx = b, we
obtain the following residual norms

1, 0.01, 0.001 0.0001, 9.99995 10−6, 1.21344 10−11 .

They are (almost) the same as before. The error norms for k = 0, 1, . . . , 5 are

2.33784, 0.0269172, 0.00641637, 2.23604 10−6, 0.00403993, 1.24166 10−9 .

We see that the norm ‖ε3‖ is small. The error vectors for k = 1, . . . , 5 are

0.0174532 −0.00223741 9.99754 10−7 0.00330782 1.00806 10−9

0.00310014 0.00195393 10−6 0.000140114 5.18857 10−11

0.00254853 0.00417422 1.00007 10−6 −0.000673838 −1.87872 10−10

−0.0183542 −0.00283306 1.00013 10−6 −0.0021452 −6.74045 10−10

0.00818142 0.00262596 9.99977 10−7 0.000551208 1.82237 10−10

Up to rounding errors, the error vector ε3 is as prescribed. Note that the error
norms are not monotonely decreasing in GMRES and the error norm increases at
iteration 4. Nevertheless, the error norms are smaller than for the matrix A whence
the residual norms are the same. In this sense, even though they belong to the same
class of matrices with the prescribed residual norms, the matrix Ã is “better” than
the matrix A regarding the error norms.
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6. Prescribing the error norm at every iteration. Since we have n param-
eters α0, . . . , αn−1 at our disposal, one may ask the question: Can we prescribe the
norm of the error ‖εk‖ for k = 0, . . . , n− 1? We will see that this is not always possi-
ble. The prescribed values for the norm of the errors have to satisfy some constraints.
This makes sense since there is a close relation between the residuals and the errors
(Aεk = rk) and the residual norms have to be monotonely decreasing. Let us look
for the real coefficients α0, . . . , αn−1 of the characteristic polynomial that would give
complex conjugate eigenvalues. Let ω0, . . . , ωn−1 be n given real positive values. We
would like to have ‖εk‖ = ωk, k = 0, . . . , n− 1.

From Theorem 2.2 we know that

WT εk = Y C−1

 1
−R−1

k hk

0

 .

Let us denote

γ
(k)
j = (R−1

k hk)j , j = 1, . . . , k(6.1)

with an upper index (k) since these elements change at each iteration k.
Let

tk = γ
(k)
1 h +


Rn−2



γ
(k)
2
...

γ
(k)
k

0
...
0


0
0


=

 h

Rk−1

0
...
0


 γ

(k)
1
...

γ
(k)
k

 ,(6.2)

for k = 2, . . . , n− 1 and t0 = 0, t1 = γ
(1)
1 h with γ

(1)
1 = η1/r1,1. Note that the vectors

tk are known. The GMRES iterates are xk = Wtk. The exact solution is x = Wz(α).
Then the error εk satisfies

WT εk = z(α)− tk, k = 1, . . . , n− 1.(6.3)

Since x0 = 0, we have ‖ε0‖2 = ‖x‖2 = ‖z(α)‖2 = ω2
0 . The other norms are written as

‖εk‖2 = ‖z(α)− tk‖2 = ‖z(α)‖2 − 2(z(α), tk) + ‖tk‖2 = ω2
k, k = 1, . . . , n− 1.

We substitute the value of ‖z(α)‖2 in this equation to obtain n − 1 equations in n
unknowns. Let δk = (ω2

0 + ‖tk‖2 − ω2
k)/2, then we have the linear equations

(z(α), tk) = δk, k = 1, . . . , n− 1,(6.4)

for the components of z(α). Let tji be the components of the vector tj . In matrix
form, (6.4) is written as t11 · · · t1n

... · · ·
...

tn−1
1 · · · tn−1

n


 z1

...
zn

 =

 δ1
...

δn−1

 ,(6.5)



GMRES error 9

where the values zj are the components of z(α). Let T be the square matrix of order
n− 1 with elements (T )i,j = tij (that is, the first n− 1 columns of the matrix in (6.5))
and δ a vector with components δj , j = 1, . . . , n− 1. Then

T

 z1
...

zn−1

 = −zn

 t1n
...

tn−1
n

 + δ.(6.6)

Let us assume that T is nonsingular. This implies that the vectors tk and therefore
the iterates xk are different. It excludes the case of GMRES stagnation. Let p = T−1δ
and

q = T−1

 t1n
...

tn−1
n

 .

From (6.6) we have  z1
...

zn−1

 = −znq + p.

Now we use this relation in the first equation ‖z(α)‖2 = ω2
0 . It yields a quadratic

equation for zn,

(1 + ‖q‖2)z2
n − 2(p, q)zn + ‖p‖2 − ω2

0 = 0.(6.7)

We need that (6.7) has real solutions. Hence, we obtain the constraint

(p, q)2 − ‖p‖2 ‖q‖2 + ω2
0(1 + ‖q‖2)− ‖p‖2 ≥ 0.(6.8)

If this condition is fulfilled then we have two real solutions for zn and we can recover
the other components of z(α) from (6.6). Note that the components of the vector
q are functions of h and R and those of the vector p are functions of h, R and
ωj , j = 0, . . . , n − 1. If condition (6.8) is satisfied and T is nonsingular we obtain
a real vector z(α) and we can compute the coefficients αj using what was done in
section 3.

The constraint (6.8) can be written as

(p, q)2 + (ω2
0 − ‖p‖2)(1 + ‖q‖2) ≥ 0.

Therefore, a sufficient condition for having real solutions is

ω2
0 ≥ ‖p‖2.(6.9)

On the other hand we have

‖p‖2 − ω2
0 ≤

(p, q)2

1 + ‖q‖2
≤ ‖p‖2 ‖q‖2

1 + ‖q‖2
,

by the Cauchy–Schwarz inequality. Therefore

ω2
0 ≥

‖p‖2

1 + ‖q‖2
(6.10)
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is a necessary condition. Note that if ‖q‖ is small, conditions (6.9) and (6.10) are
close. This may happen if ηn is small since the vector q is proportional to ηn.

We will see in the next section that there are cases for which the condition (6.8)
can be fulfilled. Finally, let us consider the question of the rank of the matrix T .
Looking at the vectors tk in (6.2), we see that T is the sum of two singular matrices
of order n− 1, T1 and T2,

T1 =

 γ
(1)
1
...

γ
(n−1)
1

 ( η1 · · · ηn−1 ) , T2 =


0 · · · 0 0

L

0
...
0

 ,

where the matrix L is lower triangular. The matrix T1 is of rank 1 and, generically, the
matrix T2 is of rank n−2 since L is nonsingular. If we assume that ηj 6= 0, j = 1, . . . , n
we can apply the result about the rank of the sum of two matrices in [4]. With this
hypothesis, generically, the intersections of the column spaces and row spaces of T1

and T2 is void and the rank of T is the sum of the ranks of T1 and T2 that is n− 1.

7. Prescribing the error norms, the case n = 2. To see if there are cases for
which the condition (6.8) can be satisfied we consider the class of 2× 2 real matrices
A with the APS parametrization A = WY CY −1WT . In the case n = 2 we have

Y =
(

η1 r1,1

η2 0

)
, C =

(
0 −α0

1 −α1

)
.

The matrix R is just a single real element r1,1 6= 0. If η1 and η2 are given, all the
matrices in this class have (when b = Wh) the same GMRES residual norms given by

‖r0‖ =
√

η2
1 + η2

2 , ‖r1‖ = η2, ‖r2‖ = 0.

As in the previous section, we would like to study if, in this class of matrices, we can
find real matrices for which the error norms ‖ε0‖ and ‖ε1‖ have prescribed values, say
ω0 and ω1 that are two positive numbers. If these two values are given, then there
are some constraints on r1,1. Conversely, for a given r1,1, ω0 and ω1 cannot have any
prescribed values.

We are looking for a real companion matrix C̃ (that is, real α̃0, α̃1) such that
‖ε0‖ = ω0, ‖ε1‖ = ω1. To do this it is enough to find a real vector z(α) = ( z1 z2 )T

such that Wz(α) is the solution of

Ãx = (WY C̃Y −1WT )x = b = Wh,

and the norms of the errors have the prescribed values. From the vector z(α) we know
how to compute α̃0 and α̃1. We use the same machinery as for the general case with
some simplifications. Asking for the prescribed error norms yields two equations for
z1 and z2,

z2
1 + z2

2 = ω2
0 ,(7.1)

(z1 − t11)
2 + (z2 − t12)

2 = ω2
1 .(7.2)

Let us assume that η1 6= 0 since otherwise the two equations are the same (this
corresponds to stagnation). Equation (7.2) can be written as

z2
1 + z2

2 − 2(z1t
1
1 + z2t

1
2) + (t11)

2 + (t12)
2 = ω2

1 .
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Using (7.1) we obtain

z1 =
r1,1

2η2
1

[
−2

η1η2

r1,1
z2 +

η2
1

r2
1,1

‖h‖2 − ω2
1 + ω2

0

]
.

As in the previous section, let us write this as

z1 = −qz2 + p, q =
η2

η1
, p =

1
2r1,1

‖h‖2 +
r1,1

2η2
1

(ω2
0 − ω2

1).

Putting this in (7.1) we obtain a quadratic equation for z2,

(1 + q2)z2
2 − 2pqz2 + p2 − ω2

0 = 0.

To obtain a real solution z2 we have the constraint

p2 ≤ (1 + q2)ω2
0 .

Rewriting this using the values of p and q and simplifying, we obtain the constraint

η2
1

4r2
1,1

‖h‖4 − ‖h‖2

2
(ω2

0 + ω2
1) +

r2
1,1

4η2
1

(ω2
0 − ω2

1)2 ≤ 0.(7.3)

7.1. n = 2, ω0 and ω1 given. In the constraint (7.3), assume that ω0 and ω1

are given and let us see for which values of r1,1 it can be satisfied. We rewrite (7.3)
as

η2
1‖h‖4 − 2r2

1,1 ‖h‖2(ω2
0 + ω2

1) + r4
1,1

(ω2
0 − ω2

1)2

η2
1

≤ 0.

Looking for the left-hand side to be zero, we have a quadratic equation in r2
1,1. The

two roots of this equation (if ω1 6= ω0) are

η2
1‖h‖2

(ω0 − ω1)2
,

η2
1‖h‖2

(ω0 + ω1)2
.

Therefore we obtain four roots for r1,1 which are plus or minus the square roots of these
values. The constraint is satisfied if r1,1 is in between the two positive roots or the two
negative ones. If ω1 = ω0, there are only two possible values for r1,1 = ±η1‖h‖/(2ω0).
Hence only the real matrices in the class satisfying these restrictions on the value of
r1,1 can have the prescribed error norms.

Note that if ω1 is small compared to ω0 then, for each of these two intervals, the
two ends are close meaning that the range of feasible values for r1,1 is quite small.

7.2. n = 2, r1,1 given. On the contrary, since this is our primary goal, we may
assume that the value of r1,1 is given and look for which values of ω0 and ω1 the
constraint (7.3) can be satisfied. Let us write (7.3) with obvious notation as

δ − β(x2 + y2) + γ(x2 − y2)2 ≤ 0.

We are interested in the boundary of the region defined by this constraint in the
positive quadrant. We remark that we have β2 = 4δγ. Clearly the curve described
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by δ − β(x2 + y2) + γ(x2 − y2)2 = 0 is symmetric with respect to the line y = x. Let
us look for the values on straight lines defined by y = ax + c. We obtain

δ − β((1 + a2)x2 + 2acx + c2) + γ((1− a2)x2 − 2acx− c2)2 = 0.

Let us choose a2 = 1. Then the third term simplifies and we get a quadratic equation
in x. The constant coefficient is δ − βc + γc4 and this gives c = ±

√
β/(2γ) since we

have β2 = 4δγ. The coefficient of x is −2βc + 4γc3 = 0 with the values of c we have
obtained. Similarly the coefficient of x2 is −2β+4γc2 = 0. Therefore the intersections
of the lines

y = ±x±

√
β

2γ

with the quadrant x ≥ 0, y ≥ 0 are parts of the boundary. But, for a given value of
x > 0 we obtain two values of y2,

y2 =
β + 2γx2 ± 2x

√
2βγ

2γ
> 0.

Since we are interested only in y > 0 we obtain two values. Hence, we have found
all the boundary. It is composed of the intersections of two lines of slope 1 and one
of slope -1 with the positive quadrant x ≥ 0, y ≥ 0; see Figure 7.3 for an example.
The intersections with the x and y-axis are (

√
β/(2γ), 0) and (0,

√
β/(2γ). If the

point (ω0, ω1) is within the semi-infinite rectangle defined by these three lines, the
constraint (7.3) is satisfied.

7.3. Numerical examples for n = 2. Let us prescribe

h = ( 0.469946, 0.882695 )T
.

This gives ‖h‖ = 1 and corresponds to residual norms 1, 0.882695 . Let ω0 = 1
and let us look at the positive interval that must contain r1,1 as a function of ω1.
Figure 7.1 displays the region for the feasible values of r1,1 as a function of ω1. For
a given value of ω1 it must be contained in the interval given by the intersections
of a vertical line with the dashed and solid curves. Hence, we see that when ω1 is
close to ω0 = 1 almost any value of r1,1 can used. When ω1 decreases to 0, the
length of the feasible interval decreases very rapidly. For ω1 small, the value of r1,1

is very constrained. However there are still an infinite number of matrices having the
prescribed error norms since we can pick W as we wish as long as it is orthogonal.
As an example let us choose ω1 = 0.95. Then r1,1 (if chosen to be positive) has to be
in the interval [ 0.240998, 9.39891 ]. We can pick, for instance, r1,1 = 3. Then the
matrix Y is

Y =
(

0.469946 3
0.882695 0

)
.

One of the two companion matrices that are obtained from Y and ω0, ω1 is

C =
(

0 −2.87519
1 2.52981

)
.
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Fig. 7.1. Feasible values of r1,1 as a function of ω1 when ω0 = 1

Its eigenvalues are 1.2649 + 1.12925i, 1.2649− 1.12925i . Let us now choose a ran-
dom orthogonal matrix W

W =
(
−0.399411 −0.916772
−0.916772 0.399411

)
.

From this, one of the solutions is the matrix

Ã =
(

1.23962 −0.480095
2.65748 1.29019

)
and the right-hand side is

b̃ = Wh =
(
−0.996932
−0.0782748

)
.

When running GMRES for the system Ãx = b̃, the residual norms are

1, 0.882695, 3.51083 10−16

as prescribed and the error norms are

1, 0.95, 3.7238 10−16

as given by the chosen values of ω0 and ω1.
The values of r1,1 can be more severely constrained if, for instance, ω0 is smaller.

As an example Figure 7.2 shows the feasible region for r1,1 as a function of ω1 for
ω0 = 0.1.

Now let us consider the matrix

A =
(

1 −0.5
−3 1

)
.
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Fig. 7.2. Feasible values of r1,1 as a function of ω1 when ω0 = 0.1

This matrix has two real eigenvalues and a condition number of 22.455. The eigen-
values are 2.22474, −0.224745 . We choose a random b = (−0.25137, −0.96789 )T

of norm 1. The APS parametrization of A gives

W =
(

0.736229 −0.676732
−0.676732 −0.736229

)
, Y =

(
0.469937 0.315901
0.8827 0

)
.

Therefore h = ( 0.469937, 0.8827 )T as we had in the previous example and we have
a fixed value of R = r1,1 = 0.31590. This matrix and the right-hand side give the
same residual norm convergence curve as before. The norms of the residuals are
1, 0.8827, 5.55112 10−17 and the error norms are 3.74485, 5.22058, 0 . The
companion matrix C is

C =
(

0 0.5
1 2

)
.

The boundary of the region ω0, ω1 for which the constraint (7.3) is satisfied is given
by

0.55325− 0.5(x2 + y2) + 0.11297(x2 − y2)2 = 0.

This boundary is shown in Figure 7.3. We have positive solutions ω0 = x, ω1 = y
inside the semi-infinite rectangle. The star in the center of the figure corresponds to
the error norms of the matrix A and right-hand side b. We also see that with these
values of h and R we cannot ask for ω0 and ω1 to both be small. However we may
look for matrices corresponding to the vertices of the rectangle (or to points close to
that). The star on the x-axis is (

√
β/2γ, 0), the value of the square root being 1.4876.

Let us ask for ‖ε0‖ = 1.4876 and ‖ε1‖ = 10−6. This point is within the feasible
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Fig. 7.3. A part of the boundary of the region for which we have real solutions

region so we find two solutions for z(α) that are

0.699083 0.699084
1.31311 1.31311 .

They are very close since the chosen point was close to a point on the x-axis where
there is only one solution. However, this gives rise to two companion matrices

C̃1 =
(

0 −278579
1 414417

)
, C̃2 =

(
0 278579
1 −414417

)
.

Up to rounding errors, they differ only by the signs of the coefficients α0 and α1. This
gives two matrices

Ã1 =
(

577619 −150013
628401 −163201

)
, Ã2 =

(
−577619 150013
−628401 163202

)
,

with differences in signs of the entries. The eigenvalues of Ã1 are 414416, 0.67222
and those of Ã2 are −414417, 0.672218 . These two matrices are different from A.
But, nevertheless, when we run GMRES with Ã1 and b we obtain residual norms
1, 0.8827, 2.35162 10−11 as we should and

1.48761, 1.00096 10−6 4.26339 10−11

for the error norms as we have prescribed. It is the same for Ã2. Therefore we have
computed two matrices in the APS class defined by h that have the same prescribed
residual norms as A and better error norms than those obtained with A even though
the properties of these matrices do not look particularly good.
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8. Numerical examples for n = 3. For a given matrix R, finding the boundary
of the feasible region for ωi, i = 0, 1, 2 seems difficult. So, let us consider a numerical
example. Let

Y =

 0.994987 −1.14647 1.18916
0.099995 0 −0.0376333

0.001 0 0

 .

This corresponds to residual norms 1, 0.1, 0.001 . We discretize the values of
ωi, i = 0, 1, 2 in intervals [0, ω] and we check the condition (7.3) for all the dis-
cretization points. This is shown in Figure 8.1 for ω = 1 where we draw a ‘+’ when
the feasibility condition is satisfied. The volume of feasible values is semi-infinite as
it can be seen by taking larger values of ω.
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Fig. 8.1. A part of the region for which we have real solutions

Let us choose W = I and therefore b = h. We pick values ω0 = 0.7, ω1 = 0.5, ω2 =
0.2 that are in the feasible region. One of the companion matrices we obtain is

C =

 0 0 0.00195349
1 0 −0.368311
0 1 −1.35779

 .

It yields a matrix

A1 =

 −1.03724 −1.14283 −0.15467
0.0328253 −0.325746 −0.087757

6.19296 10−22 −5.19085 10−5 0.00519059

 .

Up to rounding errors this matrix is upper Hessenberg. Its eigenvalues are

−0.97989, −0.383108, 0.00520369 .
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Running GMRES with A1 and b we obtain residual norms

1, 0.1, 0.001, 1.14439 10−16

as prescribed. The error norms are

0.7, 0.5, 0.2, 7.85046 10−17

corresponding to the values ωi we have chosen. Our algorithm also gives another
solution

A2 =

 −1.03724 −1.1457 0.131783
0.0328253 −0.327436 0.0812249

−6.19296 10−22 5.19085 10−5 −0.00519059


whose eigenvalues are −0.979569, −0.385118, −0.00517823 . Note that zero is not
in the convex hull of the eigenvalues of A2 when it is in the convex hull for A1.
However the residual and error norm convergence curves are the same.

9. Conclusions. In this paper we have shown that in the class of matrices A
having the same residual norm convergence curve, as defined in [1], we can choose the
companion matrix C (and hence the eigenvalues of A) to obtain a prescribed error
vector at a given iteration k. Moreover, when certain conditions are satisfied, we can
compute the matrix C to have prescribed error norms at every iteration. It would be
interesting to study if the eigenvalue distributions giving rise to “good” error norm
convergence curves, for a given residual norm convergence curve, have any particular
characteristics.
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