
FIXED POINT, FLOATING POINT AND POSITS

GÉRARD MEURANT∗

1. Introduction. We would like to experiment with Krylov methods for solving
linear systems with low accuracy arithmetic and also with variable precision. Another
point to be studied is the influence of the rounding mode.

To be able to do this within Matlab we developed classes to do fixed point arith-
metic, floating point arithmetic with variable precision and posits. Posits were in-
troduced some time ago by J. Gustafsson [2, 3] as a possible replacement for IEEE
floating point arithmetic [5, 6].

2. The fixp class. This class implements fixed point arithmetic. The numbers
are defined as

x = s (I.F),

where s is the sign, I and F are binary numbers. The length of the fractional part
(or significand) F is nbits. The length of I can grow as needed.

A number is coded as a structure with fields,

′sign′, sign, ′I ′, I, ′F ′, F, ′float′, x, ′nbits′, nbits,

where sig is 0 (resp. 1) for positive (resp. negative) numbers, I and F are binary
numbers that are arrays with entries 0 or 1 and x is the double precision floating
point value of the number.

A fixed point number (or matrix) is created by f = fixp(x,nbits), where x is a
scalar or matrix. The rounding mode is initialized by the function init round(rounding)

where rounding is an integer between 1 and 6, representing respectively rounding to
nearest with ties to even (default), to +∞, to −∞, to zero, stochastic rounding with
a probability proportional to the distance to the two closest integers and stochastic
rounding to +∞ or −∞ with equal probability.

We implemented the four basic arithmetic operations +,−, ∗, /, so we can write
expressions like x = a * b + c where a, b, c and x are fixed point numbers. We also
implemented the \ operator.

Some elementary functions are available, sqrt, log, log10, exp, sin, cos,

tan, cot, asin, acos, atan, acot. Some of these functions use algorithms used
in the C math library fdlibm developed at Sun Microsystems as well as algorithms
from the book by Cody and Waite [1].

One can construct matrices of fixed point numbers and use the functions diag,

tril, triu, trace, lu, inv. The lu function is a straightforward implementation
of LU factorization with partial pivoting for dense matrices. It is used by the \
operator and inv.

Of course, the problem of fixed point arithmetic is the limited range of the num-
bers that can be represented. It was used in the early days of digital computers but
the algorithm designers had to be very careful with the scaling of their problems. For
instance, if we take nbits=16, the smallest number is only 2−16 = 1.5259 10−5.

∗(gerard.meurant@gmail.com) started in Paris, April 2020, version June 9, 2020

1

2 G. MEURANT

If we take 200 random numbers, convert them to fixed point with nbits=16 and
compute relative difference between the given numbers and the double precision value
of the corresponding fixed point numbers we obtain Figure 2.1. The random numbers
were between 3 and −3.

0 20 40 60 80 100 120 140 160 180 200
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 2.1. fixp, relative difference, nbits = 16, random numbers in [-3, 3]

The result is as good as we can hope. But, if we take random numbers multiplied
by 10−4, w obtain Figure 2.2 with large relative differences.

0 20 40 60 80 100 120 140 160 180 200
10

-4

10
-3

10
-2

10
-1

10
0

Fig. 2.2. fixp, relative difference, nbits = 16, random numbers in 10−4 × [−3, 3]

Let us now multiply two sets of random numbers converted to fixed point and
compare to the result of the double precision multiplication. With numbers in the
range [−3, 3] we obtain Figure 2.3. But, if the numbers of one of the sets are in
10−4 × [−3, 3] we obtain large relative differences as it can be seen in Figure 2.4.

Hence, as it is known, in problems with data of different magnitudes, it is difficult
to use fixed point arithmetic.

Computer arithmetic 3

0 20 40 60 80 100 120 140 160 180 200
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 2.3. fixp, multiplication relative difference, nbits = 16, random numbers in [−3, 3]

0 20 40 60 80 100 120 140 160 180 200
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Fig. 2.4. fixp, multiplication relative difference, nbits = 16, x random numbers in [−3, 3], y
random numbers in 10−4 × [−3, 3]

4 G. MEURANT

The functions available in class fixp are described in Tables 2.1 and 2.2.

Table 2.1
Functions available in the class fixp

name

abs absolute value of a binary fixed point number
acos componentwise inverse cosine

acos binf inverse cosine function
acot componentwise inverse tangent

acot binf inverse cotangent function
add binf addition of two fixed point binary numbers

add binfm addition of two matrices of binary fixed point numbers
asin componentwise inverse sine

asin binf inverse sine function
atan componentwise inverse tangent

atan binf inverse tangent function
bin2frac converts the input array to a fractional part
binary print the fields of a fixed point number

binf2dec converts a fixed point binary number to a float
binf2decm binary fixed point to double matrix

binf inv Newton computation of binary fixed point 1/d by Newton iteration
ceil binf ceil for a binary fixed point number

cos componentwise cosine
cos binf cos function

cot componentwise cotangent
cot binf cotangent function

ctranspose transpose of a (real) binary fixed point matrix
dec2binf converts a double float to binary fixed point

dec2binfm double to binary fixed point matrix
diag diagonal function for a binary fixed point matrix or vector
disp displays the binary fixed point as a double

display for fixp
div binf division of binary fixed point numbers diva / divb

div binfm componentwise division of two matrices
div binfms division of a matrix by a scalar

dot binf dot product of two binary fixed point vectors
double double precision value of binary fixed point bin

exp componentwise exponential
exp binf exponential

find min max find the first and last significand bits in bin
fix binf fix for binary fixed point numbers

fixp constructor for the class fixp, binary fixed point arithmetic
float2binfb conversion of a float (double) to fixed point binary
floor binf floor for a binary fixed point number

inv inverse of a binary fixed point matrix
iszero binf returns true (1) if the fixed point binary number is zero

ldivide binb . bina
log componentwise natural logarithm

log10 componentwise base 10 logarithm
log binf natural logarithm

lu triangular factorization, fixed point numbers
lu solver binf linear solve for binary fixed point
mat prod binf matrix-matrix product

minus subtraction of two binary fixed point numbers or matrices
minus binf subtraction of two fixed point binary numbers, bina - binb

minus binfm subtraction of two matrices of binary fixed point numbers
mldivide division of two binary fixed point numbers or matrices
mpower bina to the power p for fixed point numbers
mrdivide division of two binary fixed point numbers or matrices
mtimes product of two binary fixed point numbers or matrices

Computer arithmetic 5

Table 2.2
Functions available in the class fixp (continued)

name

mul binf product of two fixed point numbers
mul binfm componentwise multiplication of two matrices
mul binfo outer product of two vectors

mul binfsm componentwise multiplication of a scalar and a matrix
norm Frobenius norm of a binary fixed point matrix
plus addition of two binary fixed point numbers or matrices
pow2 power of 2 of a number
power bina to the power p for fixed point numbers

printfix print the fields of binary fixed point
prod product of vector or matrix binary fixed point numbers

rdivide componentwise division of two binary fixed point numbers or matrices
round2int round the binary fixed point number

sin componentwise sine
sin binf sine function

sqrt componentwise square root
sqrt binf square root of a binary fixed point number
subsasgn for binary fixed point
subsref for binary fixed point

sum sum of vector or matrix binary fixed point numbers
tan componentwise tangent

tan binf tangent function
times componentwise product of two binary fixed point numbers or matrices
trace trace of a binary fixed point matrix
tril lower triangular part of a binary fixed point matrix
triu upper triangular part of a binary fixed point matrix

uminus change signs of bina
uplus do not change signs of bina

6 G. MEURANT

3. The floatp class. This class implements floating point arithmetic with vari-
able precision. The numbers are defined as

x = s (I.F)2E ,

where s is the sign, I and F are binary numbers and E is the exponent. The length
of the fractional part (or significand) F is nbits. We normalized the numbers, so I is
always equal to 1 except if x = 0.

A number is coded as a structure with fields,

′sign′, sign, ′I ′, I, ′F ′, F, ′E′, E, ′float′, x, ′nbits′, nbits,

where sig is 0 (resp. 1) for positive (resp. negative) numbers, I and F are binary
numbers that are arrays with entries 0 or 1 with I equal to 1 or 0 because we normalize
the numbers. Generally, I is known as the hidden bit and, in IEEE arithmetic, it is
not stored. But, here we explicitly store it because this makes the coding easier.
The exponent E is the double precision value of a signed integer and x is the double
precision floating point value of the number. Representing the exponent in this way
simplifies the coding. The values of the exponent can also be limited to simulate a
given number of bits. Since the inputs of our conversion functions are double precision
IEEE numbers, we cannot represent numbers larger than 10308, but we can vary the
number of bits in the fractional part of our floating point numbers. The smallest
positive representable number is 2−1074 = 4.9407 10−324 which is the smallest IEEE
double precision subnormal number.

A floating point number (or matrix) is created by f = floatp(x,nbits), where
x is a scalar or matrix.

We implemented the same functions as before that is, sqrt, log, log10, exp,

sin, cos, tan, cot, asin, acos, atan, acot, diag, tril, triu, trace, lu,

inv.

We also offer the possibility to change the rounding mode. The rounding mode
is initialized by the function f d init round(rounding) as for the class fixp. Even
though the exponent is stored as a double, the function f d init bits expo(n) simu-
lates the limitation of the exponent to n bits. When the computed exponent becomes
larger than e = 2n−1 − 1 the number becomes infinite and if the exponent is smaller
than −(e − 1) the number is flushed to zero. If n = 0, which is the default, the
exponent is not limited. Using this function, we can, for instance, simulate half pre-
cision arithmetic fp16. We have to use f d init bits expo(5) and nbits=10. With
f d init bits expo(8) and nbits=7, we can simulate bfloat16 arithmetic.

The functions available in class floatp are described in Tables 3.1 and 3.2.

Computer arithmetic 7

Table 3.1
Functions available in the class floatp

name

abs absolute value of a binary floating point number
acos componentwise inverse cosine

acos binfl inverse cosine function
acot componentwise inverse tangent

acot binfl inverse cotangent function
add binf addition of two fixed point binary numbers
add binfl addition of two binary floating point numbers

add binflm addition of two matrices of binary floating point numbers
asin componentwise inverse sine

asin binfl inverse sine function
atan componentwise inverse tangent

atan binfl inverse tangent function
bin2frac converts the input array to a fractional part
binary outputs the fields of a floating point number

binfl2dec binary floating point to double
binfl2decm binary floating point to double matrix

binfl inv Newton computation of binary fixed point 1/d by Newton iteration
ceil ceil for a binary floating point number

conv binfl conversion to a floating point number with a different value of nbits
cos componentwise cosine

cos binfl cos function
cot componentwise cotangent

cot binfl cotangent function
ctranspose transpose of a (real) binary floating point matrix

diag diagonal function for a binary floating point matrix or vector
disp displays the binary floating point as a double

display display for a binary floating point number
div binfl division of binary floating point numbers diva / divb

div binflm componentwise division of two matrices of binary floating point numbers
div binflms division of a matrix by a scalar

dot binfl dot product of two binary floating point vectors
double double precision value of a binary floating point

exp componentwise exponential
exp binfl exponential of a binary floating point number

find min max finds the first and last significand bits
fix fix for binary floating point numbers

floatp constructor for the class floatp, binary floating point arithmetic
floatp2quire converts a floating point number to a quire structure

floor floor for a binary floating point number
inv inverse of a binary floating point matrix

iszero binf returns true (1) if the floating point binary number is zero
ldivide binb . bina

log componentwise natural logarithm
log10 componentwise base 10 logarithm

log binfl natural logarithm of a floating point number
lu triangular factorization

lu solver binfl linear solve for binary floating point
mat prod binfl floating point matrix-matrix product

minus subtraction of two binary floating point numbers or matrices
minus binf subtraction of two fixed point binary numbers
minus binfl subtraction of two binary floating point numbers

minus binflm subtraction of two matrices of binary floating point numbers
mldivide division of two binary floating point numbers or matrices
mpower bina to the power p for floating point numbers
mrdivide division of two binary floating point numbers or matrices
mtimes product of two binary floating point numbers or matrices

8 G. MEURANT

Table 3.2
Functions available in the class floatp (continued)

name

mul binf product of two fixed point numbers
mul binfl multiplication of two binary floating point numbers

mul binflm componentwise multiplication of two matrices
mul binflo outer product of two vectors

mul binflsm scalar-matrix product
norm Frobenius norm of a binary floating point matrix
plus addition of two binary floating point numbers or matrices
pow2 power of 2 in a number
power bina to the power p for floating point numbers

printfloatp prints the fields of binary floating point
prod product of vector or matrix binary floating point numbers

rdivide componentwise division of two binary floating point numbers or matrices
right shift binfl shift to the right by k places

round2int rounds the binary floating point number
sin componentwise sine

sin binfl sine function
sqrt componentwise square root

sqrt binfl square root of a binary floating point number
subsasgn for binary floating point
subsref for binary floating point

sum sum of vector or matrix binary floating point numbers
tan componentwise tangent

tan binfl tangent function
times componentwise product of two binary floating point numbers or matrices
trace trace of a binary floating point matrix
tril lower triangular part of a binary floating point matrix
triu upper triangular part of a binary floating point matrix

uminus change signs
uplus does not change signs

Computer arithmetic 9

Since there is a large overhead due to the class operator overloading, we also give
access in the directory f d floatp to the following functions that operate only on
structures and not on objects of the class floatp. Moreover, some of these functions
are used by the class.

Table 3.3
Functions available in f d floatp

name

d float dec2floatp converts a double x to binary floating point format
f d abs absolute value of a binary floating point number
f d add addition of two binary floating point numbers

f d add bin carry addition of two unsigned binary strings with a carry in
f d add bin one carry add 1 to a binary number

f d add binfp addition of two fixed point binary numbers
f d add floatp2quire addition of a floatp and a quire towards a quire

f d add quire addition of two quires
f d addbin addition of two binary strings
f d addm addition of two matrices of binary floating point numbers

f d bin2dec converts the binary input array to a decimal (double) number
f d bin2frac converts the input array to a double fractional part
f d bin2str binary to string
f d binary prints the fields of a floating point structure
f d dec2bin converts a decimal to binary

f d dec2floatp double to binary floating point matrix
f d dec2quire conversion of a float (double) to a quire

f d diag diagonal function for a binary floating point matrix or vector
f d div division of binary floating point numbers

f d divm componentwise division of two matrices
f d divms division of a matrix by a scalar

f d dot dot product of two binary floating point vectors
f d dot prod dot product using a quire
f d double decimal value of a floating point number

f d eye identity matrix of binary floating point numbers
f d find min max find the first and last significand bits

f d floatp2dec binary floating point to double matrix
f d floatp2quire converts a floatp structure to a quire

f d frac2bin converts a fractional part to binary
f d init bits expo initializes the number of bits of the exponents

f d init floatp construction a floatp structure from its elements
f d init round initializes the rounding mode

f d inv inverse of a binary floating point matrix
f d inv Newton computation of binary floating point 1/d by Newton iteration

f d isge bin compares two binary numbers
f d iszero returns true (1) if the floating point binary number is zero

f d lu triangular factorization
f d lu solver linear solver for binary floating point
f d mat prod floating point matrix-matrix product

f d mat prod b floating point matrix-matrix product
f d minus subtraction of two binary floating point numbers

f d minus bin subtraction of two binary strings
f d minus binf subtraction of two fixed point binary numbers

f d minus binfp subtraction of two fixed point binary numbers
f d minus quire subtraction of two quires

f d minusm subtraction of two matrices of binary floating point numbers

Using these functions makes the programming less straightforward but more ef-
ficient in terms of computing time. For instance, to code a*b+c*d we have to write
f d add binfl(f d mul binfl(a,b), f d mul binfl(c,d)).

10 G. MEURANT

Table 3.4
Functions available in f d floatp (continued)

name

f d mul multiplication of two binary floating point numbers
f d mul binf product of two fixed point numbers

f d mulm componentwise multiplication of two matrices
f d mulo outer product of two vectors

f d mulsm scalar-matrix product
f d printfloatp prints the fields of a binary floating point

f d prod product of vector or matrix binary floating point numbers
f d quire2dec converts a quire to decimal

f d quire2floatp converts a quire structure to a floatp structure
f d right shift shift to the right by k places
f d round bin round the binary number

f d sqrt square root of a binary floating point number
f d sum sum of vector or matrix binary floating point numbers
f d tril lower triangular part of a binary floating point matrix
f d triu upper triangular part of a binary floating point matrix

fix binf2dec converts a fixed point binary number (structure) to a float (double)
fix dec2binf converts a double float to binary fixed point

fix dec2binfm double to binary fixed point matrix
fix float2binfb conversion of a float (double) to fixed point binary

floatp eye identity matrix of binary floating point numbers
print round mode prints the rounding mode

If we convert random numbers of order 1 to floatp, we obtain Figure 3.1 which
is not much different from Figure 2.1. But, since we now have an exponent for our
numbers, the result for random numbers in 10−4 × [−3, 3] (see Figure 3.2) is much
better than with fixp. The multiplication of two sets of random numbers gives what
can be expected; see Figure 3.3.

0 20 40 60 80 100 120 140 160 180 200
10

-8

10
-7

10
-6

10
-5

Fig. 3.1. floatp, relative difference, nbits = 16, random numbers in [-3, 3]

As an exemple of the use of the functions in f d floatp, the following code
implements the Conjugate Gradient (CG) method for solving a linear system Ax = b
for a symmetric positive definite matrix A.

Computer arithmetic 11

0 20 40 60 80 100 120 140 160 180 200
10

-8

10
-7

10
-6

10
-5

Fig. 3.2. floatp, relative difference, nbits = 16, random numbers in 10−4 × [−3, 3]

0 20 40 60 80 100 120 140 160 180 200
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

Fig. 3.3. floatp, multiplication relative difference, nbits = 16, x random numbers in [−3, 3], y
random numbers in 10−4 × [−3, 3]

12 G. MEURANT

function [x,resn,resnt,errn,errnl2,nit]=cg f d floatp A(A,b,x0,xex,...

epsi,nitmax,nbits,rounding,expo);

%CG F D FLOATP A CG for a matrix A of floating point binary numbers

‘% uses functions of f d floatp

% A = matrix

% b = rhs, x0 initial vector

% xex = "exact" solution

% epsi = stopping criterion threshold

% nitmax = number of iterations

% nbits = size of the significand (fractional part)

% rounding = rounding mode (1,...,6)

% expo = number of bits of the exponent, if = 0 no limitation

%

% the inputs are double precision numbers

%

rng(’default’) % for stochastic rounding

if nargin < 9

expo = 0;

end % if

f d init bits expo(expo);

if nargin < 8

rounding = 1;

end % if

f d init round(rounding); % initialize the rounding mode

% convert inputs to binary floating point

bA = f d dec2floatp(A,nbits);

bb = f d dec2floatp(b,nbits);

bx = f d dec2floatp(x0,nbits);

xec = f d dec2floatp(xex,nbits); % "exact solution"

bAx = f d mat prod(A,bA,bx);

r = f d minusm(bb,bAx); % initial residual vector

errn = zeros(1,nitmax+1); % double precision values

errnl2 = zeros(1,nitmax+1);

resn = zeros(1,nitmax+1);

resnt = zeros(1,nitmax+1);

err = f d minusm(bx,xec); % initial error

bAe = f d mat prod(A,bA,err);

er = f d dot(err,bAe);

errn(1) = sqrt(f d floatp2dec(er));

er = f d dot(err,err);

errnl2(1) = sqrt(f d floatp2dec(er));

res = f d dot(r,r);

resn(1) = sqrt(f d floatp2dec(res));

resnt(1) = resn(1);

nr = resn(1);

p = r;

rtr = res;

dbb = f d dot(bb,bb);

nb = sqrt(f d floatp2dec(dbb));

Computer arithmetic 13

nit = 0;

%

while (nit < nitmax) && (nr > epsi * nb)

nit = nit + 1;

Ap = f d mat prod(A,bA,p); % Ap = A * p

pAp = f d dot(p,Ap); % pAp = p’ * Ap

alp = f d div(rtr,pAp); % alp = rtr / pAp

bx = f d addm(bx,f d mulsm(alp,p)); % x = x + alp * p

r = f d minusm(r,f d mulsm(alp,Ap)); % r = r - alp * Ap

rk = f d dot(r,r); % rk = r’ * r

%

err = f d minusm(bx,xec); % error

bAe = f d mat prod(A,bA,err);

er = f d dot(err,bAe);

errn(nit+1) = sqrt(f d floatp2dec(er)); % norm of the error

er = f d dot(err,err);

errnl2(nit+1) = sqrt(f d floatp2dec(er));

%

res = f d dot(r,r);

resn(nit+1) = sqrt(f d floatp2dec(res)); % norm of the computed residual

bAx = f d mat prod(A,bA,bx);

rt = f d minusm(bb,bAx);

res = f d dot(rt,rt);

resnt(nit+1) = sqrt(f d floatp2dec(res)); % norm of the true residual

%

bet = f d div(rk,rtr); % bet = rk / rtr

rtr = rk;

p = f d addm(r,f d mulsm(bet,p)); % p = r + bet * p

end % while

x = f d floatp2dec(bx);

14 G. MEURANT

4. The posit class. As we said above posits were proposed as an alternative to
the IEEE floating point arithmetic standard. A posit number depends on two given
numbers nbits, the length of the binary number and es, the number of bits for the
exponent. It is defined as

x = s (I.F)uk 2m,

u is equal to 22
es

, the binary number k is known as the regime and the binary number
m of length es is the exponent. The lengthes of F and k are not determined a priori.
The binary number k encodes a signed integer in the following way. A positive integer
p is coded as 1 · · · 10 with p+1 leading ones, a zero integer is 10 and a negative integer
−p is 0 · · · 01 with p leading zeros. The total exponent of 2 is k 2es + m. The length
of the regime depends on the value of x and, therefore, the length of F is what is left
that is, nbits minus a number which is the length of the regime plus es + 1 (1 for the
sign) since the hidden bit I is not stored.

In our class a posit number is coded as a structure with fields,

′sign′, sign, ′regime′, reg, ′exponent′, expo, ′mantissa′,mantiss,′ nbits′, nbits,
′es′, es, ′float′, x.

The basic operations +,−, ∗ are done by computing the total exponent and using
what we have already done for fixp and floatp, even though the fractional part
does not have always the same length. The division is done with a multiplication
with the inverse of the divisor obtained by Newton iteration.

A posit number (or matrix) is created by p = posit(x,nbits), where x is a scalar
or matrix. We use the posit standard corresponding to nbits. Note that nbits does
not have the same signification as for fixp or floatp. Here, it is the total number
of bits of the posit number whence before it was the number of bits in the mantissa.
The rounding mode is initialized by the function p init round(rounding).

The functions available in class posit are described in Tables 4.1 and 4.2.

Computer arithmetic 15

Table 4.1
Functions available in the class posit

name

abs absolute value of a posit
acos componentwise inverse cosine

acos posit inverse cosine function for a posit number
acot componentwise inverse tangent

acot posit inverse cotangent function for a posit number
add binfp addition of two fixed point binary numbers
add posit addition of two posit numbers

add posit quire addition of a posit and a quire towards a quire
add positm addition of two posit matrices

asin componentwise inverse sine
asin posit inverse sine function for a posit number

atan componentwise inverse tangent
atan posit inverse tangent function for a posit number

axpyqq axpy palp * pa + pb with quires
binary prints the fields of a posit as binary digits

ceil ceil for a posit number
cos componentwise cosine

cos posit cos function for a posit number
cot componentwise cotangent

cot posit cotangent function for a posit number
ctranspose transpose of a (real) posit matrix

diag diagonal function for a posit matrix or vector
disp displays a posit as a double

display displays the double value of a posit
div posit division of posits

div positm componentwise division
div positms division of a matrix by a scalar

dot posit dot product of two posit vectors
dot prod posit dot product of two posit vectors using a quire
dot prod positq dot product of two posit vectors using a quire

double double precision value of a posit
exp componentwise exponential

exp posit exponential of a posit number
fix fix for posit numbers

floor floor for a posit number
inv inverse of a posit matrix

iszero binfp returns true (1) if the floating point binary number is zero
iszero posit returns true (1) if the posit number is zero

ldivide binb . bina
log componentwise natural logarithm

log10 componentwise base 10 logarithm
log posit natural logarithm of a posit number

lu triangular factorization
lu solver posit linear solver for posit linear systems
mat prod posit matrix-matrix product for posits

minus subtraction of two posit numbers or matrices
minus binfp subtraction of two fixed point binary numbers
minus posit subtraction of two posits

minus positm subtraction of two posit matrices
mldivide division of two posit numbers or matrices
mpower bina to the power p for posit numbers
mrdivide division of two posit numbers or matrices
mtimes product of two posit numbers or matrices

16 G. MEURANT

Table 4.2
Functions available in the class posit (continued)

name

mul binfp product of two mantissas of posits
mul posit multiplication of two posit numbers

mul positm componentwise multiplication of two posit matrices
mul posito outer product of two vectors of posit numbers

norm Frobenius norm of a binary floating point matrix
plus addition of two posit numbers or matrices
posit constructor for the class posit, posit arithmetic

posit2bin converts a posit to a binary string
posit2dec converts posit to decimal (double floating point)

posit2decm converts a posit matrix to decimal (double floating point)
posit2floatp converts a posit to a floatp structure
posit2quire converts a posit to a quire structure
posit2struct converts a posit to a structure

posit inv Newton computation of posit 1/d by Newton iteration
power bina to the power p for posit numbers

printposit prints the fields of a posit
prod product of vector or matrix of posit numbers

rdivide componentwise division of two posit numbers or matrices
right shift binfp shift to the right by k places

round2int round the posit
sin componentwise sine

sin posit sine function for a posit number
sqrt square root of a posit number or matrix

sqrt posit square root of a posit number
subsasgn for posits
subsref for posits

sum sum of vector or matrix posit numbers
sum abs posit sum of the absolute values of the components of a vector using a quire

sum posit sum of the components of a posit vector using a quire
tan componentwise tangent

tan posit tangent function for a posit number
times componentwise product of two posit numbers or matrices
trace trace of a posit matrix
tril lower triangular part of a posit matrix
triu upper triangular part of a posit matrix

uminus change signs
uplus do not change signs

Computer arithmetic 17

As before there is a large overhead due to the class operator overloading and we
give access to the following functions in the directory p posit that operate only on
structures. Moreover, some of these functions are used by the class.

Table 4.3
Functions available in p posit

name

p abs absolute value of a posit
p add bin carry addition of two unsigned binary strings with a carry in

p add bin one carry add 1 to a binary number
p add binfp addition of two fixed point binary numbers
p add posit addition of two posit structures

p add positm addition of two posit matrices
p addbin addition of two binary strings

p addbinone add 1 to a binary number
p bin2dec converts the input array of 0’s and 1’s to a decimal number
p bin2frac converts the input array to a double fractional part
p bin2str binary to string
p binary prints the fields of a posit structure
p binshift shift a bit string by n positions, left (right) if positive (negative)
p dec2bin converts a decimal integer to binary

p dec2posit converts a double (matrix) x to a posit structure
p diag diagonal function for a posit matrix or vector structure

p div posit division of posits
p div positm componentwise division
p div positms division of a matrix by a scalar

p dot posit dot product of two posit vectors
p dot prod posit dot product of two posit vector structures using a quire
p dot prod positq dot product of two posit vectors using a quire

p double decimal value of a posit
p eye identity matrix of posit numbers

p find regime expo finds the powers of 2 for a posit
p frac2bin converts a fractional part to binary

p init round initializes the rounding mode
p inv inverse of a binary floating point matrix

p isdiv true if x is divisible by p
p isge bin comparison of binary numbers

p iszero posit returns true (1) if the posit number is zero
p lu triangular factorization

p lu solver linear solver for posits
p mat prod posit posit matrix-matrix product

p mat prod posit b posit matrix-matrix product
p minus bin subtraction of two binary strings

p minus binfp subtraction of two fixed point binary numbers
p minus posit subtraction of two posits

p minus positm subtraction of two posit matrices

“Standard” values for nbits and es are (8, 0), (16, 1), (32, 2), (64, 3) and (128, 7).
We will speak of posit8, posit16, and so on. The only exceptional value for a posit
is the binary number 10 · · · 0 which we denote as Inf.

Posits were designed to have a good accuracy for numbers around 1. Let us first
illustrate that with posit8. Figure 4.1 shows the double precision IEEE numbers in
blue and the corresponding posit numbers in red. The double precision numbers x
are logarithmically spaced between 10−2 and 102. The x-axis shows the log10 of x, so
0 represent x = 1. We see that the numbers around 1 are well represented but when
we move away from 1 it becomes worse and worse.

18 G. MEURANT

Table 4.4
Functions available in p posit (continued)

name

p mul binfp product of two mantissas of posits
p mul posit multiplication of two posit numbers

p mul positm componentwise multiplication of two posit matrices
p mul posito outer product of two vectors of posit numbers

p mul positsm scalar-matrix product for posits
p posit2bin converts a posit to a binary string
p posit2dec converts a posit scalar or matrix to decimal

p posit2decm converts a posit matrix to decimal
p posit2floatp converts a posit to a floatp structure
p posit2quire converts a posit to a quire structure

p posit inv Newton computation of posit 1/d by Newton iteration
p print round mode prints the current rounding mode

p printposit prints the fields of a posit structure
p regrunlength returns the regime bits run length

p right shift binfp shift to the right by k places
p round bin round the binary number bin

p set posit env standard posits
p setenvposit sets the posit and quire parameters
p struct2posit converts the floating point structure to a posit structure

p tril lower triangular part of a binary floating point matrix
p triu upper triangular part of a binary floating point matrix

posit eye identity matrix of posit numbers
q add posit quire addition of a posit and a quire towards a quire

q add quire addition of two quires
q dec2quire conversion of a float (double) to a quire

q minus quire subtraction of two quires
q mul quire product of two quire structures

q posit2quire converts a posit to a quire structure
q quire2dec converts a quire to double

q quire2posit converts a quire structure to a posit structure
q set quire2zero returns a zero quire

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
10

-2

10
-1

10
0

10
1

10
2

Fig. 4.1. posit8, comparison of x and posit(x, 8)

Computer arithmetic 19

Figure 4.2 shows what happens for posit16. The relative difference between x
and posit(x, 16) is shown in Figure 4.3.

-8 -6 -4 -2 0 2 4 6 8
10

-10

10
-5

10
0

10
5

10
10

Fig. 4.2. posit16, comparison of x and posit(x, 16)

-8 -6 -4 -2 0 2 4 6 8
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 4.3. posit16, relative difference between x and posit(x, 16)

Figure 4.4 shows the relative differences between the double precision x and its
representations with posit16, fp16, the IEEE half precision format [6] defined in
2008 and bfloat16, the half precision format proposed by Google and Intel. We
use rounding to nearest. We observe that around x = 1 posit16 gives a better
representation than fp16. Out of [10−2, 102] fp16 yields a better accuracy than
posit16. For numbers larger than 105 fp16 returns Inf because there are not enough
bits for the exponent. bfloat16 gives the worst result in [10−4, 104] because there is
only 7 bits for the mantissa, instead of 10 for fp16. But, since 8 bits are available for
the exponent, it yields better results outside of [10−4, 104].

Figure 4.5 displays the relative difference for 200 random numbers in [−3, 3] with
posit16. If the random numbers are multiplied by 104 the relative differences are
increasing; see Figure 4.6.

20 G. MEURANT

-8 -6 -4 -2 0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

100

posit16

fp16

bfloat16

Fig. 4.4. Relative difference between x and posit(x, 16), fp16(x) and bfloat16(x)

0 20 40 60 80 100 120 140 160 180 200
10

-6

10
-5

10
-4

10
-3

10
-2

Fig. 4.5. posit16, relative difference for random numbers in [−3, 3]

0 20 40 60 80 100 120 140 160 180 200
10

-5

10
-4

10
-3

10
-2

10
-1

Fig. 4.6. posit16, relative difference for random numbers in 104 × [−3, 3]

Computer arithmetic 21

If we compute with numbers around 1, posits may provide a better accuracy than
the IEEE standard. For instance, let us consider x = 1.1. In the IEEE half precision
format fp16 we have 10 bits for the mantissa since 5 bits are used for the exponent
and one bit for the sign. With posit16, we obtain

sign = [0], regime = [10], exponent = [0], mantissa = [000110011010].

We see that 12 bits are used for the mantissa that is, two more bits than with fp16.
The relative difference with the exact value is 8.88 10−5. However, if x = 1.1 104, the
posit is

sign = [0], regime = [11111110], exponent = [1], mantissa = [010110].

The regime is using 8 bits and there are only 6 bits left for the mantissa. The decoded
regime gives us 6 and u is equal to 4 since es=1. Hence, the multiplying factor is
46× 2 = 8192. The mantissa with the hidden bit gives 1.343750. Multiplying the two
values we obtain 11008 and a relative difference of 7.28 10−4, ten times larger than
for x = 1.1.

If we would have taken x = 1.1 105, only 4 bits would have been available for the
mantissa since 10 bits are used for the regime. So, we can expect a good representation
of real numbers with posits only when the number of bits used for the regime is small.
For very large or very small positive numbers almost all the bits are used for the
regime and there is no bits left for the mantissa which means that posits can then
only represent powers of 2.

Figure 4.7 shows the relative differences between the double precision x and its
representations with posit32 and fp32, the IEEE single precision format. With 32
bits, posits are worse roughly out of [10−8, 108].

-15 -10 -5 0 5 10 15
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

posit32

fp32

Fig. 4.7. Relative difference between x and posit(x, 32), fp32(x)

Figure 4.8 shows the relative difference of the result of the multiplication of two
sets of 200 random numbers converted to posit16 with the double precision result.
The random numbers were in a small interval around zero. If one of the sets is
multiplied by 105, the result is much worse as we can see in Figure 4.9.

22 G. MEURANT

0 20 40 60 80 100 120 140 160 180 200
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 4.8. posit16, multiplication relative difference, x and y random numbers in [−3, 3]

0 20 40 60 80 100 120 140 160 180 200
10

-5

10
-4

10
-3

10
-2

10
-1

Fig. 4.9. posit16, multiplication relative difference, x random numbers in [−3, 3], y random
numbers in 105 × [−3, 3]

The proposal for posits also includes a quire, a long fixed point register to accu-
mulate the results of sums (or differences) without rounding. This idea was proposed
earlier by U. Kulisch [9, 8]. If p is a posit and q is the quire we must implement the
following operations: p → q, q → p, p± q → q and (pa ∗ pb)± q → q. This allows to
do a series of sums or differences with only one rounding at the end when the content
of the quire is converted to a posit. Let nq = nbits2/4− nbits/2. The quire has four
different binary zones, the sign bit s, C, I and F ,

q = s [C, I]. F.

I and F have length nq and C, designed to absorb the overflows of I has length
nc = nbits − 1. F stores the mantissa. We implemented a quire class. Some
operations, like the sum of a posit to a quire, are also implemented in the posit class
using the conversion of the posit to a temporary scratch quire before doing the addition
to the quire. This allows to implement the function dot prod posit(pa,pb) which

Computer arithmetic 23

does the dot product of two posit vectors with only one rounding at the end. Note
that the length of the quire is large, 128 bits for nbits = 16, 512 bits for nbits = 32
and 2048 bits for nbits = 64.

Figure 4.10 shows the relative difference with the double precision dot product
of 100 random vectors of length 50. Let px and py be the two posit vectors. The
red curve is obtained by computing px’ * py only with posits and the blue curve
corresponds to dot prod posit(px,py) using the quire which, in most cases, yields
a more accurate result. Note that we may loose some accuracy when converting back
to posits at the end of the sum.

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-5

10
-4

10
-3

10
-2

Fig. 4.10. posit16, relative difference for dot products

Table 4.5 lists the functions in the class quire.

Table 4.5
Functions available in the class quire

name

add quire addition of two quires
disp displays a quire as a double

display displays the quire as a double
double double precision value of a quire
minus subtraction of two quires

minus quire subtraction of two quires
mul quire product of two quires

plus addition of two quires
quire constructor for the class quire, posit arithmetic

quire2dec converts a quire to decimal
quire2posit converts a quire to a posit

set quire2zero returns a zero quire
uminus change signs
uplus do not change signs

5. Other possibilities. Another possibility to compute with high precision
arithmetic is to use the vpa function of the Matlab Symbolic Math Toolbox but not
everybody has access to this toolbox. As a second argument, one can give digits,
the number of significant decimal digits wanted. But, this does not allow to simulate

24 G. MEURANT

low precision arithmetic since, for instance, with digits=4, you can have numbers
like 0.00003333, the last four “3” being the four significant digits.

For 8 bits or 16 bits floating point arithmetic one can use the classes fp8 and
fp16 developed by Cleve Moler [10]. Another possibility is to use the chop function
by N.J. Higham and S. Pranesh [4]. It allows to simulate fp16 and bfloat16 as well
as choosing the rounding mode. We encapsulated this function in a class named chop

but, as noted in [4], it is much slower than directly using the function.
Figure 5.1 shows the relative difference of the result of the multiplication of two

sets of 200 random numbers converted to fp16 with the double precision result.

0 20 40 60 80 100 120 140 160 180 200
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 5.1. chop for half-precision fp16, multiplication relative difference, x and y random num-
bers in [−3, 3]

REFERENCES

[1] W.J. Cody and W. Waite, Software manual for the elementary functions, Prentice-Hall,
(1980).

[2] J. Gustafson, Posit Arithmetic, (2017), https://posithub.org/docs/Posits4.pdf.
[3] J. Gustafson and I. Yonemoto, Beating floating point at its own game: Posit arithmetic,

Supercomput. Front. Innov., v 4, n 2 (2017), pp. 71–86.
[4] N.J. Higham and S. Pranesh, Simulating low-precision floating point arithmetic, SIAM

J. Sci. Comput., v 41 n 5 (2019), pp. C585-C602.
[5] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, IEEE Com-

puter Society, New York, (1985).
[6] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std 754-

1985), IEEE Computer Society, New York, (2008).
[7] Intel Corporation, BFLOAT16—Hardware numerics definition, white paper, document

number 338302-001US, (2018).
[8] R. Kirchner and U.W. Kulisch, Arithmetic for vector processors, in Reliability in Computing,

R.E. Moore Ed., Elsevier, (1988), pp. 3–41.
[9] U.W. Kulisch and W.L. Miranker, The arithmetic of the digital computer: a new approach,

SIAM Review, v 28 n 1 (1986), pp. 1–40.
[10] C.B. Moler, Half Precision16-Bit Floating Point Arithmetic posted May 8, 2017, http://

blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic.

