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Abstract. We provide formulas for the norm of the error when solving non symmetric linear
systems with the full orthogonalization method (FOM) and the generalized minimum residual method
(GMRES) as well as relations between the error norm and the residual norm. From these formulas
we are able to compute estimates of the norm of the error during the iterations. Since stopping
criteria based on the norm of the residual may sometimes be misleading, such estimates could lead
to a more robust way to stop the iterations. Numerical experiments show that the proposed norm
estimates work nicely on difficult linear systems.

1. Introduction. We consider solving a linear system

Ax = b

where A is a non singular real matrix of order n with the full orthogonalization method
(FOM) and the generalized minimum residual method (GMRES) which are Krylov
methods based on the Arnoldi orthogonalization process; see Saad [24], [25] and Saad
and Schultz [26]. The initial residual is denoted as r0 = b − Ax0 where x0 is the
starting vector. The Krylov subspace of order k based on A and r0 which is denoted
as Kk(r0, A) is span{r0, Ar0, . . . , Ak−1r0}. The approximate solution xk at iteration
k is sought as xk ∈ x0+Kk(r0, A) such that the residual vector rk = b−Axk satisfies
an orthogonality condition with the Krylov subspace. The orthogonality condition is
different in FOM and GMRES.

There are many papers and books which give expressions or bounds for the norms
of the residual rk; see for instance [26], [6], [8], [23], [14], [28]. In most implementations
of FOM or GMRES the iterations are stopped using the l2 norm of the residual. We
will see that for some numerical examples this can be misleading. The iterations may
be stopped too soon or too late giving an approximate solution far from the exact one
or being more costly to compute than needed. Another stopping criterion is based on
the backward error; see [1]. Curiously enough there are not many papers considering
the error norm with the exception of [17]. The fact that the residual norm can be
misleading for stopping the iterations was already pointed out when A is symmetric
by Hestenes and Stiefel in their seminal paper on the conjugate gradient method [15],
p. 416.

The aim of the present paper is to derive formulas for the l2 norm of the error
vectors εk = x− xk in FOM and GMRES. Of course, these expressions involve some
terms which are not directly computable at iteration k. Nevertheless we will use these
exact formulas to compute estimates of the norms of the errors during the FOM or
GMRES iterations, a few iterations before the current one. This program has already
been achieved for the conjugate gradient (CG) algorithm and the A-norm of the error
when the matrix A is symmetric and positive definite in [12], [18] and [19] and for
the l2 norm of the error in [20]; for a summary see also [21] and [11]. In [27] it was
shown that these techniques work also for CG in finite precision arithmetic. This is
an important point for their reliable use in practical computations. Even though we
do not consider rounding errors, the present paper can be seen as an extension of
these ideas to the nonsymmetric case since when A is symmetric FOM reduces to CG
and GMRES to MINRES.
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The contents of the paper are as follows. Section 2 recalls the definitions of FOM
and GMRES proposed by Saad [25] and Saad and Schultz [26]. Section 3 gives exact
expressions for the l2 norm of the error in FOM. These formulas use entries of the
inverses of the Hessenberg matrices which are progressively constructed in the Arnoldi
process [2]. Throughout the paper we will assume that all these square Hessenberg
matrices are non singular. This corresponds to the fact that all the FOM iterates
exist and GMRES does not stagnate. In section 4 we give alternate expressions for
the norms of the errors to simplify them and above all to obtain expressions which
are more amenable to computations in finite precision arithmetic. In section 5 we also
relate the formulas for the norm of the error to the norm of the residual. Section 6
uses the formulas of section 4 to estimate the error norm during the FOM iterates and
gives numerical examples which show that estimating the norm of the error can give a
more reliable stopping criterion than using the residual norm. Relations between the
norms of the residuals in FOM and GMRES have been studied previously in [6] and
[8]; see also [9], [10]. Section 7 studies the relations between the error norms in FOM
and GMRES. From these results section 8 provides formulas for the error norm in
GMRES and relations between the error and residual norms. From these formulas we
show in section 9 how to compute estimates of the error norm in GMRES. Numerical
experiments on the same examples as in section 6 show that the proposed approach
can give good approximations of the error norm. We compare our estimates with the
backward error [1] and also with an error estimate proposed by Brezinski; see [4] and
[5]. Finally section 10 provides some conclusions and perspectives.

Throughout this paper ek denotes the kth column of the identity matrix of dif-
ferent orders.

2. FOM and GMRES. Let Vk be a matrix whose columns are orthonormal
basis vectors vj , j = 1, . . . , k of the Krylov subspace Kk(r0, A). The iterates of FOM
or GMRES are defined as

xk = x0 + Vkz
k.

The basis vectors vj are usually computed recursively using the modified Gram–
Schmidt (MGS) algorithm in the Arnoldi process [2]. The matrix relation for the
matrix Vk is the following:

AVk = VkHk + hk+1,kv
k+1(ek)T ,(2.1)

where Hk is an upper Hessenberg matrix of order k with elements hi,j . Therefore,

Hk =




h1,1 h1,2 · · · · · · h1,k

h2,1 h2,2

...

h3,2
. . .

...
. . . . . .

...
hk,k−1 hk,k




.(2.2)

We also have Hk = V T
k AVk and AVn = VnHn if we assume that the Arnoldi process

does not terminate early; that is, if hk+1,k �= 0 for k = 1, . . . , n− 1.
In FOM, which is an orthogonal residual (OR) method, we ask for the residual

rk = b−Axk to be orthogonal to the Krylov subspace. It gives

(rk)TVk = 0.
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The vector of coordinates zk is obtained by writing

V T
k rk = V T

k (b−Axk) = V T
k (b−Ax0 −AVkz

k) = V T
k r0 − V T

k AVkz
k = 0.

This gives

Hkz
k = V T

k r0 = ‖r0‖V T
k v1 = ‖r0‖e1,(2.3)

since in the Arnoldi process v1 = r0/‖r0‖. The FOM kth iterate xk exist only if Hk

is non singular. The linear system (2.3) is solved using an LU or preferably a QR
factorization of the Hessenberg matrix Hk.

In GMRES the l2 norm of the residual is minimized at each iteration. This gives
the orthogonality condition (rk)TAVk = 0. The matrix relation of equation (2.1) can
also be written as

AVk = Vk+1H
(e)
k ,(2.4)

where H
(e)
k is the (k + 1)× k extended matrix

H
(e)
k =

(
Hk

hk+1,k(ek)T

)
.

The norm of the residual can be written as

‖b−Axk‖ = ‖r0 −AVkz
k‖,

= ‖ ‖r0‖Vk+1e
1 − Vk+1H

(e)
k zk‖,

= ‖ ‖r0‖e1 −H
(e)
k zk‖.

The coordinates zk are computed by solving the least squares problem

min
z

‖ ‖r0‖e1 −H
(e)
k z‖.(2.5)

The theoretical solution is given by the pseudo inverse of H(e)
k ,

zk = ‖r0‖ ([H(e)
k ]TH

(e)
k )−1[H(e)

k ]T e1.

In practical computations the solution of the least squares problem is obtained by
using a QR factorization of H(e)

k using rotations. Contrary to FOM, GMRES cannot
break down as long as hk+1,k �= 0 since the least squares problem can always be solved.
If there exists an index m for which hm+1,m = 0 we have found the solution of the
linear system. Note that the backward stability of MGS-GMRES has been proved in
[22].

3. Formulas for the error norm in FOM. Our first goal in this paper is to
give formulas for the l2 norm of the error εk = x − xk. It is well known that the
relation between the error and the residual is Aεk = rk.

As stated before we assume that the matrices Hk, 1 ≤ k ≤ n are nonsingular and
therefore all the FOM iterates exist. Whatever is the algorithm, FOM or GMRES,
rk = r0 −AVkz

k and we have

‖εk‖2 = (A−1r0, A−1r0)− 2(A−1r0, Vkz
k) + (Vkz

k, Vkz
k).(3.1)
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When we consider FOM we have the following result.
Theorem 3.1. In the FOM method the square of the l2 norm of the error ‖εk‖2

is given by

‖r0‖2[(H−1
n e1,H−1

n e1)− (H−1
k e1,H−1

k e1)+2hk+1,k(H−1
k e1, ek)((H−1

n ek+1)k,H−1
k e1)],

where (H−1
n ek+1)k denotes the k first components of the k+1 st column of the inverse

of Hn.
Proof. In FOM the vector of coefficients zk in the orthogonal basis is given by

Hkz
k = ‖r0‖e1 and then the kth iterate is xk = x0+Vkz

k. The first term on the right
hand side of equation (3.1) is (A−1r0, A−1r0). We write r0 = ‖r0‖v1 = ‖r0‖Vne

1.
Since with our hypothesis AVn = VnHn and Hn = V T

n AVn is assumed to be non
singular, we have VnH

−1
n = A−1Vn. Therefore,

(A−1r0, A−1r0) = ‖r0‖2(H−1
n e1,H−1

n e1).

By orthogonality of the matrices Vk the third term in equation (3.1) is (zk, zk). Hence,

(Vkz
k, Vkz

k) = ‖r0‖2(H−1
k e1,H−1

k e1).

It is more difficult to deal with the middle term (A−1r0, Vkz
k). It seems that the

easiest way is the following. We write

(A−1r0, Vkz
k) = ‖r0‖(e1, V T

k A−TVkz
k),

and we remark that from equation (2.1)

V T
k A−TVk = H−T

k − hk+1,kH
−T
k ek(vk+1)TA−TVk.

Therefore,

(A−1r0, Vkz
k) = ‖r0‖[(H−1

k e1, zk)− hk+1,k(H−1
k e1, ek)(A−1vk+1, Vkz

k)].

We have

(A−1vk+1, Vkz
k) = ‖r0‖(A−1Vne

k+1, VkH
−1
k e1) = ‖r0‖(VnH

−1
n ek+1, VkH

−1
k e1).

But,

(VnH
−1
n ek+1, VkH

−1
k e1) = ((H−1

n ek+1)k,H−1
k e1),

where (H−1
n ek+1)k denotes the vector of the k first components of H−1

n ek+1. Hence,

(A−1r0, Vkz
k) = ‖r0‖2[(H−1

k e1,H−1
k e1)− hk+1,k(H−1

k e1, ek)((H−1
n ek+1)k,H−1

k e1)].

We have a factor −2 in front of this term. The first term on the right hand side can
be regrouped with (zk, zk) to obtain the result.

Note that if the Arnoldi process stops at iteration m with hm+1,m = 0 we can
replace n by m in the previous theorem. We also remark that at iteration k we do
not know Hn, so the norm of the error cannot be directly computed by the formula
of Theorem 3.1. This formula is somehow similar to what was obtained for CG in the
symmetric case in [20], Theorem 2.1.

Finally to close this section we remark that if the matrix A has a positive definite
symmetric part, then (Aεk, εk) defines the square of a norm of the error. It turns out
that, as it is the case for CG (see [21]), one can also obtain formulas for this norm.
They are in fact simpler than the formulas for the l2 norm of the error but we cannot
give them here due to the lack of space.
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4. Simplifications of the formula for the error norms in FOM. We do not
know the signs of all the terms in the formula of Theorem 3.1 and it has been shown for
the conjugate gradient case when A is symmetric and positive definite that it may not
be appropriate to compute differences similar to (H−1

n e1,H−1
n e1) − (H−1

k e1,H−1
k e1)

in finite precision arithmetic; see [12], [18], [27] and [21] for a summary. It is thus
interesting to try to express the first term of the right hand side of the formula of
Theorem 3.1 as a function of the second one to avoid computing the difference. To
this end we write Hn block-wise as

Hn =
(

Hk Wk

Y T
k H̃k

)
,(4.1)

where k < n. Since Hn is upper Hessenberg and Hk is square we note that Y T
k has

just one nonzero element hk+1,k in the top right corner. Thus Y T
k = hk+1,ke

1(ek)T .
The matrices Hk of order k and H̃k of order n− k are square upper Hessenberg and
Wk is generally a full rectangular matrix. Let Sk = Hk − WkH̃

−1
k Y T

k be the Schur
complement; the inverse of Hn can be written as

H−1
n =

(
S−1

k −S−1
k WkH̃

−1
k

−H̃−1
k Y T

k S−1
k H̃−1

k + H̃−1
k Y T

k S−1
k WkH̃

−1
k

)
.

Because of the special structure of Y T
k we have

Sk = Hk − hk+1,k(WkH̃
−1
k e1)(ek)T ,

so, Sk is a rank-one modification of Hk. By using the Sherman-Morrison formula (see
[13]) we obtain

S−1
k = H−1

k +
hk+1,k

1− hk+1,k(ek,H−1
k WkH̃

−1
k e1)

H−1
k WkH̃

−1
k e1(ek)TH−1

k .

Note that if hk+1,k(ek,H−1
k WkH̃

−1
k e1) = 1 then Sk is singular. Since we have as-

sumed that Hk is non singular, this would imply that Hn is singular contrary to our
hypothesis. The difference (H−1

n e1,H−1
n e1)− (H−1

k e1,H−1
k e1) can now be expressed

in the following way.
Lemma 4.1.

Let wk = WkH̃
−1
k e1 and

γk =
hk+1,k(ek,H−1

k e1)
1− hk+1,k(ek,H−1

k wk)
.

Then,

(H−1
n e1,H−1

n e1)− (H−1
k e1,H−1

k e1) = (hk+1,k(ek, S−1
k e1))2(H̃−1

k e1, H̃−1
k e1)

+ 2γk(H−1
k e1,H−1

k wk) + γ2
k(H

−1
k wk,H−1

k wk).

Proof. We are interested in the first column of H−1
n and, in particular, in S−1

k e1

for which we have

S−1
k e1 = H−1

k e1 + γkH
−1
k WkH̃

−1
k e1 = H−1

k e1 + γkH
−1
k wk.
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The remaining part of the first column ofH−1
n which is −H̃−1

k Y T
k S−1

k e1 can be written
as

−hk+1,k(ek, S−1
k e1)H̃−1

k e1.

Hence,

(H−1
n e1,H−1

n e1) = (S−1
k e1, S−1

k e1) + (hk+1,k(ek, S−1
k e1))2(H̃−1

k e1, H̃−1
k e1),

and

(S−1
k e1, S−1

k e1) = (H−1
k e1,H−1

k e1) + 2γk(H−1
k e1,H−1

k wk) + γ2
k(H

−1
k wk,H−1

k wk),

with wk = WkH̃
−1
k e1.

Then, for the other part of the formula of Theorem 3.1, we are interested in
computing the k first elements of H−1

n ek+1 (which are denoted as (H−1
n ek+1)k) where

ek+1 is here the k + 1st column of the identity matrix of order n.
Lemma 4.2. Using the notations of Lemma 4.1, we have

(H−1
n ek+1)k = − γk

hk+1,k(ek,H−1
k e1)

H−1
k wk.

Proof. By construction the vector (H−1
n ek+1)k is the first column of the top right

block of the inverse that is, −S−1
k WkH̃

−1
k e1. Using the results for S−1

k , we obtain

−S−1
k WkH̃

−1
k e1 =

−
[
H−1

k +
hk+1,k

1− hk+1,k(ek,H−1
k WkH̃

−1
k e1)

H−1
k WkH̃

−1
k e1(ek)TH−1

k

]
WkH̃

−1
k e1.

Hence, since (ek)TH−1
k WkH̃

−1
k e1 is a scalar, this is

−
[
1 +

hk+1,k(ek,H−1
k WkH̃

−1
k e1)

1− hk+1,k(ek,H−1
k WkH̃

−1
k e1)

]
H−1

k WkH̃
−1
k e1 =

− 1
1− hk+1,k(ek,H−1

k wk)
H−1

k wk.

This last expression can be rewritten using γk defined in Lemma 4.1.
Finally we have the following expression for the square of the norm of the error

in FOM.
Theorem 4.3. Assume the block partitioning of Hn as in equation (4.1) and

denote wk = WkH̃
−1
k e1 and

γk =
hk+1,k(ek,H−1

k e1)
1− hk+1,k(ek,H−1

k wk)
.

Then

‖εk‖2/‖r0‖2 = {hk+1,k [ (ek,H−1
k e1) + γk(ek,H−1

k wk)] }2‖H̃−1
k e1‖2 + γ2

k‖H−1
k wk‖2.
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Proof. We use the results of Lemmas 4.1 and 4.2. The third term in the right
hand side of the formula of Theorem 3.1 is given by

2hk+1,k(H−1
k e1, ek)((H−1

n ek+1)k,H−1
k e1) = −2γk(H−1

k wk,H−1
k e1).

We see that this term cancels with the same one but of opposite sign in the formula
of Lemma 4.1.

Note that for ‖εk‖2 we now have the sum of two positive quantities. The quantities
which are involved are H̃−1

k e1, wk, H−1
k wk and H−1

k e1. Of course, at FOM iteration
k we do not know H̃k and wk yet. Expressing everything in terms of γk the norm of
the error squared can be written even more simply as

‖εk‖2/‖r0‖2 = γ2
k

{
‖H̃−1

k e1‖2 + ‖H−1
k wk‖2

}
.(4.2)

5. Relations with the residual norm. In this section we use an expression
for the norm of the residual of the FOM method to relate it to the norm of the error.
The following result was proved in [24].

Lemma 5.1. The FOM norm of the residual is

‖rk‖ = ‖r0‖hk+1,k|(H−1
k e1, ek)|.(5.1)

We see that the norm of the residual is small if hk+1,k or |(H−1
k e1, ek)| (or both)

are small. In particular if hk+1,k = 0 we have found an invariant subspace of A and the
solution of the linear system. The norm of the residual can be used in the expressions
for the l2 norm of the error. The next theorem shows that we obtain a simple and
elegant formula for the norm of the error in terms of the norm of the residual.

Theorem 5.2. Assume the block partitioning of Hn as in equation (4.1) and
denote wk = WkH̃

−1
k e1. Then,

‖εk‖2 = ‖rk‖2 ‖H̃−1
k e1‖2 + ‖H−1

k wk‖2

[1− hk+1,k(ek,H−1
k wk)]2

.(5.2)

Proof. This result is obvious using the definition of γk, equation (4.2) and
Lemma 5.1.

From Theorem 5.2 we see that the (squares) of the norms of the error and the
residual are close if and only if the multiplying factor in equation (5.2) is close to 1.
Note that this factor depends on iterations k + 1 to n through H̃k and wk.

6. Estimates of the norm of the error in FOM. To approximate the norm
of the error in FOM we use the same technique as in [12] and [18] introducing a delay
d which is a strictly positive integer. At iteration k of FOM we approximate ‖εk−d‖2

by replacing Hk by Hk−d and Hn by Hk in the formula of Theorem 4.3. We now use
the partitioning

Hk =
(

Hk−d Wk−d

Y T
k−d H̃k−d

)
.

Note that the notations are different from the previous ones since Hk is of order k
and H̃k−d of order d. Then, at iteration k we approximate the square ‖εk−d‖2 of the
norm of the error at iteration k − d using the result of Theorem 4.3 by

χk−d = ‖r0‖2 [ {hk−d+1,k−d ( (ek−d,H−1
k−de

1) + γk−d(ek−d,H−1
k−dw

k−d)) }2‖H̃−1
k−de

1‖2

+ γ2
k−d‖H−1

k−dw
k−d‖2 ],
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with wk−d = Wk−dH̃
−1
k−de

1 and

γk−d =
hk−d+1,k−d(ek−d,H−1

k−de
1)

1− hk−d+1,k−d(ek−d,H−1
k−dw

k−d)
.

Note that χk−d is the sum of two positive quantities. A rationale for the choice of
this approximation is the following. Let us write the difference of the squares of the
error norms at iterations k − d and k using the formula of Theorem 3.1. Some terms
cancel and we obtain

‖εk−d‖2 − ‖εk‖2 = ‖r0‖2 {(H−1
k e1,H−1

k e1)− (H−1
k−de

1,H−1
k−de

1)

+ 2hk−d+1,k−d(H−1
k−de

1, ek−d)((H−1
n ek−d+1)k−d,H−1

k−de
1)

− 2hk+1,k(H−1
k e1, ek)((H−1

n ek+1)k,H−1
k e1) }.

Adding and subtracting the term

2‖r0‖2 hk−d+1,k−d(H−1
k−de

1, ek−d)((H−1
k ek−d+1)k−d,H−1

k−de
1)

and using manipulations similar to those in section 4, we obtain

‖εk−d‖2 − ‖εk‖2 = χk−d + ‖r0‖2 {2hk−d+1,k−d(H−1
k−de

1, ek−d)((H−1
n ek−d+1)k−d

− (H−1
k ek−d+1)k−d,H−1

k−de
1)− 2hk+1,k(H−1

k e1, ek)((H−1
n ek+1)k,H−1

k e1) }.

It turns out that when FOM starts to converge we often have ‖εk‖2 � ‖εk−d‖2

and, additionally, the sum of the last two terms is small, meaning that χk−d gives a
reasonable approximation of ‖εk−d‖2.

Concerning the implementation, at iteration k we have to compute the last el-
ement of H−1

k−de
1, H̃−1

k−de
1, wk−d and H−1

k−dw
k−d. As for computing the iterate xk

we use rotations. The last element of H−1
k−de

1 is already known since this has been
computed to obtain the iterate xk−d or at least ‖rk−d‖ if the solution is computed
only at the end of the iterations. Computing H̃−1

k−de
1 can be done with d−1 rotations.

This is not expensive since usually d will be small. The most computationally expen-
sive part is obtaining H−1

k−dw
k−d. This again is done using the rotations computed

in the Arnoldi process from step 1 to step k − d − 1. Moreover we have to apply
the rotations to the columns of Wk−d. But this has already been done during FOM
iterations k − d to k. The result is a part of the triangular matrix Rk that is used to
compute the solution at iteration k. We then have to take a linear combination of the
columns of Wk−d and to solve a triangular system to obtain H−1

k−dw
k−d. Note that

these computations are more expensive than for CG where the estimates of the norm
of the error are essentially obtained for free; see [18], [21] and [27].

Let us consider a few numerical examples. In these experiments we use the FOM
method with a QR factorization to solve the linear system Hkz

k = ‖r0‖e1. More-
over, we use the implementation given in [28]. When computing the Arnoldi vector
vk+1 one compares Avk with the result of the modified Gram-Schmidt step before
normalization. If the norm of the result is smaller than τ‖Avk‖ a reorthogonalization
is performed. In some of the examples described below this was used for the very
last iterations to avoid the near singularity of the matrices Hk. This must not be
considered has a limitation for the estimates of the norm of the error. If one does not
have to go up to the very last iteration, the estimates can be used with the backward
stable MGS-GMRES without any reorthogonalization.
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All the matrices which are considered are not normal. The first example E1 is the
matrix e05r0500 from the Matrix Market, arising from a driven cavity fluid dynamics
problem with a Reynolds number Re = 500. The order is n = 236, the condition
number is κ(A) = 1.16 106, the extreme singular values are min(σi) = 4.9 10−5 and
max(σi) = 57.20. For this matrix there are complex eigenvalues with a negative real
part and it is not positive real. The right hand side comes from the Matrix Market
files. This computation was done without any reorthogonalization. The results are
displayed in figure 6.1. The solid curve displays the norm of the error computed
with the solution given by Gaussian elimination with pivoting. In the left part the
dotted curve is the norm of the residual. We see that the residual norm is oscillating
and increasing at the beginning. There is no decrease before iteration 150. The
error norm is smoother than the residual norm which is much smaller than the error
norm but they both start to decrease almost at the same time. The estimate of the
error norm with d = 1 is not very good at the beginning since it is smaller than the
error norm by several orders of magnitude but after 100 iterations it gives the right
error level. Moreover it captures well the large peaks in the error norm curve. The
oscillations of the estimate can be smoothed to some extent by increasing the value
of d as we will see with the next example. One may ask why the estimate is wrong at
the beginning of the computation. The main reason is that for d small ‖H̃−1

k−de
1‖ is a

bad approximation to the exact value. Moreover the vector wk−d = Wk−dH̃
−1
k−de

1 is
not a good approximation of the exact unknown value when d is small and when we
are at the beginning of the computation in the case where no convergence takes place
even though this is not as critical as for ‖H̃−1

k−de
1‖. To get good estimates for the first

iterations we have to substantially increase the delay d. The right part of figure 6.1
compares the results with d = 1 and d = 100. Note that with d = 100 we can only
compute an estimate up to iteration 136. We see that with a large value of d we
capture quite well the level of stagnation of the error norm for the first 150 iterations.
However, using such a large value of d is generally not practical and moreover it
becomes useless when FOM starts to converge. Then, a small value of d gives a good
approximation of the error norm. It would be nice if one can choose d adaptively, but
this does not seem easy to achieve.
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Fig. 6.1. FOM E1: log10 of the error norm (solid), (left) estimate d = 1 (dashed), residual
norm (dotted), (right) estimates d = 1 (dashed) and d = 100 (dotted)

The second example E2 is the matrix steam1 from the Matrix Market from a
3D steam model of oil reservoir. The order is n = 240, the condition number is
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κ(A) = 2.82 107, the extreme singular values are min(σi) = 0.767, max(σi) = 2.17 107.
The eigenvalues of the matrix are real and negative. We use a random right hand
side. For this example we use reorthogonalization for the very last iterations. The
results are given in figure 6.2 for d = 1 in the left part and for d = 10 and d = 20
in the right part. Similarly as in the previous example, the residual norm is widely
oscillating. However, the error norm is smooth but there is not much improvement
for more than 100 iterations. The estimate for d = 1 is oscillating and it captures
well the final decrease but we would like to obtain something better. Increasing the
value of d improves the estimate of the error norm as it can be seen in figure 6.2 with
d = 10 and 20. The level of the error norm before the decrease is well reproduced by
these estimates.
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Fig. 6.2. FOM E2: log10 of the error norm (solid) and residual norm (dotted), (left) estimate
d = 1 (dashed), (right) estimates d = 10 (dash-dotted) and d = 20 (dashed)

The third example E3 is the matrix steam2 from the Matrix Market arising from a
3D steam model of oil reservoir. The order is n = 600, the condition number is κ(A) =
3.78 106, the extreme singular values are min(σi) = 1238.55, max(σi) = 4.68 109. The
eigenvalues of the matrix are real and negative. We use a random right hand side.
The results are given in figure 6.3 in the left part for d = 1 and in the right part for
d = 10. This example is interesting since even though the residual norm is oscillating
we have successively plateaus where the error norm is almost stagnating and short
sequences with a rapid decrease. This is an example for which it is misleading to use
the norm of the residual to stop the iterations since the norm of the error is much
smaller than the norm of the residual. With d = 10 the estimate is quite close to the
exact norm of the error except at the beginning of the iterations.

The fourth example E4 arises from the discretization of a 2D convection–diffusion
problem,

−∆u+ 2e2(x2+y2) ∂u

∂x
= f,

in the unit square with Dirichlet boundary conditions using finite differences and
upwind differencing for the first order term. The cartesian regular mesh is 50 × 50,
excluding boundaries. Therefore the order of the matrix A is n = 2500. The condition
number is κ(A) = 1359.18 and the extreme singular values are min(σi) = 7.55 10−3,
max(σi) = 10.26. The real parts of the eigenvalues are positive. We use a random
right hand side for the linear system. Figure 6.4 displays the results for the error and
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Fig. 6.3. FOM E3: log10 of the error norm (solid) and residual norm (dotted), (left) estimate
d = 1 (dashed), (right) estimate d = 10 (dash-dotted)

residual norms and the estimate for d = 1 in the left part. The right part of the figure
compares the estimates for d = 1, 10 and 20. There is not much improvement between
d = 10 and d = 20 since the estimate for d = 10 is already quite close to the error
norm. For this problem FOM converges quite well with a smooth residual norm.
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Fig. 6.4. FOM E4: log10 of the error norm (solid), (left) estimate d = 1 (dashed) and residual
norm (dotted), (right) estimates d = 1 (dashed), d = 10 (dash-dotted) and d = 20 (dotted)

7. Relations between FOM and GMRES. Before considering computing
the norm of the error in GMRES we look at the relations between the OR method
(FOM) and the MR method (GMRES). It is well known that there are simple relations
between the two, at least for the residual norms, see for instance [6], [8], [10] and [9].
We will give an expression which involves the matrices Hk. We denote with an index
O (resp. M) the variables for the OR–FOM (resp. MR–GMRES) method. Let tk be
the last column of (HT

k Hk)−1 and tkk its last element, that is,

tkk = (ek, (HT
k Hk)−1ek) = ‖H−T

k ek‖2.(7.1)

Theorem 7.1. Let

δk+1 =
h2

k+1,k

1 + h2
k+1,kt

k
k

,
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and uk = δk+1t
k. Then,

xk
M = xk

O − (zk
O)kVku

k,

εk
M = εk

O + (zk
O)kVku

k,

where zk
O is the coordinate vector of the FOM method, zk

O = ‖r0‖H−1
k e1.

Proof. Let y = hk+1,ke
k. We have

H
(e)
k =

(
Hk

yT

)

and

[H(e)
k ]TH

(e)
k = HT

k Hk + yyT .

Hence, [H(e)
k ]TH

(e)
k is a rank–one modification of HT

k Hk. This means that we can use
the Sherman–Morrison formula (see [13]) to compute the inverse of [H(e)

k ]TH
(e)
k . We

have

([H(e)
k ]TH

(e)
k )−1 = (HT

k Hk)−1 − ((HT
k Hk)−1y)(yT (HT

k Hk)−1)
1 + (y, (HT

k Hk)−1y)
.

Then, assuming that the initial residual is the same in both algorithms, the solution
zk
M is given by

zk
M = ‖r0‖ [

(HT
k Hk)−1 − δk+1((HT

k Hk)−1ek)((ek)T (HT
k Hk)−1)

]
HT

k e1.

Noting that zk
O = ‖r0‖H−1

k e1 this shows that

zk
M = zk

O − (zk
O)ku

k.

This proves the relation for xk
M . Subtracting the solution x on both sides and changing

signs we obtain the relation for εk
M .

We now turn to the relation between the residual norms of FOM and GMRES.
Theorem 7.2. Using tkk defined in equation (7.1) we have

‖rk
M‖2 =

‖rk
O‖2

1 + h2
k+1,kt

k
k

.(7.2)

Proof. Denoting ωk = (zk
O)k for simplicity, from Theorem 7.1 we have

rk
M = b−Axk

M = rk
O + ωkAVku

k,

where uk = δk+1t
k. This gives

‖rk
M‖2 = ‖rk

O‖2 + 2ωk(rk
O, AVku

k) + ω2
k(AVku

k, AVku
k).(7.3)

Let us first consider (rk
O, AVku

k) in the second term. Using equation (2.1), the or-
thogonality of the basis vectors and the relation of rk

O and vk+1 we have

(rk
O, AVku

k) = −h2
k+1,k‖r0‖(H−1

k e1, ek)(ek, uk).
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Multiplying by 2ωk we obtain

2ωk(rk
O, AVku

k) = −2ωkh
2
k+1,k‖r0‖(H−1

k e1, ek)δk+1t
k
k,

= −2h2
k+1,k‖r0‖2(H−1

k e1, ek)2δk+1t
k
k,

= −2‖rk
O‖2δk+1t

k
k.

Using again equation (2.1) the term (AVku
k, AVku

k) is equal to

(VkHku
k, VkHku

k)+2hk+1,k(VkHku
k, vk+1(ek)Tuk)+h2

k+1,k(v
k+1(ek)Tuk, vk+1(ek)Tuk).

The second term is zero because V T
k vk+1 = 0. The first term is equal to (Hku

k,Hku
k)

but uk = δk+1H
−1
k H−T

k ek, therefore,

(VkHku
k, VkHku

k) = δ2
k+1(H

−T
k ek,H−T

k ek) = δ2
k+1t

k
k.

For the last term we have

h2
k+1,k(v

k+1(ek)Tuk, vk+1(ek)Tuk) = h2
k+1,k(u

k
k)

2 = h2
k+1,kδ

2
k+1(t

k
k)

2.

Hence, using the definition of δk+1,

(AVku
k, AVku

k) = δ2
k+1t

k
k + h2

k+1,kδ
2
k+1(t

k
k)

2,

= δ2
k+1t

k
k(1 + h2

k+1,kt
k
k),

= h2
k+1,kδk+1t

k
k.

In equation (7.3) this last term is multiplied by ω2
k. This gives

ω2
k(AVku

k, AVku
k) = ‖r0‖2(H−1

k e1, ek)2h2
k+1,kδk+1t

k
k = ‖rk

O‖2δk+1t
k
k.

Putting all these results together we obtain

‖rk
M‖2 = ‖rk

O‖2(1− δk+1t
k
k).

But

1− δk+1t
k
k = 1− h2

k+1,kt
k
k

1 + h2
k+1,kt

k
k

=
1

1 + h2
k+1,kt

k
k

,

which gives the final expression for ‖rk
M‖2.

The relation between ‖rk
M‖2 and ‖rk

O‖2 shows that ‖rk
M‖2 ≤ ‖rk

O‖2. This was
obvious since GMRES is a minimal residual method. For the residual norms of FOM
and GMRES to be close we need to have either hk+1,k and/or tkk small. The result
of Theorem 7.2 can be related to previous results in the literature. Expressions for
the norms of residual vectors of FOM and GMRES and their relations using the sines
and cosines of the rotations were given in [6] and [8].
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8. Formulas for the error norm in GMRES. We use the relations between
the errors in Theorem 7.1 to obtain an expression for the error norm in GMRES.

Theorem 8.1. Assume the block partitioning of Hn as in equation (4.1). Denote
wk = WkH̃

−1
k e1 and

γk =
hk+1,k(ek,H−1

k e1)
1− hk+1,k(ek,H−1

k wk)
.

The vector tk being the last column of (HT
k Hk)−1, tkk its last element defined in equa-

tion (7.1),

δk+1 =
h2

k+1,k

1 + h2
k+1,kt

k
k

,

and uk = δk+1t
k, we have

‖εk
M‖2 = ‖εk

O‖2 + ‖r0‖2[2γk(ek,H−1
k e1)(H−1

k wk, uk) + (ek,H−1
k e1)2‖uk‖2].(8.1)

Proof. From Theorem 7.1 and denoting ωk = (zk
O)k for simplicity we have

εk
M = εk

O + ωkVku
k.

The norm of εk
M is

‖εk
M‖2 = ‖εk

O‖2 + 2ωk(εk
O, Vku

k) + ω2
k(Vku

k, Vku
k).

Since (Vku
k, Vku

k) = (uk, uk) we are left with computing (εk
O, Vku

k). We have

εk
O = A−1rk

O = A−1r0 − Vkz
k
O.

But r0 = ‖r0‖Vne
1 and A−1Vn = VnH

−1
n . Therefore

εk
O = ‖r0‖VnH

−1
n e1 − Vkz

k
O.

This gives the decomposition of the error in FOM over the vectors vj of the orthonor-
mal basis of the Krylov subspace. Multiplying by V T

k we obtain

V T
k εk

O = ‖r0‖(H−1
n e1)k − zk

O,

where, once again, (H−1
n e1)k denotes the k first components of the first column of the

inverse of Hn. Then,

(εk
O, Vku

k) = ‖r0‖((H−1
n e1)k, uk)− (zk

O, uk) = ‖r0‖[((H−1
n e1)k, uk)− (H−1

k e1, uk)].

But we have seen in the proof of Lemma 4.1 that (H−1
n e1)k = H−1

k e1 + γkH
−1
k wk.

Therefore

(εk
O, Vku

k) = ‖r0‖γk(H−1
k wk, uk).

It is interesting to write the GMRES error norm as a function of the residual
norms.
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Theorem 8.2. Assume the block partitioning of Hn as in equation (4.1). Denote
wk = WkH̃

−1
k e1 and let tk be the last column of (HT

k Hk)−1 and tkk its last element
defined in equation (7.1). Then,

‖εk
M‖2 = ‖εk

O‖2 + 2‖rk
M‖2 hk+1,k

1− hk+1,k(ek,H−1
k wk)

(H−1
k wk, tk)

+ ‖rk
M‖2 ‖tk‖2

1 + h2
k+1,kt

k
k

.

Proof. We already know that ‖εk
O‖2 can be written in terms of ‖rk

O‖2. Let us
concentrate on the last two terms. Using the definition of γk and uk we have

2‖r0‖2γk(H−1
k e1, ek)(H−1

k wk, uk) = 2
‖rk

O‖2

1− hk+1,k(ek,H−1
k wk)

hk+1,k

1 + h2
k+1,kt

k
k

(H−1
k wk, tk),

= 2‖rk
M‖2 hk+1,k

1− hk+1,k(ek,H−1
k wk)

(H−1
k wk, tk).

The other term is

‖r0‖2(H−1
k e1, ek)2‖uk‖2 = ‖r0‖2δ2

k+1(H
−1
k e1, ek)2‖tk‖2,

= ‖rk
O‖2 ‖tk‖2

(1 + h2
k+1,kt

k
k)2

,

= ‖rk
M‖2 ‖tk‖2

1 + h2
k+1,kt

k
k

.

Note that the last term in the formula of Theorem 8.2 is positive but unfortunately
we do not know the sign of the middle term. Therefore we cannot tell if ‖εk

M‖ is smaller
or larger than ‖εk

O‖. However, we can express everything in terms of ‖rk
M‖ as in the

following Corollary.
Corollary 8.3. The square of the norm of the error in GMRES, ‖εk

M‖2, is
equal to πk‖rk

M‖2 where

πk =
‖(1 + h2

k+1,kt
k
k)H

−1
k wk + (1− hk+1,k(ek,H−1

k wk))tk‖2 + (1 + h2
k+1,kt

k
k)

2‖H̃−1
k e1‖2

(1− hk+1,k(ek,H−1
k wk))2 (1 + h2

k+1,kt
k
k)

.

Proof. From equation (5.2) we have

‖εk
O‖2 = ‖rk

O‖2 ‖H̃−1
k e1‖2 + ‖H−1

k wk‖2

[1− hk+1,k(ek,H−1
k wk)]2

.

Taking the term

‖rk
O‖2 ‖H−1

k wk‖2

[1− hk+1,k(ek,H−1
k wk)]2

= ‖rk
M‖2(1 + h2

k+1,kt
k
k)

‖H−1
k wk‖2

[1− hk+1,k(ek,H−1
k wk)]2

,
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and adding it to the two last terms of Theorem 8.2, the numerator is

(1 + h2
k+1,kt

k
k)

2‖H−1
k wk‖2 + 2(1 + h2

k+1,kt
k
k)(1− hk+1,k(ek,H−1

k wk))(H−1
k wk, tk)

+ (1− hk+1,k(ek,H−1
k wk))2‖tk‖2,

and the denominator is

(1− hk+1,k(ek,H−1
k wk))2(1 + h2

k+1,kt
k
k).

This ratio is to be multiplied by ‖rk
M‖2. The remaining term is

‖rk
M‖2

1 + h2
k+1,kt

k
k

(1− hk+1,k(ek,H−1
k wk))2

‖H̃−1
k e1‖2.

Fortunately πk > 0. However it seems difficult to know if it is smaller or larger
than 1.

9. Estimates of the error norm in GMRES. To estimate the GMRES error
norm we use equation (8.1) and the estimate for the FOM error norm defined in
section 6. Using an integer delay d, the additional term for the estimate of the square
of the error norm at iteration k − d is

‖r0‖2[2γk−d(H−1
k−de

1, ek−d)(H−1
k−dw

k−d, uk−d) + (H−1
k−de

1, ek−d)2‖uk−d‖2],

where the definitions are similar to the ones in Theorem 8.1.
For the numerical experiments we use the same examples as in section 6. The

results for example E1 are given in figure 9.1. Of course the residual norm curve
is monotonic even though it is almost stagnating for more than 150 iterations. The
error norm curve is not monotonic but quite smooth and the estimate well capture the
error norm level at least after 100 iterations. The estimate is smoother than the one
for FOM. This shows that the additional term has some smoothing effect. One can
remark that the error norms for FOM and GMRES are close except that the FOM
error norm has small peaks. The residual norms are more different since the FOM
residual is widely oscillating.

We also compare our estimate with some estimates proposed by Brezinski (see
[4], [5]). The first one is

εk
Br1 =

‖rk‖2

‖AT rk‖ , rk = b−Axk.

In all the formulas proposed in [5], this one corresponds to a formula proposed by
Auchmuty [3]. We also used the general formula in equation (9) in [5] that is,

εk
Br2 =

(
cν1
0 (c21)

3−νcν−4
2

)1/2
,

with c0 = (rk, rk), c1 = (rk, Ark) and c2 = (Ark, Ark). We chose ν = 4. These
quantities are shown in the right part of figure 9.1. We can see that on this problem
Brezinki’s first estimate underestimates the level of the error norm, but it reflects the
near stagnation of the error norm. The other estimate with ν = 4 oscillates but is
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close to our result. Figure 9.2 compares the backward error (see [1], [7], [16]) defined
as

εk
B =

‖b−Axk‖
‖A‖ ‖xk‖+ ‖b‖ ,

to the relative norm of the error ‖x − xk‖/‖x‖ and our estimate normalized by the
norm of the exact solution. The backward error is almost always decreasing. In such
a case basing the stopping criterion on the backward error may also be misleading.
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Fig. 9.1. GMRES E1: log10 of the error norm (solid), (left) estimate d = 1 (dashed) and
residual norm (dotted), (right) estimate d = 1 (dashed), Brezinski’s first estimate (dash-dotted) and
second estimate with ν = 4 (dotted)
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Fig. 9.2. GMRES E1: log10 of the norm of the relative error (solid), relative norm estimate
d = 1 (dashed), backward error (dotted)

Figure 9.3 displays the results for example E2. The estimate with d = 1 is much
better than with FOM since the error norm is well approximated after 50 iterations.
Increasing d improves the result. The error norm curves of FOM and GMRES are
almost identical even though the residual norms are much different.

The results for example E3 are given in figure 9.4. Again the result with d = 1
is much smoother than with FOM giving a good estimate of the error norm. Using
d = 10 gives a very good estimate of the error. The error curves for FOM and GMRES
are not much different even though the one for FOM is less regular.
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Fig. 9.3. GMRES E2: log10 of the error norm (solid) and residual norm (dotted), (left)
estimate d = 1 (dashed) , (right) estimates d = 10 (dash-dotted) and d = 20 (dashed)
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Fig. 9.4. GMRES E3: log10 of the error norm (solid) and residual norm (dotted), (left)
estimate d = 1 (dashed) , (right) estimate d = 10 (dash-dotted)

Finally we consider example E4. Figure 9.5 shows that the estimate of the GM-
RES error norm with d = 1 is much closer to the exact error than in the FOM case.
Therefore, increasing d does not improve too much the estimate. In this example the
curves for the error norms in FOM and GMRES as well as the residual curves are not
much different.

10. Conclusions. In this paper we have given expressions for the error l2 norm
in FOM and GMRES. We have shown how to use these results to compute estimates
of the error norm during the iterations. This is done by introducing a delay d and
computing an estimate d iterations before the current one. Numerical experiments
have shown that this generally gives good approximations of the error norm (even for
small values of d) particularly in the phase where convergence takes place. It would be
interesting to use these estimates to set up a reliable stopping criterion for FOM and
GMRES in combination with backward error-type criterion since using the residual
norm can sometimes be misleading. This technique can also be used for preconditioned
FOM or GMRES since we simply have to apply the formulas developed in this paper
to the linear system M−1Ax = M−1b when using a left preconditioner. We can
also use the same technique for restarted iterations like in FOM(m) or GMRES(m).
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Fig. 9.5. GMRES E4: log10 of the error norm (solid) and residual norm (dotted), (left)
estimate d = 1 (dashed) , (right) estimate d = 10 (dash-dotted)

However, the delay d which is used has to be smaller than m and it is not always
guaranteed that good estimates of the error norm can be obtained if m is small since
this constraints d.

Several remaining questions have to be addressed. First it would be important to
know if the expressions for the error norms are still valid in finite precision arithmetic
up to terms proportional to the unit roundoff. This question has been thoroughly
considered for CG in [27] where it was shown that some formulas which are equivalent
in exact arithmetic can have a different behavior in finite precision computations.
Numerical experiments seem to show that the proposed estimates still work in finite
precision but it would probably be enlightening to prove it. Secondly it would be
interesting to study if the exact expressions for the error norms can lead to a better
understanding of FOM and GMRES convergence.

Acknowledgments.
This work arises from studies started in 2002 but it was mainly written in 2008

and 2009 while visiting the Institute of Computer Science of the Czech Academy
of Sciences in Prague with the support of a GAAS grant IAA100300802 and of the
Institutional Research Plan AV0Z10300504. The revised version was written in 2010
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