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Abstract. We provide expressions for the residual norms when using the full orthogonalization method
and the generalized minimum residual method for solving linear systems. They involve a triangular submatrix
of the Hessenberg matrix generated by the Arnoldi process. This allows one to obtain bounds showing that the
norm of the residual decreases to zero when the smallest singular value of this triangular matrix goes to zero.
Numerical examples show that even though these bounds are not sharp they describe quite well the rate of
decrease of the residual norm.
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1. Introduction. We consider solving a linear system

Ax ¼ b;

where A is a (real or complex) nonsingular matrix of order n with the full orthogona-
lization method (FOM) and the generalized minimum residual method (GMRES),
which are Krylov methods based on the Arnoldi orthogonalization process; see Saad
[16], [17] and Saad and Schultz [18]. The initial residual is denoted as r0 ¼ b− Ax0,
where x0 is the starting vector. The Krylov subspace of order k based on A and r0, which
is denoted as Kkðr0; AÞ, is spanfr0; Ar0; : : : ; Ak−1r0g. The approximate solution xk at
iteration k is sought as xk ∈ x0 þKkðr0; AÞ such that the residual vector rk ¼ b− Axk

satisfies an orthogonality condition with the Krylov subspace.
There are many papers and books giving bounds for the norms of the residual rk; see,

for instance, [18], [3], [4], [15], [9], [21]. In most of these papers the authors write the
residual as a polynomial pk in A applied to the initial residual and obtain bounds
for the norm of the residual by bounding the norm kpkðAÞk on a suitable subspace.
The bounds on kpkðAÞk do not depend on the right-hand side of the linear system.
For some problems they can be far from being sharp. A study of the residual norms
in an abstract setting was published in [5]. Residual bounds were given in [14]. They
involve singular values of the matrix AVkDk, where Vk will be defined below and
Dk is a diagonal scaling matrix. Expressions for the norm of the residual involving
the Krylov matrices (whose columns are the vectors of the natural basis of
Kkðr0; AÞ) were given in [12] and [19].

In this paper we derive expressions for the l2 norm of the residual which involve the
Hessenberg matrix Hk constructed by the Arnoldi process during the FOM or GMRES
iterations. From these expressions we obtain bounds which show that for FOM or
GMRES, the residual norm convergence depends on the smallest singular value of
an upper triangular submatrix of Hk (denoted by ~Hk). The norm of the residual goes
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to zero when this smallest singular value goes to zero. Even though many papers have
been written on this topic, FOM and GMRES convergence is still not fully understood.
The goal of this paper is not to provide new expressions to compute the norm of the
residual during the iterations in practical computations, since this can be done easily
using rotations (see [18]), but to relate the behavior of this norm to some submatrices
ofHk. It is hoped that these properties could eventually lead to a better understanding of
FOM and GMRES convergence. However, it is an open (and interesting) research topic
to study which properties of the matrix A and the right-hand side b could imply that the
smallest singular value of ~Hk would decrease fast with k.

The contents of the paper are as follows. Section 2 briefly recalls the definitions of
FOM and GMRES proposed by Saad [17] and Saad and Schultz [18]. Section 3 derives
expressions for the l2 norm of the residual in FOM.We use these expressions in section 4
to obtain bounds that involve the smallest singular value of the triangular submatrix
~Hk. Section 5 gives a simple proof of a result proven in [2] concerning the GMRES re-
sidual norm. We also briefly discuss the relationships between FOM and GMRES. From
this, we derive bounds for the GMRES residual norm in section 6. Section 7 provides
numerical experiments comparing the bounds to the actual values of the residual norms.
Our bounds are not sharp, but they describe quite accurately the rate of decrease of the
norm of the residual. Finally, section 8 provides some conclusions and perspectives.

Throughout this paper, ek denotes the kth column of the identity matrix of different
orders, and an upper index � denotes the conjugate transpose of a vector or a matrix.
The inner product ðx; yÞ is defined as

P
n
i¼1 xiȳi ¼ y�x, where the bar denotes the con-

jugate of a complex number. In this paper we assume exact arithmetic. For Krylov meth-
ods with (rounding error) perturbations, see [23].

2. FOM and GMRES. The first step in the FOM or GMRES algorithms is to
compute an orthogonal basis of the Krylov subspace Kkðr0; AÞ. Let vj; j ¼ 1; : : : ; n, be
the Arnoldi basis vectors of unit norm (see [1]) and Vk be the matrix whose columns are
v1; : : : ; vk. The orthonormal basis vectors vj are usually computed recursively with the
modified Gram–Schmidt Arnoldi algorithm. We write the iterates as xk ¼ x0þ
Vkz

k. The matrix relation for Vk given by the Arnoldi process is

AVk ¼ VkHk þ hkþ1;kv
kþ1ðekÞT ;ð2:1Þ

where Hk is an upper Hessenberg matrix of order k with elements hi;j. Therefore,

Hk ¼

0
BBBBBBBB@

h1;1 h1;2 · · · · · · h1;k

h2;1 h2;2
..
.

h3;2
. .
. ..

.

. .
. . .

. ..
.

hk;k−1 hk;k

1
CCCCCCCCA
:ð2:2Þ

Note that in the Arnoldi process hkþ1;k is defined as a norm of a vector (see [18]) and is
therefore real and positive.

In FOM, which is an orthogonal residual method, one asks for the residual vector
rk ¼ b− Axk to be orthogonal to the Krylov subspace. It gives V �

kr
k ¼ 0. It is well

known that the vector of coordinates zk is obtained by writing

Hkz
k ¼ V �

kr
0 ¼ kr0kV �

kv
1 ¼ kr0ke1;ð2:3Þ
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since in the Arnoldi process one takes v1 ¼ r0kr0k. When Hk is nonsingular, the linear
system (2.3) is usually solved using a QR factorization of the Hessenberg matrixHk. The
matrix Hk is transformed to triangular form by Givens rotations. The vector of coordi-
nates zk is a scalar multiple of the first column of the inverse of Hk.

In GMRES the l2 norm of the residual is minimized at each iteration. The matrix
relation in (2.1) can also be written as

AVk ¼ Vkþ1H
ðeÞ
k ;ð2:4Þ

where H
ðeÞ
k is the ðkþ 1Þ× k extended matrix

H
ðeÞ
k ¼

�
Hk

hkþ1;kðekÞT
�
:

Since the norm of the residual can be written as

kb− Axkk ¼ kkr0ke1 − H
ðeÞ
k zkk;

the vector of coordinates zk is computed by solving the (small) least squares problem

min
z
kkr0ke1 − H

ðeÞ
k zk:ð2:5Þ

The theoretical solution is given by the pseudoinverse of H ðeÞ
k ,

zk ¼ kr0kð½H ðeÞ
k ��H ðeÞ

k Þ−1½H ðeÞ
k ��e1:

In practical computations, the solution of the least squares problem (2.5) is obtained by
using a QR factorization of H ðeÞ

k . Contrary to FOM, GMRES cannot break down as long
as hkþ1;k ≠ 0, since the least squares problem can always be solved; see [18].

3. The residual norm in FOM. Even though the FOM residual norm is compu-
table as kb− Axkk or preferably by using the rotations computed for the QR factoriza-
tion of Hk (see [18]), it is interesting to study other expressions of this norm to try to
understand how and why the residual goes to zero. We first have the following result
which was proved in [16]; see also [17], [18]. The proof is so simple that we give it for the
reader’s convenience.

LEMMA 3.1. Assuming that Hk is nonsingular, the norm of the residual in FOM is
given by

krkk ¼ kr0khkþ1;kjðH−1
k e1; ekÞj:ð3:1Þ

Proof. We have

rk ¼ b− Axk ¼ b− Aðx0 þ Vkz
kÞ ¼ r0 − ðVkHkz

k þ hkþ1;kv
kþ1ðekÞTzkÞ:

The first two terms in this last expression cancel because of the definition of zk, and we
have rk ¼ −hkþ1;kz

k
kv

kþ1 which shows, as it is well known, that the residual is propor-
tional to the basis vector vkþ1. Hence, krkk ¼ hkþ1;kjzkkj. Since zk ¼ kr0kH−1

k e1 we obtain
the result. ▯
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Considering the result of Lemma 3.1, it is first interesting to derive expressions for
ðH−1

k e1; ekÞ which is the ðk; 1Þ element of the inverse of Hk (when it exists), and more
generally for the norm of the residual in FOM. This can be done in several ways.

First, as in [18], we may consider reducing the Hessenberg matrix Hk to upper tri-
angular form by unitary transformations. One can obtain expressions for the norm of the
residual using the sines of the Givens rotations; see [18], [21].

Another way to proceed is to directly look at the first column of the inverse, H−1
k e1

(when Hk is nonsingular). Properties of inverses of Hessenberg matrices were studied in
[11] and [6]; see also [22]. In these papers, it is proved that the lower triangular part of the
inverse is the lower triangular part of a rank-one matrix. Since we are also interested in
hkþ1;kðH−1

k e1; ekÞ, we are going to proceed in a different way. A simple method to obtain
the first column of the inverse of Hk is to consider an LU factorization of a permutation
of the matrix.

THEOREM 3.2. Let Hk be the Hessenberg matrix defined in (2.2). Let us assume that
Hk is nonsingular and hiþ1;i ≠ 0; i ¼ 1; : : : ; k− 1. Let

~Hk−1 ¼

0
BBBBBB@

h2;1 h2;2 · · · · · · h2;k−1

h3;2
. .
. ..

. ..
.

. .
. ..

. ..
.

hk−1;k−2 hk−1;k−1

hk;k−1

1
CCCCCCA
;

which is an upper triangular matrix. Let hk−1 be the conjugate transpose of the k− 1 first
elements of the first row of Hk and wk−1 the last k− 1 elements of the last column of Hk.
Then, in blockwise form, Hk is written as

Hk ¼
� ðhk−1Þ� h1;k

~Hk−1 wk−1

�
;

and

ðH−1
k e1; ekÞ ¼ 1

h1;k − ð ~H−1
k−1w

k−1; hk−1Þ ;ð3:2Þ

hkþ1;kðH−1
k e1; ekÞ ¼ 1

ðek; ~H−�
k hkÞ :ð3:3Þ

Consequently, the FOM residual norm is given by

krkk ¼ kr0k
jðek; ~H−�

k hkÞj :ð3:4Þ

Proof. Let us compute an LU factorization of a permutation of Hk. Let P be the
matrix
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P ¼

0
BBBBB@

0 1 0 · · · 0
0 0 1 0
..
. ..

. . .
. ..

.

0 0 0 · · · 1
1 0 0 · · · 0

1
CCCCCA:ð3:5Þ

We multiply Hk from the left with the matrix P. The permuted matrix is

PHk ¼

0
BBBBBBB@

h2;1 h2;2 · · · h2;k

h3;2
. .
. ..

.

. .
. . .

. ..
.

hk;k−1 hk;k
h1;1 h1;2 · · · h1;k−1 h1;k

1
CCCCCCCA

¼
 

~Hk−1 wk−1

ðhk−1Þ� h1;k

!
:

From the structure of PHk ¼ LkUk, we see that there is no fill-in in the lower triangular
factor Lk. So, we look for

Lk ¼

0
BBBBB@

1
1

. .
.

1
l1 l2 · · · lk−1 1

1
CCCCCA:

The matrix Uk is upper triangular with elements denoted by ui;j. We write Lk and Uk in
block form as

Lk ¼
�

I 0
ðlk−1Þ� 1

�
; Uk ¼

�
~Uk−1 uk−1

0 αk

�
;

where ~Uk−1 of order k− 1 is upper triangular. Then, the product LkUk is

PHk ¼
�

~Uk−1 uk−1

ðlk−1Þ� ~Uk−1 ðlk−1Þ�uk−1 þ αk

�
:

This shows that ~Uk−1 ¼ ~Hk−1 and that the vector uk−1 is equal to the last k− 1 elements
of the last column of Hk, that is, wk−1. Hence, ui;j ¼ hiþ1;j, i ¼ 1; : : : ; k− 1,
j ¼ 1; : : : ; k. It remains to compute lk−1 and αk. By identification

ðlk−1Þ� ~Uk−1 ¼ ðlk−1Þ� ~Hk−1 ¼ ðhk−1Þ�:

The vector lk−1 is found by solving a lower triangular linear system

~H �
k−1l

k−1 ¼ hk−1:

This gives lk−1 ¼ ~H−�
k−1h

k−1. Finally, we have ðlk−1Þ�uk−1 þ αk ¼ h1;k, and using the ex-
pression of lk−1 we obtain

αk ¼ h1;k − ðlk−1Þ�uk−1 ¼ h1;k − ð ~H−1
k−1w

k−1; hk−1Þ:
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From this LU factorization, we are interested in solving the linear system Hkz ¼ e1.
Multiplying by the permutation matrix P, we have to solve PHkz ¼ Pe1 ¼ ek. We first
solve Lky ¼ ek, which yields y ¼ ek. Then, Ukz ¼ y ¼ ek has the solution

z ¼ H−1
k e1 ¼ U−1

k ek:

Hence, the first column of the inverse of Hk is given by the last column of the inverse of
Uk. From the results above, we obtain0

B@
z1
..
.

zk−1

1
CA ¼ −

1

αk

~U−1
k−1u

k−1; zk ¼
1

αk

:

The first column of the inverse of Hk is

H−1
k e1 ¼ 1

αk

�
− ~U−1

k−1u
k−1

1

�
¼ 1

h1;k − ð ~H−1
k−1w

k−1; hk−1Þ

�
− ~H−1

k−1w
k−1

1

�
:

The element which is of interest for us is

ðH−1
k e1; ekÞ ¼ 1

h1;k − ð ~H−1
k−1w

k−1; hk−1Þ :

This proves (3.2). Concerning (3.3), we have

lk ¼

0
BBBBBB@

ᾱ1

h2;1

..

.

ᾱk−1

hk;k−1

ᾱk

hkþ1;k

1
CCCCCCA
:

To prove this, we use the expression obtained for lk,

lk ¼ ~H−�
k hk ¼

 
~H−�
k−1 0

− ðwk−1Þ� ~H−�
k−1

hkþ1;k

1
hkþ1;k

! 
hk−1

h̄1;k

!
¼
 

~H−�
k−1h

k−1

− ðwk−1Þ� ~H−�
k−1

hkþ1;k
hk−1 þ h̄1;k

hkþ1;k

!
:

Therefore,

lk ¼
�
lk−1

ᾱk

hkþ1;k

�
:

This proves the result by induction since l1 ¼ h̄1;1 ∕ h2;1. Looking at the last entry of lk,
we have

αk

hkþ1;k

¼ ðek; ~H−�
k hkÞ;

which proves (3.3). Equation (3.4) is a consequence of the previous results and
Lemma 3.1. ▯
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Equation (3.4) is interesting since it gives the norm of the relative residual as a func-
tion of a single quantity jðek; ~H−�

k hkÞj rather than two in hkþ1;kjðH−1
k e1; ekÞj. The norm

krkk is small if and only if jðek; ~H−�
k hkÞj is large.

Another way to obtain the last element of the first column of the inverse of Hk is to
use Cramer’s rule as in [19].

THEOREM 3.3. Using the notation of Theorem 3.2, we have

ðH−1
k e1; ekÞ ¼ detð ~Hk−1Þ

detðHkÞ
:ð3:6Þ

Proof. To obtain the last component of the first column of the inverse, we have to
compute the determinant of the matrix obtained from Hk by replacing the last column
by e1. This determinant is obviously equal to detð ~Hk−1Þ. ▯

When looking at krkk we have to consider jðH−1
k e1; ekÞj. This gives the following

result.
THEOREM 3.4. With the notation of Theorem 3.2, the norm of the FOM residual is

krkk ¼ kr0khkþ1;k

���� detð ~Hk−1Þ
detðHkÞ

���� ¼ kr0k
���� detð ~HkÞ
detðHkÞ

����:ð3:7Þ

Let σiðMÞ be the singular values of M . Then,

krkk ¼ kr0khkþ1;k

Q
k−1
i¼1 σið ~Hk−1ÞQ
k
i¼1 σiðHkÞ

¼ kr0k
Q

k
i¼1 σið ~HkÞQ
k
i¼1 σiðHkÞ

:ð3:8Þ

Proof. From Theorem 3.3 we have

jðH−1
k e1; ekÞj ¼ j detð ~Hk−1Þj

j detðHkÞj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð ~H �

k−1
~Hk−1Þ

detðH �
kHkÞ

s
:

Then,

jðH−1
k e1; ekÞj ¼

Q
k−1
i¼1 σið ~Hk−1ÞQ
k
i¼1 σiðHkÞ

:

For the second formula we note that detð ~Hk−1Þ ¼
Q

k−1
i¼1 hiþ1;i. Therefore,

hkþ1;k detð ~Hk−1Þ ¼ detð ~HkÞ. ▯

4. Bounds for the FOM residual norm. The easiest expression to obtain a low-
er bound for the norm of the residual in FOM is probably (3.4) from which we obtain the
following result.

THEOREM 4.1. Using the notation of Theorem 3.2 we have the following lower bounds
for the FOM residual norm:

krkk ≥ kr0kσminð ~HkÞ
khkk ;ð4:1Þ

krkk ≥ kr0k 1

k ~H−�
k hkk ;ð4:2Þ
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krkk ≥ kr0k 1

k ~H−1
k ekkkhkk :ð4:3Þ

Proof. We have

jðek; ~H−�
k hkÞj ≤ k ~H−�

k hkk ≤ k ~H−1
k kkhkk;

and this gives (4.1) and (4.2). The lower bound (4.2) is almost trivial since we have

~H−�
k hk ¼

0
BBB@

ᾱ1

h2;1

..

.

ᾱk

hkþ1;k

1
CCCA:

Therefore,

k ~H−�
k hkk2 ¼

Xk
i¼1

���� αi

hiþ1;i

����2:
But we have ���� αk

hkþ1;k

���� ¼ kr0k
krkk

and

k ~H−�
k hkk2 ¼ kr0k2

Xk
i¼1

1

krik2 :

The bound (4.3) is obtained by writing

jðek; ~H−�
k hkÞj ¼ jð ~H−1

k ek; hkÞj ≤ k ~H−1
k ekkkhkk: ▯

The lower bounds (4.1) and (4.3) involve the norm of hk that can be written and
bounded in different ways. We have

jh1;jj ¼ jðv1; AvjÞj ≤ kAk; j ¼ 1; : : : ; k:

Therefore, khkk ≤
ffiffiffi
k

p kAk, and

krkk ≥ kr0k σminð ~HkÞffiffiffi
k

p ½σmaxðAÞ�
:ð4:4Þ

Theorem 4.1 essentially shows that there is no convergence of FOM as long as
σminð ~HkÞ is large. The norm of hk is related to the singular values of H ðeÞ

k and ~Hk since
we have

~H �
k
~Hk þ hkðhkÞ� ¼ ½H ðeÞ

k ��H ðeÞ
k :

Taking traces as in [19], we obtain
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khkk2 ¼
Xk
i¼1

ð½σiðH ðeÞ
k Þ�2 − ½σið ~HkÞ�2Þ:

The norm of hk is small when the singular values of ~Hk are close to those of H ðeÞ
k .

It does not seem to be easy to find a lower bound for jðek; ~H−�
k hkÞj to obtain an upper

bound of the norm of the residual. Therefore, let us consider the other expression for the
residual norm. Following the expression in Lemma 3.1 we are looking for upper bounds
for jðH−1

k e1; ekÞj.
THEOREM 4.2.

krkk ≤ kr0k hkþ1;k

σminðHkÞ
:ð4:5Þ

Proof. Straightforwardly we have

jðH−1
k e1; ekÞj ≤ kH−1

k e1k ≤ kH−1
k k: ▯

In many cases the smallest singular value σminðHkÞ is far from zero for k < n. Hence,
Theorem 4.2 says that krkk goes to zero with hkþ1;k. However, this bound is too crude,
since it is seen in many numerical experiments that jðH−1

k e1; ekÞj goes to zero before
hkþ1;k becomes small.

Other lower and upper bounds can be obtained using the characterization of the
residual norm in Theorem 3.4, particularly in (3.8). We need the following interlacing
result for the singular values that are ordered as usual in descending order, σ1 being the
largest one.

LEMMA 4.3. Let C be a square matrix of order n and A a matrix of order n− 1
obtained from C by deleting one row and one column. Then, we have

σiðCÞ ≥ σiðAÞ ≥ σiþ2ðCÞ; i ¼ 1; : : : ; n− 2;

σn−1ðCÞ ≥ σn−1ðAÞ:

Proof. See [20] or [10]. ▯
THEOREM 4.4. Using the notation of Theorem 3.2, we have

krkk ≤ kr0khkþ1;k

σminð ~Hk−1Þ
σminðHkÞσk−1ðHkÞ

:ð4:6Þ

Proof. From (3.8) we have

krkk ¼ kr0khkþ1;k

Q
k−1
i¼1 σið ~Hk−1ÞQ
k
i¼1 σiðHkÞ

:

Lemma 4.3 gives that

σið ~Hk−1Þ
σiðHkÞ

≤ 1; i ¼ 1; : : : ; k− 2:

Bounding these ratios by 1 gives the upper bound for the residual norm. ▯
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Theorem 4.4 clearly shows that the convergence to zero of the norm of the residual
in FOM depends on σminð ~HkÞ since we have

kr0kσminð ~HkÞ
khkk ≤ krkk ≤ kr0khkþ1;k

σminð ~Hk−1Þ
σminðHkÞσk−1ðHkÞ

:

Results relating the norm of the residual to singular values were also proven in [19].

5. Expression for the GMRES residual norm. To distinguish between the two
methods of interest, we denote the variables in FOM by an index O and in GMRES by
an index M .

To our knowledge, the following result was first proven in [2]. Unfortunately, it
seems that this paper is not well known. Here we give a different and simpler proof
of its main result.

THEOREM 5.1. Using the notation of Theorem 3.2, we have

krkMk2 ¼ kr0k2
1þ k ~H−�

k hkk2 :ð5:1Þ

Proof. The solution zk of the GMRES least squares problem is theoretically given
by solving ðH ðeÞ

k Þ�H ðeÞ
k zk ¼ kr0kðH ðeÞ

k Þ�e1. We have

ðH ðeÞ
k Þ�H ðeÞ

k ¼ ~H �
k
~Hk þ hkðhkÞ�:

Moreover, ðH ðeÞ
k Þ�e1 ¼ hk. Hence,

zk ¼ kr0k½ ~H �
k
~Hk þ hkðhkÞ��−1hk:

Let us denote ~zk ¼ zk ∕ kr0k and ξk ¼ 1 ∕ ð1þ k ~H−�
k hkk2Þ. Using the Sherman–Morrison

formula (see [8]), and after some manipulations, we obtain

~zk ¼ ½ ~H �
k
~Hk þ hkðhkÞ��−1hk ¼ ~H−1

k
~H−�
k hk −

k ~H−�
k hkk2

1þ k ~H−�
k hkk2

~H−1
k

~H−�
k hk:

Then,

~zk ¼ ξk ~H
−1
k

~H−�
k hk:

The norm of the GMRES residual is

krkMk ¼ kr0k
����e1 −

� ðhkÞ�
~Hk

�
~zk
����

¼ kr0k
����
�
1− ðhkÞ� ~zk
− ~Hk ~z

k

�����:
Therefore,

krkMk2
kr0k2 ¼ j1− ðhkÞ� ~zkj2 þ k ~Hk ~z

kk2:
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But we have

1− ðhkÞ� ~zk ¼ 1− ξkðhkÞ� ~H−1
k

~H−�
k hk

¼ 1− ξkk ~H−�
k hkk2

¼ ξk:

It implies that

krkMk2
kr0k2 ¼ ξ2k þ ξ2kk ~H−�

k hkk2 ¼ ξk:

This proves the result. ▯
From Theorem 5.1 we clearly see the difference between FOM and GMRES. In

FOM the denominator of the square of the norm of the relative residual is
jðek; ~H−�

k hkÞj2. Therefore, only the last element of ~H−�
k hk is involved, and its modulus

may eventually be small, giving a large residual norm. In GMRES the denominator is
1þ k ~H−�

k hkk2. All the elements of the vector are involved, and, moreover, the 1 which is
added prevents the residual norm from going to infinity. There is quasi stagnation as
long as k ~H−�

k hkk2 is small relative to 1. Note that because ~Hk is triangular we have

k ~H−�
k hkk2 ¼ jðek; ~H−�

k hkÞj2 þ k ~H−�
k−1h

k−1k2;

and, as it is well known, the decrease of the residual norm is monotone.
The result of Theorem 5.1 shows that as long as k ~H−�

k hkk is small, there is no
GMRES convergence. The discussions about the FOM and GMRES residual norms
are summarized in the following result.

THEOREM 5.2. Using the notation of Theorem 3.2, the FOM residual norm krkOk is
small if and only if jðek; ~H−�

k hkÞj is large. The GMRES residual norm krkMk is small if and
only if k ~H−�

k hkk is large.
Convergence of FOM implies the convergence of GMRES. From Theorem 5.1 we

also obtain easily that

krkMk2 ¼ kr0k2
jðek; ~H−�

k hkÞj2 þ kr0k2
krk−1

M
k2
¼ 1

1
krk

O
k2 þ 1

krk−1
M

k2
:

This is a well-known result; see [3], [4]. We see that if jðek; ~H−�
k hkÞj is small, krkOk is large

and we have

krkMk≈ krk−1
M k:

Hence GMRES is almost stagnating. This is the well-known peak-plateau phenomenon.
On the contrary, if jðek; ~H−�

k hkÞj is large, the FOM residual norm is small and the
GMRES norm is even smaller.

6. Bounds for the GMRES residual norm. From the expression of the residual
norm derived in the previous section we can obtain bounds.

THEOREM 6.1. Using the notation of Theorem 3.2, we have
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kr0k2 ½σminð ~HkÞ�2
½σminð ~HkÞ�2 þ khkk2 ≤ krkMk2 ≤ krkOk2:ð6:1Þ

Proof. We have

1þ k ~H−�
k hkk2 ≤ 1þ k ~H−�

k k2khkk2 ¼ 1þ khkk2
½σminð ~HkÞ�2

: ▯

7. Numerical experiments. In this section we compare the bounds we have ob-
tained in the previous sections with the actual values of the residual norm on two ex-
amples. We use real matrices and right-hand sides.We first briefly describe the examples
and summarize the bounds to set up the notation used in the numerical experiments.

7.1. Examples. The first example (E1) is the matrix Steam2 from theMatrix Mar-
ket arising from a three-dimensional steam model of oil reservoir. The order is n ¼ 600,
the condition number is κðAÞ ¼ 3.78 106, and the extreme singular values are
minðσiÞ ¼ 1238.55, maxðσiÞ ¼ 4.68 109. The eigenvalues of the matrix are real and
negative. We use a random right-hand side.

The second example (E2) comes from Liesen and Strakoš in [13]; see also [7]. They
discretized

−νΔuþw · ∇u ¼ 0

with w ¼ ½0; 1�T in Ω ¼ ð0; 1Þ2 with Dirichlet boundary conditions u ¼ g on ∂Ω, using a
streamlined upwind Petrov–Galerkin method with bilinear finite elements on a regular
Cartesian mesh. The matrix is

A ¼ νK ⊗ M þM ⊗ ððνþ δhÞK þ CÞ;

where δ is the stabilization parameter, h is the mesh size, and

M ¼ h

6
tridiagð1; 4; 1Þ; K ¼ 1

h
tridiagð−1; 2;−1Þ;

C ¼ 1

2
tridiagð−1; 0;−1Þ

are tridiagonal matrices with constant diagonals. The right-hand side is Example 2.1,
page 1995, of Liesen and Strakoš [13]. We use h ¼ 1 ∕ 16, ν ¼ 0.01, and δ ¼ 0.34. This
gives a linear system of order 225.

7.2. Bounds. Let us summarize the bounds we would like to compare with the
residual norm computed as kb− Axkk. We first have several lower bounds for
FOM:

flb1: kr0kσminð ~HkÞ
khkk ≤ krkOk;

flb2: kr0k 1

k ~H−�
k hkk ≤ krkOk;

flb3: kr0k 1

k ~H−1
k ekkkhkk ≤ krkOk:
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The upper bound for the FOM residual norm is

fub: krkOk ≤ kr0khkþ1;k

σminð ~Hk−1Þ
σminðHkÞσk−1ðHkÞ

:

For GMRES we have

glb: kr0k2 ½σminð ~HkÞ�2
½σminð ~HkÞ�2 þ khkk2 ≤ krkMk2:

7.3. First example. The left part of Figure 7.1 shows the log10 of the FOM error
and residual norms for the matrix Steam2. The residual norm is widely oscillating with
large peaks but decreases in average from the start. There is stagnation of the norm after
180 iterations. It is interesting to note that the error norm is much smoother (which
means that A−1 is a smoothing operator) and decreases at almost the same rate as
the residual norm. However, it is smaller by several orders of magnitude.

The right part of Figure 7.1 displays the log10 of σminðHkÞ, σminðH ðeÞ
k Þ, and σminð ~HkÞ.

The smallest singular values of Hk and H
ðeÞ
k are clearly different for approximately 30

iterations, and then they are closer and stagnating. The smallest singular value of ~Hk is
relatively close to σminðH ðeÞ

k Þ for about 30 iterations, but it continues to decrease, whence
σminðH ðeÞ

k Þ stagnates.
The left part of Figure 7.2 shows the norm of the residual and the lower bounds we

have established. We see that flb2 (the trivial bound) is very close to the norm of the
residual. The other bounds flb1 and flb3 are much smaller, but they exhibit the same
rate of decrease as the norm of the residual. The bound flb3 oscillates like the residual
norm. The norm of hk is almost constant during the 200 iterations. The right part of
Figure 7.2 displays the upper bound fub. Even though it is not close to the residual norm,
it shows its large oscillations and decreases as the same rate.

The left part of Figure 7.3 shows the log10 of the GMRES error and residual norms
for the matrix Steam2. Of course, the residual norm is monotonely decreasing but with
some intervals of almost stagnation which correspond to the large peaks of the FOM
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FIG. 7.1. FOM E1: (left) log10 of the error norm (solid) and residual norm (dotted); (right) log10 of
σminðHkÞ (solid), σminðH ðeÞ

k Þ (dashed), and σminð ~HkÞ (dot-dashed).
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residual norm. Nevertheless, the error norms are not much different in both algorithms.
As we can see in the right part of the figure, the norm of the FOM residual is from time to
time a very good upper bound for the GMRES residual norm. The lower bound has the
right rate of decrease and shows some of the plateaus except at the beginning of the
iterations where it is decreasing too fast.

Figure 7.4 displays the norm of the last column of ~H−1
k as a function of k. It increases

from the beginning. This explains the decrease of σminð ~HkÞ since after a few iterations we
have

σminð ~HkÞ≈
1

k ~H−1
k kF

:

7.4. Second example. The left part of Figure 7.5 shows the log10 of the FOM
error and residual norms. Both norms decrease after a stagnation period of 15 iterations.
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FIG. 7.3. GMRES E1: (left) log10 of the norm of the error (solid), residual (dotted); (right) log10 of krkMk
(dotted), glb (solid), and krkOk (dot-dashed).
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FIG. 7.2. FOM E1: (left) log10 of krkk (dotted), flb1 (solid), flb2 (dashed), and flb3 (dot-dashed); (right)
log10 of krkk (dotted) and fub (solid).
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They reach their smallest values after 35 iterations. The decrease starting at iteration 15
arises because of a small value of the subdiagonal entry of Hk which leads to much larger
elements in the inverse of ~Hk. The right part of the figure displays the log10 of σminðHkÞ,
σminðH ðeÞ

k Þ, and σminð ~HkÞ. The smallest singular values of Hk and H
ðeÞ
k are first decreas-

ing and then stagnating after iteration 15. The smallest singular value of ~Hk follows the
same path at the beginning and then decreases very fast.

The lower bounds of krkOk are given in the left part of Figure 7.6. They are all quite
close to the norm of the residual. The upper bound is displayed in the right part of the
figure. The upper bound fub gives good results describing quite well the decrease of
the norm.

Figure 7.7 shows the log10 of the GMRES error and residual norms in the left part.
The lower bound displayed in the right part of the figure well describes the behavior of
the norm of the residual.
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FIG. 7.5. FOM E2: (left) log10 of the norm of the error (solid), residual (dotted); (right) log10 of σminðHkÞ
(solid), σminðH ðeÞ

k Þ (dashed), and σminð ~HkÞ (dot-dashed).
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FIG. 7.4. E1: log10 of the norm of the last column of the inverse of ~Hk.
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FIG. 7.7. GMRES E2: (left) log10 of the norm of the error (solid), residual (dotted); (right) log10 of krkMk
(dotted), glb (solid), and krkOk (dot-dashed).
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FIG. 7.8. E2: log10 of the norm of the last column of the inverse of ~Hk.
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FIG. 7.6. FOM E2: (left) log10 of krkk (dotted), flb1 (solid), flb2 (dashed), and flb3 (dot-dashed); (right)
log10 of krkMk (dotted) and fub (solid).

RESIDUAL NORMS IN FOM AND GMRES 409

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



The norm of the last column of the inverse of ~Hk is given in Figure 7.8. There is an
initial stagnation phase, but after 15 iterations it is linearly increasing in this logarithmic
scale. For this example our bounds describe the FOM and GMRES behavior quite
accurately.

8. Conclusions. In this paper we have given expressions for the norm of the re-
sidual in FOM and GMRES involving a triangular submatrix ~Hk of the Hessenberg ma-
trix computed by the Arnoldi process during the iterations. We derived lower and upper
bounds for the norm of the residual, showing that its decrease depends on the smallest
singular value of ~Hk.

The main questions to be addressed in the future are, of course, to find how and why
this smallest singular value decreases to zero. Knowing which properties of the matrix A
and the right-hand side b could imply this decrease is an interesting and challenging
topic of research.
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