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Abstract In this paper we study the parametrization proposed by Arioli, Pták and
Strakoš (BIT Numerical Mathematics, v 38, 1998) for the class of matrices having the
same GMRES residual norm convergence curve. We give expressions for the Hessen-
berg matrix and the orthonormal basis vectors constructed by GMRES as well as for
iterates and error vectors. The iterates do not depend on the eigenvalues in the sense
that changing the coefficients of the characteristic polynomial in the parametrization
does not change the GMRES iterates as well as the residuals. However, the error
vectors do depend on these coefficients.
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1 Introduction

We consider solving a linear system

Ax = b (1.1)

where A is a real nonsingular matrix of order n with the Generalized Minimum
RESidual method (GMRES) which is an iterative Krylov method based on the Arnoldi
orthogonalization process; see Saad [8], [9] and Saad and Schultz [10]. The initial
residual is denoted as r0 = b−Ax0 where x0 is the starting vector. The Krylov sub-
space of order k based on A and r0, denoted as Kk(A,r0), is span{r0,Ar0, . . . ,Ak−1r0}.
The approximate solution xk at iteration k is sought as xk ∈ x0 +Kk(A,r0) such that
the residual vector rk = b−Axk has a minimal Euclidian norm; this amounts to satisfy
an orthogonality condition with the Krylov subspace.
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It was and it is still believed by many people that the convergence of the GM-
RES residual norm is governed by the eigenvalue distribution. There is some direct
influence of the eigenvalues on convergence when the matrix A is normal. But, in
[5] Greenbaum and Strakoš proved that any convergence curve for the residual norm
that can be generated with GMRES can be obtained with a non-derogatory matrix
having prescribed eigenvalues. Therefore, there are many cases for which residual
norm convergence is not directly related to the eigenvalue distribution and their re-
lationship is unclear. Greenbaum, Pták and Strakoš [6] showed later that any nonin-
creasing sequence of residual norms can be given by GMRES. Finally, Arioli, Pták
and Strakoš [1] gave a complete parametrization of all pairs {A,b} generating a pre-
scribed residual norm convergence curve. These results are interpreted by some re-
searchers working on Krylov methods by saying that “GMRES convergence does
not depend on the eigenvalues of A”. Many papers were published looking for some
other quantities than eigenvalues explaining GMRES convergence: field of values,
pseudo-eigenvalues, polynomial numerical hull, etc. In fact, the authors of the papers
[5], [6], [1] never wrote that convergence does not depend on the eigenvalues. Their
results show that there are sets of matrices with different eigenvalue distributions and
right-hand sides giving the same GMRES residual norms.

The aim of this paper is to give more details on matrices or quantities that are
involved in GMRES. Building on the parametrization in [1] we will establish some
relations between the matrices that are involved in the parametrization and we will
characterize the Hessenberg matrix H that is generated by GMRES as well as the
matrix V whose columns are the vectors of the orthonormal basis of the Krylov sub-
space. We will also provide formulas for the GMRES iterates xk and the error vector
εk = x−xk. We will see that the matrix V , the first n−1 columns of the matrix H and
the iterates do not depend on the eigenvalues, in the sense that in the parametriza-
tion we can change the companion matrix C corresponding to the eigenvalues of A
(and thus the matrix A) without changing them. Hence, we have the same GMRES
iterates for non-derogatory matrices with different eigenvalue distributions and the
same residual norm convergence curve. However, our results will show that the error
vectors do depend on the matrix C and therefore on the eigenvalues of A through the
exact solution of the linear system (1.1).

In this sense, one would be tempted to say that “GMRES convergence does de-
pend on the eigenvalue distribution”. However, the negative and the positive state-
ments are not completely true (or false). In addition to the results of [1] everything
depends on the measures we are using for understanding “convergence”: the residual
norm or the error norm.

Throughout the paper we will assume that the matrix A is non-derogatory and that
the right-hand side is such that GMRES terminates at iteration n. This implies that
all the Krylov subspaces are of maximal rank. For a square matrix B we denote as
Bk the principal submatrix of order k (except for the matrices V and W for which it
denotes the matrices build with the first k columns) and ei denotes the ith column of
the identity matrix of appropriate dimension. The norm ‖ · ‖ is the Euclidean norm.
Since this paper can be seen as a complement of [1] we will use the same notation as
in the paper by Arioli, Pták and Strakoš.
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The outline of the paper is as follows. Section 2 recalls the result from Arioli,
Pták and Strakoš [1]. Section 3 describes some properties of matrices involved in
GMRES, for instance the Hessenberg matrix produced by the Arnoldi process and
the matrix V of the orthonormal basis vectors. Even though some of these relations
are not needed to compute the iterates or the errors, they are of interest per se. Sec-
tion 4 computes the GMRES iterates xk as functions of the matrices involved in the
parametrization. Section 5 provides expressions for the error at a given iteration of
the GMRES algorithm. In section 6 we revisit the GMRES residual norms. Finally
we give some conclusions and perspectives.

2 The Arioli, Pták and Strakoš parametrization

We recall the following results that were proved in [1] (Theorem 2.1 and Corollary
2.4) using the same notation.

Theorem 2.1 Assume we are given n+1 positive numbers

f0 ≥ f1 ≥ ·· · ≥ fn−1 > 0, fn = 0

and n complex numbers λ1, . . . ,λn all different from 0. Let A be a matrix of order n
and b an n-dimensional vector. The following assertions are equivalent:

1- The spectrum of A is {λ1, . . . ,λn} and GMRES applied to A and b yields residuals
r j, j = 0, . . . ,n−1 such that

‖r j‖= f j, j = 0, . . . ,n−1.

2- The matrix A is of the form A = WYCY−1W ∗ and b = Wh, where W is a unitary
matrix, Y is given by

Y =
(

h
R
0

)
, (2.1)

R being any nonsingular upper triangular matrix of order n−1, h a vector with
n elements such that

h = (η1, . . . ,ηn)T , η j = ( f 2
j−1− f 2

j )
1/2

and C is the companion matrix corresponding to the polynomial q,

q(z) = (z−λ1) · · ·(z−λn) = zn +
n−1

∑
j=0

α jz j.

We will call the parametrization, (A,b)= (WYCY−1W ∗,Wh), the APS parametriza-
tion. In the parametrization of Theorem 2.1, the prescribed residual norm conver-
gence curve is implicitly contained in the vector h which is prescribed by the given
residual norms defined by f j, j = 0, . . . ,n. The degrees of freedom defining the class
of matrices are the upper triangular matrix R, the unitary matrix W and the compan-
ion matrix C. Thus we can change R to obtain another matrix in the class for which
we have the same residual norm convergence curve as long as the right-hand side is
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b = Wh. Changing W also changes the right-hand side b but not the residual conver-
gence curve. Keeping everything else (that is, W , R, h) the same, we can change C
and hence the eigenvalues without changing the norms of the residuals. So we have
a class of matrices all having different eigenvalue distributions and the same residual
norms.

In this paper we are interested in real matrices and right-hand sides. In this case
all the quantities defined in Theorem 2.1 are real except, of course, the eigenvalues.
Without loss of generality, we will choose x0 = 0 and ‖b‖= 1; this yields r0 = b and
‖h‖= 1.

3 Properties of the APS parametrization

The Arnoldi process used in GMRES gradually computes an upper Hessenberg ma-
trix H with positive entries on the first subdiagonal using the modified Gram–Schmidt
algorithm for computing the orthonormal matrix V of the orthonormal basis vectors
for the Krylov subspace Kn(A,b); see [10]. At iteration n we have AV = V H and,
of course, the factorization A = V HV T . In this section we prove some general prop-
erties for the matrices that are involved in the GMRES algorithm using the APS
parametrization. In particular, we characterize the Hessenberg matrix H and the or-
thonormal matrix V .

Let K be the Krylov matrix generated from A and b,

K = (b Ab A2b · · · An−1b) ,

whose columns are the natural basis vectors of the Krylov space Kn ≡Kn(A,b). The
first interesting property is that the Krylov matrix can be factorized as K =WY where
W and Y are defined in Theorem 2.1; this result was proven in [1].

There are several QR factorizations that are directly linked to GMRES and the
APS parametrization. We first consider a factorization of K.

Proposition 3.1 The Krylov matrix K can be factorized as

K = VU, (3.1)

where V is the orthonormal matrix of the orthonormal basis vectors for the Krylov
subspace Kn(A,b) and the matrix U is upper triangular with positive diagonal ele-
ments. Moreover,

U = (e1 He1 · · · Hn−1e1 ) . (3.2)

Proof Let us prove by induction that A jV = V H j, j = 1, . . . ,n− 1. This is true for
j = 1 since AV = V H. If we assume A j−1V = V H j−1, we have

A jV = A(A j−1V ) = AV H j−1 = V H j.

Therefore, since b = Ve1,

K = (b Ab · · ·An−1b) = V (e1 He1 · · · Hn−1e1 ) .
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The matrix H being upper Hessenberg, one can prove easily that the matrix U =
(e1 He1 · · · Hn−1e1 ) is upper triangular since multiplying H j by H from the
left gives one more subdiagonal than in H j. Moreover, since H has a positive first
subdiagonal, the diagonal entries of U are positive. ut

Then, we introduce a QR factorization of the upper Hessenberg matrix H as

H = QR, (3.3)

where Q is upper Hessenberg orthogonal and R is upper triangular, the signs being
chosen such that the entries of the first row of Q are positive. We will see in Theo-
rem 3.1 that the first row of Q is directly related to GMRES convergence.

The orthonormal matrix W in the APS parametrization defines a basis of the space
AKn and we have

AK = WR̃, (3.4)

where R̃ is upper triangular. Starting the Arnoldi process with Ab instead of b yields
the orthonormal matrix W and an upper Hessenberg matrix H such that

AW = WH . (3.5)

Using these definitions and notation, we have the following results that characterize
some of the matrices previously defined.

Theorem 3.1 The lower triangular matrix UT defined by (3.1) and (3.2) is the Cholesky
factor of the matrix Y TY which is equal to KT K, where Y is the matrix involved in the
APS factorization and K is the Krylov matrix constructed from A and b. The Hessen-
berg matrix H of the Arnoldi process for {A,b} is given by

H = UCU−1. (3.6)

The orthonormal matrix Q and the matrix R in the QR factorization of H defined in
(3.3) are

Q = V TW = UY−1 = U−TY T , R = YCU−1. (3.7)

This implies the QR factorization Y = QTU. The matrix Q is upper Hessenberg and
its first row is hT where h is defined in Theorem (2.1). The matrices Q and R are also
related to the APS parametrization by the upper Hessenberg matrix H = RQ =
YCY−1 defined in (3.5).

The first n−1 columns of the upper triangular matrix R̃ in (3.4) are(
R
0

)
where R of order n− 1 is defined in Theorem 2.1 and the matrices R and R̃ are
related by

R̃ = RU. (3.8)

We also have the following factorizations

V T AT AV = RT R, (3.9)

KT AT AK = R̃T R̃, (3.10)

A = WRV T . (3.11)
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Proof Let us first consider the upper triangular matrix U in (3.1). From K = WY =
VU , we have

KT K = Y TW TWY = Y TY = UTV TVU = UTU.

From Proposition 3.1 the matrix U is upper triangular with positive diagonal entries.
Therefore, the matrix UT is the common Cholesky factor of Y TY and KT K. The
relation (3.6) for H that was given in [2] can, in fact, be proved independently of the
APS factorization. The proof is so simple that we give it for the convenience of the
reader. It is well-known that we have AK = KC. Using (3.1) we obtain AVU = VUC
and multiplying on the left by V T ,

HU = UC.

As we said before, the columns of the matrix W in the APS parametrization give a
basis of the Krylov space AKn and we defined AK = WR̃ where the matrix R̃ is
upper triangular. We now characterize this matrix. From K = VU it follows that

AK = AVU = V HU = WR̃.

But, since K = WY , we have AK = AWY = (WYCY−1W T )WY = WYC. Therefore,
R̃ = YC. From the structures of Y and C, this yields that the first n−1 columns of R̃
are (

R
0

)
.

The equality V HU = WR̃ gives

H = V TWR̃U−1 = QR,

where Q = V TW is orthogonal and R = R̃U−1 = YCU−1 is upper triangular. This
is a QR factorization of H. It gives the relation between both basis since W = V Q.
Moreover, it proves (3.8). To obtain other characterizations of Q we use the other
relation linking V and W (that is, WY = VU) and we obtain

Q = UY−1 = U−TY T .

This relation implies that Y = QTU , which is a QR factorization of Y . The orthogonal
factor QT is just the transpose of that of H. Moreover, Q is upper Hessenberg. Now
we have to prove that the entries of the first row of Q are positive. Let ĥ be the vector
of the first n−1 components of h. Note that with the hypothesis of Theorem 2.1 we
have ηn > 0. The inverse of the matrix Y is

Y−1 =
(

0 · · · 0 1/ηn
R−1 −R−1ĥ/ηn

)
. (3.12)

Let L̂ be the Cholesky factor of

L̂L̂T = RT R−RT ĥĥT R. (3.13)
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It exists since the symmetric matrix on the right-hand side is RT (I− ĥĥT )R and I−
ĥĥT is positive definite because ‖ĥ‖< 1. Then

U =


1 ĥT R
0
...
0

L̂T

 . (3.14)

We have this result for U since

Y TY =
(

1 ĥT R
RT ĥ RT R

)
.

The results for Y−1 and U in (3.12) and (3.14) imply that

QT e1 = Y−TUT e1 = Y−T
(

1
RT ĥ

)
,

and therefore

QT e1 =
(

ĥ
1

ηn
− ‖ĥ‖2

ηn

)
.

We remark that since ‖h‖2 = ‖ĥ‖2 +η2
n = 1,

1
ηn

− ‖ĥ‖2

ηn
= ηn.

Therefore, the first row of Q is hT and its elements are positive. Hence, the GMRES
residual norm convergence curve is fully described by the first row of the orthogonal
matrix in the QR factorization of H defined in (3.3).

Since H = QR = V T AV , we have a factorization of the matrix A as

A = V QRV T = V Q(RQ)QTV T = WRQW T = WH W T ,

where the matrix H = RQ = YCY−1 is upper Hessenberg. Since

H = UCU−1 = QYCY−1QT ,

we obtain the relation H = QH QT , between the Hessenberg matrices H and H .
Finally, let us prove relations (3.9) to (3.11). Since

W = V Q = V HR−1 = AVR−1 (3.15)

and from the orthonormality of W we have

RT R = V T AT AV.

Relation (3.15) also gives
A = WRV T .

This means that using the orthonormal bases of Kn and AKn we can reduce A to
upper triangular form. For the matrix R̃, we have

R̃T R̃ = KT AT AK.

ut
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One can also prove other relevant relations. Some of the matrices we have seen be-
fore are Krylov matrices. We have already seen that U = (e1 He1 · · · Hn−1e1 ).
The matrices R̃ and Y are also Krylov matrices as stated in the following proposition.

Proposition 3.2 The matrix R̃ in the QR factorization of AK given by (3.4) is

R̃ = (H h · · · H nh) .

The matrix Y in the APS factorization is

Y = (h H h · · · H n−1h) .

Proof We have

R̃ = W T (Ab · · · Anb) .

Since A =WH W T , we obtain A j =WH jW T . The relation h =W T b yields the result
for R̃. The relation for R̃ immediately gives the result for Y since R̃ = YC = H Y .

Note that the expressions for R̃ and U give the relation

(H h · · · H nh) = R (e1 He1 · · · Hn−1e1 ) .

ut

Theorem 3.2 The GMRES residual norm convergence curve described by h is char-
acterized by the following relation,

[bT Ab, bT A2b, . . . ,bT An−1b] = ĥT R, ηn = (1− ĥT ĥ)1/2, (3.16)

where ĥ is the vector of the first n− 1 components of h defined in Theorem 2.1 and
the upper triangular matrix R in the APS parametrization is such that

RT R =


bT AT

bT (A2)T

...
bT (An−1)T

(Ab A2b . . . An−1b) . (3.17)

Proof Relations (3.16) and (3.17) are obtained by comparing the matrices Y TY and
KT K. ut

Note that the matrix RT is not necessarily the Cholesky factor of the Gram matrix
given by (3.17) unless the diagonal entries of R are positive. Theoretically (that is, in
exact arithmetic) GMRES residual convergence is contained in equations (3.16) and
(3.17). They give the relation between A, b and h. Of course, numerically, the vector
h must not be computed using (3.16).

It is also worth considering the matrix H in greater detail.



GMRES and the Arioli, Pták, and Strakoš parametrization 9

Theorem 3.3 Let L̂ be the Cholesky factor defined by equation (3.13), l be the vec-
tor l = RT ĥ and l̃ = −L̂−1l. Let β0 and β be given by β0 = −α0(L̂−T )n−1,n−1,
β = (β1 · · · βn−1 )T with β1 = l̃T

n−1−α1(L̂−T )n−1,n−1, and βi−1 = (L̂−T )i−2,n−1−
αi−1(L̂−T )n−1,n−1, i = 3, . . . ,n. Then there exists a nonsingular lower triangular ma-
trix L̃, such that

CU−1 =
(

0 β0
L̃−T β

)
. (3.18)

The Hessenberg matrix H given by the Arnoldi process for A and b is

H =
(

lT L̃−T β0 + lT β

L̂T L̃−T L̂T β

)
. (3.19)

Proof The inverse of the matrix U is

U−1 =
(

1 −lT L̂−T

0 L̂−T

)
.

The matrix CU−1 is upper Hessenberg. Its entries are obtained from l and L̂. Since
the first row of C is zero except for the last element (which is −α0), the first row of
CU−1 is (using Matlab–like notations)

(CU−1)1,: = (0 · · · 0 β0 ) .

The second row of CU−1 is the same as the first row of U−1 except for the last
element,

(CU−1)2,: = (1 l̃T
1 · · · l̃T

n−2 [l̃T
n−1−α1(L̂−T )n−1,n−1] ) .

The submatrix of CU−1 for the rows 3 to n and the columns 1 to n−1 is given by

(CU−1)3:n,1:n−1 = (0 (L̂−T )1:n−2,1:n−2 ) ,

since CU−1 is upper Hessenberg. The elements of the last column from 3 to n are

βi−1 = (CU−1)i,n = (L̂−T )i−2,n−1−αi−1(L̂−T )n−1,n−1, i = 3, . . . ,n.

Then we can write CU−1 in blockwise form as in (3.18) where L̃ is lower triangu-
lar. Note that only the last column of CU−1 depends on the coefficients α j in the
companion matrix through β0 and β .

Finally, we have to multiply from the left by U to obtain (3.19). ut

It is interesting to remark that only the last column of H depends on the co-
efficients α j that define the companion matrix C. Hence, keeping everything else
the same, if we change the coefficients α j (and therefore the eigenvalues of A),
only the last column of H will be changed. Moreover, the principal submatrices
Hk, k = 1, . . . ,n−1 of H do not depend on α j, j = 0, . . . ,n−1. Note that the eigen-
values of the matrices Hk are used as approximations of the eigenvalues of A in the
Arnoldi algorithm. Our results do not mean that the Arnoldi algorithm does never
deliver good approximations of the eigenvalues. This is a subtle point. Assume that
we have a matrix A for which the Ritz values converge towards the eigenvalues. The
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APS parametrization and our results show that, in the class of matrices having the
same residual norms as A, we can construct matrices with other sets of eigenvalues,
choosing them far from the Ritz values which are the same for all the matrices in the
class of A, constructed with the same matrices W and Y . In fact, it is shown in [2] that
one can construct matrices having prescribed residual norms as well as prescribed
Ritz values and eigenvalues.

We end this section by considering the matrix V whose columns are the orthonor-
mal basis vectors of Kn. From (3.7) we know that V = WQT = WYU−1. We already
know that the first row of Q is hT but the orthonormal matrix Q is fully characterized
in the following theorem.

Theorem 3.4 (Theorem 4 of [7]) Let Ľ be the lower triangular Cholesky factor of
the positive definite matrix I − ĥĥT and S be a diagonal matrix whose diagonal
entries are ±1 such that the diagonal entries of S R are positive. Then

Q =
(

ĥT ηn

S ĽT −S ĽT ĥ
ηn

)
. (3.20)

Moreover, the entries of ĽT for j ≥ i are

(ĽT )i, j =−
ηiη j√

η2
i+1 + · · ·+η2

n

√
η2

i + · · ·+η2
n

, (ĽT )i,i =

√
η2

i+1 + · · ·+η2
n√

η2
i + · · ·+η2

n

.

(3.21)

Proof This is proved by computing YU−1 and using the results of [4]; see [7]. ut

Using this result for the orthonormal matrix Q we obtain a characterization of V .

Theorem 3.5 With the notation of Theorem 3.4, the matrix V of the orthonormal
basis vectors for Kn(A,b) is

V = WQT = W
(

ĥ ĽS
ηn − ĥT ĽS

ηn

)
. (3.22)

ut
We see that if we only change the companion matrix C in the APS parametriza-

tion, keeping everything else the same, the matrix V is not changed.

4 The GMRES iterates

In this section we express the iterates xk given by the GMRES algorithm using the
matrices involved in the parametrization of [1]. This can be done in at least two
different ways. We have assumed that the starting vector is x0 = 0. Then the iterates
are computed as

xk = Vkzk,

where Vk is the matrix of the first k columns of V , that is, the first k orthonormal basis
vectors of the Arnoldi process. The vector zk is computed by minimizing the norm of
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the residual rk. We have characterized V in Theorem 3.5. Writing the solution of the
minimization problem using the normal equation, one can show that

zk = L̃T
k R−1

k hk, (4.1)

with the lower triangular matrix L̃ defined in Theorem 3.3, hk the vector of the first k
components of h and Rk the principal matrix of order k of R. It gives that

xk = WYU−1


L̃T

k R−1
k hk
0
...
0

 . (4.2)

However, Z. Strakoš suggested an easier way for obtaining the iterates as a func-
tion of the matrices in the parametrization.

Theorem 4.1 Let hk be the vector of the first k components of h defined in Theo-
rem 2.1 and Rk be the principal matrix of order k of the matrix R defined by (2.1).
The GMRES iterates are given by

xk = WYC−1


0

R−1
k hk
0
...
0

 = WY


R−1

k hk
0
...
0

 , k < n, (4.3)

with only one zero element at the top of the vector on the first right-hand side.

Proof The residual vector rk = b−Axk can be written as

rk = b−Wkhk,

where Wk is the matrix of the first k columns of W . This is obtained because the
residual is such that

‖rk‖= min
u∈AKk

‖b−u‖,

see [6], [3]. Then we have

xk = A−1Wkhk = A−1W



η1
...

ηk
0
...
0


.
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But A−1W = WYC−1Y−1. Using the expression of Y−1 in equation (3.12) we have

Y−1



η1
...

ηk
0
...
0


=


0

R−1
k hk
0
...
0

 .

This gives the first result. The inverse of the companion matrix C is

C−1 =



−α1
α0

1 0 · · · 0
−α2

α0
0 1 0 · · ·

... 0
. . . . . . . . .

−αn−1
α0

. . . . . . 1
− 1

α0
0 · · · 0 0


. (4.4)

Therefore,

C−1


0

R−1
k hk
0
...
0

 =


R−1

k hk
0
...
0


and this yields the second relation. ut

Theorem 4.1 has the important consequence that the GMRES iterates xk for k < n
have no explicit relationship with the coefficients α j of the characteristic polynomial.
It is now worth considering the matrix YC−1 since it is involved in equation (4.3) and
it will also be needed in the next section.

Theorem 4.2 We have

YC−1 =

z(α) h

Rn−2
0
0

 ,

where z(α) is a vector (depending on the α j, j = 0, . . . ,n−1) given by

z(α) =
(−α1

α0
ĥ+Rt

−α1
α0

ηn

)
=−α1

α0
h+

(
Rt
0

)

with t ∈�n−1, t =
(
−α2

α0
, · · · −αn−1

α0
, − 1

α0

)T .
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Proof From equation (4.4) the inverse of the companion matrix can be written in
blockwise form as

C−1 =
(
−α1

α0
eT

1
t S

)
,

where S is the shift matrix with ones on the first superdiagonal. Multiplying from the
left with Y we obtain

YC−1 =
(−α1

α0
ĥ+Rt ĥeT

1 +RS
−α1

α0
ηn ηneT

1

)
.

Since RS is obtained from R by shifting by one column to the right, its first column is
zero and, obviously, the second column of YC−1 is just h. ut

This result shows that only the first column of YC−1 depends on the coefficients
α j. Note that, in the expression (4.3), this first column is multiplied by zero.

5 The GMRES error vectors

Since from the previous section we have an expression for the iterates xk we may
want to compute the error vector εk = x− xk. For this we have to obtain the exact
solution x = A−1b. Using the APS parametrization of A we have

x = (WYCY−1W T )−1b = WYC−1Y−1W T b = WYC−1e1,

since W T b = h and Y−1h = e1.

Theorem 5.1 Let hk the vector of the first k components of h defined in Theorem 2.1.
The error vector in GMRES is given by

εk = WYC−1

 1
−R−1

k hk
0

 = W (z(α)−

h


Rk−1

0
...
0


R−1

k hk), (5.1)

where z(α) is defined in Theorem 4.2.

Proof From the previous results, we have

εk = x− xk = WYC−1(e1−

 0
R−1

k hk
0

).

This directly gives the result. The second expression is obtained with Theorem 4.2.
Note that Wz(α) is the exact solution of the linear system. ut

Theorem 5.1 shows that the error vector εk depends on the eigenvalues through
the vector z(α).
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6 The GMRES residual vectors

As we claimed before, the iterates xk,k < n do not depend on the coefficients α j, j =
0, . . . ,n− 1 in the sense that if we keep the given W and Y and change C we obtain
the same iterates. Since we have an expression for xk, we can compute the residual
rk = b−Axk using the results of Theorem 4.1.

Theorem 6.1 Using the notation of Theorem 3.4 the GMRES residual vector rk, 0 <
k < n is given by

rk = W



0
...
0

ηk+1
...

ηn


= K

 1
−R−1

k hk
0

 = V

η2
k+1 + · · ·+η2

n
−SkĽT

k hk
0

 .

Proof We have already seen in section 4 that

rk = W
(

h−
(

hk
0

))
= W



0
...
0

ηk+1
...

ηn


(6.1)

and ‖rk‖2 = η2
k+1 + · · ·+η2

n . From (5.1), using WY = K and KC−1 = A−1K, we have

εk = A−1K

 1
−R−1

k hk
0

 .

Since Aεk = rk, this directly gives

rk = K

 1
−R−1

k hk
0

 . (6.2)

This is the decomposition of the residual vector on the basis given by the Krylov
vectors (the columns of K). Since K = VU and

U

 1
−R−1

k hk
0

 =

η2
k+1 + · · ·+η2

n

−L̂T
k R−1

k hk
0

 ,

remarking that −L̂T
k R−1

k hk =−SkĽT
k hk, we obtain

rk = V

η2
k+1 + · · ·+η2

n
−SkĽT

k hk
0

 , k > 0, r0 = Ve1. (6.3)
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This gives the decomposition of rk on the basis of the Arnoldi vectors which are the
columns of V . It is interesting to note that rk can be described in terms of the first
k +1 Arnoldi vectors as well as the last n− k basis vectors of AKn given by W . ut

We can compute what are the elements of ĽT
k hk from the results in (3.21). It is

easily seen that

(ĽT
k hk) j =

η j(η2
k+1 + · · ·+η2

n )√
η2

j + · · ·+η2
n

√
η2

j+1 + · · ·+η2
n

.

The last element is

(ĽT
k hk)k = ηk

√
η2

k+1 + · · ·+η2
n√

η2
k + · · ·+η2

n

.

Summarizing, we have the following result.

rk = (η2
k+1 + · · ·+η

2
n )V



1
S1,1

η1√
η2

1 +···+η2
n
√

η2
2 +···+η2

n
...

Sk,k
ηk√

η2
k +···+η2

n

√
η2

k+1+···+η2
n

0
...
0


, (6.4)

with S j, j =±1.
In (6.4) the residual vector rk depends on its own norm ‖rk‖. However, remember

that the η j’s were prescribed and thus the previous result just shows what rk is when
all the residual norms are prescribed. Note that

η j√
η2

j + · · ·+η2
n

√
η2

j+1 + · · ·+η2
n

=

√
1

‖r j‖2 −
1

‖r j−1‖2 .

7 Conclusion

In this paper we have further discussed the parametrization introduced in [1] related
to prescribing the residual norms in GMRES. In particular we provided expressions
for the GMRES iterates and error vectors. This showed that the iterates do not depend
on the coefficients of the characteristic polynomial (and therefore on the eigenvalues).
However, the error vectors do depend on the eigenvalues through the exact solution
of the linear system. We have also shown that the principal submatrices of the Hes-
senberg matrix H computed by the Arnoldi process do not depend on the eigenvalues
of A. All these results have to be understood in the sense that in the parametrization
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described in [1], keeping W and Y , we can change the companion matrix C without
changing the iterates, the Arnoldi basis vectors and the principal submatrices of H.

In a forthcoming paper we will explain how, in the class of real matrices de-
fined by the APS parametrization, we can choose the spectrum (or more exactly the
coefficients of the characteristic polynomial) to prescribe the exact solution of the lin-
ear system (1.1). Additionally one can compute the coefficients of the characteristic
polynomial (and therefore the spectrum) to have a prescribed error vector at a given
iteration. We will also consider prescribing the norm of the error at every iteration. It
turns out that there is a condition that has to be satisfied for the construction of real
matrices having prescribed error norms as well as prescribed residual norms.
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