
CHAPTER 0

Gaussian elimination for the solution of
linear systems of equations

Gérard Meurant

Commissariat à l’Energie Atomique, Centre de Bruyeres–le–Chatel, BP12 91680
Bruyeres–le–Chatel, France

Contents

1. Numerical solution of general linear systems 6
1. Introduction to Gaussian elimination 6

2. Examples of problems 11
3. The general form of Gaussian elimination 11
4. Gaussian elimination for symmetric systems 23
5. Gaussian elimination for H–matrices 36
6. Block methods . 43
7. Particular systems 43

2. Error analysis . 46
8. Round off error analysis 46
9. Iterative refinement 69
10. Geometric analysis 71

3. Vector and parallel algorithms for general systems 75
11. Introduction . 75
12. BLAS routines . 76
13. LAPACK (and follow ons) 77
14. Triangular systems solvers on distributed memory computers 78
15. LU factorization on distributed memory computers 85

4. Gaussian elimination for sparse linear systems 88
16. Introduction . 88
17. Basic storage schemes and fill–in 88
18. Definitions and graph theory 92
19. Band and envelope numbering schemes for symmetric matrices 103
20. The minimum degree ordering for symmetric matrices 111
21. The nested dissection ordering for symmetric matrices 113
22. The multifrontal method 120
23. Non symmetric sparse matrices 126
24. Numerical stability for sparse matrices 132

5. Parallel algorithms for sparse matrices 134
25. Introduction 134
26. Symmetric positive definite systems 134
27. Non symmetric systems 143

1

2 G. Meurant

References . 145

TEX MACROS FOR MATHEMATICS
c© Elsevier Science Publishers B.V., 1992

Gaussian elimination 3

Enseigner la vie sans la vivre était le crime de l’innocence la plus détestable
Albert Cossery

Mendiants et orgueilleux, Paris 1955

This approximately translates into:
Teaching life without living it was the crime of the most hateful innocence

4 G. Meurant

Foreword

I have tried to do my best and to provide a review of the main stream of research
on Gaussian elimination that was done during the last thirty years. I hope I have
been fair to everybody. Anyway there are probably some mistakes and some topics
or some people could have been forgotten and I apologize for that.

Notice that some of the given references are not cited in the text. We give them for
completeness. Some interested readers could like to learn more on some particular
points and may want to have a look at these papers.

The method of successive elimination of the unknowns for linear systems is quite
old. It is stated in [236] that in the second century the Chinese were already solv-
ing linear systems. Many works and papers have been published since then. From
[335], we know that Lagrange was already using what we call Gaussian elimination
before Gauss. However, this method is so well known under the name of Gaussian
elimination that we choose to continue the tradition.

Gaussian elimination 5

This work is dedicated to the fond memory of James H. Wilkinson (1919–1986).
I had the privilege to know him quite well in 1982 when he was a professor in
Stanford. He was certainly a great numerical analyst that has inspired many of us,
particularly for his work about round off error analysis for Gaussian elimination
but, more importantly, he was a very nice human being.

For an outline of his career and his work, see the interesting paper by Beresford
Parlett in [283].

James H. Wilkinson, Stanford, 1982

This work is also dedicated to the memory of my father Georges Meurant (1921–
1994).

6 G. Meurant

1. Numerical solution of general linear systems

1. Introduction to Gaussian elimination

The problem we are concerned with is obtaining the numerical solution of a linear
system

Ax = b (1)

on a computer, where A is a square non singular matrix (i.e. det(A) �= 0) of order
n, b is a given vector and x is the vector we are looking for. The entries of A and
the elements of b and x can be real or complex numbers denoted respectively by
ai,j , bi and xi, i, j = 1, . . . , n.

Of course, the solution x of eq.(1) is given by

x = A−1b

where A−1 denotes the inverse of A. Unfortunately, in most cases, A−1 is not
explicitly known, except for some special problems and/or for small values of n.
But, as we all know, the solution can be expressed by Cramer’s formulae (see for
instance Gantmacher[1959]):

xi =
1

det(A)

∣∣∣∣∣∣∣∣
a1,1 · · · a1,i−1 b1 a1,i+1 · · · a1,n

a2,1 · · · a2,i−1 b2 a2,i+1 · · · a2,n

... · · · ...
...

... · · · ...
an,1 · · · an,i−1 bn an,i+1 · · · an,n

∣∣∣∣∣∣∣∣
, i = 1, . . . , n

(2)

The computation of the solution x by eq.(2) requires the evaluation of n + 1 deter-
minants of order n. Clearly, this implies that this method will require more than
(n+1)! operations (multiplications and additions) to deliver the solution. This is far
too much even for small values of n. It gives already more than 4 107 operations for
n = 10. Today, it is well known and recognized that there are much better methods
than Cramer’s rule which is almost never used for solving linear systems.

There are two main classes of algorithms to obtain a solution to eq.(1): iterative
methods and direct methods. Iterative methods define a sequence of approxima-
tions that are expected to be closer and closer in some given norm to the true
solution, stopping the iterations by using some predefined criterion, obtaining a
vector which is only an approximation of the solution. Direct methods try to com-
pute the solution doing some combinations and modifications of the equations and
after a finite number of floating point operations. Of course, as computer floating
point operations are only done with a certain precision, the computed solution is
generally different from the exact solution even with a direct method.

Gaussian elimination 7

The most used direct methods for general matrices belong to a class collectively
known as Gaussian elimination. There are many variations around the same basic
idea and we will describe some of them in the next sections.

The basis of the method is easily explained on a small example and then, it
can be extended to any value of n. The main idea is to successively eliminate the
unknowns. Consider the following set of linear equations,

x1 + x2 = 2
4x1 + 5x2 + 3x3 = 12
4x1 + 6x2 + 7x3 = 17

(3)

whose unique solution is x1 = x2 = x3 = 1. Eqs.(3) can be written in matrix form
as

Ax =

 1 1 0

4 5 3
4 6 7

x =

 2

12
17

 . (4)

The determinant of A is equal to 1. Therefore, as we said, there is a unique solution
to eq.(3). The first equation of eq.(3) is used to express x1 as a function of x2,

x1 = 2 − x2. (5)

Then, using eq.(4), x1 is eliminated in the second and third equations giving a new
(reduced) system of order 2, involving only x2 and x3,

x2 + 3x3 = 4
2x2 + 7x3 = 9

(6)

In the second step, x2 is expressed as a function of x3 using the first equation of
eq.(6),

x2 = 4 − 3x3. (7)

Using eq.(7) in the last equation of eq.(6), we get a linear system involving only x3

whose solution is immediately given,

x3 = 1.

Knowing the value of x3, we can compute x2 with eq.(7) which gives

x2 = 1.

Finally, eq.(5) gives

x3 = 1.

8 G. Meurant

The previous elementary elimination method can be cast in a matrix framework.
Eliminating x1 from the second equation of eq.(3) amounts to do a linear combi-
nation of the first two equations. This is obtained by (left) multiplying A by the
matrix

E2,1 =

 1 0 0
−4 1 0
0 0 1

 .

Multiplying the system of eq.(4) by E2,1 replaces the second equation by the second
equation minus four times the first one, leaving the two others invariant,

E2,1A =

 1 1 0

0 1 3
4 6 7

 .

Elimination of x1 from the last equation of eq.(3) is obtained by (left) multiplying
by

E3,1 =

 1 0 0

0 1 0
−4 0 1

and we obtain

E3,1(E2,1A) =

 1 1 0

0 1 3
0 2 7

 .

Then, all the elements of the first column of A below the diagonal element have
been reduced to 0. Remark that the subsystem that corresponds to the second and
third rows and columns of this matrix is precisely the same as in eq.(6).

Elimination of x2 from the third equation is obtained by (left) multiplying by

E3,2 =

 1 0 0

0 1 0
0 −2 1

and

E3,2(E3,1E2,1A) =

 1 1 0

0 1 3
0 0 1

 .

Therefore, when A is successively (left) multiplied by E2,1, E3,1 and E3,2, it is
reduced to an upper triangular form. Notice that E3,1 and E2,1 commute, as we
have

 1 0 0
0 1 0
β 0 1

 1 0 0

α 1 0
0 0 1

 =

 1 0 0

α 1 0
0 0 1

 1 0 0

0 1 0
β 0 1

 =

 1 0 0

α 1 0
β 0 1

Gaussian elimination 9

Remark that the first column of the product is the “superposition” of the first
columns of E3,1 and E2,1. Matrices E2,1, E3,1 and E3,2 are non singular as their de-
terminants are equal to 1. Therefore, the linear system of eq.(4) can be transformed
into the equivalent system,

E3,2E3,1E2,1Ax = E3,2E3,1E2,1b, (8)

where

b =

 2

12
17

 .

Let

L−1 = E3,2E3,1E2,1 =

 1 0 0
−4 1 0
4 −2 1

 .

Eq.(8) reduces to

Ux =

 1 1 0

0 1 3
0 0 1

x = L−1b =

 2

4
1

 . (9)

As the matrix U of eq.(9) is upper triangular, this system which is equivalent to
eq.(4), is easily solved starting with the last equation and moving backwards. This
process is usually called backward (or back) substitution.

Besides solving the linear system, we have also seen that

L−1A = U.

Therefore,

A = LU.

L−1 being lower triangular, its inverse L is also lower triangular. The matrix A has
been factored into the product of a lower and an upper triangular matrices. The
matrix L is easily obtained from L−1. First, we verify that if

E3,1E2,1 =

 1 0 0

α 1 0
β 0 1

 ,

then

E−1
2,1E

−1
3,1 =

 1 0 0
−α 1 0
−β 0 1

 .

10 G. Meurant

Moreover, if

E3,2 =

 1 0 0

0 1 0
0 γ 1

 ,

then

E−1
3,2 =

 1 0 0

0 1 0
0 −γ 1

 ,

and, hence

L = E−1
2,1E

−1
3,1E

−1
3,2 =

 1 0 0
−α 1 0
−β 0 1

 1 0 0

0 1 0
0 −γ 1

 =

 1 0 0
−α 1 0
−β −γ 1

 .

L is obtained straightforwardly from the elementary matrices Ei,j by simply chang-
ing the signs of the non zero off diagonal elements.

Of course, not all systems are as simple as the previous example. Remark that:
1) in this example, we were able to work only with integers. In real life problems,
we have to work with the computer representations of real (or complex) numbers.
We will look later on at the perturbation and stability problems related to this fact.
This sometimes can make the computed solution to greatly differ from the exact
solution.
2) not all systems have an LU factorization, even if they are non singular. Consider,
for instance, a system with the following matrix,

A′ =

 1 1 0

4 4 3
4 6 7

 ,

which differs only from A by the (2,2) coefficient. If we use the same right hand
side as in eq.(4), the first reduced system is

0x2 + 3x3 = 4
2x2 + 7x3 = 9

The coefficient of x2 in the first equation is 0. So, we cannot use this equation to
express x2 as a function of the other unknowns. Of course, the solution is to use
another equation and this corresponds to applying a permutation to the matrix A′.
In this simple example, we directly get x3 = 4/3 and then, we compute x2 using
the last equation.

As we shall see, the general result for all non singular matrices is that there exists
a permutation matrix P such that,

PA = LU,

Gaussian elimination 11

where L is lower triangular and U is upper triangular.

2. Examples of problems

An important source of problems which require the solution of linear systems is
the numerical solution of partial differential equations (PDEs). These equations
(or systems of equations) modeling some physical phenomena are discretized with
different kind of methods like finite differences, finite elements or spectral methods.
Much in favor today are the finite element methods. However, finite differences or
finite volume methods are still in use, particularly in computational fluid dynamics.
All these discretization schemes lead to some large linear (and sometimes non linear)
systems of equations. Generally, the matrices involved in these systems contain
many zero entries. They are called sparse systems.

Of course, PDEs are not the only source of sparse matrices. Many examples are
given in the book by Duff, Erisman and Reid ([1986]) like, for instance, power
networks, problems in chemistry, etc. . .

However, solving large dense (with no or a few zero entries) linear systems still
occur. An example is given by boundary integral methods. A problem that is of
great importance today is solving the Maxwell equations for computing Radar Cross
Sections giving the response of some objects to incoming radar waves. This problem
is posed in an unbounded domain surrounding the object to study. Therefore, one
way to get back to a bounded region is to write down an integral equation on the
surface of the object which is discretized with finite elements and gives rise to a
large dense linear system. Spectral methods also need to solve dense linear systems.
Other examples of dense systems are given by A. Edelman ([1993]).

It is generally thought that solving linear systems is one of the most important
operations in scientific computing as most physical problems lead to linear systems.
At least, this is probably where most of the computer time is spent for scientific
computing.

3. The general form of Gaussian elimination

In this Section, we generalize the method we have introduced on a small example
in the first Section of this Chapter. First, we describe the method without permu-
tations, exhibiting the necessary and sufficient conditions for a matrix to have an
LU factorization. Then, we will introduce permutations to handle the general case.

Gaussian elimination without permutations
Let

A =

a1,1 . . . a1,n

...
...

...
an,1 . . . an,n

 ,

and b be given. The problem to be solved is the linear system

Ax = b.

12 G. Meurant

The first step of the algorithm is the elimination of x1 into the equations 2 to n.
This is done through n−1 steps. Suppose that a1,1 �= 0, a1,1 is called the first pivot.
To eliminate x1 from the second equation, we (left) multiply A by

E2,1 =

1
−a2,1
a1,1

1
0 0 1
...

...
.

0 0 1

 .

More generally, to eliminate x1 from the ith equation, we (left) multiply by

Ei,1 =

1
0 1
...

. . .

0
. . .

− ai,1
a1,1

0 . . . 0 1

0
. . .

...
. . .

0 0 1

,

the non zero terms of the first column being in positions (1, 1) and (i, 1).

Lemma 3.1. Let j > i, then

Ei,1Ej,1 = Ej,1Ei,1 =

1
0 1
...

. . .

0
. . .

− ai,1
a1,1

. . .

0
. . .

...
. . .

0
. . .

− aj,1
a1,1

. . .

0
. . .

...
. . .

0 1

Proof. Straightforward matrix multiply.

Gaussian elimination 13

Let L1 = En,1En−1,1 · · ·E2,1 and A2 = L1A. We denote the elements of A2 by
a
(2)
i,j . A2 has the following structure,

A2 =

a1,1 x . . . x
0 x . . . x
...

...
...

0 x . . . x

 ,

where the x’s correspond to (possibly) non zero elements that are defined in the
following lemma.

Lemma 3.2.

a
(2)
i,j = ai,j − ai,1a1,j

a1,1
, 2 � i � n, 1 � j � n

a
(2)
1,j = a1,j , 1 � j � n

Proof. This is just the result of the multiplication by L1.

Now, we describe the k–th step of the algorithm. Suppose we have zeroed the
elements below the diagonal in the k − 1 first columns and let Ak be the matrix
that has been obtained,

Ak =

a
(k)
1,1 a

(k)
1,n

. . .
...

a
(k)
k,k a

(k)
k,n

a
(k)
k+1,k a

(k)
k+1,n

...
...

...
...

a
(k)
n,k a

(k)
n,n

and a
(k)
k,k �= 0, a(k)

k,k is called the k–th pivot.
For further references, we define a quantity gA which is called the growth factor,

gA =
maxi,j,k |a(k)

i,j |
‖A‖∞ .

Sometimes, gA is defined as

gA =
maxi,j,k |a(k)

i,j |
maxi,j |ai,j | .

14 G. Meurant

Let

Ei,k =

1
. . .

1
0 1
...

. . .

0
. . .

− a
(k)
i,k

a
(k)
k,k

. . .

0
. . .

...
. . .

0 1

, i > k

where the element
a
(k)
i,k

a
(k)
k,k

is in row i and column k. The non diagonal elements that

are not explicitly given are 0. Let Lk = En,kEn−1,k · · ·Ek+1,k and Ak+1 = LkAk.

Lemma 3.3.

Lk =

1
. . .

1
−a

(k)
k+1,k

a
(k)
k,k

1

...
. . .

−a
(k)
n,k

a
(k)
k,k

1

and Ak+1 has the following structure

Ak+1 =

a
(k+1)
1,1 a

(k+1)
1,n

. . .
...

a
(k+1)
k,k a

(k+1)
k,n

0 a
(k+1)
k+1,k+1 . . . a

(k+1)
k+1,n

...
...

...
0 a

(k+1)
n,k+1 . . . a

(k+1)
n,n

Proof. Straightforward.

As for the first column, the elements of the j–th column are given by similar
expressions.

Gaussian elimination 15

Lemma 3.4.

a
(k+1)
i,j = a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

, k + 1 � i � n, k � j � n

a
(k+1)
i,j = a

(k)
i,j , 1 � i � k, 1 � j � n

and k + 1 � i � n, 1 � j � k − 1

Proof. This is the formula we obviously get when multiplying by Lk.

Lemma 3.5. Lk is non singular and

L−1
k =

1
. . .

1
a
(k)
k+1,k

a
(k)
k,k

1

...
. . .

a
(k)
n,k

a
(k)
k,k

1

Proof. Let

lk =

0
...
0

a
(k)
k+1,k

a
(k)
k,k

...
a
(k)
n,k

a
(k)
k,k

.

Clearly Lk = (I − lke
T
k) where ek = (0 . . . 0 1 0 . . . 0)T with the 1 in the

k–th position. Then, we verify that

L−1
k = I + lke

T
k ,

because,

L−1
k Lk = (I + lke

T
k)(I − lke

T
k),

= I − lke
T
k lke

T
k ,

and eT
k lk = 0.

16 G. Meurant

The previous algorithm is summarized in the following lemma.

Lemma 3.6. If for all k, 1 � k � n− 1, a(k)
k,k �= 0, then there exists a factorization

A = LU,

where L is lower triangular and has a unit diagonal and U is upper triangular.

Proof. The elimination process goes as follows,

A1 = A,

A2 = L1A1,

...
An = Ln−1An−1.

An is upper triangular and is therefore denoted by U . Hence,

Ln−1Ln−2 · · ·L1A = U.

The matrices Li, 1 � i � n− 1 are non singular. Then,

A = (L−1
1 · · ·L−1

n−1)U.

The product of unit lower triangular matrices is unit lower triangular. Hence,

L = L−1
1 · · ·L−1

n−1

is a lower triangular matrix with a unit diagonal. Moreover, it is easy to see that

L =

1
a
(1)
2,1

a
(1)
1,1

. . .

...
. . . 1

...
a
(k)
k+1,k

a
(k)
k,k

1

...
...

.
a
(1)
n,1

a
(1)
1,1

. . .
a
(k)
n,k

a
(k)
k,k

. . .
a
(n−1)
n,n−1

a
(n−1)
n−1,n−1

1

.

As L−1
i L−1

i+1 = I + lie
T
i + li+1e

T
i+1, we have

L = L−1
1 · · ·L−1

n−1 = I + l1e
T
1 + · · · ln−1e

T
n−1

Gaussian elimination 17

Lemma 3.7. If the factorization A = LU exists, it is unique.

Proof. Suppose there exist two such factorizations, A = L1U1 = L2U2, then

L−1
2 L1 = U2U

−1
1 .

The matrix on the left hand side is lower triangular with a unit diagonal and the
matrix on the right hand side is upper triangular. Therefore,

L−1
2 L1 = U2U

−1
1 = I

and the decomposition is unique.

Now, we derive the conditions under which there exists an LU factorization.

Theorem 3.1. A non singular matrix A has a unique LU factorization if and only
if all the principal minors of A are non zero. That is

A

(
1 2 . . . k
1 2 . . . k

)
�= 0, k = 1, . . . , n

where

A

(
i1 i2 . . . ip
k1 k2 . . . kp

)
=

∣∣∣∣∣∣∣∣∣

ai1,k1 ai1,k2 . . . ai1,kp

ai2,k1 ai2,k2 . . . ai2,kp

...
...

...
aip,k1 aip,k2 . . . aip,kp

∣∣∣∣∣∣∣∣∣
.

Moreover,

a
(k)
k,k =

A

(
1 2 . . . k
1 2 . . . k

)

A

(
1 2 . . . k − 1
1 2 . . . k − 1

) ,

and

a
(k)
k,j =

A

(
1 2 . . . k − 1 k
1 2 . . . k − 1 j

)

A

(
1 2 . . . k − 1
1 2 . . . k − 1

) , j > k.

Proof. Suppose that there exists an LU factorization. We know from the proof of
Lemma 3.6 that

Ak+1 = Lk . . . L1A.

18 G. Meurant

Therefore,

A = L−1
1 . . . L−1

k Ak+1,

and we have also

A = LU.

We can write these matrices in block form:

A =
(

A1,1 A1,2

A2,1 A2,2

)
, L =

(
L1,1 0
L2,1 L2,2

)
, U =

(
U1,1 U1,2

0 U2,2

)
,

and from Lemma 3.6,

L−1
1 . . . L−1

k =
(

L1,1 0
L2,1 I

)
, Ak+1 =

(
U1,1 U1,2

0 W2,2

)
,

where all the matrices in position (1, 1) are square of order k. By identification, we
have

A1,1 = L1,1U1,1

A2,2 = L2,1U1,2 + L2,2U2,2

A2,2 = L2,1U1,2 + W2,2

Therefore, L1,1U1,1 is the LU factorization of the leading principal submatrix of
order k of A and L2,2U2,2 is the factorization of the matrix W2,2 in the bottom
right hand corner of Ak+1 as we have W2,2 = L2,2U2,2.

Notice that det(A) = det(Ak+1). We have det(L1,1) = 1 and det(A1,1) =
det(U1,1). U1,1 being upper triangular, its determinant is equal to the product of
the diagonal elements. Therefore, for all k,

det(A1,1) = a
(1)
1,1 · · · a(k)

k,k.

This shows that the principal minors are non zero and the first formula. Now, we
proceed in the same way as in Wilkinson ([1965]). We have

(
A1,1

A2,2

)
=
(

L1,1

L2,1

)
U1,1.

Let Ai1,1 denotes the matrix formed by the first k− 1 rows and the i–th row of the
first k columns of A and let Li1,1 be defined in a similar way, then

Ai1,1 = Li1,1U1,1.

Gaussian elimination 19

It is easy to see that Li1,1 is triangular and

det(Li1,1) = li,k =
a
(k)
i,k

a
(k)
k,k

.

Therefore, as det(Ai1,1) = li,k det(U1,1),

li,k =
det(Ai1,1)
det(A1,1)

=
A

(
1 2 · · · k − 1 i
1 2 · · · k − 1 k

)

A

(
1 2 · · · k
1 2 · · · k

) .

Similarly, we have

(A1,1 A1,2) = L1,1 (U1,1 U1,2) .

This leads to

uk,i =
A

(
1 2 · · · k − 1 k
1 2 · · · k − 1 i

)

A

(
1 2 · · · k − 1
1 2 · · · k − 1

) ,

for the elements of U . The converse of the proof is easily derived by induction.

Gaussian elimination with permutations (partial pivoting)
We now allow for possible zero pivots at each step. If the first pivot a1,1 is zero,

we permute the first row with a row p such that ap,1 �= 0. This is always possible as
det(A) �= 0. This is done by left multiplication of A by a permutation matrix P1.
P1 is equal to the identity matrix except that rows 1 and p have been exchanged,

P1 =

0 0 . . . 0 1 0 . . . 0

0 1 0 . . . 0 . . .
...

...
.

...
0 . . . 0 1 0 . . .
1 0 . . . 0 0 0 . . .

0 0 1
. . .

...
...

...
. 0

0 0 . . . 0 1

.

Notice that P−1
1 = P1. On the permuted matrix, the algorithm is the same as

without permutations. We construct L1 such that A2 = L1P1A.

20 G. Meurant

Let us describe the k–th step. The main difference with what we saw before is
that the pivot can possibly be zero. If this is the case, it is possible to find a row
p such that a

(k)
p,k �= 0. The reason for this being that det(Ak) = det(A) �= 0 (as

seen from the proof of Theorem 3.1) and the determinant det(Ak) is equal to the
product of the first k−1 (non zero) pivots and the determinant of the matrix in the
right hand bottom corner. Therefore, this matrix is non singular. In fact, we choose
the non zero element which has the maximum modulus. This strategy of choosing
the pivot in the k–th column is called partial pivoting.

Then, we multiply Ak by the corresponding permutation matrix Pk and apply
the elimination algorithm,

Ak+1 = LkPkAk.

So, finally, we have

U = Ln−1Pn−1 · · ·L2P2L1P1A.

It may seem that we have lost the good properties of the Gaussian algorithm as
permutation matrices come in, even if some of them are equal to the identity matrix.
However, we have the following result.

Lemma 3.8. Let Pp be a permutation matrix representing the permutation between
indices p and q > p then, ∀k < p

LkPp = PpL
′
k.

where L′
k is deduced from Lk by the permutation of entries in rows p and q in

column k.

Proof. Recall that P−1
p = Pp and Lk = I − lke

T
k ,

L′
k = PpLkPp = Pp(I − lke

T
k)Pp = I − Pplke

T
k Pp

As p > k, Ppek = ek, therefore

L′
k = I − l′ke

T
k

where l′k = Pplk. Notice that the same is true for L−1
k as L−1

k = I + lke
T
k .

Now, we have the main result of this Section.

Theorem 3.2. Let A be a non singular matrix. Then, there exists a permutation
matrix P such that

PA = LU

Gaussian elimination 21

where L is lower triangular with a unit diagonal and U is upper triangular.

Proof. We have seen that

A = P1L
−1
1 P2 · · ·Pn−1L

−1
n−1U.

Then, we have from Lemma 3.8,

A = P1P2 · · ·Pn−1(L′′
1)−1 · · · (L′′

n−1)−1U,

where

(L′′
k)

−1 = Pn−1 · · ·Pk+1L
−1
k Pk+1 · · ·Pn−1,

corresponding to a permutation of the coefficients of column k.

We notice that, by definition, in the factorization of Theorem 3.2, we have |li,j | �
1 as we have chosen the pivot as the element of maximum modulus.

Once the factorization has been obtained and the permutation matrix P is known
(usually stored as a vector of indices as row permutations are not explicitly done
during the factorization), the linear system

Ax = b,

is transformed into

PAx = LUx = Pb,

and is solved as

Ly = Pb,

Ux = y,

by two triangular solves.

Gaussian elimination with other pivoting strategies
Pivoting strategies different from partial pivoting can be used. We can search

for the pivot not only in the lower part of the k–th column but in all the current
submatrix, the pivot being the element that realize maxi,j |a(k)

i,j |. This is called
complete pivoting. Then, we have to introduce not only row permutations but
also column permutations. This is obtained by multiplying from the right by a
permutation matrix. Finally, we obtain two permutation matrices P and Q such
that

PAQ = LU.

22 G. Meurant

The solution of the linear system is obtained through
Ly = Pb,

Uz = y,

x = QTz.

We will see later that complete pivoting have some advantages regarding stability.
However, the cost of finding the pivot is much larger than for partial pivoting.

Another strategy called rook’s pivoting has been introduced by Poole and Neal
([1992]). At the k–th step, the algorithm is the following. Let

r1 = min{r| |a(k)
r,k | � |a(k)

i,k |, k � i � n}
and

c1 = min{c| |a(k)
r1,c| � |a(k)

r1,j
|, k � j � n}.

If c1 = k, then a
(k)
r1,k

is the selected pivot. If c1 �= k, column c1 is searched for the
entry with maximum modulus. Let

r2 = min{r| |a(k)
r,c1 | � |a(k)

i,c1
|, k � i � n}

and

c2 = min{c| |a(k)
r2,c| � |a(k)

r2,j
|, k � j � n}

and so on.
Therefore, rook’s pivoting searches for coefficients of maximum modulus in rows,

then columns and then, rows and columns until an entry a
(k)
r,c verifies |a(k)

r,c | �
|a(k)
i,c |, k � i � n and |a(k)

r,c | � |a(k)
r,j |, k � j � n. Numerical experiments using this

strategy are given in Neale and Poole [1992].

Operation counts
We are interested in computing (approximately) the number of floating point

operations that must be done to obtain the LU factorization of A.
For computing the k–th column of L, we need 1 division by the pivot and n −

k multiplications. To compute the updated matrix Ak+1, we need (after having
computed the multipliers −a

(k)
i,k /a

(k)
k,k which are the elements of L) (n−k)2 additions

and the same number of multiplications. To get the total number of operations, we
sum up these numbers from 1 to n− 1

n−1∑
k=1

(n − k) = n(n− 1) − 1
2
n(n− 1) =

1
2
n(n− 1)

n−1∑
k=1

(n− k)2 = n2
n−1∑
k=1

1 − 2n
n−1∑
k=1

k +
n−1∑
k=1

k2

= n2(n− 1) − n2(n− 1) +
(n− 1)3

3
+

(n− 1)2

2
+

n− 1
6

=
1
3
n(n− 1)(n− 1

2
)

Gaussian elimination 23

Theorem 3.3. To obtain the factorization

PA = LU

of Theorem 3.1, we need

2
3
n(n2 − 1)

floating point operations (multiplies and adds) and n−1 divisions. The solutions of
the triangular systems to obtain the solution x give n(n−1) floating point operations
for L and n(n− 1) + n for U .

4. Gaussian elimination for symmetric systems

The factorization of symmetric matrices is an important special case that we are
going to consider in more details. Let us specialize the algorithm of Section 3 to
the symmetric case. We are looking for a factorization

A = LDLT,

where L is lower triangular with a unit diagonal and D is diagonal. There are
several possibilities to obtain this factorization. We are going to study three different
algorithms that will lead to several ways of programming the factorization.

The outer product algorithm
The first method to construct the LDLT factorization is in the same way as we

have seen for general systems, columns by columns. Suppose a1,1 �= 0, let

L1 =
(

1 0
l1 I

)
, D1 =

(
a1,1 0

0 A2

)
,

and

A =
(

a1,1 aT
1

a1 B1

)
= L1D1L

T
1 .

By identification, we obtain

l1 =
a1

a1,1

A2 = B1 − 1
a1,1

a1a
T
1 = B1 − a1,1l1l

T
1

Notice that A2 is a symmetric matrix. If we suppose that the (1, 1) element of A2

is non zero, we can reiterate this and we write

A2 =
(

a
(2)
2,2 aT

2

a2 B2

)
=
(

1 0
l2 I

)(
a
(2)
2,2 0
0 A3

)(
1 lT2
0 I

)
,

24 G. Meurant

l2 =
a2

a
(2)
2,2

,

A3 = B2 − 1

a
(2)
2,2

a2a
T
2 = B2 − a

(2)
2,2l2l

T
2 .

We remark that if we denote,

L2 =

 1 0 0

0 1 0
0 l2 I

 ,

then,

D1 =
(

a1,1 0
0 A2

)
= L2

 a1,1 0 0

0 a
(2)
2,2 0

0 0 A3

LT

2 = L2D2L
T
2 .

Therefore, we have

A = L1L2D2L
T
2 L

T
1 .

We notice that

L1L2 =

(
1 0

l1

(
1 0
l2 I

))

If all the pivots are non zero, we can go on and at the last step, we have

A = A1 = L1L2 · · ·Ln−1DLT
n−1 · · ·LT

1 = LDLT,

where L is unit lower triangular and D is diagonal.
There is a variant of this algorithm where a decomposition

A = L̄D̄−1L̄T

is obtained with L̄ being lower triangular, D̄ diagonal and diag(L̄) = diag(D̄). We
can obtain this variant from the first algorithm by writing

A = LDLT = (LD)D−1(DLT),

and D̄ = D, L̄ = LD.
In the previous algorithm, the matrix L is obtained column by column. This

method is called the outer product form of the algorithm as, at each step, an outer
product aaT is involved.

Gaussian elimination 25

The bordering algorithm
We partition the matrix A in a different way as

A =
(

Cn an
aT
n an,n

)
,

with obvious notations. Suppose that Cn has already been factored as

Cn = Ln−1Dn−1L
T
n−1,

with Ln−1 unit lower triangular and Dn−1 diagonal. We can write,

A =
(

Ln−1 0
lTn 1

)(
Dn−1 0

0 dn,n

)(
LT
n−1 ln
0 1

)
.

By identification,

ln = D−1
n−1L

−1
n−1an,

dn,n = an,n − lTnDn−1ln.

Therefore, by induction we can start by the decomposition of the 1× 1 matrix a1,1,
keeping on adding rows and obtaining at each step the factorization of an enlarged
matrix. The only operation we have to perform at each step is solving a triangular
system. To be able to proceed to the next step, we need the diagonal entries of Dn
(i.e. dn,n) to be non zero. For obvious reasons, this method is called the bordering
form of the algorithm.

The inner product algorithm
Another way to compute the factorization is simply to write down the formulas

for the matrix product

A = LDLT

Suppose i � j, we have

ai,j =
j∑
k=1

li,klj,kdk,k.

If we set i = j in this formula as li,i = 1, we obtain

dj,j = aj,j −
j−1∑
k=1

(lj,k)2dk,k,

and for i > j,

li,j =
1

dj,j
(ai,j −

j−1∑
k=1

li,klj,kdk,k).

26 G. Meurant

As, locally, we have to consider the product of the transpose of a vector times a
vector, this method is called the inner (or scalar) product form of the algorithm.

Considering the number of floating point operations, these three variants all
need about 1

2 of the number of operations for the general algorithm, i.e. about n
3

6
multiplies and the same number of adds.

Programming the factorization algorithms
We are considering the different ways of coding the three algorithms that we

have described for general (dense) symmetric matrices. Then, we will discuss the
consequences of these different implementations, depending on the computer archi-
tecture.

The codes are written in Matlab–like language, although for clarity, we do not
always use the most compact and efficient Matlab constructs.

We consider first the outer product algorithm. In this variant the matrix L is
constructed column by column. At step k, the column k is constructed by multiply-
ing by the inverse of the pivot and then, the columns at the right of column k are
modified using the values of the entries of column k. This is summarized in figure
4.1.

no longer accessed

modified

fig. 4.1: The outer product algorithm data layout

The modification of columns k + 1 to n can be done by rows or by columns and
this leads to the two codes given below.

For clarity, we store the matrix D in a vector denoted by d and L in a separate
matrix although in practice, it can be stored in the lower triangular part of A (if A
is not to be saved). temp is a temporary vector whose use can be avoided sometimes.
We use it mainly for the clarity of the presentation. Notice that the codings are
different from the ones in Dongarra, Gustavson, Karp [1984]. They are arranged
such that in the main loop, i is a row index, j is a column index and k can be both.

The strictly lower triangular part of L is initialized to that of A by

function [l]=init(a)
[m,n]=size(a)
for i=1:n
for j=1:i-1

l(i,j)=a(i,j)

Gaussian elimination 27

end
end

Outer product kij algorithm
function [l,d]=kij(a)
[m,n]=size(a)
d=zeros(n,1)
temp=zeros(n,1)
d(1)=a(1,1)
l(1,1)=1
for k=1:n-1
dki=1./d(k)
for i=k+1:n

temp(i)=l(i,k)*dki
end
for i=k+1:n

for j=k+1:i
l(i,j)=l(i,j)-temp(i)*l(j,k)

end
end
for i=k+1:n

l(i,k)=temp(i)
end
d(k+1)=l(k+1,k+1)
l(k+1,k+1)=1.

end

To reflect the way the three loops are nested, this algorithm is called the kij
form. We can get rid of the temporary vector temp by using the upper part of the
matrix l, leading to the following code. However, we think the coding is clearer
using temp.
function [l,d]=kijbis(a)
[m,n]=size(a)
d=zeros(n,1)
temp=zeros(n,1)
l=init(a)
d(1)=a(1,1)
l(1,1)=1
for k=1:n-1
dki=1/d(k)
for i=k+1:n

l(k,i)=l(i,k)
l(i,k)=l(i,k)*dki

end
for i=k+1:n

for j=k+1:i

28 G. Meurant

l(i,j)=l(i,j)-l(i,k)*l(k,j)
end

end
for i=k+1:n

l(k,i)=0.
end
d(k+1)=l(k+1,k+1)
l(k+1,k+1)=1;

end

Modifying by rows, we get

Outer product kji algorithm
function [l,d]=kji(a)
[m,n]=size(a)
d=zeros(n,1)
temp=zeros(n,1)
l=init(a)
d(1)=a(1,1)
l(1,1)=1
for k=1:n-1
dki=1/d(k)
for i=k+1:n

temp(i)=l(i,k)*dki
end
for j=k+1:n

for i=j:n
l(i,j)=l(i,j)-temp(i)*l(j,k)

end
end
for i=k+1:n

l(i,k)=temp(i)
end
d(k+1)=l(k+1,k+1)
l(k+1,k+1)=1.

end

Now, we turn ourselves to the bordering algorithm whose data accesses are sum-
marized in figure 4.2.

For each row i, we have to solve a triangular system. There are two algorithms
to do this. One is column oriented, the other is row oriented.

Bordering ijk algorithm
function [l,d]=ijk(a)
[m,n]=size(a)
d=zeros(n,1)
temp=zeros(n,1)

Gaussian elimination 29

computed and accessed

modified

not yet accessed

fig. 4.1: The bordering algorithm data layout

l=init(a)
d(1)=a(1,1)
l(1,1)=1.
for i=2:n
for k=1:i

temp(k)=a(i,k)
end
for j=1:i

if j ∼= i
l(i,j)=temp(j)/d(j)

end
for k=j+1:i
temp(k)=temp(k)-l(k,j)*temp(j)

end
end
d(i)=temp(i)
l(i,i)=1

end

Notice there are too many divisions in the previous coding as the divisions are in
a k loop. They can be avoided by storing the inverses of d as they are computed.

Bordering ikj algorithm
function [l,d]=ikj(a)
[m,n]=size(a)
d=zeros(n,1)
temp=zeros(n,1)
l=init(a)
d(1)=a(1,1)
l(1,1)=1
for i=2:n
for k=1:i

temp(k)=a(i,k)
end
for k=1:i

30 G. Meurant

for j=1:k-1
temp(k)=temp(k)-temp(j)*l(k,j)

end
if k ∼= i
l(i,k)=temp(k)/d(k)

else
d(i)=temp(i)
l(i,i)=1

end
end

end

Finally, we consider the inner product algorithm. This algorithm is schematically
depicted in figure 4.3.

computed and accessed

modified

not yet accessed

no longer accessed

fig. 4.3: The inner product algorithm data layout

Inner product jik algorithm
function [l,d]=jik(a)
[m,n]=size(a)
l=init(a)
for j=1:n
for k=1:j-1

l(j,k)=l(j,k)/d(k)
end
d(j)=a(j,j)
for k=1:j-1

d(j)=d(j)-l(j,k) ^ 2*d(k)
end
for i=j+1:n

for k=1:j-1
l(i,j)=l(i,j)-l(i,k)*l(j,k)

end
end
l(j,j)=1.

end

Gaussian elimination 31

In the computation of ai,j −
∑j−1
k=1 li,klj,kdk,k, one can compute ai,j − li,klj,kdk,k

for a fixed value of k looping on i provided that the divide by dj,j is done afterwards.
Then, we obtain the following algorithm.

Inner product jki algorithm

function [l,d]=jki(a)
[m,n]=size(a)
l=init(a)
for j=1:n
for k=1:j-1

l(j,k)=l(j,k)/d(k)
end
d(j)=a(j,j)
for k=1:j-1

d(j)=d(j)-l(j,k) ^ 2*d(k)
end
for k=1:j-1

for i=j+1:n
l(i,j)=l(i,j)-l(i,k)*l(j,k)

end
end
l(j,j)=1.

end

We have obtained six different ways to code the LDLT factorization of a symmet-
ric matrix A. The same can be done for the LU factorization of a non symmetric
matrix. Of course, we are interested in knowing what is the best implementation,
that is the one giving the smallest computing time. Unfortunately, this is dependent
on the computer architecture and also on the languages that are used for coding
and executing the algorithm. It also depends on the data structure that is chosen
for storing L, as for today computers the performance depends mainly on the way
the data is accessed in the computer memory.

Consider first L to be stored in a two dimensional array or in the lower triangular
part of A. In the Fortran language, which is up to now the most widely used
for scientific computing, two dimensional arrays are stored by columns, that is,
consecutive elements in a column of an array have consecutive memory addresses.
Therefore, to avoid memory access conflicts, it is much better to use algorithms that
access data by columns. This could be different for other languages. For instance,
in C two dimensional arrays are stored by rows. Moreover, in computers with data
caches, it pays to do operations on data in consecutive memory locations. This
increases the cache hit ratio as the data is moved into the cache by blocks of
consecutive addresses.

The data access is by columns for algorithms kji and jki, by rows for ikj and
jik and by rows and columns for kij and ijk. This favors algorithms kji and jki.

Form kji accesses the data by columns and the basic operation involved is a so

32 G. Meurant

called SAXPY (for single precision a times x plus y) i.e.

y = y + αx

where x and y are vectors (columns of L) and α is scalar. Notice that the vector y
has to be stored after it is computed. This particular form was used in the famous
LINPACK package, Bunch, Dongarra, Moler and Stewart [1979].

Form jki also accesses that data by columns and the basic operation is also a
SAXPY. However, the same column (j) is successively accessed many times. This
is called a generalized SAXPY or GAXPY. This can sometimes be exploited when
coding in assembly language (one can keep the data in registers). These algorithms
are analyzed for a vector computer in Dongarra, Gustavson and Karp [1984], their
notations being slightly different. On this type of vector architectures, the GAXPY
jki form is generally the best one.

If L is not stored in the lower triangular part of A, it is better to store it in a
one dimensional array of dimension n(n−1)/2. Consecutive elements can be chosen
by rows or columns. If consecutive elements are chosen by rows, it is better to use
algorithms ikj and jik as the data accesses are going to be in consecutive addresses.
kji and jki forms will be chosen if the data is stored by columns.

As an example, we consider the form jki, when the matrix is stored by columns.
The matrix L is stored in a one dimensional array ll. To simplify a little bit the
coding, we explicitly store the ones on the diagonal. Therefore, we have,

l(i, j) = ll(k),

with k = n(j − 1) + j−j2
2 + i.

function [ll,d]=lljki(a)
[m,n]=size(a)
d=zeros(n,1)
ll=initll(a)
for j=1:n
nj=n*(j-1)++(j-j ^ 2)/2
for k=1:j-1

nk=n*(k-1)+(k-k ^ 2)/2
ll(nk+j)=ll(nk+j)/d(k)

end
d(j)=a(j,j)
for k=1:j-1

nk=n*(k-1)+(k-k ^ 2)/2
d(j)=d(j)-ll(nk+j) ^ 2*d(k)

end
for k=1:j-1

nk=n*(k-1)+(k-k ^ 2)/2
for i=j+1:n
ll(nj+i)=ll(nj+i)-ll(nk+i)*ll(nk+j)

Gaussian elimination 33

end
end
ll(nj+j)=1.

end

So far, we have supposed it was not necessary to do any pivoting for a symmetric
system. We will study some particular cases where it can be shown that pivoting is
not needed, at least to be able to run the algorithm to completion.

Positive definite systems
Let A be symmetric and positive definite. We are looking for an LDLT factor-

ization. The fundamental result is the following.

Lemma 4.1. Let A be a symmetric positive definite matrix partitioned as

A =
(

A1,1 AT
2,1

A2,1 A2,2

)

where the blocks A1,1 and A2,2 are square. Then,

S2,2 = A2,2 −A2,1A
−1
1,1A

T
2,1

is symmetric and positive definite. S2,2 is called the Schur complement (of A2,2 in
A).

Proof. This can be proved in many different ways. Perhaps, the simplest one is to
consider A−1 and to compute the bottom right hand block of A−1. Let(

A1,1 AT
2,1

A2,1 A2,2

)(
x1

x2

)
=
(

b1
b2

)
.

Then,

A1,1x1 + AT
2,1x2 = b1

⇒ x1 = A−1
1,1(b1 −AT

2,1x2)

Therefore,

(A2,2 −A2,1A
−1
1,1A

T
2,1)x2 = b2 −A2,1A

−1
1,1b1

This means that the inverse of A can be written as

A−1 =
(

X Y
Z S2,2

)
.

A being positive definite, the diagonal blocks of A and A−1 are also positive definite,
so S2,2 is positive definite.

34 G. Meurant

If we look at the outer product algorithm of Section 4, we see that in the first step,
A2 = B1 − (1/a1,1)a1a

T
1 is a Schur complement, the matrix A being partitioned as

A =
(

a1,1 aT
1

a1 B1

)
.

Therefore, if A is positive definite, A2 is also positive definite and the next pivot is
non zero. The process can be continued until the last step. All the square matrices
involved are positive definite and so the diagonal elements are strictly positive. All
the pivots are non zero and the algorithm can go through without any pivoting.
This is summarized in the following result.

Theorem 4.1. A matrix A has a factorization A = LDLT, where L is a unit lower
triangular matrix and D is a diagonal matrix with diag(D) > 0, if and only if A is
symmetric and positive definite.

Proof. Lemma 4.1 and the discussion afterwards have shown that if A is positive
definite, it can be factored as LDLT. Reciprocally, if A = LDLT, then of course A
is symmetric and if x �= 0, then

xTAx = xTLDLTx = yTDy,

where y = LTx �= 0. Notice that

yTDy =
n∑
i=1

di,iy
2
i > 0,

as the diagonal elements of D are strictly positive.

In the factorization of Theorem 4.1, as the diagonal elements of D are strictly
positive, we can introduce a diagonal matrix S such that si,i =

√
di,i, i = 1, . . . , n.

Therefore, S2 = D and let L̄ = LS. Then,

A = LDLT = LSSLT = L̄L̄T.

Strictly speaking this is what is called the Cholesky factorization of A. However,
this form of factorization is not much used today as the computation involves square
roots. On modern computers, square roots are much slower than multiplies and adds
and must be avoided whenever possible. Factorizations like LDLT have sometimes
been called root free Cholesky. Nowadays, the generic name Cholesky factorization
is often used for any LDLT factorization.

An interesting property of positive definite matrices is that there is no growth of
the entries of the reduced matrices during the factorization.

Theorem 4.2. Let A be symmetric positive definite. Consider the matrices Di, i =
1, . . . , n of the outer product algorithm, then,

max
k

(max
i,j

|(Dk)i,j |) � max
i,j

|ai,j | = max
i

(ai,i).

Gaussian elimination 35

We first prove a well known but useful Lemma.

Lemma 4.2. Let A be a symmetric positive definite matrix. Then,

max
i,j

|ai,j | = max
i

(ai,i).

Proof. It is obvious that the diagonal entries of A are positive. Suppose there is a
couple i0, j0 such that |ai0,j0 | > |ai,j |, i0 �= j0, ∀i, j different from i0, j0. There are
two cases:

i) suppose ai0,j0 > 0, then let

x = (0 . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T,

the 1 being in position i0 and the −1 in position j0. We have,

xTAx = ai0,i0 + aj0,j0 − 2ai0,j0 < 0.

Therefore, A is not positive definite which is a contradiction;
ii) suppose ai0,j0 < 0, we choose

x = (0 . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)T,

and get

xTAx = ai0,i0 + aj0,j0 + 2ai0,j0 < 0,

which, again, is a contradiction.

Proof of Theorem 4.2. By Lemma 4.1, we already know that the matrices Dk
are positive definite. Therefore, by Lemma 4.2, it is enough to consider the diagonal
to find the maximum of the absolute values of the entries. It also suffices to consider
the first step as the proof is the same for the other steps.

As the diagonal entries are positive, we have

diag(A2) � diag(B1).

Therefore, either maxi(ai,i) = a1,1 and then, maxi(D1)i,i = a1,1 or the maximum
is on the diagonal of B1 and then,

max
i

(D1)i,i = max(a1,1,max
i

[diag(A2)i,i]),

with maxi[diag(A2)i,i] � maxi[diag(B1)i,i]. In both cases,

max
i

(D1)i,i � max
i,j

|ai,j |.

36 G. Meurant

Indefinite systems
When factorizing an indefinite matrix, there can be some problems as the follow-

ing example from Golub and Van Loan [1989] shows if ε is small,(
ε 1
1 0

)
=
(

1 0
1/ε 1

)(
ε 0
0 −1/ε

)(
1 1/ε
0 1

)
,

The term 1/ε can be very large and the factorization can be spoiled. One can
use pivoting to avoid this. However, if symmetry is to be preserved, pivoting must
be done from the diagonal and does not always solve the problems. Moreover,
zero pivots can be the only alternative sometimes, as for instance in the following
example

A =

 0 1 1

1 0 1
1 1 0

 .

One possibility to overcome these difficulties is to use a method due to Aasen [1971].
Here, a factorization

PAPT = LTLT,

where L is unit lower triangular and T is tridiagonal is obtained. This is not really
Gaussian elimination, therefore, we will not give more details on this. Another
idea, introduced in Bunch and Parlett [1971] and further developed in Bunch and
Kaufman [1977] is to used diagonal pivoting with either 1×1 or 2×2 pivots. Suppose

P1APT
1 =

(
A1,1 A1,2

AT
1,2 A2,2

)
,

where A1,1 is of order s with s = 1 or 2 and P1 is a permutation matrix. Then, this
matrix can be factored as

P1APT
1 =

(
Is 0

AT
1,2A

−1
1,1 In−s

)(
A1,1 0

0 A2,2 −AT
1,2A

−1
1,1A1,2

)(
Is A−1

1,1A1,2

0 In−s

)
.

The algorithm can go through provided that A1,1 is non singular. It can be proved
that A being non singular, it is always possible to find a non zero pivot (s = 1)
or a non singular 2 × 2 block (s = 2). A strategy has been devised in Bunch and
Kaufmann [1977], see also Golub and Van Loan [1989] to find the block pivots.

5. Gaussian elimination for H–matrices

There are other types of matrices (not necessarily symmetric) than positive defi-
nite matrices for which there is no necessity to use pivoting (at least to obtain a
factorization without permutations). Let us first introduce a few definitions.

Gaussian elimination 37

• A matrix A is reducible if and only if there exists a permutation matrix P such
that

P−1AP =
(

D1 0
F D2

)
,

D1 and D2 being square matrices. A matrix that is not reducible is said to be
irreducible.

• – A is (row) diagonally dominant if

|ai,i| �
n∑

j=1,j �=i
|ai,j |, ∀i.

– A is (row) strictly diagonally dominant if

|ai,i| >
n∑

j=1,j �=i
|ai,j |, ∀i.

– A is irreducibly (row) diagonally dominant if, (a) A is irreducible, (b) A is (row)
diagonally dominant and (c) there exists an i0 such that

|ai0,i0 | >
n∑

j=1,j �=i0
|ai0,j |.

Notice that similar definitions hold for column oriented diagonal dominance. Matri-
ces which are symmetric and strictly diagonally dominant or irreducibly diagonally
dominant are positive definite. Their cases are covered in Section 4.

• A is an M–matrix if and only if ai,j � 0 for i �= j and A−1 � 0.
If A is a symmetric M–matrix then, A is positive definite. Once again, this is

covered in Section 4.
Let A be a matrix, define M(A) as the matrix having entries mi,j such that

mi,i = |ai,i|, mi,j = −|ai,j |, ∀i, j, i �= j.

• A is an H–matrix if and only if M(A) is an M–matrix.

The previous definitions for diagonally dominant matrices can be slightly gener-
alized. This will lead to a characterization of H–matrices.
• A matrix A is generalized (row) diagonally dominant if there exists a vector d
with di > 0,∀i such that

|ai,i|di �
n∑

j=1,j �=i
|ai,j |dj , ∀i.

38 G. Meurant

A is generalized (row) strictly diagonally dominant if

|ai,i|di >
n∑

j=1,j �=i
|ai,j |dj , ∀i.

Clearly, this means that if we denote

D =

d1

d2

. . .
dn

 ,

then, AD is (row) diagonally dominant or (row) strictly diagonally dominant. The
same is true of D−1AD.

We have the following results that we state without proof, see Berman and Plem-
mons [1979].

Theorem 5.1. A is an M–matrix if and only if ai,j � 0,∀i �= j and A is generalized
(row or column) strictly diagonally dominant.

Theorem 5.2. A is an H–matrix if and only if A is generalized (row or column)
strictly diagonally dominant.

It is obvious that strictly diagonally dominant, irreducibly diagonally dominant
and M–matrices are H–matrices. For these types of matrices, the important fact is
that at each step of Gaussian elimination, the property in question is maintained,
that is Ak,∀k possesses the same property as A.

Let us first consider A being diagonally dominant.

Theorem 5.3. If A is (row or column) diagonally dominant, then

A = LU,

where L is unit lower triangular and U is upper triangular.

Proof. Suppose A is (row) diagonally dominant. Then, a1,1 �= 0, otherwise all the
elements in the first row are 0 and A is singular. We shall prove that A2 is also
(row) diagonally dominant and then, the proof will go on by induction. The case
of the first row is already handled. Now, we have

a
(2)
i,j = ai,j − ai,1a1,j

a1,1
, 2 � i � n, 2 � j � n, a

(2)
i,1 = 0, 2 � i � n,

∑
j,j �=i

|a(2)
i,j | =

∑
j,j �=i,j �=1

|a(2)
i,j | �

∑
j,j �=i,j �=1

|ai,j | +
∣∣∣∣ ai,1a1,1

∣∣∣∣ ∑
j,j �=i,j �=1

|a1,j |.

Gaussian elimination 39

But,

|a1,1| �
∑

j,j �=i,j �=1

|a1,j | + |a1,i|.

Therefore,

∑
j,j �=i

|a(2)
i,j | �

∑
j,j �=i,j �=1

|ai,j | +
∣∣∣∣ ai,1a1,1

∣∣∣∣(|a1,1| − |a1,i|),

�
∑
j,j �=i

|ai,j | − |ai,1a1,i|
|a1,1| ,

� |ai,i| − |ai,1a1,i|
|a1,1| ,

�
∣∣∣∣ai,i − ai,1a1,i

a1,1

∣∣∣∣ = |a(2)
i,i |.

This shows that all the pivots are non zero and the computations can go through.
If A is column diagonally dominant, the same proof can be done with AT.

From the above discussion, it is obvious that |li,j | � 1.

We then consider M–matrices. The following result has been proved by Fiedler
and Ptàk [1962].

Theorem 5.4. If A is an M–matrix, then

A = LU,

where L is unit lower triangular and U is upper triangular.

Proof. The proof can be found for instance in Fiedler’s book [1986] or in Bermann
and Plemmons [1979].

This can be proved through the following Lemma.

Lemma 5.1. Let A be an M–matrix written in block form as

A =
(

B F
E C

)
,

where B and C are square matrices, then the Schur complement S = C − EB−1F
is an M–matrix.

Proof. It is obvious that the principal submatrices of an M–matrix are M–matrices.
Therefore, B is an M–matrix and B−1 > 0. As, by definition, the entries of E and

40 G. Meurant

F are non positive, the entries of EB−1F are non negative. Therefore, the non
diagonal entries of S are non positive.

Now, as A is an M–matrix, we know there is a diagonal matrix D with strictly
positive diagonal entries such that AD is (row) strictly diagonally dominant.

Let

D =
(

D1 0
0 D2

)
,

AD being (row) strictly diagonally dominant means that if e = (1 . . . 1)T, then
ADe > 0. But,

AD =
(

BD1 FD2

ED1 CD2

)

and let e =
(

e1

e2

)
. The Schur complement of AD is (row) strictly diagonally

dominant (Concus, Golub and Meurant [1985]). This means that,

0 < [CD2 − ED1(BD1)−1FD2]e2 = SD2e2.

This shows that S is (row) generalized strictly diagonally dominant. Hence, S is an
M–matrix.

Proof of Theorem 5.4. We apply readily Lemma 5.1 that shows that starting
from an M–matrix, the reduced matrices that are obtained at each step are M–
matrices. Moreover, L and U are M–matrices.

We now consider H–matrices. Let B be an M–matrix, we define

ΩB = {A|B � M(A)}.

That is

|ai,i| � bi,i, 1 � i � n,

|ai,j | � |bi,j |, i �= j, 1 � i, j � n.

This means that A is at least as diagonally dominant as B.

Lemma 5.2. Let B be an M–matrix. Each A ∈ ΩB is (row) generalized strictly
diagonally dominant.

Proof. There exists a diagonal matrix D (with diag(D) > 0) such that BD is
strictly diagonally dominant and let A ∈ ΩB , we have

BD � M(A)D = M(AD).

Gaussian elimination 41

Therefore,

0 < BDe � M(AD)e,

which implies that AD is (row) strictly diagonally dominant.

Theorem 5.5. Let B be an M–matrix. For each A ∈ ΩB,

A = LU,

where L is unit lower triangular and U is upper triangular. In particular, for every
H-matrix, there exists an LU factorization.

Proof. We have seen in the proof of Lemma 5.2 that AD is (row) strictly diagonally
dominant. Then, by Theorem 5.3, there exist L̄ and Ū , lower and upper triangular
matrices such that

AD = L̄Ū .

We have,

A = L̄ŪD−1,

and the result follows.

In Funderlic, Neumann, Plemmons [1982], it is proved that if A = LU and B =
L′U ′, then

|li,j | � |l′i,j |, 1 � i, j � n,

|ui,j | � |u′
i,j |, i �= j, 1 � i, j � n,

|ui,i| � |u′
i,i, | 1 � i � n,

and let

βD =
maxi(Di,i)
mini(Di,i)

.

Then,

|li,j | � βD,

|ui,j | � 2βDmax
i

|ai,i|.

This gives

gA � 2βD,

42 G. Meurant

and for an M–matrix, Funderlic, Neumann and Plemmons [1982] proved that gA �
βD. The proofs of these inequalities are easily obtained by induction.

The proof that an H–matrix possesses an LU factorization can also be established
by showing, as in Bermann and Plemmons [1979], that all the leading principal
minors are non singular. Similar results for the case where A is singular have been
studied in Varga and Cai [1981], Funderlic and Plemmons [1981] and Funderlic,
Neumann and Plemmons [1982].

For the case of H–matrices, we have seen that the growth factor is bounded

gA � 2βD.

It has been shown also that any symmetric permutation of A has an LU factoriza-
tion. However, even if gA is bounded, it can be large. Consider, for instance, the
following example (Ahac, Buoni, Oleski, [1988]),

Ax =

 2 0 −x
−x x −1
0 −1 x

 , x > 0.

The matrix Ax is an M–matrix if x >
√

2 and

Ax =

 1 0 0
−x2 1 0
0 − 1

x 1

 2 0 −x

0 x −x22 − 1
0 0 x

2 − 1
x

 .

If x is large, the growth factor is large (in fact O(x)). We will see in the next sections
that is bad for the stability of the algorithm. This can be avoided by using some
form of symmetric pivoting. For M–matrices, Ahac and Oleski [1986] chose (in the
reduced matrix) the column which has the largest column sum.

In the example, we choose the second column. The permuted matrix is

A′ =

 x −1 −x

−1 x 0
−x 0 2

 ,

and

A′ =

 1 0 0
− 1
x 1 0

−1 x
1−x2 1

x −1 −x

0 x− 1
x 1

0 0 2 − x + x
x2−1

 .

The growth factor of A′ is bounded independently of x. In Ahac and Oleski [1986],
it is proved that gA � n for M–matrices. This result is extended to H–matrices in
Ahac, Buoni, Oleski [1988].

Gaussian elimination 43

6. Block methods

Block methods are obtained by partitioning the matrix A into blocks (submatrices).
Consider, for instance, a 3 × 3 block partitioning. Then, A is written as

A =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 .

The matrices Ai,i are square of order ni, 1 � ni � n. Then, a block LU factorization
can be obtained. There are several ways to do that. One is the following,

A =

 I

L2,1 I
L3,1 L3,2 I

U1,1 U1,2 U1,3

U2,2 U2,3

U3,3

 .

The factorization proceeds in the same way as for the standard (point) factorization.
Therefore, to understand the algorithms, it is enough to look at a 2 × 2 case,

A =
(

A1,1 A1,2

A2,1 A2,2

)
=
(

I 0
L2,1 I

)(
U1,1 U1,2

0 S

)
.

Then,

U1,1 = A1,1.

L2,1 is obtained by solving L2,1A1,1 = A2,1 and finally

S = A2,2 −A2,1A
−1
1,1A1,2 = A2,2 − L2,1A1,2.

Then, the algorithm is repeated on S. Here, no pivoting takes place. The stability
is investigated in Demmel, Higham and Schreiber [1992]. Block LU factorization
(without pivoting) is unstable in general, although it has been found to be stable
for matrices that are block diagonally dominant by columns, that is

‖A−1
j,j ‖−1 �

∑
i�=j

‖Ai,j‖.

7. Particular systems

Tridiagonal matrices
Tridiagonal matrices are particularly easy to handle. Let T be a symmetric tridi-
agonal matrix,

T =

a1 −b2
−b2 a2 −b3

.
−bn−1 an−1 −bn

−bn an

 .

44 G. Meurant

We will also look at a particular case of a tridiagonal Toeplitz matrix,

Ta =

a −1
−1 a −1

.
−1 a −1

−1 a

 .

The Cholesky factorization of T is easily obtained,

T = LD−1
L LT,

L =

δ1
−b2 δ2

.
−bn−1 δn−1

−bn δn

 , DL =

δ1
δ2

. . .
δn−1

δn

 .

By inspection, we have

δ1 = a1, δi = ai − b2i
δi−1

, i = 2, . . . , n.

This involves only n − 1 additions, multiplications and divisions. Extensions are
easily obtained to non symmetric tridiagonal matrices as long as pivoting is not
needed. If T = Ta, then we have

δ1 = a, δi = a− 1
δi−1

, i = 2, . . . , n

and the explicit solution of this recurrence is known, see, for instance, Meurant
[1992],

δi =
ri+1
+ − ri+1

−
ri+ − ri−

,

where,

r± =
a±√

a2 − 4
2

,

are the two solutions of the quadratic equation r2 − ar + 1 = 0 if a �= 2. If a = 2,
then δi = (i+1)/i. Of course, there are more efficient methods to deal with Toeplitz
matrices, see Golub and Van Loan [1989].

The Cholesky factorization of tridiagonal matrices has been used by Meurant
[1992] to characterize the inverse of such matrices.

Gaussian elimination 45

Block tridiagonal matrices
The previous method is easily extended to block tridiagonal symmetric matrices.

Let

A =

D1 −AT
2

−A2 D2 −AT
3

.
−An−1 Dn−1 −AT

n

−An Dn

 ,

each block being of order n. Denote by L the block lower triangular part of A then,
if such a factorization exists we have,

A = (∆ + L)∆−1(∆ + LT),

where ∆ is a block diagonal matrix whose diagonal blocks are denoted by ∆i. By
inspection, we have

∆1 = D1, ∆i = Di −Ai(∆i−1)−1AT
i , i = 2, . . . , n

Therefore, obtaining this block factorization involves only solving (small) linear
systems with matrices ∆i and several right hand sides. Notice that whatever are
the structures of the matrices Di, the ∆is are dense matrices.

Again, this block factorization can be used (Meurant [1992]) to characterize the
inverse of block tridiagonal matrices.

46 G. Meurant

2. Error analysis

8. Round off error analysis

The algorithms that we have seen so far are supposed to give the LU factorization
of a given matrix with real or complex coefficients after n − 1 steps (and possi-
bly some permutations). These algorithms are programmed using some languages
like Fortran, C or Matlab and the codes that are produced are run on different
computers which are ranging from PCs to supercomputers.

Unfortunately, all the parts in a computer are finite. In particular, registers and
memory words designed to store the data and the intermediate and final results
have a finite length or capacity and cannot store all real numbers. Moreover, when
computations are performed on a computer, each arithmetic operation (+,−, ∗, /)
is generally affected by round off errors.

The subject of round off error analysis is to try to understand what are the effects
of these limitations on the result of solving a problem, in our case, using Gaussian
elimination. Before going into these problems, we must define the floating point
arithmetic model we are using.

Floating point arithmetic model
Here, we follow the expositions of Forsythe and Moler [1967] and Golub and Van

Loan [1989]. The numbers that can be represented in the computer are a (finite)
subset of the real line and are denoted by F . This set is characterized by four
integers: the base β, the number t of base–β digits in the fractional part (also
called the mantissa) and the exponent range [eL, eU]. Then, (normalized) numbers
in F consists of all real numbers f of the form

f = ±.d1d2 · · · dt βe, 0 � di < β, d1 �= 0, eL � e � eU ,

where e is an integer, to which we add zero and a representation for results whose
absolute value will be smaller (resp. larger) than the smallest (resp. largest) absolute
value of a non zero number in F .

For a non zero f ∈ F , we have

m = βeL−1 � |f | � M = βeU (1 − β−t).

On the real number line, the elements of F are not equally spaced (see figure 8.1
that shows the elements of F for β = 2, t = 3, eL = 0, eU = 2).

A real number x that we would like to represent is approximated by a number
fl(x) that can be defined as an operator from

G = {x ∈ R,m � |x| � M} ∪ {0},
into F , by

fl(x) =
{

nearest xR ∈ F to x if rounded arithmetic is used,
nearest xC ∈ F s. t. |xC| � |x| if chopped arithmetic is used.

Gaussian elimination 47

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

fig. 8.1: Elements of F for β = 2, t = 3, eL = 0, eU = 2

Today, most computers use β = 2, although there had been in the past computers
with β = 8 or 16. In the examples, we will use β = 10 as this is more familiar to
most people. Typical values of the other parameters for some (1996) computers are
given in the following table.

Examples of floating point formats

t eL eU

CRAY single 48 -8192 8191

IEEE single 24 -125 128

IEEE double 53 -1021 1024

For more details on floating point arithmetic particularly IEEE formats, see Gol-
berg [1991]. The following results are proved in Forsythe and Moler [1967].

Theorem 8.1. If x ∈ G, then

xR = x(1 + εR), |εR| � 1
2
β1−t,

xC = x(1 + εC), |εC| � β1−t.

Next, we have to define the operations on elements of F . Let • be one of the
four operations +,−, ∗, / and � its implementation on a computer. We say that a
computer arithmetic is correct if

x, y ∈ F, fl(x • y) = x� y.

48 G. Meurant

Not all arithmetics are correct. The one used on CRAYs Y–MP and C90 is not
correct. The IEEE norm defines a correct arithmetic.

We define the unit round off u as,

u =
{

uR = 1
2β

1−t for rounded arithmetic,
uC = β1−t for chopped arithmetic.

For IEEE single precision arithmetic, the unit round off (rounded arithmetic) is
uR = 5.9605 10−8 and uR = 1.1102 10−16 for double precision. We have,

fl(x) = x(1 + ε), |ε| � u.

We have the following result,

fl(x • y) = (x • y)(1 + ε), |ε| � u, (10)

and then

|fl(x • y) − (x • y)|
|x • y| � u.

This shows there is a small relative error associated with each operation (provided
t is large enough). Note that (10) is not verified by CRAY arithmetic because of the
lack of guard digits. Relaxed assumptions have to be made. Fortunately however,
most of the results carry over to this case.

From this last result we can construct some other error bounds. We use the
following Lemma from Forsythe and Moler [1967].

Lemma 8.1. If 0 � u < 1 and n ∈ N ,

1 − nu � (1 − u)n.

If 0 � nu � 0.01,

(1 + u)n � 1 + 1.01nu.

The first statement comes from Taylor’s formula and the second one is because
we have

ex � 1 + 1.01x for 0 � x � 0.01

Notice that the largest n that satisfies the inequality 0 � nu � 0.01 is n ≈ 167772
for IEEE single precision arithmetic and n ≈ 9 1013 for double precision.

Then, we can show

Gaussian elimination 49

Theorem 8.2. Let w = x− yz and e = fl(w) − w. If nu � 0.01, then

|e| � 3.02 umax(|x|, |w|).

Proof. fl(w) is defined as fl(x− fl(yz)). But, fl(yz) = yz(1 + ε1), |ε1| � u and

fl(w) = (x− yz(1 + ε1))(1 + ε2), |ε2| � u,

= x(1 + ε2) − yz(1 + ε1)(1 + ε2).

This can be written with the help of Lemma 8.1,

fl(w) = x(1 + θ2u) − yz(1 + 2.02 θ1u), |θi| < 1,
= x− yz + u(xθ1 − 2.02 yzθ1).

Therefore,

|e| � u(|x| + 2.02 |w − x|),

From which the results follows.

The last result can also be written as

|e| � u(2.02|yz| + |x|).

We have also,

|e| � u(2|yz| + |x|) + O(u2).

The values of the constants involved in these inequalities like 2.02 or 3.02 are not
really important, therefore, most of the time in the statements of the results, we will
replace them by a generic constant C or Ci. However, for the sake of completeness,
we will indicate their possible values.

Now, we are able to analyze the effect of round off errors in Gaussian elimination.
There are several different ways to approach this problem. The one that is more
popular today is called inverse or backward error analysis. It has been introduced by
W. Givens and developed, in particular for Gaussian elimination, by J. Wilkinson
[1965]. In this type of analysis the rounding errors are related to the data. The result
of floating point operations is interpreted as the exact result of ordinary arithmetic
on some perturbed data and some bounds are derived for the perturbations. This
allows to be able to use ordinary arithmetic.

Examples of difficulties
Let us give a few small examples showing some of the problems that can happen

with Gaussian elimination and finite precision computations.

50 G. Meurant

We suppose β = 10, t = 3 (we do not care about limits on the exponent range)
and, for the sake of simplicity, chopped arithmetic, the operations being done on
normalized numbers. Although these assumptions are not realistic, the examples
will give us an idea of what could happen on real problems. Consider the following
linear system (Example 1),

3x1 + 3x2 = 6
x1 + δx2 = δ + 1

where δ is a given real number (∈ F). The exact solution is x1 = x2 = 1.
Choosing 3 as the pivot and noticing that the computed value of the multiplier

1/3 is 0.333 100, we obtain for the second equation

(δ − 0.999 100)x2 = δ + 1 − 6 × (0.333 100) = δ − 0.990 100.

Therefore, if δ = 0.990, then x2 = 0 and x1 = 0.199 101 !
One can argue that this system is close to being singular, but this is not so as

det(A) = 3 × 0.99 − 3 = −0.03

Notice that even though the solution is wrong, the residual b − Ax is small being
(0.03 0)T. Remark also that the pivot is not small and that, in this case, if we
consider the permuted system (Example 2),

x1 + 0.99x2 = 1.99
3x1 + 3x2 = 6

then, the reduced system is

(3 − 3 × 0.99)x2 = 6 − 3 × 1.99

0.03x2 = 0.03

giving x2 = 1 and then x1 = 1.
Notice that the first system is just obtained by using partial pivoting on the

second one. This gives an example where it does not pay to use partial pivoting. If
one considers a more general 2 × 2 system (Example 3),

αx1 + βx2 = α + β

γx1 + δx2 = γ + δ

Then, it can be easily shown that if fl(x • y) = (x • y)(1 + ε), the computed value
of x2 is

1 + ε

(
1 − 2αγ

αδ − βγ

)
+ O(ε2).

Gaussian elimination 51

Therefore (as it is well known) it is not necessary to have a small determinant
αδ − βγ to have a large error. This can happen also in this case if the product αγ
is large.

Consider, for instance, the system (Example 4),

30x1 + x2 = 31
10x1 + x2 = 11

The determinant is 20. The computed value of 10/30 is 0.333, therefore the reduced
equation is

0.667x2 = 11 − 0.310 102 × 0.333 100

= 11 − 0.103 102

= (0.110 − 0.103)102 = 0.700 100

and x2 = 0.104 101.
This is a 4% error in the second component and

x1 = (0.310 102 − 0.104 101) × 0.333 10−1

= ((0.310 − 0.010) 102 × 0.333 10−1

= 0.3 102 × 0.333 10−1

= 0.990 100

a 1% error. However, small pivots may also lead to large errors. Consider (Example
5),

0.3 10−3x1 + x2 = 1
x1 + x2 = 2

Then, the computed value of x2 is 1 and x1 is 0. The “exact” solution is x1 = 1.0003
and x2 = 0.9997.

Partial pivoting has been invented to prevent this to happen. If we permute the
equations

x1 + x2 = 2
0.3 10−3 + x2 = 1

then, x2(1 − 0.3 10−3) = 1 − 0.6 10−3 = 1, giving x2 = 1 and the first equation
gives also x1 = 1.

Errors in the LU factorization
Of course, the rounding errors depend on the order in which the operations are

done. Therefore, all the variants and implementations of Gaussian elimination are
different in this respect.

52 G. Meurant

Let us analyze the standard algorithm that has been described in Section 3.
Notice that permutations have no effects on rounding errors (they are just recorded
by pointers). For convenience in this Section we will denote by the same notations
as before the computed quantities as there will be no ambiguities.

Let us first analyze the kth–step.

Theorem 8.3.

LkAk = Ak+1 + Ek,

where

|(Ek)i,j | � Cu max(|a(k+1)
i,j |, |a(k)

i,j |),

with C = 3.02.

Proof. The multipliers (e.g. the elements of L) that we denote by li,k are

li,k = fl

(
a
(k)
i,k

a
(k)
k,k

)
, i � k + 1,

a
(k+1)
i,j =

0 i � k + 1, j = k,

fl(a(k)
i,j − li,ka

(k)
k,j), i � k + 1, j � k + 1,

a
(k)
i,j otherwise.

Let us first consider the multipliers, i � k + 1,

li,k =
a
(k)
i,k

a
(k)
k,k

(1 + εi,k), |εi,k| � u.

This translates into

a
(k)
i,k − li,ka

(k)
k,k + a

(k)
i,k εi,k = 0.

If we denote by e
(k)
i,k , the elements of Ek, this shows that

e
(k)
i,k = a

(k)
i,k εi,k, i � k + 1.

For i � k + 1 and j � k + 1, we have

a
(k)
i,j = fl(a(k)

i,j − fl(li,ka
(k)
k,j)).

From Theorem 8.2, we have

|e(k)
i,j | � Cu max(|a(k+1)

i,j |, |a(k)
i,j |).

Gaussian elimination 53

As this bound is certainly also true for e
(k)
i,k , we have

|e(k)
i,j | � Cu max(|a(k+1)

i,j |, |a(k)
i,j |), i � k + 1, j � k,

and the other entries of Ek are zero.

With the notations of Lemma 3.5, we have seen that Lk has the form

Lk = I − lke
T
k .

Lemma 8.2. If Bk is a matrix whose first k rows are zero, then

LiBk = Bk, i � k.

Similarly, (Li)−1Bk = Bk.

Proof.

LiBk = (I − lie
T
i)Bk = Bk − lie

T
i Bk = Bk,

as eT
i Bk = 0.

Theorem 8.4. Let F be defined as

F = F1 + · · · + Fn−1,

where

(Fk)i,j =
{ 1 i � k + 1, j � k

0 otherwise

that is,

F =

0 0 0 . . . 0
1 1 1 . . . 1
1 2 2 . . . 2
...

...
...

...
1 2 3 . . . n− 1

 .

Then,

A = LU + E,

with

|E| � Cu max
k,i,j

|a(k)
i,j | F,

54 G. Meurant

with C = 3.02.

Proof. We have

LkAk = Ak+1 + Ek =⇒ Ak = L−1
k Ak+1 + Ek.

By Lemma 8.2,

(L1)−1 . . . (Lk−1)−1Ak = (L1)−1 . . . (Lk)−1Ak+1 + Ek.

We sum up these equalities for k = 1 to n − 1. Most of the terms cancel and we
obtain,

A = (L1)−1 . . . (Lk−1)−1An + E1 + . . . + En−1.

Therefore,

A = LU + E,

with

E = E1 + . . . + En−1.

Our next task is to bound the elements of E. It is easy to see that

|E| � Cu max
k,i,j

|a(k)
i,j | F.

Theorem 8.4 means that the matrices L and U are the exact factors of the
factorization of a perturbed matrix A − E. As the elements of F are bounded at
most by n− 1, |E| being small depends on maxi,j,k |a(k)

i,j |.
The previous bound can be written in terms of the growth factor gA defined in

Chapter 1,

|E| � CugA‖A‖∞F.

It can be shown easily that,

‖E‖∞ � CugA n2‖A‖∞.

Errors in the triangular solves
It is a little easier to bound the error arising when solving a triangular system.

Let us consider

Ly = b.

Gaussian elimination 55

Then, on the computer we get,

y1 = fl

(
b1
l1,1

)
,

yi = fl

(
bi − li,1y1 − · · · − li,i−1yi−1

li,i

)
, i = 2, . . . , n.

The analysis is done in Forsythe and Moler [1967] by the same technique as in the
last Section. One can see also Higham [1989a] where the following result is proved.

Theorem 8.5. We have,

(L + K)y = b,

with

|K| � Cu

|l1,1|
|l2,1| 2|l2,2|
2|l3,1| 2|l3,2| 2|l3,3|
...

...
...

. . .
(n− 1)|ln,1| (n− 1)|ln,2| (n− 2)|ln,3| . . . 2|ln,n|

 ,

with C = 1.01 and

|K| � Cnu|L|,
‖K‖∞ � n(n + 1)

2
Cu max

i,j
|li,j |.

Errors in the solution of a linear system
When the inexact factors are used to obtain the computed solution of the linear

system, what we get is

(L + K)y = b,

(U + G)x = y,

with

|K| � Cnu|L|,
|G| � Cnu|U |.

Theorem 8.6. The computed solution x satisfies

(A + H)x = b,

56 G. Meurant

with

|H| � C1umax
k,i,j

|a(k)
i,j |F + C2nu|L||U | + O(u2),

with C1 = 3.02 and C2 = 2.02.

Proof.

(L + K)(U + G)x = (LU + KU + LG + KG)x = b,

and

LU = A− E.

Then, if we denote by H the following matrix

H = KU + LG + KG− E,

we have (A + H)x = b and

|H| � |E| + |K||U | + |L||G| + |K||G|,
|H| � C1umax

k,i,j
|a(k)
i,j |F + C2nu|L||U | + C3n

2u2|L||U |,
‖H‖∞ � (C3n

3 + C4n
2)ugA‖A‖∞.

The role of pivoting
Pivoting techniques are not usually only used to insure that the pivots are non

zero but, also to reduce the growth factor. If partial pivoting is used, then

|li,j | � 1.

Therefore, ‖L‖∞ � n and

|a(k+1)
i,j | � |a(k)

i,j | + |a(k)
k,j | + ε max(|ak+1)

i,j |, |a(k)
i,j |).

Let ρk = maxi,j |a(k)
i,j |, then

ρk+1 � 2(1 + ε)ρk.

Hence, by recurrence

ρn � 2n−1(1 + ε)n−1ρ1.

Gaussian elimination 57

The term (1+ε)n−1 is insignificant as ε is small. In fact, Wilkinson [1965] exhibited
some contrived examples where an exponential growth is actually obtained. A well
known example is

A =

1 0 0 1
−1 1 0 . . . 0 1

−1 −1
. . .

...
...

...
...

. 0 1
−1 −1 . . . −1 1 1
−1 −1 . . . −1 −1 1

.

The bound is also attained for all B = DAD with D = diag(1,−1, . . . , (−1)n+1).
Although there exist such examples, in most practical cases the growth factor is
small and Gaussian elimination with partial pivoting is a safe algorithm. However,
there are cases where large growth can occur and the algorithm must be used
cautiously.

Wright [1993] has exhibited problems arising from solving two point boundary
value problems with multiple shooting methods for which an exponential growth
is observed. Due to the structure of the problem, no pivoting occurs when using
partial pivoting. Moreover, not only the growth factor is large but also, large errors
are measured.

Foster [1994] has also given practical examples where gA grows exponentially.
These examples come from Volterra integral equations. Again, no row interchange
is needed by partial pivoting. Analytic asymptotic value of the growth factor is
obtained as well as lower bounds involving the coefficients of the equation. Examples
are given in Foster [1994] from population dynamics.

The average case stability of Gaussian elimination with partial pivoting has been
studied in Trefethen and Schreiber [1990]. Random matrices of order � 1024 have
been looked at. The average growth factor was approximately n3/2 for partial piv-
oting and n1/2 for complete pivoting.

These examples show that users of partial pivoting must carefully analyzed the
results.

Another possible choice is complete pivoting where the pivot is searched in i, j >
k. Then, Wilkinson [1965] showed that the growth factor is bounded, as

|a(k)
i,j | � k

1
2 (2 · 3

1
2 · · · k 1

k−1)
1
2 max
i,j

|ai,j |.

It was conjectured that in this case gA � n.
Cryer [1968] proved that this is true for n � 4. However, the conjecture has been

shown to be false for n > 4 if rounding error is allowed by Gould [1991]. Edelman
and Ohlroch [1991] modified the Gould counterexample to show that the conjecture
is also false in exact arithmetic.

N. Higham and D. Higham [1989] have exhibited some matrices of practical
interest which have a growth factor at least n2 for complete pivoting. They proved
the following result.

58 G. Meurant

Theorem 8.7. Let α = maxi,j |ai,j |, β = maxi,j |(A−1)i,j |, θ = 1
αβ .

Then, θ � n and for any permutation matrix P and Q such that PAQ has an
LU factorization, the growth factor g without pivoting on PAQ satisfies

g � θ.

Proof.

|(U−1)n,n| = |eT
nU

−1en| = |eT
nUL−1en| = |eT

nQ
TA−1PTen|,

as L−1en = en. Therefore,

|(Un,n)−1| = |(U−1)n,n| = |(A−1)i,j | � β,

for some (i, j). Clearly,

max
k,i,j

|a(k)
i,j | � |Un,n| � 1

β
.

With no pivoting at all, (U−1)n,n = (A−1)n,n, therefore it is easy to construct
examples with a large growth factor by building matrices whose inverses have a
small (n, n) entry. Notice that a large growth factor is a property of the matrix
itself and not of the algorithm.

Perturbation analysis
So far, we have been concerned with the consequences of running the Gaussian

elimination algorithm but we should also look at the consequences of perturbations
on the data. When the matrix A or the right hand side b are inputted (from scratch
or from some other computations) some errors could also be introduced.

There are different ways to measure these perturbations (see Chatelin and Fraysse
[1993]) and a lot of literature on this topic. One of the oldest method has been
introduced by A. Turing in 1949 and then developed by J. Wilkinson [1965]. It is
called normwise analysis.

• Normwise error analysis
To the data (matrix A and right hand side b), we associate the computed solution

y:

(A, b) → y.

We have to choose how to measure distances in both spaces. Let x and y be such
that

Ax = b,

(A + ∆A)y = b + ∆b.

Gaussian elimination 59

∆A and ∆b will be chosen such that

‖∆A‖ � αω, ‖∆b‖ � βω,

ω is given, α (resp. β) will be 0 or ‖A‖ (resp. ‖b‖) depending on whether A, or b, or
both are perturbed. ω defines the normwise relative perturbation. Following Golub
and Van Loan [1989], we have

Lemma 8.3. If ξ = αω‖A−1‖ < 1, then

‖y‖
‖x‖ � 1

1 − ξ

(
1 +

ξβ

α‖x‖
)

.

Proof. The first question is to know if A+ ∆A is non singular. But, we notice that

A + ∆A = A(I + A−1∆A),

and, with the hypothesis

‖A−1∆A‖ � αω‖A−1‖ = ξ < 1.

Then, A + ∆A is non singular by Lemma 2.3.3 of Golub and Van Loan [1989]. We
have

(I + A−1∆A)y = A−1(b + ∆b) = x + A−1∆b.

Taking norms,

‖y‖ � 1
1 − αω‖A−1‖ (‖x‖ + βω‖A−1‖).

But,

ω � 1
α‖A−1‖ =⇒ ‖y‖ � 1

1 − αω‖A−1‖
(
‖x‖ + ξ

β

α

)
.

Therefore,

‖y‖
‖x‖ � 1

1 − αω‖A−1‖
(

1 + ξ
β

α‖x‖
)

.

If α = ‖A‖ and β = ‖b‖, then

‖y‖
‖x‖ � 1 + ξ

1 − ξ
.

60 G. Meurant

Theorem 8.8. Under the conditions of Lemma 8.3,

‖x− y‖
‖x‖ � ω

(
‖A−1‖α‖x‖ + β

‖x‖
)(

1
1 − ξ

)
.

Proof. There are different ways to prove this result. For instance,

y − x = A−1∆b−A−1∆Ay,

‖y − x‖ � βω‖A−1‖ + αω‖A−1‖ ‖y‖,
‖y − x‖
‖x‖ � ‖A−1‖

(
βω

‖x‖ +
αω

1 − αω‖A−1‖
(

1 +
ξβ

α‖x‖
))

,

� ‖A−1‖
‖x‖ (α‖x‖ + β)

(
ω

1 − αω‖A−1‖
α‖x‖ + βξ

α‖x‖ + β
+

βω

α‖x‖ + β

)
,

� ω‖A−1‖α‖x‖ + β

‖x‖
(

1
1 − ξ

α‖x‖ + βξ

α‖x‖ + β
+

β

α‖x‖ + β

)
,

� ω‖A−1‖α‖x‖ + β

‖x‖
(

1
1 − ξ

)
.

If α = ‖A‖ and β = ‖b‖, then

α +
β

‖x‖ = ‖A‖
(

1 +
‖b‖

‖A‖ ‖x‖
)

� 2‖A‖,

and

‖y − x‖
‖x‖ � 2ω‖A‖ ‖A−1‖

(
1

1 − ξ

)
.

Let us define

KT(A, b) = ‖A−1‖α‖x‖ + β

‖x‖ .

This is the (normwise) condition number of the problem that “measures” the
sensitivity of the solution of Ax = b to perturbations. The subscript T refers
to Turing. Notice that if there are only perturbations in A, then β = 0 and
KT(A) = ‖A−1‖ ‖A‖.

Now, let ηT be defined on the set of all possible perturbations such that (A +
∆A)y = b+∆b, where y is the computed solution (see Chatelin and Fraysse [1993]),

ηT = inf{ω| ω � 0, ‖∆A‖ � ωα, ‖∆b‖ � ωβ, (A + ∆A)y = b + ∆b}.

Gaussian elimination 61

Theorem 8.9. Let r = b−Ay be the residual,

ηT =
‖r‖

α‖y‖ + β
.

Proof. As (A + ∆A)y = b + ∆b, we have

∆Ay − ∆b = r.

Therefore,

‖r‖ � ω(α‖y‖ + β),

which implies that for all cases

ω � ‖r‖
α‖y‖ + β

.

Now, we only have to exhibit a case for which equality occurs. Consider α = 0
(e.g. ∆A = 0) and ∆b = ωb. Then,

Ay = (1 + ω)b or ωb = −r.

This gives

ω =
‖r‖
‖b‖ ,

which is the equality we were looking for.

ηT is sometimes called the (normwise) backward error. It measures the minimal
distance to a perturbed problem that is solved exactly by the computed solution.
We have seen that (approximately), the forward error (‖y−x‖‖x‖) is the condition
number times the backward error. Unfortunately, most of the time, the bounds
that we have just established are too pessimistic and do not reflect the reality of
the computation.

A topic that has been widely studied (see for instance Cline, Moler, Stewart and
Wilkinson [1979]) is finding estimates for the normwise condition number. This is
much less interesting today as people are mainly considering other ways to measure
sensitivity to perturbations.

Beginning in the sixties, notably in the work of F.L. Bauer, a new style of pertur-
bation analysis has been developed considering componentwise perturbations. This
has later been studied by Skeel [1979] and is much in favor today. This perturba-
tion analysis tries to assess the consequences of having perturbations on individual
elements of A or b.

62 G. Meurant

• Componentwise error analysis
We consider perturbations ∆A and ∆b such that

|∆A| � ωE, |∆b| � ωf,

and

(A + ∆A)y = b + ∆b,

where E and f are given matrix and vector of non negative entries and for a matrix
B, |B| denotes the matrix whose entries are the absolute values or modulus of the
entries of B. Clearly, if Ei,j = 0 (resp. fi = 0), then (∆A)i,j = 0 (resp. (∆b)i = 0),
e.g. the corresponding entry is not perturbed.

Common choices for E and f are (|A|, |b|), (0, |b|), (|A|, 0). This allows also special
choices for sparse matrices taking into account the sparsity structure. We choose
to measure distances with the ‖ · ‖∞ norm. The analysis is almost the same as for
the normwise case.

Theorem 8.10. If ω‖ |A−1|E‖∞ < 1,

‖y − x‖∞
‖x‖∞ � ω

‖ |A−1|(E|x| + f)‖∞
‖x‖∞

1
1 − ω‖ |A−1|E‖∞ .

Proof. We have

y − x = A−1∆b−A−1∆A(y − x) −A−1∆Ax.

Taking absolute values,

|y − x| � ω|A−1|(f + E|x|) + ω|A−1|E|y − x|.

By taking norms, we obtain the result.

The (componentwise) condition number of the problem is defined as

KBS(A, b) =
‖ |A−1|(E|x| + f)‖∞

‖x‖∞ .

The subscript BS refers to Bauer and Skeel.
Other condition numbers can be exhibited depending on the metric that is chosen,

see Chatelin and Fraysse [1993]. Remark that if f = 0 and E = |A| then,

KBS � ‖ |A−1| |A| ‖.

Let

ηBS = inf{ω|, ω � 0, |∆A| � ωE, |∆b| � ωf, (A + ∆A)y = b + ∆b},

Gaussian elimination 63

be the componentwise backward error. Oettli and Prager [1964] proved the following
result.

Theorem 8.11.

ηBS = max
i

|(b−Ay)i|
(E|y| + f)i

.

An algorithm is said to be backward stable when the backward error is of the
order of the machine precision u. Gaussian elimination with partial pivoting is
both normwise and componentwise backward unstable. As we have said, there are
examples where ηT or ηBS are large compared to machine precision.

Despite this fact, the method can be used safely on most practical examples. We
will also see later that there are some remedies to this backward instability.

• Componentwise condition numbers
Chandrasekaran and Ipsen [1995] analyzed the errors in components of the solu-

tion of a linear system when the right hand side is perturbed.

Theorem 8.12. Let

Ax = b

Ay = b + ∆b

and cTi , 1 � i � n, be the rows of A−1. Moreover, let βi be the angle between ci and
b, ψi be the angle between ci and ∆b and εb = ‖∆b‖

‖b‖ , then (when xi �= 0)

yi − xi
xi

=
‖∆b‖ cosψi
‖b‖ cosβi

=
‖b‖

‖A‖ ‖x‖
‖x‖
xi

‖A‖ ‖ci‖ εb cosψi.

Proof. We have

y = A−1(b + ∆b).

Then,

y − x = A−1∆b.

Therefore,

yi − xi = cTi ∆b = ‖∆b‖ ‖ci‖ cosψi,

and

xi = cTi b = ‖ci‖ ‖b‖ cosβi,

64 G. Meurant

from which the result follows.

Perturbing the matrix, we get the following result.

Theorem 8.13. Let

Ax = b

(A + ∆A)y = b

Moreover, let ψi be the angle between ci and ∆Ay and εA = ‖∆Ay‖
‖A‖ ‖y‖ , then (when

xi �= 0)

yi − xi
xi

= − 1
cosβi

‖∆Ay‖
‖b‖ cosψi = −‖y‖

xi
‖A‖ ‖ci‖ εA cosψi.

Proof. We have

y − x = −A−1∆Ay.

Therefore,

yi − xi = −cTi ∆Ay = −‖ci‖ ‖∆Ay‖ cosψi,

from which the result follows.

These results lead Chandrasekaran and Ipsen [1995] to define the componentwise
conditions numbers as

‖y‖
|xi| , ‖A‖ ‖ci‖.

A geometric interpretation of these choices is given in Chandrasekaran and Ipsen
[1995]. Relating these results to componentwise perturbation analysis, we have the
following result.

Theorem 8.14. If we have |∆b| � ω|b|, then,

|yi − xi|
|xi| � ω

|cTi | |b|
|cTi b|

.

If |∆A| � ω|A|, then

|yi − xi|
|xi| � ω

|cTi | |A| |y|
|xi| .

Gaussian elimination 65

Proof. Straightforward

A posteriori errors bounds
Suppose that the matrix A is symmetric and positive definite and we have an

approximate solution x0. Then, we know that the error e satisfies

Ae = r0 = b−Ax0,

and therefore

‖e‖2 = (A−1r0, A
−1r0) = (A−2r0, r0).

As A is symmetric, it can be written as

A = QΛQT,

where Q is an orthonormal matrix whose columns are the normalized eigenvectors
of A and Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi,

a = λ1 � λ2 � . . . � λn = b.

Then, if u and v are two vectors and f is a given function,

(u, f(A)v) = (u,Qf(Λ)QTv)
= (α, f(λ)β)

=
n∑
i=1

f(λi)αiβi.

This last sum can be considered as a Riemann–Stieltjes integral

I[f] = (u, f(A)v) =
∫ b
a

f(λ) dα(λ),

where the measure is piecewise constant and defined by

α(λ) =

0 if λ � a∑i
j=1 αiβi if λi < λ � λi+1∑n
j=1 αiβi if b < λ

The case we are interested in is u = v = r0 and f(x) = 1
x2 . This was considered

in Dahlquist, Eisenstat and Golub [1972]. Numerical methods for obtaining bounds
on the integral (and therefore on the error) are given in Golub and Meurant [1994].
These methods use quadrature formulas (Gauss, Gauss–Radau and Gauss–Lobatto)
to approximate the integral. These formulas rely on orthogonal polynomials(for the
given measure) which are computed by running a few iterations of the Lanczos

66 G. Meurant

process. Therefore, these computations involve only matrix× vector products and
operations on tridiagonal matrices generated by the Lanczos algorithm. As long as
only a few iterations are needed, this involves only O(n2) operations. These methods
give bounds on the elements of the inverse of A or for the norm of the error e.

Back to the examples
It is interesting to look at some of these condition numbers and backward errors

for some of the examples we have defined before. Remember that we have chosen
β = 10 and t = 3.

In Example 1, we have

A =
(

3 3
1 0.99

)
,

the exact solution is x = (1 1)T and the computed solution is y = (1.99 0)T. The
(exact) inverse of A is

A−1 = 102

(−0.33 1
1/3 −1

)
.

Then, KT(A) = 666 and ηT = 0.0033. The product of these two quantities is 2.19.
Looking at componentwise analysis, we have KBS = 399, much smaller than KT

and ηBS = 0.005. Then, the product of these two quantities is about 2.
Notice that we have

‖y − x‖
‖x‖ = 0.995,

‖y − x‖∞
‖x‖∞ = 1,

the bounds being only off by a factor of 2. Componentwise, we have[
yi − xi

xi

]
i=1,2

=
(

0.989
−1

)
.

Notice that |cTi | is 105.3 for i = 1 and 105.4 for i = 2. Finally, we remark that the
two lines corresponding to the two equations are almost the same explaining the
problems we got computing the intersection.

Now, we consider Example 2 where,

A =
(

30 1
10 1

)
,

the exact solution is x = (1 1)T and the computed solution is y = (0.99 1.04)T. The
(exact) inverse of A is

A−1 =
(

0.05 −0.05
−0.5 1.5

)
.

Gaussian elimination 67

KT(A) = 50.08 and ηT = 0.00587. The product of the condition number and the
backward error is 0.294.

For componentwise analysis, KBS = 31.999 and ηBS = 0.0084. Then, the product
of these two quantities is about 0.27.

Looking at relative errors, we have

‖y − x‖
‖x‖ = 0.0291,

‖y − x‖∞
‖x‖∞ = 0.04.

Notice this is much smaller than the bounds involving the condition numbers. Com-
ponentwise, we have

[
yi − xi

xi

]
i=1,2

=
(−0.01

0.04

)
.

Notice that |cTi | is 0.0707 for i = 1 and 1.5811 for i = 2. This indicates that the
error should be larger on the second component, which is what we observed.

Let us look at Example 5,

A =
(

03 10−2 1
1 1

)
,

the exact solution is x = (1.0003 0.9997)T and the computed solution is y = (0 1)T.
The (exact) inverse of A being

A−1 =
(−1.003 1.003

1.003 −0.003

)
.

KT(A) = 2.63 and ηT = 0.618. The product of the condition number and the
backward error is 1.6237.

For componentwise analysis, KBS = 3 and ηBS = 1. Then, the product KBSηBS

is 3.
For relative errors, we have

‖y − x‖
‖x‖ = 0.709,

‖y − x‖∞
‖x‖∞ = 1.

Componentwise, we have

[
yi − xi

xi

]
i=1,2

=
(−1

0.003

)
.

We note that |cTi | is 1.418 for i = 1 and 1.003 for i = 2, indicating that we have a
larger error in the first component.

68 G. Meurant

Scaling
Scaling is a transformation of the linear system to be solved trying to give a

better behaved system before using Gaussian elimination. Let D1 and D2 be two
non singular diagonal matrices. The system Ax = b is transformed into

A′y = (D1AD2)y = D1b,

and the solution x is recovered as x = D2y. Notice that left multiplication by D1

is a row scaling and right multiplication by D2 is a column scaling. The entry ai,j
of A is changed into d1

i d
2
jai,j where dli, l = 1, 2 are the diagonal entries of Dl.

Notice that if one uses Gaussian elimination with partial pivoting to solve the
scaled system, row scaling influences the choice of the pivot. Classical strategies can
be found in Curtis and Reid [1972]. Other proposals were done by Hager [1984].
A common strategy for row scaling is to divide the entries of a row by the infinity
norm of the row. Skeel [1979] showed that a good scaling matrix is choosing the
diagonal elements of D1 as di = (|A| |y|)i where y is the computed solution. Of
course, this is impractical as the solution y depends on the scaling. However, if an
approximation c of the solution is known, then A could be scaled by (|A| |c|)i.

Today, no scaling strategy has been shown to give consistently better results than
not using any scaling at all although many different strategies have been proposed
over the years. If the diagonal elements of D1 and D2 are (as it has been suggested)
powers of the machine base then, if there are no overflows or underflows and no
pivoting is used, the computed solution is the same as without scaling.

It has been argued that the real role of scaling is to alter the pivoting sequence.
This can result in a better or worst solution. The rule of thumb given in Poole
and Neal [1992] is that when scaling can lead to a system which is more diagonally
dominant, it could be useful and otherwise it should be avoided.

Further remarks
• Nearness to singularity

When perturbing only the matrix entries, the normwise condition number is

KI(A) = ‖A‖ ‖A−1‖,
the index I referring to the fact that this is also the condition number for matrix
inversion. The singular value decomposition of A can be written, see Golub and
Van Loan [1989],

A = UΣV T,

where U and V are n by n orthogonal matrices and

Σ = diag(σ1, . . . , σn), σ1 � · · · � σn � 0.

σn is the distance to the nearest singular matrix, if we measure distances in the l2
norm or in the Frobenius norm. If we use the l2 norm and if σn > 0, it is easy to
see that

KI(A) =
σ1

σn
.

Gaussian elimination 69

If we normalize A such that ‖A‖2 = 1, then KI(A) = 1
σn

. The condition number
is the inverse of the distance to the nearest singular matrix. In Demmel [1992c],
J. Demmel studied the possible extension of these results to componentwise analysis.
We briefly state these results informally. If we only perturb A, the condition number
is

K(A,E) = ‖ |A−1|E‖.

Let ω(A,E) be the smallest ω satisfying |∆A| � ωE and such that A + ∆A is
singular. It has been proved (Rohn [1990]), that

ω(A,E) =
1

maxS1,S2 ρ(S1A−1S2E)
,

where S1 and S2 are diagonal matrices with ±1 on the diagonal and ρ is the spectral
radius (max of modulus of the eigenvalues). If Ei,j = 1 and Ω = {(x, y)|xi =
±1, yi = ±1}, then

ω(A,E) =
1

max(x,y)∈Ω |xTA−1y| .

Computing ω(A,E) is an NP–complete problem. There are no such results as for the
normwise case relating the condition number to nearness to singularity. However,
Demmel [1992c] proved the following bounds,

ω(A,E) � 1
K(A,E)

,

and

1
maxi,j(|A−1

i,j |Ei,j)
� ω(A,E).

9. Iterative refinement

We have seen in the round off error analysis that the computed solution satisfies

(A + H)y = b,

with

‖H‖∞ � u C‖A‖∞,

if the growth factor is bounded. Let r = b−Ay be the residual, then

‖r‖∞ � ‖H‖∞ ‖y‖∞ � uC‖A‖∞ ‖y‖∞.

70 G. Meurant

Hence, if C is not too large, Gaussian elimination produces a small residual. But,
small residuals do not always imply high accuracy in the solution. Let e = x − y,
then

Ae = b−Ay = r.

Therefore, one natural idea is to solve

Ae = r.

This will produce a computed solution ẽ, satisfying

(A + H)ẽ = r

and we set x̃ = y + ẽ as the new approximation to the solution. If we like, we can
iterate this process. This algorithm is known as iterative refinement (or iterative
improvement).

Here, the main question is to know to which precision the residual r has to be
computed as we are not able to get the exact answer. If we have r̃ = fl(b−Ay) and
(A + H)ẽ = r̃, Skeel [1979] has shown that computing the residual with the same
precision as the computations is enough to make Gaussian elimination with partial
pivoting backward stable. This is stated in the following theorem.

Theorem 9.1. If u|A| |A−1| is small enough, one step of iterative refinement with
single precision residual computation is componentwise backward stable.

Proof. We just give a rough informal sketch of the proof, see Skeel [1980] for details.
All the constants below are functions of n only. The computed solution y verifies
(A + H)y = b and

|b−Ay| � uC |A| |x|,

with |Hy| = O(u). More specifically

|Hy| � Cu |A| |x| + O(u2).

The residual r̃ = fl(b−Ay) = Hy + z is such that

|z| � Cu|A| |x| + O(u2).

When solving for the error, we have

(A + H)ẽ = r̃.

Clearly, |Hẽ| = O(u2). Finally

b−Ax̃ = b−Ay −Aẽ,

= b−Ay + Hẽ−Hy − z.

Gaussian elimination 71

Therefore,

|b−Ax̃| � Cu |A| |x| + O(u2).

We also have,

|A| |x̃| = |A| |x| + O(u).

These two statements imply the componentwise backward stability.

However, one step of iterative refinement only gives a small backward error.
It does not guarantee a better accuracy. If this is wanted, the residual must be
computed in double precision.

10. Geometric analysis

In Poole and Neal [1991] and Neal and Poole [1992], was studied the geometry of
Gaussian elimination. The solution of a linear system of order n is viewed as finding
the intersection of n hyperplanes.

Consider the following simple example, using three decimal digits arithmetic,
close to an example given in Poole and Neal [1991],

H1 : 5x1 − x2 = 24
H2 : 14x1 + 80x2 = 470

whose exact solution using 3–digits arithmetic is (5.77, 4.86). The geometric inter-
pretation of this system is shown on figure 10.1.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x1

x2

fig. 10.1

72 G. Meurant

Notice that H1 and H2 are nearly orthogonal. If we use partial pivoting, this
system is transformed into

H2 : 14x1 + 80x2 = 470
H′

1 : 29.5x2 = 143

This gives x2 = 4.85

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x1

x2

fig. 10.2

H′
1 is parallel to the x1 axis but with an approximate ordinate value. As H2 is

also nearly parallel to the x1 axis, the error on x2 is amplified and we find x1 = 5.85
Generalizing this example, an hyperplane Hi (in the upper triangular system

obtained by the forward sweep) is said to be poorly oriented with respect to the
xi–axis if there exists an entry ui,j , i �= j such that |ui,j | � |ui,i|. In this case, the
backward sweep may lead to large errors.

Even if there are no rounding errors in the forward sweep, everything can be
spoiled by the backward sweep. Consider the following bidiagonal matrix,

B =

1 −α
1 −α

.
1 −α

1

 .

If we solve the system

Bε = (0 . . . 0 β)T,

Gaussian elimination 73

then, we have

εn = β

εi = αn−iεn

Consequently, if α > 1, the value of εn is amplified by this backward sweep even if
the computations are done in exact arithmetic.

Therefore, in Gaussian elimination and under certain circumstances, if there is
an error in the last component (coming for the forward sweep), it may be amplified
by the backward sweep.

In Poole and Neal [1991], it is stated that a good pivoting strategy must address
potential problems in both phases of Gaussian elimination. Notice that partial
pivoting address only problems in the first phase.

The pivoting strategy should be such that during the first phase, the arrangement
of equations gives the i–th hyperplane as nearly orthogonal as possible to the xi–
axis. Partial pivoting gives only a good hyperplane orientation in L. Complete
pivoting addresses also the orientation problem in U . So, generally, there are less
problems in the backward sweep with complete pivoting.

However, examples can be found (Poole and Neal [1991]) where partial pivoting
is better than complete pivoting. It is stated in Poole and Neal [1991] that although
the geometric analysis does not favor the use of partial pivoting, empirical evidence
shows that for “most” linear systems partial pivoting gives an acceptable computed
solution. This is attributed to the fact that in most systems hyperplanes are not
nearly parallel to any axis at all and that computer precision is sufficiently good
to postpone instability that could occur. Rook’s pivoting was designed to address
these problems.

In Neal and poole [1992], the concept of error multipliers was introduced to look at
the amplification of errors in the backward sweep. Let Hk be the upper Hessenberg
submatrix of U of order k such that Hk = [ui,j], n−k � i � n−1, n−k+1 � j � n
and ε be the difference of the computed and exact solutions of Ux = b. Then,

εn−k =
(−1)k detHk∏n−1
i=n−k ui,i

εn.

The multiplicative factor here is called the error multiplier (EM). It is clear that
if some of the EMs are large then, a large amplification of errors can occur. When
EMs are less or equal than 1, the backward sweep is generally without problems.

Interesting examples are shown in Neal and Poole [1992], particularly example
2.5 where a 5 × 5 system is given for which there is no rounding error using IEEE
single precision arithmetic during the forward sweep. However, very large errors
arise in the backward sweep coming from large EMs. Using IEEE double precision
on this system, a good solution is obtained.

The examples in Neal and Poole [1992] show that, usually, partial pivoting pro-
duces an upper triangular system whose exact solution is very close to the solution
of the original system. Partial pivoting also tends to produce hyperplanes that are
well oriented with respect to each other.

74 G. Meurant

From these studies, it is also clear that contrived examples exhibiting almost
any behaviour (with partial pivoting, complete pivoting or rook’s pivoting) can be
constructed.

Gaussian elimination 75

3. Vector and parallel algorithms for general systems

11. Introduction

In this Chapter, we consider the implementation of Gaussian elimination on vector
and parallel computers.

It is always difficult to write about such a topic in a book or a review like this one,
as the computer architectures evolve so fast that the risk is to be outdated almost
the next day. Since the first years after World War II and the advent of the first
real computers (with stored programs), there has been a tremendous progress both
in the ease of use of scientific computers and in their floating point performances.

When I started learning numerical analysis in 1970, top scientific computers
like the IBM 360–91 were running at about 1–2 Mflops (that is 106 floating point
operations per second). Although there were already some forms of parallelism
hidden in the computer architectures (particularly for the I/Os), they were mainly
sequential machines. This culminated in the well known Control Data CDC 7600
that was running at about 5–10 Mflops on typical codes. Then, came the era of
vector computers which has not ended yet in 1998. The first one commercially
available (1976) was the CRAY 1 which had a peak speed of 160 Mflops and an
average speed of 10 to 30 Mflops on real production codes.

These machines introduced a new kind of implementation problem. Roughly
speaking, on sequential computers the most efficient algorithm was the one with
good numerical properties that had the smallest total number of floating point op-
erations. This is not true anymore on a vector machine. There is a lot of difference
between the scalar and vector speed processing, typically a factor of 10. To run fast
an algorithm has to be expressed (if possible) in terms of vectors. Moreover, the
longer is the vector length, the faster is the speed of execution (up to an asymptotic
value). The memory traffic issue is also very important to get good performances.
Usually the fastest vector computers are the ones with the largest memory bandwith
and the speed of algorithms depend also on the ratio of floating point operations
to memory references.

The vector computers have now evolved into machines with several vector pro-
cessors sharing a common large memory. Today (1998), these machines run at a
few (1–100) Gflops (109 floating point operations per second).

Recently (end of the 80’s, beginning of the 90’s), a new kind of scientific computers
have appeared on the commercial market. These machines are parallel computers
with distributed memory. Although this is a quite old idea (the parallel computer
Illiac IV was built in 1972), only recently had these machines attained a level of
reliability good enough to allow their use in the industry. Right now, they deliver
merely about the same performance as the top of the line parallel vector super-
computers. However, it has been shown on specific examples that they can reach
Teraflops (1012 floating point operations per second). Now, some people are even
seriously considering building Petaflops computers (1015 floating point operations
per second) in about 20–25 years from now (1998). Of course, to fully exploit these
architectures, we need to have parallel algorithms and suitable programming mod-

76 G. Meurant

els.
It is remarkable that through all these changes the analysis that has been de-

veloped in the 60’s by J. Wilkinson [1965] is still relevant. However, it should be
noticed that together with the evolution of computers and particularly with huge
shared or distributed memories, larger and larger problems are solved (see Edelman
[1993]) and this can possibly raise some new computational problems concerning
the accuracy of computations.

There is such a lot of different architectures available today, all with their details,
that it is almost impossible to have a unified treatment of the implementation prob-
lems of Gaussian elimination on these computers. Therefore, we will concentrate
on what we feel is the most important ways to construct reliable and fast software,
that is basic algorithms. We will study this for parallel distributed architectures
without looking too much into the details of implementation or performance issues.

12. BLAS routines

Software reuse and portability are issues that are almost as important as perfor-
mances. In the 70’s, Lawson, Hanson, Kincaid and Krogh [1979] described a set of
basic routines commonly called the BLAS (Basic Linear Algebra Subprograms) for
linear algebra problems. They are an aid to clarity and portability and also per-
formance, as these routines can be implemented as efficiently as possible by each
manufacturer, possibly in assembly language.

It turns out that the basic frequently occurring operations are most often the
same in all linear algebra problems, so it was useful to develop a standard interface
for these kernels. The set of operations described in 1979 is now referred as Level 1
BLAS or BLAS1. These routines are mainly concerned with vector operations like

y = αx + y, (Saxpy)
α = xTy, (Sdot)
x = αx, (Sscal)
x = y, (Scopy)
α = ‖x‖2, (Snrm2)

where x and y are vectors and α is a scalar, the S standing for single precision. For
a complete list, see Anderson and al [1992].

The well known linear algebra package LINPACK (for linear systems solves and
least square problems) was written using BLAS1 and published in 1979 (Bunch,
Dongarra, Moler and Stewart [1979]). BLAS1 involves O(n) floating point opera-
tions on O(n) data items, n being the length of the vectors.

At the time where the BLAS1 appeared and LINPACK was completed, the vector
computers appeared on the market. One can think this was fine as the BLAS1
defined vector operations. Unfortunately, this is not completely true and the BLAS1
and LINPACK had poor performance on vector machines. The reason for that is
the value of the ratio of floating point operations to data loads and stores. It is too
low to keep the processor busy all the time, in which case the performance could be

Gaussian elimination 77

smaller (sometimes by a large amount) than the peak theoretical speed. In BLAS1,
there are very few possibilities of data reuse in vector registers or memory caches.

An additional set of routines called the Level 2 BLAS (BLAS2) was then designed,
(Dongarra and al [1988]). They are based on matrix×vector operations. Examples
are

y = αAx + βy,

x = Tx,

A = αxyT + A,

x = T−1x,

where α, β are scalars, x, y are vectors, A and T are matrices, T being triangular.
Most algorithms of linear algebra can be coded using Level 2 BLAS including

Gaussian elimination. Level 2 BLAS involves O(n2) floating point operations on
O(n2) data items. Therefore, the ratio of Level 1 BLAS is not improved. But, for
instance, in the first kernel above, data can be kept in the vector registers, improving
the computational speed.

To improve on this point and to increase the data locality, a level 3 BLAS
(BLAS3) has been proposed in 1990, see Dongarra and al [1990], that defines
matrix×matrix operations. Examples are

C = αAB + βC,

C = αAAT + βC,

C = αABT + αBAT + βC,

B = αTB,

B = αT−1B,

α, β are scalars, A,B,C, T are matrices, T being triangular.
There, we have O(n3) floating point operations on O(n2) data items helping to

improve the data reuse. Level 3 BLAS shows very good performances on vector
supercomputers and computers with a memory hierarchy. Performance close to the
peak speed is frequently obtained.

13. LAPACK (and follow ons)

At the end of the 80’s, at the same time the Level 2 BLAS and Level 3 BLAS have
appeared, a new software project has been developed. Its goal was to supersede both
LINPACK and EISPACK (a well known package for eigenvalues computations) and
also to obtain better performances. The computers targeted were parallel vector
supercomputers with shared memory. Another goal was to improve the quality and
accuracy of the algorithms, particularly for eigenvalue computations.

The first version of LAPACK (for Linear Algebra PACKage) has appeared offi-
cially in 1992, see Anderson and al [1992] and the second one in 1994. The strategy
of LAPACK to obtain portable codes that are also efficient is to construct the soft-
ware as much as possible using calls to the BLAS. The BLAS 2 and 3 can achieve

78 G. Meurant

near peak performance on the targeted architectures. Moreover, it allows also to
exploit parallelism in a transparent way.

Partitioned block forms of the LU (or other) factorizations (where point algo-
rithms are used in which operations have been grouped together) are used in LA-
PACK in order to use Level 2 and 3 BLAS. Some routines also exist in LAPACK
that return bounds on the componentwise backward error.

LAPACK has been extended in an almost transparent way to distributed mem-
ory parallel computers, see the ScaLAPACK library (Choi, Dongarra, Pozzo and
Walker [1994]).

14. Triangular systems solvers on distributed memory computers

Introduction
Although only O(n2) operations are required for the forward and backward solves
compared to the O(n3) operations of the LU factorization, the solution of triangular
systems is an interesting challenge on parallel computers. Moreover, quite often,
several systems with different right hand sides have to be solved and then, the cost
of triangular solutions can be as large as the one for factorization.

In considering an algorithm for a triangular solve on a distributed memory par-
allel computer, two main issues have to be studied. The first one is to find some
parallelism in a process which, at first sight, seem mostly sequential. The second
issue is finding good data distributions in the local memories associated with each
processor to minimize memory transfers.

Many parallel algorithms have been devised for solving triangular systems, see
Heller [1978]. However, many of them assumed having O(n3) processors available
and are not of practical use on present machines that have between a hundred and
a thousand processors. Here, we mainly follow Heath and Romine [1988] and Eisen-
stat, Heath, Henkel and Romine [1988] and then, we describe some alternatives.

Let us start with serial algorithms and let

Lx = b,

to be solved, where L is lower triangular. There are basically two ways to com-
pute the solution. The first one is the classical way, in which components of x are
computed exactly one after another,

for i=1:n
for j=1:i-1

b(i)=b(i)-l(i,j)*x(j)
end
x(i)=b(i)/l(i,i)

end

This algorithm is called the scalar product algorithm as the main operation is
computing the scalar product of the i–th row of L (except the diagonal element)
with the vector of the components already computed.

Gaussian elimination 79

The second algorithm uses the fact that after a component is computed, the right
hand side can be modified at once,

for j=1:n
x(j)=b(j)/l(j,j)
for i=j+1:n

b(i)=b(i)-l(i,j)*x(j)
end

end

We called this algorithm the Saxpy algorithm as the main loop is clearly a Saxpy
operation, x(j) being the scalar. Notice that this corresponds to swapping the two
loops of the algorithm.

We will first examine parallel algorithms where the data is distributed either
by rows or by columns. Then, the important issue is the mapping of rows and
columns to processors’ memories. We define this mapping by map(j): the number
(or address) of the processor to which row (or column) j is mapped.

The most commonly used mapping is wrapping. We suppose n >> p where p
is the number of processors. For simplifying purposes, suppose that p divides n
exactly. The simplest way of defining a wrap mapping is the following,(

j : 1 2 3 . . . p p + 1 . . . 2p 2p + 1 . . . n
map(j) : 1 2 3 . . . p 1 . . . p 1 . . . p

)

The advantage of this mapping is its simplicity. However, a potential problem is
that each processor does not receive the same number of matrix entries, particularly
if only the lower triangular part of L is stored. Suppose we distribute the (non zero)
elements of columns. Processor 1 will have

n/p−1∑
i=0

n− ip =
n/p∑
i=1

n− (i− 1)p = (n + p)
n

p
− p

2
n

p

(
n

p
+ 1
)

=
n2

2p
+

n

2
,

elements while processor p will receive

n/p∑
i=1

n− ip + 1 = (n + 1)
n

p
− n

2

(
n

p
+ 1
)

=
n2

2p
+

n

p
− n

2
.

This can cause some load imbalance. The problem can be fixed (in this simple case)
by reflecting the mapping in the following way:(

j : 1 2 3 . . . p p + 1 . . . 2p 2p + 1 . . . n
map(j) : 1 2 3 . . . p p . . . 1 1

)

One can easily check that in two consecutive sets of indices, each processor has the
same number of elements. Therefore, if np is even, each processor receives the same
number of entries.

80 G. Meurant

These mappings can be generalized by considering blocks of consecutive rows or
columns instead of individual rows or columns. Doing so decreases communication
time but increases load imbalance. Methods using these mappings are called panels
methods in Rothberg’s Ph.D. thesis (Rothberg [1993]).

Fan out and fan in algorithms
These two algorithms seek the parallelism in the inner loops of the Saxpy and

the scalar product algorithms. We consider first the Saxpy algorithm. Clearly, the
components of b can be computed in parallel. Each component bi is going to be
computed by one particular processor. To be able to achieve this in parallel, bi must
be in the memory of the processor computing this entry. Therefore, the data must
be distributed by rows.

Suppose that each processor has a set { myrows } containing the indices of rows
the memory of the processor is storing. As soon as the xj component of the solution
is computed, it must be broadcasted to all other processors. This is done in a fan–
out operation. Fan-out(x,proc) means that processor proc sends x (located in its
memory) to all other processors. The algorithm (the code running on one processor)
is the following, (Heath, Romine [1988])

for j=1:n
if j ∈ { myrows }

x(j)=b(j)/l(j,j)
fan-out(x(j),map(j))

end
for i ∈ { myrows }

b(i)=b(i)-l(i,j)*x(j)
end

end

This code is not exactly the one that will really be used on a parallel machine as
it uses a global indexing scheme. In a real code indices local to each processor may
have to be used, depending on the programming model. Nevertheless, this code
helps understanding what is going on.

The implementation of the fan–out (broadcast) operation depends on the com-
puter architecture, particularly the topology of the communication network. It pro-
vides the necessary synchronization as one processor sends data and all the others
wait to receive it. One problem is that only one word (xj) is sent at a time. Usually,
sending a message of l words costs

t = t0 + τ l,

t0 is the start–up time (or latency). The efficiency depends on the value of t0
relatively to τ and l. For sending only one word, the cost is essentially the start–up
time. Therefore, this algorithm can be efficient only on computers with a small
latency.

Now, we look at the scalar product algorithm. Parallelism is found in the in-
ner loop, computing the scalar product. To be able to do so, the data has to be

Gaussian elimination 81

distributed by columns. Then, each processor can compute the l(i,j)*x(j) term
for j in its column index set { mycolumns }. These partial contributions must be
added to the ones of the other processors. This is done in the fan–in operation:
Fan-in(x,proc) means that processor proc receives the sum of all the x’s over all
processors. Again, the implementation of this operation depends on the computer
architecture. One naive way to do it, it that each processor sends its contribution to
processor 0 that does the summation and then, broadcast the result to all proces-
sors. However, depending on the architecture, there are much more efficient ways to
implement this operation. Generally, one can obtain an log2 n computational time.

Wavefront algorithms
Fan–in and fan–out algorithms are seeking parallelism in the inner loop. The

algorithms in this Section look for parallelism in the outer loop. However, here
some data dependencies have to be respected, e.g. xi−1 has to be computed before
xi.

Consider the Saxpy algorithm with data distributed by columns this time. In-
formally, the algorithm is the following. Let y be an n–vector, processor map(1)
computes x1 and starts computing the updates yi = li,1x1. After computing σ such
components (1 � σ � n − 1) that we called a segment, processor map(1) sends
them to map(2) and resumes computing the next σ update components. As soon
as the data is received, processor map(2) computes x2 and the updates with x2 in
the first segment. When it is completed, it is send to processor map(3), etc. . .

Having completed the update for a segment, map(j) sends it to map(j+1). After
a start–up phase, all processors are working concurrently. A smaller segment size
increases parallelism particularly at the beginning, but increases also the number
of messages required. A value of σ = n− 1 gives a purely serial algorithm.

The same idea can be applied to the scalar product algorithm with the data
distributed by rows.

Cyclic algorithms and variations
The algorithms in the two previous Sections can be used with any mapping of

rows or columns although this choice will have an impact on performance. In this
Section, following Heath and Romine [1988], we study an algorithm that has been
introduced by Li and Coleman [1989] to exploit the wrap mapping and to reduce
the communication volume.

Consider the Saxpy algorithm with the columns distributed using the wrap map-
ping on p processors. A segment of size p − 1 passes from processor to processor
and accumulates all the necessary updates. At step j, processor map(j) receives
the segment from processor map(j-1) and uses its first element to compute xj . It
deletes the first element, updates the other components and appends a new ele-
ment to the segment. The processor map(j) sends the new segment to processor
map(j+1) and starts computing update components involving xj that will be used
when the segment will return to map(j) according to the wrap mapping.

for i=1:n
t=0

82 G. Meurant

for j ∈ { mycolumns } & j<i
t=t+l(i,j)*x(j)

end
s=fan-in(t,map(i))
if i ∈ { mycolumns }

x(i)=(b(i)-s)/l(i,i)
end

end

These algorithms have several shortcomings. The main one is that they do not
exploit all the parallelism that can be found in the problem. For example, take
the Saxpy algorithm. After x(j) has been received, each processor updates all of
its b components. However, after bj+1 has been updated, processor map(j+1) can
immediately compute xj+1 and start sending it to everybody else before updating
the other components of b.

Similar modifications can be made to the scalar product algorithm. However,
complete asynchronism is difficult to implement. The data dependencies of the
classical forward sweep are illustrated in Figure 5 on a 5 × 5 example where an
arrow indicates that the computation where it started from must be completed
before the computation where it is pointing to can take place. It illustrates the
data flow of the algorithm.

l11

l21

l31

l41

l51

l22

l32

l42

l52

l33

l43

l53

l44

l54 l55

fig 14.1

As stated in Heath and Romine [1988], the efficiency of the previous algorithm
depends on how much computation can be done in the time between successive
appearances of the segment in a processor.

Numerical experiments in Heath and Romine [1988] show that for a given problem
size, when increasing the number of processors, there is a point where the computer
time increases rather than decreases.

Cyclic algorithms have been improved in this respect in Eisenstat, Hath, Henkel
and Romine [1988]. One obvious modification is to use ideas from the wavefront

Gaussian elimination 83

algorithm and break the segment into several subsegments. A subsegment is broad-
casted to the next processor as soon as possible. In this modification, there are
more messages to be sent but the communication pattern is still a ring–like one.
This is called a pipelined cyclic algorithm.

Another modification is to send the subsegments not anymore to map(j+1), but
directly to map(k) where k is the index of the first element in the subsegment.
Of course, additional synchronizations need to be done to be sure that processor
map(k) has received all the necessary information before proceeding to compute
xk. Another variant is not using equally sized subsegments but instead having
subsegments of size 2, 4, . . . , p2 and one of size 1 sent to the predecessor in the ring.

Numerical experiments comparing these different algorithms are given in Eisen-
stat and al [1988].

Other algorithms
The algorithms in the previous Sections are parallel implementations and varia-

tions of sequential algorithms. They have the same number of floating point oper-
ations, although they are processed in a different order.

However, one can imagine other ways of computing the solution of Lx = b. Some
are based on computing the inverse of L by various means. The following algorithm
is due to Sameh and Brent [1977].

Suppose for simplicity that li,i = 1. Then, it is easy to see that

L =
n−1∏
i=1

N−1
i ,

where N−1
i = I + lie

T
i with

li =

0
0

li,i+1

...
ln,i

 .

By Lemma 3.5, we know that

Ni = I − lie
T
i .

Therefore,

x = L−1b =
1∏

i=n−1

Nib.

The product on the right hand side can be computed by a logarithmic algorithm.
Suppose n = 8, then

x = N7N6N5N4N3N2N1b.

84 G. Meurant

N7 N6 N5 N4 N3N2 N1

N7 N6 N5 N4

b

N3N2N1b

x
fig 14.2

This can be written as

x = (N7N6)(N5N4)(N3N2)(N1b).

The products within each parenthesis can be formed in parallel, the results com-
bined again two by two, etc. . .

This algorithm requires log2 n stages. However, the total number of floating point
operations is about n

3

10 , that is much larger than the usual O(n2) operations of the
serial algorithm. For this algorithm to be usable, a very large number of processors
is required.

Another way of writing the matrix is

L = I − L̄,

where L̄ is strictly lower triangular and therefore L̄n = 0. Then,

x = (I − L̄)−1b,

= (I + L̄ + L̄2 + . . . + L̄n−1)b,
= (I + L̄2n−1)(I + L̄2n−2) . . . (I + L̄)b.

Again, this can be evaluated in log2 n steps.
Finally, another algorithm is obtained by partitioning the matrix L as

L =
(

L1,1 0
L2,1 L2,2

)
.

Then,

L−1 =
(

L−1
1,1 0

−L−1
2,2L2,1L

−1
1,1 L−1

2,2

)
.

The process can be reiterated in parallel for L1,1 and L2,2 and so on. Then, if
x = (x1, x2)T and b = (b1, b2)T,

x1 = L−1
1,1b1,

x2 = L−1
2,2b2 + L−1

2,2L2,1L
−1
1,1b1.

Gaussian elimination 85

15. LU factorization on distributed memory computers

A very large number of papers have been written over the years on the paralleliza-
tion of the LU factorization algorithms. Actually, it is easier to exhibit parallelism
in the LU factorization than in the triangular solves. It can be easily seen that
in the variants of LU factorization we have studied, there is a phase where some
elements are modified and that these modifications are independent of each other,
giving rise to some parallelism. A problem that we had not to face with triangular
solves is pivoting and we will see that it can cause some troubles.

There are a lot of variants that can be thought of for the parallel LU factorization.
Here, we first follow the exposition of Geist and Romine [1988].

As for the triangular solves, we consider the matrix to be distributed by rows or
columns. Notice that, for a better efficiency, this distribution has to be consistent
with the one used for the triangular solve. Otherwise, some data redistribution has
to be done between the two phases. We use partial pivoting on the kij form of the
factorization.

Row storage scheme
Suppose first that the matrix is stored by rows. A possible algorithm is the

following.

for k=1:n-1
find pivot row r
if r ∈ { myrows }

broadcast pivot row
else

receive pivot row
end
for i>k & i ∈ { myrows }

m(i,k)=a(i,k)/a(k,k)
for j=k+1:n-1
a(i,j)=a(i,j)-m(i,k)*a(k,j)

end
end

end

Analyzing the communications, we see that as the k–th column is scattered
amongst processors, communication must take place between processors to find
which row is the pivot row. The way it is done depends on the computer archi-
tecture. Note that in the previous algorithm –which is denoted by RSRP (Row
Storage Row Pivoting) in Geist and Romine [1988]– no explicit exchange of rows
takes place and this can cause some load imbalance depending on the pivot choices.
Chu and George [1987] proposed to use explicit exchange of rows with a wrap map-
ping. Obviously, this will produce a communication overhead and the question is to
know if this is offset by an improved load balancing. Examples in Geist and Romine
[1988] demonstrate that, in some cases, it is beneficial to use explicit row exchanges.

86 G. Meurant

Geist and Romine show how to decrease the number of communications by relaxing
the requirement that the final distribution of rows be a wrap mapping. They ask
that rows kp through (k + 1)p− 1 lie in distinct processors for each k. A processor
that contains one of these pivot rows cannot have another one and otherwise must
exchange rows with a processor that does not contain one. Different strategies for
choosing the processor to exchange the row with are given in Geist and Romine
[1988].

Column storage scheme
This algorithm is denoted by CSRP (Column Storage Row Pivoting) in Geist and

Romine [1988]. Here, updating the matrix is done by columns (kji form) instead of
being done by rows in RSRP. However, the main differences are when computing
the multipliers and searching for the pivot row. As the coefficient matrix is stored by
columns, the computation of the multipliers is done serially by the processor owning
the pivot column. This, of course, reduces the parallel efficiency of the factorization.
On the other hand, finding the pivot row is done without communication by only
one processor. Moreover, partial pivoting has no incidence on load balancing as the
mapping of columns to processors is not changed by pivoting.

for k=1:n-1
if k ∈ { mycolumns }

find pivot row r
for i=k+1:n
m(i,k)=a(i,k)/a(k,k)

end
broadcast m and pivot index

else
receive m and pivot index

end
for j> k & j ∈ { mycolumns }

for i=k+1:n
a(i,j)=a(i,j)-m(i,k)*a(k,j)

end
end

end

Numerical experiments in Geist and Romine [1988] show that the results of CSRP
as defined before are worst than those of RSRP. This is essentially due to the serial
part of the algorithm.

A way to improve this algorithm is to use some form of pipelining. For instance,
the processor containing column k can compute some multipliers and send them
allowing some of the other processors to start their computations. Using these
modifications CSRP is competitive with RSRP.

Block storage scheme
In Dongarra and Walker [1993], it is proposed to use a block cyclic data distri-

Gaussian elimination 87

bution and block partitioned versions of LU factorization for distributed memory
parallel computers. In the approach of Dongarra and Walker, all the parallelism is
to be find at the level of the BLAS routines, implying that the top layers of the
source code of the parallel version look very similar to the ones of LAPACK.

Independent data distributions are used for rows and columns. An object m (a
piece of row or column) is mapped to a couple (p, i), p being the processor number
and i the location in the local memory of this processor. By using wrapping as
before, we have

m −→ (m modp, �m/p�).

Blocking consists of assigning contiguous entries to processors by blocks,

m −→ (�m/L�,m modL), L = �m/p�.

The block cyclic distribution is a combination of both. Blocks of consecutive data
are distributed by wrapping,

m −→ (q, b, i),

q is the processor number, b the block number in processor q and i the index in
block b. If there are r data objects in a block, then

m −→ (�m modT
r

�, �m
T
�,m modr), T = rp.

A slight generalization of this is given in Dongarra and Walker [1993] by adding
offsets to the processor number.

To distribute the matrix, independent block cyclic distributions are applied for
the rows and columns. The processors are supposed to be (logically) arranged in
a two dimensional mesh and referred by couples (q1, q2). For general data distri-
butions, communications are required for the pivot search and the computation
of the multipliers. The communications to be done are broadcast to all processors
and broadcast to all processors in the same row (or column) in the 2D mesh of
processors.

Of course, the logical arrangement of processors has to be mapped to the physical
layout. This is architecture dependent. In Dongarra and Walker [1993], experiments
are reported on the Intel Delta computer.

Dense block–oriented factorizations are also studied in Rothberg’s Ph.D. thesis
(Rothberg [1993]). In his approach, if there are p processors arranged in a 2D mesh,
block (i, j) of the matrix is mapped to processor i mod

√
p, j mod

√
p. Then, two

variants are studied; the first one is a destination–computes approach where all
updates for a block are computed on the processor that owns the destination block.
The second one is a source–computes approach where updates are computed by a
processor that owns one of the source blocks. It is shown that the first approach
gives better results. Details can be found in Rothberg [1993].

88 G. Meurant

4. Gaussian elimination for sparse linear systems

16. Introduction

An area that has seen a rapid development since the end of the 60’s is research
on sparse matrices. So far, in the previous chapters, we have addressed several
properties of the matrices we considered like symmetry or positive definiteness, but
we did not care if some of the matrix entries where zero or not.

Now, we are going to look at this possibility in details. A sparse matrix is one
with many zero entries. However, it is difficult to give a precise definition of what a
sparse matrix is and to say how many zeroes must be there or even what percentage
of zeroes we should have.

We will see later on that special techniques are used to store sparse matrices and
that special algorithms are going to be defined in order to minimize the storage
and the number of operations during Gaussian elimination. Therefore, a definition
that has sometimes been given is that a matrix is sparse when it pays (either in
computer storage or in computer time) to use these special sparse techniques as
opposed to the more traditional dense (or general) algorithms that we described
before.

Nevertheless, exploiting sparsity allows solving very large problems with even
millions of unknowns by 1996.

There are several good books about sparse linear systems. Let us mention those
of George and Liu [1981] for symmetric positive definite systems and Duff, Erisman
and Reid [1986] for more general systems.

A drawback of these sparse techniques is that they are quite complex (actually
more complex than dense algorithms) and sometimes difficult to optimize. There-
fore, it is usually not feasible for the average user to write a sparse code from scratch.
Fortunately, there exist some good packages available containing well tuned codes
like the Harwell Library, Duff and Reid [1993], or SPARSPAK, George and Liu
[1981], to mention just a few.

In this part about sparse matrices, we are going first to introduce some definitions
and to stress some basic facts. We will look at the case of symmetric and particularly
positive definite matrices as it is a little easier to introduce some of the techniques
in this framework. Then, we will move on to the general case of non symmetric
sparse matrices.

17. Basic storage schemes and fill–in

Storage schemes
Dealing with sparse matrices, our aim is to be able to avoid storing the zero entries
of the sparse matrix A and to avoid doing operations on these zeroes. The most
natural way to do this is to store only the non zero entries ai,j of A, together with
the row and column indices i and j. Therefore, if nz is the number of non zeroes
of A, the storage needed is nz floating point numbers and 2 nz integers. In most
modern computers, integers use the same number of bits as floating point numbers.

Gaussian elimination 89

In that case, the total storage is 3 nz words.
However, this mode of storage (which is sometimes called the coordinate scheme)

is not very convenient for Gaussian elimination as we have seen that most variants
of the method require easy accesses to rows and/or columns of the matrix.

One common way to store a sparse matrix which is more suited to Gaussian
elimination is to hold the non zeroes of each row (resp. column) as a packed sparse
vector AA, together with the column (resp. row) index of each element in a vector
JA. These two vectors have a length of nz words. A third vector IA of integers of
length n + 1 is needed to point to the beginning of each row in AA and JA. Let us
look at this storing scheme on a small example.

Let

A =

a1 0 0 a2

a3 a4 a5 0
0 a6 a7 0
a8 0 0 a9

 ,

the stored quantities are

1 2 3 4 5 6 7 8 9
AA a1 a2 a3 a4 a5 a6 a7 a8 a9

JA 1 4 1 2 3 2 3 1 4
IA 1 3 6 8 10

Notice that IA(n+1)=nz+1. This allows to compute the length of row i by IA(i+1)-
IA(i). Equivalently, the lengths of rows can be stored in place of IA.

Sometimes, something special is done for the diagonal elements. As often, they
are all non zero, they are stored in a special vector of length n or the diagonal entry
of each row could be stored in the first (or last) position of the row. If the matrix
is symmetric only the lower or upper part is stored.

Another storage scheme which is much used is linked lists. Here, each non zero
element (together with the column index) has a pointer IPA to the location of the
next element in the row. To be able to add or delete entries easily in the list, it
is sometimes handy to have also a second pointer to the location of the previous
entry. Finally, we must know the beginning of the list for each row in a vector IA.
Going back to our small example, we have the following storage when using only
forward links. Notice the elements could be stored in any order,

1 2 3 4 5 6 7 8 9
AA a3 a2 a9 a1 a4 a8 a6 a5 a7

JA 1 4 4 1 2 1 2 3 3
IPA 5 0 0 2 8 3 9 0 0
IA 4 1 7 6

Notice that a value of zero in IPA(.) indicates the end of the list for the given row.
Later on, we will see other schemes for storing sparse matrices that are more

dedicated to some particular algorithms. Some other storage schemes exist that are

90 G. Meurant

more suited to iterative methods, specially those which need only matrix vector
products. However, whatever the choice is for the storage scheme, it must be able
to deal with the phenomenon of fill–in.

The fill–in phenomenon
Remember that at the k–th step of the algorithm, we have to compute

a
(k+1)
i,j = a

(k)
i,j −

a
(k)
i,k a

(k)
k,j

a
(k)
k,k

.

Therefore, even if a
(k)
i,j = 0, a

(k+1)
i,j can be non zero if a

(k)
i,k �= 0 and a

(k)
k,j �= 0. Non

zero entries in the L and U factors in positions (i, j) for which ai,j = 0 are called
the fill–ins.

Consider the small example below where the matrix is symmetric and the x’s
stand for the non zero entries,

A =

x x 0 x 0
x x x 0 0
0 x x 0 x
x 0 0 x 0
0 0 x 0 x

 .

We look at the different steps of Gaussian elimination where fill–ins are denoted by
•,

A2 =

x x 0 x 0
0 x x • 0
0 x x 0 x
0 • 0 x 0
0 0 x 0 x

 ,

A3 =

x x 0 x 0
0 x x • 0
0 0 x • x
0 0 • x 0
0 0 x 0 x

 .

Notice that the fill–in in position (4, 3) has been created by the fill–in in position
(4, 2) at the previous step,

A4 =

x x 0 x 0
0 x x • 0
0 0 x • x
0 0 0 x •
0 0 0 • x

 ,

Gaussian elimination 91

A5 =

x x 0 x 0
0 x x • 0
0 0 x • x
0 0 0 x •
0 0 0 0 x

 ,

and

L =

x
x x
0 x x
x • • x
0 0 x • x

 .

In this example, three elements which were initially zero in the lower triangular
part of A are non zero in L.

The aim of sparse Gaussian elimination is to avoid doing operations on zero
entries and therefore to try to minimize the number of fill–ins. This will have the
effect of both minimizing the needed storage and the number of floating point
operations.

It is clear that the number of fill–ins depends on the way the pivots are chosen if
pivoting is allowed. As the following well known example proves, there can be large
differences in the number of fill–ins with different pivoting strategies.

Consider

A =

x x x x
x x
x x
x x

 .

Then,

L =

x
x x
x • x
x • • x

 ,

that is, all the zero entries fill. If we define a permutation matrix P such that the
first element is numbered last, then

PAPT =

x x
x x

x x
x x x x

 .

In this case, there is no fill–in at all. This is called a perfect elimination.
The way the fill–in problem is handled depends on the properties of the matrix. If

the matrix is non symmetric (and without any special properties), we have seen that

92 G. Meurant

we generally need to pivot to have an acceptable numerical accuracy. If in addition
the matrix is sparse, we now have another requirement which is to minimize the
fill–in. Therefore, these two goals have to be dealt with at the same time. Moreover,
this implies that the data structure for the LU factors cannot be set up before the
numerical factorization as the pivot rows and therefore the potential fill–in are only
known when performing the numerical factorization.

If the matrix is symmetric and, for instance, positive definite, we do not need to
pivot for numerical stability. Therefore, we have the freedom to choose symmetric
permutations only to minimize the fill–in. Moreover, the number and indices of fill–
ins can be determined before doing the numerical factorization as this depends only
on the structure of the matrix. Hence, everything can be handled within a static
data structure built in a preprocessing phase called the symbolic factorization.

Finding an ordering that minimizes the fill–in is an NP complete problem, see
Yannakakis [1981]. Hence, we will have to rely on heuristics that can be computed
quickly.

18. Definitions and graph theory

Basic definitions
It is well known that a graph can be associated with every matrix. For a general non
symmetric square matrix A of order n, we associate a directed graph (or digraph).
A digraph is a couple G = (X,E) where X is a set of nodes (or vertices) and E
is a set of directed edges. For a given matrix A of order n, there are n nodes and
there is a directed edge from i to j if ai,j �= 0. Usually, self loops corresponding to
ai,i �= 0 are not included.

Let

A =

x x 0 x
0 x 0 0
x 0 x 0
0 x x x

 .

Then, the associated digraph is given in figure 18.1.

1 2

3 4

fig 18.1

Graphs are much more used in problems involving symmetric matrices. If ai,j �= 0,
then aj,i �= 0. Therefore, we can look at undirected graphs and drop the arrows on
the edges.

Gaussian elimination 93

Let

A =

x x x 0
x x 0 x
x 0 x x
0 x x x

 ,

then, the graph of A is shown on figure 18.2.

1 2

3 4

fig 18.2

Let us introduce a few definitions. Let G = (X,E) be a (undirected) graph. We
denote the nodes of the graph by xi or sometimes i.
• G′ = (X ′, E′) is a subgraph of G if X ′ ⊂ X and E′ ⊂ E.
• Two nodes x and y of G are adjacent if {x, y} ∈ E. The adjacency set of a node
y is defined as

Adj(y) = {x ∈ X| x is adjacent to y}.

If Y ⊂ X, then

Adj(Y) = {x ∈ X| x ∈ Adj(y), x �∈ Y, y ∈ Y }.

• The degree of a node x of G is the number of its adjacent nodes in G,

deg(x) = |Adj(x)|.

• Let x and y ∈ X. A path of length l from x to y is a set of nodes {ν1, ν2, . . . , νl+1}
such that x = ν1, y = νl+1 and {νi, νi+1} ∈ E, 1 � i � l. A path {ν0, ν1, . . . , νl, ν0}
is a (simple) cycle of length l + 1.

A graph is connected if for every x, y ∈ X, there exists a path from x to y. This
corresponds to the matrix being irreducible.

A chord of a path is any edge joining two non consecutive vertices in the path. A
graph is chordal if every cycle of length greater than three has a chord (Blair and
Peyton [1993]).
• An important kind of graphs is when there is no closed paths. A particular node
is labeled as the root. Then, there is a path from any node to the root. Such a

94 G. Meurant

(connected) graph is called a tree. If it is not connected, we have a set of trees
called a forest.
• Let Y ⊂ X, the section graph G(Y) is a subgraph (Y,E(Y)) with

E(Y) = {{x, y} ∈ E| x ∈ Y, y ∈ Y }.

• A set Y ⊂ X is a separator for G (a connected graph) if G(X/Y) has two or
more connected components.
• The distance d(x, y) between two nodes x and y of G is the length of the shortest
path between x and y.

The eccentricity of a node e(x) is

e(x) = max{d(x, y)|y ∈ X}.

The diameter δ of G is

δ(G) = max{e(x)|x ∈ X}.

A node x is peripheral if e(x) = δ(G).
• A clique is a subset of nodes such that they are all pairwise connected.
• A level structure of a graph G is a partition L = {L0, L1, . . . , Ll} of X such that

Adj(Li) ⊂ Li−1 ∪ Li+1, i = 1, . . . , l − 1,
Adj(L0) ⊂ L1,

Adj(Ll) ⊂ Ll−1.

Note that each Li is a separator for G. For each node x ∈ X, a level structure L(x)
can be defined as

L(x) = {L0(x), . . . , Le(x)(x)},

L0(x) = {x}
Li(x) = Adj(∪i−1

k=0Lk(x)), 1 � i � e(x)

where e(x) is the eccentricity of x. The width of a level structure L(x) is

w(x) = max{|Li(x)|, 0 � i � e(x)}.

Characterization of the fill–in for a symmetric structure
Now, we turn to looking at the interpretation of Gaussian elimination in terms

of graphs. This was first studied in Parter [1961], see also Rose [1970]. We consider
a sequence of graphs G(i), G(1) = G corresponding to the different steps of the
elimination on a matrix with a symmetric pattern.

Gaussian elimination 95

Theorem 18.1. G(i+1) is obtained from G(i) by removing the node xi from the
graph as well as all its incident edges and adding edges such that all the remaining
neighbors of xi in G(i) are pairwise connected.

Proof. It is enough to look at the first step, eliminating the node x1 (or the
corresponding unknown in the linear system). Then,

a
(2)
i,j = ai,j − ai,1a1,j

a1,1
.

a
(2)
i,j is non zero if either ai,j �= 0 or, ai,j = 0 and ai,1 and a1,j are non zero. The

last possibility translates into xi and xj being neighbors of x1 in the graph. When
x1 is eliminated, they will be connected by an edge representing the new element
a
(2)
i,j �= 0. This occurs for all the neighbors of x1. We did not consider zeroes that

arise by cancellation. In this way, G(2) is obtained corresponding to the submatrix
obtained from A(2), by deleting the first row and column.

Taking the graph G(A) of A and adding all the edges that are created in all the
G(i)s during the elimination, we obtain GF , (F = L+LT) which is called the filled
graph GF = (X,EF). An example of elimination graphs is given below. Let

A =

x x x x x
x x
x x x
x x x x x x

x x
x x x

x x x x

,

then, figure 18.3 displays the graph G(A). The graph G(2) is given in figure 18.4.

1

2

3

4 5

6

7

fig 18.3

96 G. Meurant

5

6

2

3

4

7

fig 18.4

Here the edges corresponding to fill–ins are denoted by grey lines. The graph
G(2) corresponds to the matrix,

A(2) =

x x x x x
x x • • •
x • x x •
x • x x x x x

x x
x x x

x • • x x x

.

5

6

3

4

7

fig 18.5

Then, the elimination of x2 does not cause any fill–in as all its neighbors form
already a clique. G(3) is given in figure 18.5 and A(3) ≡ A(2), ≡ meaning that the
two matrices have the same structure. The next step is to eliminate x3. Here, again,
there is no fill–in as x4 and x7 are already connected. G(4) is displayed on figure
18.6 and A(4) ≡ A(3). Elimination of x4 connects x5, x6 and x7. G(5) is shown on
figure 18.7.

Gaussian elimination 97

5

6

4

7

fig 18.6

5

6

7

fig 18.7

A(5) =

x x x x x
x x • • •
x • x x •
x • x x x x x

x x • •
x • x x

x • • x • x x

.

G(5) is a clique, the corresponding 3 × 3 submatrix is dense thus there will be no
other fill–in before the end of the elimination and A(7) ≡ A(5). The filled graph is
given in figure 18.8.

1

2

3

4 5

6

7

fig 18.8

98 G. Meurant

In total there are six fill–ins in the elimination. An interesting point is to remark
that the (position of) the fill–in entry created between x3 and x7 by the elimination
of x1 would have been created anyway by the elimination of x2.

The number of fill–ins depends of the order of elimination, that is on the num-
bering of the vertices in the graph (or of the unknowns in the linear system) or
otherwise said on the pivoting sequence.

For instance, in our example, at the beginning we can eliminate x2 and x5 as
they have only one neighbor and their elimination do not create any fill–in. This
gives the graph in figure 18.9.

1

6

3

4

7

fig 18.9

Now, x3 and x6 can be eliminated without fill–in as they are already forming a
clique with their neighbors. After eliminating x3 and x6, the situation is shown on
figure 18.10.

1

4

7

fig 18.10

Again, this is a clique and the nodes can be eliminated in any order without
fill–in.

Therefore, we have just seen that for this example, there are several numberings
that lead to a perfect elimination without any fill–in. For instance,

2, 5, 3, 6, 1, 4, 7

Gaussian elimination 99

The permuted matrix is

A′ = PAPT =

x x
x x

x x x
x x x

x x x x x
x x x x x x

x x x x

.

Of course, this is not a general situation. One thing that we must realize is that
the more fill–ins we create in the early stages, the more fill-ins we will get later on.
Thus, an heuristic rule is that it is likely to be beneficial to start by eliminating
nodes that do not create much fill–in. These are the nodes with a small number of
neighbors or nodes in cliques.

Let us now introduce a few more definitions.

• The elimination tree of A, symmetric matrix of order n, is a graph with n nodes
such that the node p is the parent of node j, if and only if

p = min{i|i > j, li,j �= 0}

where L is the Cholesky factor of A. The elimination tree of A will be denoted by
T (A) or simply T if the context makes it clear that we refer to A.

Clearly, p is the index of the first non zero element in column j of L. For the
previous example without renumbering, the elimination tree T (A) is simply a chain
shown on figure 18.11.

21 3 4 5 6 7

fig 18.11

T (A′) is given in figure 18.12 (renumbering the unknowns according to P).

1 23 4

5

6

7

fig 18.12

100 G. Meurant

This exhibits the fact that x′
1, x

′
2, x

′
3, x

′
4 (corresponding to x2, x5, x3, x6 in the

initial ordering) can be eliminated in any order (or even in parallel) as there are no
dependencies between these variables.

It is of course interesting to know if there will be some fill–in between two nodes of
G(A) before doing the elimination. This has been studied by George some time ago,
see George and Liu [1981] for a detailed exposition. It can be understood intuitively
in the following way.

We have seen that there can be a fill–in between xj and xk only if at some step m,
they are not already connected together and both neighbors of xm,m < j, m < k.
Therefore, either they were already neighbors of xm in G or they were put in this
situation by the elimination of other nodes xl, l < m.

Recursively, we see that at some stage, xj was a neighbor of one of these nodes
and the same for xk with another of these nodes. This means that in G, there is
at least one path between xj and xk and that all nodes on this path have numbers
smaller than j and k. If there is no such path, there won’t be a fill–in between xj
and xk.

In our example and in the initial ordering, we see that x2 and x3 are linked by
a path of length 2 through x1. The same is true for x2 and x4 and also x2 and x7.
No other node can be reached from x2 in this way as nodes x3, x4 or x7 are on the
paths to the other nodes and they have numbers greater than 2. There will be a
fill–in between x3 and x7 as they can be reached through x1.

For the permuted matrix A′, we have the graph of figure 18.13.

1

2

3

4

5

6

7

fig 18.13

It can be seen that on any path from one node to another one which is not
a neighbor, there is always a node with a larger number. This discussion can be
formalized in the following way.
• Let S ⊂ X and x ∈ X,x �∈ S, x is said to be reachable from y �∈ S through S if
there exists a path (y, v1, . . . , vk, x) from y to x in G such that vi ∈ S, i = 1, . . . , k.
We define

Reach(y, S) = {x|x �∈ S, x is reachable from y through S}

Theorem 18.2 (George). Let k > j, there will be a fill–in between xj and xk if

Gaussian elimination 101

and only if

xk ∈ Reach(xj , {x1, . . . , xj−1}).

We first prove a Lemma due to Parter [1961].

Lemma 18.1. {xi, xj} ∈ EF if and only if {xi, xj} ∈ E or {xi, xk} ∈ EF and
{xk, xj} ∈ EF for some k < min{i, j}.

Proof. If {xi, xk} ∈ EF (filled graph) and {xk, xj} ∈ EF for some k < min{i, j},
then the elimination of xk will create a fill–in between xi and xj . Therefore,
{xi, xj} ∈ EF .

Conversely, if {xi, xj} ∈ EF and {xi, xj} �∈ E, then we have seen in the previous
discussion that at some stage, xi and xj must be neighbors of a node, say xk, that
is going to be eliminated before xi and xj . Thus, k < min{i, j}.

Proof of Theorem 18.2, see George (George and Liu [1981]), Rose, Tarjan and
Lueker [1976].

Suppose xk ∈ Reach(xj , {x1, . . . , xj−1}). There exists a path {xj , v1, . . . , vl, xk} ∈
G with vi ∈ {x1, . . . , xj−1}, 1 � i � l. If l = 0 or l = 1, the result follows from
Lemma 18.1. If l > 1, it is easy to show that {xk, xj} ∈ EF by induction.

Conversely, we assume {xi, xj} ∈ EF , j < k. The proof goes by induction on j.
For j = 1, {x1, xk} ∈ EF implies {x1, xk} ∈ E as there is no fill–in with the first
node. Moreover, the set {x1, . . . , xj−1} is empty.

Suppose the result is true up to j−1. By Lemma 18.1, there exists some l � j−1
such that {xj , xl} ∈ EF and {xl, xk} ∈ EF . By the assumption, there exists a path
between xj and xl and another one from xl to xk. Clearly, this implies that there
is a path from xj to xk whose nodes have numbers � l � j − 1.

George (George and Liu [1981]) demonstrated that reachable sets can be imple-
mented efficiently by using the notion of quotient graph.

• Let P be a partition of X,

P = {X1,X2, . . . , Xp}, ∪pk=1Xk = X, Xi ∩Xj = ∅ if i �= j.

The quotient graph of G is (P, E), where {Xi,Xj} ∈ E if and only if

Adj(Xi) ∩Xj �= ∅, i �= j.

It is denoted by G/P.
Let S ⊂ X, following George (George and Liu [1981]), we define a partitioning

of X by

C(S) = {C ⊂ S|G(C) is a connected component in the subgraph G(S)}
C̄(S) = {y|y ∈ X − S} ∪ C(S)

102 G. Meurant

G/C̄(S) can be viewed as the graph obtained by amalgamating nodes in connected
sets in S.

Let Si = {x1, x2, . . . , xi}, 1 � i � n. Si induces a partitioning C̄(Si) and a
quotient graph Gi = G/C̄(Si). George proved the following result.

Theorem 18.3. ∀y ∈ X − Si,

ReachG(y, Si) = ReachGi
(y, C(Si)).

The advantages of the quotient graph are
1) elimination graphs are easily obtained from quotient graphs
2) the quotient graph can be implemented in place. It requires no more space than
the original graph structure.

Usually, the quotient graph structure is implemented via linked lists, see George
and Liu [1981].

Characterization of the fill–in through elimination trees
In Liu [1990] the use of elimination trees in sparse factorization was reviewed. We

will follow Liu’s exposition to explain how elimination trees can be used to describe
the fill–in.

Remark first that if the graph of a matrix A is a tree, then there exists a permuta-
tion P such that a perfect elimination is possible on PAPT. A topological ordering
of a rooted tree is defined as a numbering that orders children nodes before their
parents.

The elimination tree T (A) of a matrix A has, as we have seen, the same nodes
as G and is a spanning tree of the filled graph GF . Notice that T (A) and T (F) are
identical.

We denote by T [x], the subtree of T (A) rooted at node x. y ∈ T [x] is a descendant
of x and x is an ancestor of y. From the definition of T (A), we have that if xi is a
proper ancestor of xj in T (A), then i > j.

Theorem 18.4, [Liu]. For i > j, the numerical values of columns i of L (L∗,i)
depend on column j of L (L∗,j) if and only if li,j �= 0.

Proof. This is obvious from what we have seen before.

In the filled graph GF , we can use a directed edge from xj to xi to indicate that
column i depends on column j. The result is a digraph of the Cholesky factor. From
this digraph, Liu [1990] derived the transitive reduction: if there is a directed path
greater than one from xj to xi and a directed edge from xj to xi, this last edge is
removed. Removing all these redundant edges gives the transitive reduction.

The transitive reduction of the filled graph generates the elimination tree struc-
ture (Liu [1990]). This is a way to compute the elimination tree from GF . Algorithms
for determining the elimination tree structure are given in Liu [1990].

Gaussian elimination 103

Moreover,

Theorem 18.5 (Schreiber [1982]). If i > j and li,j �= 0, then xi is an ancestor of
xj in T (A).

As a consequence, if xs ∈ T [xi] and xt ∈ T [xj] a disjoint subtree from T [xi], then
ls,t = 0. Now, we have a result related to Theorem 18.2

Theorem 18.6. Let i > j, li,j �= 0 if and only if there exists a path

xi, v1, . . . , vk, xj , vi ∈ X

in G(A) such that {v1, . . . , vk} ⊆ T [xj].

The row structure of L is characterized in the following result.

Theorem 18.7 (Liu [1990]). Let i > j, li,j �= 0 if and only if xj is an ancestor of
some xk in T (A) such that ai,k �= 0.

The column structure can be characterized as well.

Theorem 18.8 (Liu [1990]). The structure of column j of L is given by

AdjG(T [xj]) ∪ {xj} = {xi|li,j �= 0, i � j}.

Proof. This is a simple consequence of Theorem 18.7.

Elimination trees are the basis for efficient implementations of symbolic factor-
ization (Liu [1990]).

19. Band and envelope numbering schemes for symmetric matrices

Definitions
Most of the first attempts to exploit sparsity were considering band or envelope
storage schemes and were trying to minimize the storage using these schemes. This
can be explained after a few definitions.

• fi(A) = min{i|ai,j �= 0}.
fi(A) is the index of the column with the first non zero element of row i.

• βi(A) = i− fi(A) is the bandwith of row i. The bandwith of A is

β(A) = max
i

{βi(A), 1 � i � n}

and

band(A) = {(i, j)|0 < i− j � β(A), i � j}.

104 G. Meurant

These notions have led to ideas for storing the matrices A and L. If βi(A) is almost
constant as a function of i, then it makes sense to store the entries corresponding
to all the indices in band(A). However, most of the time this is not the case as they
are a few rows with a larger bandwith than the other ones and too much storage
is wasted by the band scheme. Then, one can use the variable band or envelope
storage scheme, Jennings [1977].

• Env(A) = {(i, j)|0 < i− j � βi(A), i � j} is the envelope of A. The profile of A,
denoted by Pr(A) is given by

Pr(A) = |Env(A)| =
n∑
i=1

βi(A).

It is clear that a simple storage scheme is obtained by storing for each row all the
elements of the envelope in a vector. We only need another vector of integers to
point to the start of each row. The invention of this storage scheme was motivated
by the following result.

Theorem 19.1. Let Fill(A) = {(i, j)|i > j, ai,j = 0, li,j �= 0} be the index set of
the fill–ins,

Fill(A) ⊂ Env(A).

Proof. This is a consequence of Theorem 18.2 as it is clear from that result that
there cannot be any fill–in from a node xi to a node xj whose number is smaller
than the smallest number of the neighbors of xi. All the paths going from xi to xj
will have a node with a number larger than xj .

Giving these simple storage schemes, it was natural to try to devise ordering
schemes that minimize the bandwith or the profile of the matrix. This is an NP–
complete problem.

The Cuthill–McKee and reverse Cuthill–McKee orderings
The Cuthill–McKee algorithm is a local minimization algorithm to reduce the

profile of A.
It is clear that if we number the nodes sequentially and, at some stage, we would

like to minimize βi(A), then we must number immediately all the non numbered
nodes in Adj(xi). Then, the algorithm is the following

Algorithm CM
1) we choose a starting node,
2) for i = 1, . . . , n− 1 we number all the (non numbered) neighbors of xi in G(A)
in increasing order of degree,
3) we update the degrees of the remaining nodes.

Gaussian elimination 105

1 2 3 4

5 6 7 8

9 10 12

13 14 15 16

11

fig 19.1

1 2

3 4

5

6

7 8 9

10

12

13 14 15 16

11

fig 19.2

The profile resulting from this numbering is quite sensitive to the choice of the
starting node. Consider the initial graph shown on figure 19.1.

If we choose 1 as a starting node, we obtain figure 19.2. There are 38 fill–ins in
L.

If node 4 of the initial ordering is chosen as a starting node the ordering of figure
19.3 is obtained. With this ordering, there are 14 fill–ins in L.

In the first ordering, the maximum difference of node numbers between neighbors
is 7. With the second one, the maximum difference is 4.

It is interesting to look at the level structure L(1) for both orderings. The level
structure of the first ordering is given on figure 19.4 using the numbers of the initial
graph. The height is 4 and the width 7.

The level structure of the second ordering is given in figure 19.5. The height is 7
and the width is 4. Clearly, the second choice is better. The higher is the structure,
the narrower it is. Starting nodes which give rise to narrow level structures are
clearly better choices.

A good choice will be to choose as a starting node, a peripheral node, that is

106 G. Meurant

12

3

4

5

6

7

8

9

10

12

13

14

1516

11

fig 19.3

1

2 34

5 6 789

10 11 12 13141516

fig 19.4

one whose eccentricity equals the diameter of the graph. Peripheral nodes are not
that easy to find quickly. Therefore, people have devised heuristics to find “pseudo–
peripheral” nodes, i.e nodes whose eccentricities are close to the diameter of the
graph. Such an algorithm was proposed by Gibbs, Poole and Stockmeyer [1976].

Algorithm GPS
1) choose a starting node r
2) build the level structure L(r)

L(r) = {L0(r), . . . , Le(r)(r)}

3) sort the nodes x ∈ Le(r)(r) in increasing degree order
4) for all nodes x ∈ Le(r)(r) in increasing degree order build L(x). If the height of
L(x) is greater than the height of L(r), choose x as a starting node (r = x) and go
to 2)

Gaussian elimination 107

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fig 19.5

We are sure that this algorithm will converge as eccentricities are bounded by
the diameter of the graph. However, it can be very costly.

George and Liu [1979a] tried to shorten the computing time by eliminating struc-
tures with large width as soon as possible. Step 4) of the algorithm is modified as

4′) let w(x) be the width of L(x). For all x ∈ Le(r)(r) in order of increasing degree,
we build

L(x) = {L0(x), . . . , Le(r)(x)}.

At each level i if |Li(x)| > w(r), we drop the current node and we pick another one
x. If w(x) � w(r) and e(x) > e(r), we choose x as a starting node (r = x) and go
to 2).

George and Liu [1981] also proposed to use the following simple algorithm,

1) choose a starting node r
2) build L(r)
3) choose a node x of minimum degree in Le(r)(r)
4) build L(x). If e(x) > e(r), choose x as a starting node and go to 2).

As an ordering scheme, George (George and Liu [1981]) proposed to reverse the
Cuthill–McKee ordering.

Algorithm Reverse Cuthill–McKee (RCM)
1) find a pseudo–peripheral starting node
2) generate the CM ordering
3) reverse the numbering. Let x1, . . . , xn be the CM ordering, then the RCM or-
dering {yi} is given by yi = xn+i−1, i = 1, . . . , n.

108 G. Meurant

fig 19.6

1

3

4
5

6

2

fig 19.7

Let us look at a small example. We would like to number the graph of figure 19.6.
With the Cuthill–McKee algorithm, we find the graph of figure 19.7.
with a Cholesky factor

L =

x
x x

x x
x • x
x • • x
x • • • x

 .

We have 6 fill–ins with this ordering. If we reverse the ordering, we obtain figure
19.8.

L =

x
x

x
x

x x x x x
x x

 .

There is no fill–in at all. We are going to show that in terms of number of fill–ins,
RCM is always as good as CM. So, there is no reason to use CM.

Gaussian elimination 109

1

3

4

6

2

5

fig 19.8

Theorem 19.2. Let A be an irreducible matrix and ACM be the matrix correspond-
ing to reordering (the graph of) A by the Cuthill–McKee scheme. Then,

∀i, j, i � j, fi � fj .

Moreover, fi < i if i > 1.

Proof. Suppose that the conclusion does not hold. Then, there exists a column k
and rows p, l,m, p < l < m such that

fp � k,

fl > k,

fm � k.

This means that

ap,k �= 0 =⇒ xp ∈ Adj(xk),
am,k �= 0 =⇒ xm ∈ Adj(xk),
al,k = 0 =⇒ xl �∈ Adj(xk).

But this is impossible as the Cuthill–McKee algorithm has numbered successively
all nodes in Adj(xk).

We introduce a new definition.

• Tenv(A) = {(i, j)| j � i, ∃k � i, ak,j �= 0}.
Tenv(A) is the “transpose envelope” of A. Let us consider an example on figure

19.9. If we use the reverse Cuthill–McKee algorithm, we have to reverse the ordering.
Thus, if for instance, we have the previous matrix, we obtain figure 19.10. The rows
of ARCM are the columns of ACM .

Lemma 19.1.

|Env(ARCM)| = |Tenv(ACM)|.

110 G. Meurant

x

x

x

x

x

x

x

x

x

x

x

x

x

Env(A)

x

x

x

x

x

x

x

x

x

x

x

x

x

Tenv(A)

fig 19.9

x

x

x

xxxx

x

xxx

xx

fig 19.10

Proof. Straightforward.

Theorem 19.3.

Tenv(ACM) ⊆ Env(ACM).

Proof. Looking at matrix pictures, the result is obvious. However, let us formalize
the proof. Suppose we have (i, j) ∈ Tenv(ACM) and (i, j) �∈ Env(ACM). Then,
∃k � i such that ak,j �= 0. Either
1) ai,j �= 0 =⇒ (i, j) ∈ Env(ACM)
2) ai,j = 0. If (i, j) �∈ Env(ACM) =⇒ ∀l � j, ai,l = 0 =⇒ fi > j.

On the other hand, we have fk � j. This implies fk < fi which is impossible as
k � i by Theorem 19.2

Obviously, we have

|Env(ARCM)| � |Env(ACM)|.
and George proved the following result,

Lemma 19.2. If ∀i > 1, fi < i, the envelope Env(A) fills completely.

Gaussian elimination 111

This implies

|Fill(ARCM)| � |Fill(ACM)|.

There are cases for which equality holds. Notice that the previous results are true
for every ordering such that k � i =⇒ fk � fi. If we look back at the example
given after Theorem 18.1, as a function of the initial ordering, we have if we choose
2 as the starting node (notice that 2 is a peripheral node),

1 2 3 4 5 6 7
CM 2 1 3 4 6 7 5

RCM 6 7 5 4 2 1 3

With the initial ordering we get six fill–ins. With CM we get three fills and zero
with RCM.

It has been shown that RCM can be implemented to run in O(|E|) time. For a
regular N ×N grid and P1 triangular finite elements, the storage for RCM varies
as O(N3), (≈ 0.7N3) that is O(n

3
2).

Several other algorithms have been proposed to reduce the profile of a symmetric
matrix, for example the King algorithm, see George and Liu [1981].

20. The minimum degree ordering for symmetric matrices

This ordering scheme was introduced in Tinney and Walker [1967]. It is one of
the ordering schemes that are most often used today. It is a local minimization
algorithm.

The minimum degree ordering works with the elimination graphs G(i) = (Xi, Ei).
The i–th step of the algorithm is

Algorithm MD

1) in G(i), find a node xi such that

deg(xi) = min
y∈Xi

{deg(y)},

2) form G(i+1) by eliminating xi

3) if i + 1 < n go to 1) with i ← i + 1.

So, to use this algorithm we must have a way to represent the elimination graphs
and to transform them. Of course, the degree of some nodes change after the deletion
of edges incident to xi and the addition of new edges.

The biggest problem arising with the minimum degree algorithm is that quite
often, there may be several nodes of minimum degree. This must be resolved using
a tie breaking strategy. Unfortunately, the final number of fill–ins is quite sensitive
to the tie breaking strategy, see George and Liu [1989a].

112 G. Meurant

As being a local minimization algorithm, the minimum degree does not always
give a minimum fill–in ordering. There are cases, like trees, for which it gives no
fill–in at all, but there are examples for which it generates fill–in that is more than a
constant time greater than the minimum fill–in, see (Berman and Schnitger [1990])
.

If we look again at the example after Theorem 18.1, we get the following ordering,

1 2 3 4 5 6 7
MD 4 1 3 5 2 6 7

and there is no fill–in.
During the years many improvements have been suggested to the basic algorithm,

mainly to shorten the computer time needed to run the algorithm rather than to
improve the ordering. A summary of these results can be found in George and Liu
[1989a]. The main points are the following,

–Mass elimination
When xi is eliminated, often there are nodes in AdjG(i)(xi) that can be eliminated

immediately. This is because, when xi is eliminated, only the degrees of nodes in
AdjG(i)(xi) change and some of them can be deg(xi)− 1. For instance, if a node in
a clique is eliminated, then the degree of all the other nodes in the clique decreases
by 1. Therefore, all these nodes can be eliminated at once, before the degrees are
updated. This leads to the concept of indistinguishable nodes.

• Two nodes u and v are indistinguishable in G if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}.

George and Liu [1989a] proved the following result.

Theorem 20.1. Let z ∈ AdjG(i)(xi), then degG(i+1)(z) = degG(i)(xi)−1 if and only
if

AdjG(i)(z) ∪ {z} = AdjG(i)(xi) ∪ {xi}.

By merging indistinguishable nodes together, we need only to update the degrees
of the representatives of these nodes.

–Incomplete degree update

• v is said to be outmatched by u in G if

AdjG(u) ∪ {u} ⊆ AdjG(v) ∪ {v}.

Theorem 20.2, (George and Liu [1989a]). If v is outmatched by u in G(i), it is
also outmatched by u in G(i+1).

Gaussian elimination 113

If v becomes outmatched by u, it is not necessary to update the degree of v until
u is eliminated.

–Multiple elimination
This slight variation of the basic scheme Liu [1985] proposed is when xi has been

chosen, to select a node with the same degree than xi in G(i)/(AdjG(i)(xi) ∪ {xi}).
This process is repeated until there are no nodes of the same degree and then the
degrees are updated.

Therefore, at each step, an independent set of minimum degree nodes is selected.
Notice that the ordering that is produced is not the same as for the basic algorithm.
However, it is generally as good as the “true” ordering.

–Early stop
In many implementations of Gaussian elimination for sparse matrices, a switch is

done to dense matrices when the percentage of non zeroes in the remaining matrix
is large enough. Of course, the ordering can be stopped at that stage as later stages
are meaningless.

–Tie breaking
An issue that is really important is the choice of a tie breaking strategy. Un-

fortunately, not much is known about how to decide which nodes to choose at a
given stage. Some experiments (George and Liu [1989a]) show that there can be
large differences in the number of non zeroes and factorization times when several
random tie breakers are chosen.

Most often, the initial ordering determines the way ties are broken. It has been
suggested to use another ordering scheme like the Reverse Cuthill–McKee algorithm
before running the minimum degree.

–Approximate minimum degree
In Amestoy, Davis and Duff [1994] it was proposed to use some bounds on the

degree of nodes instead of the real degree. This allows a faster update of the in-
formation when nodes are eliminated. Techniques based on the quotient graph are
used to obtain these bounds. The quality of the orderings that are obtained are
comparable to the ones from the genuine minimum degree algorithm although the
algorithm is much faster, see the performances in Amestoy, Davis and Duff [1994].

21. The nested dissection ordering for symmetric matrices

Introduction
This algorithm has been introduced by George [1973] for finite element problems
and then generalized to general sparse matrices. It is very close to an old idea
used in Mechanics called substructuring and also to what is now called domain
decomposition.

The idea is based on Theorem 18.2 that essentially says that there won’t be any
fill–in between xi and xj if, on every path from xi to xj in G, there is a node with
a number greater than xi and xj .

Consider the graph of figure 21.1 (arising, for instance, from a finite element
matrix) and its partitioning given in the right hand side.

114 G. Meurant

1

2

3

fig 21.1

The main diagonal separates the graph into three pieces. The diagonal 3 is called
a separator. From Theorem 18.2, it is clear that, if we first number the nodes in
part 1, then the nodes in part 2 and finally the nodes of the separator 3, there
won’t be any fill–in between sets of nodes 1 and 2. With this ordering and obvious
notations, the matrix has the following block structure

A =

 A1 0 AT

3,1

0 A2 AT
3,2

A3,1 A3,2 A3

 .

It is obvious that the Cholesky factor L has the following block structure

L =

 L1

0 L2

L3,1 L3,2 L3

 ,

this means that blocks A1 and A2 can be factored independently.
The basis of the nested dissection algorithm is to apply this idea recursively to

sets 1 and 2. If we look at a mesh graph like the one in figure 21.2, there are two
basic ways to partition it. The first one is to partition the graph into vertical (or
horizontal) stripes, see figure 21.3.

fig 21.2

This is called one–way dissection. The other way is to alternate between vertical
and horizontal partitioning, see figure 21.4. This is called nested dissection. Of
course, one–way dissection is a little simpler to implement.

Gaussian elimination 115

fig 21.3

fig 21.4

One–way dissection
George [1980] considered a mesh graph consisting of an m by l grid. It is parti-

tioned by σ vertical grid lines.
George showed that the required storage for storing the LU factors using the

one–way dissection ordering is (if m � l)

S(σ) =
ml2

σ
+

3σm2

2
.

This is approximately minimized (as a function of σ) by

σ = l

(
2

3m

) 1
2

,

giving Sopt =
√

6 m
3
2 l + O(ml). For comparison, numbering the graph by columns

would yield a storage of m2l + O(ml).
The operation count for the factorization is approximately

θ =
ml3

2σ2
+

7σm3

6
+

2m2l2

σ
.

This is approximately minimized by

σ = l

(
12
7m

) 1
2

,

yielding θopt =
(

28
3

) 1
2m

5
2 l + O(m2l).

One–way dissection can be somehow generalized to general sparse matrices by
using level structures of the graph, see George and Liu [1978b].

116 G. Meurant

Nested dissection of a mesh graph
Consider a square mesh. A partition function Π is defined for integers i from 0

to N (= 2l) as

Π(0) = 1
Π(N) = 1
Π(i) = p + 1, if i = 2p(2q + 1)

For example, for N = 16, we obtain

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Π(i) 1 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1

For k = 1, . . . , l we define sets Pk of mesh nodes (i, j) as

Pk = {(i, j)|max(Π(i),Π(j)) = k}.

For a 17 × 17 mesh we have figure 21.5 where the numbers denote the set Pk to
which the nodes belong and the lines separate these sets.

1 2 3 41

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2

2 2

2

2

2

2

2 2

2

2

2

2

2 2 2

1

1

1

3

3

3

3

3

3

3

4

4

4

1 2 3 41 1 1 1 1 1 1 12 2 2 13

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2 2 2

1

1

3

3

3

3

3

3

4

4

4

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2 2 2

1

1

3

3

3

3

3

3

4

4

4

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2

2 2 2 2

2

2

2

2

2 2

2

2

2

2 2

2

2

2

2 2 2

1

1

3

3

3

3

3

3

4

4

4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44

4

fig 21.5

Gaussian elimination 117

Nodes in P1 are numbered first, then nodes in P2, etc. . . up to nodes in Pl. George
[1973] has shown that

S = O(N2 log2 N),
θ = O(N3).

Duff, Erisman and Reid [1976] generalized the partition function when N �= 2l as
1) l is defined as the smallest integer such that 2l � N ,
2) Π̃(0) = Π̃(N) = 1,
3) Π̃(i) = 0, i = 1, . . . , N − 1,
4) For m = l, l − 1, . . . , 1 we look for the mid point x of groups of adjacent nodes
such that Π̃(i) = 0 and we set Π̃(x) = m.

Example: N = 11 =⇒ l = 4,

Step 0 1 2 3 4 5 6 7 8 9 10 11
1 1 4 1
2 1 3 4 3 1
3 1 2 3 2 4 2 3 2 1
4 1 1 2 3 2 4 2 1 3 2 1 1

The partition function is applied to each side of the rectangular mesh.
It must be noticed that the storage schemes that we have described at the begin-

ning of this Chapter are not well suited for nested dissection orderings. In nested
dissection for mesh problems, there is a natural block structure that arises. Each
block corresponds to subsets of each Pk. Diagonal blocks are stored by rows in a
one dimensional array together with an integer pointer that gives the position of
the diagonal element.

Non diagonal blocks are stored in a one dimensional array. It is necessary to know
the beginning of each block, see figure 21.6.

fig 21.6

118 G. Meurant

For an N ×N 2D grid, the storage for nested dissection is smaller than the one
for RCM for N > 37.

Nested dissection for a general matrix
For a general sparse matrix, we have to work directly on the graph of the matrix

and the problem is to find a small separator that partitions the graph in two or
more components of almost an equal number of nodes. There are many ways to
handle this problem.

Geometric (or greedy) algorithms can be used, see Ciarlet and Lamour [1994],
Farhat [1988] or spectral bisection techniques, Simon [1991] relying on computation
of the smallest non zero eigenvalue of the Laplacian matrix of the graph. The
Laplacian L of the graph is constructed as follows: for the row i Li,j = −1 if node
j is a neighbor of node i in the graph and the diagonal term is minus the sum of
the other entries. From the corresponding eigenvector a partition is obtained by
considering the components of the eigenvector larger or smaller than the median
value.

Earlier, George and Liu [1981] proposed an algorithm based on the level structure.
Consider the graph G = (X,E),

1) Let P = ∅, R = X, N = |X|,
2) If R = ∅ we stop. Otherwise, we choose a pseudo peripheral node y
3) We build the level structure L(y) = {L0, . . . , Ll} and let j = (l + 1)/2,
4) Find a separator S ⊆ Lj ,

S = {y ∈ Lj |Adj(y) ∩ Lj+1 �= ∅},

5) Nodes in S are numbered from N − |S| + 1 to N using, for instance, RCM. Set
N = N − |S|.
6) Set R = R− S, P = P ∪ {S}. Go to 2)

In this algorithm, there can be some ties and the result depends on how they are
broken. For instance, if we consider the graph of figure 21.7.

fig 21.7

Gaussian elimination 119

fig 21.8

The first separator is the diagonal. Then, we have several different choices given
in figure 21.8, giving rise to different orderings.

Considering again the same small example, we can choose the set {1, 4} as a
separator and the following ordering,

1 2 3 4 5 6 7
ND 6 3 2 7 1 4 5

With this ordering, there is no fill–in.
The storage scheme used for mesh problems has to be generalized to cope with

the ordering scheme, see George and Liu [1981].
General theorems have been proved using graph theory about the existence of

good separators, see Lipton, Rose and Tarjan [1979], Roman [1985], Charrier and
Roman [1989]. Without going into too much details, let us summarize the kind of
results that have been established.

• Let S be a family of graphs. There is an f(n)–separator theorem for S if there
exists α and β positive real numbers such that ∀ G ∈ S, the nodes of G can be
partitioned into three subsets A,B,C with the following properties

–there is no edges between nodes of A and nodes of B,
–card(A) � αn, card(B) � αn,
–card(C) � βf(n),
where card(A) is the number of elements in the subset A. C is called a separator

of G.
Lipton and Tarjan [1980] proved that f(n) =

√
n for planar graphs and 2D finite

element graphs.
The elements of the separator C are numbered last and the same partition al-

gorithm is applied recursively to A and B. It has been shown in Roman [1985]
that

Theorem 21.1. Let G be a graph satisfying the previous definition with f(n) =
√
n

with n nodes and m edges,
–the time to construct the partitions is O(n + m),
–the number of non zeroes in L is O(n log2 n),
–the number of floating point operations for the factorization is O(n

√
n).

Therefore, we have the same results as for a mesh grid. These results can be
slightly generalized (Roman [1985]).

120 G. Meurant

22. The multifrontal method

Introduction
The multifrontal method has been introduced by Duff and Reid [1984] as a general-
ization of the frontal method developed by Irons [1970] for finite element problems.

The essence of the frontal method was that in finite element problems the two
phases, assembly of the matrix (from integral computations) and factorization of
the matrix can be mixed together. However, a variable can be eliminated only when
it has been fully assembled.

The main goal of the multifrontal method is to be able to use dense matrix
technology for sparse matrices. A possible drawback of the method is that technical
details are quite complex and many refinements are necessary to make the method
efficient. A nice exposition of the principles of the method has been given in Liu
[1992]. We will follow his lines.

We consider a symmetric matrix A. The basis of the method is the block outer
product Cholesky factorization,

A =
(

D BT

B C

)
=
(

LD 0
BL−T
D I

)(
I 0
0 C −BD−1BT

)(
LT
D L−1

D BT

0 I

)
,

D = LDL
T
D.

The Schur complement C −BD−1BT is the next matrix to be factored. Let D be
of order j − 1,

BD−1BT = (BL−T
D)(L−1

D BT) =
j−1∑
k=1

lj,k
...

ln,k

 (lj,k . . . ln,k) ,

li,k being the elements of the Cholesky factors.
The multifrontal method uses the definition of an elimination tree. We have the

following result that we state without proof,

Theorem 22.1. If node k is a descendant of node j in T (A), then the nonzero
structure of (lj,k, . . . , ln,k)T is contained in the structure of (lj,j , . . . , ln,j)T. If lj,k �=
0, k < j, node k is a descendant of node j in T (A).

As in Liu [1992], let us consider a small example,

A =

1 2 3 4 5 6
1 x x x x
2 x x
3 x x x
4 x x x
5 x x x x x
6 x x x x x

.

Gaussian elimination 121

1

2

3

4

5

6

fig 22.1

The graph of the matrix A is given on figure 22.1.
Doing Gaussian elimination, we get

L =

1 2 3 4 5 6
1 x
2 x
3 x
4 x x
5 x x x • x x
6 x x x x x

.

The elimination tree T (A) is shown on figure 22.2.

1

2 34

5

6

fig 22.2

It is clear that we can eliminate 1, 2 and 3 independently. If we consider 1, we
can restrict ourselves to the following matrix (rows and columns where there are
non zeroes in the first row and first column,

F1 =

1 4 5 6
1 a1,1 a1,4 a1,5 a1,6

4 a4,1

5 a5,1

6 a6,1

.

122 G. Meurant

Eliminating 1 will create contributions in a reduced matrix Ū4,

Ū4 =

4 5 6
4 x • x
5 • x x
6 x x x

,

where, as before, the • represents a fill–in. In parallel, we can eliminate 2, defining

F2 =
(2 5

2 a2,2 a2,5

5 a5,2

)
.

Elimination of 2 will create a contribution to the (5, 5) term,

Ū2
5 =

(5
5 x

)
.

We can also eliminate 3,

F3 =

3 5 6
3 a3,3 a3,5 a3,6

5 a5,3

6 a6,3

.

Elimination of 3 will create contributions,

Ū3
5 =

(5 6
5 x x
6 x x

)
.

Then, we eliminate 4. For this, we have to consider the matrix resulting from the
elimination of 1, that is

F4 =

4 5 6
4 a4,4 0 a4,6

5 0
6 a6,4

+ Ū4.

Elimination of 4 creates contributions,

Ū4
5 =

(5 6
5 x x
6 x x

)
.

Gaussian elimination 123

Now, before eliminating node 5, we must sum up the contributions from the original
matrix and what we get from the eliminations of nodes 2, 3 and 4. To do this, we
must extend Ū2

5 to the proper set of indices, i.e. 5, 6. We do this as in Liu [1992] by
considering an operator that we denote by ◦.

For two matrices A and B, A ◦ B takes as the set of indices of the result, the
union of the sets of indices of A and B and whenever they coincide, the result is
the sum of the entries. Let

Ū5 = Ū2
5 ◦ Ū3

5 ◦ Ū4
5 ,

F5 =
(

a5,5 a5,6

a6,5 0

)
+ Ū5.

Elimination of 5 gives a matrix of order 1 that is added to a6,6 to give the last term
of the factorization.

On this example, we have seen that all the elimination steps can be carried out
by working on small dense matrices of different orders, extending and summing up
these matrices by looking at the elimination tree.

Description of the method
Following Liu [1992], let us formalize the process of the multifrontal method.

Giving the elimination tree T (A), we define the subtree update matrix for column
j as

Ūj = −
∑

k∈T [j]−{j}

lj,k
li1,k

...
lir,k

 (lj,k li1,k . . . lir,k) ,

where, i0 = j, i1, . . . , ir are the row indices of the non zeroes in column j of L,
(L∗,j).

Ūj contains the contributions for the columns preceding j which are proper de-
scendants of j in the tree. The frontal matrix Fj is defined as

Fj =

aj,j aj,i1 . . . aj,ir
ai1,j

...
air,j

+ Ūj .

The first column of Fj contains all the non zero updates entries to column j. Then,
we perform one step of elimination on Fj ,

Fj =

lj,j 0
li1,j

...
lir,j

I

(

1 0
0 Uj

)(
lj,j li1,j . . . lir,j
0 I

)
.

124 G. Meurant

Uj is called the update matrix. It is a dense matrix. It is proved in Liu [1992] that

Uj = −
∑
k∈T [j]

li1,k
...

lir,k

 (li1,k . . . lir,k) .

If c1, . . . , cs are the children of j in T (A), then

Fj =

aj,j aj,i1 . . . aj,ir
ai1,j

...
air,j

 ◦ Uc1 ◦ . . . ◦ Ucs .

Then, the multifrontal method is defined as

for j=1:n
1) Form the update matrix Uc1 ◦ . . . ◦ Ucs
2) Form the frontal matrix Fj
3) Factorize Fj
end

A lot of issues have to be considered to derive an efficient multifrontal matrix
code. Let us consider what the main problems are.
1) Storage of the frontal and update matrices

Update matrices must be stored and easily retrieved when they are needed in
the algorithm to contribute to a frontal matrix. A nice way to do this is to use a
topological ordering of T (A) and to number the nodes in every subtree consecutively
(this is called a postordering). Then, the update matrices can be stored in a stack
using a last–in first–out algorithm. Using this scheme, the update matrices appear
at the top of the stack in the order they are needed.

To manage the storage working space, Duff proposed to use a buddy system. In
a buddy system, each block of storage has a buddy with which it can be combined
to form a larger block. In a binary buddy system, the sizes of the block are c2i.
Each block keeps some associated information: a flag to indicate if the block is free
or not and the logarithm of the size of the block. Free blocks are linked through a
doubly linked list. There is also a free list for each block size.

When a working area of memory of size m is needed, the system allocates a block
of list i, where c2i � m. If there is no block on the i–th free list, a level i + 1 block
must be split in two. A part is used to serve the request, the other part is put on
the i–th free list. The algorithm is applied recursively.

When a block is deallocated, the system checks if the block’s buddy is free and
of the correct size. If the answer is positive, the two blocks are combined and put
on the i + 1–rst free list.

Liu proposed a postordering of T (A) that minimizes the working storage. Gen-
erally, reduction in the working storage can be obtained by tree restructuring. In
particular, tree rotations can be used, see Liu [1988].

Gaussian elimination 125

2) Supernode methods
Some nodes in T (A) can be grouped together and treated as a single computa-

tional unit. Formally (Liu [1992]), a supernode is a set of contiguous nodes

{j, j + 1, . . . , j + s},
such that

AdjG(T [j]) = {j + 1, . . . , j + s} ∪AdjG(T [j + s]).

1

2

3

4

5

6

7

8

9

fig 22.3

1

2 34

5 6

78

9

fig 22.4

1

2 34

5 6

78

9

fig 22.5

126 G. Meurant

Consider the tree of figure 22.3, corresponding to the graph of figure 22.4. The
supernodal elimination tree is given in figure 22.5. As an example, consider

AdjG(T [7]) = {8, 9} = {8, 9} ∪AdjG(T [9]) = {8, 9} ∪ ∅.
Therefore, {7, 8, 9} is a supernode.

Then, all the nodes in a supernode are eliminated in the same step of the algo-
rithm. The advantages of using supernodes are that the supernodal tree is smaller
and the frontal matrices have a larger order giving better performances on modern
computers.
3) Dense techniques

An advantage of the multifrontal method is to allow to use dense matrix tech-
niques in the sparse case. Particularly, dense algorithms based on the use of Level 3
BLAS can be used when factoring the frontal matrices. Furthermore, there is much
less indirect addressing.
4) Node amalgamation

There are some performance advantages to have large supernodes. Therefore, it
has been suggested (Duff and Reid [1984]) to amalgamate some nodes, treating
some zeroes as non zeroes to obtain larger supernodes. For a detailed study of this
point, see Amestoy [1990].

Software packages are available that implement the multifrontal method. See
various programs in the Harwell Scientific Library, or the MUPS code developed
by Amestoy and Duff.

23. Non symmetric sparse matrices

Introduction
There is an additional difficulty in Gaussian elimination for non symmetric sparse
problems, namely the need of pivoting to improve numerical stability. When dealing
with sparse symmetric positive definite systems, the ordering of the unknowns can
be chosen only for the purpose of maintaining sparsity as much as possible during
the elimination. This is not true anymore for non symmetric problems.

There are still a lot of active research going on to try to make the algorithms for
non symmetric systems as efficient and robust as those we have seen in the previous
sections. We are going to briefly review these efforts.

The Markowitz criterion
If we choose the pivots as it is done for dense systems (for instance, partial

pivoting), there is no room for preserving sparsity. Therefore, for sparse matrices,
we have to relax the constraints for choosing the pivot. The usual strategy is to
consider candidate pivots satisfying the inequality,

|a(k)
i,j | � u max

l
|a(k)
l,j |,

where u is a user defined parameter such that 0 < u � 1. This will limit the overall
growth as

max
i

|a(k)
i,j | �

(
1 +

1
u

)pj

max
i

|ai,j |,

Gaussian elimination 127

where pj is the number of off diagonal entries in column j of U , see Duff, Erisman
and Reid [1986].

From these candidates, one is selected that minimizes

(r(k)
i − 1)(c(k)j − 1),

where r
(k)
i is the number of non zero entries in row i of the remaining (n−k)×(n−k)

matrix in Ak. Similarly, c(k)j is the number of non zeroes in column j. This criterion
is due to Markowitz [1957].

This method modifies the least entries in the remaining submatrix. Notice that if
A is symmetric, this is exactly the minimum degree algorithm that was introduced
historically after the Markowitz criterion. Many variations of the Markowitz crite-
rion have been studied. For a summary, see Duff, Erisman and Reid [1986]. However,
most of these other methods are generally not as efficient as the Markowitz criterion.

One possibility is to choose the entry (which is not too small) that introduces
the least amount of fill–in at step k. Unfortunately, this is much more expensive
than the Markowitz criterion. Moreover, having a local minimum fill–in does not
always gives a globally optimal fill–in count. There are even some examples where
the Markowitz criterion does a better job at globally reducing the fill–in.

As for the minimum degree algorithm, the tie breaking strategy is quite important
for the result of the Markowitz algorithm. Details of the implementation of the
Markowitz algorithm are discussed in Duff, Erisman and Reid [1986]. A switch to
dense matrix techniques is done when the non zero density is large enough.

Elimination structures for non symmetric matrices
Gilbert and Liu [1993] have introduced some definitions to characterize the struc-

tures of the triangular factors of a non symmetric matrix (without pivoting).
This starts by considering a triangular matrix L and its directed graph G(L)

which is acyclic (there is no directed cycles). An acyclic directed graph is called a
dag. Let w = (w1, . . . , wn)T, then we define

Struct(w) = {i ∈ {1, . . . , n}|wi �= 0}.

Theorem 23.1. If Lx = b then Struct(x) is given by the set of vertices reachable
from vertices of Struct(b) in the dag G(LT).

An economical way to represent the information contained in a dag G is to
consider its transitive reduction G0. Then, in Theorem 23.1, we can replace G(LT)
by G0(LT). The transitive closure G∗ of a directed graph G is a graph that has an
edge (u, v) whenever G has a directed path from u to v.

Let A be factored as A = LU without pivoting. G0(L) and G0(U) are called the
lower and upper elimination dags (edags) of A. For a symmetric matrix, G0(L) and
G0(U) are both equal to the elimination tree.

If B and C are two matrices with non zero diagonal elements then G(B) +G(C)
is the union of the graphs of B and C i.e. the graph whose edge set is the union of

128 G. Meurant

those of G(B) and G(C). G(B) ·G(C) is the graph with an edge (i, j) if (i, j) is an
edge of G(B) or (i, j) is an edge of G(C) or there is a k such that (i, k) is an edge
of G(B) and (k, j) is an edge of G(C).

Gilbert and Liu [1993] proved the following result.

Theorem 23.2. If A = LU and there is a path in G(A) from i to j, then there
exists a k, 1 � k � n such that G0(U) has a path from i to k and G0(L) has a path
from k to j. That is

G∗(A) ⊆ G0∗(U) ·G0∗(L).

If there is no cancellation in the factorization A = LU , then

G(L) ·G(U) = G(L) + G(U).

From these results, the row and column structures of L and U can be derived.

Theorem 23.3. If li,j �= 0, then there exists a path from i to j in G0(L).
Let i > j, li,j �= 0 if and only if there exists k � j such that ai,k �= 0 and there is

a directed path in G0(U) from k to j.

Struct(L∗,j) = Struct(A∗,j) ∪
⋃

{Struct(L∗,k)|k < j, uk,j �= 0} − {1, . . . , j − 1}.

In the last statement, k < j, uk,j �= 0 can be replaced by (k, j) is an edge of
G0(U). Similarly the structure of U can be characterized.

From these results, an algorithm can be derived for the symbolic fill computation
when there is no pivoting, see Gilbert and Liu [1993]. When pivoting is required
for stability, edags can also be useful, this time to symbolically compute the fill at
each stage of Gaussian elimination.

The multifrontal method
The multifrontal algorithm we have studied for symmetric matrices previously

has been applied to non symmetric matrices by Duff and Reid [1984]. The idea
was to consider the sparsity pattern of A + AT to construct the elimination tree.
Numerical pivoting takes place within the frontal matrices. This works well if the
pattern of A is nearly symmetric. However, the results are poor if the pattern of A
is far from being symmetric.

Recently Davis and Duff have introduced an extension of the multifrontal algo-
rithm to non symmetric matrices in a series of papers: Davis and Duff [1993], Davis
[1992], Davis [1993], Hadfield and Davis [1992], [1994a], [1994b]). This results in a
package called UMFPACK, see Davis [1993].

In the non symmetric case, the frontal matrices are rectangular. The elimination
tree is replaced by a directed acyclic graph (DAG) and update matrices are no
longer assembled by a single parent.

Gaussian elimination 129

We briefly summarize the work of Davis and Duff [1993]. A frontal matrix Fk is
a dense r

(k)
i × c

(k)
j submatrix that corresponds to the choice of a(k)

i,j as a pivot. The
columns in Fk are defined by the set of indices Uk and the rows by the set Lk. As
in the symmetric case, amalgamation can take place if some other pivots have the
same row and column patterns. Let gk be the number of such pivots. Then

Lk = L′
k ∪ L′′

k , Uk = U ′
k ∪ U ′′

k ,

where L′
k and U ′

k correspond to the gk pivots. We write

Fk =
(

Ek Bk
Ck Dk

)
,

where Ek is of order gk. A numerical factorization Ek = L′
kU

′
k is computed as well

as the block column L′′
k of L and the block row U ′′

k of U and the Schur complement

D′
k = Dk − L′′

kU
′′
k .

In the factorization any entry of Ek can be selected as a pivot. A bipartite graph
Ak = (Akν ,Akε) represents the active submatrix,

Akν = AkR ∪ AkC,

where AkR (resp. AkC) is the index set of the rows (resp. columns) and

Akε = {(i, j)|i ∈ AkR, j ∈ AkC, a(k)
i,j �= 0}.

The factorized frontal matrices are described by a directed acyclic graph

Gk = (νk, εk),

νk = {t|Ft is a frontal matrix created before step k},
νk ⊆ {1, . . . , k − 1},
εk = εkL ∪ εkU ,

εkL = {(i, j)|i < j < k, i ∈ νk, j ∈ νk, one or more entire rows of F ji
are assembled in Fj},

εkU = {(i, j)|i < j < k, i ∈ νk, j ∈ νk, one or more entire columns of F ji
are assembled in Fj},

F ji is a submatrix of Fi formed by rows and columns that are non pivotal and not
yet assembled into subsequent frontal matrices before step j.

Edges in εk are called inactive edges. Node i is an LU child of node j if F ji is
assembled into Fi, i.e. (i, j) ∈ εkL∩εkU . If (i, j) ∈ εkL, i is an L–child of j. If (i, j) ∈ εkU ,
i is an U–child of j.

130 G. Meurant

An active edge connects a frontal matrix in G with a row or column in A for which
it has an unassembled contribution. They can be partitioned into active L–edges
and active U-edges.

The actual algorithm is quite complex. Therefore, we refer the reader to Davis
and Duff [1993] and we consider just the beginning of a small example.

Before the start, the DAG G1 is empty and A1 is the bipartite graph of the
original matrix. A pivot is chosen (based on the Markowitz strategy) and permuted
to the first row and column. Consecutive pivots with the same row and column
patterns are also included in the first frontal matrix F1 which is then factorized.

The first node in G refers to F1. L1 (resp. U1) is given by the set of edges in A1

incident to columns (resp. rows) nodes 1 through g1. Pivot row and column nodes 1
through g1 and edges in A1 incident to these nodes are removed from A1. L′′

1 (resp.
U ′′

1) defines new active L (resp. U) edges.
The example taken from Davis and Duff [1993] is the following,

A =

a1 x x
x a2 x x x
x x a3 x
x a4 x

x x x x
x

x x x x

.

1

2 3 4 5 6 7

2

3

4

5

6

7

x x x x

x x x

x

x

0

x

x x

x

x

x

x x

x

0

0

0

0

0

0

0

0

0

0

0

0

0

U edges

L edges

fig 23.1

Node 1 is an L–child of node 2. Two pivots are considered in the second step as
rows and columns 2 and 3 have the same pattern in L and U. The graphs are given
in figure 23.2.

Gaussian elimination 131

1

2

4 5 6 7

4

5

6

7

x x

x

x

x

x x

x

0

0

0

00

U edges

L edges

L edge

fig 23.2

1

2

5 6 7

4

5

6

7

x

x

x

x x

x0

0

U edge

LU edge

L edge

fig 23.3

Then, node 4 is eliminated, u2,4 and u3,4 are non zero as well as l4,1 and l1,4.
This gives figure 23.3. and the algorithm goes on. . .

Some edge reduction operations are applied during the factorization, see Davis
and Duff [1993]. With no additional edge reductions, a frontal matrix persists until
the latest possible step of the elimination when it is completely assembled into other
frontal matrices. The edge reduction discussed in Davis and Duff tries to assemble
these contributions as soon as possible.

Some node amalgamation can also be introduced to give larger frontal matrices
at the price of having a little more fill–in. Additionally, to speed up the pivot search,

132 G. Meurant

only upper and lower bounds of the degree of each row and column are computed.
Moreover, only the first few columns with minimum upper bounds are scanned.

The DAG (the edge set) is constructed for being reused if some matrix with the
same pattern is to be factored. Numerical experiments and comparisons with other
methods are given in Davis and Duff [1993].

SuperLU
In 1995, J. Demmel, S. Eisenstat, J. Gilbert, X. Li and J.W. Liu described and

made available a code named SuperLU that combines several interesting techniques.
1) The first thing is to extend supernodes to non symmetric matrices. Several

possibilities were studied but the one retained in SuperLU is the following. A su-
pernode is a range of columns in L with a full triangular diagonal block and the
same structure below the diagonal block. This will allow a supernode to column
update using BLAS2 routines. All the updates to a column from a supernode are
done together.

In SuperLU (written in C), the matrix is stored by columns as well as L and U
but the diagonal blocks in the supernodes are stored in L (as if they were full).
This allows to treat supernodes as two dimensional arrays.

As many supernodes are not large enough, some columns are merged into artificial
supernodes even if they don’t have the same structure. Also several consecutive
columns can be factored at the same time (this set is called a panel).

2) The column elimination tree is defined as the elimination tree of ATA. The
column elimination tree T gives the dependencies among columns in the LU fac-
torization. In particular, if li,j �= 0 then, i is an ancestor of j in T , if ui,j �= 0 then,
j is an ancestor of i in T .

Before factoring the matrix, the columns are permuted according to a postorder-
ing of the column elimination tree.

3) Before each supernode–panel update, a symbolic factorization is done using a
depth first traversal of the graph (this is in fact done on a reduced graph).

Careful analysis and experiments were done by Demmel and al. showing that this
code is one of the most efficient one for non symmetric matrices.

24. Numerical stability for sparse matrices

The study of componentwise error analysis for sparse systems has been considered in
Arioli, Demmel and Duff [1989]. In this paper, they show how to compute estimates
of the backward error. The perturbation f of the right hand side is chosen in an a
posteriori way and is not equal to |b| to keep the perturbation on A sparse and the
iterative refinement algorithm convergent (see Arioli, Demmel and Duff [1989]).

Let w = |A| |y| + |b|, y being the computed solution. A threshold τi is cho-
sen for each wi such that if wi > τi, then fi = |bi|. Otherwise if wi � τi, fi
is chosen larger. The value of τi suggested in Arioli, Demmel and Duff [1989] is
τi = 1000 n u(‖Ai,∗‖∞‖y‖∞ + |bi|) where Ai,∗ is the ith row of A.

Let f (2) be the components of f for which wi � τi, then f (2) is defined as
f (2) = ‖b‖∞e where e is the column vector of all ones. With this choice, we can

Gaussian elimination 133

compute an estimate of the backward error

|b−Ay|i
(|A||y| + f)i

.

Remember that the condition number is

KBS(A, b) =
‖ |A−1|(E|x| + f)‖∞

‖x‖∞ .

But we may just want to estimate ‖ |A−1| |A| ‖∞ = ‖ |A−1| |A|e‖∞. This can
be estimated by an algorithm due to Hager [1984] that uses multiplications by the
matrix and its transpose. This is obtained by forward and backward solves using
the LU factorization of A.

Numerical experiments in Arioli, Demmel and Duff [1989] using iterative refine-
ment show that it is possible to guarantee solutions of sparse linear systems that are
exact solutions of a nearby system with a matrix of the same structure. Estimates
of the condition number and of the backward error can be obtained easily using the
previous strategies giving estimates of the error.

134 G. Meurant

5. Parallel algorithms for sparse matrices

25. Introduction

As for dense matrices, it is important to be able to solve efficiently sparse linear
systems on parallel architectures. From one side, it is easier to consider sparse ma-
trices rather than dense ones as, in the sparse case, there is more natural parallelism.
Data dependencies are weaker in the sparse case as, in the factorization process,
some columns are independent of each other. On the other side, it is more difficult
to obtain significant performances as the granularity of independent tasks is often
quite small and indirect addressing could lead to a lack of data locality.

Nevertheless, a lot of research is going on to obtain efficient algorithms. As for
dense matrices, we will only consider algorithms for distributed memory architec-
tures. A good review has been done in Heath, Ng and Peyton [1991].

26. Symmetric positive definite systems

As we have seen, for symmetric positive definite matrices, Gaussian elimination
proceeds in three phases: ordering, symbolic factorization and numerical factoriza-
tion. The problem we are faced with is to have parallel implementations of these
three phases. Therefore, things are complicated as for instance for the first phase,
not only we have to find an ordering that reduces the fill–in and gives a good de-
gree of parallelism during the solution phase, but also ideally, we need to be able
to compute this ordering in parallel.

Orderings
As we have seen, the most commonly used heuristic algorithm to reduce fill–in

is the minimum degree or one of its variants. Although there is not much theory
about it (except negative results), it works quite well in practice.

Unfortunately, the basic minimum degree algorithm is quite sequential by nature.
Modifications have to be made to generate parallelism and to be able to run the
algorithm on parallel computers. Several attempts have been made or are under
consideration by now.

One idea is to look for multiple elimination of independent nodes of minimum
degree, see Liu [1985]. Another idea is to relax a bit the constraint of finding a node
of minimum degree and just to look at nodes whose degree are within a constant
factor of the minimum degree.

However, the implementation of the algorithm on sequential computers is now
really efficient but quite complex and it is not that easy to port it to a parallel
computer.

An ordering that is much more promising for parallelism is the nested dissec-
tion algorithm. As it is a divide and conquer algorithm, it is well suited to parallel
computers. However, as we have seen, the algorithm is not easy to implement for
general sparse matrices. For this, we need an efficient algorithm for partitioning
a graph satisfying certain constraints on the separators. Research is underway to

Gaussian elimination 135

reach these goals, Simon [1991], Ciarlet and Lamour [1994], Farhat [1988], even
though these algorithms are not parallel themselves. Some research is under way
in this field. Combinations of the minimum degree and nested dissection have been
proposed by Liu [1989b]. Therefore, the problem of finding in parallel a good or-
dering for parallel computation cannot be considered to be completely solved by
1996.

The current approach of the ordering problem is to separate the two (conflicting)
goals that we have. First of all, an ordering for (approximately) minimizing the
fill–in is chosen. Then, the ordering is modified by restructuring the elimination
tree in order to introduce parallelism.

This approach has been described by Jess and Kees [1982]. The method starts by
looking at PAPT, where the permutation P was chosen to preserve sparsity. Then,
the natural ordering is a perfect elimination one for F = L + LT. Now, the goal is
to find a permutation matrix Q that gives also a perfect elimination but with more
parallelism.

A node in GF whose adjacency set is a clique is called simplicial. Such a node
can be eliminated without causing any fill–in. Two nodes are independent if they
are not adjacent in GF . The Jess and Kees algorithm is the following,

• Until all nodes are eliminated, choose a maximum set of independent simplicial
nodes, number them consecutively and eliminate these nodes.

It has been shown, Liu [1988], that the Jess and Kees method gives an ordering
that has the shortest elimination tree over all orderings that do a perfect elimination
of F .

The problem now is to implement this algorithm. This question was not really
addressed by Jess and Kees. A proposal using clique trees was described in Lewis,
Peyton and Pothen [1989]. We will return to this method later. Another implemen-
tation was proposed in Liu and Mirzaian [1989].

Heuristically, it can be seen that larger elimination trees (having more leaf nodes)
introduce more parallelism. The number of nodes being fixed, larger trees mean
shorter trees. Therefore, it seems that finding an ordering that gives a shorter tree
would increase the level of parallelism.

Liu [1988] has proposed to use tree rotations to reach this goal. The purpose of
this algorithm is to find a reordering by working on the structure of PAPT, namely
the elimination tree.

A node x in a tree T (B) is eligible for rotation if

AdjG(B)(T [x]) �= Anc(x),

where Anc(x) is the set of ancestors of x in T and

AdjG(B)(T [v]) = Anc(v), ∀v ancestor of x.

A tree rotation at x is a reordering of G(B) such that the nodes in AdjG(B)(T [x])
are labeled last while keeping the relative order of the nodes.

136 G. Meurant

123

4

5 6

7

abc

d

e f

g

fig 26.1

1

2

3 4

5

6

7

a

b

c d

e

f

g

fig 26.2

Consider a small example similar to the one in Liu [1988], see figures 26.1 and
26.2.

Adj(T [c]) = {e, f} �= {e, f, g} = Anc(c),
Adj(T [d]) = {e} �= {e, f, g} = Anc(d).

Thus, c and d are eligible for tree rotations. A rotation at c gives what is seen in
figures 26.3 and 26.4. A rotation at d gives figures 26.5 and 26.6.

Let hT(v) be the height of T [v] and h̄T be defined as −1 if every subtree of T

Gaussian elimination 137

123

4 5

6 7

abc

d

e f

g

fig 26.3

1

2

3 4 5

6

7

a

b

c d e

f

g

fig 26.4

intersects T [v] or otherwise,

h̄T = max{hT(w)|T [w] ∩ T [v] = ∅}.

In the original tree,

hT(a) = 0, hT(b) = 1, hT(c) = 2, hT(d) = 0, hT(e) = 3, etc . . .

h̄T(a) = 0, h̄T(b) = 0, h̄T(c) = 0, h̄T(d) = 2, h̄T(e) = −1, etc

The algorithm proposed by Liu [1988] is the following,

• If x is an eligible node with h̄T(x) < hT (x), then apply a tree rotation at x
relabeling the nodes.

138 G. Meurant

123

4

5

6

7

abc

d

e f

g

fig 26.5

1

2

3

4

5

6

7

a

b

c

d

e

f

g

fig 26.6

In the above example, only c can be chosen by the algorithm. Results are proven in
Liu [1988] that supports this choice. The implementation details and experimental
results are given in Liu [1988]. However, tree rotations do not always give a tree of
minimum height.

More than the height of the elimination tree, it will be better to minimize the
parallel completion time. This was defined by Liu as,

• Let time[v] be the execution time for the node v in T (for instance, a constant
times the number of operations).

Gaussian elimination 139

Then,

level[v] =
{

time[v] if v is the root
time[v] + level[parent of v] otherwise.

The parallel completion time is maxv∈T level[v].
Liu and Mirzaian [1989] proposed an implementation of the Jees and Kees algo-

rithm. In their method, the cost of detecting simplicial nodes is O(nν(F)) where
ν(F) is the number of off diagonal elements in L+LT. The tree rotations heuristic
is faster than that.

In Lewis, Peyton and Pothen [1989], an implementation of the Jees and Kees
algorithm was proposed using clique trees. They gave a characterization of simplicial
nodes,

Theorem 26.1. A node is simplicial if and only if it is contained in only one
maximal clique.

Proof. See Lewis, Peyton and Pothen [1989].

Let Madj(v) = {u|u ∈ Adj(v), u > v}, then

Theorem 26.2. If K is a maximal clique in GF and v is the lowest numbered node
in K, then

K = {v} ∪Madj(v).

Proof. See Lewis, Peyton and Pothen [1989].

The clique K(v) is represented by such a v which is called a representative node.
Lewis, Peyton and Pothen proposed a way to find the representative nodes.

Theorem 26.3. A node v is not representative for any maximal clique if and only
if there exists a representative node z, z < v, such that

{v} ∪Madj(v) ⊂ {z} ∪Madj(z).

Proof. See Lewis, Peyton and Pothen [1989].

An algorithm based on these results can be constructed to find the representative
nodes, hence the maximal cliques. Considering the details of the algorithm will take
us too far as it is rather technical. However, during the marking procedure nodes
are partitioned into sets new(K(v)), anc(K(v)).

New(K(v)) consists of v together with the nodes marked as non representative
while considering K(v). Anc(K(v)) is the ancestor set of K(v). Rather than looking

140 G. Meurant

1

2 3 4

5

6 7

8

fig 26.7

at the details, let us consider the example given in Lewis, Peyton and Pothen [1989]
which comes from Liu, see figure 26.7.

K(1) = {1, 2, 3}, K(3) = {3, 4, 6, 7}, K(5) = {5, 6}, K(6) = {6, 7, 8},

newK(1) = {1, 2}, newK(3) = {3, 4}, newK(5) = {5}, newK(6) = {6, 7, 8},
ancK(1) = {3}, ancK(3) = {6, 7}, ancK(5) = {6}, newK(6) = ∅.

The number of nodes of the clique tree is the number of maximal cliques and

parent(K) = {K ′|first anc(K) ∈ new(K ′)},

where first anc(K) is the smallest element of anc(K),

parent[newK(1)] = newK(3),
parent[newK(3)] = newK(6),
parent[newK(5)] = newK(6),

and the clique tree is the one in figure 26.8.

6, 7, 8

3, 4

1, 2

5

fig 26.8

Gaussian elimination 141

Lewis, Peyton and Pothen [1989] described how to update the clique tree during
elimination using the Jees and Kees algorithm.

Let R(K) be defined as

R(K) =
{

K if K contains no simplicial nodes,
K − {u} where u is the eliminated simplicial node of K.

Given the clique tree, when a simplicial node u contained in K is eliminated, the
new clique tree is constructed in the following way,

– if R(K) is maximal, make no changes
– otherwise,

– if K is a leaf, delete K,
– if K is an ancestor, let C be a child with the largest ancestor set

– assign all nodes in new(K) to new(C), removing them from anc(C),
– attach C as a child of parent(K) with first anc(C) = first anc(K),
– attach children of K other than C as children of C,
– delete K.

Proofs are given in Lewis, Peyton and Pothen [1989]. Experimental results in
Lewis, Peyton and Pothen show that this implementation is about as fast as the
tree rotation heuristic and faster than the Liu and Mirzaian [1989] Jees and Kees
implementation.

Symbolic factorization
There is not much parallelism to be found in the symbolic factorization phase.

The natural structure for increasing the level of parallelism is the elimination tree.
But, then we are faced with a bootstrapping problem as we have also to compute
the elimination tree in parallel.

George, Heath, Liu and Ng [1988] have proposed a column oriented parallel sym-
bolic factorization algorithm. Experimental results showed only modest speed ups.
Further research is needed in this area.

Numerical factorization
The first algorithms that were studied were column oriented. Traditionally, the

two main operations of Gaussian elimination are denoted:
• cmod(j, k): modification of column j by column k, k < j
• cdiv(j): division of column j by a scalar (the pivot).
In the fan–out and fan–in algorithms, data distribution is such that columns

are assigned to processors. As in the dense case, column k is stored on processor
p = map(k). Leaf nodes of the elimination tree are independent of each other and
can be processed first. Let mycols(p) be the set of columns owned by processor p
and

procs(L∗,k) = {map(j)|j ∈ Struct(L∗,k)}.

The fan–out algorithm is the following,

142 G. Meurant

For j ∈ mycols(p)
if j is a leaf node

cdiv(j)
send L∗,j to p′ ∈ procs(L∗,j)
mycols(p)=mycols(p)-{ j}

end
while mycols(p) �= ∅

receive column L∗,k
for j ∈ Struct(L∗,k)∩ mycols(p)
cmod(j,k)
if all cmods are done for column j
cdiv(j)
send L∗,j to p′ ∈ procs(L∗,j)
mycols(p)=mycols(p)-{ j}

end
end

end
end

When columns are sent to other processors, it is also necessary to send their
structures to be able to complete the cmods operations. There are too many com-
munications in this algorithm. This has been improved in the fan–in algorithm
Ashcraft, Eisenstat and Liu [1990],

• Processing column j, processor p computes the modification u(j, k) for k ∈
mycols(p) ∩ Struct(Lj,∗). If p does not own column j, it sends u(j, k) to processor
map(j). If p owns column j, it receives and processes the aggregated modifications
and then completes the cdiv(j) operation.

When processing column j, if there are no modifications arrived yet for this
column, processor p can proceed to compute some columns i > j by aggregating
modifications already received or receiving updates. In practice, this look ahead is
limited to column i in the same supernode as column j.

An important issue in these column oriented algorithms is the mapping of
columns to the processors. Currently, most implementations use a static mapping
of computational tasks to processors. This can lead to load balancing problems. In
the fan–out or fan–in algorithms, the assignment of columns to processors is guided
by the elimination tree. The goals are good load balancing and few processor com-
munications.

The first implementations were based on wrap mapping of the levels of the elimi-
nation tree starting from the bottom up. This gives good load balancing properties
but too many communications.

Another technique that has been much used is the subtree to subcube mapping.
This was specifically designed for hypercube architectures but can be easily gener-
alized to other distributed memory architectures.

This is illustrated on the following example, see figure 26.9, distributing the tree
on 4 processors.

Gaussian elimination 143

0

1

2

31

1

1

1

1 1

0

0

0

0 0

0

2

2

2

2

22

3

3

3

3 3

fig 26.9

In Karypis and Kumar [1994], a subforest to subcube mapping is introduced
which seems to improve on the subtree to subcube mapping.

Another algorithm that is in favor is the multifrontal algorithm. We have already
seen that there is a natural parallelism in the early (bottom) stages of the multi-
frontal method. Dense frontal matrices are assigned to one processor. The problem
is that when moving to the root of the tree, there is less and less parallelism of this
kind. However, frontal matrices are getting larger and larger and dense techniques
used to handle these matrices can be distributed on several processors (using level
3 BLAS primitives).

In Kapyris and Kumar [1994], the multifrontal method is implemented using
the subforest to subcube mapping and very good efficiencies are obtained. In this
scheme, many subtrees of the elimination tree are assigned to each subcube. They
are chosen in order to balance the work. Algorithms are given in Kapyris and Kumar
[1994] to obtain this partitioning.

All these mappings are based on column distribution of the matrix to the pro-
cessors. Rothberg and Gupta [1994] proposed to use a block oriented approach of
sparse Gaussian elimination. These partitionings have good communication perfor-
mances.

27. Non symmetric systems

As for dense systems, the problem here is complicated by the issue of pivoting.

144 G. Meurant

There are not many efficient implementations of Gaussian elimination on parallel
architectures for general sparse matrices.

The best algorithms are based on the multifrontal method, either the methods
based on the structure of A + AT or the truly non symmetric ones.

The non symmetric version of the multifrontal method has been studied by Had-
field and Davis [1994b] for parallel computing. As for the symmetric case, different
levels of parallelism must be used. Experimental results are given in Hadfield and
Davis [1994b].

Davis and Yew [1990] have proposed another nondeterministic algorithm called
D2. This algorithm is based on selecting an independent set of m pivots whose
updates can be computed in parallel

S = {a(k−1)
i,j |a(k−1)

i,j = a
(k−1)
j,i = 0, for k � j � m + k − 1, k � i � m + k − 1, and i �= j}.

Then, a sparse rank–m update is done. This algorithm gives good results on matrices
that have a very non symmetric pattern.

Gaussian elimination 145

References

AASEN,J.O., (1971), On the reduction of a symmetric matrix to tridiagonal form, BIT 11,
233–242

AHAC,A.A., BUONI,J.J. and OLESKY,D.D., (1988), Stable LU factorization of H–matrices,
Linear Algebra and its Appl. 99, 97–110

AHAC,A.A. and OLESKY,D.D., (1986), A stable method for the LU factorization of M–
matrices, SIAM J. Alg. Disc. Meth. 7 no 3, 368–378

ALAGHBAND,G., (1989), Parallel pivoting combined with parallel reduction and fill–in control,
Parallel Comp. 11, 201–221

ALVARADO,F.L. and SCHREIBER,R., (1993), Optimal parallel solution of sparse triangular

systems, SIAM J. Sci. Stat. Comput. 14 no 2, 446–460

AMESTOY,P.R., (1990), Factorisation de grandes matrices creuses non symétriques basée sur
une méthode multifrontale dans un environnement multiprocesseur, Ph.D. Thesis, CER-
FACS report TH/PA/91/2

AMESTOY,P., DAVIS,D.A. and DUFF,I.S., (1994), An approximate minimum degree ordering

algorithm, Report TR–94–039, University of Florida

AMESTOY,P.R. and DUFF,I.S., (1989), Vectorization of a multiprocessor multifrontal code,
Int. J. Supercomputer Appl. 3 no 3, 41–59

AMODO,P., BRUGNANO,L. and POLITI,T., (1993), Parallel factorizations for tridiagonal
matrices, SIAM J. Numer. Anal. 30 no 3, 813–823

ANAND,I.M., (1980), Numerical stability of nested dissection orderings, Math. Comp. 35 no
152, 1235–1249

ANDERSON,E., BAI,Z., BISCHOF,C., DEMMEL,J., DONGARRA,J., DU CROZ,J., GREEN-
BAUM,A., HAMMARLING,S., McKENNEY,A., OSTROUCHOV,S. and SORENSEN,D.,
(1992), LAPACK User’s guide, (SIAM)

ANDERSON,E. and SAAD,Y., (1989), Solving sparse triangular linear systems on parallel
computers, Int. J. High Speed Comp. 1 no 1, 73–95

ANDERSON,D.V., FRY,A.R., GRUBER,R. and ROY,A., (1987), Gigaflop speed algorithm for
the direct solution of large block tridiagonal systems in 3D physics applications, Report
UCRL–96034, Lawrence Livermore Nat. Lab.

ANGELACCIO,M. and CLAJANNI,M., (1994), The row/column pivoting strategy on multi-
computers, Parallel Comp. 20 no 2, 197–214

ANGELACCIO,M. and CLAJANNI,M., (1994), Subcube matrix decomposition, a unifying
view for LU factorization on multicomputers, Parallel Comp. 20 no 2, 257–270

ARIOLI,M., DEMMEL,J.W. and DUFF,I.S., (1989), Solving sparse linear systems with back-
ward error, SIAM J. Matrix Anal. Appl. 10, 165–190

ASHCRAFT,C., (1991), A taxonomy of distributed dense LU factorization methods, Report
ECA–TR–161, Boeing Computer Services

ASHCRAFT,C., EISENSTAT,S.C. and LIU,J.W–H., (1990), A fan–in algorithm for distributed
sparse numerical factorization, SIAM J. Sci. Stat. Comput. 11 n,o 3, 593–599

ASHCRAFT,C. and GRIMES,R.G., (1989), The influence of relaxed supernode partitions on
the multifrontal method, ACM Trans. Math. Soft. 15, 291–309

ASHCRAFT,C., GRIMES,R.G., LEWIS,J.G., PEYTON,B.W. and SIMON,H.D., (1987),
Progress in sparse matrix methods for large linear systems on vector supercomputers,
Int. J. Supercomputer Appl. 1 no 4, 10–30

AXELSSON,O. and BARKER,V.A., (1984) Finite element solution of boundary value prob-
lems, (Academic Press)

BABUŠKA,I. and ELMAN,H.C., (1989), Some aspects of parallel implementation of the finite
element method on message passing architectures, J. Comp. Appl. Math. 27, 157–187

BANK,R.E. and ROSE,D.J., (1990), On the complexity of sparse Gaussian elimination via
bordering, SIAM J. Sci. Stat. Comput. 11 no 1, 145–160

146 G. Meurant

BANK,R.E. and SMITH,R.K., (1987), General sparse elimination requires no permanent integer
storage, SIAM J. Sci. Stat. Comput. 8 no 4 574–584

BARLOW,J.L., (1986), A note on monitoring the stability of triangular decomposition of sparse
matrices, SIAM J. Sci. Stat. Comput. 7 no 1, 166–168

BARNARD,S.T., POTHEN,A. and SIMON,H.D., (1993), A spectral algorithm for envelope
reduction of sparse matrices, Tech Rep, Univ. of Waterloo, CS–93–49

BARWELL,V. and GEORGE,A., (1976), A comparison of algorithms for solving symmetric
indefinite systems of linear equation, ACM Trans. Math. Soft. 2 no 3, 242–251

BAUER,F.L., (1974), Computational graphs and rounding error, SIAM J. Numer. Anal. 11,
87–96

BENNETT,J.M., (1965), Triangular factors of modified matrices, Numer. Math. 7, 217–221

BERMAN,A. and PLEMMONS,R.J., (1979) Nonnegative matrices in the mathematical sci-
ences, (Academic Press)

BERMAN,P. and SCHNITGER,G., (1990), On the performance of the minimum degree order-

ing for Gaussian elimination, SIAM J. Matrix Anal. Appl. 11 no 1, 83–89

BISCHOF,C.H., (1990), Incremental condition estimation, SIAM J. Matrix Anal. Appl. 11,
312–322

BISCHOF,C.H., LEWIS,J.G. and PIERCE,D.J., (1990), Incremental condition estimation for
sparse matrices, SIAM J. Matrix Anal. Appl. 11 no 4, 644–662

BLAIR,J.R. and PEYTON,B., 1993, An introduction to chordal graphs and clique trees, in
[167], 1–29

BODEWIG,E., (1959) Matrix calculus, second edition, (North–Holland)

BOISVERT,R.F., (1991), Algorithms for special tridiagonal systems, SIAM J. Sci. Stat. Com-
put. 12 no 2, 423–442

BOTHE,Z., (1975), Bounds for rounding errors in the Gaussian elimination for band systems,
J. Inst. Maths. Applics. 16, 133–142

BRAYTON,R.K., GUSTAVSON,F.G. and WILLOUGHBY,R.A., (1970), Some results on
sparse matrices, Math. Comp. 24 no 112 937–954

BROYDEN,C.G., (1973), Some condition number bounds for the Gaussian elimination process,
J. Inst. Maths. Applics. 12, 273–286

BUNCH,J.R., (1971), Analysis of the diagonal pivoting method, SIAM J. Numer. Anal. 8 no
4, 656–680

BUNCH,J.R., (1973), Complexity of sparse elimination, in [348], 197–220

BUNCH,J.R., (1974), Partial pivoting strategies for symmetric matrices, SIAM J. Numer.
Anal. 11 no 3, 521–528

BUNCH,J.R., (1974), Analysis of sparse elimination, SIAM J. Numer. Anal. 11 no 5, 847–873

BUNCH,J.R., (1987), The weak and strong stability of algorithms in numerical linear algebra,
Linear Algebra and its Appl. 88, 49–66

BUNCH,J.R., DEMMEL,J.W. and VAN LOAN,C., (1989), The strong stability of algorithms
for solving symmetric linear systems, SIAM J. Matrix Anal. Appl. 10 no 4, 494–499

BUNCH,J.R., DONGARRA,J.J., MOLER,C. and STEWART,G.W., (1979), Linpack User’s
guide, (SIAM)

BUNCH,J.R. and HOPCROFT,J.,E., (1974), Triangular factorization and inversion by fast
matrix multiplication, Math. Comp. 28 no 125, 231–236

BUNCH,J.R. and KAUFMAN,L., (1977), Some stable methods for calculating inertia and solv-
ing symmetric linear systems, MC 31, 162–179

BUNCH,J.R. and PARLETT,B.N., (1971), Direct methods for solving symmetric indefinite
systems of linear equations, SIAM J. Numer. Anal. 8 no 4, 639–655

BUNCH,J.R. and ROSE,D.J. Eds, (1976) Sparse matrices computations, (Academic Press)

BURGESS,I.W. and LAI,P.K.F., (1986), A new node renumbering algorithm for bandwith

reduction, Int. J. Num. Meth. Eng. 23, 1693–1704

CARNEVALI,P., RADICATI,G., ROBERT,Y. and SGUAZZERO,P., (1987), Efficient Fortran
implementation of the Gaussian elimination and Householder reduction algorithms on the

Gaussian elimination 147

IBM 3090 vector multiprocessor, Report ICE–0012 IBM European Center for Scientific
and Engineering Computing

CARTER,R., (1991), Y–MP floating point and Cholesky factorization, Int. J. High Speed Comp.
3 no 3, 215–222

CHAN,T., (1984), On the existence and computation of LU factorizations with small pivots,
Math. Comp. 42 no 166, 535–547

CHAN,T.F. and FOULSER,D.E., (1988), Effectively well conditioned linear systems, SIAM J.
Sci. Stat. Comput. 9, 963–969

CHAN.,T. and RESASCO,D.C., (1986), Generalized deflated block elimination, SIAM J. Nu-
mer. Anal. 23 no 5, 913–924

CHAN,W.M. and GEORGE,A., (1980) A linear time implementation of the reverse Cuthill–

McKee algorithm, BIT 20, 8–14
CHANDRASEKARAN,S. and IPSEN,I., (1995), On the sensitivity of solution components in

linear systems of equations, SIAM J. Matrix Anal. Appl. 16 no 1 93–112
CHARRIER,P. and ROMAN,J., (1989), Algorithmique et calculs de complexité pour un solveur

de type dissection embôıtée, Numer. Math. 55, 463–476
CHARRIER,P. and ROMAN,J., (1991), Analysis of refined partitions for a parallel implemen-

tation of nested dissection, Report LABRI 91–38, Université de Bordeaux I
CHATELIN,F. and FRAYSSE,V., (1993), Qualitative computing, elements of a theory of finite

precision computation, CERFACS Report
CHEN,S.C., KUCK,D.J. and SAMEH,A.H., (1978), Practical parallel band triangular system

solvers, ACM Trans. Math. Soft. 1 no 3, 270–277

CHOI,J., DONGARRA,J., POZO,R. and WALKER,D.W., (1994), ScaLAPACK: a scalable lin-
ear algebra library for distributed memory concurrent computers, in Proceedings of Fourth
Symposium on the Frontiers of Massively Parallel Computation (McLean, Virginia) (IEEE
Computer Society Press)

CHU,E. and GEORGE,A., (1987), Gaussian elimination with partial pivoting and load balanc-
ing on a multiprocessor, Parallel Comp. 5, 65–74

CIARLET,P. Jr. and LAMOUR,F., (1994), On the validity of a front oriented approach to
partitioning large sparse graphs with a connectivity constraint, Report CAM 94–37, UCLA,
submitted to Numerical Algorithms

CLEARY,A.J., (1990), Parallelism and fill–in in the Cholesky factorization of reordered banded
matrices, Report SAND90–2757, Sandia Nat. Lab., Albuquerque

CLINE,A.K., CONN,A.R. and VAN LOAN,C.F., (1982), Generalizing the LINPACK condition
estimator, Lecture Notes in Mathematics 909, (Springer), 73–83

CLINE,A.K., MOLER,C.B., STEWART,G.W. and WILKINSON,J.H., (1979), An estimate of
the condition number of a matrix, SIAM J. Numer. Anal. 16, 368–375

CONCUS,P., GOLUB,G.H. and MEURANT,G. (1985), Block preconditioning for the conjugate
gradient method, SIAM J. Sci. Stat. Comput. 6 no 1, 220–252

COSNARD,M., ROBERT,Y., QUINTON,P. and TCHUENTE,M. Eds, (1986) Parallel algo-
rithms and architectures, (North–Holland)

COSNARD,M., ROBERT,Y. and TRYSTRAM,D., (1986), Résolution parallèle de systèmes
linéaires denses par diagonalisation, EDF, Bulletin DER, série C no 2, 67–88

CRYER,C.W., (1968), Pivot growth in Gaussian elimination, Numer. Math. 12, 335-345
CSANKY,L., (1976), Fast parallel matrix inversion algorithms, SIAM J. Comp. 5 no 4, 618–623
CURTIS,A.R. and REID,J.K., (1971), The solution of large sparse unsymmetric systems of

linear equations, J. Inst. Maths. Applics. 8, 344–353
CURTIS,A.R. and REID,J.K., (1972), On the automatic scaling of matrices for Gaussian elim-

ination, J. Inst. Maths. Applics. 10, 118–124
CUTHILL,E., (1972), Several strategies for reducing the bandwith of matrices, in [317]
DAHLQUIST,G. and BJÖRCK,Å, (1974) Numerical methods, (Prentice–Hall)

DAHLQUIST,G., EISENSTAT,S.C. and GOLUB,G.H., (1972), Bounds for the error of linear
systems of equations using the theory of moments, J. of Math. Anal. and Appl. 37 no 1,
151–166

148 G. Meurant

DAVE,A.K. and DUFF,I.S., Sparse matrix calculations on the Cray 2, Parallel Comp. 5, 55–64

DAVIS,T.A., (1992), Performance of an unsymmetric pattern multifrontal method for sparse
LU factorization, Report TR–92–014, University of Florida

DAVIS,T.A., (1993), Users’ guide for the unsymmetric pattern multifrontal package, Report

TR–93–020, University of Florida

DAVIS,T.A., (1994), A combined unifrontal/multifrontal method for unsymmetric sparse ma-
trices, Report TR–94–005, University of Florida

DAVIS,T.A. and DUFF,I.S., (1993), An unsymmetric pattern multifrontal method for sparse
LU factorization, Report TR–93–018, University of Florida

DAVIS,T.A. and YEW,P.C., (1990), A nondeterministic parallel algorithm for unsymmetric

sparse LU factorization, SIAM J. Matrix Anal. Appl. 11, 383–402

DAYDE,M.J. and DUFF,I.S., (1989), Use of Level 3 BLAS in LU factorization on the Cray 2,

the ETA–10P and the IBM 3090/VF, Int. J. Supercomputer Appl. 3 no 2, 40–70

DAYDE,M.J., DUFF,I.S. and PETITET,A., (1993), A parallel block implementation of level 3
BLAS for MIMD vector processors, Report RAL–93–037, Rutherford Appleton Lab.

DEMMEL,J.W., (1984), Underflow and the reliability of numerical software, SIAM J. Sci. Stat.
Comput. 5, 887–919

DEMMEL,J.W., (1987), On condition numbers and the distance to the nearest ill–posed prob-

lem, Numer. Math. 51 no 3, 251–289

DEMMEL,J.W., (1989), On floating point errors in Cholesky, Lapack Working note 14, Uni-
versity of Tennessee

DEMMEL,J.W., (1992), Open problems in numerical linear algebra, Report CS–92–164 Univ.
of Tennessee

DEMMEL,J.W., (1992), Trading off parallelism and numerical stability, Report CS–92–179
Univ. of Tennessee

DEMMEL,J.W., (1992), The componentwise distance to the nearest singular matrix, SIAM J.
Matrix Anal. Appl. 13 no 1, 10–19

DEMMEL,J.W., HEATH,M.T. and VAN DER VORST,H.A. (1993), Parallel Numerical linear
algebra, Acta Numerica, 111–197

DEMMEL,J.W., HIGHAM,N.J. and SCHREIBER,R.S., (1995), Stability of block LU factor-
ization, Numer. Lin. Alg. with Appl. 2 no 2

DESPREZ,F., TOURANCHEAU,B. and DONGARRA,J.J., (1994), Performance complexity
of LU factorization with efficient pipelining and overlap on a multiprocessor; Report Univ
of Tennessee 1994

DONGARRA,J. and DEMMEL,J.W., (1991), LAPACK; a portable high–performance numer-
ical library for linear algebra, Supercomputer 46, 33–38

DONGARRA,J., DU CROZ,J., HAMMARLING,S. and DUFF,I.S., (1990), A set of level 3
basic linear algebra subprograms, ACM Trans. Math. Soft. 16 no 1, 1–17

DONGARRA,J., DU CROZ,J., HAMMARLING,S. and HANSON,R., (1988), An extended set
of Fortran basic linear algebra subprograms, ACM Trans. Math. Soft. 14 no 1, 1–17

DONGARRA,J., DUFF,I.S., GAFFNEY,P. and McKEE,S. Eds, (1989) Vector and parallel
computing, issues in applied research and development, (Ellis Horwood)

DONGARRA,J., DUFF,I.S., SORENSEN,D.C. and VAN DER VORST,H.A., (1991) Solving
linear systems on vector and shared memory computers, (SIAM)

DONGARRA,J., GUSTAVSON,F.G. and KARP,A., (1984), Implementing linear algebra algo-
rithms for dense matrices on a vector pipeline machine, SIAM Rev. 26, 91–112

DONGARRA,J. and HEWITT,T., (1986), Implementing dense linear algebra algorithms using
multitasking on the Cray X–MP–4 (or approaching the Gigaflop), SIAM J. Sci. Stat.
Comput. 7 no 1, 347–305

DONGARRA,J. and SAMEH,A.H., (1984), On some parallel banded system solvers, Parallel
Comp. 1, 223–235

DONGARRA,J. and WALKER,D., (1993), The design of linear algebra libraries for high per-
formance computers, Report University of Tennessee

Gaussian elimination 149

DRMAC,Z., OMLADIC,M. and VESELIC,K., (1994), On the perturbation of the Cholesky
factorization, SIAM J. Matrix Anal. Appl. 15 no 4, 1319–1332

DU CROZ,J.J. and HIGHAM,N.J., (1992), Stability of methods for matrix inversion, J. Inst.
Maths. Applics. 12, 1–19

DUFF,I.S., (1974), On the number of nonzeros added when Gaussian elimination is performed
on sparse random matrices, Math. Comp. 28 no 125, 219–230

DUFF,I.S., (1977), A survey of sparse matrix research, Proc. of the IEEE 65 no 4, 500–535

DUFF,I.S. Ed, (1981) Sparse matrices and their use, (Academic Press)

DUFF,I.S., (1981) MA32, a package for solving sparse unsymmetric systems using the frontal
method, Report AERE R10079, Harwell Lab.

DUFF,I.S., (1983), The solution of sparse linear equations on the Cray 1, Report CSS125,

Harwell Lab.

DUFF,I.S., (1984), Design features of a frontal code for solving sparse unsymmetric linear
systems out–of–core, SIAM J. Sci. Stat. Comput. 5, 270–280

DUFF,I.S., (1984), Direct methods for solving sparse systems of linear equations, SIAM J. Sci.
Stat. Comput. 5 no 3, 605–619

DUFF,I.S., (1984) Data structures, algorithms and software for sparse matrices, Report CSS
158, Harwell Lab.

DUFF,I.S., (1986), Parallel implementation of multifrontal schemes, Parallel Comp. 3, 193–204

DUFF,I.S., (1986), The use of vector and parallel computers in the solution of large sparse
linear equations, Report AERE R12393, Harwell Lab.

DUFF,I.S., (1986), The influence of vector and parallel processors on numerical analysis, Report
AERE R12329, Harwell Lab.

DUFF,I.S., (1988) Multiprocessing a sparse matrix code on the Alliant FX/8, Report CSS 210,
Harwell Lab.

DUFF,I.S., (1993), The solution of augmented systems, Report RAL–93–084 Rutherford Ap-
pleton Lab.

DUFF,I.S., ERISMAN,A.M. and REID,J.K., (1976), On George’s nested dissection method,
SIAM J. Numer. Anal. 13 no 5, 686–695

DUFF,I.S., ERISMAN,A.M. and REID,J.K., (1986), Direct methods for sparse matrices, (Ox-
ford University Press)

DUFF,I.S. and JOHNSON,S.L., (1989), Node ordering and concurrency in structurally sym-
metric sparse problems, in Parallel supercomputing: methods, algorithms and applications,
G. Carey Ed

DUFF,I.S., GOULD,N.I., LESCRENIER,M. and REID,J.K., (1987), The multifrontal method
in a parallel environment, Report CSS 211, Harwell Lab.

DUFF,I.S., GOULD,N.I., REID,J.K., SCOTT,J.A. and TURNER,K., (1990), The factorization
of sparse symmetric indefinite matrices, Report RAL–90–084 Rutherford Appleton Lab.

DUFF,I.S., LAMINIE,J., LICHNEVSKY,A. and THOMASSET,F., (1987), An experiment with
arithmetic precision in linear algebra computations, Int. J. Numer. Meth. in Fluids 7,
1077–1092

DUFF,I.S. and REID,J.K., (1974), A comparison of sparsity orderings for obtaining a pivotal
sequence in Gaussian elimination, J. Inst. Maths. Applics. 14, 281–291

DUFF,I.S. and REID,J.K., (1979), Some design features of a sparse matrix code, ACM Trans.
Math. Soft. 5 no 1, 18–35

DUFF,I.S. and REID,J.K., (1983), The multifrontal solution of indefinite sparse symmetric
linear systems, ACM Trans. Math. Soft. 9, 302–325

DUFF,I.S. and REID,J.K., (1984), The multifrontal solution of unsymmetric sets of linear
systems, SIAM J. Sci. Stat. Comput. 5 no 3, 633–641

DUFF,I.S. and REID,J.K., (1993), MA48, a Fortran code for direct solution of sparse unsym-
metric linear systems of equations, RAL–93–072 Rutherford Appleton Lab.

DUFF,I.S. and REID,J.K., (1995), MA47, a Fortran code for direct solution of indefinite sparse
symmetric linear systems, RAL–95–001 Rutherford Appleton Lab.

150 G. Meurant

DUFF,I.S., REID,J.K., MUNSKGAARD,N. and NIELSEN,B., (1979), Direct solution of sets of
linear equations whose matrix is sparse, symmetric and indefinite, J. Inst. Maths. Applics.
23, 235–250

DUFF,I.S. and SCOTT,J.A., (1993), MA42– A new frontal code for solving sparse unsymmetric
systems, Report RAL–93–064, Rutherford Appleton Lab

DUFF,I.S. and SCOTT,J.A., (1994),The use of multiple fronts in Gaussian elimination, Report
RAL–94–040, Rutherford Appleton Lab

DUFF,I.S. and STEWART,G.W. Eds, (1979) Sparse matrix proceedings 1978, (SIAM)

ELDEN,L. and SVENSSON,G., (1991), Matrix computations on an SIMD parallel computer,
Report LiTH–MAT–R–1990–19, Linköping University

EDELMAN,A., (1993), Large dense numerical linear algebra in 1993, the parallel computing
influence, Int. J. Supercomputer Appl. 7 no 2 113–128

EDELMAN,A. and OHLROCH,M., (1991), Editor’s Note in SIAM J. Matrix Anal. Appl. 12

EISENSTAT,S.C., HEATH,M.T., HENKEL,C.S. and ROMINE,C.H., (1988), Modified cyclic
algorithms for solving triangular systems on distributed memory multiprocessors, SIAM
J. Sci. Stat. Comput. 9 no 3, 589–600

EISENTAT,S.C., SCHULTZ,M.H. and SHERMAN,A.H., (1975), Efficient implementation of
sparse symmetric Gaussian elimination, in Advances in Computer Methods for Partial
Differential Equations, R. Vichnevetsky Ed., 33–39

EISENTAT,S.C., SCHULTZ,M.H. and SHERMAN,A.H., (1975), Application of sparse matrix
methods to partial differential equations, in Advances in Computer Methods for Partial
Differential Equations, R. Vichnevetsky Ed., 40–45

EISENTAT,S.C., SCHULTZ,M.H. and SHERMAN,A.H., (1981), Algorithms and data struc-

tures for sparse symmetric Gaussian elimination, SIAM J. Sci. Stat. Comput. 2 no 2,
225–237

ERISMAN,A.M., GRIMES,R.G., LEWIS,J.G., POOLE,W.G. and SIMON,H.D., (1987), Eval-
uation of orderings for unsymmetric sparse matrices, SIAM J. Sci. Stat. Comput. 8 no 4,
600–624

EVANS,D.J. Ed, (1985) Sparsity and its applications, (Cambridge University Press)

FADDEEV,D.K. and FADDEEVA, V.N., (1963) Computational methods of linear algebra,
(W.H. Freeman and company)

FARHAT,C., (1988), A simple and efficient automatic FEM domain decomposer, Computers
and structures 28 no 5, 579–602

FARHAT,C., (1990), Redesigning the skyline solver for parallel/vector supercomputers, Int. J.
High Speed Comp. 2 no 3, 223–238

FIEDLER,M., (1986) Special matrices and their applications in numerical mathematics, (Mar-
tinus Nijhoff)

FIEDLER,M. and PTAK,V., (1962), On matrices with non–positive off–diagonal elements and
positive principal minors, Czechoslovak Math. J. 12, 123–128

FONG,K. and JORDAN,T.L., (1977), Some linear algebraic algorithms and their performance
on CRAY–1, Report LA–6774, Los Alamos Scientific Laboratory

FORSYTHE,G.E., (1953), Tentative classification of methods and bibliography on solving sys-
tems of linear equations, Nat. Bur. Stand. Appl. Math. 29, 1–28

FORSYTHE,G.E. and MOLER,C.B., Computer solution of linear algebraic systems, (Prentice–
Hall)

FOSTER,L.V., (1994), Gaussian elimination with partial pivoting can fail in practice, SIAM
J. Matrix Anal. Appl. 15 no 4, 1354–1362

FOX,L., HUSKEY,H.D. and WILKINSON,J.H., (1948), Notes on the solution of algebraic
linear simultaneous equations, Quart. J. Appl. Math. 1, 149–173

FUNDERLIC,R.E., NEUMANN,M. and PLEMMONS,R.J., (1982), LU decompositions of gen-
eralized diagonally dominant matrices, Numer. Math. 40, 57–69

FUNDERLIC, R.E. and PLEMMONS,R.J, (1981), LU decomposition of M–matrices by elimi-
nation without pivoting, Linear Algebra and its Appl. 41, 41–99

Gaussian elimination 151

GALLIVAN,K.A., HEATH,M.T., NG,E., ORTEGA,J.M., PEYTON,B.W., PLEMMONS, R.J.,
ROMINE,C.H., SAMEH,A.H. and VOIGT,R.C., (1990), Parallel algorithms for matrix
computations, (SIAM)

GALLIVAN,K.A., PLEMMONS,R.J. and SAMEH,A.H., (1990), Parallel algorithms for dense
linear algebra computations, SIAM Rev. 32 no 1, 54–135

GANTMACHER,F.R., (1959), Matrix theory, vol I, (Chelsea)
GEIST,G.A., (1985) Efficient parallel LU factorization with pivoting on a hypercube multipro-

cessor, Report ORNL–6211 Oak Ridge Nat. Lab.
GEIST,G.A. and NG,E., (1989), Task scheduling for parallel sparse Cholesky factorization, Int.

J. Parallel Prog. 18 no 4, 291–314
GEIST,G.A. and ROMINE,C.H., (1988), LU factorization algorithms on distributed memory

multiprocessor architectures, SIAM J. Sci. Stat. Comput. 9 no 4, 639–649
GEORGE,A., (1973), Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal.

10 no 2, 345–363
GEORGE,A., (1974), On block elimination for sparse linear systems, SIAM J. Numer. Anal.

11 no 3, 585–603
GEORGE,A., (1977), Numerical experiments using dissection methods to solve n by n grid

problems, SIAM J. Numer. Anal. 14 no 2, 161–179
GEORGE,A., (1980), An automatic one way dissection algorithm for irregular finite element

problems, SIAM J. Numer. Anal. 17 no 6, 740–751
GEORGE,A., GILBERT,J.R. and LIU,J.W–H. Eds, (1993), Graph theory and sparse matrix

computation, (Springer Verlag)

GEORGE,A., HEATH,M. and LIU,J.W–H., (1986), Parallel Cholesky factorization on a shared
memory multiprocessor, Linear Algebra and its Appl. 77, 165–187

GEORGE,A., HEATH,M.T., LIU,J.W–H. and NG,E., (1988), Sparse Cholesky factorization on
a local memory multiprocessor, SIAM J. Sci. Stat. Comput. 9 no 2, 327–340

GEORGE,A. and LIU,J.W–H., (1975), A note on fill for sparse matrices, SIAM J. Numer.
Anal. 12 no 3, 452–455

GEORGE,A. and LIU,J.W–H., (1978), Algorithms for matrix partitioning and the numerical
solution of finite element systems, SIAM J. Numer. Anal. 15 no 2, 297–327

GEORGE,A. and LIU,J.W–H., (1978), An automatic nested dissection algorithm for irregular
finite element problems, SIAM J. Numer. Anal. 15 no 5, 1053–1069

GEORGE,A. and LIU, J.W–H., (1979), An implementation of a pseudoperipheral node finder,
ACM Trans. Math. Soft. 5 no 3, 284–295

GEORGE,A. and LIU,J.W–H., (1979), The design of a user interface for a sparse matrix pack-
age, ACM Trans. Math. Soft. 5 no 2, 139–162

GEORGE,A. and LIU,J.W–H., (1980), A minimal storage implementation of the minimum
degree algorithm, SIAM J. Numer. Anal. 17 no 2, 282–299

GEORGE,A. and LIU,J.W–H., (1980), An optimal algorithm for symbolic factorization of sym-
metric matrices, SIAM J. Comp. 9 no 3, 583–593

GEORGE,A. and LIU,J.W–H., (1980), A fast implementation of the minimum degree algorithm
using quotient graphs, ACM Trans. Math. Soft. 6 no 3, 337–358

GEORGE,A. and LIU,J.W–H., (1981), Computer solution of large sparse positive definite sys-
tems, (Prentice–Hall)

GEORGE,A. and LIU,J.W–H., (1989), The evolution of the minimum degree ordering algo-
rithm, SIAM Rev. 31 no 1, 1–19

GEORGE,A., LIU,J.W–H. and NG,E., (1988), A data structure for sparse QR and LU factor-
izations, SIAM J. Sci. Stat. Comput. 9 no 1, 100–121

GEORGE,A., LIU,J.W–H. and NG,E., (1989), Communication results for parallel sparse
Cholesky factorization on a hypercube, Parallel Comp. 10 no 3, 287–298

GEORGE,A. and McINTYRE,D.R., (1978), On the application of the minimum degree algo-

rithm to finite element systems, SIAM J. Numer. Anal. 15 no 1, 90–112
GEORGE,A. and NG,E., (1985), An implementation of Gaussian elimination with partial piv-

oting for sparse systems, SIAM J. Sci. Stat. Comput. 6 no 2, 390–409

152 G. Meurant

GEORGE,A. and NG,E., (1987), Symbolic factorization for sparse Gaussian elimination with
partial pivoting, SIAM J. Sci. Stat. Comput. 8 no 6, 877–898

GEORGE,A. and NG,E., (1988), On the complexity of sparse QR and LU factorization for
finite element matrices, SIAM J. Sci. Stat. Comput. 9 no 5, 849–861

GEORGE,A., POOLE,W.G. and VOIGT,R.G., (1978), Incomplete nested dissection for solving
n by n grid problems, SIAM J. Numer. Anal. 15 no 4, 662–673

GEORGE,A. and RASHWAN,H., (1980), On symbolic factorization of partitioned sparse sym-
metric matrices, Linear Algebra and its Appl. 34, 145–157

GIBBS,N.E., POOLE,W.G. and STOCKMEYER,P.K., (1976), An algorithm for reducing the
bandwith and profile of a sparse matrix, SIAM J. Numer. Anal. 13 no 2, 236–250

GILBERT,J.R., (1994), Predicting structure in sparse matrix computations, SIAM J. Matrix

Anal. Appl. 15 no 1, 62–79
GILBERT,J.R. and HAFSTEINSSON,H., (1990), Parallel symbolic factorization of sparse lin-

ear systems, Parallel Comp. 14, 151–162
GILBERT,J.R. and LIU,J.W–H., (1993), Elimination structures for unsymmetric sparse LU

factors, SIAM J. Matrix Anal. Appl. 14 no 2, 334–352
GILBERT,J.R., NG,E.G. and PEYTON,B.W., (1994), An efficient algorithm to compute row

and column counts for sparse Cholesky factorization, SIAM J. Matrix Anal. Appl. 15 no
4, 1075–1091

GILBERT,J.R. and PEIERLS,T., (1988), Sparse partial pivoting in time proportional to arith-
metic operations, SIAM J. Sci. Stat. Comput. 9 no 5, 862–874

GILBERT,J.R. and SCHREIBER,R., (1992), Highly parallel sparse Cholesky factorization,

SIAM J. Sci. Stat. Comput. 13 no 5, 1151–1172
GILBERT,J.R. and ZMIJEWSKI,E., (1990), A parallel graph partitioning algorithm for a mes-

sage passing multiprocessor, Int. J. Parallel Prog. 16, 427–449
GILL,P.E., GOLUB,G.H., MURRAY,W. and SAUNDERS,M.A., (1974), Methods for modify-

ing matrix factorizations, Math. Comp. 28 no 126, 505–535
GOLBERG,D., (1991), What every computer scientist should know about floating point arith-

metic, ACM Computing Surveys 23 no 1, 5–48
GOLDSTINE,H.H., (1977), A history of numerical analysis from the 16th through the 19th

century, (Springer)
GOLUB,G.H. Ed, (1984), Studies in numerical analysis, vol 24 (The Mathematical Association

of America)
GOLUB,G.H. and MEURANT,G.A., (1983), Résolution numérique des grands systèmes

linéaires, (Eyrolles)
GOLUB,G.H. and MEURANT,G.A., (1994), Matrices, moments and quadrature, in ([207]),

105–156
GOLUB,G.H. and ORTEGA,J.M., (1992), Scientific computing and differential equations, an

introduction to numerical methods, (Academic Press)
GOLUB,G.H. and VAN LOAN,C., (1979), Unsymmetric positive definite linear systems, Linear

Algebra and its Appl. 28, 85–97
GOLUB,G.H. and VAN LOAN,C., (1989), Matrix computations, second edition, (Johns Hop-

kins University Press)
GOULD,N., (1991), On growth in Gaussian elimination with complete pivoting, SIAM J. Ma-

trix Anal. Appl. 12 no 2, 354–361
GRIFFITHS,D.F. and WATSON,G.A., (1989), Numerical Analysis 1989, vol 228, Pitman re-

search notes in mathematics series, (Longman Scientific and Technical)
GRIFFITHS,D.F. and WATSON,G.A., (1994), Numerical Analysis 1994, vol 303, Pitman re-

search notes in mathematics series, (Longman Scientific and Technical)
GRIMES,R.G., PIERCE,D.J. and SIMON,H.D., (1990), A new algorithm for finding a pseu-

doperipheral node in a graph, SIAM J. Matrix Anal. Appl. 11 no 2, 323–334

HADFIELD,S.M. and DAVIS,T.A., (1992), Analysis of potential parallel implementations of
the unsymmetric pattern multifrontal method for sparse LU factorization, Report TR–92–
017, University of Florida

Gaussian elimination 153

HADFIELD,S.M. and DAVIS,T.A., (1994), A parallel unsymmetric pattern multifrontal
method, Report TR–94–??, University of Florida

HADFIELD,S.M. and DAVIS,T.A., (1994), Potential and achievable parallelism in the unsym-
metric pattern LU factorization method for sparse matrices, Report TR–94–006, University
of Florida

HADFIELD,S.M. and DAVIS,T.A., (1994), Potential and achievable parallelism in the unsym-
metric pattern LU factorization, Report TR–94–027, University of Florida

HAGER,W.W., (1984), Condition estimates, (1984), SIAM J. Sci. Stat. Comput. 5 no 2, 311–
316

HARARY,F., (1971), Sparse matrices and graph theory, in [306], 139–150

HARROD,W.J., (1986), LU decompositions of tridiagonal irreducible H–matrices, SIAM J.
Alg. Disc. Meth. 7 no 2, 180–187

HEATH,M.T., NG,E. and PEYTON,B.W., (1991), Parallel algorithms for sparse linear systems,
SIAM Rev. 33 no 3, 420–460

HEATH,M.T. and RAGHAVAN,P., (1993), Distributed solution of sparse linear systems, Report
UT CS–93–201, University of Tennessee

HEATH,M.T. and RAGHAVAN,P., (1993), A cartesian parallel nested dissection algorithm,
SIAM J. Matrix Anal. Appl. 16 no 1, 235–253

HEATH,M.T. and ROMINE,C.H., (1988), Parallel solution of triangular systems on distributed
memory multiprocessors, SIAM J. Sci. Stat. Comput. 9 no 3, 558–588

HEGLAND,M., (1990), On the parallel solution of tridiagonal systems by wraparound parti-
tioning and incomplete LU factorization, Report 90–14, IPS, ETH

HELLER,D., (1978), A survey of parallel algorithms in numerical linear algebra, SIAM Rev.
20 no 4, 740–777

HENDRICKSON,B.A. and WOMBLE,D.E., (1994), The torus–wrap mapping for dense matrix
calculations on massively parallel computers, SIAM J. Sci. Stat. Comput. 15 no 5, 1201–
1226

HENRICI,P., (1964), Elements of numerical analysis, (John Wiley)

HIGHAM,N.J., (1986), Efficient algorithms for computing the condition number of a tridiagonal
matrix, SIAM J. Sci. Stat. Comput. 7 no 1, 150–165

HIGHAM,N.J., (1987), A survey of condition number estimation for triangular matrices, SIAM
Rev. 29 no 4, 575–596

HIGHAM,N.J., (1989), The accuracy of solutions to triangular systems, SIAM J. Numer. Anal.
26 no 5, 1252–1265

HIGHAM,N.J., (1989), How accurate is Gaussian elimination?, in ([206])

HIGHAM,N.J., (1990), Bounding the error in Gaussian elimination for tridiagonal systems,
SIAM J. Matrix Anal. Appl. 11 no 4, 521–530

HIGHAM,N.J. and HIGHAM,D.J., (1989), Large growth factors in Gaussian elimination with
pivoting, SIAM J. Matrix Anal. Appl. 10 no 2, 155–164

HIGHAM,N.J. and HIGHAM,D.J., (1992), Backward error and condition of structured linear
systems, SIAM J. Matrix Anal. Appl. 13 no 1, 162–175

HIGHAM,N.J. and POTHEN,A., (1994), Stability of the partitioned inverse method for parallel
solution of sparse triangular systems, SIAM J. Sci. Stat. Comput. 15 no 1, 139–148

HOFFMAN,A.J., MARTIN,M.S. and ROSE.D.J., (1973), Complexity bounds for regular finite
difference and finite element grids, SIAM J. Numer. Anal. 10 no 2, 364–369

HOOD,P., (1976), Frontal solution program for unsymmetric matrices, Int. J. Num. Meth. Eng.
10, 379–400

HOUSEHOLDER,A.S., (1953), Principles of numerical analysis, (McGraw–Hill)

HULBERT,L. and ZMIJEWSKI,E., (1991), Limiting communication in parallel sparse Cholesky
factorization, SIAM J. Sci. Stat. Comput. 12 no 5, 1184–1197

IFRAH,G., (1994), Histoire universelle des chiffres, (Robert Laffont)

IPSEN,I.C., SAAD,Y. and SCHULTZ,M.H., (1986), Complexity of dense linear system solution
on a multiprocessor ring, Linear Algebra and its Appl. 77, 205–239

154 G. Meurant

IRONS,B.M., (1970), A frontal solution program for finite element analysis, Int. J. Num. Meth.
Eng. 2, 5–32

JANKOWSKI,M. and WOZNIAKOWSKI,H., (1977), Iterative refinement implies numerical
stability, BIT 17, 303–311

JENNINGS,A., (1977), Matrix computation for engineers and scientists, (John Wiley)

JENNINGS,A. and TUFF,A.D., (1971), A direct method for the solution of large sparse sym-
metric simultaneous equations, in 306, 97–104

JESS,J. and KEES,H., (1982), A data structure for parallel LU decomposition, IEEE Trans.
Comput. C–31, 231–239

JOHNSSON,L., (1984), Odd–even cyclic reduction on ensemble architectures and the solution
of tridiagonal systems of equations, Report CSD/RR–339 Yale University

JOHNSON,L., (1987), Solving tridiagonal systems on ensemble architectures, SIAM J. Sci.
Stat. Comput. 8 no 3, 354–392

JOHNSON,L. and MATHUR,K.K., (1990), Data structures and algorithms for the finite ele-
ment method on a data parallel supercomputer, Int. J. Num. Meth. Eng. 29, 881–908

JONES,M.T. and PATRICK,M.L., (1994), Factoring symmetric indefinite matrices on high–
performance architectures, SIAM J. Matrix Anal. Appl. 15 no 1, 273–283

JORDAN,T.L., (1974), Gaussian elimination for dense systems on STAR and a new paral-
lel algorithm for diagonally dominant tridiagonal systems, Report LA–5803, Los Alamos
Scientific Laboratory

KAHANER,D., MOLER,C.B. and NASH,S., (1988), Numerical methods and software, (Prentice-

–Hall)

KARYPIS,G. and KUMAR,V., (1994), A high performance sparse Cholesky factorization al-
gorithm for scalable parallel computers, Report 94–41, University of Minnesota

KOWALIK,J.S. Ed, (1984), High speed computation, NATO ASI Series vol 7, (Springer)

LASCAUX,P. and THEODOR,R., (1993), Analyse numérique matricielle appliquée à l’art de
l’ingénieur, tome 1, second edition, (Masson)

LAWSON,C.L., HANSON,R.J., KINCAID,D.R. and KROGH,F.T., (1979), Basic linear algebra
subprograms for Fortran usage, ACM Trans. Math. Soft. 5 no 3, 308–323

LEUZE,M.R., (1989), Independent set orderings for parallel matrix factorization by Gaussian
elimination, Parallel Comp. 10, 177–191

LEWIS,J.G. and GRIMES,R.G., (1981), Condition number estimation for sparse matrices,
SIAM J. Sci. Stat. Comput. 2, 384–388

LEWIS,J.G., PEYTON,B.W. and POTHEN,A., (1989), A fast algorithm for reordering sparse
matrices for parallel factorization, SIAM J. Sci. Stat. Comput. 10 no 6, 1146–1173

LEWIS,J.G. and SIMON,H.D., (1988), The impact of hardware gather/scatter on sparse Gaus-
sian elimination, SIAM J. Sci. Stat. Comput. 9 no 2, 304–311

LI,G. and COLEMAN,T.F., (1989), A new method for solving triangular systems on distributed
memory message passing multiprocessors, SIAM J. Sci. Stat. Comput. 10 no 2, 382–396

LICHTENSTEIN,W. and JOHNSON,L., (1993) Block–cyclic dense linear algebra, SIAM J.
Sci. Stat. Comput. 14 no 6, 1259–1288

LIPTON,R.J., ROSE,D.J. and TARJAN,R.E., (1979), Generalized nested dissection, SIAM J.
Numer. Anal. 16 no 2, 346–358

LIPTON,R.J. and TARJAN,R.E., (1980), Applications of a planar separator theorem, SIAM
J. Comp. 9 no 3, 615–627

LIU,J.W–H., (1985), Modification of the minimum degree algorithm by multiple elimination,
ACM Trans. Math. Soft. 11, 141–153

LIU,J.W–H., (1987), An adaptive general sparse out–of–core Cholesky factorization scheme,
SIAM J. Sci. Stat. Comput. 9 no 4, 585–599

LIU,J.W–H., (1987), A note on sparse factorization in a paging environment, SIAM J. Sci.
Stat. Comput. 8 no 6, 1085–1088

LIU,J.W–H., (1988), Equivalent sparse matrix reordering by elimination tree rotations, SIAM
J. Sci. Stat. Comput. 9 no 3, 424–444

Gaussian elimination 155

LIU,J.W–H., (1989), Reordering sparse matrices for parallel elimination, Parallel Comp. 11,
73–91

LIU,J.W–H., (1989), The minimum degree ordering with constraints, SIAM J. Sci. Stat. Com-
put. 10 no 6, 1136–1145

LIU,J.W–H., (1990), The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl. 11, 134–172

LIU,J.W–H., (1992), The multifrontal method for sparse matrix solution: theory and practice,
SIAM Rev. 34 no 1, 82–109

LIU,J.W–H. and MIRZAIAN,A., (1989), A linear reordering algorithm for parallel pivoting of
chordal graphs, SIAM J. Alg. Disc. Meth. 2, 100–107

LIU,J.W–H.,NG,E.G. and PEYTON,B.W., (1993), On finding supernodes for sparse matrix

computations, SIAM J. Matrix Anal. Appl. 14 no 1, 242–252
LIU,J.W–H. and SHERMAN,A.H., (1976), Comparative analysis of the Cuthill–McKee and the

reverse Cuthill–McKee ordering algorithms for sparse matrices, SIAM J. Numer. Anal. 13
no 2, 198–213

LORD,R.E., KOWALIK,J.S. and KUMAR,S.P., (1983), Solving linear algebraic equations on
an MIMD computer, J. ACM 30 no 1, 103–117

MARKOWITZ,H.M., (1957) The elimination form of the inverse and its application to linear
programming, Manag. Sci. 3, 255–269

MARRAKCHI,M. and ROBERT,Y., (1989), Optimal algorithms for Gaussian elimination on
an MIMD computer, Parallel Comp. 12 no 2, 183–194

MARTIN,R.S. and WILKINSON,J.H., (1965), Symmetric decomposition of positive definite

band matrices, Numer. Math. 7, 355–361
MARTIN,R.S. and WILKINSON,J.H., (1967), Solution of symmetric and unsymmetric band

equations and the calculation of eigenvectors of band matrices, Numer. Math. 9, 279–301
MEIER,U., (1985), A parallel partition method for solving banded systems of linear equations,

Parallel Comp. 2, 33–43
MELHEM,R.G., (1988), A modified frontal technique suitable for parallel systems, SIAM J.

Sci. Stat. Comput. 9 no 2, 289–303
MEURANT,G., (1992), A review on the inverse of symmetric tridiagonal and block tridiagonal

matrices, SIAM J. Matrix Anal. Appl. 13 no 3, 707–728
MICHIELSE,P.H. and VAN DER VORST,H.A., (1988), Data transport in Wang’s partition

method, Parallel Comp. 7, 87–95
MITCHISON,G. and DURBIN,R., (1986), Optimal numberings of an N × N array, SIAM J.

Alg. Disc. Meth. 7 no 4, 571–582
MUNKSGAARD,N., (1979), New factorization codes for sparse, symmetric and positive definite

matrices, BIT 19, 43–52
NASH,S.G. Ed, (1990), A history of scientific computing, (ACM Press)
NEAL,L. and POOLE,G., (1992), A geometric analysis of Gaussian elimination, II, Linear

Algebra and its Appl. 173, 239–264
NG,E., (1993), Supernodal symbolic Cholesky factorization on a local memory multiprocessor,

Parallel Comp. 19, 153–162
NG,E. and PEYTON,B.W., (1993), A supernodal Cholesky factorization algorithm for shared

memory multiprocessors, SIAM J. Sci. Stat. Comput. 14 no 4, 761–769
NG,E. and PEYTON,B.W., (1993), Block sparse Cholesky algorithms on advanced uniprocessor

computers, SIAM J. Sci. Stat. Comput. 14 no 5, 1034–1056
OETTLI,W. and PRAGER,W., (1964), Compatibility of approximate solution of linear equa-

tions with given error bounds for coefficients and right hand sides, Numer. Math. 6, 405–409
OGIELSKI,A.T. and AIELLO,W., (1993), Sparse matrix computations on parallel processor

arrays, SIAM J. Sci. Stat. Comput. 14 no 3, 519–530
O’LEARY,D. and STEWART,G., (1986), Assignment and scheduling in parallel matrix factor-

ization, Linear Algebra and its Appl. 77, 275–299
OLVER,F.W. and WILKINSON,J.H., (1982), A posteriori error bounds for Gaussian elimina-

tion, J. Inst. Maths. Applics. 2, 377–406

156 G. Meurant

ORTEGA,J., (1988), Introduction to parallel and vector solution of linear systems, (Plenum
Press)

ORTEGA,J.M., (1988), The ijk forms of factorization methods I. Vector computers, Parallel
Comp. 7 no 2, 135–148

ORTEGA,J.M. and ROMINE,C.H., (1988), The ijk forms of factorization methods II. Parallel
systems, Parallel Comp. 7 no 2, 149–162

ORTEGA,J., VOIGT,R.G. and ROMINE,C.H., (1988), A bibliography on parallel and vector
numerical algorithms, ICASE Report NASA 181764

ØSTERBY,O. and ZLATEV,Z., (1983) Direct methods for sparse matrices, Lecture Notes in
Computer Science 157, (Springer)

PARTER,S.V., (1961) The use of linear graphs in Gauss elimination, SIAM Rev. 3 no 2, 119–
130

PEYTON,B., (1986), Some applications of clique trees to the solution of sparse linear systems,
Ph.D. thesis Clemson University

PISSANETZKY,S., (1984) Sparse matrix technology, (Academic Press)

POOLE,G. and NEAL,L., (1991), A geometric analysis of Gaussian elimination, I, Linear Al-
gebra and its Appl. 149, 249–272

POOLE,G. and NEAL,L., (1992), Gaussian elimination: when is scaling beneficial?, Linear
Algebra and its Appl. 162–164, 309–324

POTHEN,A. and ALVARADO,F.L., (1992), A fast reordering algorithm for parallel sparse
triangular solution, SIAM J. Sci. Stat. Comput. 13 no 2, 645–653

POTHEN,A., SIMON,H.D. and LIOU,K.P., (1990), Partitioning sparse matrices with eigen-
vectors of graphs, SIAM J. Matrix Anal. Appl. 11 no 3, 430–452

POTHEN,A. and SUN,C., (1993), A mapping algorithm for parallel sparse Cholesky factoriza-
tion, SIAM J. Sci. Stat. Comput. 14 no 5, 1253–1257

RAGHAVAN,P., (1993), Distributed sparse Gaussian elimination and orthogonal factorization,
Report UT CS–93–203, University of Tennessee

REID,J.K. Ed, (1971) Large sparse sets of linear equations, (Academic Press)

REID,J.K., (1971), A note on the stability of Gaussian elimination, J. Inst. Maths. Applics. 8,
374–375

REID,J.K., (1986), Sparse matrices, Report CSS 201, Harwell Lab.

RIGAL,J.L. and GACHES,J., (1967), On the compatibility of a given solution with the data
of a linear system, J. ACM 14, 543–548

RODRIGUE,G. Ed, (1982) Parallel Computations, (Academic Press)

RODRIGUE,G. Ed, (1989) Parallel processing for scientific computing, (SIAM)

ROHN,J., (1990), Nonsingularity under data rounding, Linear Algebra and its Appl. 139, 171–
174

ROMAN,J., (1985), Calcul de complexité relatifs à une méthode de dissection embôıtée, Numer.
Math. 47, 175–190

ROSE,D.J., (1970), Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32,
597–609

ROSE,D.J. and TARJAN,R.E., (1978), Algorithmic aspects of vertex elimination on graphs,
SIAM J. Comp. 5 no 2, 266–283

ROSE,D.J., TARJAN,R.E. and LUEKER,G.S., (1976), Algorithmic aspects of vertex elimina-
tion on directed graphs, SIAM J. Appl. Math. 34 no 1, 176–197

ROSE,D.J. and WILLOUGHBY,R.A. Eds, (1972) Sparse matrices and their applications,
(Plenum Press)

ROTHBERG,E., (1993), Exploiting the memory hierarchy in sequential and parallel sparse
Cholesky factorization, Ph.D. thesis, Stanford University

ROTHBERG,E. and GUPTA,A., (1994), An efficient block–oriented approach to parallel sparse

Cholesky factorization, SIAM J. Sci. Stat. Comput. 15 no 6, 1413–1439

SAAD,Y., (1986), Communication complexity of the Gaussian elimination algorithm on multi-
processors, Linear Algebra and its Appl. 77, 315–340

Gaussian elimination 157

SAAD,Y. and SCHULTZ,M.H., (1987), Parallel direct methods for solving banded linear sys-
tems, Linear Algebra and its Appl. 88, 623–650

SAAD,Y. and SCHULTZ,M.H., (1989), Data communication in parallel architectures, Parallel
Comp. 11 no 2, 131–150

SAMEH,A.H. and KUCK,D.J., (1978), On stable parallel linear system solvers, J. ACM 25 no
1, 81–91

SAMEH,A.H. and BRENT,R.P., (1977), Solving triangular systems on a parallel computer,
SIAM J. Numer. Anal. 14 no 6, 1101–1113

SCHREIBER,R.S., (1982), A new implementation of sparse Gaussian elimination, ACM Trans.
Math. Soft. 8, 256–276

SHAPIRO A., (1985), Optimal block diagonal l2–scaling of matrices, SIAM J. Numer. Anal.

22 no 1, 81–94
SHERMAN,A.H., (1978), Algorithms for sparse Gaussian elimination with partial pivoting,

ACM Trans. Math. Soft. 4 no 4, 330–338
SIMON,H.D., (1991), Partitioning of unstructured problems for parallel processing, Report

RNR–91–008 NASA Ames
SKEEL,R.D., (1979), Scaling for numerical stability in Gaussian elimination, J. ACM 26 no 3,

494–526
SKEEL,R.D., (1980), Iterative refinement implies numerical stability for Gaussian elimination,

Math. Comp. 35 no 151, 817–832
STARK,S. and BERIS,A.N., (1992), LU decomposition optimized for a parallel computer with

a hierarchical memory, Parallel Comp. 18 no 9, 959–972

STEWART,G.W., (1973), Introduction to matrix computations, (Academic Press)
STEWART,G.W., (1993), On the perturbation of LU, Cholesky and QR factorizations, SIAM

J. Matrix Anal. Appl. 14 no 4, 1141–1145
STEWART,G.W., (1990), Communication and matrix computations on large message passing

systems, Parallel Comp. 16 no 1, 27–40
STEWART,G.W., (1991), Maybe we should call it “Lagrangian elimination”, Na-net message

of Friday 21 June 91
STEWART,G.W., (1995), The triangular matrices of Gaussian elimination and related decom-

positions, Report TR–95–91, University of Maryland
STEWART,G.W., (1995), On the perturbation of LU and Cholesky factors, Report TR–95–93,

University of Maryland
STEWART,G.W. and SUN,J–G., (1990), Matrix perturbation theory, (Academic Press)
STRANG,G., (1976), Linear algebra and its applications, (Academic Press)
STRASSEN,V., (1969), Gaussian elimination is not optimal, Numer. Math. 13, 354–356
STONE,H.S., (1975), Parallel tridiagonal equation solvers, ACM Trans. Math. Soft. 1 no 4,

289–307
TEWARSON,R.P., The product form of the inverse of sparse matrices and graph theory, SIAM

Rev. 9 no 1, 91–99
TEWARSON,R.P., (1970), Computations with sparse matrices, SIAM Rev. 12 no 4, 527–543
TEWARSON,R.P., (1973), Sparse matrices, (Academic Press)
TINNEY,W.F. and WALKER,J.W., (1967), Direct solutions of sparse network equations by

optimally ordered triangular factorization, Proc. IEEE 55, 1801–1809
TINNEY,W.F. and MEYER,W.S., (1973), Solution of large sparse systems by ordered trian-

gular factorization, IEEE Trans. Aut. Control AC–18 no 4, 333–346
TISMENETSKY,M., (1986), A direct method for solving linear systems, Technical report

88.179, IBM Israel
TRAUB,J.F., (1973), Complexity of sequential and parallel numerical algorithms, (Academic

Press)
TREFETHEN,L.N., (1985), Three mysteries of Gaussian elimination, SIGNUM Newsletter 20

no 4, 2–5
TREFETHEN,L.N. and SCHREIBER,R.S., (1990), Average–case stability of Gaussian elimi-

nation, SIAM J. Matrix Anal. Appl. 11 no 3, 335–360

158 G. Meurant

VARGA,R.S. and CAI,D–Y., (1981), On the LU factorization of M–matrices, Numer. Math.
38, 179–192

VAN DER SLUIS,A., (1969), Condition numbers and equilibration of matrices, Numer. Math.
14, 14–23

VAN DER VORST,H.A., (1986), Analysis of a parallel solution method for tridiagonal systems,
Report 86–06, Delft University of Technology

VAN DER VORST,H.A., (1988), Practical aspects of parallel scientific computing, Fut. Gen.
Comp. Sys. 4, 285–291

VON NEUMANN,J. and GOLDSTINE,H.H., (1947), Numerical inverting of matrices of high
order, Bull. of the AMS 53 no 11, 1021–1099

WILKINSON,J.H., (1961), Error analysis of direct methods of matrix inversion, J. ACM 10,

281–330
WILKINSON,J.H., (1965), The algebraic eigenvalue problem, (Oxford University Press)
WILKINSON,J.H., (1971), Modern error analysis, SIAM Rev. 13, 548–568
WRIGHT,S.J., (1991), Parallel algorithms for banded linear systems, SIAM J. Sci. Stat. Com-

put. 12 no 4, 824–842
WRIGHT,S.J., (1993), A collection of problems for which Gaussian elimination with partial

pivoting is unstable, SIAM J. Sci. Stat. Comput. 14 no 1, 231–238
YANG,W.H., (1977), A method for updating Cholesky factorization of a band matrix, Comp.

Meth. Appl. Mech. Eng. 12, 281–288
YANNAKAKIS,M., (1981), Computing the minimum fill–in is NP–complete, SIAM J. Alg.

Disc. Meth. 2 no 1, 77–79

ZHANG,G. and ELMAN,H.C., (1992), Parallel sparse Cholesky factorization on a shared mem-
ory multiprocessor, Parallel Comp. 18 no 9, 1009–1022

ZLATEV,Z., (1980) On some pivotal strategies in Gaussian elimination by sparse technique,
SIAM J. Numer. Anal. 17 no 1, 18–30

ZMIJEWSKI,E. and GILBERT,J.R., (1988), A parallel algorithm for sparse symbolic Cholesky
factorization on a multiprocessor, Parallel Comp. 7, 199–210

