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Abstract. We consider how to cheaply compute an incomplete Cholesky decomposition of
symmetric perturbed matrices C = εI+A with a small ε when knowing an incomplete decomposition
of A. Numerical examples are provided that show the effectiveness of the proposed approach.
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1. Introduction. In this paper we are mainly concerned with the incomplete
Cholesky decomposition of symmetric M–matrices

C = εI +A

where A arises from the discretization of an elliptic partial differential equation, ε
being a “small” positive real parameter. Such problem arise, for instance, from dis-
cretizing parabolic equations.

As a model problem we can use the two–dimensional heat equation,

∂u

∂t
−∆u = f,

in the unit square with Dirichlet boundary conditions and an initial condition u(x, 0) =
u0(t). We discretize in space with finite differences with a stepsize h and a time im-
plicit scheme. Then, we obtain

(
I

k
+

1
h2

A)un+1 =
un

k
+ fn+1,

where k is the time step and 1/h2 A is the matrix of the corresponding elliptic problem.
For some problems it makes sense to choose k � h. After multiplication by h2 the
matrix of the problem is C = kI +A where k is “small”.

The matrix C being symmetric positive definite, we would like to solve the linear
system at each time step with the preconditioned conjugate gradient algorithm. A
very popular preconditioner is the incomplete Cholesky decomposition without any
fill–in IC(1,1) (sometimes also denoted as IC(0)), c.f. [3], [4] or [5], [6] for a review.
Usually the time step k is small to obtain the convergence of the approximation.
Therefore, it is interesting to know if one can compute an approximation of the in-
complete decomposition of C when knowing the decomposition of A. Moreover, very
often the time step is not constant, therefore one cannot compute the decomposition
of C once for all. It has to be recomputed at each time step. Hence, it would be
interesting to find a way to cheaply update the incomplete decomposition from one
time step to the next.

Matrices of this type have been considered in previous works, mainly to stabilize
the incomplete factorization of A, see [2], [1], when the straightforward factorization
of A gives some small pivots.
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In section 2, we describe algorithms corresponding to perturbations of order 0
and 1 in ε. Section 3 give numerical examples for several problems with comparisons
between the incomplete decomposition of C, those of A and the SSOR preconditioning.
For a definition of these algorithms, see [5]. We will also give some results for problems
not arising from parabolic PDEs, even for cases where A is not an M–matrix. Then in
section 4, we apply the previous results to the solution of the heat equation. Section
5 deals with another problem where C = I + εA.

2. Approximate preconditioners. We first recall the first step of the incom-
plete Cholesky decomposition of a matrix C whose elements are denoted ci,j . Let G
be a set of indices corresponding, for instance, to the non–zero structure of A and

C = C1 =
(
c1,1 cT

1

c1 E2

)
=
(
c1,1 fT

1

f1 E2

)
−
(

0 rT
1

r1 0

)
= M1 −R1,

with

c1 = f1 − r1,

(f1)i = 0, if (i, 1) �∈ G ⇒ (r1)i = −(c1)i,

(f1)i = (c1)i, if (i, 1) ∈ G ⇒ (r1)i = 0.

Then, we factorise M1

M1 =
(
c1,1 0
l1 I

)(
c−1
1,1 0
0 C2

)(
c1,1 lT1
0 I

)
= L1Σ1L

T
1 .

We obtain

l1 = f1,

C2 = E2 − 1
c1,1

f1f
T
1 .

The next step is applying the same decomposition on C2,

C2 =
(
c
(2)
2,2 cT

2

c2 E3

)
=
(
c
(2)
2,2 fT

2

f2 E3

)
−
(

0 rT
2

r2 0

)
= M2 −R2,

where f2 is obtained from c2 by setting to zero the elements for which the indices
(i, 2) do not belong to G. Let

L2 =


 c1,1 0

0
(
c
(2)
2,2 0
l2 I

) .

Note that l2 = f2 and that we shall never throw away a diagonal entry.
At the end of the second step, we have

C = L1L2Σ2L
T
2 L

T
1 − L1

(
0 0
0 R2

)
LT

1 −R1,
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but

L1L2 =


 c1,1 0

l1

(
c
(2)
2,2 0
l2 I

) and L1

(
0 0
0 R2

)
LT

1 =
(
0 0
0 R2

)
.

Therefore, we have a factor with the desired structure and we can go on as long
as the pivots c(i)i,i are non zero. It has been proven that IC is feasible whatever the set
G is when C is an H–matrix. We apply this algorithm to C = εD + A where D is a
diagonal matrix with non zero diagonal elements di. We use a matrix D �= I because
with the order 1 algorithm to be described soon, the diagonal entries are going to be
modified so that we do not get the identity for all steps of the algorithm. We have

c1,1 = εd1 + a1,1,

l1 = f1,

C2 = εD2 +A2 − 1
εd1 + a1,1

f1f
T
1 ,

where these matrices are defined by

C =
(
εd1 + a1,1 aT

1

a1 εD2 +A2

)
.

Rather than computing C2 exactly, we would like to use an asymptotic expansion
related to ε for the ratio. For the order “0” we have

C2 = εD2 +A2 − 1
a1,1

f1f
T
1 ,

that is to say we add εD2 to what we would have obtained for the incomplete decom-
position of A.

The order “1” gives

C2 = ε

(
D2 +

d1f1f
T
1

a2
1,1

)
+A2 − 1

a1,1
f1f

T
1 .

To motivate the choices we are going to do later on, let us look at what we get
for a 2D finite difference matrix. As an example, we take the Poisson equation in a
square with a mesh size h = 1/(m+1). This leads to a matrix of order n = m2 which
can be written blockwise as

A =




T −I
−I T −I

. . . . . . . . .
−I T −I

−I T


 ,

with blocks of order m

T =




4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4


 .
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The matrix A has five non–zero diagonals. For a generic row i and more gen-
eral problems, the non–zero coefficients are ai,i−m, ai,i−1, ai,i, ai+1,i, ai+m,i. When we
compute the incomplete decomposition IC(1,1) (with no fill–in) of this matrix obtain-
ing M = (Σ + L)Σ−1(Σ + LT ), it is easy to see that we only need to compute the
diagonal matrix Σ whose elements are denoted σi,i. The matrix L is the strictly lower
triangular part of A. The diagonal elements are given by

σi,i = ai,i −
a2

i,i−1

σi−1,i−1
− a2

i,i−m

σi−m,i−m
.

In this formula, entries of A (resp. Σ) whose indices do not exist are taken to be 0
(resp. 1). The two ratios arises from the two non–zero elements in each column of L
and in each row of LT the upper triangular part of A.

Let us look at what we obtain in the first step of the decomposition of C = εD+A.
For order “0” there is no problem as we have just to compute σi,i as before and to
add εdi.

Handling order “1” is a little more tricky. We obtained

C2 = ε

(
D2 +

d1f1f
T
1

a2
1,1

)
+A2 − 1

a1,1
f1f

T
1 .

To what we would have obtained for A, that is

A2 − 1
a1,1

f1f
T
1

which corresponds to the computation of σi,i, we have to add the correction of order
ε. That is

ε

(
D2 +

d1f1f
T
1

a2
1,1

)
.

Since there are only two non–zero elements in f1 for the model problem, the outer
product f1f

T
1 gives two diagonal modifications for indices (2, 2) et (m + 1,m + 1)

(when these terms exist). Therefore, we add

ε

(
d2 + d1

a2
2,1

a2
1,1

)

to the element of index (2, 2) and

ε

(
dm+1 + d1

a2
m+1,1

a2
1,1

)

to the element of index (m+ 1,m + 1). This modifies the diagonal terms of order ε.
Therefore we see that the modification of the diagonal terms is recursive. This means
that there is no gain from doing the decomposition of C from scratch. Consequently,
we decided to bypass the recursion. We only apply the modifications to the initial D.
For example the correction of the element (3, 3) will be

ε

(
d3 + d2

a2
3,2

σ2
2,2

)
.
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This will work when ε is small but not with larger values of the parameter. In the
latter case we have

1
εd1 + a1,1

� 1
εd1

.

Therefore, in the formulas for order “1” we replace σi,i by σi,i + εdi. This does not
make too much difference when ε is small and gives asymptotically the exact answer
when it is large. For instance, the final correction for the element (3, 3) in the second
step will be

ε

(
d3 + d2

a2
3,2

(σ2,2 + εd2)2

)
.

This algorithm is what we call order “1” in the numerical experiments. This has the
additional advantage that all the corrections can proceed in parallel. In this way we
get rid of the recursion of the incomplete Cholesky factorization which is not easily
parallelizable. However, note that there is still a recursion when solving the triangular
systems.

In the case of a matrix arising from a diffusion equation with constant coefficient
we can perform an asymptotic analysis of the diagonal elements of the incomplete
factors. If ai,i = a, ai,i−1 = b, ai,i−m = c, then the elements of the incomplete
decomposition σi,i (within a block) converges rapidly to σ

σ =
a+ s

2
, s =

√
a2 − 4(b2 + c2).

If the diagonal coefficients of A are perturbed by ε we obtain a limit σ̄

σ̄ � a+ s

2
+

ε

s

a+ s

2
.

The fact that the difference between the exact factorization and the approximate
one is small is also illustrated in figure 2.1 where we show the relative differences
between the exact and approximate order “0” values of the second block of diagonal
coefficients for the perturbed Poisson equation with a 30 × 30 mesh as a function of
the relative index in the block. The solid line is ε = 10−2, the dashed line ε = 10−1,
the dot–dashed line ε = 1, the dotted line ε = 10, the plus signs ε = 100 and the
circles ε = 1000. Over all values of ε the maximum relative difference is 4%.

This technique can be generalized to any non–zero structure for A. For order
“0” we just add εD to the diagonal. For the order “1” we modify only the diagonal,
neglecting the recursiveness and we add an order of ε term in the denominator to
obtain the correct behaviour when ε is large. The method can also be applied to
matrices arising from finite element methods. In case mass lumping is used we can do
exactly the same thing. If the mass matrix is not diagonal, we can do modifications
to the non zero entries but neglecting the recursiveness that is using the initial values
of the entries of the mass matrix.

3. Numerical experiments. We denote by IC the incomplete Cholesky de-
composition without fill–in. We use several examples to compare the following pre-
conditioners:

1. IC for C = εI +A
2. approximate IC of C order “0”
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Fig. 2.1. Relative differences between diagonal coefficients

Table 1

Poisson problem

ε IC(C) order “0” order “1” IC(A) SSOR

320 2 3 3 40 2
80 3 4 4 39 3
20 4 5 5 35 4
5 6 6 6 26 7

1.25 10 10 10 14 11
0.325 17 17 17 15 19

7.812 10−2 26 26 26 25 29
1.953 10−2 32 32 32 32 39
4.882 10−3 34 34 34 34 40

3. approximate IC of C order “1”
4. IC for A
5. SSOR with ω = 1.

We first consider matrices arising from diffusion equations in the unit square with
homogeneous Dirichlet boundary conditions. The first example is the Poisson equation
we described in section 2. We solve a linear system whose solution is x = {1, 1, . . . , }T .
The initial iterate is chosen at random and we stop the iterations as soon as the relative
norm residual is less 10−10. We use a regular 30× 30 cartesian mesh. We start with
ε = 320 and we divide it by 4 several times. The results are given in table 1.

For this example, the two approximate decompositions give almost the same num-
ber of iterations as the “exact” incomplete decomposition. The results of the approx-
imate decompositions are also quite good for large ε’s. This is linked to the fact that
in this case the matrix is diagonally dominant and that we add a proper correction
for the order “1” . We also note that in this case the results of the order “1” are the
same as those of order “0”. Of course, when ε is small we obtain the same number of
iterations when we only use IC(A).

The second example is a diffusion problem with discontinuous diffusion coefficients
and Dirichlet boundary conditions on the unit square. The diffusion coefficient is 1000
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Table 2

Diffusion problem with discontinuous coefficients

ε IC(C) order “0” order “1” IC(A) SSOR

320 16 16 16 148 19
80 24 24 24 171 28
20 29 29 29 129 35
5 32 32 32 79 37

1.25 33 33 33 44 38
0.325 34 34 34 36 40

7.812 10−2 37 37 37 37 43
1.953 10−2 39 39 39 39 45
4.882 10−3 41 41 41 41 47

Table 3

Diffusion problem with anisotropic coefficients

ε IC(C) order “0” order “1” IC(A) SSOR

320 4 8 8 143 6
80 5 12 9 92 10
20 7 15 11 53 18
5 10 14 12 28 33

1.25 15 15 15 16 57
0.325 25 26 26 25 97

7.812 10−2 34 34 34 33 126
1.953 10−2 38 38 38 38 134
4.882 10−3 39 39 39 39 136

in [1/4, 3/4] × [1/4, 3/4] and 1 elsewhere. We use the same mesh and parameters as
before. Results are provided in table 2. The conclusions are the same as for the first
example.

The third example is a diffusion problem with an anisotropic coefficient and
Dirichlet boundary conditions on the unit square. The x diffusion coefficient is 100
in [1/4, 3/4]× [0, 1] and 1 elsewhere. The y diffusion coefficient is 1 everywhere. The
parameters are the same as before. Results are given in table 3.

This is a difficult problem and we can see there are differences between IC and the
approximate decompositions. For this problem we get an improvement when going
from order “0” to order “1” for middle range values of ε . However, the differences
are small and we can still conclude that it could be useful to use the approximate
decomposition.

We now consider some matrices from the Harwell–Boeing collection or from the
Boeing collection arising from the Tim Davis’ Web site (http://www.cise.ufl.edu).
We had to normalize some of these matrices in order for the perturbations εI to be
meaningful. We use the following examples:

1. 1138-bus. An admittance matrix of order 1138 with 4054 non–zeros. It was
normalized. Note that the unperturbed matrix is close to being singular.

2. bcsstk01. A stiffness matrix of order 48 with 400 non-zeros. It was normal-
ized. This matrix is not diagonally dominant, nor an M–matrix, but nevertheless
positive definite.

3. gr3030. A matrix arising from a nine point approximation to the Laplacian
on the unit square with a 30× 30 mesh. It has order 900 and 7744 non–zeros.

4. msc00726. A matrix of order 726 with 34518 non-zeros from Nastran. This
matrix was normalized.
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Table 4

1138-bus

ε IC(C) order “0” order “1” IC(A) SSOR

1000 1 2 2 205 1
250 2 3 3 249 2
62.5 2 3 3 249 2
15.625 2 4 4 242 3
3.51 3 5 5 215 4
0.98 6 8 8 163 6
0.24 10 14 13 110 10
0.0610 18 22 21 93 19
0.0015 30 34 33 86 34
0.0038 46 48 48 81 62

9.54 10−4 65 65 65 80 108
2.38 10−4 83 83 83 86 175
5.963 10−5 101 101 101 102 250
1.490 10−5 114 114 114 114 320

Table 5

bcsstk01

ε IC(C) order “0” order “1” IC(A) SSOR

1000 1 2 2 31 1
250 2 3 3 30 2
62.5 2 3 3 31 2
15.625 2 4 4 29 2
3.51 3 5 5 26 4
0.98 4 7 7 19 6
0.24 6 8 8 13 9
0.0610 7 10 10 12 14
0.0015 10 11 11 12 18
0.0038 12 12 12 13 23

9.54 10−4 13 13 13 14 24
2.38 10−4 14 14 14 14 24
5.963 10−5 14 14 14 14 24
1.490 10−5 14 14 14 14 24

We ran the different problems and preconditioners with values of ε ranging from
1000 to 1.49 10−5. In tables 4 to 7 we report the number of iterations obtained by
using a stopping criterion of 10−6 on the relative residual norm in CG.

For 1138-bus there is no gain by using order “1” over order “0”. The SSOR
preconditioner gives better results than the approximate ICs for large ε but, for small
ones, the SSOR results are much worst. We can see that although this is a different
kind of problem the approximate preconditioners still give very good results. Note
that ε has to be very small for having good results with IC(A). The conclusions for
bcsstk01 are the same as for the previous example. For the last two problems gr3030
and msc00726 we can also draw the same conclusions. We can obtain a very good
preconditioner by just modifying the diagonal elements in a parallel way. A general
remark is that using IC(A) is fine when ε → 0 but with the perturbed factorizations
we can also get good results when ε is large. Moreover, the results are generally better
than using straight SSOR.

4. Application to the heat equation. We consider the following problem:

∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
= f, in Ω =]0, 1[2
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Table 6

gr3030

ε IC(C) order “0” order “1” IC(A) SSOR

1000 2 2 2 25 2
250 2 3 3 24 2
62.5 2 3 3 23 2
15.625 3 4 4 19 4
3.51 5 5 5 12 6
0.98 7 7 7 7 10
0.24 11 11 11 14 15
0.0610 14 14 14 16 19
0.0015 16 16 16 17 22
0.0038 17 17 17 17 23

9.54 10−4 17 17 17 17 23
2.38 10−4 17 17 17 17 23
5.963 10−5 17 17 17 17 23
1.490 10−5 17 17 17 17 23

Table 7

msc00726

ε IC(C) order “0” order “1” IC(A) SSOR

1000 1 2 2 44 1
250 2 3 3 44 2
62.5 2 3 3 43 2
15.625 2 4 4 41 3
3.51 3 6 6 34 4
0.98 5 8 8 23 6
0.24 8 9 9 13 10
0.0610 12 12 12 12 17
0.0015 18 18 18 18 25
0.0038 26 26 26 26 38

9.54 10−4 30 30 30 30 40
2.38 10−4 31 31 31 31 41
5.963 10−5 31 31 31 31 41
1.490 10−5 31 31 31 31 41

with Dirichlet boundary conditions and a given initial condition.
We discretize with finite differences and a time implicit scheme as shown in the

introduction. We use the conjugate gradient algorithm to solve the linear system we
obtain at each time step.

We solved a problem whose exact solution is u = (1 + t3) sin(πx) sin(πy). We
use 30 discretization points in each direction and k = h. We obtained exactly the
same total number of CG iterations using either the “exact” incomplete Cholesky
decomposition recomputed at each time step or the approximate one of order “0”.
Therefore this shows that in this case it is useless to recompute the decomposition
at each time step, we just have to update the diagonal of the decomposition of A
which is computed during the initialization phase. Of course, updating the incomplete
factorization was much cheaper than recomputing at every time step. We do not give
any computer times since this computation was done using Matlab for which computer
times depend very much on how the programs are written.

5. Perturbation of a diagonal matrix. For completeness, we now consider
the incomplete Cholesky decomposition of a matrix C = I+εA although this case has
much less practical applications than the case we handle in section 2. Let c1 = f1−r1,
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Table 8

Diffusion problem with anisotropic coefficients

ε IC(C) order “1” order “2” ICd SSOR

320 40 138 86 40 138
80 39 135 85 39 135
20 35 129 82 36 129
5 29 111 71 29 111

1.25 18 70 43 18 70
0.325 11 40 25 14 40

7.812 10−2 7 22 13 15 22
1.953 10−2 5 12 7 13 12
4.882 10−3 4 7 4 9 7

l1 = εf1. For the first step we get

C2 = I + εA2 − 1
1 + εa1,1

l1l
T
1 = I + ε(A2 − ε

1 + εa1,1
f1f

T
1 ).

Now we use an asymptotic expansion of the ratio. The order 1 expansion gives
l1 = εf1, C2 = I + εA2. This is nothing else than the SSOR preconditioner with
ω = 1. For the order 2 expansion we obtain

C2 = I + εA2 − ε2f1f
T
1 .

Looking at this formula we may already think that this correction cannot give good
results for large ε. It may even happen that the preconditioner is not positive definite.
To obtain something which can work for both small and large ε it makes sense to use
a weighting factor. Therefore, we propose to use

C2 = I + εA2 − ε2

εa1,1 + 1
f1f

T
1 .

This is what is denoted as order “2” in the results. As we did in section 2 we neglect
the recursion when we compute the diagonal corrections.

Another way is to use the incomplete decomposition of A which computes a
diagonal d and to set the diagonal elements of the approximate decomposition to
1+ εdi,i. We denote this method as ICd. We consider the third example from section
3 for which results are given in table 8.

The results in table 8 show that the order “1” approximation indeed gives the
same results as SSOR with ω = 1. The order “2” gives better results than order “1”.
For small ε it gives almost the same results as IC(C). Finally, ICd always gives good
results. There are not too far from those of IC(C) for all values of ε although order
“2”gives better results for very small ε. Therefore, ICd seems to be the method of
choice for this case.

6. Conclusion. In this paper we have shown that we can efficiently and easily
compute Incomplete Cholesky–like preconditioners of εI + A and I + εA when we
know the incomplete decomposition of A. The proposed methods work for a large
range of values of the perturbation parameter ε. This approximate factorizations can
be useful when solving time dependent partial differential equations since we do not
have anymore to recompute the factorization at each time step but only to update it
which is a cheap and parallel operation.
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