
Numer Algor
DOI 10.1007/s11075-012-9537-2

ORIGINAL PAPER

The computation of isotropic vectors

Gérard Meurant

Received: 16 October 2011 / Accepted: 15 January 2012
© Springer Science+Business Media, LLC 2012

Abstract We describe algorithms to compute isotropic vectors for matrices
with real or complex entries. These are unit vectors b satisfying b ∗ Ab = 0. For
real matrices the algorithm uses only the eigenvectors of the symmetric part
corresponding to the extreme eigenvalues. For complex matrices, we first use
the eigenvalues and eigenvectors of the Hermitian matrix K = (A − A∗)/2i.
This works in many cases. In case of failure we use the Hermitian part H
or a combination of eigenvectors of H and K. We give some numerical
experiments comparing our algorithms with those proposed by R. Carden and
C. Chorianopoulos, P. Psarrakos and F. Uhlig.

Keywords Isotropic vectors · Eigenvectors

1 Introduction

Given a nonsingular square matrix A of order n with real or complex
coefficients, we are interested in computing non-trivial vectors b with real or
complex entries and unit norm such that

b ∗ Ab = 0, (1)

where the * denotes the conjugate transpose. In the literature on quadratic
forms, such a vector b is said to be isotropic. Note that this is a special instance

This paper is dedicated to Claude Brezinski on the occasion of his 70th birthday.

G. Meurant (B)
30 rue du sergent Bauchat, 75012, Paris, France
e-mail: gerard.meurant@gmail.com

Numer Algor

of a more general problem stated by F. Uhlig [10]: how to compute a vector b ,
of unit norm, such that

b ∗ Ab = μ, (2)

where μ is a given complex number. In [10] a heuristic geometric algorithm
for computing such a vector was described. It is straightforward to see that the
problem (2) reduces to (1) for a different matrix since (2) is equivalent to

b ∗(A − μI)b = 0.

If μ is an eigenvalue of A, then a corresponding eigenvector of A gives a
solution. If not, A − μI is nonsingular and we have to compute an isotropic
vector for that matrix. Note that even if A is real, we have to deal with a
complex matrix when the shift μ is complex. Hence, from now on, we will
assume that the target value is zero. While we were working on this problem
in 2009, Carden [1] published an algorithm that is both simpler and faster than
Uhlig’s first algorithm. More recently, Chorianopoulos, Psarrakos and Uhlig
[2] proposed a new algorithm that is allegedly faster than Carden’s. In these
algorithms, most of the computing time is spent computing eigenvalues and
eigenvectors of the Hermitian or skew-Hermitian parts of A. Hence, what
is important is the number of eigenanalyses that have to be done to obtain
a solution. The minimum number of eigenanalyses in [1] and [2] is two. We
will see that, when the matrix is real and in some cases for complex matrices,
one can obtain solutions with only one eigenanalysis. For real matrices we will
describe a very simple algorithm needing only the extreme eigenvalues and
corresponding eigenvectors of the symmetric part of A. For complex matrices
the situation is more difficult but, in many cases, a solution can also be obtained
with only one eigenanalysis.

Our interest in computing isotropic vectors is related to the study of partial
stagnation of the GMRES algorithm for solving linear systems with real
matrices; see Saad and Schultz [9]. When starting from x0 = 0, the conditions
for complete stagnation are

b ∗ A jb = 0, j = 1, . . . , n − 1.

If we only have b ∗ Ab = 0, then we have stagnation for the first iteration, that
is, ‖r1‖ = ‖r0‖ = ‖b‖ where rk is the residual vector at iteration k.

Note that the set of solutions of (1) is not a vector space; a linear combina-
tion of two solutions is not necessary a solution. The set

W(A) = {x∗ Ax | x ∈ �n, x∗x = 1}, (3)

is known as the field of values of A (or numerical range). Therefore, the
problems (1) and (2) are often called the inverse field of values problem or
the inverse numerical range problem. The field of values has been used to
study convergence of some iterative methods for solving linear systems; see, for
instance, Eiermann [4]. In order for (1) to have at least one solution, we need
the origin to be in the field of values of A. The solution of (1) can be reduced
to considering problems with Hermitian and skew-Hermitian matrices.

Numer Algor

Theorem 1 Let A and b have complex entries. We have the equivalence

b ∗ Ab = 0 ⇔ b ∗(A + A∗)b = 0 and b ∗(A − A∗)b = 0.

Proof Clearly, if b ∗ Ab = 0, we have b ∗ A∗b = 0, therefore the two conditions
on the right are satisfied. Conversely, if we assume the conditions on the right,
then by taking the sum, we obtain b ∗ Ab = 0. ��

Note that this does not give polynomial equations for the components of b
because of the conjugacy. If only the condition b ∗(A + A∗)b = 0 is satisfied,
remarking that (b ∗ Ab)∗ = b ∗ A∗b , we just obtain that the real part of b ∗ Ab
is zero. Similarly, if we have b ∗(A − A∗)b = 0, then only the imaginary part
of b ∗ Ab is zero. We will use these facts for computing a solution for complex
matrices. When b and A are both real, the problem is much easier, since we
only have to consider the symmetric part of A. We have the equivalence

b T Ab = 0 ⇔ b T(A + AT)b = 0.

We will denote respectively by H = (A + A∗)/2 and K̃ = (A − A∗)/2 = iK
the Hermitian and skew-Hermitian parts of A.

In Section 2 we describe how to compute as many isotropic vectors as
we wish for real matrices. This can be done using some eigenvectors of H.
Section 3 considers complex matrices. In some cases we can compute solutions
with only one eigenanalysis for the matrix K improving on the results in [1] and
[2]. However, this does not always work. A remedy that may work is to use the
eigenvectors of H. When all this fails, we rely on some techniques developed
in [2]. Numerical experiments are described in Section 4. They show that in
many cases, our algorithms are faster than those in [1, 2]. Finally, we give some
conclusions.

2 Real matrices

When A is real, we are concerned with computing solutions of

b ∗ Hb = 0, (4)

where H is real and symmetric (i.e. H = HT). It is known (see, for instance,
[6, 7]) that the field of values W(A) is symmetric with respect to the real axis
and 0 is in W(A) if and only if ω1 ≤ 0 ≤ ωn where ω1 and ωn are respectively the
smallest and largest eigenvalues of H. Let X1 and X2 be the real eigenvectors
corresponding to ω1 and ω2. Then, XT

1 AX1 = XT
1 HX1 = ω1 and XT

n AXn =
XT

n HXn = ωn are real and they are the left-most and right-most points of
W(A) on the real axis.

Computing real solutions of (4) can be easily done by using the eigenvectors
of H. Let us assume that we are looking for vectors b of norm 1. The matrix H
can be written as

H = X�XT ,

Numer Algor

where � is the diagonal matrix of the eigenvalues ωi that are real numbers, and
X is the orthonormal matrix of the eigenvectors such that XT X = I. Then we
use this spectral decomposition into (4),

b ∗ Hb = b ∗ X�XTb = 0.

Let c = XTb be the vector of the projections of b on the eigenvectors of H.
We have the following result.

Theorem 2 Let b be a solution of (4), the vector c = XTb with components ci

satisfy the equations

n∑

i=1

ωi|ci|2 = 0,

n∑

i=1

|ci|2 = 1. (5)

Proof Inserting the definition c = XTb into (4), we have

b ∗ Hb = b ∗ X�XTb = c∗�c = 0

and since � is diagonal, c∗�c can be written as a sum of the components
c̄iωici = ωi|ci|2. Moreover, ‖b‖ = ‖XTc‖ = ‖c‖ = 1 which gives the other con-
dition. ��

Note that (5) involves only real numbers. From Theorem 2, 0 must be
a convex combination of the eigenvalues ωi. As we have already seen, this
means that if A or −A are positive real, then (4) does not have a non-trivial
solution. Otherwise, 0 is in W(A) and we can always find a real solution. In
fact, when n > 2 there is an infinite number of solutions. Let us now show how
to construct solutions. We first consider using two eigenvectors and then we
will see how to compute more solutions using three eigenvectors.

Since not all the eigenvalues of H have the same sign, the smallest one ω1
has to be such that ω1 < 0. Let k > 1, be such that ωk > 0 and t be a positive
real number smaller than 1. Typically, we will use k = n. We set |c1|2 = t,
|ck|2 = 1 − t and ci = 0, i 	= 1, k. From (5) we must have

ω1t + ωk(1 − t) = 0,

whose solution is

ts = ωk

ωk − ω1
.

Note that since ω1 < 0, the denominator is positive as well as ts and ts < 1. The
modulus of c1 (resp. ck) is the square root of ts (resp. 1 − ts). Since b = Xc and
we can eventually change the signs, two real solutions are

b = √
ts X1 + √

1 − ts Xk, b = −√
ts X1 + √

1 − ts Xk,

where X1 and Xk are the eigenvectors corresponding to ω1 and ωk. The other
possibilities for the signs give solutions that are in the same directions as these

Numer Algor

two ones. Since the two terms in these solutions have the same denominator
we can, in fact, write the solutions as

b = √
ωk X1 + √|ω1|Xk, b = −√

ωk X1 + √|ω1|Xk,

Then the solution vectors have to be normalized to be of unit norm. It gives

b =
√

ωk

ωk + |ω1| X1 +
√

|ω1|
ωk + |ω1| Xk, b = −

√
ωk

ωk + |ω1| X1 +
√

|ω1|
ωk + |ω1| Xk.

In principle, these b ’s can be multiplied by eiθ but this gives solutions in
the same directions. In fact, we can use every pair of positive and negative
eigenvalues. This process can give as many real solutions as two times the
number of pairs of eigenvalues of H with opposite signs if all the eigenvalues
are different. The two solutions constructed before are independent and more-
over, (as remarked in [3]), orthogonal if ωk = −ω1. We denote this algorithm
as Alg.R.

When A and b are real we have proved the following result.

Theorem 3 If A is real and such that A or −A are not positive real, there exist
at least two independent real isotropic vectors.

After having derived Alg.R, we found a paper (probably unknown to
most people in the linear algebra community) authored by two mechanical
engineers [3] who proposed the same construction. However, we can go further
on by using more eigenvectors to construct more solutions.

To prove that we have an infinite number of real solutions and compute
some of them, we have to consider at least three distinct eigenvalues with
different signs (when they exist). Assume that we have ω1 < 0 < ω2 < ω3 and
let t1 = |c1|2, t2 = |c2|2. The equation to satisfy is

ω1t1 + ω2t2 + ω3(1 − t1 − t2) = (ω1 − ω3)t1 + (ω2 − ω3)t2 + ω3 = 0, (6)

with the constraints ti ≥ 0, i = 1, 2 and t1 + t2 ≤ 1. Hence we have

t2 = ω3

ω3 − ω2
− ω3 − ω1

ω3 − ω2
t1.

This defines a line in the (t1, t2) plane and we have to see if this line intersects
the triangular region defined by the constraints on t1 and t2. The line intersect
the t1 axis at ω3/(ω3 − ω1) which is positive and smaller than 1 since ω1 is
negative. The intersection with the t2 axis is ω3/(ω3 − ω2) which is larger than
1. This line has a negative slope. All the admissible values for t1 and t2 are
given by a segment inside the triangle. Therefore, there is an infinite number
of feasible positive pairs (t1, t2). This is illustrated in Fig. 1 for ω1 = −1, ω2 = 1
and ω3 = 2. The triangle is the region where the constraints are satisfied and
the feasible values are on the bold segment. The case ω1 < ω2 < 0 < ω3 is
similar except that the line crosses the t2 axis below 1. Then we obtain the
solutions b by combining the three corresponding eigenvectors. Here the

Numer Algor

Fig. 1 ω1 = −1, ω2 = 1 and
ω3 = 2

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

t1

t 2

problem for the coefficients is in three dimensions and the feasible solutions
for t live in a space of dimension one.

The previous construction proves the following result.

Theorem 4 If n > 2 and A is real, such that A or −A are not positive real and
H has at least three distinct eigenvalues of dif ferent signs, there exist an inf inite
number of real isotropic vectors.

We note that a similar result was proved in [3], but the proofs are not
mathematically rigorous.

Of course, we can go on with the same idea. If we use four distinct
eigenvalues of different signs, then we have to look at a problem in three
dimensions. The region where the constraints are satisfied is a tetrahedron. We
have to consider the intersection of a given plane with this tetrahedron. More
generally, the equations that define the problem using k distinct (renamed)
eigenvalues are

k−1∑

i=1

(ωi − ωk)ti + ωk = 0, ti ≥ 0, i = 1, . . . , k − 1,

k−1∑

i=1

ti ≤ 1.

The first equation defines an hyperplane and we have to look at the intersec-
tion of this hyperplane with the volume defined by the constraints.

If A is real we are finished, because we have just shown that we can compute
as many real solutions as we wish. In particular we can eventually compute n
independent solutions, even though this does not define an isotropic subspace.
In [3] the question of the existence of an orthogonal basis was raised for

Numer Algor

the real case. It was shown that such a basis can only exist if trace(A) = 0.
However, it would be more interesting to look for vectors that are mutually
“A-orthogonal” since this would lead to a matrix B such that B∗ AB = 0 and
the columns of B would generate an isotropic subspace.

3 Complex matrices

Unfortunately, if A has complex elements the previous constructions give only
vectors for which Re(b ∗ Ab) = 0. In this section we consider two different
algorithms for computing isotropic vectors when the matrix A is complex.

First, we remark that, in some cases, using a similar algorithm as in the
previous section, we can find a set of solutions for the Hermitian matrix
H = (A + A∗)/2 with zero real parts having positive and negative imaginary
parts. When using three eigenvectors of H, there exist an infinite number of
solutions that are obtained along the segment inside the triangle of constraints;
see Fig. 1. When varying continuously the point along this segment, the
imaginary part of the solution varies continuously. If the imaginary parts
corresponding to the two ends of the segment are of different signs, then
by the mean value theorem, there is a point on the segment giving a zero
imaginary part. This point can be computed by dichotomy. Note that this only
involves computation of the quadratic form x∗ Ax. We do not need any new
eigenanalysis. However, the change of sign in the values x∗ Ax do not happen
for any triplet of eigenvalues. Unfortunately, we were not able to characterize
the set of matrices for which this is true. We denote this algorithm by Alg.1.

The second algorithm first use the eigenvalues and eigenvectors of the
matrix K = (A − A∗)/(2i) which is Hermitian. The algorithm of Section 2
gives vectors b such that Im(b ∗ Ab) = 0. Combining the eigenvectors of K cor-
responding to positive and negative eigenvalues, we can (in some cases) obtain
two vectors b 1 and b 2 such that α1 = Re(b ∗

1 Ab 1) < 0 and α2 = Re(b ∗
2 Ab 2) >

0. Then we use the following result in [6].

Lemma 5 [6] Let b 1 and b 2 two unit vectors with Im(b ∗
i Abi) = 0, i = 1, 2 and

α1 = Re(b ∗
1 Ab 1) < 0, α2 = Re(b ∗

2 Ab 2) > 0. Let b(t, θ) = e−iθb 1 + tb 2, t, θ ∈
�, α(θ) = eiθb ∗

1 Ab 2 + e−iθb ∗
2 Ab 1. Then

b(t, θ)∗ Ab(t, θ) = α2t2 + α(θ)t + α1,

α(θ) ∈ �when θ = arg(b ∗
2 Ab 1 − b T

1 Ā b̄ 2). For t1 = (−α(θ) + √
α(θ)2 − 4α1α2)/

(2α2), we have

b(t1, θ) 	= 0,
b(t1, θ)∗

‖b(t1, θ)‖ A
b(t1, θ)

‖b(t1, θ)‖ = 0.

Lemma 5 shows how to compute a solution from b 1 and b 2. If we have
b 1 and b 2 such that α1 = Re(b ∗

1 Ab 1) < 0 and α2 = Re(b ∗
2 Ab 2) > 0 we are

Numer Algor

finished. Note that when A is real and taking b 1 = X1, b 2 = X2, the eigen-
vectors of H, then θ = 0 and Lemma 5 shows how to compute one isotropic
vector.

However, in the complex case, we cannot always find suitable vectors b 1 and
b 2. In particular, Yi being the eigenvectors of K, if all the values Re(Y∗

i HY j)

have the same sign, the algorithm fails. An extreme example is a Jordan block
with a complex value α on the diagonal and elements 1 on the diagonal above.
Then we have Re(Y∗

i HY j) = 0, i 	= j and Y∗
i HYi = −Re(α). Therefore, the

real parts of b ∗ Ab for all the vectors b that can be generated are the same.
When we are not able to obtain the vectors b 1 and b 2 needed in Lemma 5,

we compute the eigenvectors of H and we apply the same technique to the
matrix iA. In case of failure, now that we have at hand the eigenvectors of K
and H, we use the following method which was suggested to us by what is done
in [2]. We combine eigenvectors of H and K. Let x (resp. y) be an eigenvector
of K (resp. H), we consider the vectors Xθ = cos(θ)x + sin(θ)y, 0 ≤ θ ≤ π .
When θ goes from 0 to π , X∗

θ AXθ describes an ellipse within the field of values.
For a given pair of eigenvectors x, y we look for intersections of the ellipse with
the real axis. Noticing that A = H + iK, we have

X∗
θ AXθ = cos2(θ)(x∗ Hx + ix∗Kx)

+ sin2(θ)(y∗ Hy + iy∗Ky)

+ sin(θ) cos(θ)(x∗ Hy + y∗ Hx + i[x∗Ky + y∗Kx]).
Let α = Im(x∗ Hx + ix∗Kx), β = Im(y∗ Hy + iy∗Ky) and γ = Im(x∗ Hy +
y∗ Hx + i[x∗Ky + y∗Kx]). Asking for the imaginary part of X∗

θ AXθ to be zero,
we obtain the equation

α cos2(θ) + β sin2(θ) + γ sin(θ) cos(θ) = 0.

Assuming cos(θ) 	= 0 and dividing, we obtain a quadratic equation for t =
tan(θ),

βt2 + γ t + α = 0.

If this equation has real solutions, then we obtain values of θ which give vectors
Xθ such that Im(X∗

θ AXθ) = 0. When the size of the problem is large, we do
not apply these techniques to all pairs of eigenvectors since this may be too
costly. We just use the eigenvectors corresponding to a few of the smallest and
largest eigenvalues.

If this third stage also fails, we switch to the algorithms described in [2]. They
first use the eigenvectors of H and K that are already computed. However,
this does not always give a suitable vector. The remedy is then to rotate the
matrix, multiplying by eiθ for well-chosen angles θ , but this requires other
computations of eigenvectors; see [2]. We denote this multi-stage algorithm
by Alg.2. Of course, when it works, the first stage of our algorithm must be
faster since it uses only one eigenanalysis contrary to what is done in [2]. When
the first stage or the second stage fail, then this is, of course, a waste of time
and then, the algorithms of [2] or [1] are faster. Another point to note is that

Numer Algor

the computing times depend on the order by which the eigenvectors of H and
K are considered.

4 Numerical examples

The computations were done with Matlab 7 (R14). To have fair comparisons
with the algorithms in [2] and [1], we will always use the QR algorithm for
computing all the eigenvalues and eigenvectors we need in all algorithms. Let
us start with a real matrix. The first example is a random real matrix of order
100 obtained with the Matlab function randn. Table 1 gives the computing
times and the value of |b T Ab | for the algorithm of Section 2 and the algorithms
in [2] (we used the March 2011 version of the code) and [1] for computing
one isotropic vector. Alg.R is faster because it uses only one computation
of eigenvalues and eigenvectors for H. The absolute value of the Rayleigh
quotient is larger by one or two orders of magnitude but still acceptable. With
the algorithm of Section 2 we were able to compute 100 different isotropic
vectors in 0.022 seconds with only one eigenanalysis. However, the rank of the
matrix of the solutions was only 50.

Table 2 displays the results for the same matrix and a complex shift
μ = 1 + 8i. This makes the problem complex and we cannot use Alg.R any
longer. However, for this value of the shift μ, Alg.2 is working using only the
eigenvectors of K and therefore, faster than the other algorithms. The letter
K within parenthesis indicates that only the eigenvectors of K were involved.
When we have to use the other stages of the algorithms, we use letters H and E.
Note that for random matrices the eigenvalues are usually spread into the field
of values. We see in Tables 1 and 2 that Alg.R and Alg.2 are faster. This is
because, in these examples, they only use one computation of eigenvalues and
eigenvectors.

The second example comes from Liesen and Strakoš in [8]; see also [5]. They
discretized

−ν
u + w · ∇u = 0,

Table 1 Random matrix of
order 100, μ = 0

Algorithm Time (s) |b T Ab |
Alg.R 0.017 6.2617 10−14

Alg. [2] 0.057 1.6012 10−15

Alg. [1] 0.077 3.4417 10−15

Table 2 Random matrix of
order 100, μ = 1 + 8i

Algorithm Time (s) |b T Ab − μ|
Alg.2 (K) 0.037 4.5989 10−15

Alg. [2] 0.060 1.5424 10−15

Alg. [1] 0.070 7.1089 10−15

Numer Algor

Table 3 Example 2, μ = 0.02 Algorithm Time (s) |b T Ab |
Alg.R 0.14 4.8833 10−17

Alg. [2] 0.43 1.2081 10−17

Alg. [1] 0.60 1.0971 10−17

Table 4 Example 2,
μ = 0.055 + 0.02 i

Algorithm Time (s) |b T Ab − μ|
Alg.1 0.49 8.2506 10−15

Alg.2 (K) 0.29 4.9874 10−17

Alg. [2] 0.44 3.4964 10−18

Alg. [1] 0.51 3.1273 10−17

with w = [0, 1]T in � = (0, 1)2 with Dirichlet boundary conditions u = g on ∂�

using a stabilized Petrov–Galerkin SUPG method with bilinear finite elements
on a regular Cartesian mesh. The matrix is

A = νN ⊗ M + M ⊗ ((ν + δh)N + C),

where δ is the stabilization parameter, h is the mesh size and

M = h
6

tridiag(1, 4, 1), N = 1
h

tridiag(−1, 2, −1), C = 1
2

tridiag(−1, 0, −1),

are tridiagonal matrices with constant diagonals. We use h = 1/16, ν = 0.01
and δ = 0.34. This gives a real matrix of order 225. However, the origin is not
in the field of values. Hence we shift the matrix by −0.02, but it is still real
and we can use Alg.R. Results are given in Table 3. For this example, Alg.R
is about three times faster than the algorithm of [2]. Table 4 displays results
for a complex shift μ = 0.055 + 0.02 i which is inside the convex hull of the
eigenvalues of A. Alg.2 is faster than Alg.1 and the algorithms from [2]
and [1]. In Table 5 we use another shift μ = 0.055 + 0.04 i which is outside the
convex hull of the eigenvalues of A. Only using the eigenvectors of K still
works in this case and we are faster than [2] and [1].

Table 5 Example 2,
μ = 0.055 + 0.04 i

Algorithm Time (s) |b T Ab − μ|
Alg.1 1.52 3.5382 10−17

Alg.2 (K) 0.32 2.9219 10−18

Alg. [2] 0.44 1.9516 10−18

Alg. [1] 0.60 2.0835 10−17

Table 6 Example 3,
μ = 5000 + 10000 i

Algorithm Time (s) |b T Ab − μ|
Alg.1 0.20 9.7386 10−11

Alg.2 (K) 0.10 1.8645 10−11

Alg. [2] 0.18 2.1398 10−12

Alg. [1] 0.16 1.3690 10−12

Numer Algor

Table 7 Example 3,
μ = 10000 + 10000 i

Algorithm Time (s) |b T Ab − μ|
Alg.1 0.22 3.5156 10−12

Alg.2 (K + H) 0.175 3.5156 10−12

Alg. [2] 0.18 8.1981 10−13

Alg. [1] 0.17 6.9563 10−12

Table 8 Example 3,
μ = 12000 + 10000 i

Algorithm Time (s) |b T Ab − μ|
Alg.2 (K + H + E) 0.20 1.0785 10−12

Alg. [2] 0.18 3.4106 10−13

Alg. [1] 0.31 4.5702 10−12

Table 9 Example 3,
μ = 12500 + 10000 i

Algorithm Time (s) |b T Ab − μ|
Alg.2 (K + H + E) 0.20 2.2801 10−12

Alg. [2] 0.25 5.7001 10−13

Alg. [1] 0.38 4.3884 10−12

The third example is a variant of an example from [2]. The matrix of order
200 is constructed with the Fiedler and the Moler matrices, F and M. Then, let
B = F + iM. Finally the matrix A is (in Matlab notation)

A=B+(-3+5i)*ones(200)-(200+500i)*eye(200).

The first shift, μ = 5000 + 10000 i, is well inside the field of values. The results
are in Table 6. Alg.2 works using only the eigenvectors of K and is twice as
fast as the algorithms from [2] and [1]. The second shift, μ = 10000 + 10000 i,
for which the results are in Table 7, is closer to the boundary. Then, the first
stage of Alg.2 fails and we use also the eigenvalues of H. If we come closer
to the boundary, for μ = 12000 + 10000 i, the first two stages fail and we have
to use the intersections of ellipses with the real axis. Of course, the computing
time is larger, see Tables 8 and 9. Finally, the shift μ = 12500 + 10000 i is very
close to the boundary and the algorithms from [2] and [1] need more than two
eigenvector computations. Then, the computing time of Alg.2 is comparable
to what is obtained with the algorithm of [2].

5 Conclusions

In this paper we have shown how to compute isotropic vectors for matrices
with real or complex entries. For real matrices the algorithm we propose is
quite fast, using only the eigenvectors corresponding to the extreme eigenval-
ues of the symmetric part. In some cases for complex matrices, our algorithm
is faster than the algorithms of [2] or [1] because it uses only one computation
of eigenvalues and eigenvectors of an Hermitian matrix. However, this very
simple algorithm does not always work, depending on the value of the shift μ.
In this case, we use the Hermitian part of A. This needs a second eigenvector

Numer Algor

computation. If this also fails, we resort to a combination of the eigenvectors of
K and H. In this case the computing times of the three algorithms are almost
the same.

Acknowledgements The writing of this paper was started in 2010 during a visit to the Nečas Cen-
ter of Charles University in Prague supported by a grant Jindrich Nečas Center for mathematical
modeling, project LC06052 financed by MSMT. The author thanks particularly Zdeněk Strakoš
and Miroslav Rozložník for their kind hospitality.

The author thanks the referee for interesting comments.

References

1. Carden, R.: A simple algorithm for the inverse field of values problem. Inverse Probl. 25, 1–9
(2009)

2. Chorianopoulos, C., Psarrakos, P., Uhlig, F.: A method for the inverse numerical range prob-
lem. Electron. J. Linear Algebra 20, 198–206 (2010)

3. Ciblak, N., Lipkin, H.: Orthonormal isotropic vector bases. In: Proceedings of DETC’98, 1998
ASME Design Engineering Technical Conferences (1998)

4. Eiermann, M.: Field of values and iterative methods. Linear Algebra Appl. 180, 167–197
(1993)

5. Fischer, B., Ramage, A., Silvester, D.J., Wathen, A.J.: On parameter choice and iterative
convergence for stabilised discretisations of advection-diffusion problems. Comput. Methods
Appl. Mech. Eng. 179, 179–195 (1999)

6. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press,
Cambridge (1991)

7. Johnson, C.R.: Numerical determination of the field of values of a complex matrix. SIAM J.
Numer. Anal. 15, 595–602 (1978)

8. Liesen, J., Strakoš, Z.: GMRES convergence analysis for a convection–diffusion model prob-
lem. SIAM J. Sci. Comput. 26(6), 1989–2009 (2005)

9. Saad, Y., Schultz, M.H.: GMRES: a generalized minimum residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)

10. Uhlig, F.: An inverse field of values problem. Inverse Problems 24, 1–19 (2008)

	The computation of isotropic vectors
	Abstract
	Introduction
	Real matrices
	Complex matrices
	Numerical examples
	Conclusions
	References

