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Abstract. We generalize the results of Arioli, Pták and Strakoš [BIT v 38 (1998)] and Duintjer Tebbens
and Meurant [accepted in SIMAX (2012)] which describe the class of matrices with right-hand sides generating
prescribed GMRES residual norm convergence curves as well as prescribed Ritz values when solving linear systems.
These results assumed that the underlying Arnoldi orthogonalization processes are breakdown-free. We extend the
results with parametrizations of classes of matrices with right-hand sides allowing the early termination case and
also give analogues for the early termination case of other results related to the theory in Arioli, Pták and Strakoš
[BIT v 38 (1998)].

1. Introduction. We consider solving linear systems

Ax = b,(1.1)

where A is a nonsingular matrix of order n and b a given nonzero n-dimensional vector with
the GMRES algorithm; see [10]. Assuming that the matrix A is non-derogatory and that GM-
RES terminates at iteration n, the results of a series of papers by Arioli, Greenbaum, Pták and
Strakoš [4, 3, 1] show that for an arbitrary prescribed decreasing residual norm history there exists
a class of matrices and right-hand sides that gives these residual norms. Moreover, the eigenvalues
of those matrices can also be chosen freely. The last paper [1] of the series shows explicitly how
to construct matrices and right-hand sides with prescribed residual norms and eigenvalues, see
Theorem 2.1 and Corollary 2.4 in that paper. These results show that GMRES convergence for
general matrices does not depend on the eigenvalues of A.

The GMRES algorithm is based on the Arnoldi process that generates upper Hessenberg
matrices whose eigenvalues are known as Ritz values. In the Arnoldi method (see e.g. [8]), these
values are used as approximations of the eigenvalues of A. Based on the results of [1], Duintjer
Tebbens and Meurant [2] have shown that one can construct a class of matrices and right-hand
sides with a prescribed residual norm convergence curve and prescribed Ritz values in every
GMRES iteration, i.e. from the first until the nth iteration. This shows that there exists a class of
matrices and right-hand sides for which the Ritz values generated in the iterations of the Arnoldi
method (or, equivalently, of the GMRES method) can be arbitrary and fully independent of the
spectrum and that they need not have any influence on the n residual norms generated in the
GMRES method.

For practical problems one rarely computes all n iterations of an Arnoldi method or of GMRES
if n is large. Often one will stop at a low iteration number with the value of the last subdiagonal
entry of the Hessenberg matrix being below a small tolerance. Depending on the tolerance, this
might be considered to correspond to early termination of the Arnoldi orthogonalization process
in exact arithmetic. In this paper we would like to extend the above mentioned results to the early
termination case when GMRES or Arnoldi terminates before iteration n. Some results for this
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problem were described in the Ph.D. thesis of Liesen [5]; see also [6]. It was shown, for example,
that any non-increasing GMRES convergence curve terminating before iteration n is possible with
any spectrum. The conclusion of the paper [1] mentions that it is desirable to formulate the
parametrizations of matrices and right-hand sides of that paper also for the early termination
case. Some aspects of the early termination case are pointed out in the next to last section of that
paper, but a parametrization is not given. In this paper we will give complete parametrizations of
the matrices and right-hand sides giving a prescribed non-increasing GMRES convergence curve
terminating before or at iteration n and, in addition, giving prescribed Ritz values in all iterations.
We also prove some additional properties for the case with early termination similar to those proven
in [7] for the case with termination at iteration n.

The contents of the paper are as follows. Section 2 first gives a new parametrization of the class
of matrices and right-hand sides with a prescribed convergence curve and prescribed Ritz values
with termination at iteration n. This result is then used to handle the case of early termination. It
also shows how to practically construct these matrices. Section 3 generalizes the parametrization
given in [1] to the case of early termination. In Section 4 we prove some properties of the matrices
involved in the parametrizations and also give an expression for the GMRES iterates as well as
the error vectors.

Throughout the paper we use the same notation as in [1] and [2] and ei denotes the ith
column of the identity matrix of appropriate dimension. The entry on position i, j of a matrix M
is denoted as mi,j . ¡in this paper we assume exact arithmetic; hence, early termination corresponds
to a zero residual vector.

2. Prescribed Ritz values and GMRES residual norms with early termination.
The Arnoldi orthogonalization process applied to an input matrix A ∈ Cn×n with an initial
nonzero vector b ∈ Cn yields, if it does not terminate before the nth iteration, the so-called
Arnoldi decomposition

AV = V H, V e1 = b/‖b‖, V ∗V = In,

where H is an unreduced upper Hessenberg matrix containing the coefficients of the Arnoldi
recursion and V is the orthormal matrix whose columns are basis vectors of the Krylov subspace
Kn(A, b). If the orthogonalization process does break down at an iteration number k, k < n, this
means that hk+1,k = 0 and we obtain an Arnoldi decomposition which we will write as

AVn,k = Vn,kHk, Vn,ke1 = b/‖b‖, V ∗n,kVn,k = Ik,(2.1)

where Vn,k ∈ Cn×k and Hk ∈ Ck×k is an unreduced upper Hessenberg matrix of order k.

Since GMRES residual norms are invariant under unitary transformation of the linear system,
the convergence curve generated by A and b is identical with the convergence curve generated by
H = V ∗AV and ‖b‖e1 = V ∗b. Thus essentially all information about Ritz values and residual
norms is contained in H. Moreover, all information on the Ritz values and residual norms gener-
ated during the first k iterations must be contained in Hk. In order to characterize the Hessenberg
matricesHk that generate prescribed GMRES residual norms and prescribed Ritz values with early
termination at the kth iteration, we therefore use a characterization of the Hessenberg matrices
H with these properties when the Arnoldi orthogonalization process does not break down. Such a
description was given in [2, Corollary 3.7], but here we introduce a simpler characterization. The
proof of the fact that the Hessenberg matrices in this characterization generate the prescribed
GMRES residual norms is new, but the proof of the fact that they generate the desired Ritz
values is only a slight modification of the proof of [2, Proposition 2.1]. Nevertheless, we give this
proof below for completeness. The next proposition can be seen as a complement of [2].

2



Proposition 2.1. Let the set

R = { ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) },

represent any choice of n(n+ 1)/2 complex Ritz values. An unreduced upper Hessenberg matrix H

has the spectrum λ1, . . . , λn and its kth leading principal submatrix has eigenvalues ρ
(k)
1 , . . . , ρ

(k)
k

for all k = 1, . . . , n− 1 if and only if it has the form

H =

[
gT

0 T

]−1
C(n)

[
gT

0 T

]
,(2.2)

where C(n) is the companion matrix of the polynomial with roots λ1, . . . , λn

C(n) =

 0 −α0

In−1
...

−αn−1

 ,
the first entry g1 of the vector g is nonzero, T is nonsingular upper triangular of order n− 1 and
if

qk(λ) = [1, λ, . . . , λk]

[
gT

0 T

]
ek+1,

then qk(λ) is a polynomial with roots ρ
(k)
1 , . . . , ρ

(k)
k for k = 1, . . . , n− 1.

Proof. Clearly, H is unreduced upper Hessenberg and its spectrum is λ1, . . . , λn by the
definition of C(n). We will show that the spectrum of the k × k leading principal submatrix of H

is ρ
(k)
1 , . . . , ρ

(k)
k . Let U be the nonsingular upper triangular matrix[

gT

0 T

]
and let Uk denote the k × k leading principal submatrix of U . Also, for j > k, let ũj denote the
vector of the first k entries of the jth column of U−1. The spectrum of the k× k leading principal
submatrix of H is the spectrum of

[Ik, 0]U−1C(n)U

[
Ik
0

]
= [U−1k , ũk+1, . . . , ũn]

 0
Uk

0

 = [U−1k , ũk+1]

[
0
Uk

]
.

It is also the spectrum of the matrix

Uk[U−1k , ũk+1]

[
0
Uk

]
U−1k = [Ik, Ukũk+1]

[
0
Ik

]
,
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which is a companion matrix with last column Ukũk+1. From

ek+1 = Uk+1U
−1
k+1ek+1 =


gk+1

Uk t1,k
...

0 tk,k


 U−1k ũk+1

0 1/tk,k

 ek+1 =


Ukũk+1 +


gk+1/tk,k
t1,k/tk,k

...
tk−1,k/tk,k


1


,

we obtain that the coefficients corresponding to λ0 till λk−1 of the polynomial with roots ρ
(k)
1 , . . . , ρ

(k)
k

are the entries of Ukũk+1.

The vector g in (2.2) is arbitrary (except for that its first entry must be nonzero). In the next
theorem we show that g can be chosen such that it forces prescribed GMRES residual norms when
GMRES is applied to H with right hand side ‖b‖e1. This immediately gives a parametrization
of the class of matrices and right-hand sides such that GMRES generates residual norms and
prescribed Ritz values in all iterations.

Theorem 2.2. Consider a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number and n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that f(k − 1) = f(k) if and only if the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero number. If

A is a matrix of order n and b a nonzero n-dimensional vector, then the following assertions are
equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess yields
residuals r(k), k = 0, . . . , n− 1 such that

‖r(k)‖ = f(k), k = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the kth leading prin-

cipal submatrix of the generated Hessenberg matrix for all k = 1, . . . , n− 1.
2. The matrix A and the right-hand side b are of the form

A = V

[
gT

0 T

]−1
C(n)

[
gT

0 T

]
V ∗, b = f(0)V e1,(2.3)

where V is any unitary matrix, C(n) is the companion matrix of the polynomial with roots
λ1, . . . , λn,

g1 =
1

f(0)
, gk =

√
f(k − 2)2 − f(k − 1)2

f(k − 2)f(k − 1)
, k = 2, . . . , n
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and T is nonsingular upper triangular of order n− 1 such, that if

qk(λ) = [1, λ, . . . , λk]

[
gT

0 T

]
ek+1,

then qk(λ) is a polynomial with roots ρ
(k)
1 , . . . , ρ

(k)
k for k = 1, . . . , n− 1.

Proof. We have to show three claims, namely that we have the parametrization (2.3) if and
only if we have the prescribed spectrum, the prescribed Ritz values and the prescribed GMRES
residual norms of the first assertion. The first claim follows immediately from the definition of the
companion matrix C(n). The second claim follows from Proposition 2.1, because the Hessenberg
matrix generated by GMRES applied to A and b in (2.3) is

H =

[
gT

0 T

]−1
C(n)

[
gT

0 T

]
.

Let us consider the last claim on GMRES residual norms. If the QR decomposition H = QR of
H is computed with Givens rotations that zero out the subsequent subdiagonal entries of H, the
individual rotation parameters give the residual norms. More precisely, if the kth subdiagonal
entry was eliminated with Givens cosine ck−1 and sine sk−1, then

‖r(k)‖ = ‖b‖
k∏

j=1

|sj | = f(0)

k∏
j=1

|sj |,(2.4)

see, e.g., [9, Section 6.5.5, p. 166]. The Q factor of the QR decomposition H = QR of H is the
same as the Q factor of the QR decomposition of[

gT

0 T

]−1
C(n)

because

[
gT

0 T

]
is nonsingular upper triangular. If we define ĝ = [g2, . . . , gn]T and write

[
gT

0 T

]−1
C(n) =

[
1 ĝT /g1
0 I

]−1 [
g1 0
0 T

]−1
C(n) =

[
1 ĝT /g1
0 I

]−1
C(n)R̂,

then it can be easily checked that

R̂ = (C(n))−1
[

1/g1 0
0 T−1

]
C(n)

is upper triangular. Hence in fact, the Q factor of the QR decomposition H = QR of H is the
same as the Q factor of the QR decomposition of

Ĥ ≡
[

1 ĝT /g1
0 I

]−1
C(n) =

[
1 −ĝT /g1
0 I

]
C(n).

Let us zero out the first subdiagonal entry of the upper Hessenberg matrix Ĥ. With ĥ1,1 = −g2/g1
and ĥ2,1 = 1 we obtain the Givens cosine and sine satisfying

|c1| =
|g2/g1|√

1 + (g2/g1)2
, |s1| =

1√
1 + (g2/g1)2

.
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Thus

|s1| =
1√

1 + f(0)2−f(1)2
f(1)2

=
f(1)

f(0)

and with (2.4) we have ‖r(1)‖ = f(1) as desired. Now assume |sj | = f(j)
f(j−1) for j = 1, . . . , k. Then

the application of all previous k Givens rotations to the (k+1)st column of Ĥ, that is to the vector

[−gk+2/g1, 0, . . . , 0, 1, 0, . . . , 0]T , yields a vector whose (k+ 1)st entry is −
∏k

j=1(−sj)gk+2/g1 and
its (k + 2)nd entry is 1. Then we obtain the Givens cosine and sine

|ck+1| =
∏k

j=1 |sj ||gk+2/g1|√
1 +

∏k
j=1 s

2
j (gk+2/g1)2

, |sk+1| =
1√

1 +
∏k

j=1 s
2
j (gk+2/g1)2

.

Thus

|sk+1| =

1 + (gk+2/g1)2
k∏

j=1

s2j

− 1
2

=
(
1 + g2k+2f(k)2

)− 1
2 =

(
1 +

f(k)2 − f(k + 1)2

f(k + 1)2

)− 1
2

=
f(k + 1)

f(k)

and with (2.4) we have ‖r(k+1)‖ = f(k + 1) as desired.

Theorem 2.2 shows how to construct a Hessenberg matrix H giving n prescribed GMRES
residual norms and giving the prescribed Ritz values of all n iterations. Now, it suffices to consider
the first k columns of H to prescribe the behavior of GMRES terminating at iteration number k.
The remaining columns are fully discarded in this case, see (2.1), and can be chosen arbitrarily.
This observation results in the next theorem.

Theorem 2.3. Consider a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(k−1)
1 , . . . , ρ

(k−1)
k−1 ) ,

(λ1 , . . . . . . . . . , λk)} ,

such that (λ1, . . . , λk) contains no zero number and k positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(k − 1) > 0,

such that f(j − 1) = f(j) if and only if the j-tuple (ρ
(j)
1 , . . . , ρ

(j)
j ) contains a zero number. If A

is a matrix of order n and b a nonzero n-dimensional vector, then the following assertions are
equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess yields
residuals r(j) such, that

‖r(j)‖ = f(j), j = 0, . . . , k − 1, ‖r(j)‖ = 0, j = k, . . . , n,

the spectrum of A contains the eigenvalues λ1, . . . , λk and ρ
(j)
1 , . . . , ρ

(j)
j are the eigenvalues

of the jth leading principal submatrix of the generated Hessenberg matrix for all j =
1, . . . , k − 1.
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2. The matrix A and the right-hand side b are of the form

A = V

[
Hk B
0 D

]
V ∗, b = f(0)V e1,(2.5)

where V is any unitary matrix and B ∈ Ck×(n−k), D ∈ C(n−k)×(n−k) are submatrices with
arbitrary entries. The unreduced upper Hessenberg matrix Hk has the form

Hk =

[
g̃T

0 Tk−1

]−1
C(k)

[
g̃T

0 Tk−1

]
,

with C(k) being the companion matrix of the polynomial with roots λ1, . . . , λk, with the
k-dimensional vector g̃ being defined as

g̃1 =
1

f(0)
, g̃j =

√
f(j − 2)2 − f(j − 1)2

f(j − 2)f(j − 1)
, j = 2, . . . , k

and with a nonsingular upper triangular matrix Tk−1 of order k − 1 such, that if

qj(λ) = [1, λ, . . . , λj ]

[
g̃T

0 Tk−1

]
ej+1,

then qj(λ) is a polynomial with roots ρ
(j)
1 , . . . , ρ

(j)
j for j = 1, . . . , k − 1.

Theorem 2.3 gives a complete parametrization of the matrices with right hand sides generating
a prescribed GMRES residual norm history with prescribed Ritz values and allowing the early
termination case. Of course, it holds for k = n, too. Note that the system matrix A in (2.5) is
allowed to be singular, because B,D are fully arbitrary. For example, B and D can both be zero
matrices.

3. Early termination and the parametrization of [1]. In this section we address the
issues and the open question on early termination formulated in [1]. The authors were concerned
with prescribing GMRES residual norms only, not Ritz values. The central question is whether the
following parametrization, which is the main result of [1], can be extended to the early termination
case.

Theorem 3.1 (see [1]). Assume we are given n+ 1 nonnegative numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0, f(n) = 0

and n complex numbers λ1, . . . , λn all different from 0. The following assertions are equivalent:
1. The spectrum of A is {λ1, . . . , λn} and GMRES applied to A and b with zero initial guess

yields residuals rk, k = 0, . . . , n− 1 such that

‖rk‖ = f(k), k = 0, . . . , n.

2. The matrix A is of the form

A = WY C(n)Y −1W ∗

and b = Wh, where W is any unitary matrix, the matrix Y is given by

Y =

[
h

R
0

]
,(3.1)
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R being any nonsingular upper triangular matrix of order n− 1, h a vector describing the
convergence curve such that

h = [η1, . . . , ηn]T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1)(3.2)

and C(n) is the companion matrix corresponding to the polynomial q(λ) defined as

q(λ) = (λ− λ1) · · · (λ− λn) = λn +

n−1∑
j=0

αjλ
j .

In [1, Section 3] some aspects involved in generalizing this theorem were described. In partic-
ular, properties of the components of b in the Jordan canonical vector basis of A and the relation
with the minimal polynomial of A with respect to b were investigated for the early termination
case. Note that Theorem 2.3 gives the minimal polynomial of A with respect to b in the early
termination case; it is the polynomial with roots λ1, . . . , λk which takes the value one at the origin.

In the following theorem we give a direct, brute force generalization of Theorem 3.1 to the
early termination case. It may look rather technical but we have chosen this formulation, close to
that in Theorem 3.1, to emphasize the instances where Theorem 3.1 is modified. It reveals not
only the minimal polynomial of A with respect to b but also the minimal polynomial of A itself.

Theorem 3.2. Assume we are given k positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(k − 1) > 0

and m distinct complex numbers λ1, . . . , λm, all different from 0. The following assertions are
equivalent for a matrix A of order n having m distinct eigenvalues and n ≥ k, n ≥ m,:

1. λ1, . . . , λm are eigenvalues of A and GMRES applied to A and b with a zero initial guess
yields residuals rj , j = 0, . . . , n such that

‖rj‖ = f(j), j = 0, . . . , k − 1, ‖rj‖ = 0, j = k, . . . , n.

2. The right-hand side b is of the form b = Wn,khk where Wn,k ∈ Cn×k has orthonormal
columns and

hk= [η1, . . . , ηk]T ,

ηj = (f(j − 1)2 − f(j)2)1/2, 1 ≤ j < k, ηk = f(k − 1).(3.3)

The matrix A satisfies the equation

AWn,kYk,` = Wn,kYk,`C
(`),(3.4)

where C(`) ∈ C`×` is the companion matrix corresponding to a polynomial

q(λ) = Πm
j=1(λ− λj)`j = λ` +

`−1∑
j=0

αjλ
j

with integers `j > 0 such that
∑m

j=1 `j = ` ≥ k. The matrix Yk,` ∈ Ck×` is given by

Yk,` =

 η1
... Rk−1 R̂
ηk 0 0

 ,
8



with Rk−1 being a nonsingular upper triangular matrix of order k − 1 and R̂ ∈ Ck×(`−k)

being the matrix whose columns are given recursively through the relations

R̂ei = Yk,` [ei, . . . , ei+k−1]

 −β0
...

−βk−1

 , i = 1, . . . , `− k,(3.5)

for coefficients β0, . . . , βk−1 of a polynomial p(λ) of degree k of the form

p(λ) = Πm
j=1(λ− λj)

˜̀
j = λk +

k−1∑
j=0

βjλ
j ,(3.6)

with 0 ≤ ˜̀
j ≤ `j.

Proof. The proof follows closely the proof of Theorem 2.1 and Proposition 2.4 of [1].
Let us first prove that 1→ 2. Let q(λ) be the minimal polynomial of A, q(λ) = Πm

j=1(λ−λj)`j
with integers `j > 0 such that

∑m
j=1 `j = ` ≥ k, let

z = [ζ1, . . . , ζ`]
T , where

q(λ)

(−1)`
∏m

j=1 λ
`j
j

= 1− (ζ1λ+ . . .+ ζ`λ
`)

and define Kn,` ≡ [b, Ab, . . . , A`−1b] and Bn,` = [Ab,A2b, . . . , A`b]. From q(A) = 0 and q(A)b = 0
we get

AKn,` = Kn,`C
(`), ABn,` = Bn,`C

(`), b = Bn,`z.(3.7)

Consider a QR decomposition of Bn,`, Bn,` = W̃ R̃n,` with W̃ ∈ Cn×n and R̃n,` ∈ Cn×`. Because
GMRES terminates at the kth iteration, Ak+ib is linearly dependent on Ab, . . . , Akb for all i > 0
and the rows k + 1 until n of R̃n,` must be zero. The prescribed residual norms imply that

b = W̃Γh, h =

(
hk
0

)
where Γ is a diagonal unitary matrix and hk is defined by (3.3), see [3, p. 466]. Define W ≡ W̃Γ
and Rn,` ≡ Γ∗R̃n,`. Then b = Wh as desired. Furthermore we have

AWRn,` = ABn,` = Bn,`C
(`) = WRn,`C

(`)

and

WRn,`z = Bn,`z = b = Wh, i.e. Rn,`z = h.(3.8)

Then from (3.7) we have Bn,` = AKn,` = Kn,`C
(`), i.e. Kn,` = Bn,`[C

(`)]−1. With Bn,` = WRn,`

it follows that Kn,` = WRn,`[C
(`)]−1 and with (3.7) that

AWRn,`[C
(`)]−1 = (WRn,`[C

(`)]−1)C(`).

Define the matrix Yn,` ∈ Cn×` as Yn,` ≡ Rn,`[C
(`)]−1 and note that [C(`)]−1 =

[
z

I`−1
0

]
.

Because of Rn,`z = h, Yn,` has the form Yn,` = [h,Rn,`e1, . . . , Rn,`e`−1]. However, the rows k + 1
to n of Yn,` must be zero (so are the corresponding rows of Rn,`) and thus Yn,` has the form

Yn,` =


η1
... Rk−1 R̂
ηk 0 0
0 0 0

 ,
9



where Rk−1 denotes the leading principal submatrix of order k − 1 of Rn,` and R̂ ∈ Ck×(`−k) the
remaining nonzero part of Rn,`. Denoting the first k columns of W by Wn,k and the first k rows
of Yn,` by Yk,`, we have Wn,kYk,` = WYn,`. Then we obtain equation (3.4) from

AWn,kYk,` = AWYn,` = AWRn,`[C
(`)]−1 = (WRn,`[C

(`)]−1)C(`) = WYn,`C
(`) = Wn,kYk,`C

(`).

Finally, because GMRES terminates at the kth iteration, the minimal polynomial of A with
respect to b is a polynomial p(λ) of degree k with p(A)b = 0 which is a divisor of q(λ). If we

write p(λ) as p(λ) = λk +
∑k−1

j=0 βjλ
j and since hk denotes the first k entries of h, then with

[b, Ab, . . . , Ak−1b] = Wn,k

[
hk

Rk−1
0

]
we have

Akb = −
k−1∑
j=0

βjA
jb = Wn,k

[
hk

Rk−1
0

] −β0
...

−βk−1

 = Wn,kYk,`[e1, . . . , ek]

 −β0
...

−βk−1

 .
Because Akb = Bn,`ek = Wn,kR̂e1, this shows the first condition in (3.5) for i = 1. Recursively
we obtain

Ak+i−1b = Ai−1(Akb) = −
k−1∑
j=0

βjA
j+i−1b

= [b, Ab, . . . , Ak−1b]



0
...
0
−β0

...
−βk−i−1


−Wn,k

(
βk−iR̂e1 + . . .+ βk−1R̂ei

)
,

for i = 2, . . . , `−k. Using Ak+i−1b = Bn,`ek+i−1 = Wn,kR̂ei one obtains the remaining conditions
in (3.5).

Now, let us consider the implication 2 → 1. Denote the eigenpairs of C(`) by {λi, yi} for
i = 1, . . . ,m. Then

AWn,kYk,`yi = Wn,kYk,`C
(`)yi = λiWn,kYk,`yi,

hence λi is an eigenvalue of A for i = 1, . . . ,m and these m distinct eigenvalues are the only
distinct eigenvalues by the assumptions of the theorem. To show that GMRES generates the non-
zero residual norms f(0), . . . , f(k−1) it suffices to show that Wn,k is a unitary basis of AKk(A, b),

see [3, p. 466]. First we introduce the notation C
(k)
p for the companion matrix of the polynomial

p(λ) in (3.6) and Yk for the first k columns of Yk,`. Then if we equate the first k columns in (3.4)
and k < `, we obtain

AWn,kYk = Wn,kYk,`[e2, . . . , ek+1] = Wn,kYkC
(k)
p(3.9)

because of (3.5). In case k = `, the polynomials q(λ) and p(λ) are identical and we also obtain

AWn,kYk = Wn,kYk,`C
(`)[e1, . . . , ek] = Wn,kYk,`C

(k) = Wn,kYkC
(k)
p .

We will prove that Wn,k is a unitary basis of AKk(A, b) by induction. We have

Ab = AWh = AWn,khk = AWn,kYke1 = Wn,kYkC
(k)
p e1 = Wn,kYke2 = r1,1Wn,ke1 = r1,1w1,

10



where w1 is the first column of W and the entries of Rn,l are denoted as ri,j . Because Rk−1 is
nonsingular, r1,1 6= 0. Now let Aj−1b = Wn,kYkej be the assumption of the induction. Then

Ajb = AWn,kYkej = Wn,kYkC
(k)
p ej = Wn,kYkej+1 = Wn,kRk−1ej = Wn,k[r1,j , . . . , rj,j , 0, . . . , 0]T ,

where rj,j 6= 0 for j ≤ k − 1. For j = k we have

Akb = AWn,kYkek = Wn,kYkC
(k)
p ek = −Wn,kYk[β0, . . . , βk−1]T ,

and

−(ek)TYk[β0, . . . , βk−1]T = −β0ηk = (−1)k+1ηk

m∏
j=1

λ
˜̀
j

j 6= 0.

It proves that Wn,k is a basis of AKk(A, b).

Theorem 3.2 does not describe how to construct the matrices A generating a prescribed
convergence curve terminating at the kth iteration. It only gives the condition (3.4) that such a
matrix A must satisfied. The next result shows how to construct A.

Theorem 3.3. Under the assumptions and with the notation of Theorem 3.2, the assertions
1- and 2- are equivalent to

3- The matrix A is of the form

A = W

[
YkC

(k)
p Y −1k H1,2

0 H2,2

]
W ∗(3.10)

where W is unitary, C
(k)
p is the companion matrix for the polynomial p(λ) from (3.6),

C(k)
p =

 0 −β0

Ik−1
...

−βk−1

 ,(3.11)

Yk is the principal submatrix of order k of Yk,` that is,

Yk =

[
hk

Rk−1
0

]
and the union of the spectra of C

(k)
p and H2,2 is {λ1, . . . , λm}. The right-hand side b is

of the form b = Wn,khk where Wn,k ∈ Cn×k contains the first k columns of W .

Proof. Let us prove that 2 → 3.

From the second assertion of Theorem 3.2 we have that A satisfies AWn,kYk = Wn,kYkC
(k)
p ,

see (3.9). Then for a matrix W̃ ∈ Cn×n−k such that [Wn,k, W̃ ] is unitary, A also satisfies

A[Wn,k, W̃ ]

[
Yk 0
0 In−k

]
= [Wn,k, W̃ ]

[
YkC

(k)
p W ∗n,kAW̃

0 W̃ ∗AW̃

]
.

With the notation W ≡ [Wn,k, W̃ ], H1,2 ≡ W ∗n,kAW̃ and H2,2 ≡ W̃ ∗AW̃ this immediately gives
(3.10). At the beginning of the proof of the implication 2→ 1 in Theorem 3.2 is was shown that

11



the distinct eigenvalues of A are λ1, . . . , λm. Therefore the union of the spectra of C
(k)
p and H2,2

is {λ1, . . . , λm}.
To prove 3 → 1, we first note that by assumption the union of the spectra of C

(k)
p and H2,2 is

{λ1, . . . , λm} and therefore A has distinct eigenvalues {λ1, . . . , λm}. Now it suffices to show that
Wn,k is a unitary basis of AKk(A, b), see [3, p. 466]. We will prove this again by induction. We
have, using (3.10),

Ab = W

[
YkC

(k)
p Y −1k H1,2

0 H2,2

]
W ∗b = W

[
YkC

(k)
p Y −1k hk

0

]
= W

[
Yke2

0

]
= r1,1w1.

Now let Aj−1b = Wn,kYkej be the induction assumption. Then if j < k,

Ajb = W

[
YkC

(k)
p Y −1k H1,2

0 H2,2

]
W ∗Wn,kYkej = W

[
YkC

(k)
p Y −1k Ykej

0

]
= W

[
Ykej+1

0

]
and we have

W

[
Ykej+1

0

]
= Wn,k

[
Rk−1ej

0

]
with rj,j 6= 0. If j = k,

Akb = W

[
YkC

(k)
p Y −1k H1,2

0 H2,2

]
W ∗Wn,kYkek = W

[
YkC

(k)
p Y −1k Ykek

0

]
= W

[
YkC

(k)
p ek
0

]
and with the definition (3.6) of the polynomial p, we have

W

[
YkC

(k)
p ek
0

]
= Wn,kYk

 −β0
...

−βk−1

 ,
where the last entry of Yk [β0, . . . , βk−1]

T
is β0ηk 6= 0, see (3.3).

Let us summarize the degrees of freedom in constructing b and A with prescribed distinct
eigenvalues and with termination in step k according to (3.10) in Theorem 3.3. The unitary
matrix W is chosen arbitrarily. The non-singular upper triangular matrix Rk−1 contained in Yk is

arbitrary. The companion matrix C
(k)
p is constructed from an arbitrary polynomial p(λ) of degree

k whose roots belong to the prescribed distinct eigenvalues. The matrix H1,2 is fully arbitrary
and H2,2 is arbitrary except that its spectrum must guarantee that the union of the spectrum
with the roots of p(λ) add up to the complete set of prescribed distinct eigenvalues.

Should we compare to the V parametrization?

4. Some additional properties. In this section we generalize some relations and properties
satisfied by the matrices in the parametrization of [1] that were proved in [7] for termination at
iteration n, as well as their relations with the parametrization of Section 2. First, in the next two
theorems, we prove some relations similar to those in Theorem 3.1 in [7].

Theorem 4.1. The Krylov matrix Kn,k = [b, Ab, . . . , Ak−1b] can be factorized as

Kn,k = Vn,kÛk,(4.1)
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where Vn,k is the matrix whose columns are the orthonormal basis vectors of the Krylov subspace

Kk(A, b) and Ûk is an upper triangular matrix with a real positive diagonal. Moreover,

Ûk = ‖b‖
[
e1 Hke1 · · · Hk−1

k

]
(4.2)

and

Û−1k = Uk =

[
g̃T

0 Tk−1

]
,

the entries of the last matrix being defined in Theorem 2.3 describing the parametrization of
Section 2.

Proof. We have b = ‖b‖Vn,ke1. Let us prove that AjVn,k = Vn,kH
j
k, j = 1, . . . , k − 1. This is

true for j = 1 since we have AVn,k = Vn,kHk. Let us assume that Aj−1Vn,k = Vn,kH
j−1
k . Then,

AjVn,k = A(Aj−1Vn,k) = AVn,kH
j−1
k = Vn,kH

j .

Therefore,

Kn,k =
[
b Ab · · · Ak−1b

]
= ‖b‖Vn,k

[
e1 Hke1 · · · Hk−1

k e− 1
]
.

The matrix Hk being upper Hessenberg, one can prove easily that the matrix Ûk is upper trian-
gular. Moreover, since Hk has a positive first subdiagonal, the diagonal entries of Ûk are positive.

From AKn,k = Kn,kC
(k)
p , we obtain that HkÛk = ÛkC

(k)
p . Therefore, Ûk is the inverse of the

upper triangular matrix involved in the factorization of Hk in Theorem 2.3.

Theorem 4.2. Using the notation of Theorem 3.2, the matrix AKn,k can be factorized as

AKn,k = Wn,kR̃k,

where the upper triangular matrix R̃k is equal to YkC
(k)
p . The first k − 1 columns of R̃k are[

Rk−1
0 · · · 0

]
,

the matrix Rk−1 being defined in Theorem 3.2. The upper Hessenberg matrix Hk can be factorized
as Hk = QkRk where

Qk = V ∗n,kWn,k = ÛkY
−1
k

is upper Hessenberg and such that its first row is hTk /‖hk‖. The matrix Rk is linked to R̃k by

R̃k = RkÛk.

The upper triangular matrix Ûk is defined in Theorem 4.1.
Proof. One can prove that Kn,k = Wn,kYk and

Bn,k = A
[
b Ab · · · Ak−1b

]
= AKn,k = WRn,k.

Therefore,

AKn,k = WRn,k,

= Wn,kR̃k,

= AWn,kYk,

= Wn,kYkC
(k)
p ,
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from (3.9). This yields R̃k = YkC
(k)
p and, from the structure of C

(k)
p , the first k − 1 columns of

R̃k are [
Rk−1

0 · · · 0

]
.

We have

Hk = ÛkC
(k)
p Û−1k , Ûk = V ∗n,kWn,kYk,

from Kn,k = Vn,kÛk = Wn,kYk. Let Qk = V ∗n,kWn,k and Rk = YkC
(k)
p Û−1k which is an upper

triangular matrix. Then,

Hk = V ∗n,kWn,kYkC
(k)
p U−1k = QkRk,

and RkÛk = R̃k. Moreover,

QkYk = V ∗n,kWn,kYk = Ûk.

Instead of considering the first row of Qk, let us look at the first column of Q∗k = W ∗n,kVn,k,

Q∗ke1 = W ∗n,kVn,ke1 = W ∗n,k
b

‖b‖
=

hk
‖hk‖

,

since b = Wn,khk and ‖b‖ = ‖hk‖. Therefore, the first row of Qk is real positive and describes the
convergence of GMRES.

By using Theorem 4.2 we can obtain a relation between the ηjs defined in Theorem 3.2 and
the components of the vector g̃ in Theorem 2.3. Considering the first row of Qk we have

eT1Qk = eT1 V
∗
n,kWn,k = eT1 ÛkY

−1
k .

By computing ÛkY
−1
k we obtain the two relations[

η1 · · · ηk−1
]
Rk−1 = −‖b‖

[
g̃2 · · · g̃k

]
T−1k−1,

η2k = ‖b‖

1 +
[
g̃2 · · · g̃k

]
T−1k−1R

−1
k−1

 η1
...

ηk−1


 .

The two matrices Rk−1 and Tk−1 involved in the two parametrizations are linked through the
entries of Qk. Let Q̂k−1 be the upper triangular submatrix of rows 2 to k and columns 1 to k− 1
of Qk. Then, by identification, we have Q̂k−1 = T−1k−1R

−1
k−1.

The following theorem is the analog of Theorem 3.2 in [7].

Theorem 4.3. The GMRES residual norm convergence curve described by hk is characterized
by the following relation,

[b∗Ab, b∗A2b, . . . , b∗Ak−1b] = hTk−1Rk−1,(4.3)
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where hk−1 is the vector of the first k − 1 components of hk defined in Theorem 3.2 (hTk−1 =[
η1 · · · ηk−1

]
) and the upper triangular matrix Rk−1 is such that

R∗k−1Rk−1 =


b∗A∗

b∗(A2)∗

...
bT (Ak−1)∗

 [ Ab A2b . . . Ak−1b
]
.(4.4)

Proof. The result is obtained by identification using the relation K∗n,kKn,k = Y ∗k Yk.

The matrix on the right-hand side of (4.4) is a Gram (moment) matrix. This result fully
(implicitly) describes GMRES convergence using the factor of the Gram matrix. Let us now
consider the GMRES iterates. They can be expressed using the matrices in the parametrization
of Section 3.

Theorem 4.4. The GMRES iterates xj , j < k are given by

xj = Wn,kYk


R−1j hj

0
...
0

 , hj =

 η1
...
ηj

 ,
where Rj is the principal submatrix of order j of Rk−1.

Proof. The residual vector rj at iteration j < k can be written as rj = b− u where u ∈ AKj

yields the minimum of

‖rj‖ = min
u∈AKj

‖b− u‖.

The solution is given by the orthogonal projection of b on AKj . But, we have an orthogonal basis
of the subspace AKj given by the columns of Wn,j and the solution can be written as

u = Wn,k



η1
...
ηj
0
...
0


.

Since b = Wn,khk we obtain that the residual vector is

rj = Wn,k



0
...
0

ηj+1

...
ηk


.
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The corresponding iterate is given by

xj = A−1(b− rj) = A−1Wn,k



η1
...
ηj
0
...
0


.

From (3.9) we have A−1Wn,k = Wn,kYk(C
(k)
p )−1Y −1k and

xj = Wn,kYk(C(k)
p )−1Y −1k



η1
...
ηj
0
...
0


.

The inverse of the matrix Yk is

Y −1k =

[
0 · · · 0 1/ηk

R−1k−1 −R−1k−1hk−1/ηk

]
.

Finally, we obtain

xj = Wn,kYk(C(k)
p )−1


0

R−1j hj
0
...
0

 = Wn,kYk


R−1j hj

0
...
0

 ,

using the structure of the inverse of the companion matrix.

Note that Kn,k = Wn,kYk = Vn,kÛk. Hence Theorem 4.4 explains what are the coordinates
of the iterates xj in the three bases given by Kn,k, Vn,k,Wn,k. It also shows that the GMRES
iterates do not depend on the eigenvalues of the matrix A in the sense that, in the parametrization
of Section 3, one can change the coefficients of the last column of the companion matrix without
changing the iterates. By looking at the exact solution of the linear system Ax = b, we can obtain
an expression of the error vector. This is a generalization of Theorem 5.1 in [7].

Theorem 4.5. The GMRES error vector εj can be written as

εj = Wn,kYk

(
(C(k)

p )−1e1 −
[
R−1j hj

0

])
.

Proof. We have the relation

Wn,kYk(C(k)
p )−1 = A−1Wn,kYk.

Looking at the first columns, it yields what is the solution vector of the linear system,

Wn,kYk(C(k)
p )−1e1 = A−1Wn,khk = A−1b = x.
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Subtracting the iterate xj from Theorem 4.4 gives the result for εj .
Contrary to the iterates, the error vectors do depend on the eigenvalues of A through the

exact solution x.

5. Conclusion. In this paper we have generalized the results proved in [1] and [2] to the case
of early termination of the Arnoldi process. We gave two characterizations of the class of matrices
having the same GMRES residual norm convergence curve and early termination. Moreover, we
also showed how to construct matrices having a prescribed residual norm convergence curve as
well as prescribed Ritz values at all the iterations.

The conclusion must be expanded.
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