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1 Introduction

The GMRES method [27] is a popular Krylov subspace method for the solution
of linear systems

Ax = b, A ∈ C
n×n, b ∈ C

n (1)

with non-singular, non-Hermitian, sparse and possibly very large matrices A.
The kth GMRES iterate xk minimizes the norm of the residual vector rk =
b−Axk over all vectors in the kth Krylov subspace span{r0, Ar0, . . . , A

k−1r0},
leading to non-increasing residual norms. The employed basis for the kth
Krylov subspace being orthogonal in GMRES, it must be generated with long
recurrences. Storage and computational costs therefore grow with the itera-
tion number k. In practice one usually attempts to find a preconditioner to
obtain a low number of iterations necessary to find a sufficiently accurate ap-
proximation to the solution. But powerful preconditioners may be expensive or
difficult to find. Another popular way to keep storage and computational costs
low (possibly in combination with preconditioning) is to restart the GMRES
method. After a small number of m iterations, the current approximation xm

is used as the initial approximation for a new series of m GMRES iterations
and this process is repeated. We will denote it by GMRES(m) and will call
the non-restarted process full GMRES. GMRES(m) produces non-increasing
residual norms just as full GMRES, but there is no guarantee that the solution
of (1) has been found, in exact arithmetic, by the nth iteration. In fact, there
is no guarantee that the solution will be found at all, as iterates may stagnate.
GMRES(m) may produce identical approximations during an entire cycle of
m iterations and consequently, all subsequent cycles behave the same way.

Part of the available convergence results for GMRES(m) consider suffi-
cient non-stagnation conditions (see, e.g., [12,26,36,30,37]) and a large num-
ber of techniques has been proposed to reduce the risk of stagnation. Especially
strategies using approximate eigenspaces to deflate the matrix or augment the
Krylov subspaces have been succesful for many problems (for overviews see,
e.g., [11], [26], [3], [15]). The main idea is to eliminate the influence of eigen-
values that are assumed to hamper convergence, for instance through moving
eigenvalues close to the origin towards unity (this holds for some precondi-
tioners as well). Information about such eigenvalues are mostly obtained from
the Ritz values or the harmonic Ritz values generated by GMRES during the
restart cycles (see, e.g., the series of papers [21–23]). While this seems to often
be a very efficient strategy in practice, in theory it need not be universally ap-
plicable. The precise influence of eigenvalues on GMRES convergence can be
very complicated, depending strongly on the right-hand side vector b and on
eigenvectors [20], even with unitary matrices [9]. By a theorem by Greenbaum,
Pták and Strakoš, any non-increasing convergence curve can be generated by
full GMRES with matrices having prescribed (nonzero) eigenvalues [17], [16],
[1], [19]. Counterintuitive cases from practice exist [18] and an analogue for
GMRES(m) under certain assumptions was formulated by Vecharynski and
Langou in [33]. Another reason why deflation strategies need not work is that
even if some eigenvalues do hamper convergence, it might be impossible to
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approximate them accurately with Ritz or harmonic Ritz values. This was
shown for full Arnoldi processes in [6] and [5], but not for restarted Arnoldi
processes (in fact, it was shown that (harmonic) Ritz values can be chosen
independently from not only the spectrum, but from residual norms for full
GMRES as well).

In the present paper we are interested in the questions whether in the
restarted GMRES method, any non-increasing convergence curve is possible
with any spectrum, any Ritz values (in all iterations of all cycles) and any
harmonic Ritz values (in all iterations of all cycles). At first sight, it may
seem straightforward that the answers are positive if they are for full GM-
RES. But several theoretical properties cannot be inherited. For example, we
will show that some non-increasing convergence curves are not admissible for
GMRES(m). In fact, the restarting mechanism in GMRES complicates con-
vergence analysis significantly (which is not the case in the restarted FOM
method [28]); detailed investigations of the restart mechanism and its conse-
quences for convergence behavior can be found, among others, in [4],[29], [35]
and [32]. To answer the questions formulated above as completely as possible,
we will focus on prescribing all the entries of the Hessenberg matrices gener-
ated in the individual restart cycles. When this is possible, we can prescribe
in particular the residual norms inside the cycles (which extends the results
in [33]) as well as the Ritz values and the harmonic Ritz values at every iter-
ation of the cycle. We will attempt to explicitly construct linear systems with
such prescribed behavior. We also address the relation with the convergence
curves that are generated by full GMRES applied to such a same system.
This will offer some insight into how it is possible that for some linear sys-
tems encountered sometimes in practice, the speed of convergence seems to
be inversely proportional to the restart length, i.e. a larger m yields slower
convergence of GMRES(m), see, e.g. [13], [11].

The paper is organized as follows. In the remainder of this section we intro-
duce some further notation and recall relevant results related to full GMRES.
The second section describes inadmissible convergence curves for GMRES(m)
and the next section constructs linear systems generating any admissible curve
with prescribed spectrum for the system matrix and prescribed (harmonic)
Ritz values in the individual restart cycles. Section 4 addresses the relation
of the constructed linear systems with full GMRES. Further comments and
conclusions are given in Section 5. Throughout the paper we assume exact
arithmetic and we assume that the initial guess x0 in (restarted) GMRES pro-
cesses is zero. With “the subdiagonal” and “subdiagonal entries” we will mean
the (entries on the) first diagonal under the main diagonal. We will denote by
ej the jth column of the identity matrix of appropriate order and α denotes
the complex conjugate of a complex number α. B† denotes the Moore-Penrose
pseudoinverse of a matrix B and ‖ · ‖ denotes the Euclidean norm for vectors
and the induced norm for matrices.
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1.1 Further notation and preliminaries

We consider in total not more than N − 1 restarts where Nm < n. In words,
the total number of GMRES iterations inside all cycles (including the initial
cycle) is smaller than the system size. This does not represent a restriction
for most practical situations, though a complete theoretical study of restarted
GMRES should address the interesting question of convergence behavior after
more than n iterations as well. The first N − 1 restarts, where Nm < n,
are sometimes referred to as the initial cycles (see, e.g., [33]), but here we will
denote by ’initial cycle’ only the very first m iterations, before the first restart.

Our goal is to construct matrices A and right-hand sides b such that if
GMRES(m) is applied, it exhibits some prescribed behavior for the residual
norms and the (harmonic) Ritz values. A and b will always be constructed as

A = V HV ∗, b/‖b‖ = V e1, (2)

for an upper Hessenberg matrix H and a unitary matrix V . For the purposes
of this paper it suffices to restrict to unreduced Hessenberg matrices H ; thus
the constructed matrices A are non-derogatory. Generalizations to the case of
early termination might be derived along the same lines as was done in [7] for
full GMRES.

GMRES residual norms are unitarily invariant, i.e. GMRES applied to B
and c gives the same residual norms as GMRES applied to WBW ∗ and Wc for
any unitary matrix W . With respect to (2) this means that it suffices to study
GMRES forH with right-hand side e1. The same holds for the (harmonic) Ritz
values obtained from the Arnoldi process. To construct matrices and right-
hand sides yielding prescribed residual norms and (harmonic) Ritz values, we
will therefore concentrate in (2) on the choice of H and consider V a free
parameter matrix.

Any product of the form UCU−1 where U is nonsingular upper triangular
and C is a companion matrix yields an unreduced upper Hessenberg matrix.
Reversely, any unreduced upper Hessenberg matrix H can be decomposed as

H = UCU−1, (3)

where U is nonsingular upper triangular and C is the companion matrix for
the polynomial whose roots are the eigenvalues of H . To find U , it suffices
to equate consecutively the columns 1 till n − 1 of the equation HU = UC
starting with Ue1 being a nonzero multiple of e1. The decomposition (3),
which we call the triangular Hessenberg decomposition, is useful for creating
Hessenberg matrices with a given spectrum yielding prescribed residual norms
and (harmonic) Ritz values when GMRES is applied with right-hand side e1.
The next theorem shows that in full GMRES, the choice of the first row of
U−1 can force prescribed residual norms and the columns of U−1 determine
ordinary Ritz values. It is a slight modification of [7, Theorem 1], formulated
in terms of the Hessenberg matrix that is actually generated by GMRES.
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Theorem 1 Consider a set of tuples of complex numbers

R = { ρ
(1)
1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number and consider n positive num-
bers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that for i = 1, . . . , n− 1, f(i − 1) = f(i) if and only if (ρ
(i)
1 , . . . , ρ

(i)
i )

contains a zero number.

If A is a matrix of order n and b a nonzero n-dimensional vector, then the
following assertions are equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial
guess yields residual vectors ri, i = 0, . . . , n− 1 such that

‖ri‖ = f(i), i = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn and ρ
(i)
1 , . . . , ρ

(i)
i are the eigenvalues of the

ith leading principal submatrix of the generated Hessenberg matrix (the
Ritz values) for all i = 1, . . . , n− 1.

2. The GMRES method applied to A and right-hand side b with zero initial
guess generates an upper Hessenberg matrix of the form

H =

[

χT

0 Σ

]−1

C(n)

[

χT

0 Σ

]

,

where C(n) is the companion matrix of the polynomial with roots λ1, . . . , λn,

χ0 =
1

f(0)
, |χi| =

√

1

f(i)2
−

1

f(i− 1)2
, i = 1, . . . , n− 1

and the entries of the nonsingular upper triangular matrix Σ of size n− 1

are the coefficients of the polynomials pi(ρ) with roots ρ
(i)
j :

pi(ρ) ≡
i
∏

j=1

(ρ− ρ
(i)
j ) =

1

σi,i



χi +
i
∑

j=1

σj,iρ
j



 , i = 1, . . . , n− 1

with σi,i ∈ R, σi,i > 0, i = 1, . . . , n− 1.
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We remark that instead of prescribing all ordinary Ritz values, it is also
possible to prescribe all harmonic Ritz values by appropriate choice of the
entries of Σ. For details, including the situation where GMRES stagnates, we
refer to [5, Theorem 4.4].

As mentioned, all relevant values in GMRES are obtained from the Hes-
senberg matrix and this clearly also holds for the size (m + 1) × m upper
Hessenberg matrix generated in some cycle of GMRES(m). In the sequel we
will therefore focus on the choices of the small Hessenberg matrices of the
individual restart cycles. In fact, we will attempt to prescribe all their entries.
It follows directly from the previous theorem that the size (m+ 1)×m upper
Hessenberg matrix generated in the kth cycle of GMRES(m) has the form

H(k)
m =

[

χ
(k)
0 . . . χ

(k)
m

0 Σm

]−1 [
0
Im

] [

χ
(k)
0 . . . χ

(k)
m−1

0 Σm−1

]

∈ C
(m+1)×m (4)

with Σm a nonsingular upper triangular matrix of sizem with leading principal
submatrix Σm−1 and

|χ
(k)
0 | =

1

f
(k)
0

, |χ
(k)
i | =

√

√

√

√

(

1

f
(k)
i

)2

−

(

1

f
(k)
i−1

)2

, i = 1, . . . ,m (5)

if and only if the m+ 1 positive numbers

f
(k)
0 ≥ f

(k)
1 ≥ · · · ≥ f

(k)
m−1 ≥ f (k)

m > 0

correspond to the residual norms generated in that cycle. By the choice of the
entries of Σm+1 we can prescribe either the Ritz or the harmonic Ritz values
of the cycle.

2 Inadmissible non-increasing convergence curves

In this section we investigate whether, as is the case for full GMRES, any
non-increasing convergence curve is possible for restarted GMRES. We will
see that the answer is negative and describe some inadmissible convergence
curves.

Let the residual vectors generated in the first two cycles of GMRES(m) be
denoted as

r
(1)
0 = b, r

(1)
1 , . . . , r(1)m , r

(2)
0 = r(1)m , r

(2)
1 , . . . , r(2)m .

We wish to construct A and b of the form (2) such that in the m iterations of
the initial cycle the generated Arnoldi decomposition is of the form

AV (1)
m = V

(1)
m+1H

(1)
m , where V

(1)∗

m+1V
(1)
m+1 = Im+1, V

(1)
m+1e1 = b/‖b‖. (6)

Here, the upper Hessenberg matrix H(1)
m of size (m+1)×m is a given matrix

whose entries have been chosen such that prescribed residual norms and (har-

monic) Ritz values are obtained. It can be constructed using (4). V
(1)
m+1 is an
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arbitrary matrix of size n × (m + 1) with orthonormal columns. Because no
restart took place in the initial cycle, it is trivial that we can choose the first
m columns of H and the first m+ 1 columns v1, . . . , vm+1 of V in (2) as

H

[

Im
0

]

=

[

H(1)
m

0

]

, V

[

Im+1

0

]

= [v1, . . . , vm+1] = V
(1)
m+1. (7)

At the beginning of the restart, the new initial Arnoldi vector is the normalized
last residual vector of the previous (initial) cycle and can be written as a
linear combination of the Arnoldi vectors of the previous (initial) cycle. The
coefficients of this linear combination are given in the lemma below; they
appear to depend only on the residual norms (modulo phase angles) generated
before the restart.

Lemma 1 Let the initial cycle of GMRES(m) have generated in its mth iter-

ation Arnoldi vectors v1, . . . , vm+1 and an upper Hessenberg matrix H(1)
m with

decomposition (4) satisfying

|χ
(1)
0 | =

1

‖r
(1)
0 ‖

, |χ
(1)
i | =

√

1

‖r
(1)
i ‖2

−
1

‖r
(1)
i−1‖

2
, i = 1, . . . ,m.

If

g(1) = ‖r(1)m ‖







χ0
...

χm






∈ C

m+1, (8)

then

r
(1)
m

‖r
(1)
m ‖

= [v1, . . . , vm+1] g
(1). (9)

Moreover,
(g(1))∗H(1)

m ej = 0, j = 1, . . . ,m. (10)

.

Proof. Because H(1)
m has the form (4), we have

(g(1))∗H(1)
m =

‖r(1)m ‖ eT1

[

χ0 . . . χm

0 Σm

] [

χ0 . . . χm

0 Σm

]−1 [
0
Im

] [

χ0 . . . χm−1

0 Σm−1

]

= 0 · eT1 ,

which proves (10). After m iterations of GMRES we have

r(1)m = V
(1)
m+1

(

‖r
(1)
0 ‖ e1 −Hmym

)

, ym = argmin
∥

∥

∥‖r
(1)
0 ‖ e1 −H(1)

m y
∥

∥

∥ ,

and with ym = ‖r
(1)
0 ‖(Hm)†e1, we have

r(1)m = ‖r
(1)
0 ‖[v1, . . . , vm+1]

(

Im+1 −H(1)
m (Hm)†

)

e1.
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Taking norms on both sides gives

‖r(1)m ‖ = ‖r
(1)
0 ‖

∥

∥

∥

(

Im+1 −H(1)
m (Hm)†

)

e1

∥

∥

∥
. (11)

Thus

r
(1)
m

‖r
(1)
m ‖

= [v1, . . . , vm+1]c, c =

(

Im+1 −H(1)
m (Hm)†

)

e1
∥

∥

∥

(

Im+1 −Hm(H(1)
m )†

)

e1

∥

∥

∥

. (12)

Furthermore,

(g(1))∗c = (g(1))∗

(

Im+1 −Hm(H(1)
m )†

)

e1
∥

∥

∥

(

Im+1 −H(1)
m (Hm)†

)

e1

∥

∥

∥

= ‖r(1)m ‖
χ0

‖r
(1)
m ‖

‖r
(1)
0 ‖ = 1,

where we used (12), (11) and (8). It is easily checked from (5), that ‖g(1)‖ = 1.
By the Cauchy-Schwarz inequality 1 = (g(1))∗c ≤ ‖g(1)‖ ‖c‖ = 1, with equality
if and only if g(1) and c are collinear. �

As mentioned, the choice (7) of the first m columns of H guarantee that

H(1)
m is generated in the first m iterations of GMRES(m) applied to (2). We

next wish to define the entries of columns m+ 1 till 2m of H such that when
GMRES(m) is applied to (2), then, for a given Hessenberg matrix H(2)

m , the
Arnoldi decomposition built in the m iterations of the second cycle is of the
form

AV (2)
m = V

(2)
m+1H

(2)
m , V

(2)∗

m+1V
(2)
m+1 = Im+1, V

(2)
m+1e1 = V

(1)
m+1g

(1). (13)

Unfortunately, the Hessenberg matrix H(2)
m can not be chosen fully arbitrar-

ily: The next two results show that if the initial cycle has some stagnating
iterations at its end, this puts restrictions on the residual norms (and thus on

H(2)
m ) for the second cycle.

Theorem 2 Let A be a non-derogatory matrix. Assume that for the first cycle
of GMRES(m) we have

‖r
(1)
m−j−1‖ > ‖r

(1)
m−j‖ = . . . = ‖r(1)m ‖.

Then, [r
(1)
m ]∗Air

(1)
m = 0, i = 1, . . . , j.

Proof. Let A be of the form (2). With Lemma 1, r
(1)
m can be written as

r(1)m = ‖r(1)m ‖2[v1, . . . , vm+1]







χ0
...

χm






.



ADMISSIBLE BEHAVIOR OF RESTARTED GMRES 9

The stagnation assumption implies that χℓ = 0 for ℓ = m + 1 − j, . . . ,m.

We observe that the m + 1 first columns of V are equal to those of V
(1)
m+1.

Therefore,

r(1)m = ‖r(1)m ‖2V z(1),

where z(1) is a vector whose only nonzero components are z
(1)
i = χℓ, ℓ =

0, . . . ,m − j. Let us denote z(1) = [ξ(1), 0, · · · , 0]T where ξ(1) is a vector of
length m̃ = m+ 1− j.

Let us consider [r
(1)
m ]∗Air

(1)
m . Obviously, we have Ai = V HiV ∗ and

[r(1)m ]∗Air(1)m = ‖r(1)m ‖4[z(1)]∗V ∗V HiV ∗V z(1) = ‖r(1)m ‖4[z(1)]∗Hiz(1).

For i = 1, we have that z(2) = Hz(1) is a vector with nonzero compo-
nents on positions 1 till m + 2 − j and z(2) belongs to the span of columns
He1, . . . , Hem+1−j. Using (10), this gives [z(1)]∗Hz(1) = 0. Similarly, for i =
2, we have that z(3) = Hz(2) = H2z(1) is a vector with nonzero compo-
nents on positions 1 till m + 3 − j and z(3) belongs to the span of columns
He1, . . . , Hem+2−j. Using (10), this gives [z(1)]∗H2z(1) = 0. For i = j, we
have that z(j) = Hz(j−1) = Hjz(1) is a vector with nonzero components on
positions 1 till m+ 1 and z(j) belongs to the span of columns He1, . . . , Hem,
giving [z(1)]∗Hjz(1) = 0, using (10). �

Corollary 1 With the notation of Theorem 2 and assuming that

‖r
(1)
m−j−1‖ > ‖r

(1)
m−j‖ = . . . = ‖r(1)m ‖,

we have
‖r

(2)
0 ‖ = ‖r

(2)
1 ‖ = · · · = ‖r

(2)
j ‖,

which means that we have stagnation for the first j iterations of the second
cycle.

Proof. The result of the corollary is obtained from Theorem 2 using the
results of [34] on partial initial stagnation. �

The previous result can be easily generated for any pair of two consecutive
restart cycles. Thus a phase of stagnation at the end of some cycle is literally
mirrored, with the same length, at the beginning of the next cycle. Equiva-
lently, if a zero Ritz value appears during the last j subsequent iterations of a
cycle, it must reappear in the first j iterations of the cycle that follows. Zero
ordinary Ritz values correspond to a infite harmonic Ritz value being added
to the harmonic Ritz values of the previous iteration, see [5, Theorem 4.4] for
details. We are not aware of any reference to this property in the literature,
though the discussion in [29, Section 4] suggests that after stagnation in a
cycle, restarting will produce little new information to overcome slow conver-
gence. Our result shows that, even though we throw away the basis vectors
computed in the previous cycle, there is a lot of information in the residual
vector which is used to build the new basis. In case of stagnation this can be
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considered as unfortunate. In this case it may be better to restart from the
last FOM(m) approximate solution (if it is available). Other possibilities are
to go back to an iteration before stagnation started or to increase m hoping
that, at some near iteration, we can get out of stagnation.

Summarizing, it is not possible to prescribe for GMRES(m) any non-
increasing convergence curve. As soon as we prescribe stagnation at the end
of some cycle, the beginning of the next cycle must stagnate too; otherwise,
the convergence curve is inadmissible. The next section will show that this is
the only type of inadmissible convergence curve for GMRES(m).

3 Prescribing admissible convergence curves and (harmonic) Ritz
values

We will now assume that the very last iteration of each cycle does not stagnate.
For that case, we will construct linear systems that generate in every cycle fully
prescribed Hessenberg matrices (all their entries are prescribed values). This
will allow to fix residual norms inside cycles and we can prescribe the Ritz
values or the harmonic Ritz values generated in the restart cycles as well. To
begin with, we again consider the first two cycles. We have the following simple
lemma.

Lemma 2 Let GMRES(m) be applied to A and b of the form (2) and let it
have generated after m iterations the Arnoldi decomposition of the form (6).

Then, for a given (m+1)×m Hessenberg matrix H(2)
m , the restarted GMRES

method has generated, at the end of the second cycle, an Arnoldi decomposition
of the form (13) if and only if m iterations of the Arnoldi process with input

matrix H and initial vector
[

(g(1))T 0
]T

generate the decomposition

HZ(2)
m = Z

(2)
m+1H

(2)
m , Z

(2)
m+1e1 =

[

(g(1))T 0
]T

, (14)

where the matrix Z
(2)
m+1 = V ∗V

(2)
m+1 has orthogonal columns.

Proof. For the claim it suffices to use A = V HV ∗ and to define Z
(2)
m+1 ≡

V ∗V
(2)
m+1. �

Our goal is to find entries of H which ensure that (14) holds for a given

matrix H(2)
m . However, the involved matrix Z

(2)
m+1 with orthonormal columns

is not fixed. The probably easiest way to satisfy (14) is to assume that Z
(2)
m+1

has the particularly simple structure

Z
(2)
m+1 =





g(1) 0
0 Im
0 0



 . (15)
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We can find the columns m + 1 until 2m of the matrix H satisfying (14) for
this specific choice directly: Equating the first column of

HZ(2)
m = Z

(2)
m+1H

(2)
m (16)

gives, with the notation (g(1))T = [ĝ(1), g
(1)
m+1]

T ,

HZ(2)
m e1 =

[

H(1)
m

0

]

ĝ(1) + g
(1)
m+1Hem+1 = h

(2)
1,1







g(1)

0
...






+ h

(2)
2,1em+2,

where h
(2)
i,j are the entries of H(2)

m . Thus the nonzero entries of the (m + 1)st
column of H satisfy







h1,m+1

...
hm+1,m+1






=

1

g
(1)
m+1

(

h
(2)
1,1g

(1) −Hmĝ(1)
)

, hm+2,m+1 =
h
(2)
2,1

g
(1)
m+1

. (17)

For the columns m+2 until 2m of H we obtain directly, using ,,Matlab nota-
tion”, from

HZ(2)
m (e2, . . . , em) = H:,m+2:2m = Z

(2)
m+1H

(2)
m (e2, . . . , em)

that

H:,m+2:2m =





g(1)

0
0

0
Im
0















H(2)
m

[

0
Im−1

]

0
...











=























g(1)eT1 H
(2)
m

[

0
Im−1

]

[

0 Im
]

H(2)
m

[

0
Im−1

]

0
...























. (18)

The obtained values for the entries (17) and (18) in the columns m+1 till 2m
of H can be represented as is done in the following theorem. In the statement
we use that a nonsingular m×m leading principal submatrix of the generated
Hessenberg matrix guarantees that there is no stagnation at the end of the
corresponding GMRES(m) cycle (see, e.g., [2]). Please note that the displayed
matrix







H(1)
m 0

0 H(2)
m

...
...







is unreduced upper Hessenberg; its m + 1st row contains m zeros, the entry

h
(1)
m+1,m and then the first row of H(2)

m .
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Theorem 3 Given two (m+1)×m unreduced Hessenberg matrices H(1)
m and

H(2)
m where H(1)

m has nonsingular m×m leading principal submatrix, these two
Hessenberg matrices are consecutively generated in the first two cycles of the
GMRES(m) method applied to H and e1 if the first 2m columns of H are of
the form

H:,1:2m =







H(1)
m 0

0 H(2)
m

... 0






+







0 H
(2)
0

...
...
0






,

where the (m+ 2)×m matrix H
(2)
0 is the rank-two matrix

H
(2)
0 =





ĝ(1)

g
(1)
m+1 − 1

0



 eT1 H
(2)
m −

1

g
(1)
m+1

([

(g
(1)
m+1 − 1)h

(2)
1,1g

(1)

(1− g
(1)
m+1)h

(2)
2,1

]

+

[

Hmĝ(1)

0

]

)

eT1 .

Proof. We would like to write the entries in columns m + 1 till 2m found
in (17) and (18) in the form

H:,m+1:2m =





0

H(2)
m

0



+







H
(2)
0
...
0






,

As can be seen from (18), in H the rows m+ 2 till 2m+ 1 of columns m+ 2

till 2m are just the trailing m× (m− 1) block of H(2)
m . As for the first m+ 1

rows of columns m+ 2 till 2m, they can be written as

g(1) · eT1 H
(2)
m

[

0
Im−1

]

=





0

eT1 H
(2)
m

[

0
Im−1

]



+

[

ĝ(1)

δ(1)

]

eT1 H
(2)
m

[

0
Im−1

]

,

with δ(1) = g
(1)
m+1−1. The m+1st column of H, according to (17), has leading

m+ 1 entries which can be written in the form







h1,m+1

...
hm+1,m+1






=

1

g
(1)
m+1

(

h
(2)
1,1g

(1) −Hmĝ(1)
)

=











0
...
0

h
(2)
1,1











+ h
(2)
1,1

[

ĝ(1)

δ(1)

]

−
1

d
(1)
m+1









h
(2)
1,1δ

(1)









d
(1)
1
...

d
(1)
m+1









+H(1)
m ĝ(1)









.

The last row of H
(2)
0 follows from the fact that hm+2,m+1 =

h
(2)
2,1

g
(1)
m+1

, see (17). �
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We now generalize the previous theorem for other cycles. During the second
restart cycle, let an Arnoldi decomposition denoted

AV (3)
m = V

(3)
m+1H

(3)
m (19)

be generated where the matrix V
(3)
m+1 has orthogonal columns. It follows from

Lemma 1 that

V
(3)
m+1e1 =

r
(2)
m

‖r
(2)
m ‖

= ‖r(2)m ‖V
(2)
m+1









χ
(2)
0
...

χ
(2)
m









,

where |χ
(2)
0 | = 1

‖r
(2)
0 ‖

, |χ
(2)
j | =

√

1

‖r
(2)
j

‖2
− 1

‖r
(2)
j−1‖

2
, j = 1, . . . ,m.

For the same reasons as explained in Lemma 2, the decomposition (19)

with H(3)
m given is generated by restarted GMRES(m) applied to A = V HV ∗

and b = V e1 if (and only if)

HZ(3)
m = Z

(3)
m+1H

(3)
m , (20)

with initial vector

Z
(3)
m+1e1 = V ∗V

(3)
m+1e1 = V ∗V

(2)
m+1‖r

(2)
m ‖









χ
(2)
0
...

χ
(2)
m









= ‖r(2)m ‖Z
(2)
m+1



















χ
(2)
0
...

χ
(2)
m

0
...



















= ‖r(2)m ‖





g(1)

0
0

0
Im
0























χ
(2)
0
...

χ
(2)
m

0
...



















.

Let us use the notation







g(2)

0
...






≡ ‖r(2)m ‖





g(1)

0
0

0
Im
0























χ
(2)
0
...

χ
(2)
m

0
...



















, (g(2))T = [ĝ(2), g
(2)
2m+1]

T (21)

and let us choose the matrix Z
(3)
m+1 with orthonormal columns in (20) to have

the simple form

Z
(3)
m+1 =





g(2) 0
0 Im
0 0



 . (22)
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Let H1:2m+1,1:2m be as defined in Theorem 3, which guarantees that the
initial cycle and the first restart applied to H and e1 generate the given matri-
ces H(1)

m and H(2)
m , respectively. To generate in the next cycle the prescribed

matrix H(3)
m , we can apply Theorem 3 analogously. It gives that the first 3m

columns of H must be of the form

H:,1:3m =







H1:2m+1,1:2m 0

0 H(3)
m

... 0






+







0 H
(3)
0

...
...
0






,

where the size (2m+ 2)×m matrix H
(3)
0 is the rank-two matrix

H
(3)
0 =





ĝ(2)

g
(2)
2m+1 − 1

0



 eT1 H
(3)
m

−
1

g
(2)
2m+1

([

(g
(2)
2m+1 − 1)h

(3)
1,1g

(2)

(1− g
(2)
2m+1)h

(3)
2,1

]

+

[

H1:2m+1,1:2mĝ(2)

0

]

)

eT1 .

All further columns of H , determining the Hessenberg matrices generated
in all cycles after the third cycle, can be defined analogously. We summarize
this result in the following theorem.

Theorem 4 Let us for N such that Nm < n have Nm given positive decreas-
ing numbers satisfying

f
(1)
0 ≥ f

(1)
1 ≥ . . . f

(1)
m−1 > f (1)

m = f
(2)
0

≥ f
(2)
1 ≥ . . . f

(2)
m−1 > f (2)

m = f
(3)
0

... (23)

≥ f
(N)
1 ≥ . . . f

(N)
m−1 > f (N)

m > 0

and N given size (m+ 1)×m upper Hessenberg matrices H(k)
m , 1 ≤ k ≤ N of

the form

H(k)
m =

[

χ
(k)
0 . . . χ

(k)
m

0 T
(k)
m

]−1
[

0
Im

]

[

χ
(k)
0 . . . χ

(k)
m−1

0 T
(k)
m−1

]

(24)

where

|χ
(k)
0 | =

1

f
(k)
0

, |χ
(k)
i | =

√

√

√

√

(

1

f
(k)
i

)2

−

(

1

f
(k)
i−1

)2

, i = 1, . . . ,m,
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and where T
(k)
m is a nonsingular upper triangular matrix with leading principal

submatrix T
(k)
m−1. Let







g(1)

0
...






= f (1)

m









χ
(1)
0
...

χ
(1)
m









,







g(k)

0
...






= f (k)

m





g(k−1)

0
0

0
Im
0























χ
(k)
0
...

χ
(k)
m

0
...



















and let
(g(k))T = [ĝ(k), g

(k)
km+1]

T .

Then GMRES(m) applied to the unreduced upper Hessenberg matrix H and

e1 generates consecutively the residual norms satisfying ‖r
(k)
j ‖ = f

(k)
j and the

upper Hessenberg matrices H(1)
m , . . . , H(N)

m ∈ C(m+1)×m if the first m columns
of H are

H:,1:m =







H(1)
m

0
...







and for every k, 1 ≤ k < N , the first (k + 1)m columns of H are of the form

H:,1:(k+1)m =







H1:km+1,1:km 0

0 H(k+1)
m

... 0






+







0 H
(k+1)
0

...
...
0






,

where the size (km+ 2)×m matrix H
(k+1)
0 is the rank-two matrix

H
(k+1)
0 =





ĝ(k)

g
(k)
km+1 − 1

0



 eT1 H
(k+1)
m

−
1

g
(k)
km+1

([

(g
(k)
km+1 − 1)h

(k+1)
1,1 g(k)

(1 − g
(k)
km+1)h

(k+1)
2,1

]

+

[

H1:km+1,1:kmĝ(k)

0

]

)

eT1 .

The previous theorem shows that any non-increasing convergence curve is
possible for restarted GMRES provided strict decrease is prescribed at the
end of all cycles. However, this is proved for the N initial cycles only, where
Nm < n. The theorem also shows how to prescribe all the Hessenberg matrices
generated during all the N restarts. By the choice of the entries of these
Hessenberg matrices, we can prescribe as well the Ritz values or the harmonic
Ritz values of the cycles. We remark that other choices of the entries of the
Hessenberg matrices might prescribe other interesting values. For example,
in [10, Section 6.3] it is shown that singular values can be prescribed. As for
the spectrum of the system matrix, we can use the following.
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Lemma 3 Let H be an unreduced upper Hessenberg matrix of size n whose
leading n − 1 columns are given and consider n complex numbers λ1, . . . , λn.
The last column of H can be chosen such that H has the eigenvalues λ1, . . . , λn.

Proof. See [6, Theorem 2.2] or [25, Theorem 3]. �

4 Relation with full GMRES

The construction in Theorem 4 represents only one particular way to prescribe
the residual norm history for GMRES(m), because it assumes a specific chosen
structure of the bases Z(k) in the subsequent restart cycles (see, e.g., (15),
(22)). It is a construction with an interesting relation to the full GMRES
process. To prove this relation we need the following lemma, which has its
own interest.

Lemma 4 Let full GMRES generate the Hessenberg matrix H and consider
the recursion

χ0 =
1

‖r0‖
, χi =

−1

hi+1,i
[χ0, . . . , χi−1]

T







h1,i

...
hi,i






, i = 1, 2, . . . , n− 1. (25)

Then χ = [χ0, . . . , χn−1]
T is the first row of U−1 in the triangular Hessen-

berg decomposition (3) of H (with Ue1 = ‖r0‖e1), and the ith residual norm
satisfies

‖ri‖
2 =





i
∑

j=0

|χj |
2





−1

, i = 1, 2, . . . , n− 1. (26)

Proof. In [24, Section 4] it was proved that if H = UCU−1 is the decom-
position (3) and νi,j are the entries of U−1, then













ν1,i+1

...

...
νi+1,i+1













=
1

hi+1,i





















0
ν1,i
...

νi,i











−











U−1
i hi

...

0





















, i = 1, . . . , n− 1, (27)

where hi = [h1,i, · · · , hi,i]
T and where Ui is the leading principal submatrix of

size i of U . The recursion in the claim follows, with the notation χj = ν1,j+1,
from equating the first row in (27). Because of Theorem 1, the residual norms
satisfy

1

‖r0‖
= |χ0|,

√

1

‖ri‖2
−

1

‖ri−1‖2
= |χi|, i = 1, . . . , n− 1.
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Equality (26) follows from a straightforward induction argument applied to
1

‖ri‖2 − 1
‖ri−1‖2 = |χi|

2, i = 1, . . . , n− 1. �

Formula (26) gives with (25) a recursion to compute the GMRES residual
norms directly from the entries of the generated Hessenberg matrix (which
cannot be expected to be as stable as the usual way to compute GMRES
residual norms based on a QR-decomposition of the Hessenberg matrix).

Theorem 5 Consider the matrix H constructed in Theorem 4. The residual
norms generated when GMRES(m) is applied to the linear system with H and
e1 are the same as when full GMRES is applied to this linear system.

Proof. The first m residual norms are trivially identical. For the rest of the
proof we will compare the sizes of the values χ1,i corresponding to full GMRES
with those corresponding to restart cycles; if they are equal, the residual norms
are equal as well. The values of the χ1,i for full GMRES can be computed from
the recurrence (25) in Lemma 4.

The first χ
(2)
i in the first restart are, with Lemma 4,

χ
(2)
0 =

1

‖r
(2)
0 ‖

, χ
(2)
1 = −

χ
(2)
0 h

(2)
1,1

h
(2)
2,1

. (28)

The value χm+1 for full GMRES is

χm+1 =
−1

hm+2,m+1
(χ0, . . . , χm)T







h1,m+1

...
hm+1,m+1






, (29)

where the entries h1,m+1 . . . , hm+1,m+1 are given by







h1,m+1

...
hm+1,m+1






=

1

g
(1)
m+1









h
(2)
1,1g

(1) −H(1)
m









g
(1)
1
...

g
(1)
m

















, hm+2,m+1 =
h
(2)
2,1

g
(1)
m+1

,

see (17). If we multiply the first equality in the previous equation with the
row vector (χ0, . . . , χm)T we have for the first term on the right-hand side

(χ0, . . . , χm)Th
(2)
1,1g

(1) = χ
(2)
0 h

(2)
1,1 because

(χ0, . . . , χm)T g(1) = 1/‖r(1)m ‖ = χ
(2)
0 , (30)

see (8). The second term is zero because of (10).

Substituting in (29) gives χm+1 =
−χ

(2)
0 h

(2)
1,1

h
(2)
2,1

, which equals the second ex-

pression in (28).
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The next value χ
(2)
i after the first restart is, with Lemma 4,

χ
(2)
2 =

−(χ
(2)
0 , χ

(2)
1 )T

[

h
(2)
1,2

h
(2)
2,2

]

h
(2)
3,2

.

For full GMRES we have

χm+2 =
−(χ0, . . . , χm)T g(1)h

(2)
1,2 − χm+1h

(2)
2,2

h
(2)
3,2

,

see (18). Because of (30), χm+2 = χ
(2)
2 . The equality of the remaining χi, and

therefore of the remaining residual norms follows by induction. The same proof
can be used for subsequent restart cycles. �

The linear system we have constructed in Theorem 4 to generate prescribed
GMRES(m) residual norms represents in fact a best case scenario for restarted
GMRES: It converges as fast as full GMRES. In other words, the GMRES
minimization process can for this system be carried out with m + 1-term
recurrences. This property is due to the special structure of Arnoldi vectors
in the individual restart cycles used to construct the linear systems (see e.g.,
equations (15) and (22)). It implies that nearly all Arnoldi vectors generated
in full GMRES are orthogonal to the Arnoldi vectors in the restart cycles (this
is in fact the situation where κ(V2m+1) = 1 in [29, Corollary 6.3]).

An interesting consequence of the optimality property for GMRES(m) ap-
plied to the systems constructed in Theorem 4 is that no other restart length
than m can give faster convergence (as no restart length can give faster con-
vergence than full GMRES). In particular, not even larger restart lengths
produce convergence faster than GMRES(m) for the systems constructed in
Theorem 4. Thus we have found a class of systems exhibiting the counter-
intuitive behavior encountered sometimes in practice, where a larger restart
parameter slows down convergence speed. This behavior has for instance been
observed for sparse matrices resulting from standard five-point stencils [31].

We give an example for illustration. Suppose we wish to construct a linear
system Ax = b with A ∈ R16×16, b ∈ R16, such that the residual norm history
for GMRES(5) is
[

‖r
(1)
0 ‖, ‖r

(1)
1 ‖, . . . , ‖r

(1)
5 ‖

]

= [1, 0.7, 0.4, 0.1, 0.07, 0.04],
[

‖r
(2)
0 ‖, ‖r

(2)
1 ‖, . . . , ‖r

(2)
5 ‖

]

= [0.04, 0.01, 0.007, 0.004, 0.001, 7 · 10−4], (31)
[

‖r
(3)
0 ‖, ‖r

(3)
1 ‖, . . . , ‖r

(3)
5 ‖

]

= [7 · 10−4, 4 · 10−4, 10−4, 7 · 10−5, 4 · 10−5, 10−5].

The residual norms for the three restart cycles can be obtained by defining
three appropriate Hessenberg matrices of size 6×5 using (4), where the values
χi are determined by the prescribed residual norms except for the phase angles.
We will choose all these values to be positive and we will choose all three
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matrices Σ5 in (4) to be the upper triangular matrix of ones (we are not
interested in forcing specific (harmonic) Ritz values here). The corresponding

Hessenberg matrices H
(1)
5 , H

(2)
5 , H

(3)
5 will be generated by GMRES(5) if we

use the construction of Theorem 4. In our example we use V ≡ I16 (though
any other unitary V would give the same behavior reported below).

0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Fig. 1 GMRES residual norm curves for GMRES(5) (solid, crosses indicate restart), GM-
RES(6) (dash-dotted, circles indicate restart), GMRES(7) (dotted, triangles indicate restart)
and GMRES(8) (dashed, squares indicate restart).

GMRES(5) applied to the linear systems constructed in this way produces
the solid convergence curve in Figure 1. Of course, it corresponds with the
residual norm history given in (31). Our experiment also confirmed that full
GMRES applied to the system yields the same solid curve. The other curves
represent residual norms generated with larger restart lengths (6, 7 and 8). As
explained, they do not show faster convergence behavior than GMRES(5).

As mentioned, we have so far constructed particular linear systems generat-
ing prescribed Hessenberg matrices based on the assumption that the Arnoldi
vectors of the restart cycles have an especially simple structure (see (15), (22)).
Other choices of these Arnoldi vectors might be possible and give additional
ways to prescribe the Hessenberg matrices of the individual cycles. But the
resulting linear systems will in general not satisfy Theorem 5 with the conse-
quences for larger restart lengths that we just discussed.

To investigate how to obtain alternative ways to prescribe the Hessenberg
matrices of the individual cycles, let us focus on the first two cycles. Let
H2m = H1:2m+1,1:2m denote the left upper block of the Hessenberg matrix H
defined in Theorem 4, which guarantees that the given Hessenberg matrices
H(1)

m and H(2)
m are generated in the first two cycles. Let Ĥ2m ∈ C(2m+1)×2m

be the left upper block of another Hessenberg matrix Ĥ such that the same
Hessenberg matricesH(1)

m andH(2)
m are generated as well, in the first two cycles



20 Jurjen Duintjer Tebbens, Gérard Meurant

of GMRES(m) applied to Ĥ and e1. The unreduced upper Hessenberg matrix
Ĥ2m can be transformed into H2m with a nonsingular upper triangular matrix
as follows. Let us decompose H2m and Ĥ2m as

H2m = U2m+1C0U
−1
2m, Ĥ2m = Û2m+1C0Û

−1
2m, C0 =

[

0
I2m

]

(32)

(with U2m resp. Û2m being the leading principal submatrix of size 2m of U2m+1

resp. Û2m+1) by equating consecutively the columns 1 till 2m of the equations
H2mU2m = U2m+1C0 and Ĥ2mÛ2m = Û2m+1C0 with U2me1 = Û2me1 = e1.
Then

Ĥ2m = X−1
2m+1H2mX2m, X2m+1 = U2m+1Û

−1
2m+1, X2m = U2mÛ−1

2m. (33)

In the next theorem we give necessary and sufficient conditions for the entries
of the matrix X2m+1 such that GMRES(m) applied to Ĥ and e1 generates the

given Hessenberg matrices H(1)
m and H(2)

m .

Theorem 6 Let H(1)
m ∈ C(m+1)×m and H(2)

m ∈ C(m+1)×m be given unreduced
upper Hessenberg matrices with real positive subdiagonal and nonsingular lead-
ing m × m principal submatrix. The first two restart cycles of GMRES(m)

applied to Ĥ ∈ Cn×n and e1 ∈ Cngenerate, subsequently, H(1)
m and H(2)

m if and
only if the left upper block Ĥ2m ∈ C

(2m+1)×2m of Ĥ is of the form

Ĥ2m =

[

Im+1 H(1)
m Sm

0 Rm

]−1

H2m

[

Im+1 H(1)
m Sm−1

0 Rm−1

]

, (34)

where H2m ∈ C(2m+1)×2m is the left upper block of the Hessenberg matrix H
defined in Theorem 4, Rm ∈ C

m×m is a nonsingular upper triangular ma-
trix with leading principal submatrix Rm−1 such that R∗

mRm − Im is positive
semidefinite and Sm ∈ Cm×m is a square matrix with first m − 1 columns
denoted by Sm−1 such that

(H(1)
m Sm)∗H(1)

m Sm = R∗
mRm − Im. (35)

Proof. GMRES(m) applied to Ĥ and e1 generates in the initial cycle the

Hessenberg matrix H(1)
m if and only if

[

Im+10
]

Ĥ2m

[

Im
0

]

= H(1)
m ⇔

[

Im+10
]

X2m+1H2mX−1
2m

[

Im
0

]

= H(1)
m .

Using the facts that the leading (m+1)×m submatrix of H2m is equal to H(1)
m

and that X2m+1 is upper triangular, we obtain the equivalent condition that
the leading principal submatrix of X2m+1 of size m + 1 must be the identity
matrix.

GMRES(m) applied to Ĥ and e1 generates in the second cycle the Hessen-

berg matrix H(2)
m if and only if HZm = Zm+1H

(2)
m with the columns of Zm+1

orthogonal to each other and Zem+1 =
[

(g(1))T 0
]T

see Lemma 2. As this
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Arnoldi decomposition lives only on the left upper (2m+1)×2m block of Ĥ it

can also be written, with a slight abuse of notation, as Ĥ2mZm = Zm+1H
(2)
m .

Similarly, H2mZm = Zm+1H
(2)
m , where H is defined in Theorem 3 and

Zm+1 =

[

g(1)

0
0
Im

]

∈ C
(2m+1)×(m+1).

Thus X2m+1Ĥ2mX−1
2mZm = Zm+1H

(2)
m , see (33), and by comparison with

Ĥ2mZm = Zm+1H
(2)
m we have Zm+1 = X−1

2m+1Zm+1. The matrix X2m+1 has
the form

X2m+1 =

[

Im+1 Y
0 Rm

]

and since the columns of Zm+1 must be orthonormal, we have

Z∗
m+1Zm+1 = Z∗

m+1X
−∗
2m+1X

−1
2m+1Zm+1

=

[

g(1)

0
0
Im

]∗ [
Im+1 −Y R−1

m

0 R−1
m

]∗ [
Im+1 −Y R−1

m

0 R−1
m

] [

g(1)

0
0
Im

]

=

[

1 −
(

g(1)
)∗

Y R−1
m

−R−∗
m Y ∗g(1) (Y R−1

m )∗Y R−1
m +R−∗

m R−1
m

]

= Im+1,

where we used that ‖g(1)‖ = 1. The orthogonal complement of g(1) is the space

generated by the columns of H(1)
m , see (10). Therefore the off-diagonal blocks

are zero if and only if Y is of the form H(1)
m Sm. Then the trailing principal

submatrix equals Im if and only if (35) is satisfied. �

Theorem 6 can be generalized for more than two cycles, thus giving a
description of all possible ways for constructing linear systems with prescribed
GMRES(m) residual norms and prescribed (harmonic) Ritz values, provided
there is no stagnation at the end of the restart cycles. In combination with
Theorem 4, it is then possible to formulate a complete parametrization of
the entire class of linear systems yielding prescribed Hessenberg matrices for
the first N cycles when GMRES(m) is applied. The freedom allowed by the
parametrization is in the choice of the unitary matrix V , in the individual
upper triangular matrices Rm in (34) and of course in possibly undefined
columns of H corresponding to cycles after the Nth cycle (which can be used
to prescribe the spectrum).

We may, by the choice of Rm in (34), try to modify the residual norms
for full GMRES while leaving the convergence of GMRES(m) unchanged. In
the remainder of this section we merely outline how this could be done and
some difficulties that can arise, without completely answering the question of
whether the convergence of GMRES(m) and full GMRES can be prescribed
simultaneously.

Let us decompose H2m and Ĥ2m in (34) as in (32). Because H is the
matrix from Theorem 4, Theorem 5 tells us that it generates the same residual
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norms as GMRES(m) when full GMRES is applied. Therefore, the first row
of (U2m)−1 contains entries χi satisfying

χ0 =
1

‖r
(1)
0 ‖

, |χi| =

√

1

‖r
(1)
i ‖2

−
1

‖r
(1)
i−1‖

2
, i = 1, . . .m,

|χm+i| =

√

1

‖r
(2)
i ‖2

−
1

‖r
(2)
i−1‖

2
, i = 1, . . .m− 1.

For the decomposition of the matrix Ĥ2m in (32), we have

Û−1
2m = U−1

2m

[

Im+1 H(1)
m Sm−1

0 Rm−1

]

and the first row of Û−1
2m denoted as [χF

0 , . . . , χ
F
2m−1]

T determines the residual

norms generated when we apply full GMRES to Ĥ with right-hand side e1
through

χF
0 =

1

‖rF0 ‖
, |χF

i | =

√

1

‖rFi ‖
2
−

1

‖rFi−1‖
2
, i = 1, . . . 2m− 1.

For example, the (m+ 2)nd entry of that row is

χF
m+1 = [χ0, . . . , χ2m−1]

[

Im+1 H(1)
m Sm−1

0 Rm−1

]

em+2 = χm+1r1,1, (36)

where r1,1 is the leading entry of Rm and where we used the property (10).
We have to distinguish two cases.

First, let χm+1 = 0, i.e. the first iteration of the restart cycle stagnates.
Then necessarily χF

m+1 = 0, i.e. full GMRES stagnates as well, regardless of
the choice of Rm. Once more, the phenomenon of stagnation puts a restriction
on residual norms that can be prescribed. Clearly if we prescribe stagnation
in iterations m+ 1 till 2m for full GMRES, then GMRES(m) must stagnate,
too. We prove below that the opposite is true as well, provided there is no
stagnation at the end of the first cycle.

Theorem 7 Let there be no stagnation at the end of the (k − 1)st restart
cycle of GMRES(m), km < n. GMRES(m) stagnates during the first j it-
erations of the kth restart cycle, if and only if full GMRES applied to the
same system stagnates as well in the corresponding iterations (i.e. in itera-
tions km+ 1, . . . , km+ j).

Proof. We will prove the claim for the initial and first restart cycle, the
generalization for any two subsequent cycles being straightforward. One direc-
tion of the equivalence has been explained in the text above. It can be seen
from the decomposition (4) that if GMRES(m) stagnates during the first j

iterations after its first restart, then the first row of H(2)
m is zero on positions



ADMISSIBLE BEHAVIOR OF RESTARTED GMRES 23

1 till j. Let the linear system have the form (2). Because of Lemma 2 we have

H(2)
m = Z∗

m+1HZm with the first m+1 entries of Zme1 equal to g(1); the entry

g
(1)
m+1 is nonzero per assumption. Let hm+1 denote the (m+1)st column of H .
Then

0 = eT1 H
(2)
m e1 = (g(1))∗H(1)

m

[

Im 0
]

g(1) + [(g(1))∗ 0]hm+1g
(1)
m+1

= g
(1)
m+1(g

(1))∗ĥm+1,

where we used (10) and ĥm+1 denotes the vector of the first m + 1 entries
of hm+1. The orthogonal complement of g(1) being spanned by the linearly
independent columns of H(1)

m ((10)), ĥm+1 must be a linear combination of
these columns. Hence the (m + 1) × (m + 1) leading principal submatrix of
H is singular and full GMRES stagnates in the (m + 1)st iteration. Using

eT1 H
(2)
m ei for i > 1 and induction, the stagnation of the subsequent iterations

follows analogously. �

Let us return to (36) and now asume that χm+1 6= 0. Then the entry χF
m+1

in (36) can be made any value equal or larger than χm+1 (which corresponds

to ‖rFm+1‖ ≤ ‖r
(2)
1 ‖ ) with a number r1,1 satisfying |r1,1| ≥ 1. This is the

first step in finding an upper triangular matrix Rm such that R∗
mRm − Im is

positive semidefinite and such that

χF
m+i = [χ0, . . . , χ2m−1]

[

Im+1 H(1)
m Sm−1

0 Rm−1

]

em+i+1, i = 1, . . . ,m− 1.

for given values of χF
m+i. Using property (10), this amounts to finding an upper

triangular matrix Rm such that

[χm+1, . . . , χ2m−1]Rm−1 = [χF
m+1, . . . , χ

F
2m−1]

and such that R∗
mRm − Im is positive semidefinite.

We remark that in the case where χF
m+i = χm+i, i = 1, . . . ,m − 1, Rm

can be trivially chosen as the identity matrix, but other appropriate choices
of Rm might result in χF

m+i = χm+i, i = 1, . . . ,m − 1, as well. Hence the
systems constructed in Theorem 4 seem not to be the only systems where
the full GMRES process can produce the same behavior as GMRES(m) and
be computed with m+1-term recurrences (with prescribed upper Hessenberg

matrices H(k)
m for the individual cycles).

5 Conclusions and open questions

We showed that the admissible non-increasing convergence curves for restarted
GMRES satisfy precisely one restriction: Stagnation at the end of a cycle is
always repeated at the beginning of the next cycle. Thus it does not seem to be
a good idea to restart GMRES with the current approximation if stagnation is
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observed. This is a strong motivation for restarting with other types of approx-
imations or with incorporation of a deflation strategy. We further showed that
neither the Ritz nor the harmonic Ritz values generated in restarted GMRES
need be useful approximations of the eigenvalues. Moreover, the convergence
speed of restarted GMRES need not be governed by the eigenvalues.

Our parametrization of the entire class of matrices and right-hand sides
yielding prescribed residual norms, eigenvalues and (harmonic) Ritz values re-
veals, as a by-product, a class of matrices and right-hand sides for which full
GMRES can be carried out with short, m+1-term recurrences. It yields some
examples of the counterintuitive behavior of restarted GMRES where a larger
restart length gives slower convergence. Another result related to the connec-
tion with full GMRES is that restarted GMRES stagnates at the beginning
of a cycle if and only if full GMRES stagnates in the corresponding iterations
(where we assume restarted GMRES did not stagnate at the end of the previ-
ous cycle). Of course, in practical problems, we almost never encounter exact
stagnation.

An interesting question is whether our results can be formulated for ma-
trices with a given sparsity pattern, like those arising in finite differences or
elements discretizations. Another question is whether the obtained results are
valid for other restarted Krylov subspace methods as well. Generalizations
of analogue results for full GMRES to other (nonrestarted) methods like the
QMR method [14], were given in [8].

We did not show here some additional results when prescribing stagnation
at the end of cycles and, necessarily, stagnation at the beginning of the next
cycles. We did not either address prescribing the behavior for iteration numbers
higher than the system size. This case, though not very relevant for practice,
leads to an interesting theoretical challenge for possible future work.

Software

At the link http://www.cs.cas.cz/duintjertebbens/duintjertebbens soft.html the
reader can find MATLAB subroutines to create matrices and initial vectors
with the parametrizations in this paper.

Acknowledgements We thank Eric de Sturler for a discussion that has stimulated the
search for some of the results in Section 4.
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