
NUMERICAL METHODS FOR SCIENTIFIC COMPUTING
VARIATIONAL PROBLEMS AND APPLICATIONS

Y. Kuznetsov, P. Neittanmaki and O. Pironneau (Eds.)
c© CIMNE, Barcelona, 2003

PARALLEL ALGEBRAIC MULTILEVEL
PRECONDITIONERS

Gérard Meurant

CEA/DIF
BP 12, 91680 Bruyères le Chatel
France
Email: gerard.meurant@cea.fr
Web page: http://perso.wanadoo.fr/gerard.meurant

Abstract. We study the parallelization of some aspects of algebraic multilevel
preconditioners for solving symmetric positive definite linear systems with the con-
jugate gradient algorithm. We use partitioning of the graph of the matrix. We are
particularly concerned with parallelization of the construction of the smoothers and
of the coarsening algorithms. Finally, we give some numerical examples showing
that when completely parallelized these algorithms may not be fully scalable.

This paper is dedicated to Jacques Périaux on the occasion of his sixtieth birthday

Key words: algebraic multigrid, conjugate gradient, preconditioner.

1 INTRODUCTION

In this paper we study the parallelization of algebraic multilevel preconditioners
for solving sparse symmetric positive definite linear systems Ax = b with the con-
jugate gradient (CG) algorithm. The algebraic multilevel techniques use smoothing
operators and coarsening algorithms which are difficult to parallelize. To introduce
more parallelism we will study the use of partitioning of the graph of the matrix. In
section 2, we briefly review the algebraic multilevel preconditioners see

1,2
. Section

3 describes the parallelization of the coarsening algorithms. Section 4 is concerned
with the parallel construction of the smoothers. Finally, section 5 gives numerical
results showing that the number of CG iterations depends, even though only slightly,
on the number of subdomains or the dimension of the problem.

2 ALGEBRAIC MULTILEVEL PRECONDITIONERS

All these preconditioners use the same design principles as the Algebraic Multi-
Grid algorithm (AMG). The standard AMG is a multigrid–like method that has

been firstly defined for M–matrices, see Ruge and Stuben
3,4
. Instead of using the

mesh of the discretization as in geometric multigrid, AMG uses the graph of A. Af-
ter some smoothing steps, the equation for the error Ae = r with the residual as the
right hand side is solved recursively on a coarser graph, corresponding to a subset of

1

the unknowns and this method is used recursively until the number of unknowns is
small enough to allow for a fast direct solve. In AMG the coarse graphs are defined
by looking at the entries of the matrix. The set of dependencies of an unknown (a
node in the graph) is defined by (a part of) the neighbours of the given node. An
influence set is defined for each unknown as the “transpose” of the set of dependen-
cies. The fine and coarse nodes for each level are found on this basis. Then, knowing
the fine and coarse nodes, interpolation weights are computed using the entries of
the matrix and the equations of the linear system. The restriction R (going from
a grid to the next coarser grid) is the transpose of the interpolation (prolongation)
matrix P and the next coarse matrix is generally defined as Ac = RAP . As we
said before, the method also uses a smoothing operator. An iteration (denoted as a
V–cycle) of the recursive AMG algorithm is the following:

1. Do ν iterations of smoothing.

2. Restrict the residual r to rc = Rr.

3. Recursively solve Acec = rc.

4. Interpolate ec to e = Pec.

5. Add the correction e to the current iterate.

6. Do ν iterations of smoothing.

If everything is symmetric including the smoothing operator a preconditioner for
PCG is obtained by running one iteration of the previous algorithm starting from
x0 = 0 going down levels to the coarsest one where the linear system is solved using
Gaussian elimination, and then going back up to the finest level.

2.1 The smoother

One way to extend what is done in classical geometric multigrid is to use a
symmetric Gauss–Seidel iteration as a smoother which unfortunately is rather se-
quential. A way to parallelize it is to color the unknowns or to use the previous
smoothing iteration when unknowns from other processors are needed. But we will
not consider this here.

A very efficient smoother is the Incomplete Cholesky (IC) decomposition LD−1LT

(where L is lower triangular and D diagonal) of the matrix. There are many different
variants of this algorithm. The most popular one is to use a decomposition for which
the non zero structure of L is the same as the structure of the lower triangular part
of A. This is usually denoted as IC(0). This incomplete decomposition is used as a
smoother in a Richardson iteration

LD−1LT (xk+1 − xk) = b − Axk

when solving Ax = b. We will denote this smoother by ’ic’. Another idea is to
use an approximate inverse M from AINV as a smoother in a Richardson iteration
defined as

xk+1 = xk + M(b − Axk),

when solving Ax = b
2,5
. This preconditioner introduced by Benzi and al.

5
computes

an approximate factorization M = ZD−1ZT of the inverse of A where Z is upper
triangular and D diagonal and involves a parameter τ used to define which elements
are dropped during the factorization. The use of the smoother (denoted by ’ai’) is
parallel because it involves only matrix vector multiplies.

2.2 The influence matrix

An important part of the algorithm is to decide at a given level which unknowns
correspond to the fine “nodes” (or points or unknowns) and which to the coarse
nodes which are going to be the unknowns on the next coarser level. Hence, the set
N = {1, . . . , n} of the unknown indices is split into two disjoint sets N = F ∪ C.

First of all for each unknown i we define the set of dependencies Si and an
influence matrix S whose rows are the Si’s padded with zeros. This can be done in
many ways. The standard AMG definition

1,3,4,6
can be generalized to any matrix

by using

Si = {j | |ai,j| > τ max
k �=i

|ai,k|, τ < 1}.

However, we will always keep at least one non diagonal element in every row of S.
We choose to keep the index with the largest element modulus in A. This is denoted
as algorithm ’b’ (’a’ being the standard one).

2.3 The coarsening algorithm

Once Si and S are fixed, there are different ways we can follow to decide which
are the F and C points. What we are going to denote as the “standard” (’st’)
coarsening algorithm is the following:

1. Choose the first point i with maximal weight as a C point.

2. Assign the points that i influences as F points.

3. Increment by 1 the weights of the points influencing these new F points.

4. Decrease by 1 the weights of points that depend on i.

This guarantees that each F point has at least one connection to a C point. This
is needed for the standard interpolation. It is clear that this algorithm is purely
sequential.

3 PARALLEL COARSENING ALGORITHMS

To introduce more parallelism in the construction of the smoothers and the coars-
ening algorithm we use a partitioning of the graph of A. We are interested in ap-
plications on distributed memory parallel computers. Therefore we assume that
one subdomain will be allocated to one processor. The graph of A is partitioned
with subdomain overlapping or with interfaces and the variables corresponding to
one subdomain (subgraph) are allocated to one processor as well possibly as the
surrounding interface nodes.

A way to parallelize the standard algorithm is to start by coarsening the overlap-
ping (or interface) and then to coarsen each subdomain in parallel. However, after
coarsening the overlapping and before proceeding for each subdomain we flag as F

points the (not yet handled) neighbours of C points in the overlapping region being
cautious not to introduce F -F connections. This is important to make this algo-
rithm working properly. An example for the Poisson problem with four subdomains
is given in figure 1 which shows the global coarsening, the colors corresponding to
the coarse points in the subdomains, the white points being the fine nodes. This is
a perfectly regular coarsening. It turns out that this algorithm is a special case of a
coloring algorithm described by Jones and Plassman

7
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
local

Figure 1: Global result of the coarsening for the Poisson problem, four subdomains.

We have also considered variations of this algorithm where we avoid having F -F
connections in the subdomains. However this can lead to a storage which is too
large with too many coarse points and refusing F -F connections only on the fine
level is most of the time enough. When we use a partitioning with subdomains
and interfaces, the problem is more or less the same, the overlapping region being
replaced by the interface. There are some others ways to generate in parallel the
F and C points. Let us mention an algorithm proposed by Cleary, Falgout, V.A.
Henson and Jones

8
.

4 PARALLEL SMOOTHERS

To parallelize the construction of the smoothers AINV and IC we again use the
partition of the graph.

4.1 AINV

The use of the approximate inverse as a smoother is parallel since it uses a
matrix vector product which is easy to parallelize. However, the construction of
the preconditioner M = ZD−1ZT is sequential. The matrix Z is usually computed
column by column. To parallelize the construction of Z we drop the entries zi,j if
i and j belong to different subdomains. This means that we only eventually keep
the fill–ins inside subdomains or within a subdomain and the interface set. We will
denote this smoother by ’ad’. The subdomains can now be handled in parallel and
then in the end the columns corresponding to the interface are computed sequentially
even though this can be partly parallelized.

4.2 Incomplete Cholesky

With domain partitioning and interfaces we apply the same strategy as for AINV.
Fill–ins are neglected between subdomains and kept within subdomains or between
a subdomain and the interface. Actually at the finest level, there won’t be any
fill–in between subdomains because of the domain decomposition ordering that is
used, but fill–in would eventually happen on coarser levels and this is what is thrown
away. We will denote this smoother by ’id’. The problem of the influence of orderings
when using IC as a preconditioner was studied experimentally by Duff and Meurant

9

some years ago. After these studies it is now well known that dissection is not a
very good ordering with regards to the number of iterations. We will see in the
numerical experiments that it is the same when IC is used as a smoother.

5 NUMERICAL EXPERIMENTS

We solve linear systems arising from the finite difference discretization of elliptic
PDEs in the unit square with homogeneous Dirichlet boundary conditions. We use
a random right hand side and a zero initial vector. The CG iterations are stopped
when ‖rk‖ ≤ 10−10‖r0‖ where rk is the computed residual.

We will only consider the Poisson equation with an m × m mesh because this
already illustrates the problems that arise with the parallelization . We start by
considering the standard sequential smoothers and coarsening algorithms with a
partitioning of the graph of A. Therefore, only the ordering of the unknowns is
changed. In the tables we give the number of CG iterations, the number of floating
point operations and the storage to store the preconditioner. A quadruplet like (’ic’,
’b’, ’st’, ’st’) means that the smoother is ’ic’, the influence matrix is using algorithm
’b’, the coarsening algorithm is the standard one ’st’ and we use the standard AMG
interpolation formula. We see by comparing tables 1 and 2 that ’ic’ is a better
smoother than ’ai’ when using approximately the same amount of storage. We note
that the number of iterations is almost constant when increasing the number of
subdomains.

We then turn to the parallel smoothers using the domain decomposition ordering
with interfaces but we still use the sequential coarsening algorithm for which results
are given in tables 3 to 4. We can see that there is not much increase in the number
of iterations and the number of floating point operations when increasing the number
of subdomains for a given problem dimension. We notice that for ’id’ the number
of iterations is larger than for the sequential algorithm.

Then we use the parallel version of the coarsening algorithm. Tables 5 and 6
explore the possibility of refusing the F -F connections only on the fine level. We

nb sd nb it flops storage
1 5 1 598 253 35550
2 8 2 409 136 35548
4 8 2 402 677 35470
8 8 2 371 293 35015
16 8 2 361 605 34290
32 9 2 599 697 34562

Table 1: PCG for Poisson equation, m = 40, τ = 0.05, multilevel with interfaces, (’ic’, ’b’, ’st’,
’st’).

nb sd nb it flops storage
1 14 3 931 233 35987
2 14 3 918 273 35909
4 13 3 632 561 35717
8 14 3 836 343 35213
16 14 3 802 233 34968
32 16 4 257 199 34540

Table 2: PCG for Poisson equation, m = 40, τ = 0.05, multilevel with interfaces, (’ai’, ’b’, ’st’,
’st’).

see that the approximate inverse smoother, although being intrinsically less efficient,
than the ’ic’ smoother is also less sensitive to the parallelization of the coarsening
algorithm.

Using overlapping of the subdomains will be considered in another paper. The
results are of the same quality than with interfaces. To assess the scalability of the
algorithms we can look at the results for 64 subdomains for m = 150, 32 subdomains
for m = 110, 16 subdomains for m = 80, 8 subdomains for m = 60 and 4 for
m = 40. Although the number of unknowns per subdomain is not exactly constant
(around 400), this gives us an idea about what is going on. Let us first compare
the Incomplete Cholesky smoothers with interfaces. Figure 2 shows the results
for ’ic’ using only one subdomain and the usual ordering, ’ic’ with the domain
decomposition (dissection) ordering and ’id’ throwing away some fill–ins on the
coarser levels. We see that the standard non parallel algorithm gives a constant
number of iterations when there is an increase when using the parallel version which
is clearly due to the ordering that is used since the coarsening algorithm was the
sequential standard one for these runs.

Let us now turn to the other smoothers. Figure 3 shows that the AINV smoother
is much less sensitive to the ordering than the Incomplete Cholesky decomposition.
We normalize the matrix and use ’ai’ with the standard ordering, ’ai’ with the
dissection ordering and ’ad’ throwing away the fill–ins between subdomains. We
can see that there is not much difference in the number of iterations.

6 Conclusion

In this paper we have studied some issues in parallelizing multilevel algebraic
preconditioners. We used graph partitioning to parallelize the construction of the

nb sd nb it flops storage
1 5 1 598 253 35550
2 8 2 409 136 35548
4 8 2 402 677 35470
8 8 2 371 293 35015
16 8 2 361 605 34290
32 9 2 599 697 34562

Table 3: PCG for Poisson equation, m = 40, τ = 0.05, multilevel with interfaces, (’id’, ’b’, ’st’,
’st’).

nb sd nb it flops storage
1 14 3 929 793 36005
2 14 3 916 833 35897
4 13 3 633 233 35723
8 14 3 833 943 35193
16 14 3 805 233 34993
32 16 4 262 231 34577

Table 4: PCG for Poisson equation, m = 40, τ = 0.05, multilevel with interfaces, (’ad’, ’b’, ’st’,
’st’).

Incomplete Cholesky and AINV smoothers as well as the coarsening algorithm.
Numerical experiments show that for a given problem dimension the number of
iterations is not very sensitive to the number of subdomains but when increasing
the dimension the scalability of the sequential algorithm is lost. However, the results
when using AINV are much less sensitive to the variation of the dimension than with
the Incomplete Cholesky smoother.

nb sd nb it flops storage
2 8 2 484 338 36790
4 7 2 186 602 36555
8 8 2 517 864 37529
16 9 2 824 986 37545
32 11 3 586 071 34670

Table 5: PCG for Poisson equation, m = 40, τ = 0.05, multilevel with interfaces, refuse F -F
connections only on the fine level, (’id’, ’b’, ’sd’, ’st’).

nb sd nb it flops storage
2 15 4 277 693 36882
4 14 3 971 013 36611
8 13 3 749 853 37236
16 12 3 502 164 37133
32 12 3 750 659 34536

Table 6: PCG for Poisson equation, m = 40, τ = 0.05, multilevel with interfaces, refuse F -F
connections only on the fine level, (’ad’, ’b’, ’sd’, ’st’).

REFERENCES

[1] V.E. Henson, An algebraic multigrid tutorial, MGNET,
http://www.mgnet.org, (1999).

[2] G. Meurant, Numerical experiments with algebraic multilevel preconditioners,
Electronic Transactions on Numerical Analysis, vol 12, (2001).

[3] J.W. Ruge and K. Stuben, Algebraic multigrid, in Multigrid methods,
S.F. Mc Cormick ed., SIAM, (1987), pp 73-130.

[4] W.L. Briggs, V.E. Henson and S.F. McCormick, A multigrid tutorial,
second edition, SIAM, (2000).

[5] M. Benzi, C.D. Meyer and M. Tuma, A sparse approximate inverse pre-
conditioner for the conjugate gradient method, SIAM J. Sci. Comput., vol 17,
(1996), pp 1135-1149.

[6] C. Wagner, Introduction to algebraic multigrid, Course notes version 1.1, Uni-
versity of Heidelberg, (1998).

[7] M.T. Jones and P.E. Plassman, A parallel graph coloring algorithm, SIAM
J. on Sci. Comp., vol 14 no 3, (1993).

[8] A. Cleary, R. Falgout, V.E. Henson and J. Jones, Coarse–grid selec-
tion for parallel algebraic multigrid, LLNL report, (1999).

[9] I.S. Duff and G. Meurant, The effect of ordering on preconditioned con-
jugate gradients, BIT v29, (1989), pp 635-657.

40 60 80 100 120 140 160
4

6

8

10

12

14

16

ic 1sd
ic
id

Figure 2: Scalability for the Poisson problem, number of iterations, Incomplete Cholesky
smoothers.

30 40 50 60 70 80 90 100 110 120
6

7

8

9

10

11

12

ai 1sd
ai
ad

Figure 3: Scalability for the Poisson problem, number of iterations, AINV smoothers.

