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Abstract. In this paper we consider the problem of the scattering of a plane wave
by a three dimensional perfectly conducting bounded object. We embed the object
in a sphere on the boundary of which we apply an absorbing boundary condition.
The harmonic Maxwell equations are discretized with conforming P1 finite elements
in [H1(Ω)]3 on tetrahedrons. The perfectly conducting boundary condition on the
object is handled via Lagrange multipliers. This amounts to solving a sparse symmet-
ric indefinite linear system with complex coefficients. Iterative methods like GMRES
and Bi–CGSTAB are described for solving this problem with suitable efficient pre-
conditioners. Numerical experiments for several model problems are given.

1. Description of the problem

We consider the scattering of a plane wave by a perfectly conducting three di-
mensional bounded object Ω. Our final goal is to compute the diffracted fields, that
is solving Maxwell equations outside Ω. The general Maxwell equations are,




�curl �E = −∂
�B

∂t

�curl �H = �J +
∂ �D

∂t

div �D = ρ

div �B = 0

where �E is the electric field, �H the magnetic field, �D the electric induction, �B
the magnetic induction, �J the current density and ρ the charge density. Moreover,
we have the charge conservation equation:

div �J = −∂ρ
∂t
.
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We also have the constitutive relations,


�D = ε �E
�B = µ �H

�J = σ �E

where ε is the electric permittivity, µ the magnetic permeability and σ the electric
conductivity.
We are looking for time harmonic solutions whose time dependency is e−iωt.

Then, 


�curl �E − iωµ �H = 0
�curl �H + iωε �E = �J

div �J − iωρ = 0
�J = σ �E

In the media outside the object Ω (usually air) there are no charges or currents.
Therefore,

�J = 0, ρ = 0.

The object Ω is supposed to be perfectly conducting, so

�E = �H = 0 in Ω.

The interface condition (that is the boundary condition on the boundary Γ1 of
Ω) is

�E × �n = 0,
�H.�n = 0.

The equations for the diffracted fields outside Ω are


�curl �Ed − iωµ �Hd = 0 outside Ω
�curl �Hd + iωε �Ed = 0 outside Ω

�Ed × �n = − �Einc × �n on Γ1

�Hd.�n = − �Hinc.�n on Γ1

To have a unique solution we must also impose that we have a radiation condition
at infinity, the so called Silver–Müller condition

lim
r→∞ r(

√
µ �Hd × �r

r
−
√
ε �Ed) = 0,

With straightforward algebraic manipulations (and dropping the index d for
simplicity), we finally have the problem we want to solve,




�curl �curl �E − k2 �E = 0

div( �E) = 0
�E × n = g on Γ1

lim
r→∞ r( �curl �E × �r

r
− ik �E) = 0
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2. The variational formulations.

There are many ways to solve the problem described in the first section. All the
techniques transform the problem in the unbounded region outside Ω to a problem
on a bounded set. A common way to do so is to embed the object Ω into a sphere
of boundary Γ2, to consider only the bounded open set Ωext between Γ1 and Γ2 and
to apply an artificial boundary condition that mimics the Silver–Müller condition
on Γ2 ([3],[4]). Conditions of these types are called absorbing boundary conditions
and are devised in order to have no reflected waves coming back from Γ2 to perturb
the solution.
To obtain a variational formulation, we use the Green’s formula:

∫
Ω

F.( �curlV ) dx =
∫

Ω

( �curlF ).V dx+
∫

Γ

(F × n).V dΓ

Then, we have ∫
Ω

( �curl �curlE − k2E)Ē dx = 0

⇔
∫

Ω

�curlE. �curlĒ − k2E.Ē dx+
∫

Γ

(Ē × n).( �curlE) dΓ = 0

We introduce the following spaces,

H(Ω, curl) = {q | q ∈ L2(Ω)3, �curl q ∈ L2(Ω)3}
H(Ω, div) = {q | q ∈ L2(Ω)3, div q ∈ L2(Ω)}

Xg = {q | q ∈ H(Ω, curl), q × n = g on Γ1}
Yg = {q | q ∈ H(Ω, curl) ∩H(Ω, div), q × n = g on Γ1}
Zg = {q | q ∈ H1(Ω)3, q × n = g on Γ1}

Because Ē × n = 0 on Γ1, we have
∫

Ω

( �curlE. �curlĒ − k2E.Ē) dx+
∫

Γ2

(Ē × n).( �curlE) dΓ2 = 0

⇔
∫

Ω

( �curlE. �curlĒ − k2E.Ē) dx+
∫

Γ2

(n× �curlE).Ē dΓ2 = 0

So, classically, the first variational formulation is



Find E ∈ Xg such that :∫

Ω

( �curlE. �curlĒ − k2E.Ē) dx+
∫

Γ2

(n× �curlE).Ē dΓ2 = 0, ∀Ē ∈ X0.

This formulation can be used to construct a method of approximation based on
finite elements which are conforming in H(Ω, curl). If we want to use classical
finite elements, we need to introduce another variational formulation, see [1], [6].
First, to ensure the divergence free constraint, following [5], we add a divergence

term to the variational formulation and we consider
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


Find E ∈ Yg such that :∫
Ω

( �curlE. �curlĒ − k2E.Ē + t divE.divĒ) dx

+
∫

Γ2

(n× �curlE).Ē dΓ2 = 0, ∀Ē ∈ Y0.

If E has enough regularity, we can replace Y by Z. As it is not easy to handle
the condition on E×n in the functional spaces, we introduce a Lagrange multiplier
λ, λ ∈ H− 1

2 (Γ)3. Then, we obtain the final variational formulation
Find {E, λ} ∈ H1(Ω)3 ×H− 1

2 (Γ)3 such that :

∫
Ω

( �curlE. �curlĒ − k2E.Ē + t divE.divĒ) dx

+
∫

Γ2

(n× �curlE).Ē dΓ2 +
∫

Γ1

(λ× n)(Ē × n) dΓ1 = 0 ∀Ē ∈ H1(Ω)3

∫
Γ1

(ν × n)(E × n− g) dΓ1 = 0, ∀ν ∈ H− 1
2 (Γ)3

∫
Γ1

(λ.n)θ dΓ1 = 0, ∀θ ∈ H 1
2 (Γ)

The last equation is needed to obtain the uniqueness of λ. It means that λ is
tangent to Γ1.
On Γ2 we use a first order absorbing boundary condition that is introduced in

the integral on Γ2.
The domain between Γ1 and Γ2, Ωext is discretized with a classical triangulation

Th using tetrahedrons and we define the following finite dimensional spaces,

Zh = {Fh ∈ C0(Ω)3, ∀Kh ∈ Th, Fh|Kh
∈ P1(Kh)3},

Mh = {λ ∈ C0(Γ1)3, ∀KΓ1
h ∈ T Γ1

h , λ|KΓ1
h

∈ P1(KΓ1
h )

3}.

T Γ1
h is the trace of the triangulation on Γ1. It can be shown that the discrete

version of the last equation of the variational formulation is automatically verified
by using a standard quadrature formula.
In the next Section, to describe the iterative methods we will use a simpler model

problem that is the Helmholtz equation on the same domain as before with a first
order absorbing boundary condition on Γ2,




−∆u− k2u = 0 in Ω
u = g1 on Γ1

∂u

∂n
− ik u = g2 on Γ2,
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The variational formulation is then



Find {u, λ} ∈ H1(Ω)×H−1/2(Γ1) such that,∫
Ω

(∇u∇v − k2uv) dx− i

∫
Γ2

k uv dΓ2 =
∫

Γ2

g2v dΓ2 +
∫

Γ1

λv dΓ1 ∀v ∈ H1(Ω),
∫

Γ1

µ(u− g1) dΓ1 = 0 ∀µ ∈ H−1/2(Γ1).

and we use classical P1 approximations. The mesh we consider has 11664 tetrahe-
drons and 2440 vertices as well as 1944 triangles on the boundaries. We choose a
value of k = 0.5 and we obtain an l2 relative error of 10−4.

3. The iterative methods for the Helmholtz equation

After discretization we obtain a linear system

A
(
u
λ

)
=

(
A Bt

B 0

) (
u
λ

)
=

(
b
c

)

Here the matrix A has complex entries and its Hermitian part may be indefinite.
However A is symmetric.
To solve this system we consider and compare two different iterative methods:

GMRES [8] and Bi–CGSTAB [9] generalized to complex data (see [7]) and used
with suitable preconditioners. We will see that solving for the preconditioner will
introduce another level of inner iterations. We briefly recall GMRES and Bi–
CGSTAB.
To solve Ãx = f̃ , the GMRES algorithm is defined as follows.

GMRES(nd)
x0 given, r0 = f̃ − Ãx0, v1 = r0

‖r0‖ . For j=1 to nd, do

hi,j = (Ãvj , vi) i = 1, .., j

v̂j+1 = Ãvj −
j∑

i=1

hi,jvi

hj+1,j = ‖v̂j+1‖

vj+1 =
v̂j+1

hj+1,j

Vk = (v1, v2, . . . , vk)

H̄k =




h1,1 h1,2 . . . h1,n

h2,1
. . .

0
. . . . . .

...
. . . hk,k−1 hk,k

0 . . . 0 hk+1,k




The approximate solution is computed as :

xnd = x0 + Vnd ynd where ynd minimizes ‖dnd − H̄ndy‖
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dk = (‖r0‖ 0 . . . 0)t

Restart :

Compute rnd = f̃ − Ãxnd, stop if
‖rnd‖
‖r0‖

< ε

otherwise do x0 = xnd, v1 =
rnd

‖rnd‖
, and restart.

The Bi–CGSTAB algorithm is defined as
Bi-CGSTAB

x0 given, r0 = f̃ − Ãx0, p0 = r0, ω̂0 = β = α0 = 1, v0 = q0 = 0 For n=1, . . . , do

β̂ = (pn, rn−1)

ωn = (β̂/β)(ω̂n−1, αn−1)

β = β̂

qn = rn−1 + ωn(qn−1 − αn−1vn−1)

vn = Ãqn

ω̂n = β̂n/(p, vn)

s = rn−1 − ω̂nvn

t = Ãs

αn = (t, s)/(t, t)

xn = xn−1 + ω̂nqn + αns

rn = s− αnt

We define a preconditioned matrix Ã = M−1A and f̃ = M−1f . Following [2],
the preconditioner M is chosen as

M =
(
A Bt

B −εmatI

)
.

At each iteration we have to solve systems like

Mz = r.

This is done also with an (unpreconditioned) iterative method (either GMRES or
Bi–CGSTAB) directly on the system with M or by eliminating one variable and
considering the matrix A + 1

εmat
BtB. However, εmat should be small enough in

order for M to be as close as possible to A but not too small as in that case the
condition number of A+ 1

εmat
BtB deteriorates.

Now, we have to consider 4 combinations of the outer and inner iterative meth-
ods. Another parameter to consider is the stopping criteria we choose for the inner
iterations. This is governed by a parameter εresol. The numerical results for the
model problem follow.
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εmat 10−3 10−4

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout - - - 11∗ 10 11

#itin (NC) (NC) (NC) 115 132 119

εmat 10−5 10−6

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout 10∗ 8 7 - - 4

#itin 34 48 64 (NC) (NC) 350

Bi− CGSTABout and Bi− CGSTABin

εmat = 10−5 and εresol = 10−5 seem a good choice.

εmat 10−3 10−4

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout - - - 11∗ 10 -

#itin (NC) (NC) (NC) 5× 30 5× 35 (NC)

εmat 10−5 10−6

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout 7∗ 7 - 18∗ 7 -

#itin 5× 7 5× 9 (NC) 5× 15 5× 35 (NC)

Bi− CGSTABout and GMRES(5)in
Again εmat = 10−5 and εresol = 10−5 seem a good choice.

εmat 10−3 10−4

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout - - - 2× 9 2× 11 2× 8
#itin (NC) (NC) (NC) 118 143 198

εmat 10−5 10−6

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout 2× 7 2× 4 2× 7 - - 2× 6
#itin 33 86 283 (NC) (NC) 284
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GMRES(2)out and Bi− CGSTABin

εmat = 10−5 and εresol = 10−3 are a good choice.

εmat 10−3 10−4

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout 2× 21 - - 2× 7 2× 7 -

#itin 2× 48 (NC) (NC) 2× 37 2× 52 (NC)

εmat 10−5 10−6

εresol 10−3 10−5 10−7 10−3 10−5 10−7

#itout 2× 13 2× 5 - 2× 12 (NC) -

#itin 2× 11 2× 32 (NC) 2× 21 - (NC)

GMRES(2)out and GMRES(2)in
Once again, εmat = 10−5 and εresol = 10−5 give satisfactory results.

These computations where for a value of k smaller than the maximum that can
be reached with the given mesh but other runs were done with different values of
k up to the maximum value and the numbers of inner iterations were relatively
insensitive to the value of k, only the number of outer iterations is depending on k.
From the experiments it seems that the number of outer iterations is O(

√
k).

From the point of view of computing time, the smallest one is given by Bi −
CGSTABout and GMRESin.
Another possibility is to obtain a complete or incomplete factorization LD−1Lt

of A+ 1
εmat

BtB and to set

M =
(
L − 1

εmat
Bt

0 I

)(
D−1 0
0 −εmatI

)(
Lt 0

− 1
εmat

B I

)

If we use a complete decomposition, the solve for M is “exact”. Providing there
is enough storage available this gives the second best computing time.

4. Numerical results for Maxwell equations

To be able to compare to an exact solution, we use firstly a boundary condition

E × n = g, on Γ2

in place of the absorbing boundary condition.
This problem is much harder to solve than the Helmholtz equation. To obtain

convergence, we must precondition the inner iterative method. We use an incom-
plete factorization of A+ 1

εmat
BtB where we keep some fill in according to the size

of the fills.
As an example, we use the combination Bi−CGSTABout and Bi−CGSTABin.

We note that we need to use smaller values of εmat = 10−11 than for the Helmholtz
equation and εresol = 10−2.
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We give the number of outer and inner iterations as a function of the percentage
of eliminated entries. In all cases, we have a relative error of the order of 10−4.

% elim 0.9 4.8 15.7 37.3 64.7 82.1 84.5 85.4

# it out 5 5 5 5 5 5 9 9

# it in 1 1 1 1 1 1 3∗ 67∗

We see that we can drop a large part of the fill in (up to 80%) without affecting
the number of outer and inner iterations which are quite small. In fact, we do not
even need the inner iterations in that particular case.
Therefore, it seems we have an efficient method for solving the Maxwell equations

with the given boundary condition. Right now, we are doing extensive numerical
tests to verify these preliminary results and we are introducing in the code the
absorbing boundary conditions. The numerical results will be described in a forth-
coming report.

5. Conclusion

In this paper we have presented preliminary numerical results using nested iter-
ative methods for solving the Helmholtz and Maxwell equations. For the later, we
use classical conforming finite elements, the boundary condition on the perfectly
conducting body being handled via a Lagrange multiplier.
The iterative methods we used are GMRES and Bi–CGSTAB generalized to

complex matrices. For both problems, we obtain convergence in a small number
of outer and inner iterations. This shows that this kind of approach allows to
efficiently solve these difficult problems.

References

[1] F.Assous, P.Degond, E.Heintze, P.A.Raviart, J.Segre, On a finite-element method for solving
the three-dimensional Maxwell equations, to appear in J. Comp. Physics (1993).

[2] O. Axelsson, Preconditioning of indefinite problems by regularization, SIAM J. Numer. Anal.
16 No 1 (1979), 58–69.

[3] A.Bayliss, E.Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure
Appl. Math. 33 (1980).

[4] B.Engquist, A.Majda, Absorbing boundary conditions for the numerical simulation of waves,
Math. Comp. 31, No 139 (1977), 629–651.

[5] R.Glowinski, J.Périaux, Solving the Maxwell équations by Lagrange multipliers, Proceedings
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