
A multilevel AINV preconditioner

Gérard Meurant∗

2002

Abstract

In this paper we describe an algebraic multilevel extension of the ap-
proximate inverse AINV preconditioner for solving symmetric positive
definite linear systems Ax = b with the Preconditioned Conjugate Gradi-
ent method. The smoother is the approximate inverse M and the coarse
grids and the interpolation operator are constructed by looking at the
entries of M . Numerical examples are given for problems arising from
discretization of partial differential equations.

1 Introduction

In this paper we describe an algebraic multilevel extension of the AINV precon-
ditioner (c.f. [1]) for solving symmetric positive definite linear systems Ax = b
with the Preconditioned Conjugate Gradient (PCG) method.

We would like to explore the idea that important influences between un-
knowns in a linear system are given by the inverse of the matrix and that these
can be more or less captured by an approximate inverse like the one defined
by the AINV algorithm. This can be used to define the coarse meshes and the
interpolation operators. The method we present here is purely algebraic, the
only inputs being the matrix of the linear system and the right hand side.

An important issue for solving very large problems on Tflops scale parallel
computers is scalability. One would like to have the computer time constant
when the problem size per processor is fixed and the number of processors in-
creases which means that the dimension of the problem is increasing. When
using an iterative method like PCG this implies that the number of iterations
must be constant when the problem size is increased. But this is not enough
since we also need to have a number of operations proportional to the problem
size. We will see that the multilevel extension of AINV leads to an algorithm
which is scalable for some problems arising from discretization of second order
partial differential equations and almost scalable for some other problems. Nu-
merical comparisons with other multilevel algorithms are given in another paper
[5].
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The multilevel AINV preconditioner (which we denote by MLAINV) uses
the same design principles as the Algebraic Multigrid algorithm (AMG), see [3],
[6], [7]. After some smoothing steps, the equation for the error with the residual
as the right hand side is solved recursively on a coarser grid. The definition of
the coarse grids uses a set (or a matrix) of dependencies. This is constructed
by looking at the approximate inverse at a given grid level. An influence set is
defined for each unknown as the “transpose” of the set of dependencies. The
fine and coarse nodes for each level are found on this basis. Then, knowing the
fine and coarse nodes, interpolation weights are computed using the entries of
the approximate inverse. The restriction R is the transpose of the interpolation
(prolongation) matrix P and the next coarse matrix is defined by a Galerkin
formula as Ac = RAP . As we said before, the method also uses a smoothing
operator which is a Richardson–like iteration defined using the approximate
inverse. An iteration (V–cycle) of the MLAINV recursive preconditioner is the
following starting from the zero vector:

1. if we are on the coarsest level, solve exactly by Gaussian elimination,
otherwise

2. do ν iterations of smoothing

3. restrict the residual r to rc = Rr

4. recursively solve Acec = rc

5. interpolate ec to e = Pec

6. add the correction e to the current iterate

7. do ν iterations of smoothing

More generally we can introduce a parameter γ and replace the solve step
by doing γ iterations of the same algorithm with one level less. Choosing γ = 1
is the V–cycle just described and having γ = 2 is denoted as a W–cycle.

For the MLAINV preconditioner we use the same principles as AMG, see
[6], except that:

i) the smoother is a Richardson iteration with an AINV preconditioner,
ii) we compute the influence matrix by using the approximate inverse given

by AINV,
iii) the interpolation and restriction operators are defined by entries of the

(factors of the) approximate inverse.
In the next sections we describe the algorithm in more details and give some

numerical results which have been obtained on several elliptic problems as well
as more general linear systems using this method and some minor variations.
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2 The AINV preconditioner

The Benzi, Meyer and Tuma [1] approximate inverse M generates a decompo-
sition

M = ZD−1ZT

where the matrix Z is upper triangular with 1′s on the diagonal and D is
diagonal. The method is based on computing A–orthogonal vectors using a
Gram–Schmidt A–orthogonalization starting from the columns of the identity
matrix. To preserve sparsity some elements are thrown away at each step of
the algorithm. This is done either by using a given threshold τ or according to
the positions of the entries. Another possibility is to retain only the q largest
elements of each column of Z satisfying the threshold criterion. If nothing is ne-
glected the algorithm delivers the LTDL factorization of A−1 and consequently
the factors are usually dense. In this algorithm, Z is generally computed by
columns. The details of the algorithm are the following where zi denotes the
i–th column of Z:
Z = I
d1 = a1,1

for i = 2, . . . , n
drop the entries zk,i such that |zk,i| ≤ τ‖ai‖∞

for j = i, . . . , n
dj = aT

i zj
end
for j = i+ 1, . . . , n
zj = zj − dj

di
zi

end
end
The parameter τ defines which elements are kept. When τ gets smaller we

keep more fill–in. Note this is not exactly the threshold criterion used in [1];
hence the values of the threshold could be slightly different from those which
are suggested from numerical experiments in [1]. We can use this approximate
inverse as a preconditioner in the PCG algorithm. At each iteration we have to
solve a linear system with the residual r as a right hand side. This is done as

z =Mr,

by matrix × vector multiplies which are a parallel operation. One may think
that the AINV is not fully parallel because the construction phase is sequen-
tial. However, the construction phase can also be parallelized by using domain
decomposition–like orderings. There exists also some other approximate in-
verses which are computed by minimizing some norms but they are usually not
guaranteed to be positive definite or even symmetric, see [4] for a summary.

The AINV preconditioner is feasible for H–matrices (see [4] for a definition)
and it can be seen that for problems arising from second order partial differ-
ential equations the condition number κ(MA) is proportional to h−2 where h
is the mesh size when the non zero structure of M is comparable to that of A.
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Therefore, when the problem gets larger the number of iterations of the PCG
algorithm grows. The storage that is used for M also depends on the choice
of τ . The smaller is τ , the larger is the storage. There exists a more robust
version of this approximate inverse denoted as SAINV which can be used for
any matrix, see [2].

For the Poisson equation in a square with five point finite differences with
our chosen criterion, a value of τ = 0.06 gives a matrix Z whose non–zero
structure is the same as the upper triangular part of A. This leads to a matrix
M with seven non–zero diagonals. Using τ = 0.07 leads to a diagonal matrix.
Of course, the smaller is τ , the smaller is the number of iterations since when
we keep all the fill, we have the exact factorization and then we only do one
iteration. Therefore, there is a balance between the number of iterations and
the number of operations per iteration such that there exists a value of τ that
gives the smallest number of operations. Numerical experiments with AINV
show that it does not pay to retain too much fill since the minimum number of
operations is often given when Z has the same structure as the upper triangular
part of A. However, being able to change the parameter τ gives an interesting
degree of freedom that allows sometimes to solve difficult problems by keeping
more fill–in.

3 The multilevel preconditioner MLAINV

We are going to look at the different components of the multilevel algorithm:
the smoother, the influence matrix, the coarsening and interpolation algorithms.

3.1 The smoother

On a given level, we will use the matrixM = ZD−1ZT from AINV as a smoother
in a Richardson iteration defined as

xk+1 = xk +M(b−Axk),

when solving Ax = b. Let us first consider the multilevel preconditioner in an
abstract way by looking at a two–grid algorithm using one step of pre–smoothing
and one step of post–smoothing . At each PCG iteration we start from x0 = 0.
Applying one step of smoothing amounts to computing

x̄ =Mb.

We compute the residual

r̄ = b−AMb = (I −AM)b.

Restricting the residual r̄, solving exactly the coarse problem (defined by the
coarse matrix RAP ) and interpolating back to the fine level amounts to compute

P (RAP )−1R(I −AM)b.
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This is added to the current iterate x̄ giving

Mb+ P (RAP )−1R(I −AM)b.

Finally another step of smoothing is applied leading to

x1 = [M +M(I −AM) + (I −MA)(P (RAP )−1R)(I −AM)]b.

Therefore, the two–grid preconditioner M̃0 is defined as

M̃0 =M +M(I −AM) + (I −MA)(P (RAP )−1R)(I −AM).

More generally, we denote by an index 0 quantities on the finest level and
by 1, 2, . . . the coarse levels. Then, it is not difficult to show that we have the
following recursive formula for the preconditioner

M̃l =Ml +Ml(I −AlMl) + (I −MlAl)(PlM̃l+1Rl)(I −AlMl),

Al+1 = RlAlPl,

and on the coarsest level L, M̃l+1 is replaced by A−1
L .

Matrices Ml from AINV are symmetric positive definite. Obviously M̃l is
symmetric. The first thing we have to do is to check if M̃l is positive definite.
We have the following result.

Theorem 1 Suppose λmin(I − AlMl) > −1,∀l then M̃0 is positive definite as
well as all the matrices M̃l, l = 1, . . .. Moreover, M̃0A has real eigenvalues
located in ]0, 1], 1 being a multiple eigenvalue.

Proof.
The proof goes by induction. Suppose first that we have only two levels.

Then,

M̃0 =M0 +M0(I −AM0) + (I −M0A)(P0(R0AP0)
−1
R0)(I −AM0).

Since M0 +M0(I − AM0) = M0(2I − AM0), our hypothesis implies that the
eigenvalues of 2I − AM0 are strictly positive. Therefore the sum of the first
two terms in the right hand side is positive definite. It is obvious that the third
term is positive semidefinite which proves that M̃0 is positive definite. The same
argument applies for the other levels.

Now let us prove that the eigenvalues of M̃0A belong to ]0, 1]. Let us look
at

T = A−1 − M̃0.

Noticing that
A−1 −M0 = (I −M0A)A−1

and
M0(I −AM0) =M0A(I −M0A)A−1
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we have that
T = (I −M0A)Q0(I −M0A)A−1 = U0A

−1,

where Q0 = I − P0M̃1R0A.
Since the matrix T is symmetric we have

T = TT = A−1UT
0 = U0A

−1.

Then,
(Tx, x) = (A−1x,UT

0 x) = (A−1x,AU0A
−1x) = (y,AU0y).

But

AU0 = A(I −M0A)Q0(I −M0A) = (I −AM0)AQ0(I −M0A).

Therefore, all we have to do is to check if AQ0 is positive semidefinite because
then we will have T positive semidefinite and

(M̃0x, x) ≤ (A−1x, x), x �= 0

and this proves that the eigenvalues of M̃0A are less or equal to 1.
The matrix AQ0 can be written as

AQ0 = A
1
2 (I −A 1

2P0M̃1R0A
1
2 )A

1
2 .

Therefore, we have only to consider I −A 1
2P0M̃1R0A

1
2 .

We first consider the two grid case. From [4] page 544, it is known that
the matrix AQ0 has only 0 and 1 as eigenvalues. Hence the same is true for
AU0. Moreover, 1 is an eigenvalue. The matrix M0 is such that I −M0A is non
singular. Then, for each y ∈ Ker Q0 there exists a z such that (I −M0A)z = y.
We have

M̃0A =M0A+ [P0(R0AP0)−1R0A+M0AQ0](I −M0A).

Therefore,
M̃0Az =M0Az + y =M0Az + (I −M0A)z = z.

The vector z is an eigenvector of M̃0A with eigenvalue 1. The multiplicity of
the eigenvalue 1 is the number of independent vectors that span Ker Q0.

In the multilevel case, we are looking for λ such that

(I −A 1
2
l PlM̃l+1RlA

1
2
l )y = λy.

We multiply this equation by RlA
1
2
l to get

(RlA
1
2
l −Al+1M̃l+1RlA

1
2
l )y = λRlA

1
2
l y.

This is because Al+1 = RlAlPl. Since by the induction hypothesis I−Al+1M̃l+1

is positive definite, this proves that AlQl is positive semidefinite. Moreover,
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inductively, we can see that there are non trivial vectors in the null space of Ql

and this shows that 1 is an eigenvalue.
Note that this result is true whatever the choice ofMl, Rl and Pl. Therefore

the condition number of the preconditioned matrix with the multigrid precondi-
tioner depends only on the smallest eigenvalue which of course depends on the
way the smoother and the interpolation are chosen. Experimentally we have
checked that for the problems we are going to use for the numerical experi-
ments the hypotheses of the theorem are fulfilled.

We also remark that the multilevel preconditioner is a dense matrix which
is never explicitly computed nor stored since it is implicitly applied to a vector
in the PCG algorithm.

3.2 The influence matrix

An important part of the multilevel algorithm is to decide which unknowns
correspond to the fine “nodes” (denoted also as points or unknowns) and which
to the coarse nodes. Hence, the set N = {1, . . . , n} of the unknowns is split into
two sets N = F ∪ C.

For each unknown i we define the set of dependencies Si and an influence
matrix S whose rows are the vectors Si’s padded with zeros for indices which
are not in the set of dependencies. Defining this set can be done in many ways.
Rather than using an influence matrix given by the entries of A as in AMG
(see [6]), it seems natural to measure the influences between the points by the
inverse of A since this precisely describes how the unknowns are linked together
in obtaining the solution of the problem. However, since we only have at our
disposal the approximate inverse M from AINV, we can define

SM
i = {j ∈ N , j �= i| mi,j �= 0}.

Note that SM
i depends on the value of τ that is chosen in AINV. This choice

will be denoted as ‘m’ in the sequel. Generally we do not want to compute M
since it is given in factored form and the solve at every iteration can be done
with multiplications with Z and ZT . Thus we will explore the possibility of
defining the influence matrix as

SZ
i = {j ∈ N , j �= i| ni,j �= 0}.

Let Q be a diagonal matrix whose diagonal elements are the square roots of
those of D−1 and Z̃ = ZQ. Then, the matrix N is defined as N = Z̃ + Z̃T −Q.
This choice will be denoted as ‘z’.

We will see in the numerical experiments that, depending on the value of
τ , this strategy can lead to coarse grids with very few nodes and it will be
sometimes difficult to obtain a meaningful interpolation. Therefore, we will also
explore a strategy where we use two approximate inverses, one with a threshold
τ1 to compute the coarse grid and another one with a threshold τ2 ≤ τ1 as a
smoother. The first decomposition can be easily obtained from the second one.
This would allow us to be able to smooth more on difficult problems without
leading to grids which are too coarse.
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3.3 The coarsening algorithm

Once Si is fixed by any of the previous methods, there are different ways we
can follow to decide which are the F and C points. This is also related to the
type of interpolation we are going to choose.

What we are going to denote as the “standard” (‘st’) coarsening algorithm
(see [3], [6]) is based on two principles:

1. for each i ∈ F , each node j ∈ Si should either be in C or should depend
on at least one point in Ci which is the set of coarse points which are going
to be used for the interpolation of i.

2. C should be (as most as possible) a maximal subset with the property
that no C point depends on another C point.

The first criterion tends to increase the number of C points. The second one
is used to limit the number of points in the coarse grid. The standard coarsening
algorithm (see [7]) is defined by two passes. However, we will only going to use
the first one. The first pass uses weights wi which are the number of points that
depend on i. One step of the algorithm is the following:

1. choose the first point i with maximal weight as a C point,

2. assign the points that i influences as F points,

3. increment by 1 the weights of the points influencing these new F points,

4. decrease by 1 the weights of points that depends on i.

This first pass guarantees that each F point has at least one connection to
a C point in the graph of S. It tends sometimes to produce too many F points.
A second pass (see [7]) could be added in which some F points are made into
C points to enforce the first criterion and to minimize C–C connections.

There are some others ways to generate the F and C points. For instance,
we can only flag a percentage of the points that i influences as F points choosing
the points with maximal connections (that is large values of mi,j or z̃i,j). Some
numerical experiments with other algorithms are reported in [5].

3.4 The interpolation algorithm

The standard multigrid algorithm uses bilinear interpolation, see for instance [4].
However, it is well known that this is not satisfactory for general PDE problems.
The AMG algorithm uses instead an interpolation based on the equations of the
linear system. It is obtained by writing the equations for Ae = 0 and by doing
some approximations using averages to define the values of points which are not
C points. Note that to use this interpolation we need that each F point must
have at least one C point as a neighbor in the graph of A.
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Another possibility is to use the approximate inverse again. Let Ci be the
set of coarse nodes in Si. For an F point i, the interpolation weights wi,j are
defined as

wi,j =
ni,j∑

l∈Ci
ni,l

j ∈ Ci,

where N =M or Z̃+Z̃T −Q. The rationale behind this choice is that the points
which are more important for interpolation are the ones with the strongest
connections. These choices will be denoted respectively as ‘im’ and ‘iz’.

3.5 Other possibilities

Variations of the previous algorithms include using a parameter τ which varies
with the grid level or using only the q largest elements on each column of Z.
Another possibility is to use the regular AINV on the finest level and to truncate
on the coarsest levels. This can sometimes save some floating point operations
and still give the same number of iterations as the full algorithm.

4 Numerical experiments

In this section we first show some numerical results on problems arising from
discretization of partial differential equations. We chose second order diffusion
equation problems of different types: Poisson equation, an anisotropic problem,
a discontinuous problem and a problem with rapidly varying diffusion coefficient.

Then, we will give results for problems arising from the Harwell–Boeing
collection.

4.1 The Poisson equation

We solve the Poisson equation with Dirichlet boundary conditions in the unit
square using finite differences with m discretization points in each direction
(excluding boundaries) with a natural (left to right and bottom to top) ordering.
This gives a matrix of order n = m2. The right hand side is a random vector
(the same in all experiments of a given dimension) and the starting vector is
x0 = 0. The iterations are stopped when the 2–norm of the residual is less than
10−10 the 2–norm of the initial residual. We will use a maximum of 7 levels
which is enough for the problem sizes we considered. We use the direct solver
when the problem size is less than 10. This may not be the optimal choice.

We first consider the two–grid algorithm since, obviously a multilevel method
cannot do better. We give the number of iterations and the condition number of
M̃0A as given by the eigenvalues of the tridiagonal matrix of the PCG coefficients
although this cannot be very reliable when the number of iterations is small.
All the numerical results in this paper were obtained using Matlab 5 R11 on a
Sony PCG-X9 personal computer with a 500 Mhz Intel Pentium III.
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Table 1: PCG for Poisson equation, τ = 0.06, two–grid, AINV smoothing, (‘m’,
‘st’, ‘im’, γ = 1)

ν = 1 ν = 2 ν = 5
m = 10 11 8 5

1.61 1.19 1.05
m = 20 13 9 7

1.76 1.29 1.19
m = 30 13 10 8

1.80 1.38 1.27
m = 40 13 10 9

1.78 1.46 1.34
m = 50 13 11 10

1.81 1.48 1.39
m = 60 14 11 10

1.80 1.51 1.43

Table 2: PCG for Poisson equation, τ = 0.06, two–grid, AINV smoothing, (‘m’,
‘st’, ‘im’, γ = 2)

ν = 1 ν = 2 ν = 5
m = 10 7 5 3

1.17 1.03 1.002
m = 20 9 6 5

1.23 1.06 1.03
m = 30 9 7 5

1.25 1.09 1.05
m = 40 9 7 6

1.24 1.11 1.07
m = 50 9 8 7

1.23 1.13 1.04
m = 60 9 8 7

1.23 1.14 1.09

From Table 1, we see that this V–cycle two–grid method is scalable as there
is only a very slight increase in the condition number. Moreover the numbers
of iterations are much better than when using AINV as a preconditioner.

Table 2 gives the results using a W–cycle. From these results we see that
using a W–cycle we have a constant number of iterations since the condition
number is (almost) independent of the dimension of the problem. The number
of iterations can be improved by using two different thresholds (τ1, τ2). This is
shown in Tables 3 and 4.

In Tables 5 and 6 we repeat these experiments for (‘z’, ‘st’, ‘iz’). The results
from these tables show that the results for ‘z’ are as good as when using the
approximate inverse in ‘m’. Moreover, they are scalable for γ = 1 (for the
number of iterations) and γ = 2. We note that the grids generated by ‘m’ and
‘z’ are not the same. Tables 7 and 8 show the results using two thresholds.
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Table 3: PCG for Poisson equation, τ = (0.06, 0.02), two–grid, AINV
smoothing, (‘m’, ‘st’, ‘im’, γ = 1)

ν = 1 ν = 2 ν = 5
m = 10 7 5 3

1.18 1.16 1.07
m = 20 9 7 5

1.25 1.16 1.07
m = 30 10 8 6

1.33 1.25 1.16
m = 40 10 9 7

1.39 1.31 1.22
m = 50 11 9 8

1.44 1.36 1.26
m = 60 11 9 8

1.48 1.40 1.30

Table 4: PCG for Poisson equation, τ = (0.06, 0.02), two–grid, AINV
smoothing, (‘m’, ‘st’, ‘im’, γ = 2)

ν = 1 ν = 2 ν = 5
m = 10 5 3 2

1.02 1.001 1.
m = 20 6 4 3

1.04 1.02 1.004
m = 30 6 5 4

1.07 1.04 1.02
m = 40 6 6 4

1.09 1.06 1.03
m = 50 7 6 5

1.10 1.07 1.05
m = 60 7 6 6

1.11 1.09 1.06
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Table 5: PCG for Poisson equation, τ = 0.06, two–grid, AINV smoothing, (‘z’,
‘st’, ‘iz’, γ = 1)

ν = 1 ν = 2 ν = 5
m = 10 11 8 5

1.72 1.22 1.02
m = 20 14 9 6

1.96 1.32 1.04
m = 30 14 10 6

2.01 1.34 1.04
m = 40 15 10 6

2.04 1.35 1.04
m = 50 15 10 6

2.05 1.35 1.04
m = 60 15 10 6

2.05 1.36 1.04

Table 6: PCG for Poisson equation, τ = 0.06, two–grid, AINV smoothing, (‘z’,
‘st’, ‘iz’, γ = 2)

ν = 1 ν = 2 ν = 5
m = 10 8 5 3

1.21 1.03 1.0004
m = 20 9 6 3

1.31 1.06 1.001
m = 30 10 6 4

1.34 1.07 1.001
m = 40 10 7 4

1.35 1.07 1.005
m = 50 10 7 4

1.35 1.07 1.006
m = 60 10 7 4

1.36 1.07 1.007
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Table 7: PCG for Poisson equation, τ = (0.06, 0.02), two–grid, AINV
smoothing, (‘z’, ‘st’, ‘iz’, γ = 1)

ν = 1 ν = 2 ν = 5
m = 10 6 4 3

1.06 1.01 1.001
m = 20 7 5 4

1.12 1.03 1.01
m = 30 8 6 4

1.14 1.03 1.02
m = 40 8 6 5

1.14 1.03 1.02
m = 50 8 6 5

1.14 1.03 1.02
m = 60 8 6 5

1.14 1.03 1.02

Table 8: PCG for Poisson equation, τ = (0.06, 0.02), two–grid, AINV
smoothing, (‘z’, ‘st’, ‘iz’, γ = 2)

ν = 1 ν = 2 ν = 5
m = 10 4 3 2

1.003 1.0002 1
m = 20 5 3 2

1.01 1.001 1.0002
m = 30 5 3 3

1.01 1.001 1.0003
m = 40 5 3 3

1.01 1.001 1.0004
m = 50 5 4 3

1.02 1.001 1.0004
m = 60 5 4 3

1.02 1.001 1.0005
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Table 9: PCG for Poisson equation, τ = 0.06, MLAINV, AINV smoothing, (‘z’,
‘st’, ‘iz’, γ = 1)

m ν = 1 ν = 2 ν = 5
10 12 8 5

op=188340, /n=1883 op=207426, /n=2074 op=292389, /n=2928
100-50-19-10

str=2091, /n=20.9
κ = 1.72 κ = 1.22 κ = 1.02

20 14 10 6
op=987293, /n=2468 op=1161745, /n=2904 op=1575981, /n=3940

400-200-74-36-17
str=9433, /n=23.6

κ = 1.96 κ = 1.35 κ = 1.11
30 15 10 7

op=2448357, /n=2720 op=2709534, /n=3011 op=4216269, /n=4685
900-450-154-69-31-16
str=21701, /n=24.1

κ = 2.02 κ = 1.48 κ = 1.19
40 15 11 8

op=4513421, /n=2821 op=5464389, /n=3415 op=8785665, /n=5491
1600-800-267-130-61-29-13

str=39949, /n=24.9
κ = 2.05 κ = 1.57 κ = 1.25

50 16 11 8
op=7700375, /n=3080 op=8776877, /n=3518 op=14118983, /n=5647

2500-1250-431-208-97-50-21
str=64429, /n=25.7

κ = 2.12 κ = 1.63 κ = 1.29
60 16 12 8

op=11078581, /n=3078 op=13684058, /n=3801 op=20310541, /n=5642
3600-1800-607-283-136-65-27

str=92655, /n=25.7
κ = 2.18 κ = 1.69 κ = 1.32

Since for this problem the results are as good using ‘z’ instead of ‘m’ and
moreover, using M is not really practical with AINV, from now on we will only
give multilevel results using ‘z’.

Let us now consider the multilevel algorithms for (‘z’, ‘st’, ‘iz’). In addition
to the number of iterations, we give the number of nodes on each grid as well as
the total storage for the preconditioner under ‘str’. The number of operations
is also given (under ‘op’) and the number of operations divided by the problem
size. This is used to assess the real scalability of the algorithm.

We remark that there is almost no degradation by using more than two grids.
Moreover, it does not pay to use ν > 1. Even though the number of iterations is
larger, the V–cycle is much cheaper than the W–cycle at least for these problem
dimensions. Since the number of iterations is a little bit less scalable for the
V–cycle than for the W–cycle it might be that in the long run, for very large
dimensions, it is better to use γ = 2. Moreover, it can also be interesting to
reduce the number of iterations by using γ = 2 or by using more smoothing
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Table 10: PCG for Poisson equation, τ = 0.06, MLAINV, AINV smoothing,
(‘z’, ‘st’, ‘iz’, γ = 2)

m ν = 1 ν = 2 ν = 5
10 8 5 3

op=407073, /n=4070 op=446205, /n=4462 op=647685, /n=6477
100-50-19-10

str=2091, /n=20.9
κ = 1.21 κ = 1.03 κ = 1.0004

20 9 6 4
op=2633333, /n=6583 op=3044553, /n=7611 op=4751233, /n=11878

400-200-74-36-17
str=9433, /n=23.6

κ = 1.31 κ = 1.06 κ = 1.002
30 10 7 4

op=7784329, /n=8649 op=9400725, /n=10445 op=12888993, /n=14321
900-450-154-69-31-16
str=21701, /n=24.1

κ = 1.34 κ = 1.07 κ = 1.003
40 10 7 4

op=17718713, /n=11074 op=21489005, /n=13431 op=29564513, /n=18478
1600-800-267-130-61-29-13

str=39949, /n=24.9
κ = 1.35 κ = 1.07 κ = 1.006

50 10 7 4
op=30952313, /n=12381 op=37482165, /n=14993 op=51503793, /n=20602

2500-1250-431-208-97-50-21
str=64429, /n=25.7

κ = 1.35 κ = 1.07 κ = 1.006
60 10 7 4

op=44002793, /n=12223 op=53260013, /n=14794 op=73154993, /n=20321
3600-1800-607-283-136-65-27

str=92655, /n=25.7
κ = 1.36 κ = 1.07 κ = 1.007
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on a parallel computer to avoid some scalar products that are involved for each
PCG iteration. Asymptotically both the number of operations and the storage
for the preconditioner are scalable.

We also note that we could obtain better results if the matrix A is sym-
metrically scaled before using MLAINV. Finally, τ = 0.06 is not the optimal
threshold parameter regarding the number of operations. Slightly better results
are obtained using τ = 0.04 although the storage is larger.

4.2 An anisotropic problem

We would like to solve an anisotropic diffusion problem with constant coeffi-
cients. The coefficient is 1 in the x–direction and 100 in the y–direction. This is
a though problem for approximate inverses since the decrease in the elements of
the inverse is very slow in one direction. In fact, the fill–in for the approximate
factors is very sensitive to the threshold parameter.

We symmetrically scale the matrix A to have a unit diagonal (obtaining Ad).
However, for this problem, the condition number of the scaled matrix is the same
as for the original one. The condition number of Ad for m = 50 is almost 1050.
The scaling is necessary to have a threshold parameter which is not varying too
much with the problem. We use the same right hand side, starting vector and
stopping criteria as for the Poisson equation. Table 11 gives the results for the
MLAINV preconditioner. We remark that for this problem we have to keep a
lot of fill. For the same value of τ the fill is much larger than for the Poisson
problem. This is because the elements of the inverse decrease very slowly in one
direction. The unknowns are very strongly coupled in that direction so we have
almost a one dimensional problem. This gives coarse grids with very few nodes
since there are many nodes which are strongly coupled together.

For the anisotropic problem the results in Table 11 are not fully scalable,
even with the W–cycle although the increase in the number of iterations is quite
small. We note that if we use ν = 2 with the W–cycle the results are almost
scalable even if it is more costly for small problems. These results can be
improved by using a couple of threshold parameters. Table 12 gives the results
with τ = (1, 0.01). This leads to coarse grids with more nodes and approximate
inverses with more fill–in. We see from the results that the number of iterations
is almost constant. However, the storage and the number of operations grow
with the problem dimension. Moreover, the number of operations is much larger
than when using τ = 0.1.

4.3 A discontinuous problem

Here we are concerned with an isotropic diffusion problem with constant but
discontinuous coefficients. The diffusion coefficient is 1 except in the strip
[0, 1]× [1/4, 3/4] where its value is 100. In the discretization we were not really
cautious about the average of the coefficients; we just took their pointwise val-
ues. Therefore, we will have sometimes to use problem dimensions different from
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Table 11: PCG for the anisotropic problem, τ = 0.1, MLAINV, AINV
smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 6 4

op=75272, /n=752 op=97633, /n=976
100-15

str=1400, /n=14
κ = 1.05 κ = 1.002

20 8 5
op=481448, /n=1204 op=592397, /n=1481

400-20
str=6543, /n=16.4

κ = 1.19 κ = 1.03
30 10 6

op=1582331, /n=1758 op=1949849, /n=2166
900-60-11

str=17618, /n=19.5
κ = 1.38 κ = 1.08

40 11 7
op=3365229, /n=2103 op=4415917, /n=2759

1600-120-14
str=34749, /n=21.8

κ = 1.50 κ = 1.12
50 13 8

op=6393915, /n=2558 op=8188289, /n=3275
2500-175-26-13

str=56497, /n=22.6
κ = 1.81 κ = 1.25

60 14 9
op=10046068, /n=2791 op=13272893, /n=3687

3600-210-32-16
str=82475, /n=22.9

κ = 2.06 κ = 1.35
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Table 12: PCG for the anisotropic problem, τ = (1, 0.01), MLAINV, AINV
smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 4 3

op=90038, /n=900 op=235557, /n=2356
100-50-24-12

str=2497, /n=24.9
κ = 1.008 κ = 1.0001

20 5 3
op=630197, /n=1575 op=1452157, /n=3630

400-200-66-33-14
str=13850, /n=34.6

κ = 1.03 κ = 1.0008
30 6 4

op=2305820, /n=2562 op=6502553, /n=7225
900-450-159-79-38-17
str=42850, /n=47.6

κ = 1.05 κ = 1.002
40 6 4

op=5028431, /n=3143 op=14665673, /n=9166
1600-800-251-126-58-29-15

str=92607, /n=57.9
κ = 1.07 κ = 1.002

50 7 4
op=10738437, /n=4295 op=27527546, /n=11011

2500-1250-414-207-81-34-15
str=172056, /n=68.8

κ = 1.09 κ = 1.003
60 7 4

op=18011516, /n=5003 op=49557238, /n=13766
3600-1800-616-308-126-63-31

str=288139, /n=80
κ = 1.11 κ = 1.003
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Table 13: PCG for the discontinuous problem, τ = 0.06, MLAINV, AINV
smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 7 5

op=111261, /n=1126 op=154989, /n=1550
100-15

str=1882, /n=18.8
κ = 1.18 κ = 1.03

20 11 8
op=824933, /n=2062 op=1244657, /n=3111

400-44-13
str=8782, /n=21.9

κ = 3.52 κ = 2.04
30 12 9

op=2137984, /n=2375 op=3505293, /n=3895
900-100-28-13

str=21099, /n=23.4
κ = 3.9 κ = 2.19

39 14 10
op=4368457, /n=2872 op=7164021, /n=4710

1521-166-47-21-10
str=37356, /n=24.5

κ = 4.99 κ = 2.68
50 16 11

op=8321810, /n=3329 op=12523013, /n=5009
2500-271-51-22

str=62850, /n=25.1
κ = 6.5 κ = 3.32

59 17 12
op=12617568, /n=3625 op=20087094, /n=5770

3481-387-69-21-16
str=89907, /n=25.8

κ = 7.9 κ = 3.8

those of the previous problems in order not to have points where the coefficients
are evaluated on the discontinuities.

We symmetrically scale the matrix A to have a unit diagonal and we use the
same right hand side, starting vector and stopping criteria as for the Poisson
equation. The scaled matrix is an M–matrix but it is not diagonally dominant.

For the discontinuous problem, the results in Table 13 are not scalable for
the V–cycle. The increase for the number of iterations is really small for the
W–cycle. However, the number of iterations can be reduced if we use coarse
grids with more points with τ = (0.2, 0.06) as in Table 14. It can be further
reduce if we smooth a little more using τ = (0.2, 0.01) at the expense of a larger
storage.
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Table 14: PCG for the discontinuous problem, τ = (0.2, 0.06), MLAINV, AINV
smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 6 4

op=127051, /n=1270 op=218273, /n=2183
100-40-15

str=2552, /n=25.5
κ = 1.15 κ = 1.01

20 10 6
op=988121, /n=2470 op=1889889, /n=4725

400-147-53-23-10
str=11898, /n=29.7

κ = 2.72 κ = 1.59
30 10 6

op=2410906, /n=2679 op=6298817, /n=5887
900-304-117-53-24-12
str=28896, /n=32.2

κ = 2.45 κ = 1.22
39 11 6

op=4742431, /n=3118 op=10171765, /n=6687
1521-511-214-102-43-17

str=52274, /n=34.4
κ = 2.9 κ = 1.31

50 13 7
op=9484653, /n=3794 op=21897205, /n=8759

2500-837-356-174-67-31-17
str=89472, /n=35.8

κ = 4.01 κ = 1.57
59 13 8

op=13619971, /n=3913 op=36180434, /n=10390
3481-1163-510-248-88-40-17

str=128477, /n=36.9
κ = 4.31 κ = 1.63
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Table 15: PCG for the rapidly varying coefficient problem, τ = 0.06, MLAINV,
AINV smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 7 4

op=104509, /n=1045 op=120433, /n=1204
100-13

str=1737, /n=17.4
κ = 1.21 κ = 1.03

20 9 6
op=655513, /n=1649 op=929041, /n=2322

400-46-15
str=8464, /n=21.2

κ = 1.6 κ = 1.16
30 11 7

op=1928857, /n=2143 op=2764629, /n=3072
900-103-29-13

str=20670, /n=22.9
κ = 1.8 κ = 1.23

40 12 8
op=3849758, /n=2406 op=5709825, /n=3568

1600-180-37-15
str=38032, /n=23.8

κ = 2.00 κ = 1.29
50 13 8

op=6677681, /n=2671 op=9535625, /n=3813
2500-279-52-23-10

str=61230, /n=24.5
κ = 2.15 κ = 1.34

60 14 9
op=10475023, /n=2910 op=15479973, /n=4300

3600-402-66-28-12
str=89631, /n=24.9

κ = 2.31 κ = 1.39

4.4 A problem with rapidly varying coefficients

This problem is isotropic. The diffusion coefficient is 1 + 1000|x − y|. We
symmetrically scale the matrix A to have a unit diagonal and we use the same
right hand side, starting vector and stopping criteria as for the Poisson equation.
The condition number of Ad for m = 50 is almost 614.

For this problem, as we can see in Table 15, the number of iterations is almost
constant with γ = 2, the number of operations as well as the condition number
being slightly increasing. Table 16 gives the results with τ = (1, 0.01). Then,
the number of iterations is constant but the number of operations is increasing
more than linearly. The same is true for the storage.
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Table 16: PCG for the rapidly varying coefficient problem, τ = (1, 0.01),
MLAINV, AINV smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 4 3

op=175818, /n=1758 op=403493, /n=4035
100-50-24-14

str=4726, /n=47.2
κ = 1.008 κ = 1.0001

20 5 3
op=1631519, /n=4079 op=3848317, /n=9621
400-200-99-53-26-12
str=35029, /n=87

κ = 1.05 κ = 1.002
30 6 4

op=5849563, /n=6499 op=14671353, /n=16302
900-450-215-111-54-23-10

str=106604, /n=118
κ = 1.11 κ = 1.009

40 7 4
op=14237629, /n=8898 op=31440793, /n=19650

1600-800-385-199-104-45-22
str=226485, /n=141

κ = 1.18 κ = 1.02
50 8 5

op=27883151, /n=11153 op=65753549, /n=26301
2500-1250-605-314-157-72-37

str=393652, /n=157
κ = 1.30 κ = 1.03

60 8 5
op=43150516, /n=11986 op=102536912, /n=28482

3600-1800-875-454-233-108-53
str=608523, /n=169

κ = 1.47 κ = 1.05
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Table 17: PCG for the random Laplacian problem, τ = 0.06, MLAINV, AINV
smoothing, (‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 9 6

op=146023, /n=1460 op=335049, /n=3350
100-50-24-12

str=2134, /n=21.3
κ = 1.40 κ = 1.09

20 10 7
op=731590, /n=1829 op=2729133, /n=6822
400-200-91-46-23-12
str=9489, /n=23.7

κ = 1.43 κ = 1.10
30 11 7

op=1850653, /n=2056 op=7510421, /n=8345
900-450-204-96-49-25-13

str=21933, /n=24.4
κ = 1.57 κ = 1.15

40 12 8
op=3624403, /n=2265 op=15291297, /n=9557

1600-800-381-176-90-40-20
str=39655, /n=24.8

κ = 1.87 κ = 1.27
50 12 8

op=5724579, /n=2289 op=24772013, /n=9909
2500-1250-595-288-129-65-36

str=62822, /n=25.1
κ = 1.78 κ = 1.24

4.5 A random Laplacian

To show that MLAINV is not only working for M–matrices we consider matrices
arising from the Poisson equation as in the first example but with the signs of
the non zero non diagonal coefficients chosen at random. This implies that the
matrix is an H–matrix. The results in Table 17 show that the method is working
nicely even with non M–matrices.

4.6 Other problems

All the preceding examples but the last one arise from two dimensional diffusion
equations discretized with a finite differences five point scheme. We would like
to see how these methods behave on examples coming from other areas of scien-
tific computing. We chose some symmetric matrices from the Harwell–Boeing
collection or from the Boeing collection stored in the Tim Davis’ collection
(http://www.cise.ufl.edu). We note that there are not many symmetric ma-
trices in these collections and their orders are small. We had to normalize these
matrices to be able to use the same values of τ as before. Of course, since the
orders of the matrices are given we cannot check if there is a dependence of
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the number of iterations on the size of the problem. Moreover, some of the
problems are quite small and it can be that AINV is faster than its multilevel
counterpart. A solution with a direct method is also much faster. We use the
following examples:

1. 1138-bus. An admittance matrix of order 1138 with 4054 non–zeros. It
is normalized. This matrix is almost singular. To obtain a meaningful
problem we add 0.01 to the diagonal elements of the normalized matrix.

2. bcsstk01. A stiffness matrix of order 48 with 400 non-zeros. It is normal-
ized. The condition number of the normalized matrix is 1361. This matrix
is not diagonally dominant, nor an M–matrix, but nevertheless positive
definite.

3. gr3030. A matrix arising from a nine point approximation to the Laplacian
on the unit square with a 30 × 30 mesh. It has order 900 and 7744 non–
zeros. The condition number of Ad is 194.

4. bcsstk34. A stiffness matrix of order 588 with 21418 non-zeros. This
matrix was normalized.

4.6.1 Results on 1138-bus modified

We use τ = 0.06. The number of nodes on the grids are 1138−221−88−39−15
with a storage of 19597, /n = 17.2. The number of iterations with γ = 1 is 15
and the number of operations is 2402769, /n = 2111. The condition number
is 3.10. With γ = 2 we obtain 10 iterations and the number of operations is
4873665, /n = 4283, the condition number being 1.85.

4.6.2 Results on bcsstk01

We use τ = 0.2. The number of nodes on the grids are 48 − 10 with a storage
of 867, /n = 18.1. The number of iterations with γ = 1 is 14 and the number
of operations is 92294, /n = 1922. With γ = 2 we obtain 10 iterations and the
number of operations is 120709, /n = 2514.

4.6.3 Results on gr3030

We use τ = 0.06. The number of nodes on the grids are 900 − 117 − 33 − 14
with a storage of 24975, /n = 27.7. The number of iterations with γ = 1 is 9
and the number of operations is 1916455, /n = 2129. The condition number
is 1.39. With γ = 2 we obtain 6 iterations and the number of operations is
2917241, /n = 3241, the condition number being 1.07.

4.6.4 Results on bcsstk34

We use τ = 0.2. The number of nodes on the grids are 588−295−150−74−32−14
with a storage of 55814, /n = 94.9. The number of iterations with γ = 1 is 6
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and the number of operations is 2662494, /n = 4528. The condition number
is 1.06. With γ = 2 we obtain 4 iterations and the number of operations is
8696762, /n = 14790, the condition number being 1.003.

5 Conclusion

We have seen that the approximate inverse AINV can be extended to a multilevel
preconditioner that gives good results when used with PCG for solving sparse
symmetric positive definite linear systems. For some problems, the number
of iterations is constant, for some more difficult ones it is only very slightly
increasing.

We have explored the possibility to define the influences between nodes by
using the approximate inverse. It tends to give coarse grids with a smaller
number of nodes than other approaches, see [5]. This leads to cheaper solutions
when it works. However, by using a couple of threshold parameters we were
always able to obtain a good smoothing and coarse grids which are not too
coarse.

It remains to be seen what is the performance of the method on parallel
computers for very large problem dimensions. Parallelism can be introduced by
using a preordering of the unknowns with domain decomposition–like principles.
This will be presented in a forthcoming paper. Numerical comparisons with
other multilevel methods are given in [5].
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