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Abstract. This paper numerically compares different algebraic multilevel preconditioners to
solve symmetric positive definite linear systems with the preconditioned conjugate gradient algorithm
on a set of examples arising mainly from discretization of second order partial differential equations.
We compare several different smoothers, influence matrices and interpolation schemes.
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1. Introduction. In this paper we report on numerical experiments using some
multilevel preconditioners for solving symmetric positive definite linear systems Ax =
b with the Preconditioned Conjugate Gradient (PCG) method.

The methods we would like to compare are purely algebraic algorithms that only
use the matrix and the right hand side as inputs.

An important issue for solving very large problems on Tflops scale parallel com-
puters is scalability. One would like to have the computer time constant when the
problem size per processor is fixed and the number of processors increases which
means that the dimension of the problem is increasing. When using an iterative
method like PCG this implies that the number of iterations must be constant when
the problem size is increased. But this is not enough since we also need to have a
number of operations per iteration proportional to the problem size. We will see that
most multilevel preconditioners considered in this paper lead to algorithms which are
almost scalable for some problems arising from discretization of second order partial
differential equations.

All these methods use the same design principles as the Algebraic Multigrid al-
gorithm (AMG). The standard AMG is a multigrid–like method that has been firstly
defined for M–matrices, see [8], [2]. After some smoothing steps, the equation for the
error with the residual as the right hand side is solved recursively on a coarser grid,
corresponding to a subset of the unknowns. In AMG the coarse meshes are defined by
looking at the entries of the matrix A. This is based on the fact that for M–matrices
the largest entries in the inverse (which are positive) are given by the structure of
A. Moreover, there is a decrease of the entries of the inverse away from the structure
of A, see [5]. The set of dependencies of an unknown (a node) is defined by (a part
of) the neighbours of the given node. An influence set is defined for each unknown
as the “transpose” of the set of dependencies. The fine and coarse nodes for each
level are found on this basis. Then, knowing the fine and coarse nodes, interpolation
weights are computed using the entries of A and the equations of the linear system.
The restriction R is the transpose of the interpolation (prolongation) matrix P and
the coarse matrix is generally defined as Ac = RAP . As we said before, the method
also uses a smoothing operator. An iteration (V–cycle) of the recursive algorithm is
the following:

1. Do ν iterations of smoothing.
2. Restrict the residual r to rc = Rr.
3. Recursively solve Acec = rc.
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4. Interpolate ec to e = Pec.
5. Add the correction e to the current iterate.
6. Do ν iterations of smoothing.
More generally we can introduce a parameter γ and replace step 3 by doing γ

iterations of the same algorithm with one level less. Choosing γ = 1 is the V–cycle
just described and having γ = 2 is denoted as a W–cycle.

For the classical (geometric) multigrid method, typically for the Poisson equation
in the unit square with finite differences, one uses Gauss–Seidel (or relaxed Jacobi)
as a smoother, bilinear interpolation and a coarse mesh defined by taking every other
node in each direction in a red–black fashion, see [2]. For discontinuous or anisotropic
coefficients problems more sophisticated smoothers and/or interpolations (using the
matrix entries) have to be used. This is what we are supposed to get automatically
with AMG.

If everything is symmetric (which can be obtained by using symmetric Gauss–
Seidel as a smoother) a preconditioner for PCG is given by running one iteration of
the previous algorithm starting from x0 = 0.

The multilevel preconditioners we are going to compare proceed in the same way
as AMG using different definitions of the smoother, the coarsening algorithm and the
interpolation.

In the next sections we describe the algorithms in more details and some numerical
results which have been obtained on several elliptic problems as well as more general
linear systems.

2. The multilevel preconditioners. We are going to look at the different com-
ponents of the multilevel algorithm: the smoother, the influence matrix, the coarsen-
ing and interpolation algorithms.

2.1. The smoother.

2.1.1. Symmetric Gauss–Seidel. When solving symmetric linear systems with
PCG we need a symmetric positive definite preconditioner. One way to extend what
is done in classical multigrid is to use a symmetric Gauss–Seidel iteration. The Gauss–
Seidel algorithm is done with the given ordering of the unknowns and then another
step is done using the reverse ordering. We will denote this smoother by ‘gs’ in the
numerical experiments

2.1.2. Incomplete Cholesky. Another smoother which has been proposed is
the Incomplete Cholesky (IC) decomposition LD−1LT (where L is lower triangular
and D diagonal) of the matrix. There are many different variants of this algorithm.
The most popular one is to use a decomposition whose non zero structure of L is
the same as the structure of the lower triangular part of A. However, one can also
keep a part of the fill–in either by looking at the size of the entries or by using the
levels of fill–in, see [6] for a review and the references therein. In the numerical
experiments reported here we will only consider the variant with no fill although to
be fair in comparison with the other approximate smoothers we should have retained
some fill in for the most difficult problems. This incomplete decomposition is used in
a Richardson iteration

LD−1LT (xk+1 − xk) = b−Axk

when solving Ax = b. We will denote this smoother by ‘ic’.
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2.1.3. AINV approximate inverse. Here the idea is to use an approximate
inverse M from AINV as a smoother in a Richardson iteration defined as

xk+1 = xk +M(b−Axk),

when solving Ax = b, see [1], [7]. This preconditioner computes an approximate
factorization M = ZD−1ZT of the inverse of A and involves a parameter τ used to
define which elements are dropped during the factorization.

If we first consider a two–grid algorithm using one step of pre–smoothing and
one step of post–smoothing starting from x0 = 0, we can easily see [7], that the
preconditioner which we denote by M̃1 is defined as

M̃1 =M +M(I −AM) + (I −MA)(P (RAP )−1R)(I −AM).
The matrix M from AINV is symmetric positive definite. Obviously M̃1 is sym-

metric. It has been shown in [7] that M̃1 is positive definite if we suppose that M is
such that ρ(I −AM) < 1. In [7] it was also proven that under the same hypothesis 1
is a multiple eigenvalue of M̃1A. Moreover, all the eigenvalues of M̃1A are smaller or
equal to 1.

This occurs whatever the choice ofM , R and P as long asM and M̃1 are symmet-
ric and positive definite. Therefore the convergence rate of PCG using the two–grid
preconditioner depends only on the smallest eigenvalue. Moreover, the same results
apply if the coarse matrix is obtained by using the same algorithm recursively, that
is in the multilevel case.

2.1.4. The approximate inverse of Tang and Wan. This smoother is an
approximate inverse suggested by Tang and Wan in [9]. The approximate inverse M
for a general matrix A is computed to minimize

‖I −MA‖F

the F norm being the Frobenius norm. This problem is equivalent to solving n l2
minimization problems, n being the order of A,

‖ATmi − ei‖(2.1)

where mT
i is the ith row of M and ei is the ith column of the identity matrix.

Generally the difficult point in deriving approximate inverses of this type is to select
the sparsity pattern to be imposed on M . There are sophisticated algorithms to do
this adaptively. However, here we are only looking for a smoother. The proposal of
Tang and Wan is to use a sparsity pattern corresponding to the neighbours of node i
in the graph of A. More specifically if we define the neighbours of i to be at level 0
and the same plus the neighbours of the neighbours to be at level 1, in the same way
we can define what is the k–level neighbour set for any k > 0.

The smoother is defined by extracting from AT the (k, l) submatrix AT
k,l corre-

sponding to the rows in level k and the columns in level l and then solving the least
squares problem (2.1) with the normal equations

Ak,lA
T
k,lmi = Ak,lei.

This gives the ith row of M . Here we shall use l = 1, k = 0 as proposed by Tang and
Wan although this will not be enough for the most difficult problems. Usually this
gives small linear systems to solve when the matrix A is sparse. However, the matrix
M might not be symmetric, therefore we use 1/2(M +MT ) as the smoother. As with
AINV, this is used in a Richardson iteration. We denote this smoother by ’tw’.
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2.1.5. Conjugate gradient. A few iterations of the conjugate gradient algo-
rithm have been suggested as a smoother. We will use ν = 3 iterations of CG with a
diagonal preconditioner and denote this smoother as ‘gc’. We use 3 iterations because
for most problems this gives the minimum number of operations.

2.1.6. Conjugate gradient with AINV preconditioner. We use 3 iterations
of CG preconditioned with AINV with a parameter τ . This will be denoted as ‘cg’.

2.1.7. A least squares polynomial. This smoother is simply to defineM as a
least squares polynomial preconditioner pk. We wish to have the polynomial λpk(λ)
as close as possible to 1 in some sense on [a, b] an interval enclosing the eigenvalues
of A. One way of achieving this is to look for the polynomial pk of degree k ∈ Qk the
set of polynomials of degree less than or equal to k that minimizes∫ b

a

(1− λq(λ))2w(λ) dλ, q ∈ Qk,

where w(λ) is a positive weight. Usually, one chooses the Jacobi weights,

w(λ) = (b− λ)α(λ− a)β , α ≥ β ≥ −1
2
,

because we know the orthogonal polynomials associated with these weights. The
solution of the minimization problem is explicitly known, see [6]. We shall use the
Chebyshev weights α = β = −1/2 and a ≥ 0 and b are given by the Gerschgorin
bounds for the eigenvalues of A. A stable algorithm for computing z = Pk(A)r is the
following (se [6] for details of the derivation):

s0(0) =
1√
π
, s1(0) =

√
2
π

a+ b
a− b , s2(0) =

√
2
π

[
2
(
a+ b
a− b

)2

− 1
]
,

and

sj(0) = 2µ(0)sj−1(0)− sj−2(0), j = 3, . . . , k + 1

bj =
sj(0)∑k+1

i=0 s
2
i (0)

, j = 1, . . . , k + 1.

Then,

zk+1 = bk+1r, zk = bkr +
2

b− a (2A− (a+ b)I)zk+1,

zj = bjr +
2

b− a (2A− (a+ b)I)zj+1 − zj+2, j = k − 1, . . . , 1

and

uk+1 =
4

a− bsk(0)zk+1,

uj+1 =
4

a− bsj(0)zj+1 + uj+2, j = k − 1, . . . , 1



MULTILEVEL PRECONDITIONERS 5

Finally

z =

√
2
π

2
a− bz1 + u2.

This preconditioner is also used as a smoother in a Richardson iteration. We
denote this smoother by ’po’ and k will be the degree of the polynomial.

2.2. The influence matrix. An important part of the algorithm is to decide
which unknowns correspond to the fine “nodes” or points and which to the coarse
points. Hence, the set N = {1, . . . , n} of the unknowns indices is split into two sets
N = F ∪ C.

First of all for each unknown (point or node) i we define the set of dependencies
Si and an influence matrix S whose rows are the Si’s. This can be done in many
ways. The standard AMG algorithm (see [4], [8], [10], [2]) for an M–matrix defines

Si = {j| − ai,j > τ max
k �=i

(−ai,k), τ < 1},

where τ is a parameter that defines which elements are strongly connected to i. The
set of points that i influences is ST

i = {j| i ∈ Sj}. This definition can be generalized
to any matrix by

SA
i = {j | |ai,j | > τ max

k �=i
|ai,k|, τ < 1}.

Since the previous definition uses the matrix A itself we will denote it by ‘a’ in the
numerical experiments. We remark that this influence matrix is local as it is looking
only at the neighbours of i in the graph of A.

Rather than using an influence matrix given by the entries of A, it seems natural
to measure the influences of the points by the inverse of A since this describes how
the unknowns are linked together. However, since we only have (eventually) at our
disposal the approximate inverse M from AINV or the Tang and Wan approximate
inverse, we can define (see [7])

SM
i = {j ∈ N , j �= i| mi,j �= 0}.

This choice will be denoted as ‘m’. Generally we do not want to compute M when
using AINV since it is only given in factored form and the solve at every iteration can
be done with multiplications with Z and ZT . Thus we will also define the influence
matrix as

SZ
i = {j ∈ N , j �= i| ni,j �= 0}.

Let Q be a diagonal matrix whose diagonal elements are the square roots of those of
D−1 and Z̃ = ZQ. Then, the matrix N is defined as N = Z̃ + Z̃T −Q. This choice
will be denoted as ‘z’.

We will see in the numerical experiments that when solving anisotropic problems
with AINV the choices ‘m’ and ‘z’ can lead to obtain too many couplings and coarse
grids with very few points. Although this is right from the physics of the problem, it
does not always allows to compute the solution as fast as we would like and moreover
we will not be able to use every interpolation scheme with these grids. A way to avoid
this is to compute the coarse grid and then to check if every F node has at least one
C node in its neighbours in the graph of A. If this is not the case, we can choose one
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of the neighbours and change its status to a C point. One can also filter the matrix
SZ by only keeping the largest elements in N .

Another way to obtain coarse grids with more nodes using AINV is to use two
approximate inverses, one with a threshold τ1 to compute the coarse grid and another
one with a threshold τ2 ≤ τ1 as a smoother. The first decomposition can be easily
obtained from the second one. This would allow us to be able to smooth more on
difficult problems without leading to grids which are too coarse.

2.3. The coarsening algorithm. Once Si is fixed by any of the previous meth-
ods, there are different ways we can follow to decide which are the F and C points.

2.3.1. Algorithm C1. What we are going to denote as the “standard” (‘st’)
coarsening algorithm is mainly based on two principles:

1. For each i ∈ F , each node j ∈ Si should either be in C or should depend on
at least one point in Ci which is the set of coarse points which are going to be used
for the interpolation of i.

2. C should be (as most as possible) a maximal subset with the property that
no C point depends on another C point.

The first criterion tends to increase the number of C points. The second one
is used to limit the number of points in the coarse grid. The standard coarsening
algorithm is defined by two passes. The first one uses weights wi which are the
number of points that depend on i. One step of the algorithm is the following:

1. Choose the first point i with maximal weight as a C point.
2. Assign the points that i influences as F points.
3. Increment by 1 the weights of the points influencing these new F points.
4. Decrease by 1 the weights of points that depends on i.
This first pass guarantees that each F point has at least one connection to a C

point. This is needed for the standard interpolation. It tends sometimes to produce
too many F points. A second pass (see [10]) could be added in which some F points
are made into C points to enforce the first criterion and to minimize C–C connections.
The idea is to test each F point to see if the first criterion is satisfied. The neighbours
of i are split into the coarse (interpolatory) points Ci, the strongly connected non
interpolatory points DS

i (those which belong to Si) and the weakly connected non
interpolatory points DW

i . If there is a point in D
S
i which is not connected to Ci, it is

tentatively flag as a C point. If the first criterion is verified with this new C point, it
is definitely considered as a C point and testing on other F points continues.

For the problems we are going to consider this second pass has not much effect
and since it is costly we are going to skip it.

2.3.2. Algorithm C2. There are many others ways to generate the F and C
points. Let us look at an algorithm proposed by Cleary, Falgout, V.A. Henson and
Jones [3]. This algorithm was devised to be used on parallel computers. When used
in parallel the algorithm first select a set of independent points and then operates
independently on the points of this set which are the starting points. The weights to
be used are the same as in ‘st’ (although [3] added random numbers to break ties).
For our purpose since we are not looking at the parallelism issue we just select one
point. One step of the algorithm is:

1. Choose a point i of maximal weight as a C point (but check if this does not
introduce a C–C connection).

2. For all points j that influence i decrease the weight of j by 1 and remove
edge i, j from the graph of S.
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3. For all points j that depend on i, remove edge j, i from the graph and for
each k that j influences if k depends on i decrease the weight of j by 1, remove the
edge k, j from the graph.

4. When the weight of a point is 0 (or 1) flag it as an F point.
The original proposal [3] does not refuse C–C connections and flags nodes when

their weight is 0. We will denote this algorithm by ‘p’ and the one with a check and
a flag when the weight is 1 by ‘p1’.

2.3.3. Algorithm C3. Another possibility is to use the following algorithm. As
weights we use the max norms of the columns ofM orN scaled to have a unit diagonal.
We choose the point with maximal weight as a C point and flag the influences as F
points. We find the points that influences the new F points and raise their weights
by a percentage of the initial maximum weight. This is followed by the second pass
of the standard algorithm. Finally, for interpolation purposes, we check that every F
point has at least one C neighbour. This will be denoted as ‘m2’.

Finally we remark that the selection of the coarse grids depends on the matrices
on the coarse levels and therefore also on the interpolation scheme which gives P
and R and consequently the next coarse matrix. This implies that if we change the
interpolation scheme, the number and location of coarse nodes also change.

2.4. The interpolation algorithm. The classical multigrid algorithm uses bi-
linear interpolation. However, it is well known that this is not satisfactory for general
problems.

2.4.1. Algorithm I1. The standard AMG algorithm uses instead an interpola-
tion based on the equations in the linear system. However, some approximations have
to be done. Finally, for a point i in F , the interpolation weight with a coarse point j
is

ωi,j = −
ai,j +

∑
k∈DS

i

ai,kak,j∑
m∈Ci

ak,m

ai,i +
∑

k∈DW
i
ai,k

.

This will be denoted as ‘st’ (standard interpolation). It is obtained by writing the
equation for Ae = 0 and by doing some approximations; namely writing that ej ≈ ei
for weak connections and using a weighted average for F connections. Note that the
given F point needs to have at least one coarse point in its neighbourhood in the
graph of A in order to be able to apply this interpolation scheme.

2.4.2. Algorithm I2. We can also use the approximate inverse to generate the
interpolation weights, see [7]. Let Ci be the set of coarse nodes in Si. For an F point
i, the interpolation weights wi,j are defined as

wi,j =
ni,j∑

l∈Ci
ni,l

j ∈ Ci,

where N = M or Z̃ + Z̃T −Q. In fact, in the most general case we use the absolute
values of the coefficients. The rationale behind this choice being that the points which
are more important for interpolation are the ones with the strongest connections.
These choices will be denoted respectively as ‘im’ and ‘iz’.

2.4.3. Algorithm I3. Another possibility is to use the approximate inverse in
a different way. Suppose the matrix is permuted to(

Af,f Af,c

AT
f,c Ac,c

)
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and we have an approximate inverse M partitioned in the same way. This can be an
approximate inverse of the permuted A or the permutation of an approximate inverse
(note this is not the same). Then, we can set the interpolation matrix as

P =
(−Mf,fAf,c

I

)

and the restriction is as usual R = PT . The RAP matrix is

RAP = Ac,c −AT
f,cMf,fAf,c −AT

f,cMf,f (I −Af,fMf,f )Af,c

that is an approximate Schur complement plus a correction term which must be small
if Mf,f is a good approximation of the inverse of Af,f . Strictly speaking using the
equations, we would have to apply a correction on the F unknowns after interpolation
but we neglect this as there was not a clear gain in the numerical experiments for
large problems. We will refer to this as ‘sc’ interpolation.

2.4.4. Algorithm I4. We will also consider briefly other interpolation schemes.
One is the energy minimization interpolation described by Wan, Chan and Smith in
the finite element framework, see [12]. Although, this is formulated for finite elements,
this interpolation can be used in a more general setting. The prolongation operator
relates the coarse grid basis functions φH

i to the fine grid basis functions φh
i

[φH
1 · · ·φH

m] = [φ
h
1 · · ·φh

n]P.

The coarse grid functions can be expressed in the fine grid basis

φH
i =

n∑
j=1

ϕi
jφ

h
j ,

and we are looking for coefficients ϕi
j that minimize the A–norm of the coarse grid

basis functions satisfying the fact that the interpolation of a constant value is exact.
Let

ϕi = (ϕi
1 . . . ϕ

i
n)

T , φ = (ϕ1 . . . ϕm)T .

Then, the minimization problem is min 1
2φ

TQφ, BTφ = 1, where 1 is a vector of all
ones, Q is a block diagonal matrix whose diagonal blocks Qi are given by (Qi)k,l = ak,l

if k and l are neighbours of i (in the graph of A) and δk,l otherwise. The constraints
matrix B is given as BT = (IT

1 · · · IT
m), with (Ii)k,l = 1 if k = l, i being a neighbour of

k and 0 otherwise. The minimization problem is solved using a Lagrange multiplier
Λ. This gives a linear system

(
Q B
BT 0

)(
φ
Λ

)
=

(
0
1

)
.

This is solved by eliminating φ to get (BTQ−1B)Λ = −1. Fortunately Q−1 is not
difficult to obtain since Q is block diagonal with small blocks. Once, we have φ and
therefore the ϕjs, we set P = (ϕ1 · · ·ϕm). This interpolation will be denoted as ’em’.
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2.4.5. Algorithm I5. Following the ideas of Wagner [11] we can try to compute
an interpolation that minimizes ‖(I − PRinj)S‖F , where Rinj is the injection and S
is the smoothing operator. So, this interpolation does not only involve A but the
smoothing operator. Wagner [11] also uses this to determine the fine and coarse
points. Here, we assume they are given by the coarsening algorithm. Then, we just
have to solve simple constrained quadratic minimization problems. Let qi be vectors
such that (qi)k is 1 if k = i, −pi,k if k ∈ Pi the set of nodes used for the interpolation
in i ∈ F and 0 otherwise. The pi,ks are the entries of P . Then, for all i we have to
solve

min ‖ST qi‖2, qT
i 1 = 0.

This interpolation is denoted by ’wi’.

2.4.6. Algorithm I6. A last possibility is to use a “local” solve to compute the
interpolations weights. Suppose we are considering node i ∈ F . Then i has coarse
and fine neighbours. We look only at the coarse neighbours of the fine neighbours
(assuming that we will fix a value of zero for the fine neighbours of the fine neigh-
bours). Then from A we extract the matrix corresponding to this set of nodes (i,
the neighbours of i and the coarse neighbours of the fine neighbours of i) and we ex-
press the fine unknowns as a function of the coarse unknowns in this “small” system.
The coefficients expressing i as a function of the coarse nodes give the interpolation
weights when normalized for having a sum of 1. If the extracted matrix is(

Bf,f Bf,c

BT
f,c Bc,c

)

then, we have xf = −B−1
f,fBf,cxc and this gives the desired solution. This interpolation

is denoted by ’wm’. It is a little bit similar to the Schur complement interpolation but
operates only locally. Of course, it can be extended to a larger stencil by considering
the neighbours of the neighbours of the neighbours and so on. . .

Numerically we will only look at these different interpolations for one (discontin-
uous) problem we are going to describe since it is almost impossible to test of the
possible combinations of influence, coarsening, interpolation and smoother.

2.5. Other possibilities. Variations of the previous algorithms which use the
approximate inverse AINV include using a parameter τ which varies with the level
or using only the q largest elements on each column of Z. Another possibility is to
use the regular AINV on the finest level and to truncate on the coarsest levels. This
can sometimes save some floating point operations and still give the same number of
iterations as the full algorithm. Many other smoothers have been suggested in the
literature like block Jacobi or symmetric Gauss–Seidel with multicolor orderings.

3. Numerical experiments. Here we describe the test problems we use and
we comment on the results which are given in tables in the next section. In all the
experiments of this paper we stop with a criterion

‖rk‖ ≤ ε‖r0‖

where rk is the residual at iteration k and ε = 10−10. The right hand side b is the
same random vector in all experiments of the same dimension and the initial vector
is x0 = 0.
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3.1. The Poisson equation. We solve the Poisson equation with Dirichlet
boundary conditions in the unit square with m discretization points in each direc-
tion (excluding boundaries) with a natural (left to right and bottom to top) ordering.
This gives a matrix of order n = m2. It is well known (see for instance [6]) that the
condition number of the matrix is proportional to 1/h2 where h = 1/(m+1). This can
be computed analytically. Experimentally, we found that κ(A) = 0.4 h2. For the di-
mensions we used (m = 10 : 10 : 60) this gives 48.4, 178.1, 388.8, 680.6, 1053.4, 1506.2;
therefore this matrix can be considered as well conditioned.

Let us first look at the AMG algorithm (that is as a stand alone algorithm not
using PCG). We use a Gauss–Seidel smoother, the coarse grids are chosen using
‘a’, with τ = 0.06 (but any value less than 0.25 will give the same results at least
for the first coarse level), the standard interpolation ‘st’ and one step of pre and post
smoothing (ν = 1). We would like to note that these results are obtained with our own
Matlab implementation of this algorithm and it might not be completely comparable
to what was defined in [8]. So, we do not claim that our results are representative of
what could be obtained with the implementation of Ruge and Stuben. We note also
that we could have used all the smoothers, coarsening algorithms and interpolation
schemes we are considering in an AMG–like algorithm and not as a preconditioner for
CG. AMG has the advantage over PCG of not requiring scalar products.

We give the number of iterations, the reduction factor ρ (which is computed on the
last iterations), the number of floating point operations (excluding the initialization
phase).

In Table 1 we look at the multigrid results for (our implementation of the) AMG
with a maximum of 7 levels (which is enough for the problem sizes we are going to
consider). We use a direct solver when the dimension of the matrix is smaller than
10. The coarsening algorithm is used without a second pass. We give the number
of operations divided by n and on the last line the number of points in the different
grids.

We can see from Table 1 that the number of iterations is constant (at least for these
problem sizes) as well as the asymptotic reduction factor. Moreover, the number of
operations is almost 1470 n. This means that this method is scalable for this particular
problem. However, an iteration of this method cannot be used as a preconditioner for
PCG since the corresponding matrix M̃1 is not symmetric positive definite. As we
said before we will have to use a symmetric Gauss–Seidel smoother.

We now start looking at the results for the multilevel preconditioners using PCG.
The algorithms are denoted by a tuple: (smoother, influence, coarsening, interpola-
tion). Moreover we can also use different values of ν the number of smoothing steps
and/or of the cycle parameter γ. In addition to the number of iterations, we give the
number of nodes on each grid as well as the total storage for the preconditioner under
‘str’. The number of operations is also given (under ‘op’) as well as the number of
operations divided by the problem size. This is used to assess the real (sequential)
scalability of the algorithm. Finally, we give the condition number as given by the
eigenvalues that can be computed from the PCG coefficients. This might not be very
accurate when the number of iterations is too small.

We remark that we cannot test all the combinations of the smoother, the influence
matrix, the coarsening and the interpolation. For instance, we cannot use the standard
‘st’ interpolation if we do not have at least one coarse point in the neighbours of a
fine node in the graph of A.

Table 2 gives the results of an algorithm using (‘gs’, ‘a’, ‘st’, ‘st’). This algorithm
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is scalable with an operation count about the same as AMG (with ν = 1). The
cost of the smoother is larger (since we use symmetric Gauss–Seidel) but the number
of iterations is approximately half those of AMG. Of course, the storage is rather
low as we do not have to store the smoother for the symmetric Gauss–Seidel method.
However, we note that this algorithm is not parallel. To obtain a parallel algorithm the
symmetric Gauss–Seidel smoother would have to be used with a multicolor ordering of
the unknowns. Finally, we can see that it does not pay to smooth more by using ν > 1
since the decrease in the number of iterations is not large enough to compensate the
increase for the cost of one iteration. It is interesting to note that the coarse matrices
are better and better conditioned when their dimension decreases. For instance, for
m = 40 we have κ(AC) = 680.6, 170.6, 42.5, 10.6, 2.8. The ratio between successive
condition numbers is almost 4. This is also true for other problem sizes.

Table 3 shows the results with an Incomplete Cholesky smoother everything else
being the same as in Table 2. The results of Table 3 are a little better than those in
Table 2 using a symmetric Gauss–Seidel smoother regarding the number of operations.
The storage is larger with the IC smoother since we have to store the preconditioner.
The method is scalable but also not parallel although there are some ways to partially
parallelize the Incomplete Cholesky factorization.

Table 4 gives results for the AINV smoother everything else being the same as
in Table 2. The results in Table 4 show that AINV is a smoother which is not as
good (with this value of τ) as the symmetric Gauss–Seidel or the Incomplete Cholesky
decomposition. The number of iterations is almost twice what it is for IC. However,
it must be noted that we do not keep too much fill–in in AINV (using a smaller value
of the parameter τ will decrease the number of iterations although at the expense of
a larger storage). Moreover, AINV is a fully parallel smoother since it only involves
matrix–vector multiplies. The number of iterations can be lowered by using a W–cycle
(γ = 2). Then for ν = 1, 2, 5 we obtain 9, 6, 4 iterations but the number of operations
is larger than with γ = 1.

The results for ’tw’ are given in Table 5. From these results and comparing
with those in Table 4, we see than ’tw’ is a better smoother than ’ai’. The number
of iterations and the number of operations are approximately the same as for the
symmetric Gauss–Seidel smoother ’gs’. However, using ’tw’ is fully parallel since the
operation to apply the smoother is a matrix–vector product.

Table 6 gives the results for 3 iterations of the conjugate gradient with a diagonal
preconditioner as a smoother. This is a good smoother but more expensive than IC.
The number of iterations is smaller than for the AINV smoother but the cost is higher.

Table 7 shows that it is not interesting to use PCG with an AINV preconditioner
as a smoother for this problem. The number of iterations is the same as with a diagonal
preconditioner but, of course, the cost is larger. However, using this smoother is better
than smoothing more when using the AINV smoother.

The results for the least squares polynomial are given in Table 8. We use a
polynomial of order 1 since it is shown in Table 9 that, although increasing the degree
of the polynomial decreases the number of iterations, there is no gain concerning the
number of operations. This is because the decrease in the number of iterations is not
fast enough to compensate for the larger number of matrix–vector products when we
increase the degree.

The polynomial is computed using an interval [a, b] which is usually taken as
0 ≤ a ≤ λmin(A), b ≥ λmax(A). We have tried varying a since one can argue that
we do not need to approximate all the eigenvalue spectrum for a smoother. For the
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Poisson problem, starting with a = λmin and increasing a towards b increases slightly
the number of iterations by 1 or 2.

In Table 10 we look at the other coarsening algorithms when using ‘a’ to define
the influence matrices and AINV as a smoother. The good news are that the number
of iterations is almost insensitive to the coarsening algorithm. The bad news are that
there can be very large differences in the number of operations depending on the
choices of the coarse grids. For instance, ‘p’ (as used in this paper) tends to generate
coarse grids with too many nodes and the cost is much larger. So, it is of interest to
be able to generate coarse grids with as many few nodes as we could while preserving
the number of iterations.

We now describe the results with the other interpolation schemes. Table 11 gives
the results with the Schur interpolation ’sc’. The results using the Schur interpolation
are clearly not scalable. There is a large increase in the number of iterations, the
number of operations and the storage. Therefore, we won’t use this algorithm anymore
for the other problems. However, we note that this kind of interpolation has been
used successfully in other papers but with a diagonal approximation to Af,f .

Table 12 gives the results for the interpolation scheme using the entries of the
factors of the approximate inverse. The results of Table 12 are (almost) scalable.
Although the number of iterations is slightly larger than for other smoothers (which
shows that AINV is not as good in this respect as IC) the number of operations is
scalable. We note that there is a slight increase in the condition number which is
about twice what it is for IC. The storage is comparable with IC. We remark that the
cost is a little bit higher because, for this problem, there are a few more nodes on the
coarse grids than using ’a’ but the differences are very small. This can possibly be
corrected by using a smaller value of τ since we will have less coarse nodes. However,
the main reason for the difference in the number of iterations is the smoother.

One way to lower the number of iterations is to keep more fill–in (by using a
smaller value of τ) at the expense of more operations per iteration or by using a
W–cycle (γ = 2) but this also gives a larger number of operations.

If we would have used the standard ’st’ interpolation (which is feasible for this
problem because every F node has a C node in its neighbours in the graph of A)
we would have gotten the same results within one or two iterations. Therefore, our
choice of algorithm could depend on our goals: a parallel algorithm, the smallest
number of operations, the smallest storage, etc. . . Unfortunately some of these goals
are conflicting.

The conclusion for the Poisson equation is that all these preconditioners are given
good results except the one using the Schur interpolation. They are all scalable and
it appears that the most important component for this problem is the smoother.
However, this equation has constant coefficients, so we must investigate more difficult
problems before being able to make choices.

3.2. An anisotropic problem. We now would like to solve a diffusion problem
with constant but anisotropic coefficients. The diffusion coefficient is 1 in the x–
direction and 100 in the y–direction. This is a tough problem for approximate inverses
since the decrease in the elements of the inverse of A is very slow in one direction
and therefore approximations of the inverse with only a few non zero entries are not
going to be accurate. In fact, the fill–in for the approximate factors in AINV is very
sensitive to the threshold parameter.

On the contrary, this is a very nice problem for IC if the unknowns are properly
numbered since the approximate factorization is close to the exact one since (with
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possibly some renumbering) the matrix is almost block diagonal with tridiagonal
blocks. In fact a block diagonal smoother will probably do well on this problem.

We symmetrically scale the matrix A to have a unit diagonal (obtaining Ad).
However, for this problem, the condition number of the scaled matrix is the same as
for the original one. Moreover, the condition number of A is almost the same as for the
Poisson problem: 0.4/h2. The scaling is more generally necessary to have a threshold
parameter τ which is not varying too much with the problem. The condition numbers
of AC for m = 40 are 672.3, 171.6, 59.3, 27.3, 14.6, 8.6, 6.1.

Table 13 gives the results of our AMG implementation. The number of iterations
is constant and the number of operations is approximately 1670 n. This is almost the
same as for the Poisson problem. Therefore we have a scalable algorithm.

Table 14 gives the results using the multilevel preconditioner with the symmetric
Gauss–Seidel smoother. The coarse grids are generated by looking at the matrix
entries. For this matrix, this automatically gives a semi coarsening with a very regular
grid.

Table 15 gives the results for IC as a smoother. They are better than with
symmetric Gauss–Seidel because IC is doing well for this problem. However, these
two smoothers are not parallel.

Table 16 gives the results using AINV as a smoother. As we said before, this leads
to more storage than, for instance using IC, because of the decay properties of the
inverse. It does not exist a value of τ giving the same storage as for IC. The only way
to get a smaller storage will be to truncate the approximate inverse. The number of
iterations is constant but the number of operations is slightly increasing. The storage
is much higher than with the two previous smoothers.

The results for ‘tw’ are given in Table 17. This shows again that this is a better
smoother than ‘ai’.

Table 18 shows that the number of iterations using PCG with a diagonal precon-
ditioner is almost the same as with the symmetric Gauss–Seidel or AINV. However,
the cost is larger.

The number of iterations in Table 19 using PCG with AINV preconditioner is
smaller but this smoother is more costly. Note that this differs from the Poisson
equation.

Table 20 gives the results for the least squares polynomial smoother. Again, this
is a good parallel smoother since the results are as good as for symmetric Gauss–Seidel
and there is no storage for the smoother.

For the anisotropic problem the results in Table 21 using the ‘z’ scheme for the
influence matrix are not fully scalable, even with the W–cycle although the increase in
the number of iterations is quite small. However, we note that the cost is not higher
than for the other methods and the storage is smaller (by a factor of 2) than what we
get with ‘a’. We note that if we use ν = 2 with the W–cycle the results are almost
scalable even though it is more costly for small problems.

It is likely that these troubles arise because the problem is strongly coupled in one
direction and consequently we find a very coarse grid with only one coarse point on
every vertical line of the mesh. All the other points on the vertical line are strongly
coupled to that point. We could like to generate more points in the coarse grids.

This can be done by using a couple of threshold parameters. Table 22 gives the
results with AINV and τ = (1, 0.01). This leads to coarse grids with more nodes
and approximate inverses with more fill–in since the second parameter is smaller. We
see from the results that the number of iterations is almost constant. However, the
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storage and the number of operations grow with the problem dimension. Moreover,
the number of operations is much larger than when using τ = 0.1. We note that
smoothing more is not enough to obtain a number of iterations independent of the
problem dimension. Only putting more nodes (using τ = (1, 0.1)) allows to obtain a
smaller number of iterations.

There are other ways to obtain grids with more nodes. For instance, we can
generate the grid using ‘z’ and then check if every fine node has a C neighbour in the
graph of A. If not, we can add coarse nodes by choosing one of the neighbours. This
allows also to have a constant number of iterations. But, as we have seen, it is usually
not necessary to have so many coarse nodes.

3.3. A discontinuous problem. Here we are concerned with an isotropic dif-
fusion problem with constant but discontinuous coefficients. The diffusion coefficient
is 1 except in the strip [0, 1]× [1/4, 3/4] where its value is 100. In the discretization we
were not really cautious about the average of the coefficients; we just took their point-
wise values. Therefore, we will have sometimes to use problem dimensions different
from those of the previous problems in order not to have to compute the coefficients
on the discontinuities.

We symmetrically scale the matrix A to have a unit diagonal. The scaled matrix
is an M–matrix but it is not diagonally dominant. The condition number of Ad is
almost 0.8/h2.

Table 23 gives the results of AMG. We can see that the number of iterations is
increasing although only slowly. It can be that other values of τ could give better
results.

Table 24 gives the results using the multilevel preconditioner with the symmet-
ric Gauss–Seidel smoother. The coarse grids are generated by looking at the matrix
entries. The number of iterations is constant and the number of operations is propor-
tional to n.

Table 25 gives the results for IC as a smoother. They are comparable to those of
the Gauss–Seidel smoother.

Table 26 gives the results using AINV as a smoother. Contrary to the results
for the anisotropic problem the number of iterations is about the same as for the
other smoothers. The storage and the number of operations are larger. This can be
corrected by using other values of τ .

The results for ‘tw’ are given in Table 27. We remark that for this problem the
number of iterations is larger than with AINV but this smoother is cheaper and the
storage is much smaller (which probably explains the number of iterations).

Table 28 shows that PCG with the diagonal preconditioner gives also almost the
same results but the number of operations is larger. This is the same with the AINV
preconditioner in Table 29.

The results for the least squares polynomial are given in Table 30. The number of
operations is a little larger than for ‘gs’ and ‘ic’ but the storage is quite low and this
smoother is parallel. The number of operations is smaller with ‘tw’ but the storage is
smaller with the polynomial.

For the discontinuous problem, the results in Table 31 using the approximate
inverse for coarsening are not scalable for the V–cycle since the number of iterations
is slightly increasing with the problem dimension. The increase for the number of
iterations is really small for the W–cycle. We note that, nevertheless, for these small
problem dimensions the numbers of operations are comparable to those in Table 26
and the storage is smaller by a factor of 2 because the grids are much coarser. The
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number of iterations can be reduced if we use coarse grids with more points with
τ = (0.2, 0.06) like in Table 32. It can be further reduce if we smooth a little more
using τ = (0.2, 0.01) at the expense of a larger storage.

We check that the results are independent from the jumps in the coefficients by
doing some computations with larger jumps. Moreover, this is also true for other prob-
lems with discontinuous coefficients. For ‘z’, ‘iz’ the results are almost independent
of the jumps.

Table 33 gives the results using (’ai’, ’a’,’st’,-) for different interpolation schemes.
The results for the ’st’ interpolation are found in Table 26. One can see that there are
not that many differences in the numbers of iterations which are almost independent
of the size of the problem. There are more differences on the numbers of operations
as well as for the storage. We ran out of memory with ’wi’ because of the way we
coded the algorithm in Matlab. This is not intrinsic to the method. For this problem
the best results are given by the standard interpolation ‘st’. The other schemes are
more costly.

3.4. A problem with rapidly varying coefficients. This problem is isotropic.
The diffusion coefficient is 1 + 1000|x − y|. It varies from 1000 on the boundary to
1 on the main diagonal of the mesh. We symmetrically scale the matrix A to have a
unit diagonal (obtaining Ad). The condition number of Ad is 0.2/h2.

Table 34 gives the results for AMG. The number of iterations is slowly increasing
and slightly larger than for the Poisson problem.

Tables 35 to 40 show that the results are always in the same range for all
smoothers. For the ‘z’ influence matrix in Table 42 the number of iterations is slowly
increasing for γ = 1 and almost constant for γ = 2. The number of iterations is better
for τ = (1, 0.01) but the cost is much larger. Amongst the parallel methods ‘tw’ gives
the best results. However, the polynomial smoother is not far behind and the storage
is smaller.

3.5. A random Laplacian. To show that multilevel methods are not only work-
ing for M–matrices we consider matrices arising from the Poisson equation as in the
first example but with the signs of the non zero non diagonal coefficients chosen at
random. This implies that the matrix is an H–matrix.

Table 44 shows that the results of AMG for this problem are even a little better
than for the Poisson equation.

This is true also in Tables 45 to 52 for the PCG preconditioners. This shows that
all these methods are working nicely for H–matrices.

3.6. Other problems. All the preceding examples except the last one arise
from two dimensional diffusion equations on a square domain discretized with a five
point scheme. We would like to see how these methods behave on examples coming
from other areas of scientific computing. We chose some symmetric matrices from
the Harwell–Boeing collection or from the Boeing collection stored in the Tim Davis’
collection (http://www.cise.ufl.edu). We had to normalize some of these matrices
to be able to use the same values of τ as before. Of course, since the order of the
matrices are given we cannot check if there is a dependence of the number of iterations
on the size of the problem. Moreover, some of the problems are quite small and it
can be that for instance AINV is faster than its multilevel counterparts. A solution
with a direct method is also much faster. We use the following examples:

1. 1138-bus. An admittance matrix of order 1138 with 4054 non–zeros. This
matrix has a small minimum eigenvalue and a condition number of about 8.5 106. Our
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AMG implementation does not work on this matrix and the other methods do not
give very good results although they are converging. To obtain a meaningful problem
we add 0.01 to the diagonal elements of the normalized matrix. This gives a matrix
with a condition number of 201.

2. bcsstk01. A stiffness matrix of order 48 with 400 non-zeros. It was normal-
ized. This matrix is not diagonally dominant, nor an M–matrix, but nevertheless
positive definite. The condition number of the normalized matrix is 1361.

3. gr3030. A matrix arising from a nine point approximation to the Laplacian
on the unit square with a 30 × 30 mesh. It has order 900 and 7744 non–zeros. The
condition number of the normalized matrix is 195.

4. bcsstk34. A stiffness matrix of order 588 with 21418 non-zeros. This matrix
was normalized. Its condition number is 1.8.

5. bcsstk27. A matrix arising from the buckling analysis of an engine inlet of
order 1224 with 56126 non-zeros. The normalized matrix has a condition number of
1024. This problem is quite difficult to solve.

3.6.1. 1138-bus modified. Table 53 gives the results for some of the methods
we have studied so far. The smallest number of operations is given by the AINV
smoother used with the ‘z’ influence matrix and ‘iz’ interpolation which gives a very
low storage. The preconditioner ‘tw’ gives a large number of iterations since for this
example the approximate inverse that is produced for the fine level is not positive
definite. We note that for this problem the AINV smoother is working quite well
since the number of iterations is smaller than for the other smoothers with a storage
which is not much larger. The worst results are given by the PCG smoother with a
diagonal preconditioner (which has no effect for this problem).

3.6.2. bcsstk01. Table 54 show that the AINV smoother is again working well
although ‘tw’ is cheaper. We note that a degree 1 polynomial does not give good
results. The best results are given using the ‘a’ influence matrix and the ‘st’ interpo-
lation. However, the results using ‘z’ and ‘iz’ (using a different value of τ to be able
to generate at least two grids) are quite close and the storage is smaller.

3.6.3. gr3030. Table 55 gives the results for the 9 point finite difference matrix.
For this problem the best results are given by the IC smoother although the other
methods are not too far away.

3.6.4. bcsstk34. Table 56 gives the results for all the methods. A value of
τ = 0.01 is used to be able to generate grids with enough nodes with ‘a’. The best
results are given by the IC smoother. Using the ‘z’ influence matrix gives coarse grids
with more nodes and therefore a larger storage. It is likely that using another value
of τ will be better for ‘z’.

3.6.5. bcsstk27. We are not able to solve this problem using IC with no fill-in
as well as with low order polynomials. It is likely that we should have to keep more
fill-in for the Cholesky decomposition. We can solve the problem with polynomials
of order larger than 20. However, the number of operations is much larger than for
others methods. Similarly, we note that using ‘tw’ we got a very large number of
iterations. This could have been fixed by extending the stencil. However, it is much
easier just to change the value of τ in AINV. The problem is efficiently solved using
the symmetric Gauss-Seidel smoother but this algorithm is not parallel. Using AINV
requires a small value of τ to obtain a small number of iterations but then the storage
is quite large.
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4. Tables of results. In this section we group the results that were analyzed in
the previous section. We show the results in this way since whatever we would have
been doing using LATEX, the comments would not have been anyway on the same page
as the corresponding results.
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Table 1

AMG for Poisson equation, τ = 0.06

m = 10 m = 20 m = 30
11 12 12

ρ = 0.08 ρ = 0.12 ρ = 0.12
op=122941, /n=1221 op=561953, /n=1405 op=1297936, /n=1442

100-50-14 400-200-51-14 900-450-119–32-13

m = 40 m = 50 m = 60
12 12 12

ρ = 0.12 ρ = 0.12 ρ = 0.12
op=2313029, /n=1446 op=3664272, /n=1466 op=5269951, /n=1464

1600-800-206- 2500-1250-324- 3600-1800-461-
-53-15 -84-26-17-13 -119-34-13
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Table 2

PCG for Poisson equation, τ = 0.06, multilevel, (‘gs’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2 ν = 5
10 6 5 4

op=107129, /n=1071 op=138717, /n=1387 op=233153, /n=2332
100-50-14

str=1297, /n=13
κ = 1.05 κ = 1.02 κ = 1.005

20 6 5 4
op=484856, /n=1212 op=636731, /n=1592 op=1084798, /n=2712

400-200-51-14
str=5561, /n=13.9

κ = 1.07 κ = 1.03 κ = 1.01
30 6 5 4

op=1138521, /n=1265 op=1499701, /n=1666 op=2562353, /n=2847
900-450-119-32-13
str=12995, /n=14.4

κ = 1.06 κ = 1.03 κ = 1.01
40 7 5 5

op=2330221, /n=1456 op=2681901, /n=1676 op=5505957, /n=3441
1600-800-206-53-15
str=23173, /n=14.5

κ = 1.07 κ = 1.03 κ = 1.01
50 6 5 5

op=3222342, /n=1289 op=4248607, /n=1699 op=8727417, /n=3491
2500-1250-324-84-26-17
str=36744, /n=14.7

κ = 1.06 κ = 1.03 κ = 1.01
60 7 5 5

op=5319529, /n=1477 op=6126171, /n=1702 op=12584007, /n=3496
3600-1800-461-119-34-18-13

str=52943, /n=14.7
κ = 1.07 κ = 1.03 κ = 1.01
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Table 3

PCG for Poisson equation,τ = 0.06 , multilevel, (‘ic’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2 ν = 5
10 5 4 3

op=85197, /n=852 op=114429, /n=1144 op=196072, /n=1961
100-50-14

str=2005, /n=20
κ = 1.02 κ = 1.007 κ = 1.002

20 5 4 4
op=381911, /n=954.8 op=521019, /n=1302 op=1132936, /n=2832

400-200-51-14
str=8584, /n=21.5

κ = 1.03 κ = 1.01 κ = 1.003
30 5 4 4

op=894202, /n=993.6 op=1223778, /n=1360 op=2667643, /n=2964
900-450-119-32-13
str=20009, /n=22.2

κ = 1.02 κ = 1.01 κ = 1.003
40 5 5 4

op=1598145, /n=998.8 op=2631408, /n=1644 op=4771293, /n=2982
1600-800-206-53-15
str=35667, /n=22.3

κ = 1.03 κ = 1.01 κ = 1.004
50 5 5 4

op=2528438, /n=1011 op=4165773, /n=1666 op=7557527, /n=3023
2500-1250-324-84-26-17
str=56497, /n=22.6

κ = 1.02 κ = 1.01 κ = 1.004
60 6 5 4

op=4265230, /n=1185 op=6008813, /n=1669 op=10901958, /n=3028
3600-1800-461-119-34-18-13

str=81388, /n=22.6
κ = 1.03 κ = 1.01 κ = 1.005
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Table 4

PCG for Poisson equation, τ = 0.06, multilevel, (‘ai’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2 ν = 5
10 11 7 4

op=167073, /n=1670 op=171069, /n=1711 op=219258, /n=2193
100-50-14

str=1892, /n=18.9
κ = 1.74 κ = 1.22 κ = 1.02

20 13 9 5
op=834163, /n=2085 op=946283, /n=2366 op=1199387, /n=2998

400-200-51-14
str=8179, /n=20.4

κ = 1.96 κ = 1.32 κ = 1.03
30 14 9 6

op=2077423, /n=2308 op=2214933, /n=2461 op=3299799, /n=3666
900-450-119-32-13
str=19044, /n=21.2

κ = 2.01 κ = 1.34 κ = 1.04
40 14 10 6

op=3723423, /n=2327 op=4381433, /n=2738 op=5944087, /n=3715
1600-800-206-53-15
str=34278, /n=21.4

κ = 2.03 κ = 1.35 κ = 1.04
50 14 10 6

op=5897948, /n=2359 op=6949048, /n=2780 op=9437844, /n=3775
2500-1250-324-84-26-17
str=54255, /n=21.7

κ = 2.04 κ = 1.35 κ = 1.04
60 14 10 6

op=8515738, /n=2365 op=10041954, /n=2789 op=13648658, /n=3791
3600-1800-461-119-34-18
str=78369, /n=21.8

κ = 2.05 κ = 1.36 κ = 1.04
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Table 5

PCG for the Poisson equation, τ = 0.06, multilevel, (‘tw’, ‘a’, ‘st’, ‘st’)

m ν = 1 ν = 2 ν = 5
10 7 5 4

op=102165, /n=1022 op=119733, /n=1197 op=208333, /n=2083
100-50-14

str=2221, /n=22.1
κ = 1.13 κ = 1.03 κ = 1.01

20 8 6 5
op=517790, /n=1294 op=641208, /n=1603 op=1165859, /n=2915

400-200-51-14
str=9612, /n=24

κ = 1.14 κ = 1.05 κ = 1.02
30 7 6 5

op=1077525, /n=1197 op=1509661, /n=1677 op=2754397, /n=3060
900-450-119-32-13
str=22481, /n=25

κ = 1.13 κ = 1.04 κ = 1.02
40 8 6 5

op=2172141, /n=1358 op=2702569, /n=1689 op=4933860, /n=3084
1600-800-206-53-15
str=40139, /n=25.1

κ = 1.14 κ = 1.05 κ = 1.02
50 8 6 5

op=3438494, /n=1375 op=4281980, /n=1713 op=7823195, /n=3129
2500-1250-324-84-26-17
str=63647, /n=25.5

κ = 1.14 κ = 1.05 κ = 1.02
60 8 6 5

op=4961032, /n=1378 op=6179210, /n=1716 op=11291359, /n=3136
3600-1800-461-119-34-18
str=91737, /n=25.5

κ = 1.14 κ = 1.05 κ = 1.02
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Table 6

PCG for the Poisson equation, τ = 0.06, ν = 3, multilevel, (‘gc’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 3

op=258997, /n=2590 op=346789, /n=3468
100-50-14

str=1297, /n=13
κ = 1.11 κ = 1.0006

20 7 3
op=1161445, /n=2904 op=1825181, /n=4563

400-200-51-14
str=5561, /n=13.9

κ = 1.10 κ = 1.0007
30 7 3

op=2713029, /n=3014 op=4684773, /n=5205
900-450-119-32-13
str=12995, /n=14.4

κ = 1.09 κ = 1.0007
40 7 4

op=4837789, /n=3024 op=10394193, /n=6496
1600-800-206-53-15
str=23173, /n=14.5

κ = 1.09 κ = 1.0008
50 7 3

op=7645725, /n=3058 op=13882757, /n=5553
2500-1250-324-84-26-17
str=36744, /n=14.7

κ = 1.08 κ = 1.0005
60 7 3

op=11017285, /n=3060 op=19903005, /n=5529
3600-1800-461-119-34-18
str=52943, /n=14.7

κ = 1.07 κ = 1.0005
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Table 7

PCG for the Poisson equation, τ = 0.06, ν = 3, multilevel, (‘cg’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=273117, /n=2731 op=486565, /n=4866
100-50-14

str=1892, /n=18.9
κ = 1.02 κ = 1

20 7 3
op=1657317, /n=4143 op=2578333, /n=6446

400-200-51-14
str=8179, /n=20.4

κ = 1.12 κ = 1.0002
30 7 3

op=3832301, /n=4258 op=6072229, /n=6747
900-450-119-32-13
str=19044, /n=21.2

κ = 1.11 κ = 1.0003
40 7 3

op=6992029, /n=4370 op=11914653, /n=7447
1600-800-206-53-15
str=34278, /n=21.4

κ = 1.07 κ = 1.0003
50 7 3

op=11029221, /n=4412 op=18004603, /n=7598
2500-1250-324-84-26-17
str=54255, /n=21.7

κ = 1.08 κ = 1.0004
60 7 3

op=15931997, /n=4426 op=27416989, /n=7616
3600-1800-461-119-34-18
str=78369, /n=21.8

κ = 1.07 κ = 1.0003
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Table 8

PCG for the Poisson equation, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’), k = 1

m ν = 1 ν = 2 ν = 5
10 6 5 4

op=132273, /n=1323 op=193605, /n=1936 op=362233, /n=3622
100-50-14

str=1297, /n=13
κ = 1.07 κ = 1.03 κ = 1.01

20 7 6 5
op=681509, /n=1704 op=1029766, /n=2574 op=1998470, /n=4996

400-200-51-14
str=5561, /n=13.9

κ = 1.09 κ = 1.05 κ = 1.02
30 7 6 5

op=1596741, /n=1774 op=2418289, /n=2687 op=4701457, /n=5224
900-450-119-32-13
str=12995, /n=14.4

κ = 1.09 κ = 1.04 κ = 1.02
40 7 6 5

op=2852573, /n=1783 op=4321221, /n=2701 op=8402409, /n=5251
1600-800-206-53-15
str=23173, /n=14.5

κ = 1.11 κ = 1.06 κ = 1.03
50 7 6 5

op=4513885, /n=1806 op=6841180, /n=2737 op=13307185, /n=5323
2500-1250-324-84-26-17
str=36744, /n=14.7

κ = 1.09 κ = 1.05 κ = 1.03
60 7 6 5

op=6509253, /n=1808 op=9865746, /n=2740 op=19191079, /n=5331
3600-1800-461-119-34-18
str=52943, /n=14.7

κ = 1.10 κ = 1.05 κ = 1.02
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Table 9

PCG for the Poisson problem, m = 20, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’)

k nb it nb op
1 7 681509 /n=1704
2 6 890800 /n=2227
3 5 1015703 /n=2539
4 5 1268867 /n=3172
5 4 1267188 /n=3168
6 4 1478150 /n=3695
8 4 1900098 /n=4750
10 3 1856225 /n=4640
20 3 3543985 /n=8860
40 2 5187872 /n=12970
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Table 10

PCG for Poisson equation, τ = 0.06, multilevel, (’ai’, ’a’, ’-’, ’st’), γ = 1

m ‘st’ ‘p’ ‘p1’ ‘m2’
10 11 11 11 11

op=167073 op=275085 op=167073 op=165441
100-50-14 100-50-38-26-16-10 100-50-13 100-50-12

20 13 13 13 13
op=834163 op=1558845 op=837691 op=845195
400-200-51-14 400-200-148-93-48-32-22 400-200-54-13 400-200-50-16

30 14 14 14 14
op=2077423 op=4853923 op=2071768 op=2066158

900-450-119-32-13 900-450-335-217-113-81-55 900-450-119-29-10 900-450-112-29-11
40 14 14 14 14

op=3723423 op=10904208 op=3731718 op=3729153
1600-800-206-53-15 1600-800-593-383-193-141-97 1600-800-209-53-20 1600-800-198-51-14

50 14 14 14 14
op=5897948 op=20402348 op=5892653 op=5884538

2500-1250-324-84-26-17 2500-1250-930-607-308-224-154 2500-1250-324-84-26-16 2500-1250-313-79-25-12
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Table 11

PCG for Poisson equation, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘sc’), γ = 1

m ν = 1 ν = 2 ν = 5
10 12 8 5

op=256824, /n=2568 op=276114, /n=2761 op=381183, /n=3812
100-50-25-12

str=3196, /n=31.9
κ = 2.98 κ = 1.87 κ = 1.23

20 20 14 9
op=2498084, /n=6245 op=2793278, /n=6983 op=3881723, /n=9704
400-200-100-51-23-12
str=19215, /n=48

κ = 9.41 κ = 5.33 κ = 2.76
30 28 21 13

op=9571569, /n=10635 op=11377105, /n=12641 op=15099181, /n=16777
900-450-225-110-60-30-15
str=54176, /n=60.2

κ = 19.9 κ = 11.03 κ = 5.4
40 38 27 18

op=26164947, /n=16353 op=29422045, /n=18389 op=41625955, /n=26016
1600-800-400-204-94-47-26
str=111615, /n=69.8

κ = 34.5 κ = 18.9 κ = 9.04
50 45 33 22

op=52278299, /n=20911 op=60515329, /n=24206 op=85339095, /n=34136
2500-1250-625-307-143-71-35

str=190351, /n=76.1
κ = 53.1 κ = 29 κ = 13.7

60 54 40 26
op=101004463, /n=28057 op=117903107, /n=32751 op=161832391, /n=44953

3600-1800-900-458-215-109-53
str=310963, /n=86.4

κ = 75.7 κ = 41.3 κ = 19.4
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Table 12

PCG for Poisson equation, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’), γ = 1

m ν = 1 ν = 2 ν = 5
10 12 8 5

op=188340, /n=1883 op=207426, /n=2074 op=292389, /n=2928
100-50-19-10

str=2091, /n=20.9
κ = 1.72 κ = 1.22 κ = 1.02

20 14 10 6
op=987293, /n=2468 op=1161745, /n=2904 op=1575981, /n=3940
400-200-74-36-17
str=9433, /n=23.6

κ = 1.96 κ = 1.35 κ = 1.11
30 15 10 7

op=2448357, /n=2720 op=2709534, /n=3011 op=4216269, /n=4685
900-450-154-69-31-16
str=21701, /n=24.1

κ = 2.02 κ = 1.48 κ = 1.19
40 15 11 8

op=4513421, /n=2821 op=5464389, /n=3415 op=8785665, /n=5491
1600-800-267-130-61-29-13
str=39949, /n=24.9

κ = 2.05 κ = 1.57 κ = 1.25
50 16 11 8

op=7700375, /n=3080 op=8776877, /n=3518 op=14118983, /n=5647
2500-1250-431-208-97-50-21

str=64429, /n=25.7
κ = 2.12 κ = 1.63 κ = 1.29

60 16 12 8
op=11078581, /n=3078 op=13684058, /n=3801 op=20310541, /n=5642

3600-1800-607-283-136-65-27
str=92655, /n=25.7

κ = 2.18 κ = 1.69 κ = 1.32
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Table 13

AMG for the anisotropic problem τ = 0.1

m = 10 m = 20 m = 30
10 11 12

ρ = 0.08 ρ = 0.11 ρ = 0.12
op=106889, /n=1069 op=546900,/n=1367 op=1388527, /n=1543

100-50-20-10 400-200-100- 900-450-210-
-40-20-10 -90-45-15

m = 40 m = 50 m = 60
12 12 12

ρ = 0.13 ρ = 0.14 ρ = 0.14
op=2678135, /n=1674 op=4177997, /n=1671 op=6013795, /n=1670

1600-800-400- 2500-1250-600- 3600-1800-900-
-200-100-40-30 -300-150-50-37 -420-210-60-20
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Table 14

PCG for the anisotropic problem, τ = 0.1, multilevel, (‘gs’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=104749, /n=1047 op=197753, /n=1977
100-50-20

str=1184, /n=11.8
κ = 1.05 κ = 1.002

20 6 4
op=530923, /n=1327 op=1570273, /n=3926
400-200-100-40-20
str=5789, /n=14.5

κ = 1.05 κ = 1.002
30 6 4

op=1252516, /n=1392 op=4589393, /n=5099
900-450-210-90-45-15
str=13500, /n=15

κ = 1.05 κ = 1.0002
40 6 4

op=2537929, /n=1586 op=17283553, /n=10802
1600-800-400-200-120-80-60

str=28652, /n=17.9
κ = 1.05 κ = 1.002

50 6 4
op=3755860, /n=1502 op=16926673, /n=6771
2500-1250-600-300-150-75
str=41320, /n=16.5

κ = 1.05 κ = 1.002
60 6 4

op=5479546, /n=1522 op=25057153, /n=6960
3600-1800-900-420-210-90-75

str=60866, /n=16.9
κ = 1.05 κ = 1.002
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Table 15

PCG for the anisotropic problem, τ = 0.1, multilevel, (‘ic’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 3 2

op=54933, /n=549 op=108510, /n=1085
100-50-20

str=1907, /n=19.1
κ = 1.0005 κ = 1

20 3 2
op=275557, /n=689 op=851096, /n=2128
400-200-100-40-20
str=9258, /n=23.1

κ = 1.001 κ = 1
30 3 2

op=647009, /n=719 op=2441542, /n=2713
900-450-210-90-45-15
str=21545, /n=23.9

κ = 1.001 κ = 1
40 3 2

op=1638579, /n=1024 op=9142266, /n=5714
1600-800-400-200-120-80-60

str=45037, /n=28.1
κ = 1.001 κ = 1

50 3 2
op=2432286, /n=973 op=9020462, /n=3608

2500-1250-600-300-150-75
str=65395, /n=26.2

κ = 1.001 κ = 1
60 3 2

op=3547688, /n=985 op=13364557, /n=3712
3600-1800-900-420-210-90-75

str=95952, /n=26.6
κ = 1.001 κ = 1
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Table 16

PCG for the anisotropic problem, τ = 0.1, multilevel, (‘ai’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=88917, /n=889 op=147557, /n=1475
100-50-20

str=2100, /n=21
κ = 1.03 κ = 1.0006

20 6 4
op=634271, /n=1586 op=1722753, /n=4307
400-200-100-40-20
str=12232, /n=30.6

κ = 1.04 κ = 1.002
30 6 4

op=1673230, /n=1859 op=5304033, /n=5893
900-450-210-90-45-15
str=31839, /n=35.4

κ = 1.05 κ = 1.002
40 6 4

op=3564073, /n=2227 op=18968193, /n=11855
1600-800-400-200-120-80-60
str=68886, /n=43.05

κ = 1.05 κ = 1.002
50 6 4

op=5672348, /n=2268 op=22715713, /n=9086
2500-1250-600-300-150-75
str=107981, /n=43.2

κ = 1.05 κ = 1.002
60 6 4

op=8597374, /n=2388 op=35687666, /n=9913
3600-1800-900-420-210-90-75

str=163727, /n=45.5
κ = 1.05 κ = 1.002
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Table 17

PCG for the anisotropic problem, τ = 0.1, multilevel, (‘tw’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=106173, /n=1062 op=206833, /n=2068
100-50-20

str=2175, /n=21.7
κ = 1.1 κ = 1.005

20 7 4
op=498941, /n=1247 op=1271233, /n=3178
400-200-100-40-20
str=10447, /n=26.1

κ = 1.1 κ = 1.005
30 7 4

op=1174365, /n=1305 op=3672033, /n=4080
900-450-210-90-45-15
str=24455, /n=27.2

κ = 1.1 κ = 1.005
40 7 4

op=2382829, /n=1489 op=14170113, /n=8856
1600-800-400-200-120-80-60

str=51642, /n=32.3
κ = 1.1 κ = 1.005

50 7 4
op=3534429, /n=1414 op=13844513, /n=5538
2500-1250-600-300-150-75
str=74845, /n=29.9

κ = 1.1 κ = 1.005
60 7 4

op=5160485, /n=1433 op=20565153, /n=5712
3600-1800-900-420-210-90-75

str=109978, /n=30.5
κ = 1.1 κ = 1.005
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Table 18

PCG for the anisotropic problem, τ = 0.1, ν = 3, multilevel, (‘gc,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 3

op=255893, /n=2559 op=343461, /n=3435
100-50-20

str=1184, /n=11.8
κ = 1.14 κ = 1.0009

20 7 3
op=1298749, /n=3247 op=2706781, /n=6767
400-200-100-40-20
str=5789, /n=14.5

κ = 1.13 κ = 1.0007
30 7 3

op=3038509, /n=3376 op=7705061, /n=8561
900-450-210-90-45-15
str=13500, /n=15

κ = 1.12 κ = 1.0006
40 7 3

op=6002285, /n=3751 op=25570461, /n=15982
1600-800-400-200-120-80-60

str=28652, /n=17.9
κ = 1.11 κ = 1.0005

50 7 3
op=89266621, /n=3571 op=26322181, /n=10529
2500-1250-600-300-150-75
str=41320, /n=16.5

κ = 1.12 κ = 1.0004
60 7 3

op=12989765, /n=3608 op=38772253, /n=10770
3600-1800-900-420-210-90-75

str=60866, /n=16.9
κ = 1.12 κ = 1.0004
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Table 19

PCG for the anisotropic problem, τ = 0.1, ν = 3, multilevel, (‘cg,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 2 1

op=160173, /n=1602 op=277117, /n=2771
100-50-20

str=2100, /n=21
κ = 1 κ = 1

20 3 2
op=1365989, /n=3415 op=4002850, /n=10007
400-200-100-40-20
str=12232, /n=30.6

κ = 1.0001 κ = 1
30 3 2

op=3634417, /n=4038 op=12432212, /n=13814
900-450-210-90-45-15
str=31839, /n=35.4

κ = 1.0003 κ = 1
40 3 2

op=7690141, /n=4806 op=40277673, /n=25174
1600-800-400-200-120-80-60

str=68886, /n=43
κ = 1.0006 κ = 1

50 4 2
op=15368018, /n=6147 op=50719673, /n=20288
2500-1250-600-300-150-75
str=107981, /n=43.2

κ = 1.001 κ = 1
60 4 2

op=23328865, /n=6480 op=79925475, /n=22202
3600-1800-900-420-210-90-75

str=163727, /n=45.5
κ = 1.002 κ = 1
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Table 20

PCG for the anisotropic problem, τ = 0.1, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 6 4

op=129781, /n=1298 op=247433, /n=2474
100-50-20

str=1184, /n=11.8
κ = 1.06 κ = 1.002

20 7 4
op=752509, /n=1881 op=1956033, /n=4890
400-200-100-40-20
str=5789, /n=14.5

κ = 1.08 κ = 1.002
30 7 4

op=1769517, /n=1966 op=5649793, /n=6277
900-450-210-90-45-15
str=13500, /n=15

κ = 1.07 κ = 1.002
40 8 4

op=4002993, /n=2502 op=20382913, /n=12739
1600-800-400-200-120-80-60

str=28652, /n=17.9
κ = 1.15 κ = 1.002

50 7 4
op=5272605, /n=2109 op=20345313, /n=8138
2500-1250-600-300-150-75
str=41320, /n=16.5

κ = 1.08 κ = 1.002
60 7 4

op=7691205, /n=2136 op=30159393, /n=8378
3600-1800-900-420-210-90-75

str=60866, /n=16.9
κ = 1.08 κ = 1.002
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Table 21

PCG for the anisotropic problem, τ = 0.1, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 6 4

op=75272, /n=752 op=97633, /n=976
100-15

str=1400, /n=14
κ = 1.05 κ = 1.002

20 8 5
op=481448, /n=1204 op=592397, /n=1481

400-20
str=6543, /n=16.4

κ = 1.19 κ = 1.03
30 10 6

op=1582331, /n=1758 op=1949849, /n=2166
900-60-11

str=17618, /n=19.5
κ = 1.38 κ = 1.08

40 11 7
op=3365229, /n=2103 op=4415917, /n=2759

1600-120-14
str=34749, /n=21.8

κ = 1.50 κ = 1.12
50 13 8

op=6393915, /n=2558 op=8188289, /n=3275
2500-175-26-13

str=56497, /n=22.6
κ = 1.81 κ = 1.25

60 14 9
op=10046068, /n=2791 op=13272893, /n=3687

3600-210-32-16
str=82475, /n=22.9

κ = 2.06 κ = 1.35
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Table 22

PCG for the anisotropic problem, τ = (1, 0.01), multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 4 3

op=90038, /n=900 op=235557, /n=2356
100-50-24-12

str=2497, /n=24.9
κ = 1.008 κ = 1.0001

20 5 3
op=630197, /n=1575 op=1452157, /n=3630
400-200-66-33-14
str=13850, /n=34.6

κ = 1.03 κ = 1.0008
30 6 4

op=2305820, /n=2562 op=6502553, /n=7225
900-450-159-79-38-17
str=42850, /n=47.6

κ = 1.05 κ = 1.002
40 6 4

op=5028431, /n=3143 op=14665673, /n=9166
1600-800-251-126-58-29-15
str=92607, /n=57.9

κ = 1.07 κ = 1.002
50 7 4

op=10738437, /n=4295 op=27527546, /n=11011
2500-1250-414-207-81-34-15
str=172056, /n=68.8

κ = 1.09 κ = 1.003
60 7 4

op=18011516, /n=5003 op=49557238, /n=13766
3600-1800-616-308-126-63-31

str=288139, /n=80
κ = 1.11 κ = 1.003
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Table 23

AMG for the discontinuous problem τ = 0.06

m = 10 m = 20 m = 30
11 18 17

ρ = 0.09 ρ = 0.25 ρ = 0.23
op=135430, /n=1354 op=828773,/n=2072 op=1892192, /n=2102

100-50-16-11 400-200-46- 900-450-122-
-17-10 -30-21-17

m = 39 m = 50 m = 59
15 19 20

ρ = 0.17 ρ = 0.27 ρ = 0.28
op=2867393, /n=1835 op=5838352, /n=2335 op=8616620, /n=2475

1521-762-204- 2500-1250-324- 3481-1741-446-
-57-31-21-16 -88-29-21-19 -122-41-22-17



MULTILEVEL PRECONDITIONERS 41

Table 24

PCG for the discontinuous problem, τ = 0.06, multilevel, (‘gs’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=127378, /n=1274 op=302737, /n=3027
100-50-16-11

str=1485, /n=14.8
κ = 1.1 κ = 1.002

20 7 4
op=556267, /n=1391 op=1185685, /n=2964
400-200-46-17-10
str=5448, /n=13.6

κ = 1.3 κ = 1.004
30 8 4

op=1507599, /n=1675 op=2938191, /n=3265
900-450-122-30-21
str=13311, /n=14.8

κ = 1.26 κ = 1.002
39 7 4

op=2344515, /n=1541 op=6702483, /n=4407
1521-762-204-57-31-21-16
str=23115, /n=15.2

κ = 1.21 κ = 1.002
50 8 4

op=4197072, /n=1679 op=8669991, /n=3468
2500-1250-324-88-29-21
str=36892, /n=14.8

κ = 1.35 κ = 1.005
59 8 4

op=5931550, /n=1704 op=13191036, /n=3789
3481-1741-446-122-41-22-17

str=52033, /n=14.9
κ = 1.35 κ = 1.004
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Table 25

PCG for the discontinuous problem, τ = 0.06, multilevel, (‘ic’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 3

op=114269, /n=1143 op=211467, /n=2115
100-50-16-11

str=2306, /n=23.1
κ = 1.03 κ = 1.001

20 7 4
op=510529, /n=1276 op=1061224, /n=2653
400-200-46-17-10
str=8491, /n=21.2

κ = 1.2 κ = 1.003
30 6 4

op=1062618, /n=1181 op=2599886, /n=2889
900-450-122-30-21
str=20515, /n=22.8

κ = 1.15 κ = 1.001
39 7 4

op=2126318, /n=1398 op=5851962, /n=3847
1521-762-204-57-31-21-16
str=35638, /n=23.4

κ = 1.15 κ = 1.002
50 7 4

op=3401485, /n=1361 op=7689215, /n=3076
2500-1250-324-88-29-21
str=56811, /n=22.7

κ = 1.27 κ = 1.004
59 7 4

op=4799520, /n=1379 op=11619184, /n=3338
3481-1741-446-122-41-22-17

str=80096, /n=23
κ = 1.25 κ = 1.004
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Table 26

PCG for the discontinuous problem, τ = 0.06, multilevel, (‘ai’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=151474, /n=1515 op=319553, /n=3196
100-50-16-11

str=3022, /n=30.2
κ = 1.05 κ = 1.002

20 8 5
op=940565, /n=2351 op=1930373, /n=4826
400-200-46-17-10
str=13872, /n=34.7

κ = 1.18 κ = 1.02
30 7 4

op=2025525, /n=2251 op=4069393, /n=4521
900-450-122-30-21
str=33851, /n=37.6

κ = 1.12 κ = 1.004
39 7 4

op=3619203, /n=2379 op=8407017, /n=5527
1521-762-204-57-31-21-16
str=60219, /n=39.6

κ = 1.13 κ = 1.004
50 7 4

op=6042413, /n=2417 op=12772833, /n=5109
2500-1250-324-88-29-21
str=100118, /n=40

κ = 1.26 κ = 1.006
59 7 5

op=8611390, /n=2474 op=22832594, /n=6559
3481-1741-446-122-41-22-17

str=142531, /n=41
κ = 1.23 κ = 1.005
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Table 27

PCG for the discontinuous problem, τ = 0.06, multilevel, (‘tw’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=117645, /n=1176 op=238513, /n=2385
100-50-16-11

str=2593, /n=26
κ = 1.12 κ = 1.008

20 8 5
op=515603, /n=1289 op=1140677, /n=2852
400-200-46-17-10
str=9515, /n=23.8

κ = 1.33 κ = 1.01
30 8 5

op=1235665, /n=1373 op=2820349, /n=3134
900-450-122-30-21
str=23150, /n=25.7

κ = 1.29 κ = 1.01
39 8 5

op=2161873, /n=1421 op=6371455, /n=4189
1521-762-204-57-31-21-16
str=40325, /n=26.5

κ = 1.24 κ = 1.01
50 9 5

op=3843983, /n=1537 op=8341373, /n=3336
2500-1250-324-88-29-21
str=64094, /n=25.6

κ = 1.38 κ = 1.01
59 9 5

op=5427707, /n=1559 op=12632543, /n=3629
3481-1741-446-122-41-22-17

str=90549, /n=26
κ = 1.39 κ = 1.01
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Table 28

PCG for the discontinuous problem, τ = 0.06, ν = 3, multilevel, (‘gc’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=298349, /n=2983 op=492485, /n=4925
100-50-16-11

str=2773, /n=27.7
κ = 1.09 κ = 1.0004

20 8 3
op=1317701, /n=3294 op=2012061, /n=5030
400-200-46-17-10
str=10188, /n=25.5

κ = 1.19 κ = 1.001
30 8 4

op=3095461, /n=3439 op=6017793, /n=6686
900-450-122-30-21
str=24673, /n=27.4

κ = 1.17 κ = 1.001
39 7 4

op=4799875, /n=3156 op=13479577, /n=8862
1521-762-204-57-31-21-16
str=42937, /n=28.2

κ = 1.15 κ = 1.001
50 9 4

op=9613203, /n=3845 op=17813393, /n=7125
2500-1250-324-88-29-21
str=68306, /n=27.3

κ = 1.3 κ = 1.003
59 8 4

op=12174245, /n=3497 op=26869257, /n=7719
3481-1741-446-122-41-22-17

str=96419, /n=27.7
κ = 1.24 κ = 1.003
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Table 29

PCG for the discontinuous problem, τ = 0.06, ν = 3, multilevel, (‘cg’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 3 2

op=320353, /n=3203 op=729321, /n=7293
100-50-16-11

str=3022, /n=30.2
κ = 1.001 κ = 1

20 5 2
op=2361629, /n=5904 op=3753689, /n=9384
400-200-46-17-10
str=13872, /n=34.7

κ = 1.02 κ = 1
30 6 3

op=6654437, /n=7394 op=12546853, /n=13941
900-450-122-30-21
str=34851, /n=37.6

κ = 1.05 κ = 1.0001
39 5 3

op=10211191, /n=6713 op=25861259, /n=17003
1521-762-204-57-31-21-16
str=60219, /n=39.6

κ = 1.03 κ = 1.0005
50 6 3

op=19926938, /n=7971 op=39526405, /n=15811
2500-1250-324-88-29-21
str=100118, /n=40

κ = 1.07 κ = 1.001
59 7 4

op=32473523, /n=9329 op=73592777, /n=21141
3481-1741-446-122-41-22-17
str=142531, /n=40.9

κ = 1.08 κ = 1.002
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Table 30

PCG for the discontinuous problem, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 7 4

op=176045, /n=1760 op=364913, /n=3649
100-50-16-11

str=1485, /n=14.8
κ = 1.13 κ = 1.002

20 8 4
op=769349, /n=1923 op=1460913, /n=3652
400-200-46-17-10
str=5448, /n=13.6

κ = 1.39 κ = 1.007
30 8 4

op=1829485, /n=2033 op=3558513, /n=3954
900-450-122-30-21
str=13311, /n=14.8

κ = 1.34 κ = 1.004
39 8 4

op=3201265, /n=2105 op=8053817, /n=5295
1521-762-204-57-31-21-16
str=23115, /n=15.2

κ = 1.26 κ = 1.004
50 9 4

op=5683443, /n=2273 op=10528673, /n=4211
2500-1250-324-88-29-21
str=36892, /n=14.8

κ = 1.41 κ = 1.008
59 9 4

op=8020647, /n=2304 op=15955017, /n=4583
3481-1741-446-122-41-22-17

str=52033, /n=14.9
κ = 1.45 κ = 1.007



48 G. MEURANT

Table 31

PCG for the discontinuous problem, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 7 5

op=111261, /n=1126 op=154989, /n=1550
100-15

str=1882, /n=18.8
κ = 1.18 κ = 1.03

20 11 8
op=824933, /n=2062 op=1244657, /n=3111

400-44-13
str=8782, /n=21.9

κ = 3.52 κ = 2.04
30 12 9

op=2137984, /n=2375 op=3505293, /n=3895
900-100-28-13

str=21099, /n=23.4
κ = 3.9 κ = 2.19

39 14 10
op=4368457, /n=2872 op=7164021, /n=4710
1521-166-47-21-10
str=37356, /n=24.5

κ = 4.99 κ = 2.68
50 16 11

op=8321810, /n=3329 op=12523013, /n=5009
2500-271-51-22

str=62850, /n=25.1
κ = 6.5 κ = 3.32

59 17 12
op=12617568, /n=3625 op=20087094, /n=5770
3481-387-69-21-16
str=89907, /n=25.8

κ = 7.9 κ = 3.8
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Table 32

PCG for the discontinuous problem, τ = (0.2, 0.06), multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 6 4

op=127051, /n=1270 op=218273, /n=2183
100-40-15

str=2552, /n=25.5
κ = 1.15 κ = 1.01

20 10 6
op=988121, /n=2470 op=1889889, /n=4725
400-147-53-23-10
str=11898, /n=29.7

κ = 2.72 κ = 1.59
30 10 6

op=2410906, /n=2679 op=6298817, /n=5887
900-304-117-53-24-12
str=28896, /n=32.2

κ = 2.45 κ = 1.22
39 11 6

op=4742431, /n=3118 op=10171765, /n=6687
1521-511-214-102-43-17
str=52274, /n=34.4

κ = 2.9 κ = 1.31
50 13 7

op=9484653, /n=3794 op=21897205, /n=8759
2500-837-356-174-67-31-17
str=89472, /n=35.8

κ = 4.01 κ = 1.57
59 13 8

op=13619971, /n=3913 op=36180434, /n=10390
3481-1163-510-248-88-40-17
str=128477, /n=36.9

κ = 4.31 κ = 1.63
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Table 33

PCG for the discontinuous problem, τ = 0.06, multilevel, (’ai’, ’a’, ’st’, ’-’), γ = 1

m ’iz’ ’em’ ’wi’ ’wm’
10 7 7 7 6

op=212405, /n=2124 op=165429, /n=1654 op=161885, /n=1619 op=148681, /n=1487
100-50-16 100-50-14 100-50-16-10 100-50-16

str=4098, /n=41 str=2956, /n=29.6 str=2795, /n=27.9 str=3219, /n=32.2
20 10 9 13 9

op=1538429, /n=3846 op=987023, /n=2468 op=1276703, /n=3192 op=1058653, /n=2647
400-200-45-20-12 400-200-65-16 400-200-56-15 400-200-46-24-17
str=20790, /n=52 str=13329, /n=33.3 str=12198, /n=30.5 str=15034, /n=37.6

30 9 10 10 7
op=3663843, /n=4071 op=2665677, /n=2962 op=2552487, /n=2836 op=2539973, /n=2822
900-450-111-49-26-14 900-450-113-34-12 900-450-127-39-14 900-450-122-60-42-33-22
str=54708, /n=60.8 str=32528, /n=36.1 str=30958, /n=34.4 str=46329, /n=51.5

39 10 12 12 8
op=7407583, /n=4870 op=5552781, /n=3651 op=5294575, /n=3481 op=4795489, /n=3153
1521-762-189-70-36-21-14 1521-762-185-52-15 1521-762-210-52-17 1521-762-204-89-63
str=100955, /n=66.4 str=57033, /n=37.5 str=54142, /n=35.6 str=82054, /n=53.9

50 10 10 out 8
op=12459839, /n=4984 op=8210341, /n=3284 of op=8488763, /n=3395
2500-1250-306-124-86 2500-1250-324-86-25 memory 2500-1250-324-120-80-58-37
str=174490, /n=69.8 str=99116, /n=39.6 str=136437, /n=54.6

59 11 13 out 9
op=19749155, /n=5673 op=14901069, /n=4281 of op=12671127, /n=3640
3481-1741-421-166-105 3481-1741-433-116-30-10 memory 3481-1741-446-159-94-76
str=254066, /n=72.9 str=140651, /n=40.4 str=192518, /n=55.3
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Table 34

AMG for the rapidly varying coefficient problem τ = 0.06

m = 10 m = 20 m = 30
11 13 14

ρ = 0.05 ρ = 0.13 ρ = 0.16
op=124376, /n=1243 op=628323, /n=1571 op=1538752, /n=1710

100-50-14 400-200-52-16 900-450-119-
-34-16-10

m = 40 m = 50 m = 60
14 16 17

ρ = 0.17 ρ = 0.22 ρ = 0.23
op=2745809, /n=1716 op=4835525, /n=1934 op=7471427, /n=2075

1600-800-207- 2500-1250-313- 3600-1800-450-
-58-22-11 -78-23 -116-35-16-13
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Table 35

PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘gs,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=111049, /n=1105 op=209633, /n=2096
100-50-14

str=1285, /n=12.8
κ = 1.05 κ = 1.001

20 6 4
op=509552, /n=1274 op=1158673, /n=2897

400-200-52-16
str=5653, /n=14.1

κ = 1.08 κ = 1.002
30 7 4

op=1393197, /n=1548 op=3388196, /n=3765
900-450-119-34-16-10
str=13243, /n=14.7

κ = 1.11 κ = 1.001
40 7 4

op=2453616, /n=1533 op=5916142, /n=3698
1600-800-207-58-22-11
str=23650, /n=14.8

κ = 1.14 κ = 1.001
50 7 4

op=3780647, /n=1512 op=8094016, /n=3238
2500-1250-313-78-23-15
str=36322, /n=14.5

κ = 1.19 κ = 1.002
60 8 4

op=6217905, /n=1727 op=12594385, /n=3498
3600-1800-450-116-35-16
str=52887, /n=14.7

κ = 1.21 κ = 1.001
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Table 36

PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘ic,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=85053, /n=850 op=147153, /n=1471
100-50-14

str=1993, /n=19.9
κ = 1.02 κ = 1.0004

20 5 3
op=385042, /n=963 op=795042, /n=1988
400-200-52-16

str=8772, /n=21.8
κ = 1.04 κ = 1.0004

30 6 3
op=1067074, /n=1191 op=2288596, /n=2543
900-450-119-34-16-10
str=20410, /n=22.7

κ = 1.05 κ = 1.0005
40 6 3

op=1905715, /n=1191 op=4037610, /n=2524
1600-800-207-58-22-11
str=36408, /n=22.7

κ = 1.07 κ = 1.0005
50 7 3

op=2251529, /n=1341 op=5551952, /n=2221
2500-1250-313-78-23-15
str=55886, /n=22.4

κ = 1.11 κ = 1.0005
60 7 3

op=4880849, /n=1356 op=8587888, /n=2385
3600-1800-450-116-35-16
str=81335, /n=22.6

κ = 1.12 κ = 1.0004
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Table 37

PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘ai,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=131937, /n=1319 op=237753, /n=2377
100-50-14

str=2631, /n=26.3
κ = 1.05 κ = 1.002

20 6 4
op=674612, /n=1686 op=1406753, /n=3517

400-200-52-16
str=13020, /n=32.5

κ = 1.07 κ = 1.004
30 7 4

op=1918237, /n=2131 op=3991393, /n=4435
900-450-119-34-16-10
str=32030, /n=35.6

κ = 1.08 κ = 1.004
40 7 4

op=3560860, /n=2225 op=7464513, /n=4665
1600-800-207-58-22-11
str=59273, /n=37

κ = 1.09 κ = 1.004
50 7 4

op=5669381, /n=2268 op=11390673, /n=4556
2500-1250-313-78-23-15
str=94133, /n=37.6

κ = 1.15 κ = 1.005
60 7 4

op=8365621, /n=2324 op=17532113, /n=4870
3600-1800-450-116-35-16
str=138741, /n=38.5

κ = 1.17 κ = 1.004
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Table 38

PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘tw,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=101973, /n=1020 op=164393, /n=1644
100-50-14

str=2209, /n=22.1
κ = 1.14 κ = 1.01

20 8 5
op=522398, /n=1306 op=1075205, /n=2688

400-200-52-16
str=9787, /n=24.5

κ = 1.15 κ = 1.01
30 8 5

op=1239904, /n=1378 op=3106333, /n=3451
900-450-119-34-16-10
str=22990, /n=25.5

κ = 1.17 κ = 1.01
40 8 5

op=2216574, /n=1385 op=5491845, /n=3432
1600-800-207-58-22-11
str=41072, /n=25.7

κ = 1.19 κ = 1.01
50 9 5

op=3786533, /n=1515 op=7525853, /n=3010
2500-1250-313-78-23-15
str=62958, /n=25.2

κ = 1.25 κ = 1.01
60 9 5

op=5517123, /n=1532 op=11657317, /n=3238
3600-1800-450-116-35-16
str=91732, /n=25.5

κ = 1.28 κ = 1.01
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Table 39

PCG for the rapidly varying coefficient problem, τ = 0.06, ν = 3, multilevel, (‘gc,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 3

op=258805, /n=1580 op=346405, /n=3461
100-50-14

str=2373, /n=23.7
κ = 1.1 κ = 1.0005

20 7 3
op=1169109, /n=2923 op=1856029, /n=4640

400-200-52-16
str=10455, /n=26.1

κ = 1.10 κ = 1.0008
30 7 3

op=2766621, /n=3074 op=5330853, /n=5923
900-450-119-34-16-10
str=24519, /n=27.2

κ = 1.13 κ = 1.0007
40 8 3

op=5547096, /n=3467 op=9357341, /n=5848
1600-800-207-58-22-11
str=43770, /n=27.3

κ = 1.17 κ = 1.0007
50 9 3

op=9467073, /n=3787 op=12924165, /n=5170
2500-1250-313-78-23-15
str=67172, /n=26.8

κ = 1.32 κ = 1.0006
60 9 3

op=13777663, /n=3827 op=19955869, /n=5543
3600-1800-450-116-35-16
str=97749, /n=27.1

κ = 1.33 κ = 1.0006
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Table 40

PCG for the rapidly varying coefficient problem, τ = 0.06, ν = 3, multilevel, (‘cg,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 3 2

op=275109, /n=2751 op=541525, /n=5414
100-50-14

str=2631, /n=26.3
κ = 1.0001 κ = 1

20 4 2
op=1793498, /n=4484 op=3240569, /n=8101

400-200-52-16
str=13020, /n=32.6

κ = 1.004 κ = 1
30 5 2

op=5382018, /n=5980 op=9227881, /n=10253
900-450-119-34-16-10
str=32030, /n=35.6

κ = 1.01 κ = 1
40 5 2

op=10007103, /n=6254 op=17271369, /n=10795
1600-800-207-58-22-11
str=59272, /n=37

κ = 1.01 κ = 1
50 5 2

op=15952841, /n=6381 op=26438009, /n=10575
2500-1250-313-78-23-15
str=94133, /n=37.6

κ = 1.01 κ = 1
60 5 2

op=23565355, /n=6546 op=40711657, /n=11309
3600-1800-450-116-35-16
str=138741, /n=38.5

κ = 1.02 κ = 1
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Table 41

PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 6 3

op=132105, /n=1321 op=200037, /n=2004
100-50-14

str=1285, /n=12.8
κ = 1.08 κ = 1.002

20 7 4
op=687189, /n=1718 op=1359953, /n=3400

400-200-52-16
str=5653, /n=14.1

κ = 1.13 κ = 1.002
30 8 4

op=1837738, /n=2042 op=3941873, /n=4380
900-450-119-34-16-10
str=13243, /n=14.7

κ = 1.17 κ = 1.002
40 8 4

op=3279600, /n=2050 op=6942913, /n=4339
1600-800-207-58-22-11
str=23650, /n=14.8

κ = 1.20 κ = 1.002
50 8 4

op=5029811, /n=2012 op=9504033, /n=3802
2500-1250-313-78-23-15
str=36322, /n=14.5

κ = 1.26 κ = 1.002
60 9 4

op=8149743, /n=2264 op=14726433, /n=4091
3600-1800-450-116-35-16
str=52887, /n=14.7

κ = 1.29 κ = 1.002
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Table 42

PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 7 4

op=104509, /n=1045 op=120433, /n=1204
100-13

str=1737, /n=17.4
κ = 1.21 κ = 1.03

20 9 6
op=655513, /n=1649 op=929041, /n=2322

400-46-15
str=8464, /n=21.2

κ = 1.6 κ = 1.16
30 11 7

op=1928857, /n=2143 op=2764629, /n=3072
900-103-29-13

str=20670, /n=22.9
κ = 1.8 κ = 1.23

40 12 8
op=3849758, /n=2406 op=5709825, /n=3568

1600-180-37-15
str=38032, /n=23.8

κ = 2.00 κ = 1.29
50 13 8

op=6677681, /n=2671 op=9535625, /n=3813
2500-279-52-23-10
str=61230, /n=24.5

κ = 2.15 κ = 1.34
60 14 9

op=10475023, /n=2910 op=15479973, /n=4300
3600-402-66-28-12
str=89631, /n=24.9

κ = 2.31 κ = 1.39
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Table 43

PCG for the rapidly varying coefficient problem, τ = (1, 0.01), multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 4 3

op=175818, /n=1758 op=403493, /n=4035
100-50-24-14

str=4726, /n=47.2
κ = 1.008 κ = 1.0001

20 5 3
op=1631519, /n=4079 op=3848317, /n=9621
400-200-99-53-26-12
str=35029, /n=87

κ = 1.05 κ = 1.002
30 6 4

op=5849563, /n=6499 op=14671353, /n=16302
900-450-215-111-54-23-10
str=106604, /n=118

κ = 1.11 κ = 1.009
40 7 4

op=14237629, /n=8898 op=31440793, /n=19650
1600-800-385-199-104-45-22

str=226485, /n=141
κ = 1.18 κ = 1.02

50 8 5
op=27883151, /n=11153 op=65753549, /n=26301

2500-1250-605-314-157-72-37
str=393652, /n=157

κ = 1.30 κ = 1.03
60 8 5

op=43150516, /n=11986 op=102536912, /n=28482
3600-1800-875-454-233-108-53

str=608523, /n=169
κ = 1.47 κ = 1.05
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Table 44

AMG for the random Laplacian problem τ = 0.06

m = 10 m = 20 m = 30
9 10 10

ρ = 0.06 ρ = 0.08 ρ = 0.08
op=101687, /n=1017 op=719629, /n=1799 op=2717419, /n=3019

100-50 400-200 900-450

m = 40 m = 50 m = 60
10 11

ρ = 0.08 ρ = 0.14
op=6817639, /n=4261 op=8259634, /n=3304

1600-800 2500-1250-382
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Table 45

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘gs,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=101851, /n=1018 op=185873, /n=1859
100-50-19

str=1402, /n=14
κ = 1.05 κ = 1.002

20 6 4
op=436591, /n=1091 op=813933, /n=2035

400-200-67
str=5913, /n=14.8

κ = 1.06 κ = 1.002
30 6 4

op=1021775, /n=1135 op=1934273, /n=2149
900-450-141

str=13514, /n=15
κ = 1.06 κ = 1.002

40 6 4
op=1875813, /n=1172 op=3599433, /n=2250

1600-800-254
str=24226, /n=15.1

κ = 1.10 κ = 1.002
50 6 4

op=3009093, /n=1204 op=5839113, /n=2336
2500-1250-383

str=37734, /n=15.1
κ = 1.07 κ = 1.002
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Table 46

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘ic,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=81665, /n=816 op=138140, /n=1381
100-50-19

str=2109, /n=21.1
κ = 1.03 κ = 1.001

20 6 3
op=408899, /n=1022 op=604333, /n=1511

400-200-67
str=8865, /n=22.2

κ = 1.04 κ = 1.001
30 6 3

op=956647, /n=1063 op=1436677, /n=1596
900-450-141

str=20204, /n=22.4
κ = 1.04 κ = 1.001

40 6 3
op=1759473, /n=1100 op=2682133, /n=1672

1600-800-254
str=36234, /n=22.6

κ = 1.04 κ = 1.001
50 6 3

op=2823269, /n=1129 op=4354349, /n=1742
2500-1250-383

str=56510, /n=22.6
κ = 1.04 κ = 1.001
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Table 47

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘ai,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 9 6

op=106723, /n=1067 op=135213, /n=1352
100-50-19

str=1730, /n=17.3
κ = 1.3 κ = 1.06

20 9 6
op=517643, /n=1294 op=666989, /n=1667

400-200-67
str=7322, /n=18.3

κ = 1.4 κ = 1.08
30 10 6

op=1489546, /n=1655 op=1763173, /n=1959
900-450-141

str=16694, /n=18.5
κ = 1.39 κ = 1.08

40 10 7
op=3003385, /n=1877 op=4102413, /n=2564

1600-800-254
str=29952, /n=18.7

κ = 1.44 κ = 1.10
50 10 7

op=4049613, /n=1620 op=7713653, /n=3085
2500-1250-383

str=51968, /n=20.7
κ = 1.45 κ = 1.10
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Table 48

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘tw,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=97477, /n=975 op=153153, /n=1531
100-50-19

str=2309, /n=23.1
κ = 1.10 κ = 1.007

20 7 4
op=420317, /n=1051 op=677233, /n=1693

400-200-67
str=9816, /n=24.5

κ = 1.11 κ = 1.008
30 7 4

op=987589, /n=1097 op=1619793, /n=1800
900-450-141

str=22420, /n=24.9
κ = 1.12 κ = 1.007

40 7 4
op=1822893, /n=1139 op=3039833, /n=1900

1600-800-254
str=40282, /n=25.2

κ = 1.18 κ = 1.008
50 7 4

op=2932981, /n=1173 op=4954233, /n=1982
2500-1250-382

str=62888, /n=25.1
κ = 1.13 κ = 1.008
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Table 49

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘gc,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 3

op=217603, /n=2176 op=326661, /n=3267
100-50-19

str=1402, /n=14
κ = 1.07 κ = 1.0004

20 6 3
op=906403, /n=2266 op=1375261, /n=3438

400-200-67
str=5913, /n=14.8

κ = 1.08 κ = 1.0006
30 6 3

op=2086895, /n=2319 op=3192357, /n=3547
900-450-141

str=13514, /n=15
κ = 1.09 κ = 1.0007

40 7 3
op=4313517, /n=2696 op=5804669, /n=3628

1600-800-254
str=24226, /n=15.1

κ = 1.14 κ = 1.0007
50 7 3

op=6842773, /n=2737 op=9266661, /n=3707
2500-1250-383

str=37734, /n=15.1
κ = 1.14 κ = 1.0008
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Table 50

PCG for the random Laplacian problem, τ = 0.06, ν = 3, multilevel, (‘cg,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 4 2

op=155828, /n=1558 op=180957, /n=1810
100-50-19

str=1730, /n=17.3
κ = 1.001 κ = 1

20 4 2
op=677228, /n=1695 op=788861, /n=1972

400-200-67
str=7322, /n=18.3

κ = 1.003 κ = 1
30 4 2

op=1626088, /n=1807 op=4895797, /n=2106
900-450-141

str=16694, /n=18.5
κ = 1.002 κ = 1

40 4 2
op=3058568, /n=1912 op=3571317, /n=2232

1600-800-254
str=29952, /n=18.7

κ = 1.003 κ = 1
50 4 2

op=5771853, /n=2309 op=9146465, /n=3659
2500-1250-383

str=51698, /n=20.7
κ = 1.004 κ = 1
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Table 51

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 6 3

op=125819, /n=1258 op=185669, /n=1857
100-50-19

str=1402, /n=14
κ = 1.07 κ = 1.002

20 6 3
op=532379, /n=1331 op=799069, /n=1998

400-200-67
str=5913, /n=14.8

κ = 1.10 κ = 1.002
30 7 3

op=1418277, /n=1576 op=1883749, /n=2093
900-450-141

str=13514, /n=15
κ = 1.13 κ = 1.002

40 7 4
op=2589037, /n=1618 op=4352953, /n=2721

1600-800-254
str=24226, /n=15.1

κ = 1.24 κ = 1.006
50 7 3

op=4138709, /n=1655 op=5611813, /n=2244
2500-1250-382

str=37734, /n=15.1
κ = 1.16 κ = 1.003
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Table 52

PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘ai,’ ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 9 6

op=146023, /n=1460 op=335049, /n=3350
100-50-24-12

str=2134, /n=21.3
κ = 1.4 κ = 1.09

20 10 7
op=731590, /n=1829 op=2729133, /n=6823
400-200-91-46-23-12
str=9489, /n=23.7

κ = 1.4 κ = 1.1
30 11 7

op=1850653, /n=2056 op=7510421, /n=8345
900-450-204-96-49-25-13
str=21533, /n=24.4

κ = 1.6 κ = 1.15
40 12 8

op=3624403, /n=2265 op=15291297, /n=9557
1600-800-381-176-90-40-20
str=39655, /n=24.8

κ = 1.9 κ = 1.27
50 12 8

op=5724579, /n=2290 op=24772913, /n=9909
2500-1250-595-288-129-65-36

str=62822, /n=25.1
κ = 1.8 κ = 1.24
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Table 53

1138-bus modified, τ = 0.06

method
AMG 104 it

op=12227373
1138-472-178-80-61

ρ = 0.81
st=24922

(‘gs’, ‘a’, ‘st’, ‘st’) 22 it
op=3880407

1138-472-178-80
st=12533

(‘ic’, ‘a’, ‘st’, ‘st’) 21 it
op=3351650

1138-472-178-80
st=19993

(‘ai’, ‘a’, ‘st’, ‘st’) 14 it
op=2808576

1138-472-178-80
st=24922

(‘tw’, ‘a’, ‘st’, ‘st’) 109 it
op=14886591
1138-472-178-80

st=21849
(‘gc’, ‘a’, ‘st’, ‘st’) 63 it

op=12546321
1138-472-178-80

st=23717
(‘cg’, ‘a’, ‘st’, ‘st’) 13 it

op=5058207
1138-472-178-80

st=24922
(‘po’, ‘a’, ‘st’, ‘st’) 37 it

op=7645767
1138-472-178-80

st=12533
(‘ai’, ‘z’, ‘st’, ‘iz’) 15 it

op=2402769
1138-472-178-80

st=19597
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Table 54

bcsstk01, τ = 0.06

method
AMG 48 it

op=431347
48-18

ρ = 0.98
st=1179

(‘gs’, ‘a’, ‘st’, ‘st’) 13 it
op=110367
48-18
st=736

(‘ic’, ‘a’, ‘st’, ‘st’) 11 it
op=84989
48-18
st=1144

(‘ai’, ‘a’, ‘st’, ‘st’) 13 it
op=106783
48-18
st=1179

(‘tw’, ‘a’, ‘st’, ‘st’) 14 it
op=98654
48-18
st=1354

(‘gc’, ‘a’, ‘st’, ‘st’) 48 it
op=405284
48-18
st=1420

(‘cg’, ‘a’, ‘st’, ‘st’) 17 it
op=237955
48-18
st=1179

(‘po’, ‘a’, ‘st’, ‘st’) 32 it
op=301868
48-18
st=736

(‘ai’, ‘z’, ‘st’, ‘iz’) 14 it
τ = 0.2 op=92294

48-10
st=867
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Table 55

gr3030, τ = 0.06

method
AMG 10 it

op=1182199
900-225-49
ρ = 0.08
st=26313

(‘gs’, ‘a’, ‘st’, ‘st’) 6 it
op=1140515
900-225-49
st=12461

(‘ic’, ‘a’, ‘st’, ‘st’) 6 it
op=1036929
900-225-49
st=19199

(‘ai’, ‘a’, ‘st’, ‘st’) 7 it
op=1600109
900-225-49
st=26313

(‘tw’, ‘a’, ‘st’, ‘st’) 7 it
op=1098301
900-225-49
st=22415

(‘gc’, ‘a’, ‘st’, ‘st’) 17 it
op=3188309
900-225-49
st=23589

(‘cg’, ‘a’, ‘st’, ‘st’) 8 it
op=3362081
900-225-49
st=26313

(‘po’, ‘a’, ‘st’, ‘st’) 8 it
op=1767173
900-225-49
st=12461

(‘ai’, ‘z’, ‘st’, ‘iz’) 9 it
op=1916455
900-117-33-14
st=24975
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Table 56

bcsstk34, τ = 0.01

method
AMG 6 it

op=1343689
588-66-12
ρ = 0.008
st=32921

(‘gs’, ‘a’, ‘st’, ‘st’) 3 it
op=1326425
588-66-12
st=25393

(‘ic’, ‘a’, ‘st’, ‘st’) 3 it
op=1146281
588-66-12
st=37855

(‘ai’, ‘a’, ‘st’, ‘st’) 5 it
op=1491137
588-66-12
st=32921

(‘tw’, ‘a’, ‘st’, ‘st’) 4 it
op=1412033
588-66-12
st=48319

(‘gc’, ‘a’, ‘st’, ‘st’) 6 it
op=2151621
588-66-12
st=23847

(‘cg’, ‘a’, ‘st’, ‘st’) 5 it
op=2490353
588-66-12
st=32921

(‘po’, ‘a’, ‘st’, ‘st’) 6 it
op=2717445
588-66-12
st=25393

(‘ai’, ‘z’, ‘st’, ‘iz’) 4 it
op=1982563
588-233-24
st=58317
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Table 57

bcsstk27, τ = 0.06

method
(‘gs’, ‘a’, ‘st’, ‘st’) 58 it

op=61447065
1224-289-34
st=73840

(‘ai’, ‘a’, ‘st’, ‘st’) 368 it
τ = 0.06 op=312558975

1224-289-1234
st=110083

(‘ai’, ‘a’, ‘st’, ‘st’) 22 it
τ(= 0.06, 0.01) op=45313063

1224-289-1234
st=251107

(‘ai’, ‘a’, ‘st’, ‘st’) 12 it
τ = (0.06, 0.005) op=34343127

1224-289-1234
st=335578

(‘tw’, ‘a’, ‘st’, ‘st’) 274 it
op=231271769
1224-289-34
st=142813



MULTILEVEL PRECONDITIONERS 75

5. Conclusion. In this paper we have compared several fully algebraic multilevel
preconditioners for PCG. We used several different smoothers and ways to define the
coarse grids as well as several interpolation schemes. It seems the most important
point to obtain good results is the smoother. There is not much difference when
changing the way to compute the coarse grids as well as the interpolation scheme as
long as the interpolation of a constant is a constant. The symmetric Gauss-Seidel and
the incomplete Cholesky decomposition are good smoothers but they are not parallel.
The approximate inverses are fully parallel. The Wang and Tan proposal is a better
smoother than AINV for most problems (at least when using the same amount of
storage) but there is no guarantee to obtain a positive definite preconditioner.

There is no overall best algorithm for our set of examples. Everything depends
on what we are looking for: smallest number of iterations, smallest computer time,
smallest storage, best performance on a parallel computer, etc. . . For instance, AINV
is not the best smoother but it is fully parallel; the ‘z’ influence matrix does not
give the smallest number of operations but the storage is generally smaller than for
the other methods. A very nice thing with AINV is that we just have to adjust
one parameter to obtain a better smoother by reducing the value of τ although this
increases the storage.

Almost all these methods give a constant number of iterations when the problem
size is increasing for the partial differential equations we solved and some of them give
a number of operations proportional to the problem size. It remains to test some of
these methods on parallel computers with much larger problems to see if we still get
the scalability we are looking for.
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