
G H GOLUB AND GERARD MEURANT

Matrices, moments and quadrature

Abstract In this paper we study methods to obtain bounds or approxima-
tions of elements of a matrix f(A) where A is a symmetric positive definite
matrix and f is a smooth function. These methods are based on the use of
quadrature rules and the Lanczos algorithm for diagonal elements and the
block Lanczos or the non–symmetric Lanczos algorithms for the non diagonal
elements. We give some theoretical results on the behavior of these methods
based on results for orthogonal polynomials as well as analytical bounds and
numerical experiments on a set of matrices for several functions f .

1 Definition of the problem

Let A be a real symmetric positive definite matrix of order n. We want to find
upper and lower bounds (or approximations, if bounds are not available) for
the entries of a function of a matrix. We shall examine analytical expressions
as well as numerical iterative methods which produce good approximations
in a few steps. This problem leads us to consider

uT f(A)v, (1.1)

where u and v are given vectors and f is some smooth (possibly C∞) function
on a given interval of the real line.

As an example, if f(x) = 1
x
and uT = eT

i = (0, . . . , 0, 1, 0, . . . , 0), the non
zero element being in the i–th position and v = ej, we will obtain bounds on
the elements of the inverse A−1.

We shall also consider
W T f(A)W,

where W is an n × m matrix. For specificity, we shall most often consider
m = 2.

1

Some of the techniques presented in this paper have been used (without
any mathematical justification) to solve problems in solid state physics, par-
ticularly to compute elements of the resolvant of a Hamiltonian modeling
the interaction of atoms in a solid, see [12], [14], [15]. In these studies the
function f is the inverse of its argument.

Analytic bounds for elements of inverses of matrices using different tech-
niques have been recently obtained in [17].

The outline of the paper is as follows. Section 2 considers the problem of
characterizing the elements of a function of a matrix. The theory is developed
in Section 3 and Section 4 deals with the construction of the orthogonal poly-
nomials that are needed to obtain a numerical method for computing bounds.
The Lanczos, non–symmetric Lanczos and block Lanczos methods used for
the computation of the polynomials are presented there. Applications to
the computation of elements of the inverse of a matrix are described in Sec-
tion 5 where very simple iterative algorithms are given to compute bounds.
Some numerical examples are given in Section 6, for different matrices and
functions f .

2 Elements of a function of a matrix

Since A = AT , we write A as

A = QΛQT ,

where Q is the orthonormal matrix whose columns are the normalized eigen-
vectors of A and Λ is a diagonal matrix whose diagonal elements are the
eigenvalues λi which we order as

λ1 ≤ λ2 ≤ · · · ≤ λn.

By definition, we have

f(A) = Qf(Λ)QT .

Therefore,

uT f(A)v = uT Qf(Λ)QT v

= αT f(Λ)β,

=
n∑

i=1

f(λi)αiβi.

2

This last sum can be considered as a Riemann–Stieltjes integral

I[f] = uT f(A)v =
∫ b

a
f(λ) dα(λ), (2.1)

where the measure α is piecewise constant and defined by

α(λ) =



0 if λ < a = λ1∑i

j=1 αjβj if λi ≤ λ < λi+1∑n
j=1 αjβj if b = λn ≤ λ

When u = v, we note that α is an increasing positive function.
The block generalization is obtained in the following way. Let W be an

n × 2 matrix, W = (w1 w2), then

W T f(A)W = W T Qf(Λ)QT W = αf(Λ)αT ,

where, of course, α is a 2× n matrix such that

α = (α1 . . . αn),

and αi is a vector with two components. With these notations, we have

W T f(A)W =
n∑

i=1

f(λi)αiα
T
i .

This can be written as a matrix Riemann–Stieltjes integral

IB[f] = W T f(A)W =
∫ b

a
f(λ) dα(λ).

IB[f] is a 2 × 2 matrix where the entries of the (matrix) measure α are
piecewise constant and defined by

α(λ) =
l∑

k=1

αkα
T
k , λl ≤ λ < λl+1.

In this paper, we are looking for methods to obtain upper and lower
bounds L and U for I[f] and IB[f],

L ≤ I[f] ≤ U

L ≤ IB[f] ≤ U.

In the next section, we review and describe some basic results from Gauss
quadrature theory as this plays a fundamental role in estimating the integrals
and computing bounds.

3

3 Bounds on matrix functions as integrals

A way to obtain bounds for the Stieltjes integrals is to use Gauss, Gauss–
Radau and Gauss–Lobatto quadrature formulas, see [3],[8],[9]. For 1.1, the
general formula we will use is

∫ b

a
f(λ) dα(λ) =

N∑
j=1

wjf(tj) +
M∑

k=1

vkf(zk) + R[f], (3.1)

where the weights [wj]
N
j=1, [vk]

M
k=1 and the nodes [tj]

N
j=1 are unknowns and the

nodes [zk]
M
k=1 are prescribed, see [4],[5],[6],[7].

3.1 The case u = v

When u = v, the measure is a positive increasing function and it is known
(see for instance [18]) that

R[f] =
f (2N+M)(η)

(2N + M)!

∫ b

a

M∏
k=1

(λ − zk)


 N∏

j=1

(λ − tj)




2

dα(λ), a < η < b. (3.2)

If M = 0, this leads to the Gauss rule with no prescribed nodes. If M = 1
and z1 = a or z1 = b we have the Gauss–Radau formula. If M = 2 and
z1 = a, z2 = b, this is the Gauss–Lobatto formula.

Let us recall briefly how the nodes and weights are obtained in the Gauss,
Gauss–Radau and Gauss–Lobatto rules. For the measure α, it is possible to
define a sequence of polynomials p0(λ), p1(λ), . . . that are orthonormal with
respect to α: ∫ b

a
pi(λ)pj(λ) dα(λ) =

{
1 if i = j
0 otherwise

and pk is of exact degree k. Moreover, the roots of pk are distinct, real and
lie in the interval [a, b]. We will see how to compute these polynomials in the
next Section.

This set of orthonormal polynomials satisfies a three term recurrence
relationship (see [20]):

γjpj(λ) = (λ − ωj)pj−1(λ)− γj−1pj−2(λ), j = 1, 2, . . . , N (3.3)

p−1(λ) ≡ 0, p0(λ) ≡ 1,

4

if
∫

dα = 1.
In matrix form, this can be written as

λp(λ) = JNp(λ) + γNpN(λ)eN ,

where
p(λ)T = [p0(λ) p1(λ) · · · pN−1(λ)],

eT
N = (0 0 · · · 0 1),

JN =




ω1 γ1

γ1 ω2 γ2
.

γN−2 ωN−1 γN−1

γN−1 ωN




. (3.4)

The eigenvalues of JN (which are the zeroes of pN) are the nodes of the
Gauss quadrature rule (i. e. M = 0). The weights are the squares of the first
elements of the normalized eigenvectors of JN , cf. [7]. We note that all the
eigenvalues of JN are real and simple.

For the Gauss quadrature rule (renaming the weights and nodes wG
j and

tGj) we have ∫ b

a
f(λ) dα(λ) =

N∑
j=1

wG
j f(tGj) + RG[f],

with

RG[f] =
f (2N)(η)

(2N)!

∫ b

a


 N∏

j=1

(λ − tGj)




2

dα(λ),

and the next theorem follows.

Theorem 3.1 Suppose u = v in 2.1 and f is such that f (2n)(ξ) > 0, ∀n, ∀ξ, a <
ξ < b, and let

LG[f] =
N∑

j=1

wG
j f(tGj).

Then, ∀N , ∃η ∈ [a, b] such that

LG[f] ≤ I[f],

I[f]− LG[f] =
f (2N)(η)

(2N)!

∫ b

a


 N∏

j=1

(λ − tGj)




2

dα(λ).

5

Proof: See [18]. The main idea of the proof is to use a Hermite interpolatory
polynomial of degree 2N − 1 on the N nodes which allows us to express the
remainder as an integral of the difference between the function and its inter-
polatory polynomial and to apply the mean value theorem (as the measure
is positive and increasing). As we know the sign of the remainder, we easily
obtain bounds.

To obtain the Gauss–Radau rule (M = 1 in 3.1–3.2), we should extend
the matrix JN in 3.4 in such a way that it has one prescribed eigenvalue, see
[8].

Assume z1 = a, we wish to construct pN+1 such that pN+1(a) = 0. From
the recurrence relation 3.3, we have

0 = γN+1pN+1(a) = (a − ωN+1)pN(a)− γNpN−1(a).

This gives

ωN+1 = a − γN
pN−1(a)

pN(a)
.

We have also
(JN − aI)p(a) = −γNpN(a)eN .

Let us denote δ(a) = [δ1(a), · · · , δN(a)]T with

δl(a) = −γN
pl−1(a)

pN(a)
l = 1, . . . , N.

This gives ωN+1 = a + δN(a) and

(JN − aI)δ(a) = γ2
NeN . (3.5)

From these relations we have the solution of the problem as: 1) we generate
γN by the Lanczos process (see Section 4 for the definition), 2) we solve the
tridiagonal system 3.5 for δ(a) and 3) we compute ωN+1. Then the tridiagonal
matrix ĴN+1 defined as

ĴN+1 =
(

JN γNeN

γNeT
N ωN+1

)
,

will have a as an eigenvalue and gives the weights and the nodes of the
corresponding quadrature rule. Therefore, the recipe is to compute as for

6

the Gauss quadrature rule and then to modify the last step to obtain the
prescribed node.

For Gauss–Radau the remainder RGR is

RGR[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a
(λ − z1)


 N∏

j=1

(λ − tj)




2

dα(λ).

Again, this is proved by constructing an interpolatory polynomial for the
function and its derivative on the tjs and for the function on z1.

Therefore, if we know the sign of the derivatives of f , we can bound the
remainder. This is stated in the following theorem.

Theorem 3.2 Suppose u = v and f is such that f (2n+1)(ξ) < 0, ∀n,∀ξ, a <
ξ < b. Let UGR be defined as

UGR[f] =
N∑

j=1

wa
j f(t

a
j) + va

1f(a),

wa
j , v

a
1 , t

a
j being the weights and nodes computed with z1 = a and let LGR be

defined as

LGR[f] =
N∑

j=1

wb
jf(t

b
j) + vb

1f(b),

wb
j , v

b
1, t

b
j being the weights and nodes computed with z1 = b. Then, ∀N we

have
LGR[f] ≤ I[f] ≤ UGR[f],

and

I[f]− UGR[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a
(λ − a)


 N∏

j=1

(λ − taj)




2

dα(λ),

I[f]− LGR[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a
(λ − b)


 N∏

j=1

(λ − tbj)




2

dα(λ).

Proof : With our hypothesis the sign of the remainder is easily obtained. It
is negative if we choose z1 = a, positive if we choose z1 = b.

Remarks :

7

i) if the sign of the f derivatives is positive, the bounds are reversed.
ii) it is enough to suppose that there exists an n0 such that f (2n0+1)(η) < 0

but, then N = n0 is fixed.

Now, consider the Gauss–Lobatto rule (M = 2 in 3.1–3.2), with z1 = a
and z2 = b as prescribed nodes. Again, we should modify the matrix of the
Gauss quadrature rule, see [8]. Here, we would like to have

pN+1(a) = pN+1(b) = 0.

Using the recurrence relation 3.3 for the polynomials, this leads to a linear
system of order 2 for the unknowns ωN+1 and γN :

(
pN(a) pN−1(a)
pN(b) pN−1(b)

)(
ωN+1

γN

)
=
(

a pN(a)
b pN(b)

)
. (3.6)

Let δ and µ be defined as vectors with components

δl = − pl−1(a)

γNpN(a)
, µl = − pl−1(b)

γNpN(b)
,

then
(JN − aI)δ = eN , (JN − bI)µ = eN ,

and the linear system 3.6 can be written(
1 −δN

1 −µN

)(
ωN+1

γ2
N

)
=
(

a
b

)
,

giving the unknowns that we need. The tridiagonal matrix ĴN+1 is then
defined as in the Gauss–Radau rule.

Having computed the nodes and weights, we have

∫ b

a
f(λ)dα(λ) =

N∑
j=1

wGL
j f(tGL

j) + v1f(a) + v2f(b) + RGL[f],

where

RGL[f] =
f (2N+2)(η)

(2N + 2)!

∫ b

a
(λ − a)(λ − b)


 N∏

j=1

(λ − tj)




2

dα(λ).

Then, we have the following obvious result.

8

Theorem 3.3 Suppose u = v and f is such that f (2n)(η) > 0, ∀n, ∀η, a <
η < b and let

UGL[f] =
N∑

j=1

wGL
j f(tGL

j) + v1f(a) + v2f(b).

Then, ∀N
I[f] ≤ UGL[f],

I[f]− UGL[f] =
f (2N+2)(η)

(2N + 2)!

∫ b

a
(λ − a)(λ − b)


 N∏

j=1

(λ − tGL
j)




2

dα(λ).

We remark that we need not always compute the eigenvalues and eigen-
vectors of the tridiagonal matrix. Let YN be the matrix of the eigenvectors
of JN (or ĴN) whose columns we denote by yi and TN be the diagonal matrix
of the eigenvalues ti which give the nodes of the Gauss quadrature rule. It is
well known that the weights wi are given by (cf. [21])

1

wi

=
N−1∑
l=0

p2
l (ti).

It can be easily shown that

wi =

(
y1

i

p0(ti)

)2

,

where y1
i is the first component of yi.

But, since p0(λ) ≡ 1, we have,

wi = (y1
i)

2 = (eT
1 yi)

2.

Theorem 3.4
N∑

l=1

wlf(tl) = eT
1 f(JN)e1.

9

Proof:
N∑

l=1

wlf(tl) =
N∑

l=1

eT
1 ylf(tl)y

T
l e1

= eT
1

(
N∑

l=1

ylf(tl)y
T
l

)
e1

= eT
1 YNf(TN)Y T

N e1

= eT
1 f(JN)e1.

The same statement is true for the Gauss–Radau and Gauss–Lobatto
rules. Therefore, in some cases where f(JN) (or the equivalent) is easily
computable (for instance, if f(λ) = 1/λ, see Section 5), we do not need to
compute the eigenvalues and eigenvectors of JN .

3.2 The case u 	= v

We have seen that the measure in 2.1 is piecewise constant and defined by

α(λ) =
l∑

k=1

αkδk, λl ≤ λ < λl+1.

For variable signed weight functions, see [19]. We will see later that for our
application, u and v can always be chosen such that αkδk ≥ 0. Therefore, in
this case α will be a positive increasing function.

In the next Section, we will show that there exists two sequences of poly-
nomials p and q such that

γjpj(λ) = (λ − ωj)pj−1(λ)− βj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1,

βjqj(λ) = (λ − ωj)qj−1(λ)− γj−1qj−2(λ), q−1(λ) ≡ 0, q0(λ) ≡ 1.

Let
p(λ)T = [p0(λ) p1(λ) · · · pN−1(λ)],

q(λ)T = [q0(λ) q1(λ) · · · qN−1(λ)],

and

JN =




ω1 γ1

β1 ω2 γ2
.

βN−2 ωN−1 γN−1

βN−1 ωN




.

10

Then, we can write

λp(λ) = JNp(λ) + γNpN(λ)eN ,

λq(λ) = JT
Nq(λ) + βNqN(λ)eN .

Theorem 3.5

pj(λ) =
βj · · · β1

γj · · · γ1

qj(λ).

Proof: The theorem is proved by induction. We have

γ1p1(λ) = λ − ω1,

β1q1(λ) = λ − ω1,

therefore

p1(λ) =
β1

γ1

q1(λ).

Now, suppose that

pj−1(λ) =
βj−1 · · · β1

γj−1 · · · γ1

qj−1(λ).

We have

γjpj(λ) = (λ − ωj)pj−1(λ)− βj−1pj−2(λ)

= (λ − ωj)
βj−1 · · · β1

γj−1 · · · γ1

qj−1(λ)− βj−1
βj−2 · · · β1

γj−2 · · · γ1

qj−2(λ).

Multiplying by γj−1···γ1

βj−1···β1
we obtain the result.

Hence qN is a multiple of pN and the polynomials have the same roots
which are also the common eigenvalues of JN and JT

N .
We will see that it is possible to choose γj and βj such that

γj = ±βj,

with, for instance, γj ≥ 0. Then, we have

pj(λ) = ±qj(λ).

11

We define the quadrature rule as

∫ b

a
f(λ) dα(λ) =

N∑
j=1

f(λj)sjtj + error, (3.7)

where λj is an eigenvalue of JN , sj is the first component of the eigenvector uj

of JN corresponding to λj and tj is the first component of the eigenvector vj

of JT
N corresponding to the same eigenvalue, normalized such that vT

j uj = 1.
We have the following results:

Proposition 3.1 Suppose that γjβj 	= 0, then the (non–symmetric) Gauss
quadrature rule 3.7 is exact for polynomials of degree less than or equal to
N − 1.

Proof:
The function f can be written as

f(λ) =
N−1∑
k=0

ckpk(λ),

and because of the orthonormality properties

∫ b

a
f(λ) dα(λ) = c0.

For the quadrature rule, we have

N∑
j=1

f(λj)sjtjql(λj) =
N∑

j=1

N−1∑
k=0

ckpk(λj)sjtjql(λj)

=
N−1∑
k=0

ck

N∑
j=1

pk(λj)sjtjql(λj).

But pk(λj)sj and ql(λj)tj are respectively the components of the eigenvectors
of JN and JT

N corresponding to λj. Therefore they are orthonormal with the
normalization that we chose. Hence,

N∑
j=1

f(λj)sjtjql(λj) = cl,

12

and consequently
N∑

j=1

f(λj)sjtj = c0,

which proves the result.

Now, as in [14], we extend the result to polynomials of higher degree.

Theorem 3.6 Suppose that γjβj 	= 0, then the (non–symmetric) Gauss
quadrature rule 3.7 is exact for polynomials of degree less than or equal to
2N − 1.

Proof:
Suppose f is a polynomial of degree 2N − 1. Then, f can be written as

f(λ) = pN(λ)s(λ) + r(λ),

where s and r are polynomials of degree less or equal to N − 1. Then,

∫ b

a
f(λ) dα(λ) =

∫ b

a
pN(λ)s(λ) dα(λ) +

∫ b

a
r(λ) dα(λ) =

∫ b

a
r(λ) dα(λ),

since pN is orthogonal to any polynomial of degree less or equal to N − 1
because of the orthogonality property of the p and q’s.

For the quadrature rule, we have

N∑
j=1

pN(λj)s(λj)sjtj +
N∑

j=1

r(λj)sjtj.

But, as λj is an eigenvalue of JN , it is a root of pN and

N∑
j=1

pN(λj)s(λj)sjtj = 0.

As the quadrature rule has been proven to be exact for polynomials of degree
less than N − 1, ∫ b

a
r(λ) dα(λ) =

N∑
j=1

r(λj)sjtj,

which proves the Theorem.

13

We will see in the next Section how to obtain bounds on the integral 2.1.
Now, we extend the Gauss–Radau and Gauss–Lobatto rules to the non–

symmetric case. This is almost identical (up to technical details) to the
symmetric case.

For Gauss–Radau, assume that the prescribed node is a, then, we would
like to have pN+1(a) = qN+1(a) = 0. This gives

(a − ωN+1)pN(a)− βNpN−1(a) = 0.

If we denote δ(a) = [δ1(a), . . . , δN(a)]T , with

δl(a) = −βN
pl−1(a)

pN(a)
,

we have
ωN+1 = a + δN(a),

where
(JN − aI)δ(a) = γNβNeN .

Therefore, the algorithm is essentially the same as previously discussed.
For Gauss–Lobatto, the algorithm is also almost the same as for the

symmetric case. We would like to compute pN+1 and qN+1 such that

pN+1(a) = pN+1(b) = 0, qN+1(a) = qN+1(b) = 0.

This leads to solving the linear system

(
pN(a) pN−1(a)
pN(b) pN−1(b)

)(
ωN+1

βN

)
=
(

apN(a)
bpN(b)

)
.

The linear system for the q’s whose solution is (ωN+1, γN)T can be shown
to have the same solution for ωN+1 and γN = ±βN depending on the signs
relations between the p’s and the q’s.

Let δ(a) and µ(b) be the solutions of

(JN − aI)δ(a) = eN , (JN − bI)µ(b) = eN .

Then, we have (
1 −δ(a)N
1 −µ(b)N

)(
ωN+1

γNβN

)
=
(

a
b

)
.

14

When we have the solution of this system, we choose γN = ±βN and γN ≥ 0.
The question of establishing bounds on the integral will be studied in the

next Section.
As for the case u = v, we do not always need compute the eigenvalues

and eigenvectors of JN but only the (1, 1) element of f(JN).

3.3 The block case

Now, we consider the block case. The problem is to find a quadrature rule.
The integral

∫ b
a f(λ)dα(λ) is a 2 × 2 symmetric matrix. The most general

quadrature formula is of the form

∫ b

a
f(λ)dα(λ) =

N∑
j=1

Wjf(Tj)Wj + error,

where Wj and Tj are symmetric 2 × 2 matrices. In this sum, we have 6N
unknowns. This quadrature rule can be simplified, since

Tj = QjΛjQ
T
j ,

where Qj is the orthonormal matrix of the eigenvectors, and Λj, the diagonal
matrix of the eigenvalues of Tj. This gives

N∑
j=1

WjQjf(Λj)Q
T
j Wj.

But WjQjf(Λj)Q
T
j Wj can be written as

f(λ1)z1z
T
1 + f(λ2)z2z

T
2 ,

where the vector zi is 2 × 1. Therefore, the quadrature rule can be written
as

2N∑
j=1

f(tj)wjw
T
j ,

where tj is a scalar and wj is a vector with 2 components. In this quadrature
rule, there are also 6N unknowns.

In the next Section, we will show that there exists orthogonal matrix
polynomials such that

15

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)Γ
T
j−1,

p0(λ) ≡ I2, p−1(λ) ≡ 0.

This can be written as

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN + [0, . . . , 0, pN(λ)ΓN],

where

JN =




Ω1 ΓT
1

Γ1 Ω2 ΓT
2

.

ΓN−2 ΩN−1 ΓT
N−1

ΓN−1 ΩN




, (3.8)

is a block tridiagonal matrix of order 2N and a banded matrix whose half
bandwidth is 2 (we have at most 5 non zero elements in a row).

If we denote P (λ) = [p0(λ), . . . , pN−1(λ)]
T , we have as JN is symmetric

JNP (λ) = λP (λ)− [0, . . . , 0, pN(λ)ΓN]T .

We note that if λ is an eigenvalue, say λr, of JN and if we choose u = ur to be
a two element vector whose components are the first two components of an
eigenvector corresponding to λr, then P (λr)u is this eigenvector (because of
the relations that are satisfied) and if ΓN is non singular, pT

N(λr)u = 0. The
difference with the scalar case is that although the eigenvalues are real, it
might be that they are of multiplicity greater than 1 (although this is unlikely
except in the case of the Gauss-Radau and Gauss-Lobatto rule where this
condition is enforced).

We define the quadrature rule as:

∫ b

a
f(λ) dα(λ) =

2N∑
i=1

f(λi)uiu
T
i + error, (3.9)

where 2N is the order of JN , the eigenvalues λi are those of JN and ui

is the vector consisting of the two first components of the corresponding
eigenvector, normalized as before. In fact, if there are multiple eigenvalues,
the quadrature rule should be written as follows. Let µi, i = 1, . . . , l be the

16

set of distinct eigenvalues and qi their multiplicities. The quadrature rule is
then

l∑
i=1


 qi∑

j=1

(wj
i)(w

j
i)

T


 f(µi). (3.10)

We will show in the next Section that the Gauss quadrature rule is exact
for polynomials of degree 2N − 1 and how to obtain estimates of the error.

We extend the process described for scalar polynomials to the matrix
analog of the Gauss–Radau quadrature rule. Let a be an extreme eigenvalue
of A. We would like a to be a double eigenvalue of JN+1. We have

JN+1P (a) = aP (a)− [0, . . . , 0, pN+1(a)ΓN+1]
T .

Then, we need to require pN+1(a) ≡ 0. From the recurrence relation this
translates into

apN(a)− pN(a)ΩN+1 − pN−1(a)Γ
T
N = 0.

Therefore, if pN(a) is non singular, we have

ΩN+1 = aI2 − pN(a)−1pN−1(a)Γ
T
N .

We must compute the right hand side. This can be done by noting that

JN




p0(a)
T

...
pN−1(a)

T


 = a




p0(a)
T

...
pN−1(a)

T


−




0
...

ΓT
NpN(a)T


 .

Multiplying on the right by pN(a)−T , we get the matrix equation

(JN − aI)




−p0(a)
T pN(a)−T

...
−pN−1(a)

T pN(a)−T


 =




0
...

ΓT
N


 .

Thus, we solve

(JN − aI)




δ0(a)
...

δN−1(a)


 =




0
...

ΓT
N


 ,

17

and hence
ΩN+1 = aI2 + δN−1(a)

TΓT
N .

The generalization of Gauss–Lobatto to the block case is a little more
tricky. We would like to have a and b as double eigenvalues of the matrix
JN+1. This leads to satisfying the following two matrix equations

apN(a)− pN(a)ΩN+1 − pN−1(a)Γ
T
N = 0

bpN(b)− pN(b)ΩN+1 − pN−1(b)Γ
T
N = 0

This can be written as(
I2 p−1

N (a)pN−1(a)
I2 p−1

N (b)pN−1(b)

)(
ΩN+1

ΓT
N

)
=
(

aI2

bI2

)
.

We now consider the problem of computing (or avoid computing) p−1
N (λ)pN−1(λ).

Let δ(λ) be the solution of

(JN − λI)δ(λ) = (0 . . . 0 I2)
T .

Then, as before
δN−1(λ) = −pN−1(λ)

T pN(λ)−TΓ−T
N .

We can easily show that δN−1(λ) is symmetric. We consider solving a 2× 2
block linear system (

I X
I Y

)(
U
V

)
=
(

aI
bI

)
.

Consider the block factorization(
I X
I Y

)
=
(

I 0
I W

)(
I X
0 Z

)
,

thus WZ = Y − X.
The solution of the system

(
I 0
I W

)(
U1

V1

)
=
(

aI
bI

)
,

gives
WV1 = (b − a)I.

18

The next step is (
I X
0 Z

)(
U
V

)
=
(

U1

V1

)
,

and we get
ZV = V1 = W−1(b − a)I

or
(WZ)V = (b − a)I.

Therefore
V = (b − a)(Y − X)−1.

Hence, we have

Y − X = p−1
N (b)pN−1(b)− p−1

N (a)pN−1(a) = ΓN(δN−1(a)− δN−1(b)).

This means that

ΓT
N = (b − a)(δN−1(a)− δN−1(b))

−1Γ−1
N ,

or
ΓT

NΓN = (b − a)(δN−1(a)− δN−1(b))
−1.

Then, ΓN is given as a Cholesky decomposition of the right hand side matrix.
The right hand side is positive definite because δN−1(a) is a diagonal block of
the inverse of (JN − aI)−1 which is positive definite because the eigenvalues
of JN are larger that a and −δN−1(b) is the negative of a diagonal block
of (JN − bI)−1 which is positive definite because the eigenvalues of JN are
smaller that b.

From ΓN , we can compute ΩN+1:

ΩN+1 = aI2 + ΓNδN−1(a)Γ
T
N .

As for the scalar case, it is not always needed to compute the weights and
the nodes for the quadrature rules.

Theorem 3.7 We have

2N∑
i=1

f(λi)uiu
T
i = eT f(JN)e,

where eT = (I2 0 . . . 0).

19

Proof:
The quadrature rule is

2N∑
i=1

uif(λi)u
T
i .

If yi are the eigenvectors of JN then ui = eT yi and

2N∑
i=1

uif(λi)u
T
i =

2N∑
i=1

eT yif(λi)y
T
i e

= eT

(
2N∑
i=1

yif(λi)y
T
i

)
e

= eT YNf(TN)Y T
N e

= eT f(JN)e

where YN is the matrix of the eigenvectors and TN the diagonal matrix of
the eigenvalues of JN .

Note that bounds for non diagonal elements can also be obtained by
considering eT

i f(A)ei, eT
j f(A)ej and 1

2
(ei + ej)

T f(A)(ei + ej).

4 Construction of the orthogonal polynomi-

als

In this section we consider the problem of computing the orthonormal poly-
nomials or equivalently the tridiagonal matrices that we need. A very natural
and elegant way to do this is to use Lanczos algorithms.

4.1 The case u = v

When u = v, we use the classical Lanczos algorithm.
Let x−1 = 0 and x0 be given such that ‖x0‖ = 1. The Lanczos algorithm

is defined by the following relations,

γjxj = rj = (A − ωjI)xj−1 − γj−1xj−2, j = 1, . . .

ωj = xT
j−1Axj−1,

γj = ‖rj‖.

20

The sequence {xj}l
j=0 is an orthonormal basis of the Krylov space

span{x0, Ax0, . . . , A
lx0}.

Proposition 4.1 The vector xj is given by

xj = pj(A)x0,

where pj is a polynomial of degree j defined by the three term recurrence
(identical to 3.3)

γjpj(λ) = (λ − ωj)pj−1j(λ)− γj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1.

Proof:
γ1x1 = (A − ω1I)x0,

is a first order polynomial in A. Therefore, the Proposition is easily obtained
by induction.

Theorem 4.1 If x0 = u, we have

xT
k xl =

∫ b

a
pk(λ)pl(λ)dα(λ).

Proof: As the xj’s are orthonormal, we have

xT
k xl = xT

0 Pk(A)T Pl(A)x0

= xT
0 QPk(Λ)Q

T QPl(Λ)Q
T x0

= xT
0 QPk(Λ)Pl(Λ)Q

T x0

=
n∑

j=1

pk(λj)pl(λj)x̂
2
j ,

where x̂ = QT x0.

Therefore, the pj’s are the orthonormal polynomials related to α that we
were referring to in 3.3.

21

4.2 The case u 	= v

We apply the non–symmetric Lanczos algorithm to a symmetric matrix A.
Let x−1 = x̂−1 = 0, and x0, x̂0 be given with x0 	= x̂0 and xT

0 x̂0 = 1. Then
we define the iterates for j = 1, . . . by

γjxj = rj = (A − ωjI)xj−1 − βj−1xj−2, (4.1)

βjx̂j = r̂j = (A − ωjI)x̂j−1 − γj−1x̂j−2, (4.2)

ωj = x̂T
j−1Axj−1,

γjβj = r̂T
j rj.

This algorithm generates two sequences of mutually orthogonal vectors as we
have

xT
l x̂k = δkl.

We have basically the same properties as for the Lanczos algorithm.

Proposition 4.2

xj = pj(A)x0, x̂j = qj(A)x̂0,

where pj and qj are polynomials of degree j defined by the three term recur-
rences

γjpj(λ) = (λ − ωj)pj−1(λ)− βj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1,

βjqj(λ) = (λ − ωj)qj−1(λ)− γj−1qj−2(λ), q−1(λ) ≡ 0, q0(λ) ≡ 1.

Proof: The Proposition is easily obtained by induction.

Theorem 4.2 If x0 = u and x̂0 = v, then

xT
k x̂l =

∫ b

a
pk(λ)ql(λ)dα(λ) = δkl.

22

Proof: As the xj’s and x̂j’s are orthonormal the proof is identical to the proof
of Theorem 4.1.

We have seen in the previous Section the relationship between the p and
q’s. The polynomials q are multiples of the polynomials p.

In this particular application of the non–symmetric Lanczos algorithm it
is possible to choose γj and βj such that

γj = ±βj = ±
√
|r̂T

j rj|,

with, for instance, γj ≥ 0 and βj = sgn(r̂T
j rj)γj. Then, we have

pj(λ) = ±qj(λ).

The main difference with the case of symmetric Lanczos is that this algorithm
may break down, e.g. we can have γjβj = 0 at some step.

We would like to use the non–symmetric Lanczos algorithm with x0 = ei

and x̂0 = ej to get estimates of f(A)i,j. Unfortunately, this is not possible as
this implies xT

0 x̂0 = 0. A way to get around this problem is to set x0 = ei/δ
and x̂0 = δei + ej. This will give an estimate of f(A)i,j/δ + f(A)i,i and
we can use the bounds we get for the diagonal elements (using for instance
symmetric Lanczos) to obtain bounds for the non diagonal entry. An added
adantage is that we are able to choose δ so that γjβj > 0 and therefore
pj(λ) = qj(λ). This can be done by starting with δ = 1 and restarting the
algorithm with a larger value of δ as soon as we find a value of j for which
γjβj ≤ 0.

Regarding expressions for the remainder, we can do exactly the same as
for symmetric Lanczos. We can write

R(f) =
f (2N)(η)

(2N)!

∫ b

a
pN(λ)2 dα(λ).

However, we know that pN(λ) = ±qN(λ) and

∫ b

a
pN(λ)qN(λ) dα(λ) = 1.

This shows that the sign of the integral in the remainder can be computed
using the algorithm and we have the following result.

23

Theorem 4.3 Suppose f is such that f (2n)(η) > 0, ∀n, ∀η, a < η < b.
Then, the quadrature rule 3.7 gives a lower bound if

N∏
j=1

sgn(r̂T
j rj) = 1,

and an upper bound otherwise. In both cases, we have

|R(f)| = f (2N)(η)

(2N)!
.

For Gauss–Radau and Gauss–Lobatto we cannot do the same thing.
Bounds can be obtained if we choose the initial vectors (e.g. δ) such that the
measure is positive and increasing. In this case we are in exactly the same
framework as for the symmetric case and the same results are obtained. Note
however that it is not easy to make this choice a priori. Some examples are
given in Section 6. A way to proceed is to start with δ = 1 and to restart
the algorithm 4.2 with a larger value of δ whenever we have γjβj ≤ 0.

4.3 The block case

Now, we consider the block Lanczos algorithm, see [10],[16]. Let X0 be an
n× 2 given matrix, such that XT

0 X0 = I2 (chosen as U defined before). Let
X−1 = 0 be an n × 2 matrix. Then

Ωj = XT
j−1AXj−1,

Rj = AXj−1 − Xj−1Ωj − Xj−2Γ
T
j−1,

XjΓj = Rj

The last step is the QR decomposition of Rj such that Xj is n × 2 with
XT

j Xj = I2 and Γj is 2×2. The matrix Ωj is 2×2 and Γj is upper triangular.
It may happen that Rj is rank deficient and in that case Γj is singular.

The solution of this problem is given in [10]. One of the columns of Xj can be
chosen arbitrarily. To complete the algorithm, we choose this column to be
orthogonal with the previous block vectors Xk. We can for instance choose
another vector (randomly) and orthogonalize it against the previous ones.

24

This algorithm generates a sequence such that

XT
j Xi = δijI2,

where I2 is the 2× 2 identity matrix.

Proposition 4.3

Xi =
i∑

k=0

AkX0C
(i)
k ,

where C
(i)
k are 2× 2 matrices.

Proof: The proof is given by induction.

We define a matrix polynomial pi(λ), a 2× 2 matrix, as

pi(λ) =
i∑

k=0

λkC
(i)
k .

Thus, we have the following result.

Theorem 4.4

XT
i Xj =

∫ b

a
pi(λ)

T dα(λ)pj(λ) = δijI2.

Proof:
Using the orthogonality of the Xis, we can write

δijI2 = XT
i Xj =

(
i∑

k=0

(C
(i)
k)T XT

0 Ak

) j∑
l=0

AlX0C
(j)
l




=
∑
k,l

(C
(i)
k)T XT

0 QΛk+lQT X0C
(j)
l

=
∑
k,l

(C
(i)
k)T αΛk+lαT C

(j)
l

=
∑
k,l

(C
(i)
k)T

(
n∑

m=1

λk+l
m αmαT

m

)
C

(j)
l

=
n∑

m=1

(∑
k

λk
m(C

(i)
k)T

)
αmαT

m

(∑
l

λl
mC

(j)
l

)
.

25

The pjs can be considered as matrix orthogonal polynomials for the (ma-
trix) measure α. To compute the polynomials, we need to show that the
following recurrence relation holds.

Theorem 4.5 The matrix valued polynomials pj satisfy

pj(λ)Γj = λpj−1(λ)− pj−1(λ)Ωj − pj−2(λ)Γ
T
j−1,

p−1(λ) ≡ 0, p0(λ) ≡ I2,

where λ is a scalar.

Proof: From the previous definition, it is easily shown by induction that pj

can be generated by the given (matrix) recursion.

As we have seen before this can be written as

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN + [0, . . . , 0, pN(λ)ΓN],

and as P (λ) = [p0(λ), . . . , pN−1(λ)]
T ,

JNP (λ) = λP (λ)− [0, . . . , 0, pN(λ)ΓN]T ,

with JN defined by 3.8.
Most of the following results on the properties of the matrix polynomials

are derived from [1].

Proposition 4.4 The eigenvalues of JN are the zeroes of det[pN(λ)].

Proof: Let µ be a zero of det[pN(λ)]. As the rows of pN(µ) are linearly
dependent, there exists a vector v with two components such that

vT pN(µ) = 0.

This implies that

µ[vT p0(µ), . . . , v
T pN−1(µ)] = [vT p0(µ), . . . , v

T pN−1(µ)]JN .

Therefore µ is an eigenvalue of JN . det[pN(λ)] is a polynomial of degree 2N
in λ. Hence, there exists 2N zeroes of the determinant and therefore all
eigenvalues are zeroes of det[pN(λ)].

26

Proposition 4.5 For λ and µ real, we have the analog of the Christoffel–
Darboux identity (see [21]) :

pN−1(µ)Γ
T
NpT

N(λ)− pN(µ)ΓNpT
N−1(λ) = (λ − µ)

N−1∑
m=0

pm(µ)p
T
m(λ). (4.3)

Proof: From the previous results, we have

ΓT
j+1p

T
j+1(λ) = λpT

j (λ)− Ωj+1p
T
j (λ)− Γjp

T
j−1(λ),

pj+1(µ)Γj+1 = µpj(µ)− pj(µ)Ωj+1 − pj−1(µ)Γ
T
j .

Multiplying the first relation by pj(µ) on the left and the second one by pT
j (λ)

on the right gives

pj(µ)Γ
T
j+1p

T
j+1(λ)− pj+1(µ)Γj+1p

T
j (λ) =

= (λ − µ)pj(µ)p
T
j (λ)− pj(µ)Γjp

T
j−1(λ) + pj−1(µ)Γ

T
j pT

j (λ).

Summing these equalities, some terms cancel and we get the desired result.

In particular, if we choose λ = µ in 4.3, we have that pN(λ)ΓNpT
N−1(λ) is

symmetric.

Proposition 4.6
N−1∑
m=0

uT
s pm(λs)p

T
m(λr)ur = δrs.

Proof: If we set λ = λs and µ = λr and multiply the Christoffel–Darboux
identity 4.3 on the left by uT

s and on the right by ur, we have pT
N(λr)ur = 0

and pT
N(λs)us = 0, and we get the result if λs 	= λr. Let

KN−1(µ, λ) =
N−1∑
m=0

pm(µ)p
T
m(λ).

As p0(λ) = I2, KN−1(λ, λ) is a symmetric positive definite matrix and there-
fore defines a scalar product. If λr is a multiple eigenvalue, there exist linearly
independent eigenvectors that we could orthonormalize. If λr is an eigenvalue
of multiplicity qr, there exist qr linearly independent vectors v1

r , . . . , v
qr
r with

27

two components such that the vectors P (λr)v
j
r , j = 1, . . . , qr are the eigenvec-

tors associated with λr. We can certainly find a set of vectors (w1
r , . . . , w

qr
r)

spanning the same subspace as (v1
r , . . . , v

qr
r) and such that

(wk
r)

T KN−1(λr, λr)w
l
r = δkl.

This property is nothing else than the orthogonality relation of the eigen-
vectors.

Proposition 4.7

2N∑
r=1

pT
i (λr)uru

T
r pl(λr) = δilI2, i = 0, . . . , N − 1, l = 0, . . . , N − 1.

Proof: Note that the eigenvectors of JN are linearly independent. We take
a set of N vectors with two elements : {y0, . . . , yN−1}, and write

[yT
0 , . . . , yT

N−1]
T =

2N∑
r=1

αr[u
T
r p0(λr), . . . , u

T
r pN−1(λr)]

T ,

or

yl =
2N∑
r=1

pT
l (λr)urαr, l = 0, . . . , N − 1.

Multiplying on the left by uT
s pl(λs) and summing :

N−1∑
l=0

uT
s pl(λs)yl = αs, s = 1, . . . , 2N.

Therefore,

yi =
2N∑
r=1

N−1∑
l=0

pT
i (λr)uru

T
r pl(λr)yl.

This gives the desired result.

To prove that the block quadrature rule is exact for polynomials of degree
up to 2N−1, we cannot use the same method as for the scalar case where the
given polynomial is factored because of commutativity problems. Therefore,
we take another approach that has been used in a different setting in [2].
The following results are taken from [2].

28

We will consider all the monomials λk, k = 1, . . . , 2N − 1. Let Mk the
moment matrix, be defined as

Mk =
∫ b

a
λk dα(λ).

We write the (matrix) orthonormal polynomials pj as

pj(λ) =
j∑

k=0

p
(j)
k λk,

p
(j)
k being a matrix of order 2. Then, we have

∫ b

a
pT

j (λ) dα(λ) =
j∑

k=0

(p
(j)
k)T

∫ b

a
λk dα(λ) =

j∑
k=0

(p
(j)
k)T Mk,

and more generally

∫ b

a
pT

j (λ)λ
q dα(λ) =

j∑
k=0

(p
(j)
k)T Mk+q.

We write these equations for j = N − 1. Note that because of the orthogo-
nality of the polynomials, we have

∫ b

a
pT

N−1(λ)λ
q dα(λ) = 0, q = 0, . . . , N − 2.

Let HN be the block Hankel matrix of order 2N , defined as

HN =




M0 · · · MN−1
...

...
MN−1 · · · M2N−2


 .

Then

HN




p
(N−1)
0
...

p
(N−1)
N−2

p
(N−1)
N−1


 =




0
...
0∫ b

a pT
N−1(λ)λ

N−1 dα(λ)


 .

29

We introduce some additional notation. Let LN be a block upper triangular
matrix of order 2N ,

LN =




p
(0)
0 p

(1)
0 · · · p

(N−1)
0

0 p
(1)
1 · · · p

(N−1)
1

. . .
...

p
(N−1)
N−1


 .

Let VN be a 4N × 2N matrix defined in block form as

VN =




B1

B2
...

Bl


 ,

where Bj is a 2qj × 2N matrix,

Bj =




I2 µjI2 · · · µN−1
j I2

...
...

...
...

I2 µjI2 · · · µN−1
j I2


 ,

and the µj are the eigenvalues of JN .
Let Kj

i be a 2qi × 2qj matrix

Kj
i =




KN−1(µi, µj) · · · KN−1(µi, µj)
...

...
...

KN−1(µi, µj) · · · KN−1(µi, µj)


 ,

and

K =




K1
1 K2

1 . . . K l
1

K1
2 K l

2
...

...
K1

l K l
l


 .

Proposition 4.8

VNLN =




C1

C2
...
Cl


 ,

30

where Cj is a 2qj × 2N matrix,

Cj =




p0(µj) p1(µj) · · · pN−1(µj)
...

...
...

...
p0(µj) p1(µj) · · · pN−1(µj)


 .

Proof: This is straightforward by the definition of the polynomials pj(λ).

Proposition 4.9
LT

NHNLN = I.

Proof: the generic term of HNLN is

(HNLN)ij =
j∑

s=1

Ms+i−2 p
(j−1)
s−1 .

Therefore the generic term of LT
NHNLN is

(LT
NHNLN)ij =

i∑
r=1

j∑
s=1

∫ b

a
(p

(i−1)
r−1)T λs+r−2 dα(λ)p

(j−1)
s−1 .

Splitting the power of λ we can easily see that this is

(LT
NHNLN)ij =

∫ b

a
pT

i−1(λ) dα(λ) pj−1(λ).

Therefore because of the orthonormality properties, we have

(LT
NHNLN)ij =

{
I2 if i = j,
0 otherwise.

This result implies that

H−1
N = LNLT

N .

Proposition 4.10
VNLN(VNLN)T = K.

31

Proof: this is just using the definition of Kj
i .

Now, we define a 2N × 4N matrix W T
N whose only non zero components

in row i are in position (i, 2i − 1) and (i, 2i) and are successively the two
components of

(w1
1)

T , . . . , (wq1
1)T , (w1

2)
T , . . . , (wql

l)
T

. Then because of the way the wj
i are constructed we have

Proposition 4.11
W T

NKWN = I.

Proposition 4.17 W T
NVN is a non singular 2N × 2N matrix.

Proof:

W T
NVNH−1

N V T
N WN = W T

NVNLNLT
NV T

N WN = W T
NKWN = I.

This shows that W T
NVN is non singular.

Then, we have the main result

Theorem 4.6 The quadrature rule 3.9 or 3.10 is exact for polynomials of
order less than or equal to 2N − 1.

Proof: From Proposition 4.3, we have

H−1
N = (W T

NVN)−1(V T
N WN)−1.

Therefore,
HN = (V T

N WN)(W T
NVN).

By identification of the entries of the two matrices we have,

Mk =
l∑

i=1


 qi∑

j=1

(wj
i)(w

j
i)

T


µk

i , k = 0, . . . , 2N − 2.

It remains to prove that the quadrature rule is exact for k = 2N − 1. As we
have,

HN+1




p
(N)
0
...

p
(N)
N−1

p
(N)
N


 =




0
...
0∫ b

a pT
N(λ)λN dα(λ)


 .

32

Writing the (N − 1)th block row of this equality, we get

M2N−1 p
(N)
N = −

N−1∑
r=0

MN+r−1 p(N)
r .

We have proved before that

MN+r−1 =
l∑

i=1


 qi∑

j=1

wj
i (w

j
i)

T


µN+r−1

i .

By substitution, we get

M2N−1 p
(N)
N = −

N−1∑
r=0

l∑
i=1

qi∑
j=1

wj
i (w

j
i)

T µN+r−1
i p(N)

r .

We use the fact that

(wj
i)

T
N−1∑
r=0

µr
ip

(N)
r = (wj

i)
T pN(µi)− (wj

i)
T µN

i p
(N)
N ,

and
(wj

i)
T pN(µi) = 0.

This shows that

M2N−1p
(N)
N =

l∑
i=1

qi∑
j=1

(wj
i)(w

j
i)

T µ2N−1
i p

(N)
N .

As p
(N)
N is non singular, we get the result.

To obtain expressions for the remainder, we would like to use a similar
approach as for the scalar case. However there are some differences, as the
quadrature rule is exact for polynomials of order 2N − 1 and we have 2N
nodes, we cannot interpolate with an Hermite polynomial and we have to
use a Lagrange polynomial. By Theorems 2.1.1.1 and 2.1.4.1 of [18], there
exists a polynomial q of degree 2N − 1 such that

q(λj) = f(λj), j = 1, . . . , 2N

33

and

f(x)− q(x) =
s(x)f (2N)(ξ(x))

(2N)!
,

where
s(x) = (x − λ1) · · · (x − λ2N).

If we can apply the mean value theorem, the remainder R(f) which is a 2×2
matrix can be written as

R(f) =
f (2N)(η)

(2N)!

∫ b

a
s(λ) dα(λ).

Unfortunately s does not have a constant sign over the interval [a, b]. There-
fore this representation formula for the remainder is of little practical use
for obtaining bounds with the knowledge of the sign of the entries of the
remainder.

It is easy to understand why we cannot directly obtain bounds with this
block approach. We must use W = (ei ej) and the block Lanczos algorithm
with X0 = W . For the block Lanczos algorithm we multiply successively A
with the Lanczos vectors. If A is sparse, most of the components of these
products are 0 for the first few iterates of the algorithm. Therefore, it is likely
that at the beginning, the estimates that we will get for the non diagonal
entries will be 0. This explains why we cannot directly obtain upper or lower
bounds with Gauss, Gauss–Radau or Gauss–Lobatto. A way to avoiding this
difficulty is to use W = (ei+ej ej) but this cannot be done since XT

0 X0 	= I2.
However, we will see in the numerical experiments that the estimates we

get are often quite good.

5 Application to the inverse of a matrix

In this Section we consider obtaining analytical bounds for the entries of
the inverse of a given matrix and simplifying the algorithms to compute
numerical bounds and approximations.

We consider

f(λ) =
1

λ
, 0 < a < b,

and hence
f (2n+1)(λ) = −(2n + 1)! λ−(2n+2),

34

and
f (2n)(λ) = (2n)! λ−(2n+1).

Therefore, the even derivatives are positive on [a, b] and the odd derivatives
are negative which implies that we can apply Theorems 3.1, 3.2 and 3.3.

Consider a dense non singular matrix A = (aij)i,j=1,...,m. We choose
u = x0 = ei and we apply the Lanczos algorithm. From results of the
first iteration we can obtain analytical results. The first step of the Lanczos
algorithm gives us

ω1 = eT
i Aei = aii,

γ1x1 = r1 = (A − ω1I)ei.

Let si be defined by
s2

i =
∑
j �=i

a2
ji,

and let
dT

i = (a1,i, . . . , ai−1,i, 0, ai+1,i, . . . , am,i).

Then

γ1 = si, x1 =
1

si

di.

From this, we have

ω2 =
1

s2
i

∑
k �=i

∑
l �=i

ak,iak,lal,i.

From this data, we compute the Gauss rule and get a lower bound on the
diagonal element:

J2 =
(

ω1 γ1

γ1 ω2

)
,

J−1
2 =

1

ω1ω2 − γ2
1

(
ω2 −γ1

−γ1 ω1

)
.

The lower bound is given by

ω2

ω1ω2 − γ2
1

=

∑
k �=i

∑
l �=i ak,iak,lal,i

ai,i
∑

k �=i

∑
l �=i ak,iak,lal,i −

(∑
k �=i a

2
k,i

)2 .

Note that this bound does not depend on the eigenvalues a and b.

35

Now, we consider the Gauss–Radau rule. Then,

J̃2 =
(

ω1 γ1

γ1 x

)
,

the eigenvalues λ are the roots of (ω1 − λ)(x − λ)− γ2
1 = 0, which gives the

relation

x = λ +
γ2

1

ω1 − λ
.

To obtain an upper bound we set λ = a. The solution is

x = xa = a +
γ2

1

ω1 − a
.

For the Gauss–Lobatto rule, we have the same problem except that we want
J̃2 to have a and b as eigenvalues. This leads to solving the following linear
system, (

ω1 − a −1
ω1 − b −1

)(
x
γ2

1

)
=
(

aω1 − a2

bω1 − b2

)
.

Solving this system and computing the (1, 1) element of the inverse gives

a + b − ω1

ab
.

Hence we have the following result.

Theorem 5.1 We have the following bounds

∑
k �=i

∑
l �=i ak,iak,lal,i

ai,i
∑

k �=i

∑
l �=i ak,iak,lal,i −

(∑
k �=i a

2
k,i

)2 ≤ (A−1)i,i

ai,i − b +
s2
i

b

a2
i,i − ai,ib + s2

i

≤ (A−1)i,i ≤ ai,i − a +
s2
i

a

a2
i,i − ai,ia + s2

i

(A−1)i,i ≤ a + b − aii

ab
.

36

It is not too easy to derive analytical bounds from the block Lanczos
algorithm as we have to compute repeated inverses of 2× 2 matrices.

It is much easier to use the non–symmetric Lanczos method with the
Gauss–Radau rule. We are looking at the sum of the (i, i) and (i, j) elements
of the inverse. Let

ti = γ1β1 =
∑
k �=i

ak,i(ak,i + ak,j)− ai,j(ai,j + ai,i).

Then, the computations are essentially the same as for the diagonal case.

Theorem 5.2 For (A−1)i,j + (A−1)i,i we have the two following estimates

ai,i + ai,j − a + ti
a

(ai,i + ai,j)2 − a(ai,i + ai,j) + ti
,

ai,i + ai,j − b + ti
b

(ai,i + ai,j)2 − b(ai,i + ai,j) + ti
.

If ti ≥ 0, the first expression with a gives an upper bound and the second one
with b a lower bound. Then, we have to subtract the bounds for the diagonal
term to get bounds on (A−1)i,j.

The previous results can be compared with those obtained by other meth-
ods in [17]. Results can also be obtained for sparse matrices taking into
account the sparsity structure.

In the computations using the Lanczos algorithm for the Gauss, Gauss–
Radau and Gauss–Lobatto rules, we need to compute the (1, 1) element of
the inverse of a tridiagonal matrix. This may be done in many different ways,
see for instance [13]. Here, we will show that we can compute this element
of the inverse incrementally as we go through the Lanczos algorithm and we
obtain the estimates for very few additional operations. This is stated in the
following theorem where bj stands for the bounds for Lanczos iteration j and
the ωjs and the γjs are generated by Lanczos.

Theorem 5.3 The following algorithm yields a lower bound bj of A−1
ii by

the Gauss quadrature rule, a lower bound b̄j and an upper bound b̂j through

the Gauss–Radau quadrature rule and an upper bound b̆j through the Gauss–
Lobatto rule.

Let x−1 = 0 and x0 = ei, ω1 = aii, γ1 = ‖(A−ω1I)ei‖, b1 = ω−1
1 , d1 = ω1,

c1 = 1, d̂1 = ω1 − a, d̄1 = ω1 − b, x1 = (A − ω1I)ei/γ1.

37

Then for j = 2, . . . we compute

rj = (A − ωjI)xj−1 − γj−1xj−2,

ωj = xT
j−1Axj−1,

γj = ‖rj‖,
xj =

rj

γj

,

bj = bj−1 +
γ2

j−1c
2
j−1

dj−1(ωjdj−1 − γ2
j−1)

,

dj = ωj −
γ2

j−1

dj−1

,

cj = cj−1
γj−1

dj−1

,

d̂j = ωj − a − γ2
j−1

d̂j−1

,

d̄j = ωj − b − γ2
j−1

d̄j−1

,

ω̂j = a +
γ2

j

d̂j

,

ω̄j = b +
γ2

j

d̄j

,

b̂j = bj +
γ2

j c
2
j

dj(ω̂jdj − γ2
j)

,

b̄j = bj +
γ2

j c
2
j

dj(ω̄jdj − γ2
j)

,

ω̆j =
d̂j d̄j

d̄j − d̂j

(
b

d̂j

− a

d̄j

)
,

γ̆2
j =

d̂j d̄j

d̄j − d̂j

(b − a),

38

b̆j = bj +
γ̆2

j c
2
j

dj(ω̆jdj − γ̆j
2)

.

Proof: We have from 3.4

JN =




ω1 γ1

γ1 ω2 γ2
.

γN−2 ωN−1 γN−1

γN−1 ωN




.

Let xT
N = (0 . . . 0 γN), so that

JN+1 =
(

JN xN

xT
N ωN+1

)
.

Letting

J̃ = JN − xNxT
N

ωN+1

,

the upper left block of J−1
N+1 is J̃−1. This can be obtained through the use of

the Sherman–Morrison formula (see [11]),

J̃−1 = J−1
N +

(J−1
N xN)(xT

NJ−1
N)

ωN+1 − xT
NJ−1

N xN

.

Let jN = J−1
N eN be the last column of the inverse of JN . With this notation,

we have

J̃−1 = J−1
N +

γ2
NjNjT

N

ωN+1 − γ2
N(jN)N

.

Therefore, it is clear that we only need the first and last elements of the
last column of the inverse of JN . This can be obtained using the Cholesky
decomposition of JN . It is easy to check that if we define

d1 = ω1, di = ωi − γ2
i−1

di−1

, i = 2, . . . , N

then

(jN)1 = (−1)N−1γ1 · · · γN−1

d1 · · · dN

, (jN)N =
1

dN

.

39

When we put all these results together we get the proof of the Theorem.

The algorithm is essentially the same for the non–symmetric case. The
modified algorithm is the following, using f1 = 1:

rj = (A − ωjI)xj−1 − βj−1xj−2,

r̂j = (A − ωjI)x̂j−1 − γj−1x̂j−2,

ωj = x̂T
j−1Axj−1,

γjβj = r̂T
j rj.,

xj =
rj

γj

,

x̂j =
r̂j

βj

,

bj = bj−1 +
γj−1βj−1cj−1fj−1

dj−1(ωjdj−1 − γj−1βj−1)
,

dj = ωj −
γ2

j−1

dj−1

,

cj = cj−1
γj−1

dj−1

,

fj = fj−1
βj−1

dj−1

,

d̂j = ωj − a − γj−1βj−1

d̂j−1

,

d̄j = ωj − b − γj−1βj−1

d̄j−1

,

ω̂j = a +
γjβj

d̂j

,

ω̄j = b +
γjβj

d̄j

,

b̂j = bj +
γjβjcjfj

dj(ω̂jdj − γjβj)
,

40

b̄j = bj +
γjβjcjfj

dj(ω̄jdj − γjβj)
,

ω̆j =
d̂j d̄j

d̄j − d̂j

(
b

d̂j

− a

d̄j

)
,

γ̆2
j =

d̂j d̄j

d̄j − d̂j

(b − a),

b̆j = bj +
γ̆jβjcjfj

dj(ω̆jdj − γ̆jβj)
.

We have the analog for the block case. For simplicity we only consider
the Gauss rule. Then, in 3.8

JN =




Ω0 ΓT
0

Γ0 Ω1 ΓT
1

.

ΓN−3 ΩN−2 ΓT
N−2

ΓN−2 ΩN−1




,

and

JN+1 =
(

JN xN

xT
N ωN+1

)
,

with
xT

N = (0 . . . 0 ΓN−1),

and
J̃ = Jn − xNΩ−1

N xT
N .

Here, we use the Sherman–Morrison–Woodbury formula (see [11]) which is a
generalization of the formula we used before. Then,

J̃−1 = J−1
N + J−1

N xN(ΩN − xT
NJ−1

N xN)−1xT
NJ−1

N .

In order to compute all the elements, we need a block Cholesky decomposition
of JN . We obtain the following algorithm which gives a 2× 2 matrix Bi, the
block element of the inverse that we need.

41

Theorem 5.4 Let B0 = Ω−1
0 , D0 = Ω0, C0 = I, for i = 1, . . . we com-

pute

Bi = Bi−1 + Ci−1D
−1
i−1Γ

T
i−1(Ωi − Γi−1D

−1
i−1Γ

T
i−1)

−1Γi−1D
−1
i−1C

T
i−1,

Di = Ωi − Γi−1D
−1
i−1Γ

T
i−1,

Ci = Ci−1Γ
T
i−1D

−1
i−1.

These recurrences for 2× 2 matrices can be easily computed. Hence, the
approximations can be computed as we apply the block Lanczos algorithm.

Given these algorithms to compute the estimates, we see that almost
all of the operations are a result of the Lanczos algorithm. Computing the
estimate has a complexity independent of the problem size.

To compute a diagonal entry, the Lanczos algorithm needs per iteration
the following operations: 1 matrix–vector product, 4N multiplies and 4N
adds. To compute two diagonal entries and a non diagonal one, the block
Lanczos algorithm needs per iteration: 2 matrix–vector products, 9N multi-
plies, 7N adds plus the QR decomposition which is 8N flops (see [11]). The
non–symmetric Lanczos algorithm requires per iteration: 1 matrix–vector
product, 6N multiplies and 6N adds.

Therefore, if we only want to estimate diagonal elements it is best to use
the Lanczos algorithm. If we want to estimate a non diagonal element, it
is best to use the block Lanczos algorithm since we get three estimates in
one run while for the non–symmetric Lanczos method we need also to have
an estimate of a diagonal element. The number of flops is the same but
for the block Lanczos we have three estimates instead of two with the non–
symmetric Lanczos. On the other hand, the non–symmetric Lanczos gives
bounds but the block Lanczos yields only estimates.

As we notice before, we can compute bounds for the non diagonal elements
by considering 1

2
(ei+ej)

T A−1(ei+ej). For this, we need to run three Lanczos
algorithms that is per iteration: 3 matrix–vector products, 12N multiplies
and 12N adds to get 3 estimates. This no more operations than in the block
Lanczos case but here, we can get bounds. With the non–symmetric Lanczos,
we have 2 bounds with 2 matrix–vector products, 10N multiplies and 10N
adds.

One can ask why in the case of the inverse are we not solving the linear
system

Au = ei

42

to obtain the ith column of the inverse at once. To our knowledge, it is not
possible then to tell if the estimates are upper or lower bounds. Moreover
this can be easily added to the algorithm of Theorem 5.3.

Let QN = [x0, . . . , xN−1] be the matrix of the Lanczos vectors. Then we
have the approximate solution

uN = QNyN ,

where yN is the solution of

JNyN = QT
Nei = e1.

This tridiagonal linear system can be easily solved incrementally from the
LDLT decomposition, see [11]. This yields a variant of the conjugate gradient
algorithm. We give numerical examples in Section 6 and show that our
methods give better bounds.

6 Numerical examples

In this Section, we first describe the examples we use and then we give
numerical results for some specific functions f .

6.1 Description of the examples

First we look at examples of small dimension for which the inverses are
known. Then, we will turn to larger examples arising from the discretization
of partial differential equations. Most of the numerical computations have
been done with Matlab 3.5 on an Apple Macintosh Powerbook 170 and a few
ones on a Sun workstation.
Example 1.

First, we consider

A = I + uuT , uT = (1, 1, . . . , 1)

This matrix has two distinct eigenvalues 1 and n+1. Therefore, the minimal
polynomial is of degree 2 and the inverse can be written as

A−1 =
2 + n

1 + n
I − 1

1 + n
A.

43

Example 2.
The entries of the Hilbert matrix are given by 1

i+j−1
. We consider a matrix

of dimension 5 which is

A(α) = αI5 +




1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9


 .

The inverse of A(0) is

A−1 =




25 −300 1050 −1400 630
−300 4800 −18900 26880 −1260
1050 −18900 79380 −117600 56700
−1400 26880 −117600 179200 −88200
630 −1260 56700 −88200 44100


 ,

and the eigenvalues of A(0) are

(3.288 10−6, 3.059 10−4, 1.141 10−2, 0.209, 1.567)

Example 3.
We take an example of dimension 10,

A =
1

11




10 9 8 7 6 5 4 3 2 1
9 18 16 14 12 10 8 6 4 2
8 16 24 21 18 15 12 9 6 3
7 14 21 28 24 20 16 12 8 4
6 12 18 24 30 25 20 15 10 5
5 10 15 20 25 30 24 18 12 6
4 8 12 16 20 24 28 21 14 7
3 6 9 12 15 18 21 24 16 8
2 4 6 8 10 12 14 16 18 9
1 2 3 4 5 6 7 8 9 10




.

It is easily seen (cf. [13]) that the inverse is a tridiagonal matrix

A−1 =




2 −1
−1 2 −1

.

−1 2 −1
−1 2




.

44

The eigenvalues of A are therefore distinct and given by

(0.2552, 0.2716, 0.3021, 0.3533, 0.4377, 0.5830, 0.8553, 1.4487, 3.1497, 12.3435).

Example 4.
We have

A =




3 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1


 ,

whose inverse is

A−1 =
1

2




1 1 1 1 1
1 3 3 3 3
1 3 5 5 5
1 3 5 7 7
1 3 5 7 9


 ,

whose eigenvalues are

(0.0979, 0.8244, 2.0000, 3.1756, 3.9021).

Example 5.
We use a matrix of dimension 10 constructed with the TOEPLITZ func-

tion of Matlab,
A = 21I10 + TOEPLITZ(1 : 10).

This matrix has distinct eigenvalues but most of them are very close together:

(0.5683, 14.7435, 18.5741, 19.5048, 20.0000, 20.2292, 20.3702, 20.4462, 20.4875, 65.0763).

Example 6.
This example is the matrix arising from the 5–point finite difference of

the Poisson equation in a unit square. This gives a linear system

Ax = b

45

of order m2, where

A =




T −I
−I T −I

.

−I T −I
−I T




each block being of order m and

T =




4 −1
−1 4 −1

.

−1 4 −1
−1 4




.

For m = 6, the minimum and maximum eigenvalues are 0.3961 and 7.6039.

Example 7.
This example arises from the 5–point finite difference approximation of

the following equation in a unit square,

−div(a∇u)) = f,

with Dirichlet boundary conditions. a(x, y) is a diagonal matrix with equal
diagonal elements. This element is equal to 1000 in a square]1/4, 3/4[×]1/4, 3/4[,
1 otherwise.

For m = 6, the minimum and maximum eigenvalues are 0.4354 and
6828.7.

6.2 Results for a polynomial function

To numerically check some of the previous theorems, f was chosen as a
polynomial of degree q,

f(λ) =
q∏

i=1

(λ − i).

We chose Example 6 with m = 6, that is a matrix of order 36.
1) We compute the (2, 2) element of f(A) and we vary the order of the

polynomial. In the next table, we give, as a function of the degree q of the

46

polynomial, the value of N to have an “exact” result (4 digits in Matlab) for
the Gauss rule.

q 2 3 4 5 6

N 2 2 3 3 4

From these results, we can conclude that the maximum degree for which
the results are exact is q = 2N − 1, as predicted by the theory.

For the Gauss–Radau rule, we get

q 2 3 4 5 6 7 8 9

N 2 2 2 3 3 4 4 5

From this we deduce q = 2N as predicted.
For the Gauss–Lobatto rule, we have

q 2 3 4 5 6 7 8 9

N 1 1 2 2 3 3 4 4

This shows that q = 2N + 1 which is what we expect.

2) If we consider the block case to compute the (3, 1) element of the
polynomial, we get the same results, therefore the block Gauss rule is exact
for the degree 2N − 1, the block Gauss–Radau rule is exact for degree 2N
and the block Gauss–Lobatto is exact for degree 2N + 1.

3) The same is also true for the non–symmetric Lanczos algorithm if we
want to compute the sum of the (3, 1) and (3, 3) elements.

6.3 Bounds for the inverse

6.3.1 Diagonal elements

Now, we turn to some numerical experiments using Matlab on the examples
described above. Usually the results will be given using the “short” format of
Matlab. In the following results, Nit denotes the number of iterations of the
Lanczos algorithm. This corresponds to N for the Gauss and Gauss–Radau
rules and N − 1 for the Gauss–Lobatto rule.

Example 1.

47

Because of the properties of the matrix we should get the answer in two
steps. We have ω0 = 2 and γ0 = n − 1, therefore, the lower bound from
Gauss–Radau is n

n+1
and the upper bound is n

n+1
, the exact result. If we look

at the lower bound from the Gauss rule, we find the same value. This is also
true for the numerical experiments as well as for Gauss–Lobatto.

Example 2.
Let us consider (A(0)−1)33 whose exact value is 79380. The Gauss rule,

as a function of the degree of the quadrature, gives

Results from Gauss rule

Nit=1 2 3 4 5

5 26.6 1808.3 3666.8 79380

The Gauss–Radau rule gives upper and lower bounds. For a and b, we
use the computed values from the EIG function of Matlab.

Results from the Gauss–Radau rule

Nit=1 2 3 4 5

lw bnd 23.74 1801.77 3666.58 3559.92 79380

up bnd 257674 216812 202814 79380 79380

Results from Gauss–Lobatto rule

Nit=1 2 3 4 5

265330 216870 202860 79268 79380

The results are not as good as expected. The exact results should have
been obtained for Nit = 3. The discrepancy comes from round off errors,
particularly for the lower bound, because of the eigenvalue distribution of A
and a poor convergence rate of the Lanczos algorithm in this case. To see
how this is related to the conditioning of A, let us vary α. For simplicity we
consider only the Gauss rule. The following tables give results for different
values of α and the (3, 3) element of the inverse. The exact values are (α =
0.01, 70.3949), (α = 0.1, 7.7793), (α = 1, 0.9054).

Lower bound from Gauss rule for α = 0.01

Nit=2 3 4 5

20.5123 69.7571 70.3914 70.3949

48

Lower bound from Gauss rule for α = 0.1

Nit=2 3 4 5

6.7270 7.7787 7.7793 7.7793

Lower bound from Gauss rule for α = 1

Nit=2 3 4 5

0.9040 0.9054 0.9054 0.9054

We see that when A is well conditioned, the numerical results follow the
theory. The discrepancies probably arise from the poor convergence of the
smallest eigenvalues of JN towards those of A.

Example 3.
We are looking for bounds for (A−1)55 whose exact value is, of course, 2.

Lower bounds for (A−1)55 from the Gauss rule

Nit=1 2 3 4 5 6 7

0.3667 1.3896 1.7875 1.9404 1.9929 1.9993 2

Results for (A−1)55 from the Gauss–Radau rule

Nit=1 2 3 4 5 6 7

b1 1.3430 1.7627 1.9376 1.9926 1.9993 2.0117 2

b2 3.0330 2.2931 2.1264 2.0171 2.0020 2.0010 2

Upper bounds for (A−1)55 from the Gauss–Lobatto rule

Nit=1 2 3 4 5 6 7

3.1341 2.3211 2.1356 2.0178 2.0021 2.0001 2

In this example 5 or 6 iterations should be sufficient, so we are a little off
the theory.

Example 4.
We look at bounds for (A−1)55 whose exact value is 4.5

Lower bounds for (A−1)55 from the Gauss rule

Nit=1 2 3 4 5

1 2 3 4 4.5

49

Lower and upper bounds for (A−1)55 from the Gauss–Radau rule

Nit=1 2 3 4 5

lw bnd 1.3910 2.4425 3.4743 4.5 4.5

up bnd 5.8450 4.7936 4.5257 4.5 4.5

Upper bounds for (A−1)55 from the Gauss–Lobatto rule

Nit=1 2 3 4 5

7.8541 5.2361 4.6180 4.5 4.5

Example 5.
We get for (A−1)55, whose value is 0.0595,

Lower bounds for (A−1)55 from the Gauss rule

Nit=1 2 3 4 5

0.0455 0.0511 0.0523 0.0585 0.0595

Lower and upper bounds for (A−1)55 from the Gauss–Radau rule

Nit=1 2 3 4 5

lw bnd 0.0508 0.0522 0.0582 0.0595 0.0595

up bnd 0.4465 0.0721 0.0595 0.0595 0.0595

Upper bounds for (A−1)55 from the Gauss–Lobatto rule

Nit=1 2 3 4 5

1.1802 0.0762 0.0596 0.0595 0.0595

Because some eigenvalues are very close together, we get the exact answers
a little sooner than it is predicted by theory.

Example 6.
Consider m = 6. Then we have a system of order 36 and we look for

bounds on (A−1)18,18 whose value is 0.3515. There are 19 distinct eigenvalues,
therefore we should get the exact answer in about 10 iterations for Gauss and
Gauss–Radau and 9 iterations for Gauss–Lobatto.

Lower bounds for (A−1)18,18 from the Gauss rule

Nit=1 2 3 4 8 9

0.25 0.3077 0.3304 0.3411 0.3512 0.3515

50

Lower and upper bounds for (A−1)18,18 from the Gauss–Radau rule

Nit=1 2 3 4 8 9

lw bnd 0.2811 0.3203 0.3366 0.3443 0.3514 0.3515

up bnd 0.6418 0.4178 0.3703 0.3572 0.3515 0.3515

Upper bounds for (A−1)18,18 from the Gauss–Lobatto rule

Nit=1 2 3 4 8

1.3280 0.4990 0.3874 0.3619 0.3515

Now, we consider m = 16 which gives a matrix of order 256. We want
to compute bounds for the (125, 125) element whose value is 0.5604. In this
case there are 129 distinct eigenvalues, so we should find the exact answer in
about 65 iterations at worst. These computations for a larger problem have
been done on a Sun Sparcstation 1+. We find the following results.

Lower bounds for (A−1)125,125 from the Gauss rule

Nit=2 3 4 5 6 7 8 9 10 20

0.3333 0.3929 0.4337 0.4675 0.4920 0.5084 0.5201 0.5301 0.5378 0.5600

Lower and upper bounds for (A−1)125,125 from the Gauss–Radau rule

Nit=2 3 4 5 6 7 8 10 20

lw bnd 0.3639 0.4140 0.4514 0.4804 0.5006 0.5146 0.5255 0.5414 0.5601

up bnd 1.5208 1.0221 0.8154 0.7130 0.6518 0.6139 0.5925 0.5730 0.5604

Upper bounds for (A−1)125,125 from the Gauss–Lobatto rule

Nit=2 3 4 5 6 7 8 9 10 18

2.1011 1.2311 0.8983 0.7585 0.6803 0.6310 0.6012 0.5856 0.5760 0.5604

We have very good estimates much sooner than predicted. This is because
there are distinct eigenvalues which are very close together.

We also ran two other examples with m = 10 and m = 20 that show that
the number of iterations to reach a “correct” value with four exact digits
grows like m. This can be expected from the Lanczos method.

Example 7.
We took m = 6 as in the previous example. So we have a matrix of

dimension 36. The (2, 2) element of the inverse has an “exact” value of

51

0.3088 and there are 23 distinct eigenvalues so that the exact answer should
be obtained after 12 iterations but the matrix is ill conditioned. We get the
following results:

Lower bounds for (A−1)2,2 from the Gauss rule

Nit=1 2 3 4 5 6 8 10 12 15

0.25 0.2503 0.2510 0.2525 0.2553 0.2609 0.2837 0.2889 0.3036 0.3088

Lower and upper bounds for (A−1)2,2 from the Gauss–Radau rule

Nit=2 3 4 5 6 7 8 10 12 15

lw bnd 0.2504 0.2516 0.2538 0.2583 0.2699 0.2821 0.2879 0.2968 0.3044 0.3088

up bnd 0.5375 0.5202 0.5121 0.5080 0.5060 0.5039 0.5013 0.3237 0.3098 0.3088

Upper bounds for (A−1)2,2 from the Gauss–Lobatto rule

Nit=1 2 3 4 5 6 8 10 12 15

2.2955 0.5765 0.5289 0.5156 0.5093 0.5065 0.5020 0.3237 0.3098 0.3088

6.3.2 Non diagonal elements with non–symmetric Lanczos

Here, we use the non–symmetric Lanczos algorithm to get estimates on non
diagonal elements.

Example 1.
The matrix is of dimension n = 5. All the non diagonal elements are

−1/6 = −0.1667 and the diagonal elements are equal to 0.8333.
We compute the sum of the (2, 2) and (2, 1) elements (e.g. δ = 1), that

is 0.6667. With the Gauss rule, after 1 iteration we get 0.3333 and after 2
iterations 0.6667. With Gauss–Radau, we obtain the result in one iteration
as well as with Gauss–Lobatto.

We note that for δ = 1, the measure is not positive but for δ = 2 the
measure is positive and increasing.

Example 2.
Let us consider first the Hilbert matrix and (A(0)−1)2,1 whose exact value

is 79380. We compute the sum of the (2, 2) and (2, 1) elements, (i.e. δ = 1)
that is 4500. The Gauss rule, as a function of the number of iterations, gives

Bounds from the non–symmetric Gauss rule

52

Nit=1 2 3 4 5

1.2 -21.9394 73.3549 667.1347 4500

Consider now the non–symmetric Gauss–Radau rule.

Bounds from the non–symmetric Gauss–Radau rule

Nit=1 2 3 4 5

b1 -17.5899 73.1917 667.1277 667.0093 4500

b2 144710 155040 51854 4500 4500

Bounds from the non–symmetric Gauss–Lobatto rule

Nit=1 2 3 4 5

142410 155570 51863 3789.2 4500

Note that the measure is positive and increasing therefore, we obtain a
lower bound with the Gauss rule, b1 is a lower bound and b2 an upper bound
with Gauss–Radau and Gauss–Lobatto gives an upper bound.

Again the results are not so good. Consider now the results of the non–
symmetric Gauss rule with a better conditioned problem by looking at A(0.1).
The sum of the elements we compute is 5.1389. In the last line we indicate
if the product of the non diagonal coefficients is positive (p) or negative (n).
If it is positive we should have a lower bound, an upper bound otherwise.
Note that in this case, the measure is positive but not increasing.

Estimates from the non–symmetric Gauss rule for α = 0.1

Nit=1 2 3 4 5

1.0714 6.1735 5.1341 5.1389 5.1389

p n p p p

We see that the algorithm is able to determine if it is computing a lower
or an upper bound.

Estimates from the non–symmetric Gauss–Radau rule

Nit=1 2 3 4

b1 6.5225 5.1338 5.1389 5.1389

b2 5.0679 5.2917 5.1390 5.1389

53

We remark that b1 and b2 are alternatively upper and lower bounds.

Estimates from the non–symmetric Gauss–Lobatto rule

Nit=1 2 3 4

5.0010 5.3002 5.1390 5.1389

Again, we do not have an upper bound with Gauss–Lobatto but the
results oscillate around the exact value. In this case, this can be fixed by
using a value δ = 3 that gives a positive increasing measure.

Example 3.
We are looking for estimates for the sum of the (2, 2) and (2, 1) elements

whose exact value is 1. First, we use δ = 1 for which the measure is positive
but not increasing.

Estimates from the non–symmetric Gauss rule

Nit=1 2 3 4 5 6 7

0.4074 0.6494 0.8341 0.9512 0.9998 1.0004 1

p p p p p n p

Estimates from the non–symmetric Gauss–Radau rule

Nit=1 2 3 4 5 6 7

b1 0.6181 0.8268 0.9488 0.9998 1.0004 1.0001 1

b2 2.6483 1.4324 1.0488 1.0035 1.0012 0.9994 1

Estimates from the non–symmetric Gauss–Lobatto rule

Nit=1 2 3 4 5 6 7 8

3.2207 1.4932 1.0529 1.0036 1.0012 0.9993 0.9994 1

Here we have a small problem at the end near convergence, but the es-
timates are quite good. Note that for δ = 4 the measure is positive and
increasing.

Example 4.
This example illustrates some of the problems that can happen with the

non–symmetric Lanczos algorithm. We would like to compute the sum of the
(2, 2) and (2, 1) elements that is 2. After 2 iterations we have a breakdown
of the Lanczos algorithm as γβ = 0. The same happens at the first iteration

54

for the Gauss–Radau rule and at the second one for the Gauss–Lobatto rule.
Choosing a value of δ different from 1 cures the breakdown problem. We can
obtain bounds with a value δ = 10 (with a positive and increasing measure).
Then the value we are looking for is 1.55 and the results follow.

Bounds from the non–symmetric Gauss rule

Nit=1 2 3 4 5

0.5263 0.8585 1.0333 1.4533 1.55

Bounds from the non–symmetric Gauss–Radau rule

Nit=2 3 4

b1 1.0011 1.2771 1.55

b2 1.9949 1.5539 1.55

Bounds from the non–symmetric Gauss–Lobatto rule

Nit=2 3 4

2.2432 1.5696 1.55

Example 5.
The sum of the (2, 2) and (2, 1) elements is 0.6158.

Bounds from the non–symmetric Gauss rule

Nit=1 2 3 4 5

0.0417 0.0974 0.4764 0.6155 0.6158

p p p p p

Bounds from the non–symmetric Gauss–Radau rule

Nit=1 2 3 4

b1 0.0847 0.4462 0.6154 0.6158

b2 0.9370 0.6230 0.6158 0.6158

Bounds from the non–symmetric Gauss–Lobatto rule

Nit=1 2 3 4

1.1261 0.6254 0.6159 0.6158

Example 6.

55

We consider m = 6, then, we have a system of order 36 and we look
for estimates of the sum of the (2, 2) and (2, 1) elements which is 0.4471.
Remember there are 19 distinct eigenvalues.

Bounds from the non–symmetric Gauss rule

Nit=1 2 3 4 5 6 7 8 9

0.3333 0.4000 0.4262 0.4369 0.4419 0.4446 0.4461 0.4468 0.4471

p p p p p p p p p

Bounds from the non–symmetric Gauss–Radau rule

Nit=1 2 3 4 5 6 7 8 9

b1 0.3675 0.4156 0.4320 0.4390 0.4436 0.4456 0.4466 0.4470 0.4471

b2 0.7800 0.5319 0.4690 0.4537 0.4490 0.4476 0.4472 0.4472 0.4471

Bounds from the non–symmetric Gauss–Lobatto rule

Nit=1 2 3 4 5 6 7 8 9 10

1.6660 0.6238 0.4923 0.4596 0.4505 0.4480 0.4473 0.4472 0.4472 0.4471

Example 7.
We took m = 6 as in the previous example. So we have a matrix of

dimension 36. The sum of the (2, 2) and (2, 1) elements of the inverse is
0.3962 and there are 23 distinct eigenvalues. We get the following results:

Bounds from the non–symmetric Gauss rule

Nit=1 2 3 4 5 6 8 10 12 15

0.3333 0.3336 0.3340 0.3348 0.3363 0.3396 0.3607 0.3689 0.3899 0.3962

p p p p p p p p p p

Bounds from the non–symmetric Gauss–Radau rule

Nit=2 3 4 5 6 8 10 12 15

b1 0.3337 0.3343 0.3355 0.3380 0.3460 0.3672 0.3803 0.3912 0.3962

b2 0.6230 0.5930 0.5793 0.5725 0.5698 0.5660 0.4078 0.3970 0.3962

Bounds from the non–symmetric Gauss–Lobatto rule

Nit=1 2 3 4 5 6 8 10 12 15

2.2959 0.6898 0.6081 0.5850 0.5746 0.5703 0.5664 0.4078 0.3970 0.3962

56

Finally, one can ask why we do not store the Lanczos vectors xj and
compute an approximation to the solution of Au = ei. This can be done
doing the following. Let

QN = [x0, . . . , xN−1].

If we solve
JNyN = e1,

then the approximate solution is given by QNyN .
Unfortunately this does not give bounds and even the approximations

are not as good as with our algorithms. Consider Example 5 and computing
the fifth column of the inverse. For the element (1,5) whose “exact” value is
0.460, we find

Estimates from solving the linear system

Nit= 2 3 4 5 6

-0.0043 -0.0046 0.0382 0.0461 0.0460

By computing bounds for the sum of the (5,5) and (1,5) elements and
subtracting the bounds for the (5,5) element, we obtain

Bounds from the Gauss–Radau quadrature rules

Nit= 2 3 4

lw bnd 0.0048 0.0451 0.0460

up bnd 0.0551 0.0473 0.0460

We see that we get good bounds quite fast.

6.3.3 Non diagonal elements with block Lanczos

Here, we use the block Lanczos algorithm to get estimates on non diagonal
elements. Unfortunately, most of the examples are too small to be of interest
as for matrices of dimension 5 we cannot go further than 2 block iterations.
Nevertheless, let us look at the results.

Example 1.
Consider a matrix of dimension n = 5. Then all the non diagonal elements

are −1/6 = −0.1667.

57

We compute the (2, 1) element. With the block Gauss rule, after 2 itera-
tions we get −0.1667. With block Gauss–Radau, we get the exact answer in
1 iteration as well as with Gauss–Lobatto.

Example 2.
The (2, 1) element of the inverse of the Hilbert matrix A(0) of dimension

5 is −300.
With the block Gauss rule, after 2 iterations we find −90.968. Note that

this is an upper bound. With block Gauss–Radau, 2 iterations give −300.2
as a lower bound and −300 as an upper bound. Block Gauss–Lobatto gives
−5797 as a lower bound.

Now we consider A(0.1) for which the (2, 1) element of the inverse is
−1.9358. After 2 iterations, block Gauss gives −2.2059 a lower bound and
block Gauss–Radau and Gauss–Lobatto give the exact answer.

Example 3.
The (2, 1) element is −1, the (3, 1) element is 0. After 2 iterations we get

the exact answers with Gauss as well as with Gauss–Radau. Gauss–Lobatto
gives −0.0609, a lower bound. Three iterations give the exact answer.

Example 4.
The (2, 1) element is 1/2. After 2 iterations, we have 0.3182 which is a

lower bound. Gauss–Radau gives 0.2525 and 0.6807. Gauss–Lobatto gives
0.7236 which is an upper bound.

Example 5.
The (2, 1) element is 0.2980. Two iterations give 0.2329, a lower bound

and 3 iterations give the exact answer. Gauss–Radau and Gauss–Lobatto
also give the exact answer in 3 iterations.

Example 6.
This example uses n = 36. The (2, 1) element is 0.1040. Remember that

we should do about 10 iterations. We get the following figures.

Estimates from the block Gauss rule

Nit=2 3 4 5 6 7 8

0.0894 0.0974 0.1008 0.1024 0.1033 0.1037 0.1040

Estimates from the block Gauss–Radau rule

58

Nit=2 3 4 5 6 7 8

0.0931 0.0931 0.1017 0.1029 0.1035 0.1038 0.1040

0.1257 0.1103 0.1059 0.1046 0.1042 0.1041 0.1040

Estimates from the block Gauss–Lobatto rule

Nit=2 3 4 5 6 7 8

0.1600 0.1180 0.1079 0.1051 0.1041 0.1043 0.1041

Note that here everything works. Gauss gives a lower bound, Gauss–
Radau a lower and an upper bound and Gauss–Lobatto an upper bound.

Example 7.
We would like to obtain estimates of the (2, 1) whose value is 0.0874. We

get the following results.

Estimates from the block Gauss rule

Nit=2 4 6 8 10 12 14 15

0.0715 0.0716 0.0722 0.0761 0.0789 0.0857 0.0873 0.0874

Estimates from the block Gauss–Radau rule

Nit=2 4 6 8 10 12 14 15

0.0715 0.0717 0.0731 0.0782 0.0831 0.0861 0.0873 0.0874

0.1375 0.1216 0.1184 0.1170 0.0894 0.0876 0.0874 0.0874

Estimates from the block Gauss–Lobatto rule

Nit=2 4 6 8 10 12 14

0.1549 0.1237 0.1185 0.1176 0.0894 0.0876 0.0874

Note that in this example we obtain bounds. Now, to illustrate what we
said before about the estimates being 0 for some iterations, we would like to
estimate the (36, 1) element of the inverse which is 0.005.

Estimates from the block Gauss rule

Nit=2 4 6 8 10 11

0. 0. 0.0023 0.0037 0.0049 0.0050

Estimates from the block Gauss–Radau rule

59

Nit=2 4 6 8 10 11

0. 0. 0.0023 0.0037 0.0049 0.0050

0. 0. 0.0024 0.0050 0.0050 0.0050

Estimates from the block Gauss–Lobatto rule

Nit=2 4 6 8 10

0. 0. 0.0022 0.0043 0.0050

6.3.4 Dependence on the eigenvalue estimates

In this sub–Section, we numerically investigate how the bounds and estimates
of the Gauss–Radau rules depend on the accuracy of the estimates of the
eigenvalues of A. We take Example 6 with m = 6 and look at the results
given by the Gauss–Radau rule as a function of a and b. Remember that in
the previous experiments we took for a and b the values returned by the EIG
function of Matlab.

It turns out that the estimates are only weakly dependent of the values
of a and b (for this example). We look at the number of iterations needed to
obtain an upper for the element (18, 18) with four exact digits and with an
“exact” value of b. The results are given in the following table.

a=10−4 10−2 0.1 0.3 0.4 1 6

15 13 11 11 8 8 9

We have the same properties when b is varied.
Therefore, we see that the estimation of the extreme eigenvalues does

not seem to matter very much and can be obtained with a few iterations of
Lanczos or with the Gerschgorin circles.

6.4 Bounds for the exponential

In this Section we are looking for bounds of diagonal elements of the expo-
nential of the matrices of some of the examples.

6.4.1 diagonal elements

Example 1

60

We consider the (2, 2) element whose value is 82.8604. With Gauss,
Gauss–Radau and Gauss–Lobatto we obtain the exact value in 2 iterations.

Example 2
We would like to compute the (3, 3) element whose value is 1.4344. Gauss

gives the answer in 3 iterations, Gauss–Radau and Gauss–Lobatto in 2 iter-
ations.

Example 3
The (5, 5) entry is 4.0879 104. Gauss obtains the exact value in 4 itera-

tions, Gauss–Radau and Gauss–Lobatto in 3 iterations.

Example 6
We consider the (18, 18) element whose value is 197.8311. We obtain the

following results.

Lower bounds from the Gauss rule

Nit=2 3 4 5 6 7

159.1305 193.4021 197.5633 197.8208 197.8308 197.8311

Lower and upper bounds from the Gauss–Radau rule

Nit=2 3 4 5 6

lw bnd 182.2094 196.6343 197.7779 197.8296 197.8311

up bnd 217.4084 199.0836 197.8821 197.8325 197.8311

Upper bounds from the Gauss–Lobatto rule

Nit=2 3 4 5 6 7

273.8301 203.4148 198.0978 197.8392 197.8313 197.8311

We remark that to compute diagonal elements of the exponential the
convergence rate is quite fast.

6.4.2 non diagonal elements

Here we consider only Example 6 and we would like to compute the element
(2, 1) whose value is −119.6646. First, we use the block Lanczos algorithm
which give the following results.

Results from the block Gauss rule

61

Nit=2 3 4 5 6

-111.2179 -119.0085 -119.6333 -119.6336 -119.6646

Results from the block Gauss–Radau rule

Nit=2 3 4 5 6

b1 -115.9316 -119.4565 -119.6571 -119.6644 -119.6646

b2 -122.2213 -119.7928 -119.6687 -119.6647 -119.6646

Results from the block Gauss–Lobatto rule

Nit=2 3 4 5 6

-137.7050 -120.6801 -119.7008 -119.6655 -119.6646

Now, we use the non–symmetric Lanczos algorithm. The sum of the (2, 2)
and (2, 1) elements of the exponential is 73.9023.

Results from the non–symmetric Gauss rule

Nit=2 3 4 5 6 7

54.3971 71.6576 73.7637 73.8962 73.9021 73.9023

Results from the non–symmetric Gauss–Radau rule

Nit=2 3 4 5 6

b1 65.1847 73.2896 73.8718 73.9014 73.9023

b2 84.0323 74.6772 73.9323 73.9014 73.9023

Results from the non–symmetric Gauss–Lobatto rule

Nit=2 3 4 5 6 7

113.5085 77.2717 74.0711 73.9070 73.9024 73.9023

6.5 Bounds for other functions

When one uses domain decomposition methods for matrices arising from the
finite difference approximation of partial differential equations in a rectangle,
it is known that the matrix

A =

√
T +

1

4
T 2,

62

where T is the matrix of the one dimensional Laplacian, is a good precon-
ditioner for the Schur complement matrix. It is interesting to see if we can
estimate some elements of the matrix A to generate a Toeplitz tridiagonal
approximation to A.

We have

T =




2 −1
−1 2 −1

.

−1 2 −1
−1 2




,

and we choose an example of dimension 100. We estimate the (50, 50) element
whose exact value is 1.6367 with the Gauss–Radau rule. We obtain the
following results.

Estimates from the Gauss–Radau rule

Nit=2 3 4 5 10 15 20

lw 1.6014 1.6196 1.6269 1.6305 1.6355 1.6363 1.6365

up 1.6569 1.6471 1.6430 1.6409 1.6378 1.6371 1.6369

We estimate the non diagonal elements by using the block Gauss rule.
We choose the (49, 50) element.

Estimates from the block Gauss rule

Nit=2 3 4 5 10 15 20

-0.6165 -0.6261 -0.6302 -0.6323 -0.6354 -0.6361 -0.6363

Now, we construct a Toeplitz tridiagonal matrix C whose elements are
chosen from the estimates given at the fifth iteration. We took the average
of the Gauss–Radau values for the diagonal (1.6357) and −0.6323 for the
non diagonal elements. We look at the spectrum of C−1A. The condition
number is 13.35 the minimum eigenvalue being 0.0837 and the maximum one
being 1.1174, but there are 86 eigenvalues between 0.9 and the maximum
eigenvalue. Therefore, the matrix C (requiring only 5 iterations of some
Lanczos algorithms) seems to be a good preconditioner for A which is itself
a good preconditioner for the Schur complement.

63

7 Conclusions

We have shown how to obtain bounds (or in certain cases estimates) of the
entries of a function of a symmetric positive definite matrix. The proposed
algorithms use the Lanczos algorithm to estimate diagonal entries and either
the non–symmetric Lanczos or block Lanczos algorithms for the non diagonal
entries.

The algorithms are particularly simple for the inverse of a matrix. An-
alytical bounds are derived by considering one or two iterations of these
algorithms. We have seen in the numerical experiments that very good ap-
proximations are obtained in a few iterations.

References

[1] F.V. Atkinson, “Discrete and continuous boundary problems”, (1964)
Academic Press

[2] S. Basu, N.K. Bose, “Matrix Stieltjes series and network models”, SIAM
J. Math. Anal. v14 n2 (1983) pp 209–222

[3] G. Dahlquist, S.C. Eisenstat and G.H. Golub, “Bounds for the error
of linear systems of equations using the theory of moments”, J. Math.
Anal. Appl. 37 (1972) pp 151–166

[4] P. Davis, P. Rabinowitz, “Methods of numerical integration”, Second
Edition (1984) Academic Press

[5] W. Gautschi, “Construction of Gauss–Christoffel quadrature formulas”,
Math. Comp. 22 (1968) pp 251–270

[6] W. Gautschi, “Orthogonal polynomials– constructive theory and appli-
cations”, J. of Comp. and Appl. Math. 12 & 13 (1985) pp 61–76

[7] G.H. Golub, J.H. Welsch, “Calculation of Gauss quadrature rule” Math.
Comp. 23 (1969) pp 221–230

[8] G.H. Golub, “Some modified matrix eigenvalue problems”, SIAM Re-
view v15 n2 (1973) pp 318–334

64

[9] G.H. Golub, “Bounds for matrix moments”, Rocky Mnt. J. of Math., v4
n2 (1974) pp 207–211

[10] G.H. Golub, R. Underwood, “The block Lanczos method for computing
eigenvalues”, in Mathematical Software III, Ed. J. Rice (1977) pp 361–
377

[11] G.H. Golub, C. van Loan, “Matrix Computations”, Second Edition
(1989) Johns Hopkins University Press

[12] R. Haydock, “Accuracy of the recursion method and basis non–
orthogonality”, Computer Physics Communications 53 (1989) pp 133–
139

[13] G. Meurant, “A review of the inverse of tridiagonal and block tridiagonal
matrices”, SIAM J. Matrix Anal. Appl. v13 n3 (1992) pp 707–728

[14] C.M. Nex, “Estimation of integrals with respect to a density of states”,
J. Phys. A, v11 n4 (1978) pp 653–663

[15] C.M. Nex, “The block Lanczos algorithm and the calculation of matrix
resolvents”, Computer Physics Communications 53 (1989) pp 141–146

[16] D.P. O’Leary, “The block conjugate gradient algorithm and related
methods”, Linear Alg. and its Appl. v29 (1980) pp 293–322

[17] P.D. Robinson, A. Wathen, “Variational bounds on the entries of the
inverse of a matrix”, IMA J. of Numer. Anal. v12 (1992) pp 463–486

[18] J. Stoer, R. Bulirsch, “Introduction to numerical analysis”, Second Edi-
tion (1983) Springer Verlag

[19] G.W. Struble, “Orthogonal polynomials: variable–signed weight func-
tions”, Numer. Math v5 (1963) pp 88–94

[20] G. Szegö, “Orthogonal polynomials”, Third Edition (1974) American
Mathematical Society

[21] H.S. Wilf, “Mathematics for the physical sciences”, (1962) Wiley

65

Acknowledgement

This paper was presented as the first A.R. Mitchell lecture in Dundee, Scot-
land, July 1993. We dedicate this paper to Ron Mitchell who has given
intellectual leadership and generous support to all
The work of the first author was supported in part by the National Science
Foundation under Grant NSF CCR-8821078

Gene H. Golub
Computer Science Department, Stanford University
Stanford CA 94305, USA
golub@sccm.stanford.edu

Gérard Meurant
CEA, Centre d’Etudes de Limeil-Valenton,
94195 Villeneuve St Georges cedex, France

66

