
Some issues in large scale computing

G�erard MEURANT

CEA

France

(gerard.meurant@cea.fr)

Beijing, September 2004

September 1, 2004

0-0

J.L. Lions has always been interested in High Performance

Computing (HPC)

He was very inuential in the creation of ORAP in 1994,

www.irisa.fr/orap

� association between CEA, CNRS (National center for

scienti�c Research) and INRIA

� aim: promote the use of parallelism for high performance

scienti�c computing in France and Europe

Æ There are many Tops peak parallel machines around the

world each with hundreds or thousands of processors

Æ The 50th ranked machine in the last Top 500 list has a

performance of 2.9 Tops on Linpack

Æ The fastest one is still the Earth Simulator with a Linpack

performance of 35.86 Tops

Æ Although we can discuss the relevance of Linpack as a

criterion, it means that there is a large potential of

computing cycles available

Things are changing quite fast:

0

5

10

15

20

25

30
Position in the Top500 list

2002 2003 2004

4

7

10

15

28
Top 500 rank of the largest CEA parallel computer

The questions we would like to discuss are:

� How diÆcult is it to obtain good performances on these

machines?

� How eÆciently could we use these parallel computers on

large practical applications?

� What are the problems with I/O, visualization etc. . . ?

The CEA computing center

� 4 large machines

Æ HP 2560 Alpha processors

Æ HP 960 Alpha processors

Æ HP 232 AMD Opteron processors

Æ NEC SX-6 48 vector processors

Storage
server
(HPSS)

6 IBM NH2
Disks : 6 TB

Computer Center
backbone
(Switchs

1Gb/s ethernet)

Storage Network
(Switchs Hippi

0,8 Gbits/s links)
Storage Area

Network
 (Fibre

Channel
0.8 GB/s

links)

NFS servers
and

workstations

20 links

24 links
10 links

Visualization wall

5 Tflops HP-SC45 Cluster
Disks: 50 TB

Memory: 2.5 TB
+

0.35 Tflops HP-EV7 Farm
Disks : 10 TB

Storage Level 1
1 PB, 50 STK 9840

1 year of production

Post-
processing/
Visualization

Servers
Storage Level 2, LTO-2

+1PB / year

1 Gb/s Ethernet

Hippi

HP SC45
2,4 Tflops

(960*2,5 Gflops)
Memory 0,8 TB

Disks 10 TB

Saclay (155 Mbits/s)

Storage system

NEC SX-6
384 Gflops

(48*8 Gflops)
Memory 0,35 TB

Disks 10 TB

NFS / DMF Server
2*SGI O2000

2 TB

4 links

5 links
6 links

9 links

7 links

12 links

4 links

6 links

HP Opteron Cluster
0,8 Tflops

(58*4*3,6 Gflops)
Memory 0,3 TB

Disks 2 TB

� Some of the machines are used by industrial partners

Æ EDF (Power supply)

Æ SNECMA (Airplane engines)

Æ ONERA (National Lab for Aerospace research)

Æ TURBOMECA

Largest CEA machine

HP COMPAQ SMP

� 640 nodes, 2560 processors Alpha EV68 1Ghz

� Peak performance: 5 Tops (2 Gops/proc)

� Memory 4 GB per node

� Quadrics interconnection network

� Needs a very large computer room: 1200 m

2 + 750 m

2 for

the storage silos

How diÆcult is it to obtain good performances on these

machines?

� Even on one processor it is diÆcult to obtain a performance

close to the peak:

Æ Data ow between memory and caches is too slow to keep

the processor busy

Æ Compilers do not make the most eÆcient use of the

hardware, particularly data cache reuse

Æ This is why the Linpack benchmark makes use of optimized

BLAS3 routines and is not representative of real applications

Communications

� Network latency is often quite small ?�s on the CEA

machine. But:

Æ Message Passing Interface (MPI) is not always eÆciently

implemented

Æ Bu�er problems

Æ TraÆc is perturbed by other jobs

Æ ?

How eÆciently could we use these parallel computers on large

practical applications?

� Of course we need to have parallel algorithms

� An important issue is scalability

Æ We would like the elapsed time to stay constant when we

proportionally increase the size of the problem and the

number of processors

Æ This depends on the properties of the problem and the

algorithms

Examples

� Time explicit schemes for CFD are easy to parallelize

Æ Scalability depends on the relation between the time step

and the spatial discretization

� Direct or iterative methods for solving linear systems are

diÆcult to parallelize

Æ Generally the complexity is n�; � > 1

Æ Of course, there are exceptions like multigrid or domain

decomposition methods

What are the problems with I/O, visualization etc. . . ?

� CEA codes produce a lot of output data (3 TB per day) for

check point/restart and visualization

� In a parallel application, each processor writes its own �le

� Most parallel �le systems are not very eÆcient

� A global reconstruction is often needed for visualization

tools

� Very large viz �les cannot be handled eÆciently by

commercial products

Examples of large scale computations

� Scalable linear systems solvers

� CFD Euler equations

Scalable linear systems solvers

Ax = b

A large sparse symmetric positive de�nite of order n

The iterative method must be (almost) scalable

We use Preconditioned Conjugate Gradient

The preconditioner must be such that:

� the number of iterations is (almost) constant, when the

problem size is increased

� the complexity of applying the preconditioner is proportional

to n

� easy to construct and use on a parallel computer

Two known possibilities:

Æ multilevel (algebraic multigrid{like) methods

Æ domain decomposition (DD)

Multilevel + DD techniques for parallelization

Multilevel preconditioners

Æ Algebraic methods (grid � (sub) set of unknowns without

overlapping)

Starting from the zero vector:

0{ if we are on the coarsest level, exact solve by Gaussian

elimination or use diagonal CG, otherwise

1{ do � iterations of smoothing

2{ restrict the residual r to rc = Rr

3{ recursively solve Acec = rc, Ac = RAP , R = P
T

4{ interpolate ec to e = Pec

5{ add the correction e to the current iterate

6{ do � iterations of smoothing

Generally, we will use � = 1. We have to de�ne:

Æ the smoother

Æ coarsening algorithm

Æ the interpolation
Many di�erent choices!

Smoothers

Æ Symmetric Gauss{Seidel (not parallel)

parallelized by using Jacobi for the interface nodes (SGSJ)

Æ Incomplete Cholesky (IC not par. either) M = LDL
T

parallelized by ignoring dependencies between subdomains

(ICp)

LD
�1
L
T (xk+1 � x
k) = b� Ax
k

Æ Approximate inverse AINV from M. Benzi and al.

M

�1 = ZD
�1
Z
T where Z is upper triangular and D is diagonal

Smoother: Richardson iteration de�ned as (matrix �)

x
k+1 = x
k +M

�1(b�Ax
k)

� Inuence matrix

S
A

i

= fj j jai;j j > � max
k 6=i

jai;kj; � < 1g

� Coarsening algorithm

N = F [C

Æ Ruge-Stuben (Wagner) RS

parallized by subdomain plus a pass (partially sequential) on

the interface nodes

Æ Cleary, Falgout, Henson and Jones algorithms

� Standard interpolation algorithm using matrix entries,

projection P , restriction R = P
T

� Coarse matrices

AC = RAP

Numerical experiments on TERA

Æ 5 point �nite di�erences, unit square, m�m mesh

Æ b random

Æ x
0 = 0

Æ stopping criterion kr
k
k � 10�10kr0k

Æ Mesh decomposition into squares with m

2
p

unknowns per

processor

� Partition the graph of A (mesh) into non overlapping

subdomains but with ghost nodes

Nodes in relation to ghost nodes are interface nodes

� A is distributed by rows

Two problems

Æ Unit square

Æ Poisson equation

Æ Discontinuous di�usion problem

di�usion coe�=1 except 1000 in [1=4 3=4]2

First experiment

� Poisson equation

mp = 250! 62500 unknowns per processor,

p = 1; 4; 16; 64; 144; 256; 484

� Largest problem is ' 30 106 unknowns

0 50 100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

12

13

14

15

Nb of iterations for the Poisson equation as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp,

62500 unknowns per processor

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

Elapsed time (s) for the Poisson equation as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

Second experiment

� Poisson equation

mp = 100! 10000 unknowns per processor,

p = 1; 4; 16; 64; 144; 256; 484; 900; 1600

� Largest problem is 16 106 unknowns

Æ Note that the number of unknowns per processor is smaller

than before

0 200 400 600 800 1000 1200 1400 1600
5

6

7

8

9

10

11

12

13

14

15

Nb of iterations for the Poisson equation as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

0 200 400 600 800 1000 1200 1400 1600
−5

0

5

10

15

20

25

30

35

40

Elapsed time (s) for the Poisson equation as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

This computation is dominated by communication

Third experiment

� Discontinuous problem

mp = 250! 62500 unknowns per processor,

p = 4; 16; 64; 144; 256

� Largest problem is 16 106 unknowns

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

50

Nb of iterations for the discontinuous problem as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

0 50 100 150 200 250
0

5

10

15

Elapsed time (s) for the discontinuous problem as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

Last experiment

� 3D Poisson in [0; 1]3, 7 point �nite di�erences

mp = 30! m

3
p

= 27000 unknowns per processor,

p = 1; 8; 27; 64; 125; 216; 343; 512; 729

� Largest problem is ' 20 106 unknowns

0 100 200 300 400 500 600 700 800
5

6

7

8

9

10

11

12

13

Nb of iterations for the 3D Poisson equation as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

Elapsed time (s) for the 3D Poisson equation as a function of p

coarsening: LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

� This library is still under development

� Algorithms are working �ne. But:

Æ Communications have to be optimized

Æ Memory management has to be improved

The TERA Benchmark

� Specially designed Fortran 90 MPI code to check how

eÆcient we could be on a real application using all the

processors and all the memory

� 3D inviscid compressible Euler equations

� Alternating directions

� Transport + Projection time explicit Godunov scheme

� Approximate Riemann solver

� Order 3 projection (PPM{like)

� Parallelized by domain decomposition with ghost cells

Optimization

Æ On one processor:

� 3 copies of arrays, one per spatial dimension to use cache

eÆciently

� Avoid divisions and transcendental functions

� Optimize the ratio memory accesses/oating point

operations

Æ It is really diÆcult to obtain a very good performance on

one processor

Communications

� One communication phase per time step

� Messages should not be too large (bu�er problems) or too

small (latency problems)

� Asynchronous non blocking messages of moderate size (64

KB)

� Communications 10 to 12% of total time

Æ We look at the scaled performance with a constant number

of cells per processor, increasing the number of processors

Æ Available memory 650 MB per processor which leads to 4

to 5 million cells, subdomains: cubes of 1603 cells

� Test case: shock tube

� Fastest computation: 10 billion cells, 1.32 Tops,

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

nb of processors

G
flo

ps

TERA benchmark

Performance as a function of processors

� Even though this code is carefully tuned and scales well, we

only reach about 25% of the peak performance

3D Lagrangian code

� Inviscid compressible uids

� Lagrangian coordinates with hexahedral or tetrahedral

elements, time explicit

� Written in C++ with MPI

� Largest computation: 256 million cells

� EÆciency= ratio of computing time on one processor for m

cells/elapsed time on n processors for nm cells

� If the number of cells per processor is large enough, the

eÆciency is good

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Log(p)

E
ffi

ci
en

cy

10 000 cells/p
25 000 cells/p
250 000 cells/p

EÆciency as a function of processors

Interface instabilities computations

� Direct simulation of growth of perturbations or turbulence

� C++ 3D code for compressible Euler or Navier{Stokes

� Cartesian coordinates

Æ Shock tube: Xe/Kr, interface with monomode perturbation,

37 million cells

Æ Iso concentration surfaces colored with the module of

velocity

Initial state of the interface

t=100 �s

t=300 �s

t=500 �s

t=600 �s

t=800 �s

t=900 �s

t=1000 �s

3D Laser{Plasma interaction

� Laser beam propagating through a plasma

� 3D inviscid compressible uid + Schr�odinger equation

� AMR (Adaptive Mesh Re�nement) hydro

� Test case:

Æ 505 million cells, 470 time steps

Æ 900 processors, elapsed time: 10h 17 mn

Æ one 3D picture 900 �les = 90 GB

Inward boundary, t=58 ps

Outward boundary, t=58 ps

t=58 ps

� It was very diÆcult to obtain 3D pictures with 90 GB of

data with usual viz packages

� We have to develop new parallel visualization tools using

PC clusters

� Parallel read of the 900 �les

Conclusions

� We have very fast parallel computers allowing interesting

progresses in science and engineering

� However, it is still very diÆcult to get the most out of these

machines

� Often, I/Os are a bottleneck

� Visualizing hundreds of million cells cannot be done with

out of the shelf products

