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J.L. Lions has always been interested in High Performance

Computing (HPC)

He was very inuential in the creation of ORAP in 1994,

www.irisa.fr/orap

� association between CEA, CNRS (National center for

scienti�c Research) and INRIA

� aim: promote the use of parallelism for high performance

scienti�c computing in France and Europe



Æ There are many Tops peak parallel machines around the

world each with hundreds or thousands of processors

Æ The 50th ranked machine in the last Top 500 list has a

performance of 2.9 Tops on Linpack

Æ The fastest one is still the Earth Simulator with a Linpack

performance of 35.86 Tops

Æ Although we can discuss the relevance of Linpack as a

criterion, it means that there is a large potential of

computing cycles available



Things are changing quite fast:
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The questions we would like to discuss are:

� How diÆcult is it to obtain good performances on these

machines?

� How eÆciently could we use these parallel computers on

large practical applications?

� What are the problems with I/O, visualization etc. . . ?



The CEA computing center

� 4 large machines

Æ HP 2560 Alpha processors

Æ HP 960 Alpha processors

Æ HP 232 AMD Opteron processors

Æ NEC SX-6 48 vector processors
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� Some of the machines are used by industrial partners

Æ EDF (Power supply)

Æ SNECMA (Airplane engines)

Æ ONERA (National Lab for Aerospace research)

Æ TURBOMECA



Largest CEA machine

HP COMPAQ SMP

� 640 nodes, 2560 processors Alpha EV68 1Ghz

� Peak performance: 5 Tops (2 Gops/proc)

� Memory 4 GB per node

� Quadrics interconnection network

� Needs a very large computer room: 1200 m

2 + 750 m

2 for

the storage silos





How diÆcult is it to obtain good performances on these

machines?

� Even on one processor it is diÆcult to obtain a performance

close to the peak:

Æ Data ow between memory and caches is too slow to keep

the processor busy

Æ Compilers do not make the most eÆcient use of the

hardware, particularly data cache reuse

Æ This is why the Linpack benchmark makes use of optimized

BLAS3 routines and is not representative of real applications



Communications

� Network latency is often quite small ?�s on the CEA

machine. But:

Æ Message Passing Interface (MPI) is not always eÆciently

implemented

Æ Bu�er problems

Æ TraÆc is perturbed by other jobs

Æ ?



How eÆciently could we use these parallel computers on large

practical applications?

� Of course we need to have parallel algorithms

� An important issue is scalability

Æ We would like the elapsed time to stay constant when we

proportionally increase the size of the problem and the

number of processors

Æ This depends on the properties of the problem and the

algorithms



Examples

� Time explicit schemes for CFD are easy to parallelize

Æ Scalability depends on the relation between the time step

and the spatial discretization

� Direct or iterative methods for solving linear systems are

diÆcult to parallelize

Æ Generally the complexity is n�; � > 1

Æ Of course, there are exceptions like multigrid or domain

decomposition methods



What are the problems with I/O, visualization etc. . . ?

� CEA codes produce a lot of output data (3 TB per day) for

check point/restart and visualization

� In a parallel application, each processor writes its own �le

� Most parallel �le systems are not very eÆcient

� A global reconstruction is often needed for visualization

tools

� Very large viz �les cannot be handled eÆciently by

commercial products



Examples of large scale computations

� Scalable linear systems solvers

� CFD Euler equations



Scalable linear systems solvers

Ax = b

A large sparse symmetric positive de�nite of order n

The iterative method must be (almost) scalable

We use Preconditioned Conjugate Gradient

The preconditioner must be such that:

� the number of iterations is (almost) constant, when the

problem size is increased

� the complexity of applying the preconditioner is proportional

to n

� easy to construct and use on a parallel computer



Two known possibilities:

Æ multilevel (algebraic multigrid{like) methods

Æ domain decomposition (DD)

Multilevel + DD techniques for parallelization



Multilevel preconditioners

Æ Algebraic methods (grid � (sub) set of unknowns without

overlapping)

Starting from the zero vector:

0{ if we are on the coarsest level, exact solve by Gaussian

elimination or use diagonal CG, otherwise

1{ do � iterations of smoothing

2{ restrict the residual r to rc = Rr

3{ recursively solve Acec = rc, Ac = RAP , R = P
T

4{ interpolate ec to e = Pec

5{ add the correction e to the current iterate

6{ do � iterations of smoothing



Generally, we will use � = 1. We have to de�ne:

Æ the smoother

Æ coarsening algorithm

Æ the interpolation
Many di�erent choices!



Smoothers

Æ Symmetric Gauss{Seidel (not parallel)

parallelized by using Jacobi for the interface nodes (SGSJ)

Æ Incomplete Cholesky (IC not par. either) M = LDL
T

parallelized by ignoring dependencies between subdomains

(ICp)

LD
�1
L
T (xk+1 � x
k) = b� Ax
k

Æ Approximate inverse AINV from M. Benzi and al.

M

�1 = ZD
�1
Z
T where Z is upper triangular and D is diagonal

Smoother: Richardson iteration de�ned as (matrix �)

x
k+1 = x
k +M

�1(b�Ax
k)



� Inuence matrix

S
A

i

= fj j jai;j j > � max
k 6=i

jai;kj; � < 1g

� Coarsening algorithm

N = F [ C

Æ Ruge-Stuben (Wagner) RS

parallized by subdomain plus a pass (partially sequential) on

the interface nodes

Æ Cleary, Falgout, Henson and Jones algorithms



� Standard interpolation algorithm using matrix entries,

projection P , restriction R = P
T

� Coarse matrices

AC = RAP



Numerical experiments on TERA

Æ 5 point �nite di�erences, unit square, m�m mesh

Æ b random

Æ x
0 = 0

Æ stopping criterion kr
k
k � 10�10kr0k

Æ Mesh decomposition into squares with m

2
p

unknowns per

processor

� Partition the graph of A (mesh) into non overlapping

subdomains but with ghost nodes

Nodes in relation to ghost nodes are interface nodes

� A is distributed by rows



Two problems

Æ Unit square

Æ Poisson equation

Æ Discontinuous di�usion problem

di�usion coe�=1 except 1000 in [1=4 3=4]2



First experiment

� Poisson equation

mp = 250! 62500 unknowns per processor,

p = 1; 4; 16; 64; 144; 256; 484

� Largest problem is ' 30 106 unknowns
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Second experiment

� Poisson equation

mp = 100! 10000 unknowns per processor,

p = 1; 4; 16; 64; 144; 256; 484; 900; 1600

� Largest problem is 16 106 unknowns

Æ Note that the number of unknowns per processor is smaller

than before
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This computation is dominated by communication



Third experiment

� Discontinuous problem

mp = 250! 62500 unknowns per processor,

p = 4; 16; 64; 144; 256

� Largest problem is 16 106 unknowns
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Last experiment

� 3D Poisson in [0; 1]3, 7 point �nite di�erences

mp = 30! m

3
p

= 27000 unknowns per processor,

p = 1; 8; 27; 64; 125; 216; 343; 512; 729

� Largest problem is ' 20 106 unknowns
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� This library is still under development

� Algorithms are working �ne. But:

Æ Communications have to be optimized

Æ Memory management has to be improved



The TERA Benchmark

� Specially designed Fortran 90 MPI code to check how

eÆcient we could be on a real application using all the

processors and all the memory

� 3D inviscid compressible Euler equations

� Alternating directions

� Transport + Projection time explicit Godunov scheme

� Approximate Riemann solver

� Order 3 projection (PPM{like)

� Parallelized by domain decomposition with ghost cells



Optimization

Æ On one processor:

� 3 copies of arrays, one per spatial dimension to use cache

eÆciently

� Avoid divisions and transcendental functions

� Optimize the ratio memory accesses/oating point

operations

Æ It is really diÆcult to obtain a very good performance on

one processor



Communications

� One communication phase per time step

� Messages should not be too large (bu�er problems) or too

small (latency problems)

� Asynchronous non blocking messages of moderate size (64

KB)

� Communications 10 to 12% of total time



Æ We look at the scaled performance with a constant number

of cells per processor, increasing the number of processors

Æ Available memory 650 MB per processor which leads to 4

to 5 million cells, subdomains: cubes of 1603 cells

� Test case: shock tube

� Fastest computation: 10 billion cells, 1.32 Tops,
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� Even though this code is carefully tuned and scales well, we

only reach about 25% of the peak performance



3D Lagrangian code

� Inviscid compressible uids

� Lagrangian coordinates with hexahedral or tetrahedral

elements, time explicit

� Written in C++ with MPI

� Largest computation: 256 million cells

� EÆciency= ratio of computing time on one processor for m

cells/elapsed time on n processors for nm cells

� If the number of cells per processor is large enough, the

eÆciency is good
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Interface instabilities computations

� Direct simulation of growth of perturbations or turbulence

� C++ 3D code for compressible Euler or Navier{Stokes

� Cartesian coordinates

Æ Shock tube: Xe/Kr, interface with monomode perturbation,

37 million cells

Æ Iso concentration surfaces colored with the module of

velocity



Initial state of the interface
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3D Laser{Plasma interaction

� Laser beam propagating through a plasma

� 3D inviscid compressible uid + Schr�odinger equation

� AMR (Adaptive Mesh Re�nement) hydro

� Test case:

Æ 505 million cells, 470 time steps

Æ 900 processors, elapsed time: 10h 17 mn

Æ one 3D picture 900 �les = 90 GB



Inward boundary, t=58 ps



Outward boundary, t=58 ps
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� It was very diÆcult to obtain 3D pictures with 90 GB of

data with usual viz packages

� We have to develop new parallel visualization tools using

PC clusters

� Parallel read of the 900 �les



Conclusions

� We have very fast parallel computers allowing interesting

progresses in science and engineering

� However, it is still very diÆcult to get the most out of these

machines

� Often, I/Os are a bottleneck

� Visualizing hundreds of million cells cannot be done with

out of the shelf products


