
Matrices, moments and quadrature with
applications

(I)

Gérard MEURANT

October 2010

1 Introduction

2 Applications

3 Ingredients

4 Quadratic forms

5 Riemann-Stieltjes integrals

6 Orthogonal polynomials

7 Examples of orthogonal polynomials

8 Variable-signed weight functions

9 Matrix orthogonal polynomials

10 Quadrature rules

11 The Gauss rule

This series of lectures is based on a book written in collaboration
with Gene H. Golub started in 2005

published by Princeton University Press in 2010

Unfortunately Gene Golub passed away in November 2007

G.H Golub (1932-2007)

Introduction

The aim of these lectures is to describe numerical algorithms to
compute bounds or estimates of bilinear forms

uT f (A)v

where A is a square non singular real symmetric matrix, f is a
smooth function and u and v are given vectors

Typically A will be large and sparse and we do not want (or
cannot) compute f (A)

f will be 1/x , exp(x),
√

x , . . .

If you want to compute all the elements of f (A) , see the book by
N. Higham, Functions of matrices: theory and computation, SIAM,
2008

Applications

In many problems we may want to compute some elements of
f (A), then we take u = e i , v = e j (e i is the ith column of the
identity matrix)

f (A)i ,j = (e i)T f (A)e j

For instance, if f(x)=1/x this will give entries of the inverse of A

In this case using the techniques we will describe will be more
efficient than solving Ax = e j and taking xi

Moreover, more generally, if i = j we could obtain upper and lower
bounds for the exact value
If i 6= j , we just obtain estimates

Another application is to compute norms of the error when solving
linear systems

Ax = b

Assume that we have an approximate solution x̂ . Then the error is
e = x − x̂ and the residual is r = b − Ax̂ . r is directly computable,
but not e
We have the relationship

Ae = A(x − x̂) = b − Ax̂ = r

Solving this system is as expensive as solving the initial one.
However,

‖e‖2 = eT e = (A−1r)TA−1r = rTA−2r

If A is positive definite we can define ‖e‖2
A = eTAe. Then

‖e‖2
A = rTA−1r

Another example

Assume that we know the eigenvalues of a symmetric matrix A and
we would like to compute the eigenvalues of a rank-one
modification of A

Ax = λx

We know the eigenvalues λ and we want to compute µ such that

(A + ccT)y = µy

where c is a given vector (not orthogonal to an eigenvector of A)

Then
y = −(A− µI)−1ccT y

Multiplying by cT

cT y = −cT (A− µI)−1ccT y

Finally, we have to solve

1 + cT (A− µI)−1c = 0

This is called a secular equation and for solving we have to
evaluate quadratic forms

Bilinear (or quadratic) forms arise in many other applications

I Estimates of det(A) or trace(A−1)

I Least squares problems (estimates of the backward error)

I Total least squares

I Tikhonov regularization of discrete ill–posed problems
(estimation of the regularization parameter)

I . . .

The main technique is to write a quadratic form

uT f (A)u

as a Riemann-Stieltjes integral and to use Gauss quadrature to
obtain an estimate (or a bound in some cases) of the integral

Ingredients

Along our journey we will use

I Orthogonal polynomials

I Tridiagonal matrices

I Quadrature rules

I The Lanczos and conjugate gradient methods

In this lecture, we look at orthogonal polynomials and Gauss
quadrature

The next lecture will consider the Lanczos and conjugate gradient
algorithms, tridiagonal matrices and inverse problems

Next we will look at applications to practical problems

Quadratic forms

uT f (A)u

Since A is symmetric
A = QΛQT

where Q is the orthonormal matrix whose columns are the
normalized eigenvectors of A and Λ is a diagonal matrix whose
diagonal elements are the eigenvalues λi . Then

f (A) = Q f (Λ) QT

In fact this is a definition of f (A) when A is symmetric
Of course, usually we don’t know Q and Λ. That’s what makes the
problem interesting!

uT f (A)u = uTQf (Λ)QTu

= γT f (Λ)γ

=
n∑

i=1

f (λi)γ
2
i

This last sum can be considered as a Riemann–Stieltjes integral

I [f] = uT f (A)u =

∫ b

a
f (λ) dα(λ)

where the measure α is piecewise constant and defined by

α(λ) =


0 if λ < a = λ1∑i

j=1 γ2
j if λi ≤ λ < λi+1∑n

j=1 γ2
j if b = λn ≤ λ

Riemann-Stieltjes integrals

[a, b] = finite or infinite interval of the real line

Definition
A Riemann–Stieltjes integral of a real valued function f of a real
variable with respect to a real function α is denoted by∫ b

a
f (λ) dα(λ) (1)

and is defined to be the limit (if it exists), as the mesh size of the
partition π of the interval [a, b] goes to zero, of the sums∑

{λi}∈π

f (ci)(α(δi+1)− α(δi))

where ci ∈ [δi , δi+1]

Thomas Jan Stieltjes (1856-1894)

I if f is continuous and α is of bounded variation on [a, b] then
the integral exists

I α is of bounded variation if it is the difference of two
nondecreasing functions

I The integral exists if f is continuous and α is nondecreasing

In many cases Riemann–Stieltjes integrals are directly written as∫ b

a
f (λ) w(λ)dλ

where w is called the weight function

Moments and inner product

Let α be a nondecreasing function on the interval (a, b) having
finite limits at ±∞ if a = −∞ and/or b = +∞

Definition
The numbers

µi =

∫ b

a
λi dα(λ), i = 0, 1, . . . (2)

are called the moments related to the measure α

Definition
Let P be the space of real polynomials, we define an inner product
(related to the measure α) of two polynomials p and q ∈ P as

〈p, q〉 =

∫ b

a
p(λ)q(λ) dα(λ) (3)

The norm of p is defined as

‖p‖ =

(∫ b

a
p(λ)2 dα(λ)

) 1
2

(4)

We will consider also discrete inner products as

〈p, q〉 =
m∑

j=1

p(tj)q(tj)w
2
j (5)

The values tj are referred as points or nodes and the values w2
j are

the weights

We will use the fact that the sum in equation (5) can be seen as
an approximation of the integral (3)

Conversely, it can be written as a Riemann–Stieltjes integral for a
measure α which is piecewise constant and has jumps at the nodes
tj (that we assume to be distinct for simplicity), see Atkinson;
Dahlquist, Eisenstat and Golub; Dahlquist, Golub and Nash

α(λ) =


0 if λ < t1∑i

j=1[wj]
2 if ti ≤ λ < ti+1 i = 1, . . . ,m − 1∑m

j=1[wj]
2 if tm ≤ λ

There are different ways to normalize polynomials:

A polynomial p of exact degree k is said to be monic if the
coefficient of the monomial of highest degree is 1, that is
p(λ) = λk + ck−1λ

k−1 + . . .

Definition

I The polynomials p and q are said to be orthogonal with
respect to inner products (3) or (5), if 〈p, q〉 = 0

I The polynomials p in a set of polynomials are orthonormal if
they are mutually orthogonal and if 〈p, p〉 = 1

I Polynomials in a set are said to be monic orthogonal
polynomials if they are orthogonal, monic and their norms are
strictly positive

The inner product 〈·, ·〉 is said to be positive definite if ‖p‖ > 0
for all nonzero p ∈ P
A necessary and sufficient condition for having a positive definite
inner product is that the determinants of the Hankel moment
matrices are positive

det


µ0 µ1 · · · µk−1

µ1 µ2 · · · µk
...

...
...

µk−1 µk · · · µ2k−2

 > 0, k = 1, 2, . . .

where µi are the moments of definition (2)

Existence of orthogonal polynomials

Theorem
If the inner product 〈·, ·〉 is positive definite on P, there exists a
unique infinite sequence of monic orthogonal polynomials related
to the measure α

See Gautschi

We have defined orthogonality relative to an inner product given
by a Riemann–Stieltjes integral but, more generally, orthogonal
polynomials can be defined relative to a linear functional L such
that L(λk) = µk

Two polynomials p and q are said to be orthogonal if L(pq) = 0
One obtains the same kind of existence result, see the book by
Brezinski

Three-term recurrences
The main ingredient is the following property for the inner product

〈λp, q〉 = 〈p, λq〉

Theorem
For monic orthogonal polynomials, there exist sequences of
coefficients αk , k = 1, 2, . . . and γk , k = 1, 2, . . . such that

pk+1(λ) = (λ− αk+1)pk(λ)− γkpk−1(λ), k = 0, 1, . . . (6)

p−1(λ) ≡ 0, p0(λ) ≡ 1.

where

αk+1 =
〈λpk , pk〉
〈pk , pk〉

, k = 0, 1, . . .

γk =
〈pk , pk〉

〈pk−1, pk−1〉
, k = 1, 2, . . .

Proof.
A set of monic orthogonal polynomials pj is linearly independent
Any polynomial p of degree k can be written as

p =
k∑

j=0

ωjpj ,

for some real numbers ωj

pk+1 − λpk is of degree ≤ k

pk+1 − λpk = −αk+1pk − γkpk−1 +
k−2∑
j=0

δjpj (7)

Taking the inner product of equation (7) with pk

〈λpk , pk〉 = αk+1〈pk , pk〉

Multiplying equation (7) by pk−1

〈λpk , pk−1〉 = γk〈pk−1, pk−1〉

But, using equation (7) for the degree k − 1

〈λpk , pk−1〉 = 〈pk , λpk−1〉 = 〈pk , pk〉

we multiply equation (7) with pj , j < k − 1

〈λpk , pj〉 = δj〈pj , pj〉

The left hand side of the last equation vanishes
For this, the property 〈λpk , pj〉 = 〈pk , λpj〉 is crucial
Since λpj is of degree < k, the left hand side is 0 and it implies
δj = 0, j = 0, . . . , k − 2

There is a converse to this theorem
It is is attributed to J. Favard whose paper was published in 1935,
although this result had also been obtained by J. Shohat at about
the same time and it was known earlier to Stieltjes

Theorem
If a sequence of monic polynomials pk , k = 0, 1, . . . satisfies a
three–term recurrence relation such as equation (6) with real
coefficients and γk > 0, then there exists a positive measure α
such that the sequence pk is orthogonal with respect to an inner
product defined by a Riemann–Stieltjes integral for the measure α

Orthonormal polynomials

Theorem
For orthonormal polynomials, there exist sequences of coefficients
αk , k = 1, 2, . . . and βk , k = 1, 2, . . . such that√

βk+1pk+1(λ) = (λ− αk+1)pk(λ)−
√

βkpk−1(λ), k = 0, 1, . . .
(8)

p−1(λ) ≡ 0, p0(λ) ≡ 1/
√

β0, β0 =

∫ b

a
dα

where
αk+1 = 〈λpk , pk〉, k = 0, 1, . . .

and βk is computed such that ‖pk‖ = 1

Relations between monic and orthonormal polynomials

Assume that we have a system of monic polynomials pk satisfying
a three-term recurrence (6), then we can obtain orthonormal
polynomials p̂k by normalization

p̂k(λ) =
pk(λ)

〈pk , pk〉1/2

Using equation (6)

‖pk+1‖p̂k+1 =

(
λ‖pk‖ −

〈λpk , pk〉
‖pk‖

)
p̂k −

‖pk‖2

‖pk−1‖
p̂k−1

After some manipulations

‖pk+1‖
‖pk‖

p̂k+1 = (λ− 〈λp̂k , p̂k〉)p̂k −
‖pk‖
‖pk−1‖

p̂k−1

Note that

〈λp̂k , p̂k〉 =
〈λpk , pk〉
‖pk‖2

and √
βk+1 =

‖pk+1‖
‖pk‖

Therefore the coefficients αk are the same and βk = γk

If we have the coefficients of monic orthogonal polynomials we just
have to take the square root of γk to obtain the coefficients of the
corresponding orthonormal polynomials

Jacobi matrices

If the orthonormal polynomials exist for all k, there is an infinite
symmetric tridiagonal matrix J∞ associated with them

J∞ =


α1

√
β1√

β1 α2
√

β2√
β2 α3

√
β3

. . .
. . .

. . .


Since it has positive subdiagonal elements, the matrix J∞ is called
an infinite Jacobi matrix
Its leading principal submatrix of order k is denoted as Jk

Orthogonal polynomials are fully described by their Jacobi matrices

Properties of zeros

Let
Pk(λ) =

(
p0(λ) p1(λ) . . . pk−1(λ)

)T

In matrix form, the three-term recurrence is written as

λPk = JkPk + ηkpk(λ)ek (9)

where Jk is the Jacobi matrix of order k and ek is the last column
of the identity matrix (ηk =

√
βk)

Theorem
The zeros θ

(k)
j of the orthonormal polynomial pk are the

eigenvalues of the Jacobi matrix Jk

Proof. If θ is a zero of pk , from equation (9) we have

θPk(θ) = JkPk(θ)

This shows that θ is an eigenvalue of Jk and Pk(θ) is a
corresponding (unnormalized) eigenvector

Jk being a symmetric tridiagonal matrix, its eigenvalues (the zeros
of the orthogonal polynomial pk) are real and distinct

Theorem
The zeros of the orthogonal polynomials pk associated with the
measure α on [a, b] are real, distinct and located in the interior of
[a, b]

see Szegö

Examples of orthogonal polynomials
For classical orthogonal polynomials (Chebyshev, Legendre,
Laguerre, Hermite, . . .) the coefficients of the recurrence are
explicitly known

Jacobi polynomials

dα(λ) = w(λ) dλ

a = −1, b = 1, w(λ) = (1− λ)δ(1 + λ)β, δ, β > −1

Special cases:

Chebyshev polynomials of the first kind: δ = β = −1/2

Ck(λ) = cos(k arccos λ)

They satisfy

C0(λ) ≡ 1, C1(λ) ≡ λ, Ck+1(λ) = 2λCk(λ)− Ck−1(λ)

The zeros of Ck are

λj+1 = cos

(
2j + 1

k

π

2

)
, j = 0, 1, . . . k − 1

The polynomial Ck has k + 1 extremas in [−1, 1]

λ′j = cos

(
jπ

k

)
, j = 0, 1, . . . , k

and Ck(λ′j) = (−1)j

For k ≥ 1, Ck has a leading coefficient 2k−1

< Ci ,Cj >α=


0 i 6= j
π
2 i = j 6= 0

π i = j = 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Chebyshev polynomials (first kind) Ck , k = 1, . . . , 7 on [−1.1, 1.1]

Let π1
n = { poly. of degree n in λ whose value is 1 for λ = 0 }

Chebyshev polynomials provide the solution of the minimization
problem

min
qn∈π1

n

max
λ∈[a,b]

|qn(λ)|

The solution is written as

min
qn∈π1

n

max
λ∈[a,b]

|qn(λ)| = max
λ∈[a,b]

∣∣∣∣∣∣
Cn

(
2λ−(a+b)

b−a

)
Cn

(
a+b
b−a

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

Cn

(
a+b
b−a

)
∣∣∣∣∣∣

see Dahlquist and Björck

Legendre polynomials

a = −1, b = 1, δ = β = 0, w(λ) ≡ 1

(k+1)Pk+1(λ) = (2k+1)λPk(λ)−kPk−1(λ), P0(λ) ≡ 1, P1(λ) ≡ λ

The Legendre polynomial Pk is bounded by 1 on [−1, 1]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Legendre polynomials Pk , k = 1, . . . , 7 on [−1.1, 1.1]

Variable-signed weight functions

What happens if the weight function w is not positive?

Theorem
Assume that all the moments exist and are finite
For any k > 0, there exists a polynomial pk of degree at most k
such that pk is orthogonal to all polynomials of degree ≤ k − 1
with respect to w

see G.W. Struble

The important words in this result are: “of degree at most k”
In some cases the polynomial pk can be of degree less than k

C (k) = set of polynomials of degree ≤ k orthogonal to all
polynomials of degree ≤ k − 1
C (k) is called degenerate if it contains polynomials of degree less
than k
If C (k) is non-degenerate it contains one unique polynomial (up
to a multiplicative constant)

Theorem
Let C (k) be non-degenerate with a polynomial pk

Assume C (k + n), n > 0 is the next non-degenerate set. Then pk

is the unique (up to a multiplicative constant) polynomial of lowest
degree in C (k + m), m = 1, . . . , n − 1

pk(λ) = (αkλdk−dk−1 +

dk−dk−1−1∑
i=0

βk,iλ
i)pk−1(λ)− γk−1pk−2(λ), k = 2, . . .

(10)

p0(λ) ≡ 1, p1(λ) = (α1λ
d1 +

d1−1∑
i=0

β1,iλ
i)p0(λ)

The coefficient of pk−1 contains powers of λ depending on the
difference of the degrees of the polynomials in the non-degenerate
cases
The coefficients αk and γk−1 have to be nonzero

Matrix orthogonal polynomials

We would like to have matrices as coefficients of the polynomials
For our purposes we just need 2× 2 matrices

Definition
For λ real, a matrix polynomial pi (λ), which is a 2× 2 matrix, is
defined as

pi (λ) =
i∑

j=0

λjC
(i)
j

where the coefficients C
(i)
j are given 2× 2 real matrices

If the leading coefficient is the identity matrix, the matrix
polynomial is said to be monic

The “measure” α(λ) is a matrix of order 2 that we suppose to be
symmetric and positive semi–definite

We assume that the (matrix) moments

Mk =

∫ b

a
λk dα(λ) (11)

exist for all k

The “inner product” of two matrix polynomials p and q is defined
as

〈p, q〉 =

∫ b

a
p(λ) dα(λ)q(λ)T (12)

Two matrix polynomials in a sequence pk , k = 0, 1, . . . are said to
be orthonormal if

< pi , pj >= δi ,j I2 (13)

where δi ,j is the Kronecker symbol and I2 the identity matrix of
order 2

Theorem
Sequences of matrix orthonormal polynomials satisfy a block
three–term recurrence

pj(λ)Γj = λpj−1(λ)− pj−1(λ)Ωj − pj−2(λ)ΓT
j−1 (14)

p0(λ) ≡ I2, p−1(λ) ≡ 0

where Γj , Ωj are 2× 2 matrices and the matrices Ωj are symmetric

The block three-term recurrence can be written in matrix form as

λ[p0(λ), . . . , pk−1(λ)] = [p0(λ), . . . , pk−1(λ)]Jk + [0, . . . , 0, pk(λ)Γk]
(15)

where

Jk =


Ω1 ΓT

1

Γ1 Ω2 ΓT
2

. . .
. . .

. . .

Γk−2 Ωk−1 ΓT
k−1

Γk−1 Ωk


is a block tridiagonal matrix of order 2k with 2× 2 blocks

Let P(λ) = [p0(λ), . . . , pk−1(λ)]T

We have the matrix relation

JkP(λ) = λP(λ)− [0, . . . , 0, pk(λ)Γk]T

These matrix polynomials will be useful to estimate uT f (A)v when
u 6= v

Quadrature rules

Given a measure α on the interval [a, b] and a function f , a
quadrature rule is a relation∫ b

a
f (λ) dα =

N∑
j=1

wj f (tj) + R[f]

R[f] is the remainder which is usually not known exactly

The real numbers tj are the nodes and wj the weights

The rule is said to be of exact degree d if R[p] = 0 for all
polynomials p of degree d and there are some polynomials q of
degree d + 1 for which R[q] 6= 0

I Quadrature rules of degree N − 1 can be obtained by
interpolation

I Such quadrature rules are called interpolatory

I Newton–Cotes formulas are defined by taking the nodes to be
equally spaced

I A popular choice for the nodes is the zeros of the Chebyshev
polynomial of degree N. This is called the Fejér quadrature
rule

I Another interesting choice is the set of extrema of the
Chebyshev polynomial of degree N − 1. This gives the
Clenshaw–Curtis quadrature rule

Theorem
Let k be an integer, 0 ≤ k ≤ N. The quadrature rule has degree
d = N − 1 + k if and only if it is interpolatory and∫ b

a

N∏
j=1

(λ− tj)p(x) dα = 0, ∀p polynomial of degree ≤ k − 1.

see Gautschi

If the measure is positive, k = N is maximal for interpolatory
quadrature since if k = N + 1 the condition in the last theorem
would give that the polynomial

N∏
j=1

(λ− tj)

is orthogonal to itself which is impossible

Gauss quadrature rules

The optimal quadrature rule of degree 2N − 1 is called a Gauss
quadrature
It was introduced by C.F. Gauss at the beginning of the nineteenth
century

The general formula for a Riemann–Stieltjes integral is

I [f] =

∫ b

a
f (λ) dα(λ) =

N∑
j=1

wj f (tj) +
M∑

k=1

vk f (zk) + R[f], (16)

where the weights [wj]
N
j=1, [vk]Mk=1 and the nodes [tj]

N
j=1 are

unknowns and the nodes [zk]Mk=1 are prescribed

see Davis and Rabinowitz; Gautschi; Golub and Welsch

Carl Friedrich Gauss (1777-1855)

I If M = 0, this is the Gauss rule with no prescribed nodes

I If M = 1 and z1 = a or z1 = b we have the Gauss–Radau rule

I If M = 2 and z1 = a, z2 = b, this is the Gauss–Lobatto rule

The term R[f] is the remainder which generally cannot be
explicitly computed
If the measure α is a positive non–decreasing function

R[f] =
f (2N+M)(η)

(2N + M)!

∫ b

a

M∏
k=1

(λ−zk)

 N∏
j=1

(λ− tj)

2

dα(λ), a < η < b

(17)
Note that for the Gauss rule, the remainder R[f] has the sign of

f (2N)(η)
see Stoer and Bulirsch

Before the 1960s mathematicians were publishing books containing
tables giving the nodes and weights for some given distribution
functions
See the book by Stroud and Secrest

With the advent of computers, routines appear to compute the
nodes and weights

At the beginning people were solving non linear equations for these
computations

The Gauss rule

How do we compute the nodes tj and the weights wj?

I One way to compute the nodes and weights is to use
f (λ) = λi , i = 0, . . . , 2N − 1 and to solve the non linear
equations expressing the fact that the quadrature rule is exact

I Use of the orthogonal polynomials associated with the
measure α (if we know them)

∫ b

a
pi (λ)pj(λ) dα(λ) = δi ,j

P(λ) = [p0(λ) p1(λ) · · · pN−1(λ)]T , eN = (0 0 · · · 0 1)T

λP(λ) = JNP(λ) + γNpN(λ)eN

JN =


ω1 γ1

γ1 ω2 γ2

. . .
. . .

. . .

γN−2 ωN−1 γN−1

γN−1 ωN


JN is a Jacobi matrix, its eigenvalues are real, simple and located

in [a, b]

References

F.V. Atkinson, Discrete and continuous boundary problems,
Academic Press, (1964)

C. Brezinski, Biorthogonality and its applications to
numerical analysis, Marcel Dekker, (1992)

T.S. Chihara, An introduction to orhogonal polynomials,
Gordon and Breach, (1978)

G. Dahlquist and A. Björck, Numerical methods in
scientific computing, volume I, SIAM, (2008)

G. Dahlquist, S.C. Eisenstat and G.H. Golub,
Bounds for the error of linear systems of equations using the
theory of moments, J. Math. Anal. Appl., v 37, (1972),
pp 151–166

G. Dahlquist, G.H. Golub and S.G. Nash, Bounds for
the error in linear systems. In Proc. of the Workshop on
Semi–Infinite Programming, R. Hettich Ed., Springer (1978),
pp 154–172

P.J. Davis and P. Rabinowitz, Methods of numerical
integration, Second Edition, Academic Press, (1984)

W. Gautschi, Orthogonal polynomials: computation and
approximation, Oxford University Press, (2004)

G.H. Golub and G. Meurant, Matrices, moments and
quadrature, in Numerical Analysis 1993, D.F. Griffiths and
G.A. Watson eds., Pitman Research Notes in Mathematics,
v 303, (1994), pp 105–156

G.H. Golub and J.H. Welsch, Calculation of Gauss
quadrature rules, Math. Comp., v 23, (1969), pp 221–230

D.P. Laurie, Anti–Gaussian quadrature formulas,
Math. Comp., v 65 n 214, (1996), pp 739–747

J. Stoer and R. Bulirsch, Introduction to numerical
analysis, second edition, Springer Verlag, (1983)

G.W. Struble, Orthogonal polynomials: variable–signed
weight functions, Numer. Math., v 5, (1963), pp 88–94

G. Szegö, Orthogonal polynomials, Third Edition, American
Mathematical Society, (1974)

Matrices, moments and quadrature with
applications

(II)

Gérard MEURANT

October 2010

1 Previous episode

2 The Gauss rule

3 The Gauss–Radau rule

4 The Gauss–Lobatto rule

5 Computation of the Gauss rules

6 Nonsymmetric Gauss quadrature rules

7 The block Gauss quadrature rules

8 The Lanczos algorithm

9 The nonsymmetric Lanczos algorithm

10 The block Lanczos algorithm

11 The conjugate gradient algorithm

12 The case u = v

Previous episode

We wrote the quadratic form

uT f (A)u

as a Riemann-Stieltjes integral involving an unknown measure α

Then, we were looking for a Gauss quadrature approximation to
this integral(assuming for the moment that we know the
orthogonal polynomials associated to α; that is, the Jacobi matrix)

The Gauss rule

Theorem
The eigenvalues of JN (the so–called Ritz values θ

(N)
j which are

also the zeros of pN) are the nodes tj of the Gauss quadrature rule.
The weights wj are the squares of the first elements of the
normalized eigenvectors of JN

Proof.
The monic polynomial

∏N
j=1(λ− tj) is orthogonal to all

polynomials of degree less than or equal to N − 1. Therefore, (up
to a multiplicative constant) it is the orthogonal polynomial
associated to α and the nodes of the quadrature rule are the zeros
of the orthogonal polynomial, that is the eigenvalues of JN

The vector P(tj) is an unnormalized eigenvector of JN

corresponding to the eigenvalue tj
If q is an eigenvector with norm 1, we have P(tj) = ωq with a
scalar ω. From the Christoffel–Darboux relation (which I didn’t
state)

wjP(tj)
TP(tj) = 1, j = 1, . . . ,N

Then
wjP(tj)

TP(tj) = wjω
2‖q‖2 = wjω

2 = 1

Hence, wj = 1/ω2. To find ω we can pick any component of the
eigenvector q, for instance, the first one which is different from
zero ω = p0(tj)/q1 = 1/q1. Then, the weight is given by

wj = q2
1

If the integral of the measure is not 1

wj = q2
1µ0 = q2

1

∫ b

a
dα(λ)

The knowledge of the Jacobi matrix and of the first moment allows
to compute the nodes and weights of the Gauss quadrature rule

Golub and Welsch showed how the squares of the first components
of the eigenvectors can be computed without having to compute
the other components with a QR–like method

I [f] =

∫ b

a
f (λ) dα(λ) =

N∑
j=1

wG
j f (tG

j) + RG [f]

with

RG [f] =
f (2N)(η)

(2N)!

∫ b

a

 N∏
j=1

(λ− tG
j)

2

dα(λ)

The monic polynomial
∏N

j=1(t
G
j − λ) which is the determinant χN

of JN − λI can be written as γ1 · · · γN−1pN(λ)

Theorem
Assume f is such that f (2n)(ξ) > 0, ∀n, ∀ξ, a < ξ < b, and let

LG [f] =
N∑

j=1

wG
j f (tG

j)

The Gauss rule is exact for polynomials of degree less than or
equal to 2N − 1 and

LG [f] ≤ I [f]

Moreover ∀N, ∃η ∈ [a, b] such that

I [f]− LG [f] = (γ1 · · · γN−1)
2 f (2N)(η)

(2N)!

To summarize:

if we know the Jacobi matrix of the coefficients of the orthogonal
polynomials associated to the measure α, we can compute an
estimate (or bound) of the Riemann-Stieltjes integral

If we know the Jacobi matrix associated with our piecewise
constant measure, then we can obtain estimates (or bounds -
depending on f) for our quadratic form uT f (A)u

We will see later how we can compute this Jacobi matrix

The Gauss–Radau rule

To obtain the Gauss–Radau rule, we have to extend the matrix JN

in such a way that it has one prescribed eigenvalue z1 = a or b

Assume z1 = a. We wish to construct pN+1 such that pN+1(a) = 0

0 = γN+1pN+1(a) = (a− ωN+1)pN(a)− γNpN−1(a)

This gives

ωN+1 = a− γN
pN−1(a)

pN(a)

Note that
(JN − aI)P(a) = −γNpN(a)eN

Let δ(a) = [δ1(a), · · · , δN(a)]T with

δl(a) = −γN
pl−1(a)

pN(a)
l = 1, . . . ,N

This gives ωN+1 = a + δN(a) and δ(a) satisfies

(JN − aI)δ(a) = γ2
NeN

I we generate γN

I we solve the tridiagonal system for δ(a), this gives δN(a)

I we compute ωN+1 = a + δN(a)

ĴN+1 =

(
JN γNeN

γN(eN)T ωN+1

)
gives the nodes and the weights of the Gauss–Radau quadrature

rule

Theorem
Assume f is such that f (2n+1)(ξ) < 0, ∀n, ∀ξ, a < ξ < b. Let

UGR [f] =
N∑

j=1

wa
j f (ta

j) + va
1 f (a)

wa
j , va

1 , ta
j being the weights and nodes computed with z1 = a and

let LGR

LGR [f] =
N∑

j=1

wb
j f (tb

j) + vb
1 f (b)

wb
j , vb

1 , tb
j being the weights and nodes computed with z1 = b.

The Gauss–Radau rule is exact for polynomials of degree less than
or equal to 2N and we have

LGR [f] ≤ I [f] ≤ UGR [f]

Theorem (end)

Moreover ∀N ∃ ηU , ηL ∈ [a, b] such that

I [f]− UGR [f] =
f (2N+1)(ηU)

(2N + 1)!

∫ b

a
(λ− a)

 N∏
j=1

(λ− ta
j)

2

dα(λ)

I [f]− LGR [f] =
f (2N+1)(ηL)

(2N + 1)!

∫ b

a
(λ− b)

 N∏
j=1

(λ− tb
j)

2

dα(λ)

The Gauss–Lobatto rule

We would like to have

pN+1(a) = pN+1(b) = 0

Using the recurrence relation(
pN(a) pN−1(a)
pN(b) pN−1(b)

)(
ωN+1

γN

)
=

(
a pN(a)
b pN(b)

)
Let

δl = − pl−1(a)

γNpN(a)
, µl = − pl−1(b)

γNpN(b)
, l = 1, . . . ,N

then
(JN − aI)δ = eN , (JN − bI)µ = eN

(
1 −δN

1 −µN

)(
ωN+1

γ2
N

)
=

(
a
b

)

I we solve the tridiagonal systems for δ and µ, this gives δN and
µN

I we compute ωN+1 and γN

ĴN+1 =

(
JN γNeN

γN(eN)T ωN+1

)

Theorem
Assume f is such that f (2n)(ξ) > 0, ∀n, ∀ξ, a < ξ < b and let

UGL[f] =
N∑

j=1

wGL
j f (tGL

j) + vGL
1 f (a) + vGL

2 f (b)

tGL
j , wGL

j , vGL
1 and vGL

2 being the nodes and weights computed
with a and b as prescribed nodes. The Gauss–Lobatto rule is exact
for polynomials of degree less than or equal to 2N + 1 and

I [f] ≤ UGL[f]

Moreover ∀N ∃ η ∈ [a, b] such that

I [f]−UGL[f] =
f (2N+2)(η)

(2N + 2)!

∫ b

a
(λ−a)(λ−b)

 N∏
j=1

(λ− tGL
j)

2

dα(λ)

Computation of the Gauss rules
The weights wi are given by the squares of the first components of
the eigenvectors wi = (z i

1)
2 = ((e1)T z i)2

Theorem

N∑
l=1

wl f (tl) = (e1)T f (JN)e1

Proof.
N∑

l=1

wl f (tl) =
N∑

l=1

(e1)T z l f (tl)(z
l)T e1

= (e1)T

(
N∑

l=1

z l f (tl)(z
l)T

)
e1

= (e1)TZN f (ΘN)ZT
N e1

= (e1)T f (JN)e1

This result means that we do not necessarily have to compute the
nodes and weights (that is, the eigenvalues and first entries of the
eigenvectors) if we know how to compute the (1, 1) element of
f (JN) where JN is the Jacobi matrix

For f (x) = 1/x we have to compute

(J−1
N)1,1

for a symmetric tridiagonal matrix JN and this is easy to do

Nonsymmetric Gauss quadrature rules

The following will be useful for u 6= v

We consider the case where the measure α can be written as

α(λ) =
l∑

k=1

αkδk , λl ≤ λ < λl+1, l = 1, . . . ,N − 1

where αk 6= δk and αkδk ≥ 0
We assume that there exists two sequences of mutually orthogonal
(sometimes called bi–orthogonal) polynomials p and q such that

γjpj(λ) = (λ− ωj)pj−1(λ)− βj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1

βjqj(λ) = (λ− ωj)qj−1(λ)− γj−1qj−2(λ), q−1(λ) ≡ 0, q0(λ) ≡ 1

with 〈pi , qj〉 = 0, i 6= j

Let
P(λ)T = [p0(λ) p1(λ) · · · pN−1(λ)]

Q(λ)T = [q0(λ) q1(λ) · · · qN−1(λ)]

and

JN =


ω1 γ1

β1 ω2 γ2

. . .
. . .

. . .

βN−2 ωN−1 γN−1

βN−1 ωN


In matrix form

λP(λ) = JNP(λ) + γNpN(λ)eN

λQ(λ) = JT
N Q(λ) + βNqN(λ)eN

Proposition

pj(λ) =
βj · · ·β1

γj · · · γ1
qj(λ)

Hence, qN is a multiple of pN and the polynomials have the same
roots which are also the common real eigenvalues of JN and JT

N

We define the quadrature rule as∫ b

a
f (λ) dα(λ) =

N∑
j=1

f (θj)sj tj + R[f]

where θj is an eigenvalue of JN , sj is the first component of the
eigenvector uj of JN corresponding to θj and tj is the first
component of the eigenvector vj of JT

N corresponding to the same
eigenvalue, normalized such that vT

j uj = 1

Theorem
Assume that γjβj 6= 0, then the nonsymmetric Gauss quadrature
rule is exact for polynomials of degree less than or equal to 2N − 1

The remainder is characterized as

R[f] =
f (2N)(η)

(2N)!

∫ b

a
pN(λ)2 dα(λ)

The extension of the Gauss–Radau and Gauss–Lobatto rules to the
nonsymmetric case is almost identical to the symmetric case

The block Gauss quadrature rules

Also useful for the case u 6= v

The integral
∫ b
a f (λ)dα(λ) is now a 2× 2 symmetric matrix. The

most general quadrature formula is of the form∫ b

a
f (λ)dα(λ) =

N∑
j=1

Wj f (Tj)Wj + R[f]

where Wj and Tj are symmetric 2× 2 matrices. This can be
reduced to

2N∑
j=1

f (tj)u
j(uj)T

where tj is a scalar and uj is a vector with two components

There exist orthogonal matrix polynomials related to α such that

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)ΓT
j−1

p0(λ) ≡ I2, p−1(λ) ≡ 0

This can be written as

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN+[0, . . . , 0, pN(λ)ΓN]

where

JN =


Ω1 ΓT

1

Γ1 Ω2 ΓT
2

. . .
. . .

. . .

ΓN−2 ΩN−1 ΓT
N−1

ΓN−1 ΩN


is a symmetric block tridiagonal matrix of order 2N

The nodes tj are the zeros of the determinant of the matrix
orthogonal polynomials that is the eigenvalues of JN and ui is the
vector consisting of the two first components of the corresponding
eigenvector
However, the eigenvalues may have a multiplicity larger than 1
Let θi , i = 1, . . . , l be the set of distinct eigenvalues and ni their
multiplicities. The quadrature rule is then

l∑
i=1

 ni∑
j=1

(w j
i)(w

j
i)

T

 f (θi)

The block Gauss quadrature rule is exact for polynomials of degree
less than or equal to 2N − 1 but the proof is rather involved

Skip Radau and Lobatto

The block Gauss–Radau rule

We would like a to be a double eigenvalue of JN+1

JN+1P(a) = aP(a)− [0, . . . , 0, pN+1(a)ΓN+1]
T

apN(a)− pN(a)ΩN+1 − pN−1(a)Γ
T
N = 0

If pN(a) is non singular

ΩN+1 = aI2 − pN(a)−1pN−1(a)Γ
T
N

But

(JN − aI)

 −p0(a)
TpN(a)−T

...
−pN−1(a)

TpN(a)−T

 =

 0
...

ΓT
N



I We first solve

(JN − aI)

 δ0(a)
...

δN−1(a)

 =

 0
...

ΓT
N


I We compute

ΩN+1 = aI2 + δN−1(a)
TΓT

N

The block Gauss–Lobatto rule

The generalization of the Gauss–Lobatto construction to the block
case is a little more difficult
We would like to have a and b as double eigenvalues of the matrix
JN+1

It gives (
I2 p−1

N (a)pN−1(a)

I2 p−1
N (b)pN−1(b)

)(
ΩN+1

ΓT
N

)
=

(
aI2
bI2

)
Let δ(λ) be the solution of

(JN − λI)δ(λ) = (0 . . . 0 I2)
T

Then, as before

δN−1(λ) = −pN−1(λ)TpN(λ)−TΓ−T
N

Solving the 4× 4 linear system we obtain

ΓT
NΓN = (b − a)(δN−1(a)− δN−1(b))−1

Thus, ΓN is given as a Cholesky factorization of the right hand
side matrix which is positive definite because δN−1(a) is a diagonal
block of the inverse of (JN − aI)−1 which is positive definite and
−δN−1(b) is the negative of a diagonal block of (JN − bI)−1 which
is negative definite

From ΓN , we compute

ΩN+1 = aI2 + ΓNδN−1(a)Γ
T
N

Computation of the block Gauss rules

Theorem

2N∑
i=1

f (ti)uiu
T
i = eT f (JN)e

where eT = (I2 0 . . . 0)

Here we need the 2× 2 principal matrix of f (JN) where JN is a
block tridiagonal matrix

How do we generate the Jacobi matrix corresponding to the
measure α which is unknown?

The answer is to use the Lanczos algorithm

The Lanczos algorithm
Let A be a real symmetric matrix of order n
The Lanczos algorithm constructs an orthogonal basis of a Krylov
subspace spanned by the columns of

Kk =
(
v , Av , · · · , Ak−1v

)
Gram–Schmidt orthogonalization (Arnoldi) v1 = v

hi ,j = (Av j , v i), i = 1, . . . , j

v̄ j = Av j −
j∑

i=1

hi ,jv
i

hj+1,j = ‖v̄ j‖, if hj+1,j = 0 then stop

v j+1 =
v̄ j

hj+1,j

Aleksei N. Krylov (1863-1945)

AVk = VkHk + hk+1,kvk+1(ek)T

Hk is an upper Hessenberg matrix with elements hi ,j

Note that hi ,j = 0, j = 1, . . . , i − 2, i > 2

Hk = V T
k AVk

If A is symmetric, Hk is symmetric and therefore tridiagonal

Hk = Jk

We also have AVn = VnJn, if no v j is zero before step n since
vn+1 = 0 because vn+1 is a vector orthogonal to a set of n
orthogonal vectors in a space of dimension n
Otherwise there exists an m < n for which AVm = VmJm and the
algorithm has found an invariant subspace of A, the eigenvalues of
Jm being eigenvalues of A

starting from a vector ṽ1 = v/‖v‖

α1 = (Av1, v1), ṽ2 = Av1 − α1v
1

and then, for k = 2, 3, . . .

ηk−1 = ‖ṽk‖

vk =
ṽk

ηk−1

αk = (vk ,Avk) = (vk)TAvk

ṽk+1 = Avk − αkvk − ηk−1v
k−1

Cornelius Lanczos (1893-1974)

A variant of the Lanczos algorithm has been proposed by
Chris Paige to improve the local orthogonality in finite precision
computations

αk = (vk)T (Avk − ηk−1v
k−1)

ṽk+1 = (Avk − ηk−1v
k−1)− αkvk

Since we can suppose that ηi 6= 0, the tridiagonal Jacobi matrix Jk

has real and simple eigenvalues which we denote by θ
(k)
j

They are known as the Ritz values and are the approximations of
the eigenvalues of A given by the Lanczos algorithm

Theorem
Let χk(λ) be the determinant of Jk − λI (which is a monic
polynomial), then

vk = pk(A)v1, pk(λ) = (−1)k−1 χk−1(λ)

η1 · · · ηk−1

The polynomials pk of degree k − 1 are called the normalized
Lanczos polynomials

The polynomials pk satisfy a scalar three–term recurrence

ηkpk+1(λ) = (λ− αk)pk(λ)− ηk−1pk−1(λ), k = 1, 2, . . .

with initial conditions, p0 ≡ 0, p1 ≡ 1

Theorem
Consider the Lanczos vectors vk . There exists a measure α such
that

(vk , v l) = 〈pk , pl〉 =

∫ b

a
pk(λ)pl(λ)dα(λ)

where a ≤ λ1 = λmin and b ≥ λn = λmax , λmin and λmax being
the smallest and largest eigenvalues of A

Proof.
Let A = QΛQT be the spectral decomposition of A
Since the vectors v j are orthonormal and pk(A) = Qpk(Λ)QT , we
have

(vk , v l) = (v1)Tpk(A)Tpl(A)v1

= (v1)TQpk(Λ)QTQpl(Λ)QT v1

= (v1)TQpk(Λ)pl(Λ)QT v1

=
n∑

j=1

pk(λj)pl(λj)[v̂j]
2,

where v̂ = QT v1

The last sum can be written as an integral for a measure α which
is piecewise constant

α(λ) =


0 if λ < λ1∑i

j=1[v̂j]
2 if λi ≤ λ < λi+1∑n

j=1[v̂j]
2 if λn ≤ λ

The measure α has a finite number of points of increase at the
(unknown) eigenvalues of A

If you remember the first lecture, this is precisely the measure we
need. Hence we can generate the Jacobi matrix for our (unknown)
measure α by the Lanczos algorithm

The Lanczos algorithm can also be used to solve linear systems
Ax = c when A is symmetric and c is a given vector

Let x0 be a given starting vector and r0 = c − Ax0 be the
corresponding residual
Let v = v1 = r0/‖r0‖

xk = x0 + Vkyk

We request the residual rk = c − Axk to be orthogonal to the
Krylov subspace of dimension k

V T
k rk = V T

k c − V T
k Ax0 − V T

k AVkyk = V T
k r0 − Jkyk = 0

But, r0 = ‖r0‖v1 and V T
k r0 = ‖r0‖e1

Jkyk = ‖r0‖e1

The nonsymmetric Lanczos algorithm

When the matrix A is not symmetric we cannot generally construct
a vector vk+1 orthogonal to all the previous basis vectors by only
using the two previous vectors vk and vk−1

Construct bi-orthogonal sequences using AT

choose two starting vectors v1 and ṽ1 with (v1, ṽ1) 6= 0 normalized
such that (v1, ṽ1) = 1. We set v0 = ṽ0 = 0. Then for k = 1, 2, . . .

zk = Avk − ωkvk − ηk−1v
k−1

wk = AT ṽk − ωk ṽk − η̃k−1ṽ
k−1

ωk = (ṽk ,Avk), ηk η̃k = (zk ,wk)

vk+1 =
zk

η̃k
, ṽk+1 =

wk

ηk

Jk =


ω1 η1

η̃1 ω2 η2

. . .
. . .

. . .

η̃k−2 ωk−1 ηk−1

η̃k−1 ωk


and

Vk = [v1 · · · vk], Ṽk = [ṽ1 · · · ṽk]

Then, in matrix form

AVk = VkJk + η̃kvk+1(ek)T

AT Ṽk = ṼkJT
k + ηk ṽk+1(ek)T

Theorem
If the nonsymmetric Lanczos algorithm does not break down with
ηk η̃k being zero, the algorithm yields biorthogonal vectors such
that

(ṽ i , v j) = 0, i 6= j , i , j = 1, 2, . . .

The vectors v1, . . . , vk span Kk(A, v1) and ṽ1, . . . , ṽk span
Kk(AT , ṽ1). The two sequences of vectors can be written as

vk = pk(A)v1, ṽk = p̃k(AT)ṽ1

where pk and p̃k are polynomials of degree k − 1

η̃kpk+1 = (λ− ωk)pk − ηk−1pk−1

ηk p̃k+1 = (λ− ωk)p̃k − η̃k−1p̃k−1

The algorithm breaks down if at some step we have (zk ,wk) = 0

Either

I a) zk = 0 and/or wk = 0
If zk = 0 we can compute the eigenvalues or the solution of
the linear system Ax = c . If zk 6= 0 and wk = 0, the only way
to deal with this situation is to restart the algorithm

I b) The more dramatic situation (“serious breakdown”) is
when (zk ,wk) = 0 with zk and wk 6= 0
Need to use look–ahead strategies or restart

For our purposes we will use the nonsymmetric Lanczos algorithm
with a symmetric matrix!

We can choose

ηk = ±η̃k = ±
√
|(zk ,wk)|

with for instance, ηk ≥ 0 and η̃k = sgn[(zk ,wk)] ηk . Then

p̃k = ±pk

The block Lanczos algorithm

See Golub and Underwood

We consider only 2× 2 blocks

Let X0 be an n × 2 given matrix, such that XT
0 X0 = I2. Let

X−1 = 0 be an n × 2 matrix. Then, for k = 1, 2, . . .

Ωk = XT
k−1AXk−1

Rk = AXk−1 − Xk−1Ωk − Xk−2Γ
T
k−1

XkΓk = Rk

The last step is the QR decomposition of Rk such that Xk is n× 2
with XT

k Xk = I2

We obtain a block tridiagonal matrix

I The matrix Rk can eventually be rank deficient and in that
case Γk is singular

I One of the columns of Xk can be chosen arbitrarily

I To complete the algorithm, we choose this column to be
orthogonal with the previous block vectors Xj

The block Lanczos algorithm generates a sequence of matrices
such that

XT
j Xi = δij I2

Proposition

Xi =
i∑

k=0

AkX0C
(i)
k

where C
(i)
k are 2× 2 matrices

Theorem
The matrix valued polynomials pk satisfy

pk(λ)Γk = λpk−1(λ)− pk−1(λ)Ωk − pk−2(λ)ΓT
k−1

p−1(λ) ≡ 0, p0(λ) ≡ I2

where λ is a scalar and pk(λ) =
∑k

j=0 λjX0C
(k)
j

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN+[0, . . . , 0, pN(λ)ΓN]

and as P(λ) = [p0(λ), . . . , pN−1(λ)]T

JNP(λ) = λP(λ)− [0, . . . , 0, pN(λ)ΓN]T

where JN is block tridiagonal

Theorem
Considering the matrices Xk , there exists a matrix measure α such
that

XT
i Xj =

∫ b

a
pi (λ)Tdα(λ)pj(λ) = δij I2

where a ≤ λ1 = λmin and b ≥ λn = λmax

Proof.

δij I2 = XT
i Xj =

(
i∑

k=0

(C
(i)
k)TXT

0 Ak

)(
j∑

l=0

AlX0C
(j)
l

)
=

∑
k,l

(C
(i)
k)TXT

0 QΛk+lQTX0C
(j)
l

=
∑
k,l

(C
(i)
k)T X̂Λk+l X̂TC

(j)
l

=
∑
k,l

(C
(i)
k)T

(
n∑

m=1

λk+l
m X̂mX̂T

m

)
C

(j)
l

=
n∑

m=1

(∑
k

λk
m(C

(i)
k)T

)
X̂mX̂T

m

(∑
l

λl
mC

(j)
l

)

where X̂m are the columns of X̂ = XT
0 Q which is a 2× n matrix

Hence

XT
i Xj =

n∑
m=1

pi (λm)T X̂mX̂T
m pj(λm)

The sum in the right hand side can be written as an integral for a
2× 2 matrix measure

α(λ) =


0 if λ < λ1∑i

j=1 X̂j X̂
T
j if λi ≤ λ < λi+1∑n

j=1 X̂j X̂
T
j if λn ≤ λ

Then

XT
i Xj =

∫ b

a
pi (λ)T dα(λ) pj(λ)

The conjugate gradient algorithm
The conjugate gradient (CG) algorithm is an iterative method to
solve linear systems Ax = c where the matrix A is symmetric
positive definite (Hestenes and Stiefel 1952)
It can be obtained from the Lanczos algorithm by using the LU
factorization of Jk

starting from a given x0 and r0 = c − Ax0:
for k = 0, 1, . . . until convergence do

βk =
(rk , rk)

(rk−1, rk−1)
, β0 = 0

pk = rk + βkpk−1

γk =
(rk , rk)

(Apk , pk)

xk+1 = xk + γkpk

rk+1 = rk − γkApk

Magnus Hestenes (1906-1991)

Eduard Stiefel (1909-1978)

In exact arithmetic the residuals rk are orthogonal and

vk+1 = (−1)k rk/‖rk‖

Moreover

αk =
1

γk−1
+

βk−1

γk−2
, β0 = 0, γ−1 = 1

ηk =

√
βk

γk−1

The iterates are given by

xk+1 = x0 + sk(A)r0

where sk is a polynomial of degree k

Let
‖εk‖A = (Aεk , εk)1/2

be the A-norm of the error εk = x − xk

Theorem
Consider all the iterative methods that can be written as

xk+1 = x0 + qk(A)r0, x0 = x0, r0 = c − Ax0

where qk is a polynomial of degree k
Of all these methods, CG is the one which minimizes ‖εk‖A at
each iteration

As a consequence

Theorem

‖εk+1‖2
A ≤ max

1≤i≤n
(tk+1(λi))

2‖ε0‖2
A

for all polynomials tk+1 of degree k + 1 such that tk+1(0) = 1

Theorem

‖εk‖A ≤ 2

(√
κ− 1√
κ + 1

)k

‖ε0‖A

where κ = λn
λ1

is the condition number of A

This bound is usually overly pessimistic. This is why it is useful to
be able to compute estimates (or bounds) for ‖ek‖A

Computing uT f (A)u

When u = v , we remark that α is an increasing positive function

The algorithm is the following:

I normalize u if necessary to obtain v1

I run k iterations of the Lanczos algorithm with A starting from
v1, compute the Jacobi matrix Jk

I if we use the Gauss–Radau or Gauss–Lobatto rules, modify Jk

to J̃k accordingly. For the Gauss rule J̃k = Jk

I if this is feasible, compute (e1)T f (J̃k)e1. Otherwise, compute
the eigenvalues and the first components of the eigenvectors
using the Golub and Welsch algorithm to obtain the
approximations from the Gauss, Gauss–Radau and
Gauss–Lobatto quadrature rules

Let n be the order of the matrix A and Vk be the n × k matrix
whose columns are the Lanczos vectors
If A has distinct eigenvalues, after n Lanczos iterations we have
AVn = VnJn

If Q (resp. Z) is the matrix of the eigenvectors of A (resp. Jn) we
have the relation VnZ = Q. If ‖u‖ = 1

uT f (A)u = (e1)TV T
n Qf (Λ)QTVne

1 = (e1)TZT f (Λ)Ze1 = (e1)T f (Jn)e
1

R[f] = (e1)T f (Jn)e
1 − (e1)T f (Jk)e1

The convergence of the Gauss quadrature approximation to the
integral depends on the convergence of the Ritz values to the
eigenvalues of A

Preconditioning

The convergence rate can be improved in some cases by
preconditioning

If we are interested in uTA−1u and if we have a preconditioner
M = LLT for A

uTA−1u = uTL−T (L−1AL−T)−1L−1u

L−1AL−T is the preconditioned matrix to which we apply the
Lanczos algorithm with the vector L−1u

Example of computations of an element of the inverse

2D Poisson problem, GL, n = 900, A−1
150,150 = 0.3602

k G G–R bL G–R bU G–L

10 0.3578 0.3581 0.3777 0.3822

20 0.3599 0.3599 0.3608 0.3609

30 0.3601 0.3601 0.3602 0.3602

40 0.3602 0.3602 0.3602 0.3602

We will see more examples next time. . .

References

W.E. Arnoldi, The principle of minimized iterations in the
solution of the matrix eigenvalue problem, Quarterly of Appl.
Math., v 9, (1951), pp 17–29

F.V. Atkinson, Discrete and continuous boundary problems,
Academic Press, (1964)

G. Dahlquist and A. Björck, Numerical methods in
scientific computing, volume I, SIAM, (2008)

G. Dahlquist, S.C. Eisenstat and G.H. Golub,
Bounds for the error of linear systems of equations using the
theory of moments, J. Math. Anal. Appl., v 37, (1972),
pp 151–166

G. Dahlquist, G.H. Golub and S.G. Nash, Bounds for
the error in linear systems. In Proc. of the Workshop on
Semi–Infinite Programming, R. Hettich Ed., Springer (1978),
pp 154–172

P.J. Davis and P. Rabinowitz, Methods of numerical
integration, Second Edition, Academic Press, (1984)

G.H. Golub and G. Meurant, Matrices, moments and
quadrature, in Numerical Analysis 1993, D.F. Griffiths and
G.A. Watson eds., Pitman Research Notes in Mathematics,
v 303, (1994), pp 105–156

G.H. Golub and R. Underwood, The block Lanczos
method for computing eigenvalues, in Mathematical Software
III, J. Rice Ed., (1977), pp 361–377

G.H. Golub and J.H. Welsch, Calculation of Gauss
quadrature rules, Math. Comp., v 23, (1969), pp 221–230

M.R. Hestenes and E. Stiefel, Methods of conjugate
gradients for solving linear systems, J. Nat. Bur. Stand., v 49
n 6, (1952), pp 409–436

C. Lanczos, An iteration method for the solution of the
eigenvalue problem of linear differential and integral operators,
J. Res. Nat. Bur. Standards, v 45, (1950), pp 255–282

C. Lanczos, Solution of systems of linear equations by
minimized iterations, J. Res. Nat. Bur. Standards, v 49,
(1952), pp 33–53

G. Meurant, Computer solution of large linear systems,
North–Holland, (1999)

G. Meurant, The Lanczos and Conjugate Gradient
algorithms, from theory to finite precision computations,
SIAM, (2006)

G. Meurant and Z. Strakoš, The Lanczos and conjugate
gradient algorithms in finite precision arithmetic, Acta
Numerica, (2006)

J. Stoer and R. Bulirsch, Introduction to numerical
analysis, second edition, Springer Verlag, (1983)

Matrices, moments and quadrature with
applications

(III)

Gérard MEURANT

October 2010

1 Previous episodes

2 The case u 6= v

3 The block case

4 Analytic bounds for elements of functions of matrices

5 Examples

6 Numerical experiments

7 Jacobi matrices

8 Inverse eigenvalue problem

9 Modifications of weight functions

10 Formulas for the A–norm of the error in CG

11 Estimates of the l2 norm of the error

12 Relation with finite element problems

13 Numerical experiments

Previous episodes

We wrote the quadratic form

uT f (A)u

as a Riemann-Stieltjes integral involving an unknown measure α

We were looking for a Gauss quadrature approximation to this
integral

Then, we have seen that we can generate the orthogonal
polynomials associated to α; that is, the Jacobi matrix by using
the Lanczos algorithm

The case u 6= v

A first possibility is to use the (so-called polarization) identity

uT f (A)v = [(u + v)T f (A)(u + v)− (u − v)T f (A)(u − v)]/4

Another possibility is to apply the nonsymmetric Lanczos algorithm
to the symmetric matrix A
The framework of the algorithm is the same as for the case u = v .
However, the algorithm may break down
A way to get around the breakdown problem is to introduce a
parameter δ and use v1 = u/δ and ṽ1 = δu + v . This will give an
estimate of uT f (A)v/δ + uT f (A)u

The block case

A third possibility is to use the block Lanczos algorithm

IB [f] = W T f (A)W =

∫ b

a
f (λ) dα(λ)

However, we have seen that we have to start the algorithm from
an n × 2 matrix X0 such that XT

0 X0 = I2

Considering the bilinear form uT f (A)v we would like to use
X0 = [u v] but this does not fulfill the condition on the starting
matrix
We have to orthogonalize the pair [u v] before starting the
algorithm. Let u and v be independent vectors and nu = ‖u‖

ũ =
u

nu
, v̄ = v − uT v

n2
u

u, nv = ‖v̄‖, ṽ =
v̄

nv
,

and we set X0 = [ũ ṽ]

Let J1 be the leading 2× 2 submatrix of the matrix f (Jk)

uT f (A)v ≈ (uT v)J1
1,1 + nunvJ1

1,2

Moreover
uT f (A)u ≈ n2

uJ
1
1,1

vT f (A)v ≈ n2
vJ1

2,2 + 2(uT v)
nu

nv
J1
1,2 +

(uT v)2

n2
u

J1
1,1

Extensions to nonsymmetric matrices

I nonsymmetric Lanczos algorithm (Saylor and Smolarski)

I Arnoldi algorithm (Calvetti, Kim and Reichel)

I Generalized LSQR (Golub, Stoll and Wathen)

I Vorobyev moment problem (Strakoš and Tichý)

Analytic bounds for elements of functions of matrices
Performing analytically one or two Lanczos iterations, we are able
to obtain bounds for the entries of A−1

Theorem
Let A be a symmetric positive definite matrix. Let

s2
i =

∑
j 6=i

a2
ji , i = 1, . . . , n

Using the Gauss, Gauss–Radau and Gauss–Lobatto rules∑
k 6=i

∑
l 6=i ak,iak,lal ,i

ai ,i
∑

k 6=i

∑
l 6=i ak,iak,lal ,i −

(∑
k 6=i a

2
k,i

)2
≤ (A−1)i ,i

ai ,i − b +
s2
i
b

a2
i ,i − ai ,ib + s2

i

≤ (A−1)i ,i ≤
ai ,i − a +

s2
i
a

a2
i ,i − ai ,ia + s2

i

(A−1)i ,i ≤
a + b − aii

ab

Compute analytically α1, η1, α2, the inverse of

J2 =

(
α1 η1

η1 α2

)
is

J−1
2 =

1

α1α2 − η2
1

(
α2 −η1

−η1 α1

)
For Gauss–Radau we have to modify the (2, 2) element of J2

Using the nonsymmetric Lanczos algorithm

Theorem
Let A be a symmetric positive definite matrix and

ti =
∑
k 6=i

ak,i (ak,i + ak,j)− ai ,j(ai ,j + ai ,i)

For (A−1)i ,j + (A−1)i ,i we have the two following estimates

ai ,i + ai ,j − a + ti
a

(ai ,i + ai ,j)2 − a(ai ,i + ai ,j) + ti
,

ai ,i + ai ,j − b + ti
b

(ai ,i + ai ,j)2 − b(ai ,i + ai ,j) + ti

If ti ≥ 0, the first expression with a gives an upper bound and the
second one with b a lower bound

Other functions

We have to compute f (J) for

J =

(
α η
η ξ

)

Proposition

Let δ = (α− ξ)2 + 4η2

γ = exp

(
1

2
(α + ξ −

√
δ)

)
, ω = exp

(
1

2
(α + ξ +

√
δ)

)
The (1, 1) element of the exponential of J is

1

2

[
γ + ω +

ω − γ√
δ

(α− ξ)

]

Theorem
Let

λ+ =
1

2
(α + ξ +

√
δ), λ− =

1

2
(α + ξ −

√
δ)

The (1, 1) element of f (J) is

1

2
√

δ

[
(α− ξ)(f (λ+)− f (λ−)) +

√
δ(f (λ+) + f (λ−))

]

We can obtain analytic bounds for the (i , i) element of f (A) for
any function for which we can compute f (λ+) and f (λ−)

Examples

Example F1
This is an example of dimension 10

A =
1

11



10 9 8 7 6 5 4 3 2 1
9 18 16 14 12 10 8 6 4 2
8 16 24 21 18 15 12 9 6 3
7 14 21 28 24 20 16 12 8 4
6 12 18 24 30 25 20 15 10 5
5 10 15 20 25 30 24 18 12 6
4 8 12 16 20 24 28 21 14 7
3 6 9 12 15 18 21 24 16 8
2 4 6 8 10 12 14 16 18 9
1 2 3 4 5 6 7 8 9 10



This matrix was chosen since. . .

The inverse of A is a tridiagonal matrix

A−1 =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



Example F3
This is an example proposed by Z. Strakoš. Let Λ be a diagonal
matrix

λi = λ1 +

(
i − 1

n − 1

)
(λn − λ1)ρ

n−i , i = 1, . . . , n

Let Q be the orthogonal matrix of the eigenvectors of the
tridiagonal matrix (−1, 2, −1). Then the matrix is

A = QTΛQ

We will use λ1 = 0.1, λn = 100 and ρ = 0.9

Example F4
The matrix is arising from the 5–point finite difference
approximation of the Poisson equation in a unit square with an
m ×m mesh
This gives a linear system Ax = c of order m2

A =


T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T



Each block is of order m and

T =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4



Diagonal elements

Example F1, GL, A−1
5,5 = 2

rule Nit=1 2 3 4 5 6 7

G 0.3667 1.3896 1.7875 1.9404 1.9929 1.9993 2

G–R bL 1.3430 1.7627 1.9376 1.9926 1.9993 2.0000 2

G–R bU 3.0330 2.2931 2.1264 2.0171 2.0020 2.0001 2

G–L 3.1341 2.3211 2.1356 2.0178 2.0021 2.0001 2

Example F3, GL, n = 100, A−1
50,50 = 4.2717

Nit G G–R bL G–R bU G–L

10 2.7850 3.0008 5.1427 5.1664

20 4.0464 4.0505 4.4262 4.4643

30 4.2545 4.2553 4.2883 4.2897

40 4.2704 4.2704 4.2728 4.2733

50 4.2716 4.2716 4.2718 4.2718

60 4.2717 4.2717 4.2717 4.2717

0 20 40 60 80 100 120 140 160
−14

−12

−10

−8

−6

−4

−2

0

2

Error in A−1
50,50, Gauss (blue), CG (red)

Example F4, GL, n = 900, A−1
150,150 = 0.3602

Nit G G–R bL G–R bU G–L

10 0.3578 0.3581 0.3777 0.3822

20 0.3599 0.3599 0.3608 0.3609

30 0.3601 0.3601 0.3602 0.3602

40 0.3602 0.3602 0.3602 0.3602

Non–diagonal elements with the nonsymmetric Lanczos
algorithm

Example F1, GNS, A−1
2,2 + A−1

2,1 = 1

rule Nit=1 2 4 5 6 7

G 0.4074 0.6494 0.9512 0.9998 1.0004 1

G–R bL 0.6181 0.8268 0.9998 1.0004 1.0001 1

G–R bU 2.6483 1.4324 1.0035 1.0012 0.9994 1

G–L 3.2207 1.4932 1.0036 1.0012 0.9993 0.9994

Example F3, GNS, n = 100, A−1
50,50 + A−1

50,49 = 1.4394

Nit G G–R bL G–R bU G–L

10 0.8795 0.9429 2.2057 2.2327

20 1.3344 1.3362 1.5535 1.5839

30 1.4301 1.4308 1.4510 1.4516

40 1.4386 1.4387 1.4404 1.4404

50 1.4394 1.4394 1.4395 1.4395

60 1.4394 1.4394 1.4394 1.4394

Example F4, GNS, n = 900, A−1
150,150 + A−1

150,50 = 0.3665

Nit G G–R bL G–R bU G–L

10 0.3611 0.3615 0.3917 0.3979

20 0.3656 0.3657 0.3678 0.3680

30 0.3663 0.3664 0.3666 0.3666

40 0.3665 0.3665 0.3665 0.3665

Non–diagonal elements with the block Lanczos algorithm

Let (J−1
k)1,1 the 2× 2 (1, 1) block of the inverse of Jk with

Jk =


Ω1 ΓT

1

Γ1 Ω2 ΓT
2

. . .
. . .

. . .

Γk−2 Ωk−1 ΓT
k−1

Γk−1 Ωk


∆1 = Ω1, ∆i = Ωi − Γi−1Ω

−1
i−1Γ

T
i−1, i = 2, . . . , k

Ck = ∆−1
1 ΓT

1 ∆−1
2 ΓT

2 · · ·∆−1
k−1Γ

T
k−1∆

−1
k ΓT

k

(J−1
k+1)1,1 = (J−1

k)1,1 + Ck∆−1
k+1C

T
k

Going from step k to step k + 1 we compute Ck+1 incrementally
Note that we can reuse Ck∆−1

k+1 to compute Ck+1

Example F3, GB, n = 100, A−1
2,1 = −3.2002

Nit G G–R bL G–R bU G–L

2 -3.0808 -3.0948 -3.9996 -4.1691

3 -3.1274 -3.1431 -3.5655 -3.6910

4 -3.2204 -3.2187 -3.2637 -3.5216

5 -3.2015 -3.2001 -3.1974 -3.2473

6 -3.1969 -3.1966 -3.1964 -3.1969

7 -3.1970 -3.1972 -3.1995 -3.1994

8 -3.1993 -3.1995 -3.2008 -3.1999

9 -3.2001 -3.2001 -3.2005 -3.2008

10 -3.2002 -3.2002 -3.2002 -3.2004

We see that we obtain good approximations but not always bounds
As a bonus we also obtain estimates of A−1

1,1 and A−1
2,2

Example F4, GB, n = 900, A−1
400,100 = 0.0597

Nit G G–R bL G–R bU G–L

10 0.0172 0.0207 0.0632 0.0588

20 0.0527 0.0532 0.0616 0.0621

30 0.0590 0.0591 0.0597 0.0597

40 0.0597 0.0597 0.0597 0.0597

Note that for this problem the Gauss rule gives a lower bound,
Gauss–Radau a lower and an upper bound

Dependence on the eigenvalue estimates

We take Example F4 with m = 6
We look at the number of Lanczos iterations needed to obtain an
upper bound for the element (18, 18) with four exact digits

Example F4, GL, n = 36

a=10−4 10−2 0.1 0.3 0.4 1 6

15 13 11 11 8 8 9

With the exact eigenvalue a = 0.3961 we need 9 Lanczos iterations
Note that it works even when a > λmin

Bounds for the elements of the exponential

Example F3, GL, n = 100, exp(A)50,50 = 5.3217 1041. Results
×10−41

Nit G G–R bL G–R bL G–L

2 0.0000 0.0000 7.0288 8.8014

3 0.0075 0.2008 5.6649 6.0776

4 1.0322 2.5894 5.3731 5.4565

5 3.9335 4.7779 5.3270 5.3385

6 5.1340 5.2680 5.3235 5.3232

7 5.3070 5.3178 5.3218 5.3219

8 5.3203 5.3209 5.3218 5.3218

9 5.3212 5.3213 5.3217 5.3217

10 5.3215 5.3217 5.3217 5.3217

11 5.3217 5.3217 5.3217 5.3217

Convergence is faster than with A−1

Example F4, GNS, n = 900, exp(A)50,50 + exp(A)50,49 = 83.8391

rule Nit=2 3 4 5 6 7

G 63.4045 81.4124 83.6607 83.8318 83.8389 83.8391

G–R bL 108.0918 86.3239 83.8796 83.8420 83.8392 83.8391

G–R bU 76.1266 83.7668 83.7781 83.8383 83.8391 83.8391

G–L 163.8043 90.9304 84.1878 83.8530 83.8395 83.8391

Convergence is quite fast

Bounds for the elements of the square root

Example F4, GL, n = 900, (
√

A)50,50 = 1.9189

Nit G G–R bL G–R bU G–L

2 1.9319 1.8945 1.9255 1.8697

3 1.9220 1.9112 1.9209 1.9038

4 1.9201 1.9160 1.9197 1.9140

5 1.9195 1.9176 1.9193 1.9169

6 1.9192 1.9183 1.9191 1.9180

7 1.9191 1.9186 1.9190 1.9185

8 1.9190 1.9187 1.9190 1.9187

9 1.9190 1.9188 1.9190 1.9188

10 1.9190 1.9189 1.9190 1.9189

11 1.9190 1.9189 1.9190 1.9189

12 1.9190 1.9189 1.9189 1.9189

13 1.9189 1.9189 1.9189 1.9189

Jacobi matrices

For our application to compute uT f (A)u we know how to compute
the Jacobi matrix from the Lanczos algorithm

When computing quadrature rules for classical weight functions
(Legendre, Chebyshev, Laguerre, Hermite,. . .) we know explicitly
the Jacobi matrices

But, more generally, how can we compute the Jacobi matrix (the
coefficients of the three-term recurrence of orthogonal
polynomials) ?

We may assume that we know either the measure α or the
moments µk

The Stieltjes procedure

Computation from the measure

With a discrete inner product, sums like

〈p, q〉 =
m∑

j=1

p(tj)q(tj)w
2
j

are trivial to compute given the nodes tj and the weights w2
j

The coefficients of the three–term recurrence are given by

αk+1 =
〈λpk , pk〉
〈pk , pk〉

, γk =
〈pk , pk〉

〈pk−1, pk−1〉

for a monic polynomial

I p0 ≡ 1 → α1

I α1 → p1(tj) (three-term recurrence)

I p1(tj),wj → γ1, α2

I γ1, α2 → p2(tj) (three-term recurrence)

I . . .

For a continuous measure, discretize first, then apply Stieltjes

Computation from the moments

see Szegö or Gautschi
Let

∆0 = 1, ∆k = det(Hk), Hk =


µ0 µ1 · · · µk−1

µ1 µ2 · · · µk
...

...
...

µk−1 µk · · · µ2k−2

 , k = 1, 2, . . .

and

∆′
0 = 0, ∆′

1 = µ1, ∆′
k = det


µ0 µ1 · · · µk−2 µk

µ1 µ2 · · · µk−1 µk+1
...

...
...

...
µk−1 µk · · · µ2k−3 µ2k−1

 , k = 2, 3, . . .

Theorem
The monic orthogonal polynomial πk of degree k associated with
the moments µj , j = 0, . . . , 2k − 1 is

πk(λ) =
1

∆k
det


µ0 µ1 · · · µk

µ1 µ2 · · · µk+1
...

...
...

µk−1 µk · · · µ2k−1

1 λ · · · λk

 , k = 1, 2, . . .

Theorem
The recursion coefficients of the three–term recurrence for the
polynomial πk

πk+1(λ) = (λ−αk+1)πk(λ)−γkπk−1(λ), π−1(λ) = 0, π0(λ) = 1

are given by

αk+1 =
∆′

k+1

∆k+1
−

∆′
k

∆k
, k = 0, 1, . . .

γk =
∆k+1∆k−1

∆2
k

, k = 1, 2, . . .

The map moments → coefficients is badly conditioned (see
Gautschi)

Gautschi used the Cholesky factorization of the Hankel matrix

Hk = RT
k Rk

to obtain the coefficients of the Jacobi matrix

Theorem
Let Hk = RT

k Rk be the Cholesky factorization of the moment
matrix. The coefficients of the orthonormal polynomial are given
by

ηj =
rj+1,j+1

rj ,j
, j = 1, . . . , k−1 α1 = r1,2, αj =

rj ,j+1

rj ,j
−

rj−1,j

rj−1,j−1
, j = 2, . . . , k

The modified Chebyshev algorithm

Using the moments µk to compute the recurrence coefficients of
πk is not be numerically safe (see Gautschi)

Remedy: use another family of known orthogonal polynomials
(Wheeler; Sack and Donovan)

The modified moments (using orthogonal known polynomials pk)
are

mk =

∫ b

a
pk(λ) dα

pk+1(λ) = (λ− ak+1)pk(λ)− ckpk−1(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1

The mixed moments related to pl and α are

σk,l =

∫ b

a
πk(λ)pl(λ) dα(λ)

σ0,l = ml , l = 0, . . . , 2m − 1

By orthogonality, we have σk,l = 0, k > l and

σk,k =

∫ b

a
πk(λ)λpk−1(λ) dα(λ) =

∫ b

a
π2

k(λ) dα(λ)

Algorithm: compute recursively the mixed moments and the
coefficients of πk

The mixed moments at level k are given by

σk,l = σk−1,l+1 − (αk − al+1)σk−1,l − ηk−1σk−2,l + clσk−1,l−1

(k − 2, l), (k − 1, l − 1), (k − 1, l), (k − 1, l + 1) → (k, l)

The modified Chebyshev algorithm is

σ−1,l = 0, l = 1, . . . , 2m − 2, σ0,l = ml , l = 0, 1, . . . , 2m − 1

α1 = a1 +
m1

m0

and for k = 1, . . . ,m − 1

σk,l = σk−1,l+1 + (al+1 − αk)σk−1,l + clσk−1,l−1 − ηk−1σk−2,l

l = k, . . . , 2m − k − 1

αk+1 = ak+1 +
σk,k+1

σk,k
−

σk−1,k

σk−1,k−1

ηk =
σk,k

σk−1,k−1

Inverse eigenvalue problem

The following problem is related to ours:

Given its eigenvalues and the first components of its eigenvectors,
construct a Jacobi matrix Jk

- which means, given the nodes and the weights of a quadrature
rule can we recover the orthogonal polynomials?

see De Boor and Golub; Gragg and Harrod; Reichel; Laurie

Solution by the Lanczos algorithm

Take A = Λ diagonal matrix of the eigenvalues tj , then

vk = pk(A)v1, v1 = v

and

(v i , v j) = (pj(Λm)v , pi (Λm)v) =
m∑

l=1

pj(tl)pi (tl)v
2
l = δi ,j

Hence, if the initial vector v is chosen as the vector of the first
components, the Lanczos polynomials are orthogonal for the given
discrete inner product and the Jacobi matrix which is sought is the
tridiagonal matrix generated by the Lanczos algorithm

Solution using rotations

Gragg and Harrod; Reichel

Let d be a vector whose elements are β0 times the given first
components
Assume that(

1
QT

) (
α0 dT

d Λ

) (
1

Q

)
=

(
α0 β0(e

1)T

β0e
1 Jn

)
with Q an orthogonal matrix

We construct Q incrementally. Let us add (δ, λ) to (d , Λ)1
QT

1

 α0 dT δ
d Λ 0
δ 0 λ

 1
Q

1

 =

 α0 β0(e
1)T δ

β0e
1 Jn 0

δ 0 λ



To tridiagonalize the matrix in the right hand side, we use
rotations to chase the element δ in the last row and column
towards the diagonal

The Kahan–Pal–Walker version of this algorithm is the most
efficient one: it squares some equations to update the squares of
most of the involved quantities

γ2
0 = 1, β2

n = σ2
0 = τ0 = 0, αn+1 = λ, π2

0 = δ2

for k = 1, . . . , n + 1
ρ2
k = β2

k−1 + π2
k−1, β̄2

k−1 = γ2
k−1ρ

2
k

if ρ2
k = 0 then γ2

k = 1, σ2
k = 0 else

γ2
k = β2

k−1/ρ2
k , σ2

k = π2
k−1/ρ2

k

τk = σ2
k(αk − λ)− γ2

kτk−1

ᾱk = αk − (τk − τk−1)
if σ2

k = 0 then π2
k = σ2

k−1β
2
k−1 else π2

k = τ2
k /σ2

k

end

Note that if ξ1 = α1 − λ and

ξk = αk − λ−
β2

k

ξk−1

(which are the diagonal elements of the Cholesky–like
factorization) then τk = σ2

kξk and π2
k = τkξk

Solution using the QD algorithm

The basic QD algorithm (Rutishauser) given the Cholesky
decomposition Jk = LT

k Lk computes the Cholesky decomposition

L̂k L̂T
k of Ĵk = LT

k Lk

Variations of this algorithm were used by Laurie to solve the
inverse problem with his algorithm pftoqd

Modifications of weight functions

How to obtain the coefficients of the three-term recurrences of
orthogonal polynomials related to a weight function r(λ)w(λ)
when knowing the coefficients of the orthogonal polynomials
related to w?

When r is a rational function

r(λ) = q(λ) +
∑

i

ai

λ− ti
+

∑
j

bjλ + cj

(λ− xj)2 + y2
j

where q is a real polynomial, ti , i = 1, 2, . . . and
zj = xj ± ıyj , ı =

√
−1, j = 1, 2, . . . are the real and complex

roots of the denominator of r

Hence, we just have to consider multiplication and division by
linear and quadratic factors as well as addition of measures

This was done by Fischer and Golub; Gautschi; Kautsky and
Golub; Golub and Fischer; Elhay and Kautsky

The most difficult one is the division algorithm

Error norms in solving linear systems

Let A be an SPD matrix of order n and x̃ an approximate solution
of

Ax = c

The residual r is defined as

r = c − Ax̃

The error ε being defined as ε = x − x̃

ε = A−1r

The A–norm of the error is

‖ε‖2
A = εTAε = rTA−1AA−1r = rTA−1r

and the l2 norm is ‖ε‖2 = rTA−2r

I [A, r] = rTA−i r =

∫ b

a
λ−i dα(λ)

Bounds can be obtained by running N iterations of the Lanczos
algorithm

‖r‖2(e1)T (JN)−ie1

However

CG ≡ Lanczos

therefore, it does not make to much sense to run Lanczos to bound
the error norm of CG!

What can we do for CG?

Formulas for the A–norm of the error in CG

Theorem
The square of the A–norm of the error at CG iteration k is given
by

‖εk‖2
A = ‖r0‖2[(J−1

n e1, e1)− (J−1
k e1, e1)]

where n is the order of the matrix A and Jk is the Jacobi matrix
of the Lanczos algorithm whose coefficients can be computed from
those of CG. Moreover

‖εk‖2
A = ‖r0‖2

 n∑
j=1

[(z j
(n))1]

2

λj
−

k∑
j=1

[(z j
(k))1]

2

θ
(k)
j


where z j

(k) is the jth normalized eigenvector of Jk corresponding

to the eigenvalue θ
(k)
j

Proof.
We have Aεk = rk = r0 − AVkyk where Vk is the matrix of the
Lanczos vectors and yk is the solution of Jkyk = ‖r0‖e1

‖εk‖2
A = (Aεk , εk) = (A−1r0, r0)− 2(r0,Vkyk) + (AVkyk ,Vkyk)

But A−1Vn = VnJ
−1
n

r0 = ‖r0‖v1 = ‖r0‖Vne
1

Therefore

A−1r0 = ‖r0‖A−1Vne
1 = ‖r0‖VnJ

−1
n e1

and

(A−1r0, r0) = ‖r0‖2(VnJ
−1
n e1,Vne

1) = ‖r0‖2(J−1
n e1, e1)

Since r0 = ‖r0‖v1 = ‖r0‖Vke1

(r0,Vkyk) = ‖r0‖2(e1, J−1
k e1)

Finally

(AVkyk ,Vkyk) = (V T
k AVkyk , yk) = (Jkyk , yk) = ‖r0‖2(J−1

k e1, e1)

The second relation is obtained by using the spectral
decomposition of Jn and Jk

This formula is the link between CG and Gauss quadrature

It shows that the square of the A–norm of the error is the
remainder of a Gauss quadrature rule for computing (A−1r0, r0)

Estimates of the A–norm of the error

At CG iteration k we do not know (J−1
n)1,1!

Let d be a given delay integer, an approximation of the A–norm of
the error at iteration k − d is obtained by

‖εk−d‖2
A ≈ ‖r0‖2((J−1

k)(1,1) − (J−1
k−d)(1,1))

– This can also be understood as writing

‖εk−d‖2
A − ‖εk‖2

A = ‖r0‖2((J−1
k)(1,1) − (J−1

k−d)(1,1))

and supposing that ‖εk‖A is negligible against ‖εk−d‖A

– Another interpretation is to consider that having a Gauss rule
with k − d nodes at iteration k − d , we use another more precise
Gauss quadrature with k nodes to estimate the error of the
quadrature rule

We have to be careful in computing (J−1
k)(1,1) − (J−1

k−d)(1,1)

Let jk = J−1
k ek be the last column of the inverse of Jk ; Using the

Sherman–Morrison formula

(J−1
k+1)1,1 = (J−1

k)1,1 +
η2
k+1(jk jTk)1,1

αk+1 − η2
k+1(jk)k

Using the Cholesky factorization of Jk whose diagonal elements
are δ1 = α1 and

δi = αi −
η2
i

δi−1
, i = 2, . . . , k

Then

(jk)1 = (−1)k−1 η2 · · · ηk

δ1 · · · δk
, (jk)k =

1

δk

Let bk = (J−1
k)1,1

bk = bk−1 + fk , fk =
η2
kc2

k−1

δk−1(αkδk−1 − η2
k)

=
c2
k

δk

where
ck =

η2 · · · ηk−1

δ1 · · · δk−2

ηk

δk−1
= ck−1

ηk

δk−1

Since Jk is positive definite, fk > 0
Moreover

ck =
η2 · · · ηk

δ1 · · · δk−1
=
‖rk−1‖
‖r0‖

and γk−1 = 1/δk where γk−1 is the CG parameter
(=(rk−1, rk−1)/(pk−1,Apk−1))

Therefore

‖εk−d‖2
A ≈

k−1∑
j=k−d

γj‖r j‖2

This gives a lower bound of the error norm

Other bounds can be obtained with the Gauss–Radau and
Gauss–Lobatto quadrature rules

Gauss–Radau gives an upper bound of the error norm if we know a
lower bound of the smallest eigenvalue

Algorithm CGQL

Let x0 be given, r0 = b − Ax0, p0 = r0, β0 = 0, α−1 = 1, c1 = 1
For k = 1, . . . until convergence

γk−1 =
(rk−1, rk−1)

(pk−1,Apk−1)

αk =
1

γk−1
+

βk−1

γk−2

CGQL (2)
if k = 1 —————————————————–

f1 =
1

α1

δ1 = α1

δ̄1 = α1 − λm

δ1 = α1 − λM

else ——————————————————–

ck = ck−1
ηk

δk−1
=
‖rk−1‖
‖r0‖

δk = αk −
η2
k

δk−1
=

1

γk−1

fk =
η2
kc2

k−1

δk−1(αkδk−1 − η2
k)

= γk−1c
2
k

CGQL (3)

δ̄k = αk − λm −
η2
k

δ̄k−1
= αk − ᾱk−1

δk = αk − λM −
η2
k

δk−1

= αk − αk−1

end ———————————————————

xk = xk−1 + γk−1p
k−1

rk = rk−1 − γk−1Apk−1

βk =
(rk , rk)

(rk−1, rk−1)

ηk+1 =

√
βk

γk−1

pk = rk + βkpk−1

CGQL (4)

ᾱk = λm +
η2
k+1

δ̄k

αk = λM +
η2
k+1

δk

ᾰk =
δ̄kδk

δk − δ̄k

(
λM

δ̄k
− λm

δk

)
η̆2
k+1 =

δ̄kδk

δk − δ̄k
(λM − λm)

f̄k =
η2
k+1c

2
k

δk(ᾱkδk − η2
k+1)

f k =
η2
k+1c

2
k

δk(αkδk − η2
k+1)

f̆k =
η̆2
k+1c

2
k

δk(ᾰkδk − η̆2
k+1)

CGQL (5)

if k > d —————————————————–

gk =
k∑

j=k−d+1

fj

sk−d = ‖r0‖2gk

s̄k−d = ‖r0‖2(gk + f̄k)

sk−d = ‖r0‖2(gk + f k)

s̆k−d = ‖r0‖2(gk + f̆k)

end ———————————————————–

Proposition

Let Jk , Jk , J̄k and J̆k be the tridiagonal matrices of the Gauss,
Gauss–Radau (with b and a as prescribed nodes) and the
Gauss–Lobatto rules

Then, if 0 < a = λm ≤ λmin(A) and b = λM ≥ λmax(A),
‖r0‖(J−1

k)1,1, ‖r0‖(J−1
k)1,1 are lower bounds of ‖e0‖2

A = r0A−1r0,

‖r0‖(J̄−1
k)1,1 and ‖r0‖(J̆−1

k)1,1 are upper bounds of r0A−1r0

Theorem
At iteration number k of CGQL, sk−d and sk−d are lower bounds
of ‖εk−d‖2

A, s̄k−d and s̆k−d are upper bounds of ‖εk−d‖2
A

Preconditioned CG

For the preconditioned CG algorithm, the formula to consider is

‖εk‖2
A = (z0, r0)((J−1

n)1,1 − (J−1
k)1,1)

where Mz0 = r0, M being the preconditioner, a symmetric
positive definite matrix that is chosen to speed up the convergence

The Gauss rule estimate is

‖εk−d‖2
A ≈

k−1∑
j=k−d

γj(z
j , r j)

where
Mz j = r j

Estimates of the l2 norm of the error

Theorem

‖εk‖2 = ‖r0‖2[(e1, J−2
n e1)− (e1, J−2

k e1)]

+ (−1)k2ηk+1
‖r0‖
‖rk‖

(ek , J−2
k e1)‖εk‖2

A

Corollary

‖εk‖2 = ‖r0‖2[(e1, J−2
n e1)− (e1, J−2

k e1)]− 2
(ek , J−2

k e1)

(ek , J−1
k e1)

‖εk‖2
A

This can be computed introducing a delay and using a QR
factorization of Jk

Relation with finite element problems

Suppose we want to solve a PDE

Lu = f in Ω

Ω being a two or three–dimensional bounded domain, with
appropriate boundary conditions on Γ the boundary of Ω
As a simple example, consider the PDE

−∆u = f , u|Γ = 0

This problem is naturally formulated in the Hilbert space H1
0 (Ω)

a(u, v) = (f , v), ∀v ∈ V = H1
0 (Ω)

where a(u, v) is a self–adjoint bilinear form

a(u, v) =

∫
Ω
∇u · ∇v dx

and

(f , v) =

∫
Ω

fv dx

There is a unique solution u ∈ H1
0 (Ω)

The approximate solution is sought in a finite dimensional
subspace Vh ⊂ V as

a(uh, vh) = (f , vh), ∀vh ∈ Vh

The simplest method triangulates the domain Ω (with triangles or
tetrahedrons of maximal diameter h) and uses functions which are
linear on each element

Using basis functions φi which are piecewise linear and have a
value 1 at vertex i and 0 at all the other vertices

vh(x) =
n∑

j=1

vjφj(x)

The approximated problem is equivalent to a linear system
Au = c , where

[A]i ,j = a(φi , φj), ci = (f , φi)

The matrix A is symmetric and positive definite. The solution of
the finite dimensional problem is

uh(x) =
n∑

j=1

ujφj(x)

We use CG to solve the linear system

We have two sources of errors, the difference between the exact
and approximate solution u − uh and uh − u

(k)
h , the difference

between the approximate solution and its CG computed value (not
speaking of rounding errors)

Of course, we desire the components of u − u
(k)
h to be small. This

depends on h and on the CG stopping criterion
The problem of finding an appropriate stopping criterion has been
studied by Arioli and al (on these topics, see also Jiranek, Strakoš
and Vohralik)
Let ‖v‖2

a = a(v , v) and u∗h ∈ Vh be such that

‖uh − u∗h‖2
a ≤ h2t‖uh‖2

a

Then

‖u − u∗h‖a ≤ ‖u − uh‖a + ‖uh − u∗h‖
≤ ht‖u‖a + (1 + ht)‖u − uh‖a

If t > 0 and h < 1

‖u − u∗h‖a ≤ ht‖u‖a + 2‖u − uh‖a

Therefore, if u∗h = u
(k)
h and we choose ‖uh − u∗h‖a such that

ht‖u‖a is of the same order as ‖u − uh‖a we have

‖u − u∗h‖a ≈ ‖u − uh‖a

We have
‖v (k)

h ‖a = ‖vk‖A

Let ζk be an estimate of ‖εk‖2
A, Arioli’s stopping test is

If ζk ≤ η2((uk)T r0 + cTu0) then stop

The parameter η is chosen as h or η2 as the maximum area of the
triangles in 2D

Numerical experiments

0 20 40 60 80 100 120 140 160 180 200
−16

−14

−12

−10

−8

−6

−4

−2

0

2

F3, d = 1, log10 of the A–norm of the error (plain), Gauss (dashed),

Gauss–Radau(λmin) (dot–dashed)

40 45 50 55 60 65 70 75 80 85

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

F3, d = 5, zoom of log10 of the A–norm of the error (plain), Gauss

(dashed), Gauss–Radau (dot–dashed)

For the Gauss–Radau upper bound we use a value of a = 0.02
whence the smallest eigenvalue is λmin = 0.025

0 20 40 60 80 100 120 140
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

F4, n = 900, d = 1, log10 of the A–norm of the error (plain), Gauss

(dashed), Gauss–Radau (dot–dashed)

Adaptive algorithm for the smallest eigenvalue

0 20 40 60 80 100 120 140
−15

−10

−5

0

5

10

F4, n = 900, d = 1, est. of λmin, log10 of the A–norm of the error

(plain), Gauss (dashed), Gauss–Radau (dot–dashed)

Another example (CG2)

−div(λ(x , y)∇u) = f , u|Γ = 0

Finite differences in the unit square

λ(x , y) =
1

(2 + p sin x
η)(2 + p sin y

η)

We use p = 1.8 and η = 0.1

We compute f such that the solution is u(x , y) = sin(πx) sin(πy)

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

CG2, d = 1, n = 10000, log10 of the A–norm of the error (plain), Gauss

(dashed), Gauss–Radau (dot–dashed), a = 10−4, λmin = 2.3216 10−4

0 10 20 30 40 50 60 70 80 90 100
−6

−5

−4

−3

−2

−1

0

1

2

3

4

CG2, d = 1, n = 10000, IC(0), log10 of the A–norm of the error (plain),

Gauss (dashed)

Stopping criterion

Since we are using finite differences and we have multiplied the
right hand side by h2, we modify the Arioli’s criteria to

If ζk ≤ 0.1 ∗ (1/n)2((xk)T r0 + cT x0) then stop

where ζk is an estimate of ‖εk‖2
A

When using n = 10000, the A–norm of the difference between the
“exact” solution of the linear system (obtained by Gaussian
elimination) and the discretization of u is nu = 5.6033 10−5

With the previous stopping criterion, we do 226 iterations and we
have nx = 9.5473 10−5

Using an incomplete Cholesky preconditioner IC(0) we do 47
iterations and obtain nx = 5.6033 10−5

Bound of the l2 norm of the error

0 20 40 60 80 100 120 140
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

F4, d = 1, n = 900, log10 of the l2 norm of the error (plain), Gauss

(dashed)

C. de Boor and G.H. Golub, The numerically stable
reconstruction of a Jacobi matrix from spectral data, Linear
Alg. Appl., v 21, (1978), pp 245–260

D. Calvetti, L. Reichel and F. Sgallari, Application
of anti–Gauss rules in linear algebra, in Applications and
Computation of Orthogonal Polynomials, W. Gautschi,
G.H. Golub and G. Opfer Eds, Birkhauser, (1999), pp 41–56

D. Calvetti, S. Morigi, L. Reichel and F. Sgallari,
Computable error bounds and estimates for the conjugate
gradient method, Numer. Algo., v 25, (2000), pp 79–88

D. Calvetti, Sun–Mi Kim and L. Reichel, Quadrature
rules based on the Arnoldi process, SIAM J. Matrix
Anal. Appl., v 26 n 3, (2005), pp 765–781

G. Dahlquist, S.C. Eisenstat and G.H. Golub,
Bounds for the error of linear systems of equations using the
theory of moments, J. Math. Anal. Appl., v 37, (1972),
pp 151–166

G. Dahlquist, G.H. Golub and S.G. Nash, Bounds for
the error in linear systems. In Proc. of the Workshop on
Semi–Infinite Programming, R. Hettich Ed., Springer (1978),
pp 154–172

S. Elhay and J. Kautsky, Jacobi matrices for measures
modified by a rational factor, Numer. Algo., v 6, (1994),
pp 205–227

K.V. Fernando and B.N. Parlett, Accurate singular
values and differential qd algorithms, Num. Math., v 67,
(1994), pp 191–229

B. Fischer and G.H. Golub, On generating polynomials
which are orthogonal over several intervals, Math. Comp., v 56
n 194, (1991), pp 711–730

B. Fischer and G.H. Golub, On the error computation
for polynomial based iteration methods, in Recent advances in
iterative methods, A. Greenbaum and M. Luskin Eds.,
Springer, (1993)

W. Gautschi, Orthogonal polynomials: computation and
approximation, Oxford University Press, (2004)

G. H. Golub and B. Fischer, How to generate unknown
orthogonal polynomials out of known orthogonal polynomials,
J. Comp. Appl. Math., v 43, (1992), pp 99–115

G.H. Golub and G. Meurant, Matrices, moments and
quadrature, in Numerical Analysis 1993, D.F. Griffiths and
G.A. Watson eds., Pitman Research Notes in Mathematics,
v 303, (1994), pp 105–156

G.H. Golub and G. Meurant, Matrices, moments and
quadrature II or how to compute the norm of the error in
iterative methods, BIT, v 37 n 3, (1997), pp 687–705

G.H. Golub, M. Stoll and A. Wathen, Approximation
of the scattering amplitude, Elec. Trans. Numer. Anal., v 31,
(2008), pp 178–203.

G.H. Golub and Z. Strakǒs, Estimates in quadratic
formulas, Numer. Algo., v 8, n II–IV, (1994)

G.H. Golub and J.H. Welsch, Calculation of Gauss
quadrature rules, Math. Comp., v 23, (1969), pp 221–230

W.B. Gragg and W.J. Harrod, The numerically stable
reconstruction of Jacobi matrices from spectral data,
Numer. Math., v 44, (1984), pp 317–335

M.R. Hestenes and E. Stiefel, Methods of conjugate
gradients for solving linear systems, J. Nat. Bur. Stand., v 49
n 6, (1952), pp 409–436

P. Jiranek, Z. Strakoš and M. Vohralik, A posteriori
error estimates including algebraic error and stopping criteria
for iterative solvers, SIAM J. Sci. Comput., v 32, (2010),
pp 1567–1590

J. Kautsky and G.H. Golub, On the calculation of Jacobi
matrices, Linear Alg. Appl., v 52/53, (1983), pp 439–455

D.P. Laurie, Accurate recovery of recursion coefficients
from Gaussian quadrature formulas, J. Comp. Appl. Math.,
v 112, (1999), pp 165–180

G. Meurant, The computation of bounds for the norm of
the error in the conjugate gradient algorithm, Numer. Algo.,
v 16, (1997), pp 77–87

G. Meurant, Numerical experiments in computing bounds
for the norm of the error in the preconditioned conjugate
gradient algorithm, Numer. Algo., v 22, (1999), pp 353–365

G. Meurant, Estimates of the l2 norm of the error in the
conjugate gradient algorithm, Numer. Algo., v 40 n 2, (2005),
pp 157–169

G. Meurant, The Lanczos and Conjugate Gradient
algorithms, from theory to finite precision computations,
SIAM, (2006)

L. Reichel, Construction of polynomials that are orthogonal
with respect to a discrete bilinear form, Adv. Comput. Math.,
v1, (1993), pp 241–258

H. Rutishauser, Der Quotienten-Differenzen-Algorithmus,
Zeitschrift für Angewandte Mathematik und Physik (ZAMP),
v 5 n 3, (1954), pp 233-251

R.A. Sack and A. Donovan, An algorithm for Gaussian
quadrature given modified moments, Numer. Math., v 18 n 5,
(1972), pp 465–478

P.E. Saylor and D.C. Smolarski, Why Gaussian
quadrature in the complex plane?, Numer. Algo., v 26, (2001),
pp 251–280

P.E. Saylor and D.C. Smolarski, Addendum to: Why
Gaussian quadrature in the complex plane?, Numer. Algo.,
v 27, (2001), pp 215–217

Z. Strakoš, Model reduction using the Vorobyev moment
problem, Numer. Algo., v 51, (2009), pp 363–379

Z. Strakoš and P. Tichý, On error estimates in the
conjugate gradient method and why it works in finite precision

computations, Elec. Trans. Numer. Anal., v 13, (2002),
pp 56–80

Z. Strakoš and P. Tichý, Error estimation in
preconditioned conjugate gradients, BIT Numerical
Mathematics, v 45, (2005), pp 789–817

Z. Strakoš and P. Tichý, On efficient numerical
approximation of the bilinear form c∗A−1b, submitted to
SIAM J. Sci. Comput., (2008)

G. Szegö, Orthogonal polynomials, Third Edition, American
Mathematical Society, (1974)

J.C. Wheeler, Modified moments and Gaussian quadrature,
in Proceedings of the international conference on Padé
approximants, continued fractions and related topics, Univ.
Colorado, Boulder, Rocky Mtn. J. Math., v 4 n 2, (1974),
pp 287–296

Matrices, moments and quadrature with
applications

(IV)

Gérard MEURANT

November 2010

1 Previous episodes

2 Introduction to ill–posed problems

3 Examples of ill-posed problems

4 Tikhonov regularization

5 The Golub–Kahan bidiagonalization algorithm

6 The L–curve criterion

7 Generalized cross–validation

8 Comparisons of methods

Previous episodes

We have seen how to compute bounds or estimates of

uT f (A)u or uT f (A)v

when A is symmetric positive definite using the Lanczos algorithm

Introduction to ill–posed problems

We speak of a discrete ill–posed problem (DIP) when the solution
is sensitive to perturbations of the data

Example:

A =

0.15 0.1
0.16 0.1
2.02 1.3

 , c + ∆c = A

(
1
1

)
+

 0.01
−0.032
0.01


The solution of the perturbed least squares problem (rounded to 4
decimals) using the QR factorization of A is

xQR =

(
−2.9977
7.2179

)

Why is it so?

The SVD of A is

U =

−0.0746 0.7588 −0.6470
−0.0781 −0.6513 −0.7548
−0.9942 −0.0058 0.1078

 , Σ =

2.4163 0
0 0.0038
0 0


V =

(
−0.8409 −0.5412
−0.5412 0.8409

)
The component (u2)T∆c/σ2 (u2 being the second column of U)

corresponding to the smallest nonzero singular value is large being
6.2161
This gives the large change in the solution

Ax ≈ c = c̄ − e

where A is a matrix of dimension m× n,m ≥ n and the right hand
side c̄ is contaminated by a (generally) unknown noise vector e

I The standard solution of the least squares problem
min‖c − Ax‖ (even using backward stable methods like QR)
may give a vector x severely contaminated by noise

I This may seems hopeless

I The solution is to modify the problem by regularization

I We have to find a balance between obtaining a problem that
we can solve reliably and obtaining a solution which is not too
far from the solution without noise

Examples of ill-posed problems

These examples were obtained with the Regutools Matlab toolbox
from Per-Christian Hansen

The Baart problem arises from the discretization of a first-kind
Fredholm integral equation∫ 1

0
K (s, t)f (t) dt = g(s) + e(s)

with kernel K and right-hand side g given by

K (s, t) = exp(s cos(t)), g(s) = 2 sinh(s)/s

and with integration intervals s ∈ [0, π/2], t ∈ [0, π]
The solution is given by f (t) = sin(t)
The square dense matrix A of order 100 is dense and its smallest
and largest singular values are 1.7170 10−18 and 3.2286

10
0

10
1

10
2

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Singular values for the Baart problem, m = n = 100

The Phillips problem arises from the discretization of a first-kind
Fredholm integral equation devised by D. L. Phillips
Let

φ(x) = 1 + cos(xπ/3) for |x | < 3, 0 for |x | >= 3

The kernel K , the solution f and the right-hand side g are given
by

K (s, t) = φ(s − t), f (t) = φ(t)

g(s) = (6− |s|)(1 + 0.5 cos(sπ/3)) + 9/(2π) sin(|s|π/3)

The integration interval is [−6, 6]
The square matrix A of order 200 is banded and its smallest and
largest singular values are 1.3725 10−7 and 5.8029.

Tikhonov regularization

Replace the LS problem by

minx{‖c − Ax‖2 + µ‖x‖2}

where µ ≥ 0 is a regularization parameter to be chosen
For some problems (particularly in image restoration) it is better to
consider

minx{‖c − Ax‖2 + µ‖Lx‖2}

where L is typically the discretization of a derivative operator of
first or second order
The solution xµ of the problem solves the linear system

(ATA + µI)x = AT c

The Golub–Kahan bidiagonalization algorithm

It is a special case of the Lanczos for ATA

The first algorithm (LB1) reduces A to upper bidiagonal form

Let q0 = c/‖c‖, r0 = Aq0, δ1 = ‖r0‖, p0 = r0/δ1

then for k = 1, 2, . . .

uk = ATpk−1 − δkqk−1

γk = ‖uk‖

qk = uk/γk

rk = Aqk − γkpk−1

δk+1 = ‖rk‖

pk = rk/δk+1

If
Pk =

(
p0 · · · pk−1

)
, Qk =

(
q0 · · · qk−1

)
and

Bk =


δ1 γ1

. . .
. . .

δk−1 γk−1

δk


then Pk and Qk , which is an orthogonal matrix, satisfy the

equations

AQk = PkBk

ATPk = QkBT
k + γkqk(ek)T

and therefore

ATAQk = QkBT
k Bk + γkδkqk(ek)T

The second algorithm (LB2) reduces A to lower bidiagonal form

Let p0 = c/‖c‖, u0 = ATp0, γ1 = ‖u0‖, q0 = u0/γ1,
r1 = Aq0 − γ1p

0, δ1 = ‖r1‖, p1 = r1/δ1

then for k = 2, 3, . . .

uk−1 = ATpk−1 − δk−1q
k−2

γk = ‖uk−1‖

qk−1 = uk−1/γk

rk = Aqk−1 − γkpk−1

δk = ‖rk‖

pk = rk/δk

If
Pk+1 =

(
p0 · · · pk

)
, Qk =

(
q0 · · · qk−1

)
and

Ck =



γ1

δ1
. . .
. . .

. . .

. . . γk

δk


a k + 1 by k matrix, then Pk and Qk , which is an orthogonal

matrix, satisfy the equations

AQk = Pk+1Ck

ATPk+1 = QkCT
k + γk+1q

k(ek+1)T

Of course, by eliminating Pk+1 in these equations we obtain

ATAQk = QkCT
k Ck + γk+1δkqk(ek)T

and
CT

k Ck = BT
k Bk = Jk

Bk is the Cholesky factor of Jk and CT
k Ck

Jk is the tridiagonal Jacobi matrix for ATA

The main problem in Tikhonov regularization is to choose µ

I If µ is too small the solution is contaminated by the noise in
the right hand side

I if µ is too large the solution is a poor approximation of the
original problem

I Many methods have been devised for choosing µ

I Most of these methods lead to the evaluation of bilinear forms
with different matrices

Some methods for choosing µ

I Morozov’s discrepancy principle
Ask for the norm of the residual to be equal to the norm of
the noise vector (if it is known)

‖c − A(ATA + µI)−1AT c‖ = ‖e‖

I The Gfrerer/Raus method

µ3cT (AAT + µI)−3c = ‖e‖2

I The quasi–optimality criterion

min[µ2cTA(ATA + µI)−4AT c]

The L–curve criterion

I plot in log–log scale the curve (‖xµ‖, ‖b − Axµ‖) obtained by
varying the value of µ ∈ [0,∞) where xµ is the regularized
solution

I In most cases this curve is shaped as an “L”

I Lawson and Hanson proposed to choose the value µL

corresponding to the “corner” of the L–curve (the point of
maximal curvature (see also Hansen; Hansen and O’Leary)

I This is done to have a balance between µ being too small and
the solution contaminated by the noise, and µ being too large
giving a poor approximation of the solution. The “vertex” of
the L–curve gives an average value between these two
extremes

An example of L–curve

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

The L-curve for the Baart problem, m = n = 100, noise = 10−3

How to locate the corner of the L–curve?

see Hansen and al.

I Easy if we know the SVD of A

I Otherwise compute points on the L–curve and use
interpolation

I However, computing a point on the L–curve is expensive

I Alternative, L–ribbon approximation (Calvetti, Golub and
Reichel)

The L–ribbon

‖xµ‖2 = cTA(ATA + µI)−2AT c

and

‖c − Axµ‖2 = cT c + cTA(ATA + µI)−1ATA(ATA + µI)−1AT c

−2cTA(ATA + µI)−1AT c

By denoting K = ATA and d = AT c

‖c − Axµ‖2 = cT c + dTK (K + µI)−2d − 2dT (K + µI)−1d

Define

φ1(t) = (t + µ)−2

φ2(t) = t(t + µ)−2 − 2(t + µ)−1

we are interested in si = dTφi (K)d , i = 1, 2
We can obtain bounds using the Golub–Kahan bidiagonalization
algorithm
At iteration k, the algorithm computes a Jacobi matrix
Jk = BT

k Bk and the Gauss rule gives

IG
k (φi) = ‖d‖2(e1)Tφi (Jk)e1

We can also use the Gauss–Radau rule with a prescribed node
a = 0

IGR
k (φi) = ‖d‖2(e1)Tφi (Ĵk)e1

Ĵk = B̂T
k B̂k where B̂k is obtained from Bk by setting the last

diagonal element δk = 0

Theorem

IG
k (φ1) ≤ s1 ≤ IGR

k (φ1)

where

IG
k (φ1) = ‖d‖2(e1)T (BT

k Bk + µI)−2e1

IGR
k (φ1) = ‖d‖2(e1)T (B̂T

k B̂k + µI)−2e1

IGR
k (φ2) ≤ s2 ≤ IG

k (φ2)

where

IG
k (φ2) = ‖d‖2[(e1)TBT

k Bk(BT
k Bk+µI)−2e1−2(e1)T (BT

k Bk+µI)−1e1]

IGR
k (φ2) = ‖d‖2[(e1)T B̂T

k B̂k(B̂T
k B̂k+µI)−2e1−2(e1)T (B̂T

k B̂k+µI)−1e1]

x−(µ) =
√

IG
k (φ1), x+(µ) =

√
IGR
k (φ1)

y−(µ) =
√

cT c + IGR
k (φ2), y+(µ) =

√
cT c + IG

k (φ2)

For a given value of µ > 0 the bounds are

x−(µ) ≤ ‖xµ‖ ≤ x+(µ), y−(µ) ≤ ‖c − Axµ‖ ≤ y+(µ)

Calvetti, Golub and Reichel defined the L–ribbon as the union of
rectangles for all µ > 0⋃
µ>0

{ {x(µ), y(µ)} : x−(µ) ≤ x(µ) ≤ x+(µ), y−(µ) ≤ y(µ) ≤ y+(µ)}

Then, we have to select a point (a value of µ) inside the L–ribbon
Note that the Golub–Kahan iterations are independent of µ

The L–curvature

Another possibility is to obtain bounds of the curvature (in log–log
scale) and to look for the maximum

Cµ = 2
ρ′′η′ − ρ′η′′

((ρ′)2 + (η′)2)3/2

where ′ denotes differentiation with respect to µ and

ρ(µ) =
1

2
log ‖c − Axµ‖ = log µ2cTφ(AAT)c

η(µ) =
1

2
log ‖xµ‖ = log cTAφ(ATA)AT c

where φ(t) = (t + µ)−2

The first derivatives can be computed as

ρ′(µ) =
cTA(ATA + µI)−3AT c

µcT (AAT + µI)−2c

η′(µ) = −cTA(ATA + µI)−3AT c

cTA(ATA + µI)−2AT c

The numerator is more complicated

ρ′η′′ − ρ′′η′ =

(
cTA(ATA + µI)−3AT c

µcT (AAT + µI)−2c · cTA(ATA + µI)−2AT c

)2

(cT (AAT + µI)−2c · cTA(ATA + µI)−2AT c

+2µcT (AAT + µI)−3c · cTA(ATA + µI)−2AT c

−2µcT (AAT + µI)−2c · cTA(ATA + µI)−3AT c)

Locating the corner of the L–curve

There are many possibilities

I Using the SVD (Hansen): lc

I Pruning algorithm (Hansen, Jensen and Rodriguez): lp

I Rotating the L–curve (GM): lc1

I Finding an interval where log ‖xµ‖ and log ‖c − Axµ‖ are
almost constant (GM): lc2

L-curve algorithms, Baart problem, n = 100

noise meth µ ‖c − Ax‖ ‖x − x0‖
10−3 opt 2.4990 10−8 9.8720 10−4 1.5080 10−1

lc 4.5414 10−9 9.8524 10−4 1.6030 10−1

lp 8.2364 10−9 9.8545 10−4 1.5454 10−1

lc1 6.3232 10−9 9.8534 10−4 1.5669 10−1

lc2 5.8203 10−12 9.8463 10−4 4.1492 10−1

4.1297 10−8 9.8996 10−4 1.5153 10−1

opt is the point with (almost) smallest error

L-curve algorithms, Phillips problem, n = 200

noise meth µ ‖c − Ax‖ ‖x − x0‖
10−3 opt 8.5392 10−7 9.9864 10−4 7.3711 10−3

lc 7.1966 10−10 8.5111 10−4 5.3762 10−1

lp 4.5729 10−10 8.3869 10−4 6.8849 10−1

lc1 3.6084 10−10 8.3172 10−4 7.8603 10−1

lc2 1.0250 10−9 8.6013 10−4 4.4563 10−1

2.9147 10−7 9.7098 10−4 1.3595 10−2

L-ribbon

Ex noise nb it µ nb it no reorth.

Baart 10−7 11 6.0889 10−17 40
10−5 9 6.1717 10−13 19
10−3 8 6.3232 10−9 10
10−1 6 7.2928 10−5 6
10 5 3.260 10−2 5

With and without reorthogonalization

Generalized cross–validation

GCV comes from statistics (Golub, Heath and Wahba)

The regularized problem is written as

min{‖c − Ax‖2 + mµ‖x‖2}

where µ ≥ 0 is the regularization parameter and the matrix A is m
by n
The GCV estimate of the parameter µ is the minimizer of

G (µ) =
1
m‖(I − A(ATA + mµI)−1AT)c‖2

(1
m tr(I − A(ATA + mµI)−1AT))2

If we know the SVD of A and m ≥ n this can be computed as

G (ν) =

m

{∑r
i=1 d2

i

(
ν

σ2
i +ν

)2
+

∑m
i=r+1 d2

i

}
[m − n +

∑r
i=1

ν
σ2

i +ν
]2

where ν = mµ

I G is almost constant when ν is very small or large, at least in
log–log scale

I When ν →∞, G (ν) → ‖c‖2/m

I When ν → 0 the situation is different wether m = n or not

An example of GCV function

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

G (nu)

GCV function for the Baart problem, m = n = 100, noise = 10−3

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

G (nu)

1e−005
0.001
0.1
1

GCV functions for the Baart problem, m = n = 100 for different noise

levels

The main problem is that the GCV function is usually quite flat
near the minimum

For large problems we cannot use the SVD

I First we approximate the trace in the denominator → G̃

I Then using the Golub–Kahan bidiagonalization algorithms we
can obtain bounds of all the terms in G̃

I Finally we have to locate the minimum of the lower and/or
upper bounds

Approximation of the trace

Proposition (Hutchinson)

Let B be a symmetric matrix of order n with tr(B) 6= 0
Let Z be a discrete random variable with values 1 and −1 with
equal probability 0.5 and let z be a vector of n independent
samples from Z
Then zTBz is an unbiased estimator of tr(B)

E (zTBz) = tr(B)

var(zTBz) = 2
∑
i 6=j

b2
i ,j

where E (·) denotes the expected value and var denotes the
variance

For GCV we just use one vector z

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

G (nu), Gt (nu)

G (plain) and G̃ (dotted) functions for the Baart problem,

m = n = 100, noise = 10−3

10
−15

10
−10

10
−5

10
0

10
−4

G (nu), Gt (nu)

G (plain) and G̃ (dotted) functions for the Baart problem,

m = n = 100, noise = 10−1

The Golub and Von Matt algorithm

Let sz(ν) = zT (ATA + νI)−1z , where z is a random vector
Using Gauss and Gauss–Radau we can obtain

gz(ν) ≤ sz(ν) ≤ rz(ν)

We can also bound
s
(p)
c (ν) = cTA(ATA + νI)pAT c , p = −1,−2 satisfying

g
(p)
c (ν) ≤ s

(p)
c (ν) ≤ r

(p)
c (ν)

We want to compute approximations of the minimum of

G̃ (µ) = m
cT c − s

(−1)
c (ν)− νs

(−2)
c (ν)

(m − n + νsz(ν))2

We define

L0(ν) = m
cT c − r

(−1)
c (ν)− νr

(−2)
c (ν)

(m − n + νrz(ν))2

U0(ν) = m
cT c − g

(−1)
c (ν)− νg

(−2)
c (ν)

(m − n + νgz(ν))2

These quantities L0 and U0 are lower and upper bounds for the
estimate of G (µ)
We can also compute estimates of the derivatives of L0 and U0

These bounds improve with the number of Lanczos iterations

I They first do kmin = d3 log min(m, n)e Lanczos iterations

I Then the global minimizer ν̂ of U0(ν) is computed

I If one can find a ν such that 0 < ν < ν̂ and L0(ν) > L0(ν̂),
the algorithm stops and return ν̂

I Otherwise, the algorithm executes one more Lanczos iteration
and repeats the convergence test

Von Matt computed the minimum of the upper bound:

I By sampling the function on 100 points with an exponential
distribution

I If the neighbors of the minimum do not have the same values,
he looked at the derivative and sought for a local minimum in
either the left or right interval depending on the sign of the
derivative

I The local minimum is found by using bisection

The upper bound does not have the right asymptotic behavior
when m = n and ν → 0

10
−30

10
−20

10
−10

10
0

10
10

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

G (plain) and G̃ (dashed) functions and upper bounds for the Baart

problem, m = n = 100, noise = 10−3

To obtain a better behavior we add a term ‖c‖2 to the
denominator

10
−40

10
−20

10
0

10
20

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

G (plain) and G̃ (dashed) functions and upper bounds for the Baart

problem, m = n = 100, noise = 10−3

Optimization of the algorithm

I We choose a (small) value of ν (denoted as ν0)

I When ∣∣∣∣∣U0
k (ν0)− U0

k−1(ν0)

U0
k−1(ν0)

∣∣∣∣∣ ≤ ε0

we start computing the minimum of the upper bound

The algorithm for finding the minimum is modified as follows

I We work in log–log scale and compute only a minimizer of the
upper bound

I We evaluate the numerator of the approximation by
computing the SVD of Bk once per iteration

I We compute 50 samples of the function on a regular mesh

I We locate the minimum, say the point k, we then compute
again 50 samples in the interval [k − 1 k + 1]

I We use the Von Matt algorithm for computing a local
minimum in this interval

I After locating a minimum νk with a value of the upper bound
U0

k at iteration k, the stopping criteria is∣∣∣∣νk − νk−1

νk−1

∣∣∣∣ +

∣∣∣∣∣U0
k − U0

k−1

U0
k−1

∣∣∣∣∣ ≤ ε

GCV algorithms, Baart problem

noise µ ‖c − Ax‖ ‖x − x0‖ t (s)

vm 10−7 9.6482 10−15 9.8049 10−8 5.9424 10−2 0.38
10−5 9.7587 10−12 9.8566 10−6 6.5951 10−2 0.18
10−3 1.2018 10−8 9.8573 10−4 1.5239 10−1 0.16
10−1 1.0336 10−7 9.8730 10−2 1.6614 −

gm-opt 10−7 1.0706 10−14 9.8058 10−8 5.9519 10−2 0.18
10−5 1.0581 10−11 9.8588 10−6 6.5957 10−2 0.27
10−3 1.3077 10−8 9.8582 10−4 1.5205 10−1 0.14
10−1 1.1104 10−7 9.8736 10−2 1.6227 −

GCV algorithms, Phillips problem

noise µ ‖c − Ax‖ ‖x − x0‖ t (s)

vm 10−7 8.7929 10−11 9.0162 10−8 2.2391 10−4 29.50
10−5 4.5432 10−9 9.0825 10−6 2.2620 10−3 6.09
10−3 4.3674 10−7 9.7826 10−4 1.0057 10−2 1.14
10−1 3.8320 10−5 9.8962 10−2 9.3139 10−2 0.16

gm-opt 10−7 1.6343 10−10 1.1260 10−7 2.2163 10−4 15.30
10−5 5.3835 10−9 9.1722 10−6 2.1174 10−3 6.09
10−3 4.1814 10−7 9.7737 10−4 1.0375 10−2 0.66
10−1 4.1875 10−5 9.9016 10−2 9.0659 10−2 0.22

Comparisons of methods

Baart problem, n = 100

noise meth µ ‖c − Ax‖ ‖x − x0‖
10−3 µ opt 2.7826 10−8 2.3501 10−3 1.5084 10−1

vm 1.2018 10−8 9.8573 10−4 1.5239 10−1

gm-opt 1.3077 10−8 9.8582 10−4 1.5205 10−1

gcv 9.4870 10−9 9.8554 10−4 1.5362 10−1

disc 8.4260 10−8 1.0000 10−3 1.5556 10−1

gr 1.7047 10−7 1.0235 10−3 1.6373 10−1

lc 4.5414 10−9 9.8524 10−4 1.6028 10−1

qo 1.2586 10−8 9.8450 10−4 6.6072 10−1

L-rib 6.3232 10−9 9.8534 10−4 1.5669 10−1

L-cur 5.8220 10−9 9.8531 10−4 1.5749 10−1

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
solution, noise = 0.001

Solutions for the Baart problem, m = n = 100, noise = 10−3,

solid=unperturbed solution, dashed=vm, dot–dashed=gm-opt

Phillips problem, n = 200

noise meth µ ‖c − Ax‖ ‖x − x0‖
10−5 µ opt 1.3725 10−7 2.9505 10−14 1.6641 10−3

vm 4.5432 10−9 9.0825 10−6 2.2620 10−3

gm-opt 5.3835 10−9 9.1722 10−6 2.1174 10−3

gcv 3.1203 10−9 8.9283 10−6 2.6499 10−3

disc 1.2107 10−8 1.0000 10−5 1.6873 10−3

gr 4.1876 10−8 1.5784 10−5 1.9344 10−3

lc 3.6731 10−14 2.4301 10−6 7.9811 10−1

qo 1.5710 10−8 1.0542 10−5 1.6463 10−3

L-rib 2.6269 10−14 2.2118 10−6 8.9457 10−1

L-cur 4.7952 10−14 2.6093 10−6 7.2750 10−1

D. Calvetti, G.H. Golub and L. Reichel, Estimation
of the L–curve via Lanczos bidiagonalization, BIT, v 39 n 4,
(1999), pp 603–619

D. Calvetti, P.C. Hansen and L. Reichel, L–curve
curvature bounds via Lanczos bidiagonalization,
Elec. Trans. Numer. Anal., v 14, (2002), pp 20–35

H. Gfrerer, An a posteriori parameter choice for ordinary
and iterated Tikhonov regularization of ill–posed problems
leading to optimal convergence rates, Math. Comp., v 49,
(1987), pp 507–522

G.H. Golub, M. Heath and G. Wahba, Generalized
cross–validation as a method to choosing a good ridge
parameter, Technometrics, v 21 n 2, (1979), pp 215–223

G. H. Golub and W. Kahan, Calculating the singular
values and pseudo-inverse of a matrix, SIAM J. Numer. Anal.,
v 2 (1965), pp 205–224

G.H. Golub and U. von Matt, Tikhonov regularization
for large scale problems, in Scientific Computing, G.H. Golub,
S.H. Lui, F. Luk and R. Plemmons Eds., Springer, (1997),
pp 3–26

G.H. Golub and U. von Matt, Generalized
cross–validation for large scale problems, in Recent advances in
total least squares techniques and errors in variable modeling,
S. van Huffel ed., SIAM, (1997), pp 139–148

M. Hanke and T. Raus, A general heuristic for choosing
the regularization parameter in ill–posed problems, SIAM
J. Sci. Comput., v 17, (1996), pp 956–972

P.C. Hansen, Regularization tools: a Matlab package for
analysis and solution of discrete ill–posed problems,
Numer. Algo., v 6, (1994), pp 1–35

P.C. Hansen and D.P. O’Leary, The use of the L–curve
in the regularization of discrete ill–posed problems, SIAM
J. Sci. Comput., v 14, (1993), pp 1487–1503

P.C. Hansen, T.K. Jensen and G. Rodriguez, An
adaptive pruning algorithm for the discrete L-curve criterion,
J. Comp. Appl. Math., v 198 n 2, (2007), pp 483–492

C.L. Lawson and R.J. Hanson, Solving least squares
problems, SIAM, (1995)

A.S. Leonov, On the choice of regularization parameters by
means of the quasi–optimality and ratio criteria, Soviet
Math. Dokl., v 19, (1978), pp 537–540

V.A. Morozov, Methods for solving incorrectly posed
problems, Springer, (1984)

A.N. Tikhonov, Ill–posed problems in natural sciences,
Proceedings of the international conference Moscow August
1991, (1992), TVP Science publishers.

A.N. Tikhonov and V.Y. Arsenin, Solutions of ill–posed
problems, (1977), Wyley

	Outline
	Introduction
	Applications
	Ingredients
	Quadratic forms
	Riemann-Stieltjes integrals
	Orthogonal polynomials
	Examples of orthogonal polynomials
	Variable-signed weight functions
	Matrix orthogonal polynomials
	Quadrature rules
	The Gauss rule

