
1

Large scale CFD computations at CEA

G. Meuranta, H. Jourdrena and B. Meltza

aCEA/DIF,
PB 12, 91680 Bruyères le Châtel, France

This paper describes some large scale Computational Fluid Dynamics computations
recently done at CEA as well as the parallel computers of the first stage of the Tera
project within the Simulation program of CEA.

1. Introduction

The french Commissariat à l’Energie Atomique (CEA) is a governmental agency in
charge of all scientific aspects related to the use of nuclear energy in France as well as
the study of other sources of energy. It has roughly 16000 employees and 10 locations
around the country. To know more about its activities, please give a look at the Web
site http://www.cea.fr. The military branch of CEA (CEA/DAM) is in charge of defence
applications, that is mainly maintaining the french nuclear stockpile without relying any-
more on nuclear testing. This is achieved through a Simulation program which is based
on three main components. The first two ones are experimental devices: Airix, an X–
ray machine used since 1999 for non nuclear hydro experiments and the Megajoule laser
whose first stage is under construction and which will be used for better understanding
of the physics of thermonuclear combustion and should lead to ignition through inertial
confinement fusion (ICF) experiments. The third component of the Simulation program
is made of the parallel computers needed for enhanced numerical simulation. Within
CEA this is called the Tera project. Previous numerical computations are going to be
improved through better physical models, better numerical schemes, finer meshes and 3D
computations.

We have to solve numerically the multimaterial Euler equations for non viscous highly
compressible fluids with real equations of state. This system of equations is tightly coupled
to some other physics, mainly various transport equations describing particle transport
which give sources of energy. Several possibilities exist for handling the CFD part of the
equations. One can do Lagrangian computations where the mesh is moving at the velocity
of the fluid or Eulerian computations where the mesh is fixed and the fluids flow through
the mesh. Another possibility is to have the mesh moving with a velocity different from
the one of the fluid; this is denoted as ALE (arbitrary Lagrangian Eulerian). We are
also considering AMR (Adaptive Mesh Refinement) techniques. They are going to be
described later on in this paper. Notice that for the three last possibilities we have to
deal with mixed cells that contain more that one material. This can be handled through
interface reconstruction techniques or the solution of concentration equations. All CFD



2

Figure 1. An ICF target

schemes are explicit in time but the particle transport is usually handled implicitly.
An example of unclassified computational problem is provided by the numerical sim-

ulation of Inertial Confinement Fusion (ICF) experiments. A spherical target filled with
Deuterium and Tritium (hydrogen isotopes) is located in a cylindrical hohlraum that is
used to produce an X–radiation “furnace” when illuminated by laser beams. This leads
to the implosion of the target putting the material in such conditions of temperature and
density that the thermonuclear fusion reaction can start. A cut of one such device that
was used in some experiments some years ago is shown in Figure 1.

This is a problem which is extremely difficult for numerical simulation. During the
implosion of the spherical target there are some growth of several instabilities that occur
and it is extremely important to be able to understand the physics of this phenomena
as well as being able to do accurate numerical computations. Examples of instabilities
computations related to some other experiments will be given in the next sections.

2. The Tera project

Until 2000, the two main production supercomputers in the CEA/DIF computing center
were a Cray T90 and a Cray T3E. They are still in operation. The Cray T90 was the
main production computer. It was installed in 96/97 and has 24 vector processors, a peak
performance of 1.8 Gflops/processor that is 43 Gflops in total and 512 Mwords of shared
memory. The Cray T3E was used for large parallel computations. It was installed in
November 96 and has 168 processors, a peak performance of 0.6 Gflops/processor, that
is 100 Gflops and 16 Mwords/processor of distributed memory. After several studies, it
was decided that for the first step of the Simulation program we need to multiply at least
by a factor of 10 this computer capacity. The goal is thus to install a 5 Tflops peak (1
Tflops sustained) computer by the end of 2001. This is the first step of an 8-year project.
The winner for the first step request for proposal is Compaq. This computer is going to
be installed in three phases described in Table 1. This system is to be complemented by
storage capabilities based on HPSS which are scheduled as described in Table 2.

As we said, the computer to be installed at the end of 2001 is the first step in a three



3

Table 1
The three phases of the Tera–1 installation.

System Initial Intermediate Final
Schedule April 2000 December 2000 December 2001
Processors 6*4 EV6 (667 Mhz) 75*4 EV6 (833 Mhz) 2500
Peak perf. (sustained) 35 Gflops (6) 500 Gflops (106) 5 Tflops (1.2)
Memory 20 GB 300 GB 2.5 TB
Disks 600 GB 5.5 TB 50 TB

Table 2
The storage capabilities.

System HPSS server Level 1 Level 2
Schedule 1999–2001 2001–2002 2002–2003
Type IBM SP 7 STK silos RFP in 2002
Capacity 720 GB 1 PB 5 PB

stage project. The next steps of the Tera project are a 10 Tflops sustained machine in
2006 and a 100 Tflops sustained one in 2010. For the 2001 machine, we had to build a
new computer room with a floor surface of 2000m2.

3. The Tera benchmark

This benchmark is part of the acceptance test of the 2001 final machine. It was devised
to be a realistic “demo application” capable of very high parallel performance and to make
sure that the whole machine can be dedicated to one single large application that uses the
whole memory. Another goal is to learn about hybrid programming (MPI + OpenMP)
and explore microprocessor optimization techniques. It was specially written in Fortran
90 by B. Meltz.

It solves the non viscous 3D compressible Euler equations in Eulerian coordinates on
a cartesian mesh. The features of this code are a transport plus remapping algorithm,
alternating direction splitting X,Y,Z, Z,Y,X, Y,Z,X, X,Z,Y, Z,X,Y, Y,X,Z,. . . , a second
order Godunov scheme, a third order PPM-like remapping and an approximate Riemann
solver (à la Dukowicz).

One should ask why using alternating direction which is an old technique? There are
some benefits and a few drawbacks. On the benefits’ side is memory: work arrays take
little space and this allows cache optimization since one line of cells fits in level 2 cache
(level 1 for small problems); moreover, work arrays are contiguous (this helps prefetch-
ing). Another benefit is simplicity of implementation for optimization and parallelization
techniques. The main drawback is that we have to do transposition of the data. An
efficient way to do this is to have three copies of 3D global arrays for optimization, one
per direction.

Parallelization is done through mesh partitioning. Mesh blocks should be as close as
possible to cubes. One block keeps two rows of ghost cells per direction. MPI synchronous



4

Figure 2. An instability problem

messages are used to send data needed by the other blocks. Notice that some reductions
are needed to estimate the next time step. Measured performances on several parallel
computers are given in Table 3.

Table 3
Tera benchmark performances.

System Size (1 dir) Nb procs Mflops/p Gflops % peak
Cray T90 90 1 112.5 0.112 18.7
Cray T3E 420 168 42.9 7.214 7.2
IBM Pwr3 225 Mhz 270 8 104.1 0.832 11.6
Compaq EV6 667 Mhz 100 8 240.7 1.926 18
Compaq EV6 833 Mhz 1200 300 179.3 106.2 20
Compaq final system 2480 2500 ? 1200 25

As seen in Table 3, the intermediate system using MPI gives 106 Gflops. When using
a mixed parallel model with OpenMP and MPI, we obtain 87.5 Gflops. The final system
will run a problem with 24803 = 15.2 billion cells using 2.4 TB of memory. The largest
message is going to be 14 MB and the expected performance 1.2 Tflops.

4. AMR

Work started on parallel Euler computations at CEA in the beginning of the 90s when
a code was written to allow out of core large computations on small memory machines.
This naturally led to domain decomposition and then parallelism. This code has now
parallel capabilities using MPI. In 1996 a parallel computation of an interface instability
problem was done on the Cray T3D using 7.8 millions cells and 128 processors. The
problem is described on Figure 2. This experiment used a cylinder made of six different
shells. The interface between the tin and the RTV is perturbed. During the implosion of
the cylinder by a high explosive, a Richtmyer–Meshkov instability grows and this is what
we are interested in accurately computing.

For handling these problems we need to have a very fine mesh around the unstable
interface. This can be very costly when using a classical Eulerian cartesian mesh because



5

it leads to meshes with a huge number of cells. To try to overcome these problems one
can use Adaptive Mesh Refinement (AMR). A code was developed that uses a second
order Godunov scheme formulated in total energy. It has multimaterial capabilities with
interface reconstruction (à la Youngs). This is a tree-based AMR code written in C++
allowing an arbitrary refinement factor (2x2, 3x3,. . . ) for any cell. It is also relatively
easy to incorporate more physics in this code like high explosive reactions rates, material
strength, non linear diffusion and MHD. Work on this code has been done by H. Jourdren,
P. Ballereau, D. Dureau, M. Khelifi using theoretical results by B. Desprès. This code
uses an acoustic approximate Riemann solver for the Lagrangian hydrodynamic step:

p∗ − pR = (ρc)R(u∗ − uR), p∗ − pL = −(ρc)L(u∗ − uL) (1)

p∗ =
(ρc)RpL + (ρc)LpR + (ρc)L(ρc)R(uL − uR)

(ρc)L + (ρc)R

(2)

u∗ =
(ρc)LuL + (ρc)RpR + (pL − pR)

(ρc)L + (ρc)R

(3)

where ρ is the density, u the velocity, p the pressure and c is the sound speed. L and R
refer to the left and right states and ∗ to the one we want to compute. A simplified form
of this solver is obtained by taking:

(ρc)L = (ρc)R = ρ∗c∗ (4)

If the internal energy is a jointly convex function of specific volume and entropy (thermo-
dynamic stability), B. Desprès ([1], [2], [3]) proved the following result: if c(k, n)(∆t/∆x) ≤
1 then

T n+1
k (Sn+1

k − Sn
k ) ≥ 0 (5)

where S is the entropy and T the temperature, index k refers to the space and index
n to the time. With perfect gases this gives ρ, p, e ≥ 0, the numerical stability condition
being

max(
c2

c∗
, c∗)

∆t

∆x
≤ 1 (6)

This type of results have been extended to other hyperbolic systems: elasticity, 3 tem-
perature hydro and MHD. With this AMR code 2D Richtmyer-Meshkov instabilities are
10 times cheaper than a pure Eulerian computation for the same accuracy. An example
of shock tube computation is shown on Figure 3. A shock passes through a perturbed
interface and an instability develops. The top part of the figure is a pure Eulerian com-
putation and the bottom part is the AMR computation with refinement on the shock and
the interface. One can see that the development of the “mushroom” is the same but the
AMR computation is much cheaper.

The AMR computation of the cylindrical implosion shown in Figure 2 took one week of
one EV6 processor at 667 Mhz. In this computation there are 18 µ cells on the Sn/RTV
interface and an average of 700 000 cells, the maximum being 1 700 000. Results are given



6

Figure 3. A shock tube instability computation

on Figure 4. An Eulerian equivalent with a mesh as fine as this one around the interface
would require 64 million cells.

Although the AMR CFD scheme is explicit and “easy” to parallelize, the main prob-
lem we have is load balancing since the refinement changes dynamically (that is why
the method works!). Domain decomposition of the physical domain and a straightfor-
ward MPI implementation do not give very good results since some processors have much
more work to do than others. Since there must be only a difference of one level between
neighboring cells, propagation of refinement is difficult to parallelize and a dynamic equi-
libration of work is not easy to do.

On SMP architectures, one can use shared memory within a node. A tentative to use
POSIX threads on one node with many more subdomains than processors was done. This
is some kind of self scheduling hoping that the operating system would do the job for
us. An example was constructed for the advection equation simulating load imbalance
by artificially increasing the workload in a part of the domain. Results for the elapsed
time and the speed up are shown on Figures 5 and 6 using 4 processors. One can see that
when increasing the number of threads to about 32 a good speed up is obtained. This
work has been done by H. Jourdren and D. Dureau.

Unfortunately this does not work so well for the AMR code where there are many more
communications. We are now looking for a mixed model: MPI and threads and also at
modifications of the numerical scheme to increase parallelism. This would hopefully lead
us to benefit from memory and computer time savings using the AMR technique and, at
the same time, being able to run very large computations with several hundred millions
of AMR cells in parallel.

REFERENCES

1. B. Després, Inégalité entropique pour un solveur conservatif du système de la dy-
namique des gaz en variables de Lagrange, C. R. Acad. Sci. Paris, Série 1, v 324
(1997) 1301-1306.

2. B. Després, Structure des sytèmes de lois de conservation en variables de Lagrange,
C. R. Acad. Sci. Paris, Série 1, (1999).



7

Figure 4. An AMR instability computation

3. B. Després, Invariance properties of lagrangian systems of conservation laws, approx-
imate Riemann solvers and the entropy condition, to appear in Numerische Mathe-
matik.



8

10
0

10
1

10
2

0

100

200

300

400

500

600

700

800

900

1000

Figure 5. Elapsed time as a function of the
number of Posix threads, dashed: 4 balanced
MPI processes.

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6. Speed up as a function of the
number of Posix threads.


