
August 1992

THE EVOLUTION OF SCIENTIFIC COMPUTING

ON PARALLEL COMPUTERS

Gérard Meurant

CEA, Centre d’Etudes de Limeil–Valenton

94195 Villeneuve St Georges cedex

This paper was translated to Portuguese by C. de Moura

Abstract. In this paper, we would like to indicate what could be, from our point

of view, the future of large scale scientific computing during the next ten years. We

will try to identify what are the major issues to be addressed and how the situation

could evolve. First, we define what are the goals of today’s and tomorrow’s scientific

computing showing what is the evolution of the users’ needs. Then, we summarize the

trends in the architecture of parallel and, particularly, massively parallel computers

and we stress the needs for a better programming environment and better software

tools to efficiently use the new architectures. We show some examples of the changes

in algorithmic development due to the availability of new architectures. Finally, we

give some conclusions, showing that even though a lot of progresses have been made,

users are still waiting for more performant parallel architectures, software tools and

algorithms.

1. The goals of scientific computing.

1

The main task of scientific computing is computer simulation of physical prob-

lems. Usually, one starts with the description of a physical problem and the first thing

to do for solving the problem is to describe a model of the physical reality. This phase

involves physicists and applied mathematicians. In most of the problems this paper

is interested in, this results in a set of coupled partial differential equations. Today,

people are interested in simulating phenomenon occurring in three dimensional ge-

ometries and most problems are also time dependent. But there can be even more

complicated problems where we have to deal with the phase space which results in

equations to be solved in six or seven dimensional spaces. An example of this is the

simulation of particle transport (neutrons, charged particles, etc. . .) arising in the

nuclear industry and in plasma physics.

It is fair to say that, in most cases the accuracy of the models has been limited

by the computers on which the problems are finally solved. There is no point in using

sophisticated models involving a lot of variables and equations, if we are not able

to numerically compute them. Therefore, more often, scientists derived approximate

models from the complete ones. An example of this is the study of turbulence. As

we cannot yet solve the full Navier–Stokes equations around a complete aircraft with

enough accuracy to describe all the fine details that are needed, approximate models

must be used (cf. [Paterson]). But, as the researchers want to get results closer and

closer to the field experiments, the models are getting more and more complex and

therefore, there is always a need for computers with faster computing capabilities and

larger memories.

When one has set up a model of the problem involving a small enough number

of variables and equations, then a numerical method must be defined and used to go

from the model with an infinite number of degrees of freedom to a finite dimensional

problem. For a large class of problems this finally amounts to (repeatedly) solving a

system of linear equations. Here also, to get a better accuracy, one needs more and

more discretisation points leading to larger finite dimensional problems to be solved.

2

When the problem is numerically solved, the physicist and the applied mathe-

matician want, of course, to look at the results of the computation hopefully in a

condensed graphical form.

To assess the needs of scientific computing, we must distinguish between two main

activities: research and design. This distinction can be also done across computer

users, most of the research being done in universities and national laboratories and

most of the design being done by industrial companies. By 1990 the main users of

the fastest computers (usually called supercomputers) were:

• national laboratories working for strategic areas (LANL, LLNL, etc. . . in the

US, CEA, CERN, etc. . . in Europe)

• Research centers working for industrial applications (like INRIA, ONERA, IFP,

METEO, EDF, etc. . . in France)

• Laboratories from industrial companies (Boeing, Aerospatiale, CGG, PSA,

Renault, etc. . .)

• University research centers (NSF centers, CCVR, etc. . .).

The industry possesses only around 40 % of the installed supercomputers (by

1990). The situation is much different with smaller computers as, for instance, about

70 % of Convex machines are located in industrial companies.

There is some difference between both activities, research and design.

In leading edge research, most computations are done to get some insights in

problems that have not been solved before. Even if we suppose that the researchers

have the computing power they need (which is very seldom the case), usually the

runs can be quite long (say hundreds of hours) as they do not have to be repeated

too often. It has been common these last years to speak of the Grand Challenges

of Science, even though they are difficult to define, to refer to problems the solution

of which is far beyond today’s computer capabilities. One of this challenges is the

simulation of the global evolution of the earth climate.

The opposite is true for analysis and design in industrial companies. Until some

3

recent years, development methodology has been based on an empirical approach in-

cluding a lot of long and expensive field test experiments. Now, we begin to have the

tools to use computer simulation to reduce the design time and more importantly,

to include the computations in an optimization loop. As industrial companies have

to improve the quality of their products and to lower their design costs, it is very

important to reduce the analysis/design time. As computer simulations are available,

analysis can be performed on design conditions, more configurations and variations

can be tested, the simulations can help defining the field test experiments, the good

solutions are found earlier in the development cycle through computations avoiding

the need for late and expensive modifications. But, for the computations to be in-

cluded in the design/optimization cycle, they must be fast enough, that is at most a

few hours and hopefully a few minutes, such that the engineers can be able to test

a lot of configurations and to try many variations. Finally, this should lead us to

automatic optimization and design for many problems. This implies that powerful

inexpensive computing engines are available.

Examples of this strategy of product development is aircraft engineering, both

for airplanes and engines design (cf. [Karadimas], [Paterson]) and the automobile

industry where, for instance, computer crashes simulation is now common within most

companies. Also, combustion simulations can reduce dramatically the time design for

a car engine. This can lead to reduce the development cycle of a car from four–five

years to two years giving an edge to the manufacturers using fast and sophisticated

simulation tools.

Of course, the development of numerical analysis and computer technology is

sought to permit that today’s research methodologies can become the tools of tomor-

row’s design. Therefore, we need to improve the computers capabilities to reach two

goals: to push as far as we can the leading edge of research to develop new methodolo-

gies and to solve problems that were beyond our present scope and secondly to greatly

improve the models and methods that are used today in design and optimization in

4

the industry and to reduce the turnaround time for most studies.

Can we assess what are and what will be the needs of the users in the near future?

Of course, this is difficult as it is different from one area to another. But, we can give,

at least, some examples.

An important area is CFD (computational fluid dynamics) that is involved in the

solution of many problems. For instance, direct numerical simulation of turbulence

(compressible turbulence in particular), appears to be a very important tool. To study

complex physical models, one needs millions of degrees of freedom (called points in

the sequel). By the time of writing, the biggest computations that the author has

seen were made on Cray and Japanese Supercomputers and involved runs of hundred

of hours while using the full capacity of the computers. Two numerical simulations

we have recently seen in a CFD meeting show these trends.

The first one is a simulation around a two dimensional cross section of a wing

flying at jet liners speed. There were around 4 million points. Although much infor-

mation can be extracted from such computations, there were still not enough points

to predict properly the angle at which the wing would stall (if the aircraft decides to

climb at too steep an angle it will eventually fall).

The second one is a computation with 7 million points for the simulation of

compressible turbulence in a star. At this resolution one begins to observe interesting

statistical behaviors but more is desired.

What computers are needed for CFD computations? Minisuper computers and

workstations allow computations with at most a few 100 000 points unless restrictive

hypotheses are made about the flow (like periodic boundary conditions for instance).

Fast workstations are within a small factor in speed with minisupers at present. So

users could do similar computations (100 000 points) if they had to, but these are

more likely used for routine computations involving around 10 000 points or to test

new algorithms.

[Paterson] reported a turbulence computation (direct numerical simulation of

5

a flat plate turbulent boundary layer) with 9.4 million points in the computational

domain. This required 200 hours of CPU time on a Cray 2. To summarize without

deforming too much the truth, we can say that the following computations can be

made

- Millions of points on a supercomputer

- Hundred thousands of points on a minisuper

- Ten thousands of points on a workstation.

Of course, as we will see later on, the computing time depends very heavily on

the algorithm and on the kind of mesh that are used. Hence, it is difficult to predict

what will be going on in the future and the most conservative way is to evaluate the

needs using today’s algorithms.

For research challenging problems, it is estimated that to solve turbulent flows

over plates and through channels for large Reynolds numbers using the Full Navier–

Stokes equations, with 1988 algorithms (if this has any meaning) in 200 hours of CPU

time, a Tflops (1 Teraflop=1012 flops) machine is needed. The memory requirement

is about 0.1 Twords (1 Teraword=1012 words). Larger parts of aircrafts like airfoils or

even complete aircrafts can be simulated using the same computing power and time

but with a less accurate model (large eddy simulation).

The upper estimate for solving the full Navier–Stokes equations for a complete

aircraft of a transport size airplane in the same amount of CPU time amounts to

speeds in excess of Eflops (1 Exaflop=1018 flops) and memory size of 1 Pwords (1

Petaword=1015 words). Of course, this can seem gigantic but fortunately these levels

of computing powers are excessive for engineering applications as not so many fine

details are needed. It can be estimated that the power needed for engineering ap-

plications is five orders of magnitude less. However, if we want to go further in the

study of turbulence, we will need at least a fraction of these huge requirements.

For aircraft analysis and design (at normal altitudes and speeds) several levels

of modelling have been defined, ranging from linear inviscid flows, through Reynolds

6

averaged Navier–Stokes and large eddy simulation, to the full Navier–Stokes equa-

tions. For example, runs using the averaged Navier–Stokes equations use about 1

million grid points and 10 hours of CPU time on a Cray 2. The goal for the analysis

and design optimization is to reduce this to about 15 minutes and to be able to use

more points. This amounts to Tflops and Gwords (1 Gigaword=109 words) for av-

eraged Navier–Stokes and Pflops and Twords for large eddy simulation. During the

optimization process, thousands of such small 15 minutes runs must be made.

A big challenge is to take into account the structural deformation of the body

and its interaction with fluid mechanics.

As we said before, another important area (which is somehow related as fluid

mechanics is also involved) is the automobile research and industry. The main com-

putations that are done are crash simulation, structural mechanics, incompressible

fluid flow computations. As an example, a 1990 frontal crash simulation (80 msecs)

using finite elements with 20 000 shell elements and about 100 000 time steps with an

explicit method used 18 hours of Cray X–MP CPU time. To get a good description

of the physics and to handle more complicated situations like lateral collisions, many

more elements (3 to 5 times more) have to be used. This will lead to more time steps

(because of stability restrictions) and the goal will be to do the same computation in

less than 15 minutes. To do this much faster computers are needed.

There are many other areas from which examples can be used. In the research

category, we can quote:

• Aerospace engineering (hypersonics, spatial structures)

• Plasma physics

• Particle physics

• Weather modelling

• Weapons simulation

In design and analysis for industrial products :

• Oil detection and recovery

7

• Computational Chemistry

• Biology and medicine

• Visualization

and many more examples.

An area where large scale computing is rapidly growing is the financial companies

(like banks and other operators).

As we have seen, all these fields require a huge increase in computing power

that can be obtained through hardware and software improvement and also through

algorithmic advances.

To satisfy all these users (or potential users), there are a lot of issues to be

discussed. Not only are the architectures of computers important but also the con-

text in which the machine is used: through a large computing center with may

be several machines but hundreds or thousands of users, on a single user basis for

big research users or with longer runs on smaller machines. The computing en-

vironment is also very important, for instance, the graphic pre and post process-

ing and the communications. Therefore the problem of which machine to choose

cannot be isolated from the other issues and there are many different situations.

2. The evolution of parallel architectures.

The progress in computers is due to two main reasons: the first one is the increase

in the commutation speed of the logical gates and in integration resulting in faster

and smaller chips, the second one is the improvements in architectural design.

Regarding the speed of integrated circuits, one can look at the clock cycle of past

and present machines (and also the number of cycles needed to perform one floating

point operation). In Table 1, we list some scientific computers with the (approximate)

year of introduction, the clock cycle and the amount of memory available. From this

table, one can see that the decrease of the clock cycle is considerably slowing down.

8

From 1960 to 1980, the cycle time has decreased from 2000 ns to about 10 ns, that

is a ratio of 200. During the last ten years, we went only from 10 ns to about 3 ns.

The next generation of Cray vector computers have a target of 2 to 1 ns, therefore

there won’t be too much progress arising from faster clock cycles in the next years on

traditional supercomputers.

Table 1
Computer Year Cycle time (ns) Memory

IBM 7090 60’s 2000 32K (36 bits)
CDC 6600 1964 100 128K (60 bits)
CDC 7600 1969 27.5 128K + 512K
CRAY 1 1976 12.5 2M (64 bits)

CDC Cyber 205 1979 20 4M
Fujitsu VP 200 1983 7.5 (15 scal) 64M

CRAY 2 1984 4.1 256M
CRAY X–MP/4 1985 8.5 16M

NEC SX–2 1984 6 128M
CRAY Y–MP/8 1988 6 128M
Fujitsu VP2600 1990 3.2 256M
NEC SX–3 1990 2.9 256M
CRAY C90 1992 4 512M

The manufacturers have started to improve the computing speed by using more

parallelism. There has always been a lot of parallelism in the fastest computers.

For instance, there were already multiple functional units in the CDC 6600, able

to operate in parallel. However, this parallelism was at the hardware level, hidden

from the user. In the mid 1980s, to improve the performance, Cray choose to switch

from mono processor vector computers to multiprocessor shared memory machines

whereas the Japanese manufacturers choose to use multiple functional units with

only one processor. There are some advantages and drawbacks in both approaches.

The obvious advantage of multiple pipelines is that the user has nothing to do.

The hardware is in charge of exploiting this low level parallelism. Unfortunately, to

9

have a large enough granularity, one needs long vectors and enough floating point

operations to be performed for each vector load. So, usually, these machines are not

very good at handling short vectors.

On the other side, at least at the beginning of the multiple processor machines,

the user was in charge of describing the parallelism in the multiprocessor approach

and there is some overhead associated with the use of such systems. As we will see,

the situation is improving in that respect.

It seems that now, the two approaches are getting closer to each other, as Cray

has introduced more functional units and larger vector registers in the C90 and, for

instance, we see Japanese manufacturers like NEC and Hitachi introducing multipro-

cessor computers, each processor being a vector machine with multiple pipes.

Can the user get the power he needs from these kind of architectures that is a

multiprocessor shared memory vector machine with a few processors? The answer is

likely to be: no. The Cray C90 delivers a peak performance of 16 Gflops, the peak of

the NEC SX–3 is rated at 22 Gflops although it is difficult to get close to that.

The next generation of Cray vector multiprocessor is aimed at delivering about

100 Gflops. Therefore, we are far from the goal we would like to reach for both

research and design, that is having a Tflops sustained by the end of the century.

We can notice also that, despite their low cycle time, these machines are still not

very good on scalar computations. Unfortunately, even if many algorithms have been

vectorized or parallelized, there is still a lot of scalar instructions in most industrial

codes.

Another thing to consider is the development cost of these machines and the

price to be paid by the user (the Gflops per Dollar). Some ten years ago, the price of

a top of the line supercomputer was around 20 Millions of Dollars. Now, the prices

are more than 30 Millions of Dollars and it is likely that the next generations will be

even more expensive.

Eight years before the end of the century, it can be said that, probably, the

10

only way to have a Tflops in year 2000 or before at a reasonable price is to design

massively parallel computers. As people like simple concepts (even if they don’t fully

understand what is behind), it is common and fashionable now to speak about MPP

(Massively Parallel Processing) and Hypercomputing.

It is difficult to define precisely what “massively” means (it is just like defining

what a supercomputer is). From our purpose, we will speak of MPP when the machine

has at least a hundred of processors. Of course, we also have to define what a processor

means. A processor, in our terminology, will be a computing engine with some kind

of control. This is different, for instance, from the 1 bit processing elements of the

Connection Machine CM2.

There has been some MPP machines on the market for quite a while now. Some

well known machines are SIMD like the Connection machine CM–2 and the MasPar

(also known as the DEC MPP). Some others are MIMD like the Intel Hypercube

iPSC/860 and the Ncube 2. It is not our purpose here to review the performances

of all these machines but just to look at the trends of the market and the future

architectures.

The first machines on the market a few years ago were more toys than real

practical computers. Think, for instance, of the iPSC/1 and the CM–1. However,

the situation has changed. Today, one can solve problems on the CM–2 at about the

same speed as on a vector supercomputer. For instance, in our laboratory, we coded

a neutron transport Monte–Carlo algorithm on the CM–2 ([Robin]). This code runs

at about the same speed on a 16K CM–2 as on a one processor Cray Y–MP although

this algorithm is not well suited to the CM architecture. Of course, there are some

applications for which much better speed can be reach on the CM–2. There are people

having codes running at a few Gflops, that is to say the speed one can reach on an 8

processors Y–MP.

Today most manufacturers have an undergoing project of massively parallel com-

puter. Therefore, there is going to be a lot of competition. Let us review some of

11

them:

• Thinking Machines Corp (TMC) is now manufacturing the CM–5. The history

of this company has begun in the early 80s from research done at MIT to build

computers suited for Artificial Intelligence applications. The CM–1 was introduced

in 1986 and the CM–2 in 1987. The CM–2 was an SIMD machine with up to 64k

1–bit processing elements (pe). Soon, TMC recognized that this machine can be used

for large scale scientific numerical computing and they added floating point chips (1

Weitek chip for each 32 pes). The memory was 256 Kbits per pe. The programming

model of the CM–2 is called Data Parallelism. This means that the processors are

doing either computation or data communications. This is expressed with a subset

of Fortran 90 called CM–Fortran. Compilation and link edit of the codes as well as

the scalar parts of the codes are handled on a front end machine which is an off the

shelf workstation. The performance of the CM–2 was from almost 0 (when most of

the code is run on the front end) to a few Gflops for some special applications.

The CM–5 is a completely different machine. First of all, this is an MIMD

machine with distributed memory, each processor having a control unit. There are

two kinds of processors: control processors and computing nodes. These nodes are

linked by two kinds of networks: the control network and the data network.

The control processor has a SPARC microprocessor, 32 or 64 MB of memory

and an interface to the networks (NI). A computing node also has a SPARC micro-

processor and a NI, but this is complemented by 4 vector units each with 8 MB of

memory. At full speed on triadic operations, each vector unit is able to deliver 128

Mflops. A vector unit has 64 registers of 64 bits, a 16 bits mask register and a 4 bits

vector length register. The instructions for the vector units are issued by the SPARC

microprocessor.

The control network is used for tigh communications: synchronisations, broad-

cast of a scalar, etc. . . . The data network is used for data communication between

memories. The topology is a “fat tree” (this is a tree having more links when close to

12

the root). TMC claims a bandwith of data transfer between NI of 20 Mb/s in a group

of 4, 10 Mb/s in a group of 16 and 5 Mb/s otherwise. Two nodes are in a group of

2k if their networks addresses differ by the last k bits.

The machine can be divided into partitions. Each partition is controlled by a

control processor called the partition manager providing the Unix functions. Each

partition may be allocated to different kinds of users or different kinds of tasks.

Notice that the maximum speed of a 1024 nodes machine is about 130 Gflops.

Therefore to reach a Tflops with this technology, a 10 000 nodes machine is needed.

The (1992) cost of a large machine is about $ 40 000 per processor.

The early samples of the machine were released in 1991 without the vector pro-

cessors. After having been announced for quite a while, the vector processors are now

running on TMC prototypes and are said to be deliver to customers by Fall 1992.

• Intel has been working on its Touchstone project for several years. There are

several steps in this project. All the machines constructed under this project are

MIMD computers based on Intel microprocessors and with distributed memory.

One product already on the market is the iPSC/860 (arising from the Gamma

phase of the project) having at most 128 processors. This machine has evolved from

the first iPSCs by replacing the Intel i386 by the Intel i860 chips, increasing the

memory capacity and improving the router chips transmitting data between memories.

The Delta machine, which is only a prototype and not a commercial product

has been delivered in 1991 to a consortium of laboratories and universities (CSC)

based in Caltech (USA). This is an MIMD machine, the network topology being a

2D mesh (with periodic connections) connecting 528 i860 processors (16 × 33) plus

some dedicated service processors. The core of the system is the mesh routing chip

(MRC) for transmission of messages, to which a computational nodes is linked. Data

is sent by fixed length messages. The bandwith between two nodes is 65 MB/s. The

processor is the i860 associated with 16 MB of memory. The maximum performance

is a few tens of Gflops.

13

The follow on is the Sigma machine derived from the Delta. This leads to a

commercial product to be released soon, the Paragon. The microprocessor is the

new i860 XP delivering a maximum speed of 75 Mflops (at 50 Mhz). The memory

is 128 MB per node. There is up to 2048 nodes, each node being two i860 XP. One

is in charge of the floating point computations and the other one of handling the

messages (send and receive) that will be routed by the MRC. The MRC has been

improved and the communication bandwith is 200 MB/s. The maximum speed is 150

Gflops. The main programming model, as on the iPSC/860, is by message passing.

However, Intel with some other manufacturers is working on extending Fortran to

distributed memory architectures. An undergoing project in this area is called HPF

(High Performance Fortran).

• Kendall Square Research (KSR) has been working on an MIMD machine rang-

ing from a hundred to a thousand of processors (KSR1). This machine uses a pro-

prietary processor delivering 40 Mflops. The processors are connected with a ring

topology with a maximum of 32 processors. Several rings can be tied together to

form larger machines. The important point is that this computer is presented as an

“all cache” machine. There is a global address space, the memory being divided into

pages which are migrated by the hardware to satisfy the data requests from the pro-

cessors. The hardware is in charge of maintaining the cache coherency as there can

be several copies of some data.

• Cray Research is also working on a massively parallel machine, the goal being

to reach a Tflops by 1995–97. The project has three distinct phases. The first one

(sometimes denoted MPP0) has a goal of a maximum of 150 Gflops in 1993. A peak

speed of a Tflops is expected for 1995 and a sustained Tflops for 1997 (which means

having a machine with a much larger peak speed). So far, some details are only known

for the MPP0.

This is an MIMD machine with a physically distributed memory. Each node uses

a DEC Alpha superscalar microprocessor at 150 Mhz. This chip is aimed at delivering

14

a peak floating point computational speed of 150 Mflops. However, it seems that the

attainable speed will be around 100 Mflops for codes with a good data locality. The

MPP0 will probably have from 128 to 1024 processors. Each processor is associated

with 2 Mwords (64 bits) of memory. The topology of the communication network is

a 3D grid (with periodic connections). The data transmission speed is sought to be

around 300 MB/s.

The originality of this machine is to have hardware able to support a sort of

shared memory programming model. This model (Fortran MPP) is based on Fortran

77 and a few directives. The data can be local (private) or global (shared). When an

operation is done on a node some shared data can be located in the memories of some

other processors. Directives allow the user to describe the data and work distribution.

Cray will also provide a message passing environment based on the syntax of PVM.

So far, this machine is linked to a Y–MP in charge of the compilations and the

I/O.

There are many more machines either in the design phases or already on the

market. However, our goal is not to describe all the projects but to get the trends of

the market. As we have noticed, all of these projects are MIMD machines although

some programming models are SIMD–like. Moreover, all these machines have dis-

tributed memory, even though in some of them the address space can be viewed as

a shared global space by the programmer. This will be done by hardware on some

machines and at the software level on some other ones. Almost all of them use off

the shelf RISC superscalar microprocessors that have appeared recently and allowed

(with appropriate compilers) to efficiently process scalar and vector codes.

Therefore, the global trends towards an MPP machine (with a target of more than a

100 Gflops) are:

◦ a few thousand processors,

◦ a physically distributed but (eventually) logically shared very large memory (a

few Gwords),

15

◦ the use of superscalar microprocessors.

This machine can be either a stand–alone one or to be linked to a more conven-

tional super workstation or mid range supercomputer.

As we said before, a machine is not isolated in a computing center. Hence, many

other issues must be addressed, like communications as there must be very fast links

between such an hypercomputing engine and mass storage or graphic workstations. If

we would like to do real time animation on simple images with a resolution of 10242

and 24 bits/pixel, we need a sustained throughput of more than 1 Gb/s. The problem

of storage capacities is also becoming crucial as users are able to produce more and

more data. Usually, they like to store this data for a while. This implies the need for

massive automated storage devices and a short retrieval time for any stored data.

3. The evolution of software.

The software we have to care about for the use of supercomputers or massively

parallel computers is mainly the operating system and the compilers, the language

of interest for scientific computing being Fortran (Fortran 77 right now and may be

Fortran 90 in the near future).

In the scientific computing area, Unix is now a de facto standard for the operating

system. Therefore, all the manufacturers (except, until recently, some Japanese com-

panies) have a Unix offer. To be used on massively parallel machines, Unix will have

to be distributed somehow. Most implementations use a Mach or Chorus micro ker-

nel. Moreover, the view of the operating system tends to be hidden from the user by

the use of workstations using graphical user interfaces like Motif and its competitors.

Regarding compilers and automatic parallelizers, we are, for massively paral-

lel machines, almost in the situation we were at the beginning of the use of vector

computers.

We have just to recall that when the first Cray machines were delivered to LANL,

they were almost without compilers. At least, the early vectorizing compilers were

far from being satisfactory and it took more than ten years to reach a point where

16

people can almost completely rely on automatic vectorization.

This was done through the progress of research in vectorizing compilers starting

in the 70s. By 1985, the research goals were reached and people started looking at

more difficult problems like parallelization.

To stress the importance of having efficient compilers, for instance, the perfor-

mance of the Linpack benchmark has increased from 12 Mflops in 1983 with the CFT

1.12 compiler to 27 Mflops with the CFT77 2.1 compiler using exactly the same hard-

ware. Although the improvement is not always as spectacular as this one, on the

Cray X–MP, we noticed an increase of performance of about 30% when we switch

from CFT to CFT77. A double saxpy kernel went from 180 Mflops to 220 Mflops.

The improvement in speed was particularly noticeable for short vectors.

Regarding parallelization, most of the work done so far was concerned about

shared memory multiprocessors. There has been a lot of progresses towards a better

dependency analysis. Partitioning of loops has improved allowing loop inversions,

chopping of the iteration domain. The task is more difficult when one wants to mix

vectorization and parallelization as one must look at nested loops trying to push inside

the longer vector loops and to parallelize the outermost loops. Some efforts have been

done towards parallelizing loops with non rectangular iteration domains. Also, the

situation has been clarified concerning dependency tests.

Many improvements result from the fundamental work of people like D. Kuck

and K. Kennedy.

An area that has been developed during the last years is interactive systems that

allows the user to see the results of automatic parallelization and to help the compiling

system tuning the code.

Recently, there has been an emphasis on generating efficient code for superscalar

architectures which is very important to have good performances on massively par-

allel machines. Experiments have shown that the main problem in most codes that

prevents more parallelism to be extracted is control dependencies. Therefore, the

17

gains that can be made using these architectures heavily depend on the availability

of compilers able to efficiently schedule the instructions. A large part of the prob-

lem has been switched from hardware (which is simpler) to software (which becomes

more sophisticated). This implies to reorder instructions to optimize the use of several

parts of the processor working simultaneously. This kind of superscalar processors

are particularly important as they will be used as individual components of either

traditional vector computers (improving the “scalar” part of the computation) or in

massively parallel computers.

An important point that has been also studied and that can have application on

distributed memory systems is data allocation for improving cache efficiencies.

We are on the verge of seeing in industrial products inter–procedural dependency

analysis that will allow parallelization of loops with subroutine calls.

Unfortunately, the situation is far from being satisfactory for distributed memory

architectures. Large efforts have to be done in that direction as we have seen that

most future machines have this type of architecture.

There are some active people working in parallelization in France and we would

like to mention P. Feautrier in Paris VI university and the team at Ecoles des Mines

de Paris whose parallelizer PIPS is an interesting tool.

When the user wants to code on one of todays parallel vector computers like the

Cray Y–MP, he can rely on automatic parallelization. For many cases and with a

small help from the user, the parallelizer will do an honest job. The important thing

to notice is that there is no problem of data assignment on a shared memory machine.

So far, the problem is completely different on a distributed memory architecture

where no satisfactory automatic parallelization exist. Therefore it seems that the

future is dark. We will have hyper machines without being able to use them up to

their peak possibilities without tremendous programming efforts.

However, there is some hope to get something done. One possibility is to use

these MIMD hypercomputers with an SIMD–like programming model. Consider, for

18

instance, the Connection Machine CM–2 and CM–5. They are used with a model

of programming which is called data parallelism. Programs are coded using a subset

of Fortran 90 and data allocation is done automatically. This type of coding is very

easy and the machine is not difficult to program (having good performances might be

another story).

Of course, not all the algorithms naturally lead to data parallelism. Therefore,

we will probably have to use a kind of SPMD programming model. But the goal

is to have something easy to use where the user has just to code in a “natural”

programming language like the array features of Fortran 90.

The Cray MPP Fortran also offers a possibility of using an MIMD machine like

a shared memory multi processor.

Automatic data allocation will not be easy on all machines, but either hardware

or software virtual shared memory will help. The user wants to see a global address

space with communications automatically generated either by the compiler or the

hardware. We will have such systems in the next years. This will be a mandatory

condition for these machines to be used in industrial laboratories.

4. The evolution of algorithms.

There has been a lot of progresses made in numerical algorithms during the last

20 years but not that many directed towards parallelism.

Think, for instance, of the generalization of the finite element method. Very

sophisticated algorithms have been devised for different types of problems. In the area

we were looking at in the first section, that is computational fluid dynamics, new finite

element methods have been introduced to handle Euler and Navier–Stokes equations

(cf. [Pironneau]). Particularly, very complex and sophisticated (but efficient) schemes

were invented for the gas dynamics system of equations.

As we said before many algorithms boil down finally to solving a large sparse

linear system of equations (for elliptic and parabolic equations or systems). During

the 70s and the 80s, there was the revival of the Conjugate Gradient (or Conjugate

19

Gradient like) method. It was shown that to be efficient, this method has to be used

with a preconditioner which transforms the system into one that possesses better

numerical properties. One can quote also the successes of the multigrid algorithm.

Unfortunately, most of these algorithms were not well tailored to vector and

parallel architectures.

At the beginning of vector computers, the results with the finite element method

were disappointing because these algorithms generate a lot of indirect addressing and

the first machines (like the Cray 1 and the CDC Cyber 205) performed very badly

on these operations, even inhibiting vectorization. This need was so obvious that this

problem was corrected on the next machines (like the Cray X–MP/4) with a hardware

gather–scatter. Today, nobody can imagine marketing successfully a machine that is

performing poorly on indirect addressing.

The Conjugate Gradient method is a good one for vector architectures as most

operations are directly expressed in terms of vectors (like sums and dot products).

However, two steps of the algorithms cause problems. The first one is the matrix–

vector product and the second one is the preconditioner solve. Both depend on the

problem we are solving, the chosen storage scheme and the design of the precondi-

tioner.

The matrix–vector problem is tougher for finite element on unstructured grids

than for finite differences methods on regular grids. However, during the last years,

clever storage scheme have been devised (cf. [Erhel]) such that this operation can be

done efficiently on vector processors.

The design of the preconditioner depends heavily on the problem to be solved.

Efficient solutions have been devised for vector machines for finite difference matrices

(cf. [Van Der Vorst], [Meurant]). The situation is less satisfactory for finite ele-

ment matrices. However, we can consider to have controlled the problems on vector

computers.

The same is true for algorithms for CFD problems that can be vectorized effi-

20

ciently.

But, unfortunately, problems still remain for parallel architectures, especially for

distributed memory and massively parallel systems.

If we consider the algorithms for gas dynamics problems, they are not well suited

to data parallelism as the different cells of the mesh might require different handlings.

This has lead some people to solve this type of problems on massively parallel ma-

chines by brute force, using less sophisticated but more parallel algorithms with a

much finer mesh size. From the point of view of the computer scientist, this has two

advantages: the algorithm is easy to code and, as the problem size has to be larger,

the performance in terms of speed is much better. Unfortunately, what we are inter-

ested in is to solve problems fast and not necessarily to reach the peak performance

of the given computer. It must be noticed that it is always simpler to reach the

(almost) peak performance with a stupid algorithm rather than with a sophisticated

one (manufacturers know that quite well !).

The picture is not too good either regarding preconditioners. Most of the good

preconditioners are not parallel at all. This is understandable as we are trying to

solve elliptic or parabolic problems with a strong coupling between all the unknowns.

So far, on massively parallel machines only straightforwardly parallel preconditioners

like the diagonal preconditioners have been used.

So, are we condemned to use dumb and obvious algorithms on the future gener-

ation of massively parallel computers?

This will drive to despair most numerical analysts and drive crazy the rest of

them. Fortunately, in this area also, there are some hopes for improvement.

First of all, the situation is much better than it was a few years ago for moderately

parallel machines. During the last years there has been a great deal of development,

both theoretical and practical, on domain decomposition methods.

Roughly speaking, these algorithms divide the domain of interest (or sometimes

directly the equations) in subdomains (either with overlapping or not). Then, sub-

21

problems are defined on each subdomain that can be solved independently. Finally,

the results of the subproblems are pasted together (usually iteratively) to give the

solution of the global problem. Most of the time, the algorithm takes the following

form:

• parallel subproblems solves,

• a non parallel synthesis phase,

• parallel subproblems solves.

The modern way of using domain decomposition is to use this methodology to

derive parallel preconditioners for the Conjugate Gradient method. As an example, we

consider a preconditioner called INVDDH (using 8 subdomains), derived in [Meurant]

and we compare it to the trivial diagonal preconditioner on the Cray Y–MP using

8 processors in parallel. The results are given in Table 2 in a square domain with a

400× 400 mesh solving the Poisson equation.

Table 2

INVDDH

INVDDH cpu time (s) wall clock (s) ratio Mflops

iter 12.10 1.52 7.96 1472
total 13.69 1.74 7.86 1284

DIAG
DIAG cpu time (s) wall clock (s) ratio Mflops

iter 17.83 2.25 7.92 1605
total 17.92 2.28 7.86 1597

From the results in Table 2 it may seem that the improvement using the domain

decomposition method is not so dramatic. However, the important point to notice is

that the computational speed we reach is almost the same as for the straightforwardly

parallel diagonal preconditioner. The decrease of the computing time is not large

because we solved a too easy problem. If we look at the number of iterations, INVDDH

22

gives 163 iterations and DIAG gives 1029 iterations, but the domain decomposition

iterations are more costly. However, there are problems for which the difference is

quite large and for which it pays to use a sophisticated algorithm. A discontinuous

coefficient problem like:

− ∂

∂x
(α(x, y)

∂u

∂x
)− ∂

∂y
(β(x, y)

∂u

∂y
) + γ(x, y)u = f, in Ω ⊂ R2,

u|∂Ω = 0

with the diffusion coefficients chosen as

α ≡ 1

β =

{
1000 if 0.24 ≤ y ≤ 0.76

1 otherwise

on a 200× 200 mesh, gives 244 iterations for the domain decomposition method and

6050 iterations for the diagonal preconditioner.

Although methods like this one are not well suited for massively parallel comput-

ers, one can construct, using the same methodology, other algorithms using a large

number of small subdomains more appropriate to a computer with many (hundreds

or thousands) of processors.

Another interesting feature of the domain decomposition methods is that they al-

low coupling different physicals models in different regions. For instance, in CFD, Eu-

ler and Navier–Stokes equations have been coupled together by researchers in AMD’s

team, (cf. [Glowinski–Periaux]). For hypersonics studies, some research has been

started to couple Boltzmann and Navier–Stokes equations.

More information can be found about domain decomposition in the Proceedings

of the annual Domain Decomposition Conference published by SIAM.

5. Conclusions.

In this short paper, we have seen that there are still a lot of problems that do

need computational power that will not be available before the next century. Some of

23

these problems arise in leading edge research. Others occur when solving industrial

design problems trying to include computations in an optimization cycle.

It seems today that the trend in architectures is to have massively parallel ma-

chines with thousand of processors, each microprocessor having efficient superscalar

and/or vector capabilities. These machines will use a physically distributed memory

but it is hoped that the user can see it as a shared global memory.

To use these machines we will need software tools that are in the research stage

now. This include distributed operating systems and compiling systems. The au-

tomatic parallelizing compilers must be user friendly to help the user cooperating

with the system on portions of code that cannot be automatically parallelized. More

research has to be done also on automatic data allocation.

Concerning the algorithms, we must continue research in the way of domain

decomposition to get algorithms more suited to thousands of processing nodes. It is

not satisfactory to have to use dumb algorithms that were rejected because of their

poor performances some years ago.

Right now, we are almost in the same situation for MPP as we were for vector

computing at the beginning of the 80’s. This means that more research has to be

pursued at the software level (compilers and algorithms) in order to keep pace with

the progresses in hardware and architectures. But, there are some good hopes that

the sustained Tflops target can be reach before the end of the century.

References

[J. Erhel], Sparse matrix multiplication on vector computers, Int. J. of High Speed

Computing, 1990

[R. Glowinski, J. Periaux and G. Terrasson], On the coupling of viscous and inviscid

models for compressible fluid flows via domain decomposition In Domain decomposi-

tion methods for partial differential equations III, T.F. Chan, R. Glowinski, J. Périaux

and O. Widlund, eds Siam, 1990 pp 64–97

24

[G.ÊKaradimas], Application of computational systems to aircraft engine components

development, SNECMA Report, 1990

[G. Meurant], Domain Decomposition Preconditioners for the Conjugate Gradient

Method, Calcolo v 25 n 1–2 (1988) pp 103–119

[G. Meurant], Domain Decomposition methods for solving large sparse linear systems,

in Solving linear systems, the state of the art, E. Spedicato Ed, Nato ASI series,

Springer 1991

[V. Paterson], Computational challenges in aerospace, Future generation computer

systems 5 (1989) pp 243–258

[F. Robin], Transport de neutrons sur Connection Machine, Note CEA, 1991

[H.A. Van der Vorst], A vectorizable variant of some ICCG methods. SIAM J. Sci.

Stat. Comput. v 3 (1982) pp 86–92.

25

