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GÉRARD MEURANT∗

Abstract. In this paper we give necessary and sufficient conditions for the complete or partial
stagnation of the GMRES iterative method for solving real linear systems. Our results rely on a
paper by Arioli, Pták and Strakoš [2], characterizing the matrices having a prescribed convergence
curve for the residual norms. We show that we have complete stagnation if and only if the matrix
A is orthonormally similar to an upper or lower Hessenberg matrix having a particular first row or
column or a particular last row or column. Partial stagnation is characterized by a particular pattern
of the matrix Q in the QR factorization of the upper Hessenberg matrix generated by the Arnoldi
process.

1. Introduction. The Generalized Minimum RESidual iterative method (GM-
RES) was introduced by Saad and Schultz [9] to solve linear systems Ax = b, where
A is a nonsingular real matrix of order n. It is a Krylov method based on the Arnoldi
orthogonalization process using an orthogonal basis of a Krylov space. The initial
residual is denoted as r0 = b−Ax0 where x0 is the starting vector. The Krylov sub-
space of order k based on A and r0 denoted as Kk(r0, A) is span{r0, Ar0, . . . , Ak−1r0}.
The approximate solution xk at iteration k is sought as xk ∈ x0 + Kk(r0, A), such
that the norm of the residual vector rk = b−Axk is minimized.

In this paper we study the problem of stagnation of the GMRES algorithm for
real matrices and right-hand sides. Partial stagnation is defined for a given matrix
A and right-hand side b as having ‖rk‖ < ‖rk−1‖, k = 1, . . . ,m, ‖rk‖ = ‖rk−1‖, k =
m + 1, . . . ,m + p− 1, and ‖rk‖ < ‖rk−1‖, k = m + p, . . . , n. Hence the norms of the
residual stay the same for p iterations starting from k = m. Complete stagnation
corresponds to m = 0 and p = n. Thus ‖rk‖ = ‖r0‖, k = 1, . . . , n− 1, and ‖rn‖ = 0.
Since ‖rn−1‖ 6= 0 implies that the degree of the minimal polynomial of A is equal to
n, we assume that the matrix A is nonderogatory. Without loss of generality we will
use x0 = 0; therefore r0 = b and we will assume that ‖b‖ = 1.

Complete stagnation of GMRES has been studied by Zavorin, O’Leary and Elman
in [13] and Zavorin in [12]; see also Simoncini and Szyld [11] and Simoncini [10] who
studied conditions for non–stagnation, Liesen and Tichý [8] for the study of worst-
case GMRES for normal matrices and Arioli [1]. Up to our knowledge a theoretical
study of partial stagnation does not exist in the literature. Note that the definition
of partial stagnation in [13] is different from ours. Their definition corresponds to
m = 0; that is, stagnation at the beginning of GMRES iterations. We will study
the stagnation phenomenon using results established for the convergence curve of the
residual norms. In [6] Greenbaum and Strakoš proved that any convergence curve for
the residual norm that can be generated with GMRES can be obtained with a matrix
having prescribed eigenvalues. Greenbaum, Pták and Strakoš [7] showed later that any
nonincreasing sequence of residual norms can be given by GMRES. To complement
these results, Arioli, Pták and Strakoš [2] gave a complete parametrization of all pairs
{A, b} generating a prescribed residual norm convergence curve.

Of course, having complete or partial stagnation is a very special case of pre-
scribed residual norm convergence curve. We will build upon Arioli, Pták and Strakoš
parametrization to obtain necessary and sufficient conditions for complete or partial
stagnation. In the course of our study we will see that the orthogonal matrix Q in the
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QR factorization of the upper Hessenberg matrix H generated by the Arnoldi process
has a very special structure in case of stagnation.

The contents of the paper are as follows. Section 2 recall the results from Arioli,
Pták and Strakoš that we need for our purposes. Section 3 proves general results
that are useful for studying stagnation. In section 4 we prove an essential result for
the orthogonal factor of a QR factorization of the Hessenberg matrix generated by
the Arnoldi process. This result is useful to study complete and partial stagnation.
In section 5 we characterize the matrices and right-hand sides leading to complete
stagnation. In section 6 we study partial stagnation. Finally we give some conclusions.

Throughout the paper ej will denote the jth column of the identity matrix of
appropriate order.

2. The Arioli, Pták and Strakoš parametrization. We recall the following
results that were proved in [2] (Theorem 2.1 and Corollary 2.4).

Theorem 2.1. Assume we are given n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0

and n complex numbers λ1, . . . , λn all different from 0. Let A be a matrix of order n
and b an n-dimensional vector. The following assertions are equivalent:

1- The spectrum of A is {λ1, . . . , λn} and GMRES applied to A and b yields
residuals rj , j = 0, . . . , n− 1 such that

‖rj‖ = f(j), j = 0, . . . , n− 1.

2- The matrix A is of the form A = WY CY −1W ∗ and b = Wh, where W is a
unitary matrix, Y is given by

Y =
(

h
R
0

)
,

R being any nonsingular upper triangular matrix of order n − 1, h a vector
such that

h = (η1, . . . , ηn)T , ηj = (f(j − 1)2 − f(j)2)1/2

and C is the companion matrix corresponding to the polynomial q,

q(z) = (z − λ1) · · · (z − λn) = zn +
n−1∑
j=0

αjz
j .

We will call the parametrization, A = WY CY −1W ∗, the APS parametrization.
Here we are only interested in real matrices A and right-hand sides b, so we can replace
the ∗ above, that means conjugate transpose, by the transpose. In the parametriza-
tion, the prescribed residual norm convergence curve is implicitly contained in the
vector h which is the first column of Y . The squares of its elements are the differences
of the squares of the residual norms at successive iterations. Whatever the values of
W orthogonal, R upper triangular and C a companion matrix are, we will obtain with
all these matrices A the same convergence curve for GMRES as long as the right-hand
side is b = Wh.

When we have partial stagnation some of the residual norms are the same. Hence
we have ηj = 0, j = m+1, . . . ,m+p−1. The vector h has therefore p−1 consecutive
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zero components. In case of complete stagnation all the residual norms are the same
except for the last one. In this case we have ηj = 0, j = 1, . . . , n − 1. The vector h
has only the last component which is nonzero. Moreover, since h = W ∗b and W is
orthogonal, we have that ‖h‖ = ‖b‖ = 1 from our assumption on the norm of b and
therefore h = en.

3. Some properties of the GMRES algorithm. In this section we prove
some general properties for the matrices that are involved in the GMRES algorithm
using the APS parametrization. The following results do not assume stagnation. Let
K be the Krylov matrix, K = ( b Ab A2b · · · An−1b ), whose columns are the
natural basis vectors of the Krylov space Kn. We use the notation of Theorem 2.1.
The first interesting property is that K = WY ; this was proven in [2]. Let V be the
orthogonal matrix whose columns are the mutually orthogonal Arnoldi basis vectors.
Then let K = V U be the QR factorization of K where the matrix U is upper trian-
gular. Eventually modifying the signs of the Arnoldi vectors one can obtain a matrix
U with positive diagonal elements. The Arnoldi process gradually computes an upper
Hessenberg matrix H. At the end of the iterations we have AV = V H.

Theorem 3.1. The matrix UT is the Cholesky factor of the matrix Y T Y . The
Hessenberg matrix H of the Arnoldi process is given by

H = UCU−1.

A QR factorization of H is H = QR where Q = V T W is upper Hessenberg orthogonal
and R is upper triangular. Moreover, we have

Q = UY −1 = U−T Y T , R = Y CU−1.

The matrices Q and R are also related to the APS parametrization by RQ = Y CY −1.
Proof. We have

KT K = Y T WT WY = Y T Y = UT V T V U = UT U.

The matrix U being upper triangular with positive diagonal elements, UT is the
Cholesky factor of Y T Y . Since K = WY = V U we have Y = WT V U and

H = V T AV = V T WY CY −1WT V = (WT V )T WT V UCU−1(WT V )T WT V = UCU−1.

The columns of the matrix W in the APS parametrization give a basis of the Krylov
space AKn(A, b) and we have AK = WR̃ where the matrix R̃ is upper triangular. We
have also that K = V U . Hence

AK = AV U = V HU = WR̃.

But, since K = WY , we have AK = AWY = (WY CY −1WT )WY = WY C. There-
fore, R̃ = Y C. The previous equality gives

H = V T WR̃U−1 = QR,

where Q = V T W is orthogonal and R = Y CU−1 is upper triangular. This is a QR
factorization of H. It gives the relation between both basis since W = V Q. Using
the other relation linking V and W (that is, WY = V U) we obtain

Q = UY −1 = U−T Y T .



4 G. MEURANT

This relation implies that Y = QT U , which is a QR factorization of Y . The orthogonal
factor QT is just the transpose of that of H.

Since H = QR = V T AV , we have a factorization of the matrix A as

A = V QRV T = V Q(RQ)QT V T = WHWT .

The matrix

H = RQ = Y CY −1

is also upper Hessenberg. This is an RQ factorization of H. Since

H = UCU−1 = QY CY −1QT ,

we obtain the relation between H and H, H = QHQT . The matrix Q transforms the
upper Hessenberg matrix H to the upper Hessenberg matrix H.

4. What is the matrix Q?. In this section we characterize the orthogonal
matrix Q that was introduced in Theorem 3.1 as a factor of the decomposition H =
QR. The matrix Q is given by Q = UY −1. Therefore we first compute U and the
inverse of Y .

Lemma 4.1. Using the notation of Theorem 2.1, let ĥ be the vector of the first
n− 1 components of h. For the inverse of the matrix Y , we have

Y −1 =
(

0 · · · 0 1/ηn

R−1 −R−1ĥ/ηn

)
.(4.1)

Let L̂ be the Cholesky factor of RT R−RT ĥĥT R. Then

U =


1 ĥT R
0
...
0

L̂T

 .(4.2)

Proof. One can easily check that the matrix in (4.1) is the inverse of the matrix
Y . The matrix UT is the Cholesky factor of the symmetric positive definite matrix
Y T Y . From the definition of Y and ‖h‖ = 1, we have

Y T Y =
(

1 ĥT R
RT ĥ RT R

)
.

It is easy to see that the Cholesky factor L of the matrix Y T Y is

L =
(

1 0 · · · 0
RT ĥ L̂

)
where L̂L̂T = RT R − RT ĥĥT R is the Cholesky factorization of the positive definite
matrix in the right-hand side. Since U = LT this proves the result for the matrix U .

Since we know the matrices U and Y −1 from Lemma 4.1, we can immediately
write down Q as

Q =

(
ĥT 1

ηn
− ‖ĥ‖2

ηn

L̂T R−1 − L̂T R−1ĥ
ηn

)
.(4.3)
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However this expression can be considerably simplified as we see in the following
theorem.

Theorem 4.2. Let Ľ be the lower triangular Cholesky factor of the matrix I−ĥĥT

and S be a diagonal matrix whose diagonal entries are ±1 according to the signs of
the diagonal entries of R. Then

Q =
(

ĥT ηn

SĽT −SĽT ĥ
ηn

)
.(4.4)

Moreover, the entries of ĽT for j ≥ i are

(ĽT )i,j = − ηiηj√
η2

i+1 + · · ·+ η2
n

√
η2

i + · · ·+ η2
n

, (ĽT )i,i =

√
η2

i+1 + · · ·+ η2
n√

η2
i + · · ·+ η2

n

.(4.5)

Proof. We first remark that since ‖h‖2 = ‖ĥ‖2 + η2
n = 1,

1
ηn

− ‖ĥ‖2

ηn
= ηn.

From Lemma 4.1 we have L̂L̂T = RT R−RT ĥĥT R. This implies

L̂T R−1 = L̂−1RT (I − ĥĥT ).

Hence, we have

(R−T L̂)(L̂T R−1) = I − ĥĥT = ĽĽT .

However we cannot identify L̂T R−1, which appears in Q, with ĽT since this last
matrix is the Cholesky factor of I− ĥĥT and has positive diagonal entries whence the
entries of the upper triangular matrix L̂T R−1 may be negative. The matrices L̂T and
R−1 being both upper triangular, we have

(L̂T R−1)i,i =
(L̂T )i,i

(R)i,i
.

Since (L̂T )i,i > 0, the diagonal entries (L̂T R−1)i,i have the sign of (R)i,i. Let S be a
diagonal matrix whose diagonal entry (S)i,i is plus or minus one according to the sign
of (R)i,i. Then we have L̂T R−1 = SĽT . This together with (4.3) proves the result.

Moreover, since Ľ is the lower triangular Cholesky factor of a rank-one modifi-
cation of the identity matrix, its entries can be computed. This can be done using
the results of [5], where the authors considered a factorization LDLT with L lower
triangular and D diagonal. The matrix L has a very special structure with ones on
the diagonal and

(L)i,j = ηiγj , i = 2, . . . , n, j = 1, . . . , n− 1.

The values γj and the diagonal elements dj of the diagonal matrix D are computed
by recurrences

δ1 = −1 = − 1
‖r0‖2

,
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and for j = 1, . . . , n,

dj = 1 + δj(ηj)2, γj = δj
ηj

dj
, δj+1 =

δj

dj
.

It is easy to see that

dj =
η2

j+1 + · · ·+ η2
n

η2
j + · · ·+ η2

n

=
‖rj‖2

‖rj−1‖2
, δj = − 1

η2
j + · · ·+ η2

n

= − 1
‖rj−1‖2

,

and

γj = − ηj

η2
j+1 + · · ·+ η2

n

= − ηj

‖rj‖2
.

We have to take the square roots of the elements dj to obtain the Cholesky factor
Ľ = L

√
D. The multiplying factor for the column j below the diagonal element is

γj

√
dj = − ηj√

η2
j+1 + · · ·+ η2

n

√
η2

j + · · ·+ η2
n

= − ηj

‖rj‖ ‖rj−1‖
,

and therefore (Ľ)i,j = ηiγj

√
dj . The diagonal element of the column j is

(Ľ)j,j =
√

dj =

√
η2

j+1 + · · ·+ η2
n√

η2
j + · · ·+ η2

n

=
‖rj‖
‖rj−1‖

.

From Theorem 4.2 we see that the first row of the upper Hessenberg orthogonal
matrix Q is hT . Therefore the GMRES residual norm convergence (described by h)
can be read from the first row of Q, the orthogonal factor of a QR factorization of H.
Note that, in this factorization, the signs are such that the entries of the first row of
Q are positive.

The matrix Ľ depends only on the components ηj of h. So, up to the signs (which
depend on the signs of the diagonal entries of R), it is the same for Q. We remark that,
for i < j < n, the entries Qi,j are proportional to ηi+1ηj . The results of Theorem 4.2
give a complete description of the matrix Q in terms of the components ηj .

In practical implementations of GMRES, the upper Hessenberg matrix H is re-
duced to upper triangular form by Givens rotations. An expression of the matrix Q
using the sines and cosines of the rotations was given by P.N. Brown, see [3] and [4].

Note that one can also consider the matrix R = Y CU−1. Unfortunately, the
expression of R is not as nice as the one for Q and since it is not relevant for the
study of stagnation, we do not consider it furthermore.

5. Complete stagnation. Let us see what we obtain from the relations of the
previous section when we have complete stagnation that is, h the first column of Y
is en. This implies that the vector ĥ of the first n− 1 components is identically zero
and Ľ = I.

Theorem 5.1. In case of complete stagnation, the orthogonal matrix Q in H =
QR is

Q =
(

0 1
S 0

)
,(5.1)



GMRES STAGNATION 7

where S is a diagonal matrix with ±1 as diagonal entries according to the signs of the
diagonal entries of R.

Note that Theorem 5.1 implies that H = QR is an upper Hessenberg matrix with
a first row proportional to (en)T ; that is, all the elements of the first row are zero,
except the last one which is equal to −α0(L̂−T en−1)n−1.

Note also that since h = en, we have

bT K = bT WY = (en)T Y = (e1)T .

Therefore, as it is well-known (see [13]), we have bT Ajb = 0, j = 2, . . . , n − 1. This
is a necessary and sufficient condition to have complete stagnation. However, with
Theorem 5.1, we are now able to characterize in a different way the matrices and
right-hand sides for which we have complete stagnation.

Theorem 5.2. We have complete stagnation in GMRES if and only if the non-
derogatory real matrix A can be written as A = WUPWT , where W is orthogonal, U
is upper triangular and nonsingular and

P =
(

0 1
I 0

)
,(5.2)

is a permutation matrix. The right-hand side giving stagnation is b = Wen.
Proof. Assume that we have complete stagnation. From Theorems 2.1 and 3.1

A = WY CY −1WT

= WY U−1UCU−1UY −1WT

= WY U−1HUY −1WT

= WQT HQWT

= WRQWT .

The matrix Q has the structure given in (5.1). Such a matrix can be written as
Q = ŠP with P defined in (5.2) and Š is a diagonal matrix with (Š)1,1 = 1 and
(Š)j,j = (S)j−1,j−1, j = 2, . . . , n. The sign matrix Š can be absorbed in the upper
triangular matrix by defining U = RŠ. Moreover b = Wh = Wen in the APS
parametrization.

Conversely, let us assume that A = WUPWT and b = Wen. From [7], section 2
page 466, we just need to show that the columns of W are a basis of AKn. We proceed
by induction. Since WT b = en and Pen = e1 we have

Ab = WUPWT b = WUe1.

But Ue1 is a vector proportional to e1. Hence Ab is proportional to w1, the first
column of W . More generally, assume that Aj−1b = Wq where q is a vector with only
the first j − 1 components non zero. Then,

Ajb = A(Aj−1b) = WUPq.

The j first components of the vector Pq are 0, q1 . . . , qj−1. Multiplying the vector
Pq by the nonsingular upper triangular matrix U , we obtain a vector with the first j
components non zero showing that Ajb is in the span of the j first columns of W .

The result of Theorem 5.2 could have been obtained from Theorem 2.2 in [2] page
639. In case of complete stagnation the matrix denoted Ĥ in [2] is the same as P . We
note that UP is an upper Hessenberg matrix whose last column is proportional to e1.
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If we have complete stagnation for A and b, then we have also complete stagnation
for AT and b. This was shown in [13] and follows from

bT Ajb = bT (Aj)T b = bT (AT )jb = 0, j = 1, . . . , n− 1.

The transpose of A is written as WPTUT WT . The matrix PT is such that PT e1 = en

and UT is lower triangular. The matrix PTUT is lower Hessenberg with a last row
proportional to (e1)T .

Another characterization of the matrices leading to complete stagnation is ob-
tained by using the matrices in the Arnoldi process. We have AV = V H and thus

A = V HV T .

We have seen that the upper Hessenberg matrix H is H = QR with Q defined in
(5.1). Hence the matrix A can also be written as

A = V QRV T

and b = v1 = V e1. Notice that W and V are linked by W = V Q. Thus b = Wen =
V e1. The matrix Q can be written as Q = PS̆ where P is defined in (5.2) and S̆ is
a diagonal matrix with (S̆)j,j = (S)j,j , j = 1, . . . , n − 1 and (Š)n,n = 1. The sign
matrix S̆ can be absorbed in the upper triangular matrix by defining U = S̆R. It
gives A = V PUV T .

As before we have also stagnation for matrices

AT = V UT PT V T .

The previous discussion is summarized in the following theorem.
Theorem 5.3. We have complete stagnation in GMRES if and only the non-

derogatory real matrix A and the real right-hand side b can be written as in one of the
four cases:

A = WUPWT , b = Wen,

A = V PUV T , b = V e1,

A = WPTLWT , b = Wen,

A = V LPT V T , b = V e1.

where W and V are orthogonal matrices, U is an upper triangular matrix, L is a
lower triangular matrix and P is the permutation matrix defined in (5.2).

This theorem essentially says that we have complete stagnation if and only if the
matrix A is orthogonally similar to an upper Hessenberg matrix with either the first
row proportional to (en)T or the last column proportional to e1 or to a lower Hessen-
berg matrix with the last row proportional to (e1)T or the first column proportional
to en and the right-hand sides are chosen properly.

6. Partial stagnation. Assume that we have partial stagnation as defined in
section 1. Then, we can characterize the orthogonal matrix Q in the QR factorization
of H.

Theorem 6.1. In case of partial stagnation of GMRES the columns j = m +
1, . . . ,m + p− 1, of Q are zero except for the subdiagonal entries (j + 1, j) which are
±1. The rows i = m + 2, . . . ,m + p, are zero for columns i to n.
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Proof. We apply Theorem 4.2. We have seen that Qi,j is proportional to ηi+1ηj

for 1 < i ≤ j < n. Therefore, the columns m + 1 to m + p− 1 are zero except for the
subdiagonal entries which are ±1 depending on the sign of the corresponding diagonal
entry of R. The rows i from m + 2 to m + p are zero for columns i to n − 1. The
entries in the last column for these rows are zero because of the structure of ĽT and
ĥ.

Then we can characterize the matrices and right-hand sides leading to partial
stagnation.

Theorem 6.2. We have partial stagnation in GMRES for iteration m ≥ 0 to
iteration m+p−1 if and only the non-derogatory real matrix A and the real right-hand
side b can be written as

A = WRQWT , b = WQT e1,

where W is orthogonal, R is upper triangular, Q is orthogonal with the sparsity struc-
ture defined in Theorem 6.1. We have also the same partial stagnation if and only if
A = V QRV T and b = V e1 with V orthogonal and Q and R as before.

Proof. Assume that we have partial stagnation as defined above. From theo-
rems 2.1 and 3.1,

A = WY CY −1WT = WRQWT .

We have seen from Theorems 4.2 and 6.1 that Q has the required structure and values.
Moreover b = Wh = WQT e1 in the APS parametrization. The proof of the converse
is essentially the same as in Theorem 5.2. The proof of the other assertion follows
from the relation between W and V in the APS parametrization.

Of course, one can easily extend this theorem to the case where we have several
sequences of stagnation separated with phases of strict decrease of the residual norm.
We also remark that partial stagnation does not lead to orthogonality of b with respect
to columns of K (that is, bT Ajb = 0) like in the case of complete stagnation.

An interesting question is to know what happens if we have near stagnation; that
is, successive norms of the residual are not exactly the same but almost the same.
Since we still have QT e1 = h, the corresponding entries in the first row of Q are small
being the components of h. For the other rows in these columns of Q, the answer to
the question is given in the discussion in Theorem 4.2. Let us look at column j and
assume that ηj is small compared to 1. The entry in row i + 1 of column j is

± ηjηi√
η2

i+1 + · · ·+ η2
n

√
η2

i + · · ·+ η2
n

,

for i < j. The absolute value of this entry depends on the convergence history of the
residual norms before iteration j. The subdiagonal entry is

±

√
η2

j+1 + · · ·+ η2
n√

η2
j + · · ·+ η2

n

.

Its absolute value is almost one if ηj+1 is small.

7. Conclusions. In this paper we have given necessary and sufficient conditions
for the complete and partial stagnation of GMRES. Unfortunately, given a matrix
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A, these conditions are not easy to check in practice. However, it is hoped that
our results could lead to a better understanding of GMRES behavior, particularly
near-stagnation. Theorems 5.2 and 6.2 can also be used to generate examples with
complete or partial stagnation.
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cal modeling, project LC06052 financed by MSMT. The author thanks particularly
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