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Abstract. In this paper we study how to compute an estimate of the trace of the inverse of a

symmetric matrix by using Gauss quadrature and the modified Chebyshev algorithm. As auxiliary
polynomials we use the shifted Chebyshev polynomials. Since this can be too costly in computer
storage for large matrices we also propose to compute the modified moments with a stochastic
approach due to Hutchinson [9].

1. Introduction. In [3] Bai and Golub studied how to bound the trace of the
inverse tr(A−1) and the determinant det(A) of symmetric positive definite matrices,
see also [4] or [7]. The bounds of the trace of the inverse are based on the computation
of the three first moments which are the traces of Ai, i = 0, 1, 2. Unfortunately as we
will see there are examples for which these bounds are far from being sharp. In this
paper we study how to improve these results by computing more moments. A lower
bound of the trace of the inverse is computed by using Gauss quadrature and the
modified Chebyshev algorithm [11]. This works well but can be expensive in terms of
computer storage. Therefore we also describe a stochastic approach to compute the
modified moments which are needed by our algorithm.

There are many applications in physics for which it is important to compute the
trace of the inverse, particularly in lattice Quantum Chromodynamics (QCD).

The contents of the paper are the following. We first review the results of Bai and
Golub [3] to motivate our study. Then, we give a short description of the modified
Chebyshev algorithm and describe an example for which the Bai and Golub bounds
are far from being sharp and the Chebyshev algorithm breaks down. Using the shifted
Chebyshev polynomials as auxiliary polynomials to compute modified moments we
show that tight bounds can be obtained with the modified Chebyshev algorithm. In
this algorithm the traces of auxiliary matrices which are denser and denser as the
algorithm proceed have to be computed. To avoid this, we propose to compute these
traces using a stochastic approach due to Hutchinson [9]. Even though the numerical
results are not as good as with the genuine modified moments, it is much cheaper in
terms of storage.

2. The results of Bai and Golub. In [3] Bai and Golub obtained bounds using
Gauss quadrature analytically. This can be done by writing the trace of the inverse
as a Riemann–Stieltjes integral. More generally let

µr = tr(Ar) =
n∑

i=1

λr
i =

∫ b

a

λr dα,(2.1)

be the moments related to α, a piecewise constant measure (that we do not know
explicitly) with jumps of heights 1 at the eigenvalues of A, a and b are respectively
lower and upper bounds of the smallest and largest eigenvalues of A. The trace of
the inverse is obtained with r = −1. The first three moments (r = 0, 1, 2) are easily
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computed

µ0 = n, µ1 = tr(A) =
n∑

i=1

ai,i, µ2 = tr(A2) =
n∑

i,j=1

a2
i,j = ‖A‖2

F ,

where ‖ · ‖F denotes the Frobenius norm. A simple 2–point Gauss-Radau quadrature
rule (see for instance [5] or [6]) for the integral in equation (2.1) is written as

µr =
∫ b

a

λr dα = µ̄r +Rr.

The approximation of the integral is

µ̄r = w0t
r
0 + w1t

r
1,(2.2)

where the weights w0, w1 and the node t1 are to be determined. The other node t0 is
prescribed to be a or b, the ends of the integration interval. From Gauss quadrature
theory (see Golub and Welsch [8] or Gautschi [5]) we know that t0 and t1 are the
eigenvalues of a 2×2 matrix. Hence, they are the roots of the characteristic polynomial
and solutions of a quadratic equation that we write as cξ2 + dξ − 1 = 0. Because of
equation (2.2), this implies that

cµ̄r + dµ̄r−1 − µ̄r−2 = 0.(2.3)

For r = 0, 1, 2 the quadrature rule is exact, µ̄r = µr and we know that t0 is a root of
the quadratic equation. This gives two equations for c and d,

cµ2 + dµ1 − µ0 = 0,
ct20 + dt0 − 1 = 0.

By solving this linear system we obtain the values of c and d,

(
c
d

)
=

(
µ2 µ1

t20 t0

)−1 (
µ0

1

)
.

The unknown root t1 of the quadratic equation is obtained by using the product of the
roots, t1 = −1/(t0c). When the nodes are known, the weights are found by solving

w0t0 + w1t1 = µ1,

w0t
2
0 + w1t

2
1 = µ2.

This gives

(
w0

w1

)
=

(
t0 t1
t20 t21

)−1 (
µ1

µ2

)
.

To bound tr(A−1) Bai and Golub used equation (2.3) with r = 1,

cµ̄1 + dµ̄0 − µ̄−1 = 0.
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But µ̄0 = µ0 and µ̄1 = µ1. Hence,

µ̄−1 = (µ1 µ0 )
(
c
d

)
,

which gives

µ̄−1 = (µ1 µ0 )
(
µ2 µ1

t20 t0

)−1 (
µ0

1

)
.

Then,

µ−1 = µ̄−1 +R−1(λ),

and the remainder is

R−1(λ) = − 1
η4

∫ b

a

(λ− t0)(λ− t1)2 dα,

for some a < η < b. If the prescribed node is t0 = a the remainder is negative and µ̄−1

is an upper bound of µ−1. It is a lower bound if t0 = b. This leads to the following
result.

Theorem 2.1 (Bai and Golub). Let A be a symmetric positive definite matrix
of order n, µ1 = tr(A), µ2 = ‖A‖2

F , the spectrum of A being contained in [a, b], then

(µ1 n )
(
µ2 µ1

b2 b

)−1 (
n
1

)
≤ tr(A−1) ≤ (µ1 n )

(
µ2 µ1

a2 a

)−1 (
n
1

)
.(2.4)

3. The modified Chebyshev algorithm. The modified Chebyshev algorithm
was developed by J. Wheeler in 1974 [11], from an algorithm due to P. Chebyshev
in 1859. Its aim is to compute the coefficients of the three–term recurrence satisfied
by orthogonal polynomials πk using the moments associated to a given (and perhaps
unknown) measure. However, the map giving the coefficients as functions of the
moments is ill–conditioned (see Gautschi [5]) and this algorithm may suffer from
numerical problems. To avoid these problems the modified algorithm applies the
Chebyshev algorithm to modified moments instead of ordinary moments, see also
Sack and Donovan [10].

The modified moments (using known orthogonal polynomials pk) are defined as

mk =
∫ b

a

pk(λ) dα, k ≥ 0.(3.1)

The mixed moments related to pl and α are

σk,l =
∫ b

a

πk(λ)pl(λ) dα(λ), k ≥ 0, l ≥ 0.

If the three–term recurrence relation for the unknown orthogonal polynomials πk

related to the measure α is

γk+1πk+1(λ) = (λ− αk+1)πk(λ)− ηkπk−1(λ), π−1(λ) ≡ 0, π0(λ) ≡ π0,(3.2)
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and the known orthogonal polynomials satisfy

bk+1pk+1(λ) = (λ− ak+1)pk(λ)− ckpk−1(λ), p−1(λ) ≡ 0, p0(λ) ≡ p0.(3.3)

The modified moments are

ml =
σ0,l

π0
=

∫ b

a

pl(λ) dα.

The value π0 can be chosen arbitrarily. Then, we can obtain formulas for the coef-
ficients αk and ηk given the mixed moments as well as recurrences to compute the
mixed moments. Assume we know 2m modified moments. The modified Cheby-
shev algorithm is the following for computing the coefficients αk, k = 1, . . . ,m and
ηk, k = 1, . . . ,m− 1,

σ−1,l = 0, l = 1, . . . , 2m− 2, σ0,l = mlπ0, l = 0, 1, . . . , 2m− 1

α1 = a1 + b1
m1

m0
,

and for k = 1, . . . ,m− 1, we choose the normalization parameter γk > 0 and
for l = k, . . . , 2m− k − 1,

σk,l =
1
γk

[bl+1σk−1,l+1 + (al+1 − αk)σk−1,l + clσk−1,l−1 − ηk−1σk−2,l],

from which the coefficients can be computed as

αk+1 = ak+1 + bk+1
σk,k+1

σk,k
− bk

σk−1,k

σk−1,k−1
,

ηk = bk
σk,k

σk−1,k−1
.

For obtaining orthonormal polynomials the coefficients γk are chosen to have a norm
equal to 1. If they are chosen equal to 1 we obtain monic polynomials. The Chebyshev
algorithm is obtained by choosing pk(λ) = λk.

4. Examples using the Chebyshev algorithm. The example is the matrix
arising from the 5–point finite difference approximation of the Poisson equation in a
unit square with an m×m mesh. This gives a matrix A of order n = m2, with

A =




T −I
−I T −I

. . . . . . . . .
−I T −I

−I T




each block being of order m and

T =




4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4


 .
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We first use a small matrix with n = 36. The trace of the inverse is 13.7571. The
Bai and Golub lower and upper bounds obtained using the first three moments are
10.2830 and 24.3776. However, if we consider a larger problem with n = 900 for which
the trace of the inverse is 512.6442, the bounds computed from three moments are
261.0030 and 8751.76; the upper bound is a large overestimate.

As we have seen one can compute more moments tr(Ai), i > 2 and from the
moments recover (with the Chebyshev algorithm) the Jacobi matrix of the coefficients
αk and ηk whose eigenvalues and eigenvectors allows to compute an approximation of
the trace of the inverse, which is the moment of order −1, using the Gauss quadrature
rule which gives a lower bound for the integral. Results are given for n = 36 in
table 4.1. They seem fine after k = 4 which corresponds to the computation of
8 moments. However, the moment matrices (whose elements are µi+j−2) are ill–
conditioned and if we continue the computations after k = 10 they are not positive
definite anymore. Table 4.2 gives the results for n = 900. The ill–conditioning of the
moment matrices do not allow to go further. Hence, this method is not feasible for
large matrices.

Table 4.1
n = 36, Chebyshev, tr(A−1) = 13.7571

k est.
1 9.0000
2 11.3684
3 12.5714
4 13.1581
5 13.4773
6 13.6363
7 13.7139
8 13.7452
9 13.7550
10 13.7568

Table 4.2
n = 900, Chebyshev, tr(A−1) = 512.6442

k est.
1 225.0000
2 296.7033
3 344.6869
4 375.8398
5 400.0648
6 418.2138
7 433.1216
8 444.9913
9 455.0122
10 463.2337

5. Numerical examples using the modified Chebyshev algorithm. Since
the moment matrices are too ill–conditioned, we can try to use modified moments to
solve this problem. We consider the shifted Chebyshev polynomials of the first kind
as the auxiliary orthogonal polynomials pk. The drawback is that we need to have
estimates of the smallest and largest eigenvalues of A. On the interval [λmin, λmax]
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these polynomials satisfy the following three-term recurrence

C0(λ) ≡ 1,
(
λmax − λmin

2

)
C1(λ) = λ−

(
λmax + λmin

2

)
,

(
λmax − λmin

4

)
Ck+1(λ) =

(
λ− λmax + λmin

2

)
Ck(λ)−

(
λmax − λmin

4

)
Ck−1(λ).

From these relations we can compute the trace of the matrices Ci(A), i = 0, . . . , 2m
which are the modified moments. The modified Chebyshev algorithm generates the
coefficients of monic polynomials corresponding to the measure related to the prob-
lem. We symmetrize this Jacobi matrix and obtain the nodes and weights of the
Gauss quadrature rule from the Golub and Welsch algorithm [8]. The nodes are the
eigenvalues of the Jacobi matrix and the weights are the squares of the first compo-
nents of the normalized eigenvectors. The fonction to consider is f(x) = 1/x. Results
are displayed in tables 5.1 for n = 36 and 5.2 for n = 900. Note that upper bounds
can be obtained by using the Gauss–Radau quadrature rule instead of the Gauss rule.
Using the modified moments there are no breakdowns in the computations and we
obtain quite good results for the trace of the inverse. This example illustrates the
benefits of using modified moments.

Table 5.1
n = 36, modified moments, tr(A−1) = 13.7571

k est.
1 9.0000
2 11.3684
3 12.5714
4 13.1581
5 13.4773
6 13.6363
7 13.7139
8 13.7452
9 13.7550
10 13.7568
11 13.7571

Table 5.2
n = 900, modified moments, tr(A−1) = 512.6442

k est.
5 400.0648
10 463.2560
15 489.5383
20 502.0008
25 508.0799
30 510.9301
35 512.1385
40 512.5469

6. Monte–Carlo estimates. Another possibility to compute the trace of the
inverse is to consider the diagonal elements of A−1. From Golub and Meurant [6] we
know how to estimate (ei)TA−1ei. However, this approach requires computing n such
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estimates. This might be too costly if n is large. In Bai, Fahey, Golub, Menon and
Richter [2] it was proposed to use a Monte Carlo technique based on the following
proposition, see Hutchinson [9] and also Bai, Fahey and Golub [1].

Proposition 6.1. Let B be a symmetric matrix of order n with tr(B) �= 0. Let
Z be a discrete random variable with values 1 and −1 with equal probability 0.5 and let
z be a vector of n independent samples from Z. Then zTBz is an unbiased estimator
of tr(B),

E(zTBz) = tr(B),

var(zTBz) = 2
∑
i�=j

b2i,j ,

where E(·) denotes the expected value and var denotes the variance.
The method proposed in [2] is to first generate p sample vectors zk, k = 1, . . . , p 


n and then to estimate (zk)TA−1zk by running the Lanczos algorithm, see [6]. This
gives p estimates σk from which an unbiased estimate of the trace is derived as

tr(A−1) ≈ 1
p

p∑
k=1

σk.

If we have p lower bounds σL
k and p upper bounds σU

k , we obtain lower and upper
bounds by computing the means

1
p

p∑
k=1

σL
k ≤ 1

p

∑
k=1

(zk)TA−1zk ≤ 1
p

p∑
k=1

σU
k .

The quality of such an estimation was assessed in Bai, Fahey and Golub [1].
Table 6.1 gives the results for our example with n = 36 and doing 5 iterations

of the Lanczos algorithm to compute the bounds of (zk)TA−1zk using the Gauss and
Gauss–Radau quadrature rules. Results for = 900 with 30 iterations are given in
table 6.2. The results are good even though we do not always obtain lower and upper
bounds, but not as good as with the modified Chebyshev algorithm.

Table 6.1
n = 36, Monte Carlo, 5 it., tr(A−1) = 13.7571

p G G–R bL G–R bU

1 12.8274 12.8749 12.9087
2 14.7464 14.8440 14.9300
3 14.8973 14.9681 15.0277
4 13.6203 13.6777 13.7226
5 13.9216 13.9918 14.0495

7. Mixing the modified Chebyshev algorithm and the Monte–Carlo
estimates. Since the matrices that have to be computed when using the modified
moments in the modified Chebyshev algorithm are denser and denser when k in-
creases, it can be costly to compute and to store them for large matrices. Therefore
it is tempting to combine the modified Chebyshev algorithm and the Monte Carlo es-
timates of the trace of a matrix to compute approximate modified moments. Instead
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Table 6.2
n = 900, Monte Carlo, 30 it., tr(A−1) = 512.6442

p G G–R bL G–R bU

1 478.1734 478.3272 478.4955
2 466.4618 466.5600 466.6667
3 458.1058 458.1850 458.2703
4 466.5929 466.6975 466.8028
5 511.1780 511.2772 511.3732

of computing the matrices Ci(A) and their traces, we can choose p random vectors
zj , j = 1, . . . , p, compute Ci(A)zj by three–term vector recurrences and obtain a
Monte–Carlo estimate of the trace of Ci(A) by averaging the values (zj)TCi(A)zj .
The results for n = 36 and k = 5 are given in table 7.1 and for n = 900 and k = 30 in
table 7.2. Of course, the results are not as good as when using the exact traces of the
matrices Ci(A). They are of the same order of accuracy as those obtained with the
Monte Carlo method on A−1. The best result is given by p = 5. The results for p = 5
and increasing values of k are displayed in table 7.3. We obtain good bounds when k
is large. The advantages of this algorithm is that we do not need to store the matrices
Ck and we do not have to run Lanczos iterations as when estimating (zk)TA−1zk.
However, it can be difficult to find a good value of p. It is better to increase k rather
than p.

Table 7.1
n = 36, k = 5, Modified moments + Monte Carlo, tr(A−1) = 13.7571

p G
1 12.8274
2 14.7289
3 14.8535
4 13.5780
5 13.8215
6 14.1153
7 14.1134
8 14.5652
9 14.9474
10 14.7008

Table 7.2
n = 900, k = 30, Modified moments + Monte Carlo, tr(A−1) = 512.6442

p G
1 478.1734
2 466.3618
3 457.9893
4 466.4000
5 510.8105
6 499.5213
7 494.8707
8 488.1057
9 530.4409
10 526.7022

8. Conclusions. In this paper we have shown that the trace of the inverse
of a symmetric matrix can be estimated using Gauss quadrature and the modified
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Table 7.3
n = 900, p = 5, Modified moments + Monte Carlo, tr(A−1) = 512.6442

k G
5 396.4725
10 449.9707
15 480.7157
20 499.4022
25 508.0922
30 510.8105
35 511.7008
40 511.9745
45 512.0306
50 512.0414

Chebyshev algorithm. Stochastic estimates allows to compute the modified moments
without using too much storage. Choosing the number of points in the quadrature
rule and the number of random vectors is still an open problem. Estimates for the
determinant of A can be obtained using the techniques developed in this paper and
the identity ln(det(A)) = tr(ln(A)).
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